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We investigate multi-grid methods for solving linear systems arising from
arc-length continuation techniques applied to nonlinear elliptic eigenvalue
problems. We find that the usual multi-grid methods diverge in the
neighborhood of singular points of the solution branches. As a result, the
continuation method is unable to continue past a limit point in the Bratu
problem. This divergence is analysed and a modified multi-grid algorithm has
been devised based on this analysis. In principle, this new multi-grid
algorithm converges for elliptic systems arbitrarily close to singularity and
has been used successfully in conjunction with arc-length continuation
procedures on the model problem. In the worst situation, both the storage and
the computational work are only about a factor of two more than the unmodified
multi-grid methods.

Abbreviated Title: Multi-Grid Continuation
reywords: Multi-Grid, Arc-Length Continuation, Nonlinear Elliptic Eigenvalue

Problems, Singular Systems.
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1. Introduction

Many problems of computational interest can be formulated as

G(uk) 0, (1.1)

where u represents the 'solution' (i.e. flow field, displacements, etc.) and

X is a real physical parameter (i.e. Reynold's number, load etc.) It is

required to find the solution for some X-intervals, that is a path of

solutions, [u(X),1]. In this paper, we use a class of continuation based on

parametrizing the solution branches by arc-length, say [u(s),X(s)]. A main

advantage of these arc-length continuation methods is that most singular

points on the solution branches can be handled without much difficulty.

Equations of the form (1.1) are called nonlinear elliptic eigenvalue problems

if the operator G with X fixed is an elliptic differential operator [2]. For

nonlinear ellintic eigenvalue problems, a major portion of the computational

work in the arc-length continuation methods is spent in solving large linear

elliptic systems. In this paper, we investigate the use of multi-grid [4]

methods for solving these linear systems. It turns out that a

straight-forward implementation of the multi-grid methods fails in the

neighborhood of the singular points and this usually prevents continuation

past limit points. This failure is analyzed and a modified multi-grid method

based on this analysis is devised. Even for very singular systems, the new

multi-grid algorithm performes satisfactorily and never requires more than

about twice the storage and computational work as the unmodified algorithm.

The arc-length continuation methods will be described in section 2 and
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the multi-grid methods in section 3. In section 4, computational results for

a model psoblen are presented, together with a description of the difficulties

encountered by the multi-grid method near a limit point. The behaviour of the

multi-grid method near singular points will be analyzed in section 5. The

modified multi-grid algorithms designed to overcome these difficulties are

described in section 6. The paper ends with a summary in section 7.
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2. Newton's Method and Continuation Techniques

In this paper we are concerned with methods for computing a family or

path of solutions of (1.1). The methods we employed will be based on some

version of Newton's method.

2.1 Newton's Method

Given a value of X and an initial guess u0 for the solution u(X), we

perform the following steps repeatedly until II6u'Il < e is satisfied

Gi 6ui  - G(ui,%) (2.1)
u

ui+l . ui + 6 ui. (2.2)

In the above, subscripts denote partial derivatives and so Gu  denotes the

Jacobian of the operator G (with respect to u). This procedure will generally

converge quadratically when it does converge. However, as is well known, in

many instances it will fail to converge when the initial guess is not 'close'

to the true solution.

2.2 Natural Continuation

A plausible procedure for overcoming this convergence difficulty and also

for determining the dependence of u on X is to start at a known solution

(u0 ,A0 ) on the solution curve and use it as initial guess for a Newton-type

iteration to find the solution for a neighboring point on the solution curve

with X close to X0 . The procedure is then repeated. We can improve on this

by computing the derivative, uk, at a known solution and use it to get a

better initial guess for the next value of X in a predictor-corrector fashion.

/
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We call this a natural continuation procedure because it corresponds to

parametrizing the solution curve by I, the naturally occurring parameter. A

specific form of this is the more or less well-known:

Eulr-Newton Continuation Procedure:

Given a known solution N), 0 ), we compute the solutions at nearby values

of X as follows:

1. First compute the derivative u) at (uOX 0 ) from

Gu ux G . (2.3)

2. Perform an Euler predictor step:

u0 = u0 + ux ( - )0 ) .  
(2.4)

3. Use u0 as initial guess in Newton's method

Gi (uil - ui) - G(ui,) (2.5)u

until convergence.

4. Use (u(),X) as the new (O)o0 ) and go back to Step 1.

Note that the computation of the derivative u does not cause much

computational overhead because we usually have the factorization of the

Jacobian Gu  computed already in the Newton step. Using such a

predictor-corrector method will often allow us to take a much bigger step in X

and thus reduce the overall cost of determining the dependence of u on X.

Unfortunately, this procedure needs *ome modification in order to handle
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general nonlinear systems because of the possibility of existence of nonunique

solutions. The nonuniqueness usually manifests itself in the form of

existence of 'singular' points where the Jacobian Gu is singular (see Figure

2-1). Points such as point A in Figure 2-1 are called limit points (or

turning points) and points such as point B are called bifurcation points.

These singular points are further characterized by the conditions that GX

Range(G u ) at a limit point and that G e X Range(G u ) at a bifurcation

point [12].

The difficulties that a natural continuation procedure will encounter at

singular points are three-fold. First of all, since Gu is singular at these

points, Newton's method will at best be linearly convergent, making it much

more costly to compute the solution. Moreover, near a limit point, there may

not exist a solution for a given value of X (see Figure 2-2) and hence the

iterations must fail to converge. Lastly, we need some mechanism for

switching branches at a bifurcation point.

2.3 Arc-length Continuation

In the pseudo arc-length continuation approach [12], these difficulties

are overcome by not parametrizing the solution u by X. Instead, we

parametrize the solution branches using an arc-length parameter s, and specify

how far along the current solution branch we want to march.

To be more specific, we let s be the arc-length parameter, and treat u(s)

and X(s) as functions of s. We can compute the 'tangent' u(s), (S)] (where



Fig~e 2-1: A Typical Bifurcatioun Diagraa
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Figure 2-2: Failure of Natural Continuation Near Limit Points
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the dots denote differentiation with respect to s) of a known solution at s=s 0

from the following two equations:

G u 0 + 0 GI = 0, (2.6)

IIOI2 + 1i012 - 1 0. (2.7)

Equation (2.6) is obtained from differentiating G(u,k) = 0 with respect to s

and (2.7) imposes the arc-length condition. We could theoretically generate

the solution curve by integrating the initial value problem obtained by

solving (2.6), (2.7) for u(s) and X(s). Although this process is subject to

the usual instabilities inherent in solving initial value problems

approximately, it can be an extremely effective procedure. Indeed our pseudo

arc-length continuation procedure can be viewed as a method for stabilizing

Euler integration of (2.6), (2.7).

In the pseudo arc-length continuation procedure, we advance from so to s

along the tangent to the solution branch and require the new solution u(s) and

X(s) to satisfy

N(u(s),X(s)) = u(u(s) - U(so)) + Xo((s) - %(so)) - (s - so ) = 0. (2.8)

In addition we require, of course:

G(u(s),X(s)) = 0. (2.9)

Equation (2.8) is the linearization of (2.7) and as indicated forces the new

solution to lie on a hyperplane perpendicular to the tangent vector to the

solution curve at so  and at a distance (s-s0 ) from it. Equation (2.9)

....................... ,.|-
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Figure 2-3: Pseudo Ara-length Continuation
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requires u(s) and X(s) to lie on the true solution curve (Figure 2-3). We now

solve the coupled system (2.8) and (2.9) for u(s) and X(s), given the step

size (s-s0 ) (efficient strategies for choosing the step size are discussed

in [23]). We use Newton's method, in which case we have to solve the

following linear system at each iteration:

T6uT TG G1 GI
A I I = I I I I = -I I (2.10)

6XI lINT Nxl I6Xl I N I

It can be shown that at limit points, where Gu is singular and G.

Range(G u), the linear system in (2.10) is nonsingular (see [12]) and therefore

Newton's method for the coupled system (2.8) and (2.9) is well-defined. Hence

l;mit points present no problem and even quadratic convergence is achievable.

At bifurcation points, where Gu is singular and Ga Range(Gu), things

are more complicated. In the simplest case of only one branch bifurcating

from the main branch (simple bifurcation), an additional higher order

condition involving G u G and G has to be satisfied. It can be

shown (12] that this condition, together with (2.6) and (2.7) and the left and

right null vectors of G , enable two solutions for (uOi 0 ) to be computed at a

simple bifurcation point, with one solution corresponding to each branch.

Using the appropriate pair of (u0 ,;O0 ) in (2.8) allows branch switching. In

[7] a more detailed study of the singular behaviour and branch switching at

bifurcation is liven.
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In order to solve the linear system in (2.10) by direct methods, several

approaches are possible. One way is to perform Gaussian Elimination on the

inflated matrix A, with some form of pivoting to insure stability. But this

approach completely ignores the sparse structure which is usually found in

Gu s arising from nonlinear elliptic eigenvalue problems. In order to take

advantage of the structure in Gu p Keller [12] suggested the following

block-elimination procedure:

Alaorithm BE: (block-elimination)

Solve G y = G% (2.11)

and G z = - G. (2.12)U

Set 8X-(-N z-N)I(N -N (2.13)

and bu - z - 6% y. (2.14)

Note that only systems with the coefficient matrix G have to be solved, sou

structures in Gu can be exploited. Moreover, only one factorization of Gu is

needed. It has been shown [27] that even when G is becoming singular,u

Algorithm BE produces iterates that converge quadratically at limit points.

Continuation methods of various forms and levels of sophistication have

been widely used in the engineering literature. For a recent survey of

numerical methods for bifurcation problems, see for example [18]. The

approach taken here is due to Keller [12], and has recently been applied to

other problems in fluid mechanics ( [5], [6], [15] , [161, [25], [27] ).

A related approach suggested by Abbott [1] corresponds (in a loose way) to
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applying Algorithm BE to the matrix A with the last column permuted into the

first n columns so that the corresponding coefficient matrix in Equations

(2.11) and (2.12) becomes nonsingular even at limit points. However, as has

already been pointed out, any structure or symmetry in G is lost in theu

process, and hence that approach seems unsuitable for large elliptic systems

in two or three dimensions.
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3. iulti-Orid Methods

3.1 Introduction

The class of multi-grid (MG) methods that we use here is based on work by

Bakhvalov [3]. Brandt [4], Federenko [8], Hackbush [10], and Nicolaides [19].

We shall only briefly describe here the particular NG algorithms that we have

used for linear elliptic problems that arise in our treatment of nonlinear

elliptic eigenvalue problems.

The particular way in which we use the MG idea is to use a hierarchy of

grids, rather than a single one, in order to speed up the convergence rate of

the solution process. The MG process has some very desirable theoretical

properties: for certain elliptic operators on an n by n grid, it computes the

approximate solution to truncation error accuracy in O(n 2 ) arithmetic

operations and O(n2 ) storage. It seems natural to consider the use of MG

methods for solving nonlinear eigenvalue problems. MG methods have been

applied to solution of linear eigenvalue problems by Hackbush [11] and

McCormick [17].

3.2 The 'Cycle C' NG Algorithm

The particular MG algorithm that has been used in this study is based on

the 'Cycle C' algorithm described in Brandt [4]. This is an algorithm for

iteratively solving the discrete equations approximating a linear elliptic

problem on a given grid, through interaction with a hierarchy of coarser

grids, taking advantage of the fact that the different discretizations on the
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different grids are all approximations to the same continuous problem. We

note that there are other MG algorithms [4] proposed for implementing

continuation procedures outside of the context of the pseudo arc-length

framework. Some potential problems with these related algorithms are

discussed in section 3.4. We do not know how well such MG algorithms perform

and we hope to carry out our own investigation on such related methods in the

future. In this paper, MG algorithms are used to solve the fine grid discrete

equations that arise in the pseudo arc-length continuation procedure.

Consider a hierarchy of grids (G0 ,G1 . .... . G"), with GM being the finest

one, defined on a domain 0 with corresponding meab sizes (h0 > hi > ..... >

h,). and all approximating the same linear elliptic problem

L U - F on 1 (3.1)

U - 0 on 80.

The discrete equation on a grid Gk is written as:

Lk Uk =Fk on Gk (3.2)

Uk 1 0  on on.

We are primarily interested in obtaining the approximating solution UM on the

finest grid, and we shall start with an initial guess on Gi and apply a

standard relaxation procedure such as the Gauss-Seidel procedure. It is well

known that the error is reduced rapidly in the first few iterations but then

the reduction rate becomes very slow. By a frequency analysis, it can be

shown that the fast reduction occurs when the residual (or the error) in the

current iterate has large harmonics on the scale of the grid, the so-called



high-frequencies. Now at a stage in the iterative process where the error

reduction rate slows down, let the current iterate be uM. Define the error v"

in the iterate as vX - UM - uM . Then the error vK  satisfies the following

equation:

LV M  EX-LM uM - R on GM  (3.3)

vM . o GM.v = 0 onG.

The residual is computable and hence the original problem of solving for UN

can be reduced to an equivalent one of solving (3.3) for v . There seems to

be no obvious advantage in using (3.3) rather than continuing with the

original relaxation procedure with u. However, if the error vM and the

residual RM are smooth relative to G1, that is, if their high frequency

components have been smoothed out by the relaxation procedure, then we can

approximate the solution of (3.3) on a coarser grid, say GM- , by solving
LM-1 vM-1 FM-1 a M-RM oGM-1

Li Ml 1  Ml IM K onG •
M (3.4)

vM ''I  = 0 on aGM- 1

After this problem is solved we can interpolate the solution vM- I onto GM  to

get:

new uM = old uM + W_ I1 vM- 1 , (3.5)

where wMI is an interpolation factor, normally taking the value unity and 14

stands for some interpolation operator from Gi to G3 . The solution process

for Equation (3.4) on GM- I usually costs considerably less than the cost of

solving Equation (3.3) on GM. If vM is indeed smooth krelative to GM) then
GM-I should provide adequate resolution for vM and hence IN I vU-  should be a

good approximation for v. This principle of transferring to a coarser grid
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when convergence slows down can be applied recursively. Thus for example, we

can start with a zero initial guess for v M-1 in Equation (3.4) and apply the

Gauss-Seidel relaxation procedure to the iterates on G When the

convergence slows down, we can again transfer to the next coarser grid G -2 ,

and so on. One can view the whole process as each grid smoothing just those

frequencies in the error that are high relative to its own mesh size, each

doing its job efficiently because these high frequencies are precisely those

that are efficiently smoothed out by relaxation procedures.

The control of when to transfer between grids can follow a fixed strategy

or an adaptive one. A fixed strategy could be of the following kind (see

Nicolaides [19]) : perform p relaxation sweeps on each grid Gk before

transferring to a coaser grid G, and perform q relaxation sweeps before

k+linterpolating back to a finer grid G . An adaptive strategy could be as

follow (see Brandt (4]) : transfer to a coaser grid when the ratio of the

residual norm of current iterate to the residual norm a sweep earlier is

greater than some tolerance A, and transfer to a firer grid when the ratio of

the residual norm of current iterate to the residual norm on the next finer

grid is less than another tolerance 6. For simple problems like Poisson's

equation on a square, the overall MG efficiency is very insensitive to which

particular strategy is used and what values are used for (p,q) or (A,6). We

shall refer to the above particular fixed strategy the (p,q) strategy and the

adaptive strategy the (AM) strategy.

... "!
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3.3 Indefinite Problems

In the 'Cycle C' algorithm just described, convergence on the lowest

(coarsest) grid G is obtained by repeated relaxation sweeps. For positive

0

definite matrices, convergence on GO  can be guaranteed. For indefinite

problems, however, convergence on G cannot be obtained by repeated relaxation

sweeps, because the components of the error that correspond to eigenfunctions

with negative eigenvalues will grow as a result of relaxation sweeps (see the

analysis in section 5). Therefore, for indefinite problems, a direct solution

(e.g. Gaussian Elimination) must be employed on the coarsest grid. If this

coarsest grid is fine enough, it will also provide corrections to those

growing components of the iterates on all finer grids. However, too fine a

grid for G will increase the cost of the direct solution procedure. Hence a

little care must be taken regarding the size of the coarsest grid for

indefinite problems. Fortunately, for 'not too indefinite' problems, G can

be chosen coarse enough so that the direct solution on G will not affect the

overall efficiency of the MG procedure seriously. Since indefinite problems

occur frequently in nonlinear elliptic eigenvalue problems and, in particular,

in our model problem, we shall use such a direct solution on O whenever

necessary.

3.4 Continuation Methods

Brandt [4] suggested using continuation methods in conjunction with the

MG procedure. His main idea is to use coarse grids for continuation, with

little work and crude accuracy, and only use the finer grids at the final
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continuation step to achieve higher accuracy. We have not pursued this idea

here. We believe that it will work as long as we stay away from singular

points. Around a limit point, however, the solution branches corresponding to

different grids may look like the situation in Figure 3-1. If we continue on

the coarse grid to X * and try to refine using the finer grid, while keeping X

fixed, we cannot hope to obtain a fine grid solution because Xe is larger than

the fine grid limit point X (i.e. no fine grid solution exists for X > Xf).

In the opposite case, there is no coarse grid solution at A so we cannot get

started on that grid. Hence, in general, we have to be extremely careful in

using MG methods and continuation around singular points.
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Figure 3-1: Limit Points for Different Grids
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4. Application to the Bratu Problem

4.1 Bratu's Problem

As a typical example of an nonlinear elliptic eigenvalue problem, we

consider the Bratu problem

G(u,) - Au + X e u  0 on 12, (4.1)

u = 0 on fl.

Equation (4.1) arises in many physical problems, for example, in chemical

reactor theory, radiative heat transfer, and in modelling the expansion of the

universe. The domain 0 is the unit interval [0,1] in R1 , or the unit square

10,1]x[0,1] in R2, or the unit cube [0,1]x[0.11x[0,1] in R3  There are no

bifurcation points in this problem, all the singular points are limit points.

The behaviour of the solution near the singular points has been studied

numerically Ui, 261 and theoretically [14, 20, 21, 241. Typical solution

diagrams are shown in Figure 4-1. For both the one and two dimensional cases,

the problem has exactly one limit point, whereas the three dimensional case

has infinitely many limit points (if Q is a sphere). From now on we only

consider the two dimensional case, with Q the unit square. For this case, the
S a

value of I and the corresponding Hull. at the limit point are given by :

6.81 and Hull, = u(0.5,0.5) Z 1.39. For X > X*, Equation (4.1) has no

solution, and for X < X , it has exactly two solutions.
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Figure 4-1: Solution for the Brotu Problem
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4.2 Arc-length Continuation with Direct Methods

We first apply the arc-length continuation method of Section 2 to

Equation (4.1) using direct methods. For this problem, a trivial solution is

(u = 0, X = 0). We can thus start at this trivial solution on the lower

branch and march along the solution branch, past the limit point, and continue

on to the upper solution branch. Since the only singular point in this

problem is a limit point, this in principle presents no problem to the

arc-length continuation procedure, although the step size might have to be

reduced and controlled appropriately near the limit point. If desired, the

limit point can be accurately determined by other related techniques [1, 13].

The derivatives of the operator G in Equation (4.1) that are needed for

the arc-length continuation technique are

G = A + k u (4.2)
u

G = e (4.3)

Now if we approximate the Laplacian operator by the standard five-point

stencil on a uniform grid, the operator G will be approximated by the usualu

block tridiagonal matrix and the operator G, by a column vector.

In the application of the arc-length continuation technique, we will have

to repeatedly solve linear systems of equations with the matrix given by G

The solution of these linear systems is the central part of the arc-length

continuation method. Hence, an efficient linear system solver is crucial to

the overall performance of the continuation technique. In this section, we

present some computational results for Bratu's Problem using a direct method
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(Gaussian Elimination) of solution of the linearized difference equations.

For large problems, this would be prohibitively expensive. However, the

results here are intended to demonstrate the performance of the continuation

procedure independent of the linear algebra method employed. In the next

section, we shall investigate the use of multi-grid methods for solving the

linear equations. It should be pointed out that Gu  is generally not

separable, and therefore we cannot use fast Poisson solvers directly even on

rectangular domains. Moreover, this matrix is indefinite on the upper branch,

and hence iterative methods like Successive-Over-Relaxation cannot be used

directly.

We present some of our computed results in Figure 4-2. Only the

behaviour of the solution branch near the limit point for a few relatively

coarse discretizations are presented. These are to be compared with the

values : X 6.80811698 and u(.5,.5) = 1.3916603 for a grid with h - 1/24

with the nine-point finite difference operator as computed by Abbott (1] and
* S

to the easily obtainable exact solution (U 18/e 6.62183, u - 1) for the

case h = 1/3. As expected, the step size 8s s - sO had to be suitably

controlled near the limit point, but otherwise we encountered no difficulty in

continuing past the limit point.

4.3 Are-length Continuation with Multi-Grid Methods

In this section we discuss the use of MG methods, rather than direct

methods, for solving the linear equations that arise in the continuation

procedure. The MG method that we use was described in Section 3 and
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Figure 4-2: Computed Results for Bratu's Problem Near Limit Point

I +

I I 6.000000 0.619061 I 0.9841 I
I I 6.485170 I 0.809435 I 0.9165 I
I 1/3 I 6.572858 I 0.883052 I 0.7948 I
I I 6.621830 I 0.999899 I 2.8889E-4 I <- limit
I I 6.614022 I 1.04937 I -0.4207 I point
I I I I

I I 6.S00000 I 1.00456 I 0.9632 I
I I 6.689007 I 1.14350 I 0.9041 I
I 1/24 I 6.802691 I 1.34995 I 0.2965 I
I I 6.805499 I 1.39043 I -1.1732E-4 I <- limit
I I 6.805485 I 1.39368 I -0.0125 I point

1.4

.1

.- 67
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Gauss-Seidel is the smoothing relaxation process. Since the Jacobian matrix

Gu becomes indefinite on the upper branch, we use a direct method on the

coarsest grid in the neighborhood of the the limit point and on the upper

branch.

We started the continuation procedure with the trivial solution (u -0, X

0), with h = 1/4 on the coarsest grid, and a total of four levels of grids,

making the finest grid with h = 1/32. As expected, the MG method worked fine

and we were able to continue up to very close to !he limit point, at X Z 6.804

on the lower branch. However, we noticed that the convergence of the MG

method deteriorates as we move in towards the limit point. For example, the

number of equivalent relaxation sweeps on the finest grid required to reduce

the residual norm by an order of magnitude, which is a convenient way of

measuring the efficiency of MG methods, went from about 5 at X - 0 to about 20

at X - 6.803 and to divertence at I = 6.805. The divergence occurred in the

MG method and not in the Newton iteration. It is not due to the possible

indefiniteness of the Jacobian matrix on the finest grid. Thix can occur near

the limit point after a large Euler-predictor step. But we performed other

tests starting on the upper branch, away from the limit point, where the

Jacobian matrix is indefinite, and the MG method performed as efficiently as

on the lower branch. From our experience, this divergence is strictly a

phenomenon associated with the limit point, and to the best of our knowledge,

has never been discussed or analysed in the literature. We study this effect

in section 5.
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The exact value of X at which this divergence first occurs varies

slightly with the size of the coarsest grid h0, but is quite independent of

the other parameters of the Cycle C algorithm (e.g. vi and 6). In all the

cases we have run, this divergence made it impossible to continue past the

limit point. Therefore, a remedy is needed. Before we can find one, we must

understand the reason for the divergence.
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5. Analysis of Multi-Grid Methods for Near-singular Systems

For the present analysis, we assume that the linear operator L is

self-adjoint and has the complete set of orthonromal eienfunctions {41' 42'

. with corresponding rea. eigenvalues {g 1 .2 ..... .) The operator Gu in

the Bratu problem clearly satisfies the above hypothesis. Thus the solution U

to L U - F can be written as:

U i 4 1; aj = <JRF,>, j-l,2 .... (5.1)

We assume that the discrete approximations Lk to the continuous L are

symmetric. Thus they have II&I sigenvalues [pk 1 < _ ... <( N and a

complete set of orthonormal eigenvectors (C , 4. .. , . Here Nis the
k k

dimension of the matrix representing Lk. For most reasonable approximations,

and certainly for the five point formula used for the Bratu Problem on a

rectangle this is true.

Assume that after iterating (relaxing) on the grid Gk, convergence has

slowed down and a transfer to the next coarser grid is desired. Let the

current iterate be u
k , and the corresponding 'correction' be vk so that Uk

uk + Vk where Uk satisfies LkUk - Fk . The correction problem is given (as in

section 3) by:

Lk vk 11k . Fk - Lk uk, in Gk; vk  0 on 8Gk. (5.2)

This is approximated on Gk- by

Lk-l vk-I  Ik_ Rk , in Gk; vk- 1 = 0 on OGk - . (5.3)
k-k

Using the eigenvector expansion of vk in (5.2) we get:

N
vk kl k
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where

ak <Rk k

Suppose now that (5.3) is solved exactly (by either direct solution or Cycle C

or any other means) on Gk- . The solution vkI is then:
Nk

k- - k-1 k-ia i  4i ( 5.6)

where

ak-l .k-l~k .k-1. t k-l 57= <Ik I ' i * 57

The key idea in the MG method is that if vk and Rk are smooth enough, they can

be well approximated on Gk-l . Thus it is important for efficiency

considerations that
3

k k-i- k
I - v (5.8)

Using (5.4) and (5.6), this is equivalent to:

N N
a - k k-1 i k " (5.9)

~a~l 'k-i tia 1 **i i

This will be the case if

k k-i-Z k
(a) 1 k- = l< (5.10)

k-i k(b) a - aip l< iNk-- (5.11)

3We shall use the L' symbol to mean rather loosely 'approximately equal
to'. The meaning/should be clear by context. Also, we shall assume that the
interpolation factor wkl in Equation (3.5) is equal to one unless stated
otherwise.



-29-

(c) ak-0 (5.12)
ai = 0, i k N-1. (

Conditions (5.10) and (5.11) ensure that the coarse grid correction v

improves the lower modes of the iterate uk . Condition (5.12) is essentially

the smoothness required of vk on Gk (i.e. negligible higher modes).

Now condition (5.10) is satisfied for the low frequency eigenfunctions of

the continuous operator L if the grids Gk and Gk-1 are both fine enough to

resolve these eigenfunctions. This holds in many cases since the lower

eigenfunctions of most second order elliptic operators over smooth domains are

very smooth. For the Bratu problem, the eigenfunctions are very close to

products of sines and cosines (the eigenfunctions of the Laplacian operator)

and so the lower modes are easily resolved by very coarse grids. Condition

(5.11), on the other hand, turns out to be violated if the operator Lk is near

singular. This is what caused the divergence of the Cycle C algorithm in the

arc-length continuation procedure as we approach the limit point (see section

4.3). We shall analyse this case next.

From (5.5) and (5.7), condition (5.11) becomes:

k-1 k, k-l /k-1; <k k~<1 R4i > i <

I i I N k_ 1 .  (5.13)

We claim that if condition (5.10) is satisfied, and if the transfer from Gk to

G k -  is done only after the residual Rk has been smoothed, then the numerators

in (5.13) will have approximately the same value. To show this, we expand Rk

as
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N

Rk" 1 ri  " (5.14)

where

ri (Rkk> (5.15)

Thus the numerator on the right hand side of (5.13) is precisely r. To

estimate the numerator on the left hand side of (5.13), we proceed as follows:

- k k k-i k
I k R - k  

ri Ik 4i

1N

= 1 -i k + ri Ikl k (5.16)

Now if condition (5.10) holds, its converse:

ik-1 k- k-i
k i Ci l iNk-_0 (5.17)

also holds. Also, if Rk has been smoothed on Gk , then ri (for NkmisN k ]  t

k
be small compared with ri [for li<Nk_] ). Alternatively (5.12) assumes a.

ri/gk Z 0 for i > Nk_1 . Therefore, we can approximate in (5.16) by dropping

the second sum on the right hand side to get

k- r i  (5.18)
k ir~

Hence

<I-1 Rk 4 - > : tit li - (5.19)

Therefore, from (5.15) and (5.19), we have, as claimed earlier,

<I k1Rki > <Rh ,i> for lIN

The relations in (5.20) imply that condition (5.13) will be true if
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k k-1
Pi i- (5.21)

Actually, these conditions need to be strengthened in order to guarantee that

the visit to Gk -i actually improves the accuracy of uk. This can be seen as

follows. The error in the iterate uk before the transfer to Gk -i is given by

N I
old error w k k i (5.22)

From (3.5), the new error in 1  after coming back from a visit to Gk -1 is

given by

new error = vk k v k-1

wk -i k- . (5.23)

In view of (5.4) and (5.6), the above gives:

new error k (a k k + higher modes

i k-ik k(

(1 - wki ai  / a.) a. + higher modes (5.24)

From (5.5), (5.7) and (5.20), we have

ak-i sk k /k-i

and therefore we can write the new error in (5.24) as:

- k.k-1 k kk

new error (- wk ti )a k 4ik + higher modes. (5.25)

For obvious efficiency and convergence considerations, the new error should

preferably be less than the old error, at least for the lower modes. In other

words, condition (5.21) should be strengthened to

Ii- w k k-11 < 1, (5.26)

i.e.

W k / pik-l < 2, for l~ijNk_. (5.27)
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Now if the ratios of eigenvalues in (5.21) are not close to unity, the

interpolation factors, Vk-l, should be chosen so that condition (5.27) is

satisfied. Otherwise the new error can be larger than the old error in some

modes.

It should be pointed out that, in general, condition (5.27) is not

necessary for the convergence of the Cycle C algorithm. This is the case, for

instance, if L and the Lk's are all positive definite. Then Gauss-Seidel

sweeps on any grid Gk will reduce the amplitude of every mode present in the

error. In such cases, convergence on any grid can be achieved by merely doing

enough relaxation sweeps. Then it is not necessary for the next coarser grid

to provide any improvement on the current iterate, although it would obviously

improve the efficiency of the overall algorithm if it does so. In fact, the

NG method derives its efficiency from the very fact that the coarser grids do

provide improvements in the current iterate uk in the lower modes. These are

precisely those modes that have poor convergence rates for the relaxation

sweeps on 0k. Thus, even in the positive definite case, it is important (from

an efficiency viewpoint) that conditions (5.27) hold, at least for small i's.

If the operator L and the Lks are indefinite the situation is different

because some modes will grow if we simply perform relaxation sweeps on a fixed

grid. Such modes have to be corrected by going to coarser grids and using a

direct method on the coarsest grid. Further the interpolation factors, wk-l,

should be chosen such that condition (5.27) is satisfied for these modes.

Condition (5.27) has been suggested by Brandt [4] for indefinite problems.
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However as we show later, most nonlinear eigenvalue problems with limit points

and bifurcation points abound with indefinite operators but they do not cause

difficulties in the sense of violating condition (5.27). Essentially only one

mode causes problems on each Gk and it is the mode that correspond to the

eigenvalue that is nearest zero as the singular point is approached. Merely

including the interpolation factors so that condition (5.27) is satisfied

turns out to be very inefficient. Further, it is not clear that such factors,

Wkl , can be found at all in this case.

Another source of difficulty is that the process of interpolating vk-1

into Gk introduces high frequency errors. That is, the exact relation

corresponding to (5.10) is:

N
k k-l k k k = 1,.I k-I ti = i +  bij tj S. 12...... N k-1I

3=-

for 1.i<N k-l, (5.28)

and the coefficients b1  may be large for j > Nk. This would result in a

violation of (5.12). Fortunately, these high frequency errors are very

efficiently smoothed out by the subsequent relaxation sweeps on Gk , and thus

these errors are automatically corrected.

For elliptic operators which are 'far' from being singular and with a

reasonable grid system (Gk) condition (5.27) can be assured. For example, if

L is the negative Laplacian, -A. on a unit square with Dirichlet boundary

conditions, then it is known (e.#. [9]) that the eigenvalues of L are given

by
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Pm,n (m)2 + (n7) 2  
(5.29)

The corresponding eigenfunctions are:

tm,n = sin (mrx) sin (nny). (5.30)

These eigenfunctions evaluated at the discrete interior grid points of a

uniform mesh on the unit square, give the eigenfunctions of the discrete

5-point approximations, Lk 0 -Ah. with h being the uniform mesh size. The

eigenvalues of Lk are, with 6x = 6y = hk:

k 4[sin2(mithk/2) + sin 2(nrhk/2)] / h 2 (5.31)

Some of these eigenvalues are tabulated in Table 5-1 for various mesh sizes,

h The ratios p k ,Pk-1 are given in Table 5-2. We see from Table 5-2 that
k- T rt m,n m,n

condition (5.27) is satisfied, with wkl = 1, for all lower modes shown.

These ratios are very close to unity, even for the case where the coarsest

grid has only one interior point. We have seen from condition (5.11) that

this closeness to unity is very desirable and this fact partly explains the

well-documented success of MG methods for the Laplacian operator.

Near the limit point of the Bratu problem, the operator L a G = A + ken

u

behaves very much like a shifted Laplacian operator. Clearly, if the factor

•u were replaced by a constant, a say, then Gu is replaced by the the

Laplacian operator with a shift a.%. Then the eigenvalue ratio p /Pl,1,

valid for a), = 0, is replaced by:

k k-i,- PI- ax). (5.32)

Since 0 < u ( 1.4 the factor eu  does not vary much and we assume this

approximation to be valid for some a > 0. The situation is depicted
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k
Table 5-1: f or A

1k-I 0 1 2 3 CD

I(M,n)I h0= 1/2 h 1 1/4 h2- 1/8 h3 - 1/16 h.-= 0

1,1 16.0 18.745 19.487 19.676 19.739

2.1 NA 41.37258 47.238 48.812 49.348
1.2 NA 41.37258 47.238 48.812 49.348

2.2 NA 64.0 74.981 77.947 78.957

3,1 NA NA 88.760 96.126 98.696
1,3 NA NA 88.760 96.126 98.696

3.2 lNA lNA 116.507 125.261 128.305
2.3 NA NA 116.507 125.261 128.305I

3.3 NA NA 158.033 172.575 177.653

I I--- I
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k k-1
Table 5-2: Ratios P1 , / 1pm for - Ahk

I(m,n)l bk=1/ 4 , hk_1=1/2 h hk=l/8, hk1=/ 4  hk=1/16, hkl1/ 8

1,1 1.17 1.04 1.01

2,1 NA 1.14 1.03
1,2 NA 1.14 1.03

2.2 NA 1.17 1.04

3,1 NA NA 1.08
1,3 NA NA 1.08

3,2 NA NA 1.08
2,3 NA NA 1 1.08

3,3 NA NA 1.09

I I
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Figure 5-1: Spectrum of Shifted Laplacian
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graphically in Figure 5-1 for the grid system that was used for Table 5-1. As

the shift ak approaches the group of eisenvalues corresponding to the (1,1)

mode from below, the ratios in (5.31) increase. As a continues to increase

the ratio of eigenvalues will become greater than 2, then increase towards +-,

jump to -- discontinuosly, and start increasing from -- to 1. The situation

is depicted in Figure 5-2.

We thus see, under the above assumptions, that condition (5.27) is first

violated by the lowest mode (i.e. the (1,1) mode) on the two coarsest grids Go

and G1 . In fact the lowest eigenvalues for the Bratu problem computed at the

first point on the solution branch where Cycle C diverged, yields the ratio

almost exactly 21 On the other hand, even at this point, condition (5.27) is

satisfied by the (1.1) modes on the finer grids. In other words, the

divergence of Cycle C is seen to be caused by one near-singular grid out of

the whole hierachy of grids present. The mode that becomes singular at the

limit point of the Bratu problem is the (1,1) mode, and this occurs first on

the G grid. As the limit point is approached, Lk on some of these grids may

even become indefinite, while others (the finer grids) may still be positive

definite. Essentially, the near-singular grid causes the (1,1) mode component

of the correction vkl, when viewed as an approximation to vk, to have the

right direction, but the wrong magnitude. This phenomenon is not limitted to

the Bratu problem. The only thing special about this problem is that it is

the eigenvalue of the (1,1) mode that becomes zero at the limit point. For

other problems, the eigenvalue of the operator L that becomes zero as the

L
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Figure 5-2: Spectrum Near Singular Point
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singular point is approached might correspond to other modes. Although the

singular point in the Bratu problem is a limit point, we can expect the same

behaviour at a bifurcation point.

Having now understood the cause of the divergence of the MG method, in

the next section we shall discuss some modifications to the basic Cycle C

algorithm that are designed to overcome such difficulties.
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6. Remedies and Nov Algorithms

In this section we discuss approaches that have been devised to overcome

the difficulties with the NG method near singular points. The first goal is

to modify the basic Cycle C algorithm so that it will converge for values of X

close enough to the limit point so that the arc-length continuation procedure

can take us past the limit point onto the upper solution branch. A more

ambitious goal is to modify Cycle C further so that it will converge

arbitrarily close to the singular point. Such an algorithm, when used in

conjunction with the are-length continuation technique for tracing solution

branches, will make the overall algorithm much more robust. Moreover, such an

algorithm may prove to be useful for locating singular points accurately,

either using an arc-length continuation based procedure [13], or some other

procedure that uses the operator G near the singular point [22]. We shall
u

see that the first goal is relatively easy to achieve, whereas the second goal

is much more difficult. However, we have devised a Cycle C based algorithm

that has performed very well when applied very close to the limit point. The

approaches that we have tried and that lead to the final algorithm will be

discussed in this section. We shall describe them in the sequence that they

were tried.

Before we proceed, however, we have to explain a few general strategies

that were used. First of all, Gauss-Seidel and many other relaxation schemes

are not very effective in smoothing the lower modes, especially modes with

near zero eigenvalues. Hence, these modes must be eliminated by means other
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than relaxation, even on the coarsest grid. Therefore, unless stated

otherwise, we shall use a direct solution on the coarsest grid even though the

operators Lk s may be positive definite. This does not affect the overall

efficiency very much because the coarsest grid has so few points that direct

solution is very fast and efficient.

Another strategy concerns the treatment of the mode that causes the

divergence; that is the mode with a near zero eigenvalue, say 4I" In all the

algorithms that are discussed, this mode is treated separatelv from the other

modes. To do this, it is essential to have approximations to this mode and to

v say and A, respectively. Here we have to

strike a balance between accuracy and efficiency. If we compute the Ck
1

exactly, then we can completely eliminate the C error components on each

grid. Thus, the problem on Gk can be reduced to one in which ak is zero (see

(5.25)). When this is done, we do not need to satisfy condition (5.27) for

this mode. On the other hand, the work involved in computing accurate
k k

approximations to p and C for each k would be at least as much as solving

the original linear system. Our compromise has been to compute an

approximation t to 41 on the coarsest grid, Go , by a few steps of inverse

iteration with zero shift (since the eigenvalue we want is near zero). This

is very inexpensive since Go  is quite coarse and the LU factors of L0 are

already available. Then we interpolate t onto the finer grids. To eliminate

the high frequency errors introduced in these interpolations, we do two

things: 1) use higher order interpolation, e.S. cubic instead of linear, 2)
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smooth the interpolated eigenfunctions by performing a few relaxation sweeps
Lk . 0. Estimates of the eigenvalues, -ko are then computed using the

on Ll Cre thncmue1sn h
Rayeih Qotent: -kk-

Rayleigh Quotients: <I, Lk 1>. We view this as a preprocessing phase of the

algorithm and the extra work is usually minimal compared to the overall work.

Furthermore, since the eigenfunctions (not the eigenvalues) do not change very

much in the neighborhood of the singular points, we can use the same

approximation for different linearized operators Lk. The storage required to

store these eigenfunctions is less than twice the size of the finest grid.

We use the (AM) adaptive version of the Cycle C algorithm, unless

otherwise stated. The first modified algorithm is the following.

6.1 Under- and Over- Interpolation

The idea is to choose wk_ in (3.5) for interpolation onto Gk, such that

condition (5.27) is satisfied for " Clearly the value:
w -k-1 /-k

wk-l = , (6.1)

is in some sense optimal since it eliminates the 4 term in (5.25). For the

case discussed in Section 4.3, this modification allows the computation to

continue past the point I - 6.804, where divergence of Cycle C first occurred.

In fact (with a little luck) we succeeded in continuing around the limit point

onto the upper branch. Here the sigenfunction Cl no longer presented

for the N0 algorithm. For some of these cases go is actuallydifficultiesfoth Gloit. Fosoeoths caeis culy

negative and therefore (6.1) yields a a negative value for v1. In this case

the transfer from Go to G1 violates condition (5.27) for all modes other than

41" The errors in these modes must be reduced by extra relaxation sweeps on
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G1 . In other words G only provides a proper correction on G for the Cl

mode, all higher modes are treated incorrectly during the transfer. The

efficiency of the algorithm thus suffers. This effect is especially

pronounced if some factors wk are either very large or negative or (worse)

both. The algorithm is very sensitive to the parameters (q,6) and thus is not

robust. It can even diverge if the higher modes are not reduced fast enough

on Gk after the transfer from Gk-i .

Even worse, the above algorithm will not work for indefinite problems in

which some intermediate eigenvalue is near zero. For example, if the spectra

of the Lk are similar to those in Figure 6-1, the interpolation factors wk are

controlled by the t belonging to eigenvalues p2 near zero. On the other

hand, the eigenfunctions klrequire that condition (5.27) be satisfied because

these modes cannot be liquidated by relaxation. Conflicts can occur when t

requires wk to be negative while Ck1 requires wk to be positive. Indefinite

problems of this type occur frequently in nonlinear eigenvalue problems. Mere

under- or over-interpolation must run into difficulties for such problems.

near the singular points.

The above considerations make it clear that the eigenfunction with the

near-zero eigenvalue must be isolated and treated different from the other

eigenfunctions. We use the approximate eigenfunctions that are computed in

the preprocessing phase for this purpose in the following procedure.
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Figure 6-1: Intermediate Eigenvalue near Zero

Origin
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6.2 Under- and Over- Interpolate the Singular Eigenfunction Only

We use an interpolation different from that in (3.5). Specifically if

vk-l -1k-1 k-l
- k- a i  i (6.2)

oGk-iwei- k
on G -  we interpolate it onto G by

v k .w k-lik .tk-l + I k  ak-1 k-l 63

Wk-lal 'k-l' k ki ki (6.3)

Further W is chosen to satisfy (6.1). Since we only have an approximation
k-

to Ck, we use, instead of (6.3):

vk. Ik- IrVk- - <k-i" ~k-l>k-I]
+ k ~ - k 1 1--

_w-k ( k k l (6.4)

In practice, this performed much better than indiscriminate under- and

over-interpolation described in section 6.1. It was the more efficient when

both procedures worked. In many cases when (6.1) yields large and/or negative

values for wk, only the current scheme converges. In principle, it will also

work for indefinite problems like that depicted in Figure 6-1. The efficiency

in most cases was very respectable; in the range of 6-10 units per order of

magnitude reduction in the residual. It is also quite insensitive to the

parameters (qi,8). Thus, it can be used very efficiently and reliably with the

arc-length continuation procedure for tracing out solution branches.

Unfortunately, this improved algorithm fails when the magnitude of wk

becomes too large. This occurs when Lk is very nearly singular, that is with

kvery close to zero. Since we only have an approximation Zk to Ck, large

factors wk in (6.4) introduce very large errors in the other modes. Moreover,
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the estimates I using Rayleigh-Quotients tend to be too large (relatively)

kwhen p is very small. Then (6.1) gives a value of wk that is too small.

Both of the above result in lower efficiency and reliability. In extreme

cases, this makes the algorithm impractical. To overcome this difficulty, we

devise an algorithm that will work even if one of the operators Lk is very

nearly singular. For this we employ the idea of skipping a grid.

6.3 Skipping the Singular Grid

The previous algorithm fails if the operator is very nearly singular on

one of the grids, say 6k. The idea here is to simply delete this grid from

the hierachy of grids used by the MG algorithm. If the remaining grids are

not as singular as the deleted grid it would seem that the algorithm described

in 6.2 should work. However, calculations show that skipping a grid can cause

other problems. When Gk is skipped, the mesh changes more drastically from

Gk-l to Gk+l , and hence the interpolation in (6.4) (now Ik+l instead of Ik_
k-1 k 1

introduces larger errors into the higher modes on Gk+l. These high frequency

errors can cause divergence of the MG process unless controlled properly by

the parameters (,6). A large value of "i, say between .8 and .9, makes the

algorithm more robust but involves more work than for a smaller value of T1,

say .5. We encountered a case where, with all else the same, the new skipping

algorithm converges for 1 - .9 but diverges for i - .6. Granted with q - .9

the algorithm may be very reliable, such sensitivity to one parameter is very

undesirable. Therefore, we considered the following modification.
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6.4 Skipping the Singular Grid for the Singular Eigenfunction Only

The idea is to skip the singular grid Gk for only, and to keep it for

smoothing the other modes. In the actual implementation, we modify the

algorithm described in section 6.2 to use
- - k+1

V - / Al (6.5)

k-i kfor and wk_ 1 for all other modes to transfer from G to G and, after V

a few smoothing sweeps on Gk, transfer to Gk+l with wk = 1 for all modes.

k kNote that we do not try to solve the G equations for v . Trying to do that

would result in large magnification of the 1 component in V. since 1 is

near zero. This would in turn cause problems during the transfer to Gk+l .

In addition, we have experimented with using a mixture of the adaptive

(A, 6) strategy with the non-adaptive (pq) strategy (cf. section 3.2). We

have found a (vI,q) strategy that is as good as any other we have tried. In

this strategy, we use -q to control when we terminate relaxation on a certain

grid and go on to a coarser grid, and use q to control how many sweeps to do

on a grid after transfer from a coarser grid before interpolating onto a finer

grid. A typical set of parameters that worked well is (A = .6, q = 2). The

resulting algorithm is fairly insensitive to actual values of A and q and is

quite robust. It is also quite efficient. It consistently achieved an

efficiency of less than about 12 units per order of magnitude reduction in the

residual for most problems that we have encountered. Some of these problems

have very singular grids which presented difficulties for all of the previous

algorithms.
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7. Sumary

In this paper, we study arc-length continuation techniques and multi-grid

techniques for solving nonlinear elliptic eigenvalue problems. We have

applied these techniques to solve a model nonlinear elliptic eigenvalue

problem (the Bratu problem). We have found that as long as we stay away from

singular points, the two techniques combined to give a very powerful and

efficient procedure for tracing solution branches. Near singular points,

however, the standard multi-grid method has difficulty converging on the

linearized elliptic systems that arise in the continuation procedure. One

consequence is that we cannot continue past the limit point in the model

problem. This divergence is successfully analysed and several modified

multi-grid algorithms have been designed based on this analysis. The best of

these modified algorithms performs efficiently and reliably arbitrarily close

to the singular points. This enables the continuation procedure to continue

past the limit point with no difficulty. It seems reasonable that this

modified multi-grid algorithm can be useful in more general situations where

nearly singular elliptic systems arise, such as in inverse iteration [li, 17].
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