

LEVEL

∞ π \cdots A0 98 AD

DISTRIBUTION STATEMENT A

Approved for public release:
Distribution Unlimited
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

$15 N \phi \phi \phi 14 \cdot 8 \phi \cdot C \cdot \phi \phi 76$

$$
\text { (14) } 177
$$

(II) 19 nercosin

DISTMIBUTION STATEMENT A
Approved for puhlic relnase: Distribution Undimilad

$$
134850
$$

Abstract

ABSIRACT r We investigate malti-grid methods for solving linesr systens arising from arc-length continmation techniques applied to nonlinear elliptic eigenvalue problens. We find that the nsmal malti-grid methods diverge in the neighborhood of singular points of the solution branches. As a result, the continuation method is unable to continme past a linit point in the Bratr problem. This divergence is analysed and a modified melti-grid algorith has been devised based on this analysis. In principle, this nev multi-grid algoritha converges for elliptic systens arbitrarily close to singularity and has been nsed successfally in conjunction with arc-length continastion procedures on the model problen. In the morst situation, both the storage and the computational work are only about a factor of two more than the umodified molti-grid methods. $又$

Abbreviated Title: Malti-Grid Continuation Yeywords: Melti-Grid, Arc-Length Continuntion, Nonlinen Eliptic Eigenvalue Problems, Singuler Systens.

^[${ }^{1}$ Comprter Science Department, Yale Dintersity, Box 2158, Yale Station, New Eaven, CT 06520. This arthor's work was supported by D.O.E. Contract EY-76-S-03-070 while at CalTech and by ONR Grant N00014-80-0076 under subcontract from Florida State University while at Yale. ${ }^{2}$ Applied Mathenatics Department, CalTech, Pasadena, Ca 91125. This author's work was supported by the D.O.E. under Contract EY-76-S-03-070 and by the U.S.A.R.O. under Cortract DAMG 29-78-C-0011.]

Table of Contents

1. Introduction 1
2. Newton's Method and Continetion Techpiques 3
2.1 Newton's Method 3
2.2 Natural Contianation 3
2.3 Arc-length Continuation 5
3. Multi-Grid Methods 13
3.1 Introduction 13
3.2 The 'Cycle C' MG Algorithm 13
3.3 Indefinite Problems 17
3.4 Continuation Methods 17
4. Application to the Brata Problem 20
4.1 Bratu's Problem 20
4.2 Arc-length Continuation with Direct Methods 22
4.3 Arc-1ength Continuation with Multi-Grid Methods 23
5. Anslysis of Multi-Grid Methods for Near-singrlar Systens 27
6. Remedies and Now Algorithas 41
6.1 Dnder and Over- Interpolation 43
6.2 Under- and Over Interpolate the Singular Eigenfunction Only 46
6.3 Skipping the Singular Grid 47
6.4 Skipping the Singular Grid for the Singular Eigenfunction Only 48
7. Sutinay 49

1. Introduction

Many problems of computational interest can be formulated as

$$
\begin{equation*}
G(n, \lambda)=0, \tag{1.1}
\end{equation*}
$$

where \quad represents the 'solution' (i.e. flow field, displecenents, etc.) and λ is a real physical parameter (i.e. Reynold's namber, load etc.) It is required to find the solution for some λ-intervals, that is a path of solutions, $[u(\lambda), \lambda]$. In this paper, we ose a class of continuetion based on parametrizing the solution branches by arc-length, say [u(s), $\lambda(s)]$. A main advantage of these arc-length continuation methods is that most singular points on the solution branches can be handled without much difficulty. Equations of the form (1.1) are called nonlinear elliptic eigenvalue problens if the operator G with λ fired is an elliptic differential operator [2]. For nonlinear elliptic eigenvalue problems, a major portion of the computational work in the arc-length continuation methods is spent in solving large linear elliptic systems. In this paper, we investigate the use of multi-grid [4] methods for solving these linear systems. It torns out that a straight-forvard implementation of the multi-grid methods fails in the neighborhood of the singular points and this usually prevents continuation past limit points. This failure is analyzed and a modified multi-grid method based on this analysis is devised. Even for very singular systems, the new multi-grid algorithm performes satisfactorily and never requires more than about twice the storage and computational work as the unodified algorithm.

The arc-length continuation methods will be described in section 2 and
the multi-grid methods in section 3. In section 4, compatational results for a model pioblen are presented, together with a description of the difficulties enconntered by the melti-grid method near a limit point. The behavionr of the multi-grid method near singular points will be analyzed in section 5. The modified multi-grid algorithms designed to overcome these difficulties are described in section 6 . The paper ends with a sumary in section 7.

2. Newton's Mothod and Continuation Techniques

In this paper we are concerned with methods for compating anaily or path of solutions of (1.1). The methods we omployed will be based on some version of Nowton's method.

2.1 Newton's Method

Given a value of λ and andial guess u^{0} for the solution $u(\lambda)$, we perform the following steps repeatedly until $\left\|\delta \boldsymbol{u}^{i}\right\|<\varepsilon$ is satisfied :

$$
\begin{align*}
& G_{u}^{i} \delta u^{i}=-G\left(u^{i}, \lambda\right) \tag{2.1}\\
& \mathbf{u}^{i+1}=u^{i}+\delta u^{i} \tag{2.2}
\end{align*}
$$

In the above, subscripts denote partial derivatives and so G_{u} denotes the Jacobian of the operator G (with respect to u). This procedure will generally converge quadratically when it does converge. However, as is well know, in many instances it will fail to converge when the initial guess is not 'close' to the true solution.

2.2 Natural Continuation

A plausible procedure for overcoming this convergence difficulty and also for determining the dependence of n on λ is to stert at known solution (u_{0}, λ_{0}) on the solntion curve and use it as initial guess for a Newton-type iteration to find the solution for adghboring point on the solution curve with λ close to λ_{0}. The prooedure is then repented. Ve can improve on this by compating the derivative, n_{λ}, at anown solution and use it to get a better iaitial guess for the nert value of λ in aredictor-corrector fashion.

We call this a natural continaation procedure because it corresponds to parametrizing the solution curve by λ, the naturally occuring parameter. A specific form of this is the more or less well-known:

Enler-Nevton Continnation Procedore:

Given a known solution $\left(u_{0}, \lambda_{0}\right)$, we compute the solutions at nearby values of λ as follows:

1. First compute the derivative n_{λ} at $\left(u_{0}, \lambda_{0}\right)$ from

$$
\begin{equation*}
\mathbf{G}_{\mathbf{u}} \mathbf{n}_{\lambda}=-\mathbf{G}_{\lambda} . \tag{2.3}
\end{equation*}
$$

2. Perform an Euler predictor step:

$$
\begin{equation*}
\mathbf{u}^{0}=u_{0}+u_{\lambda}\left(\lambda-\lambda_{0}\right) \tag{2.4}
\end{equation*}
$$

3. Use n^{0} as initial guess in Newton's method :

$$
\begin{equation*}
G_{n}^{i}\left(n^{i+1}-n^{i}\right)=-G\left(n^{i}, \lambda\right) \tag{2.5}
\end{equation*}
$$

until convergence.
4. Use $(\square(\lambda), \lambda)$ as the new $\left(n_{0}, \lambda_{0}\right)$ and go back to Step 1 .

Note that the compatation of the derivative u_{λ} does not cause much computational overhead because we usually have the factorization of the Jacobian G_{u} computed already in the Nowton step. Using such a predictor-corrector method will often allow us to take anch bigeer step in λ and thas reduce the overall cost of determining the dependence of n on λ.

Unfortunately, this procedure needs some modification in order to handle
general nonlinear systems bocanse of the possibility of existence of nonunique solutions. The nonuniqueness usally manifests itself in the form of existence of 'singular' points where the Jacobian G_{u} is singriar (see Figure 2-1). Points such as point A in Figure 2-1 are called limit points (or turning points) and points such as point B are called bifurcation points. These siagular points are further characterized by the conditions that $G_{\boldsymbol{\lambda}}$ Range(\mathcal{G}_{u}) at 1 imit point and that $G_{\lambda} \varepsilon$ Range $\left(G_{u}\right)$ at a bifurcation point [12].

Abstract

The difficulties that natural continuation procedure will encounter at singalar points are three-fold. First of all, since G_{n} is singular at these points, Newton's method will at best be linearly convergent, making it much more costly to compute the solution. Moreover, near a limit point, there may not exist a solution for given value of λ (see Figure 2-2) and hence the iterations must fail to converge. Lastly, we need some mechanism for switching branches at bifurcation point.

2.3 Arc-length Contincation

In the psendo arc-length continuetion approach [12], these difficulties are overcome by not parametrizing the solution u by λ. Instead, we parametrize the solution branches using an arc-length parameter s, and specify how far along the current solution branch we want to march.

To be more specific, we let s be the arc-length parameter, and treat $n(s)$ and $\lambda(s)$ as functions of s. We can compute the 'tangent' $\left[\dot{u}\left(s_{0}\right), \dot{\lambda}\left(s_{0}\right)\right]$ (where

Figure 2-1: A Typical Bifurcation Diagram

Figure 2-2: Failure of Natural Contingetion Near Limit Points

the dots denote differentiation with respect to s) of a known solution at $s=s_{0}$ from the following two equations:

$$
\begin{align*}
& G_{u} \dot{u}_{0}+\dot{\lambda}_{0} G_{\lambda}=0 \tag{2.6}\\
& \left|\left|\dot{u}_{0}\right|\right|^{2}+\left|\dot{\lambda}_{0}\right|^{2}-1=0 \tag{2.7}
\end{align*}
$$

Equation (2.6) is obtained from differentiating $G(u, \lambda)=0$ with respect to s and (2.7) imposes the arc-length condition. We could theoretically generate the solution curve by integrating the initial value problem obtained by solving (2.6), (2.7) for $\dot{u}(s)$ and $\dot{\lambda}(s)$. Although this process is subject to the nsual instabilities inherent in solving initial value problems approximately, it can be an extremely effective procedure. Indeed our pseudo arc-length continuation procedure can be viewed as method for stabilizing Euler integration of (2.6), (2.7).

In the pseudo arc-length continuation procedure, we advance from so to s along the tangent to the solution branch and require the new solution $u(s)$ and $\lambda(s)$ to satisfy

$$
\begin{equation*}
N(\mathfrak{u}(s), \lambda(s)) \equiv \dot{\mathrm{u}}_{0}^{\mathrm{T}}\left(\mathrm{u}(\mathrm{~s})-\underline{u}\left(\mathrm{~s}_{0}\right)\right)+\dot{\lambda}_{0}\left(\lambda(s)-\lambda\left(s_{0}\right)\right)-\left(s-s_{0}\right)=0 . \tag{2.8}
\end{equation*}
$$

In addition we require, of course:

$$
\begin{equation*}
G(\mathrm{o}(\mathrm{~s}), \lambda(\mathrm{s}))=0 . \tag{2.9}
\end{equation*}
$$

Equation (2.8) is the linearization of (2.7) and as indicated forces the new solution to lie on a hyperplane perpendicalar to the tangent vector to the solntion curve at s_{0} and at a distance ($s^{-s_{0}}$) from it. Equation (2.9)

Figare 2-3: Psendo Arc-length Continuation

reguires $n(s)$ and $\lambda(s)$ to lie on the true solution curve (Figure 2-3). We now solve the coupled system (2.8) and (2.9) for $u(s)$ and $\lambda(s)$, givan the step size (s-s, (efficient strategies for choosing the step size are discussed in [23]). We use Newton's method, in which case we have to solve the following linear system at each iteration:

It can be shown that at limit points, where G_{u} is singular and $G_{\lambda} t$ Range (G_{u}), the linear system in (2.10) is nonsingnlar (see [12]) and therefore Newton's method for the coupled system (2.8) and (2.9) is well-defined. Hence limit points present no problem and even quadratic convergence is achievable.

At bifurcation points, where G_{u} is singular and $G_{\lambda} \varepsilon$ Range $\left(G_{u}\right)$, things are more complicated. In the simplest case of only one branch bifurcating from the main branch (simple bifnrcation), an additional higher order condition involving $G_{u u}, G_{u \lambda}$ and $G_{\lambda \lambda}$ has to be satisfied. It can be shown [12] that this condition, together with (2.6) and (2.7) and the left and right aull vectors of G_{u}, enable two solntions for $\left(\dot{u}_{0}, \dot{\lambda}_{0}\right)$ to be computed at a simple bifurcation point, with one solntion corresponding to each branch. Using the appropriate pair of $\left(\dot{n}_{0}, \dot{\lambda}_{0}\right)$ in (2.8) allows branch switching. In [7] more detailed study of the singular behaviour and branch switching at bifurcation is given.

Abstract

In order to solve the linear system in (2.10) by direct methods, several appronches are possible. One way is to perform Gaussian Elimination on the inflated matrix A, with sone form of pivoting to insure stability. But this approach completely ignores the sparse stracture which is usually found in G_{u} 's arising from nonlinear elliptic eigenvalue problems. In order to take advantage of the structure in G_{u}, Keller [12] suggested the following block-elimination procedure:

Algorithm BE: (block-elimination)

$$
\begin{array}{ll}
\text { Solve } & G_{\mathbf{u}} y=G_{\lambda} \\
\text { and } & G_{\mathbf{u}} z=-G . \\
\text { Set } & \delta \lambda=\left(-N_{\mathbf{u}}^{T} z-N\right) /\left(N_{\lambda}-N_{\mathbf{u}}^{T} y\right) \\
\text { and } & \delta \mathbf{u}=z-\delta \lambda \mathbf{Y} . \tag{2.14}
\end{array}
$$

Note that only systens with the coefficient matrix G_{u} have to be solved, so structures in G_{u} can be exploited. Moreover, only one factorization of G_{u} is needed. It has been shown [27] that even when G_{u} is becoming singalar, Algorithm BE produces iterates that converge quadratically at limit points.

Continuation methods of verious forms and levels of sophistication have been widely used in the engineering literature. For recent survey of numerical methods for bifurcation problems, see for example [18]. The approach taken here is due to Eeller [12], and has recently been applied to other problems in fluid mechanics ([5], [6], [15], [16], [25], [27]). A related approach suggested by Abbott [1] corresponds (in a loose way) to
applying Algorithm BE to the matrix A with the last colum permited into the
first n colums so that the corresponding coefficient matrix in Equations
(2.11) and (2.12) becomes nonsingalar even at limit points. However, as has
already been pointed out, any structure or symmetry in G is lost in the
process, and hence that approach seems unsuitable for large elliptic systems
in two or three dimensions.

3. Minti-Grid Methods

3.1 Introduction

The class of multi-grid (MG) methods that we use here is based on work by Bakhvalov [3], Brandt [4], Federenko [8], Hackbrsh [10], and Nicolaides [19]. We shall only briefly describe here the particular MG algorithms that we have used for linear elliptic problems that arise in our treatment of nonlinear elliptic eigenvalue problems.

The particular way in which we rse the MG idea is to use a hierarchy of grids, rather than a single one, in order to speed up the convergence rate of the solution process. The MG process has some very desirable theoretical properties: for certain elliptic operators on an by grid, it computes the approximate solution to truncation error accoracy in $O\left(n^{2}\right)$ arithmetic operations and $O\left(n^{2}\right)$ storage. It seems natural to consider the use of MG methods for solving nonlinear eigenvalue problems. MG methods have been applied to solution of linear eigenvalue problems by Hackbush [11] and McCormick [17].

3.2 The 'Cycle C' MG Alsoriths

The particular MG algorithn that has been used in this study is based on the 'Cycle C' algorithm described in Brandt [4]. This is an algorithm for iteratively solving the discrete oquations approximating a linear elliptic problem on given grid, through interaction with a hierarchy of coarser grids, taking advantage of the fact that the different discretizations on the
different grids are all approximations to the same continuous problem. We note that there are other MG algorithms [4] proposed for implementing continuation procedures outside of the context of the psendo arc-length framework. Some potential problems with these related algorithms are discussed in section 3.4. We do not know how well such MG algorithms perform and we hope to carry out our own investigation on such related methods in the future. In this paper, MG algorithms are used to solve the fine grid discrete equations that arise in the psendo arc-length continuation procedure.

Consider a hierarchy of grids $\left(G^{0}, G^{1}, \ldots, G^{M}\right)$, with G^{M} being the finest one, defined on a domain Ω with corresponding mesk sizes $\left(h_{0}>h_{1}>\ldots .\right.$.) h_{M}), and all approximating the same linear elliptic problem:

$$
\begin{align*}
L \mathbb{U} & =F & & \text { on } \Omega \tag{3.1}\\
U & =0 & & \text { on } \partial \Omega
\end{align*}
$$

The discrete equation on a grid G^{k} is written as:

$$
\begin{align*}
L^{k} U^{k} & =F^{k} & \text { on } G^{k} \tag{3.2}\\
U^{k} & =0 & \text { on } \partial \Omega .
\end{align*}
$$

We are primarily interested in obtaining the approximating solution 0^{M} on the finest grid, and we shall start with an initial guess on G^{M} and apply a standard relaxation procedure such as the Gauss-Seidel procedure. It is well
known that the error is reduced rapidly in the firat few iterations but then the reduction rate becomes very slow. By a frequency analysis, it can be shown that the fast rednction occurs when the residual (or the error) in the current iterate has large harmonics on the scale of the grid, the so-called
high-frequencies. Now at a stage in the iterative process where the error reduction rate slows down, let the current iterate be a^{M}. Define the error v^{M} in the iterate as $v^{M}=0^{M}-\mathbf{a}^{M}$. Then the error v^{M} satisfies the following equation:

$$
\begin{align*}
L^{M} \mathbf{v}^{M}=\mathbf{F}^{M}-L^{M} \mathbf{n}^{M} & =R^{M} \quad \text { on } G^{M}, \tag{3.3}\\
\mathbf{v}^{M} & =0 \quad \text { on } \partial G^{M} .
\end{align*}
$$

The residual R^{M} is computable and hence the original problem of solving for 0^{M} can be reduced to an equivalent one of solving (3.3) for v^{M}. There seems to be no obvious advantage in using (3.3) rather than continuing with the original relazation procedure with \mathbf{a}^{M}. However, if the error ${ }^{M}$ and the residual R^{M} are smooth relative to G^{M}, that is, if their high frequency components have boen smoothed out by the relaxation procedure, then we can approximate the solution of (3.3) on a cosrser grid, say G^{M-1}, by solving :

$$
\begin{align*}
& L^{M-1} V^{M-1}=F^{M-1}=I_{M}^{M-1} R^{M} \quad \text { on } G^{M-1}, \tag{3.4}\\
& \mathbf{V}^{M-1}=0 \text { on } \partial G^{M-1} \quad .
\end{align*}
$$

After this problem is solved we can interpolate the solution $\mathrm{V}^{\mathrm{M}-1}$ onto G^{M} to get:

$$
\begin{equation*}
\text { new } \mathfrak{u}^{M}=\text { old } u^{M}+w_{M-1} I_{M-1}^{M} v^{M-1} \tag{3.5}
\end{equation*}
$$

where \mathbb{W}_{M} - is an interpolation factor, normally taking the value unity and I_{i}^{j} stands for some interpolation operator from G^{i} to G^{j}. The solution process for Equation (3.4) on G^{M-1} usually costs considerably less than the cost of solving Equation (3.3) on G^{M}. If v^{M} is indeed smooth (relative to G^{M}), then G^{M-1} should provide adequate resolution for V^{M} and hence $I_{M-1}^{M} V^{M-1}$ should be a good approximation for v^{M}. This principle of transferring to a coarser grid
when convergence slows down can be applied recrrsively. Thus for example, we can start with a zero initial guess for $\nabla^{\text {M-1 }}$ in Equation (3.4) and apply the Ganss-Seidel relazetion procedure to the iterates on $\mathrm{G}^{\mathrm{M}-1}$. When the convergence slows down, we can again transfer to the nert coarser grid $G^{\mathrm{M}-2}$. and so on. One can view the whole process as each grid smoothing just those frequencies in the error that are high relative to its own mesh size, each doing its job efficiently becanse these high frequencies are precisely those that are efficiently smoothed out by relaration procedures.

The control of when to transfer between grids can follow a fized strategy or an adaptive one. A fired strategy could be of the following kind (see Nicolaides [19]) : perform p relazation sweeps on each grid Grefore transferring to a coaser grid \mathbf{G}^{k-1}, and perform q relaxation sweeps before interpolating back to a finer grid G^{k+1}. An adaptive strategy could be as follow (see Brandt [4]) : transfer to coaser grid when the ratio of the residual norm of current iterate to the residual norm a sweep earlier is greater than some tolerance η, and transfer to airer grid when the ratio of the residual norm of current iterate to the residual norm on the next finer grid is less than another tolerance 8 . For simple problems like Poisson's equation on a square, the overall MG efficiency is very insensitive to which particular strategy is nsed and what values are used for (p, q) or (η, δ). We shall refer to the above particular fized strategy the (p,q) strategy and the adaptive strategy the (η, δ) strategy.

3,3 Indefinite Problens

In the 'Cycle C ' algorith just described, convergence on the lowest (coarsest) grid G^{0} is obtained by repeated relazation sweeps. For positive definite matrices, convergence on G^{0} can be gutanteed. For indefinite problems, however, convergence on \mathbf{G}^{0} cannot be obtained by repeated relaxation sweeps, because the components of the error that correspond to oigenfunctions with negative eigenvalues will grow as resalt of relazation sweeps (see the analysis in section 5). Therefore, for indefinite problems, a direct solntion (e.g. Gaussian Elimination) must be employed on the coarsest grid. If this coarsest grid is fine enoogh, it will also provide corrections to those growing components of the iterates on all finer grids. However, too fine a grid for G^{0} will increase the cost of the direct solntion procedure. Hence a little care must be taken regarding the size of the coarsest grid for indefinite problems. Fortunately, for 'not too indefinite' problems, G^{0} can be chosen coarse enough so that the direct solution on G^{0} will not affect the overall efficiency of the $M G$ procedure serionsly. Since indefinite problems occur frequently in nonlinear elliptic eigenvalue problems and, in particular, in our model problem, we shall use such a direct solution on G^{0} whenever necessary.

3.4 Continuation Methods

Brandt [4] suggested using continuation methods in conjunction with the MG procedure. His main idea is to nse coarse grids for continnation, with little work and crude accuracy, and only use the finer grids at the final
contination step to achieve higher accuracy. Fe have not pursued this idea here. We belifve that it will work as long as we stay away from singular points. Around a 1 imit point, however, the solution branches corresponding to different grids may look like the situation in Fignce 3-1. If we continue on the coarse grid to λ^{*} and try to refine using the finer grid, while keeping λ^{*} fixed, we cannot hope to obtain a fine grid solntion because λ^{*} is larger than the fine grid limit point $\boldsymbol{\lambda}_{\mathrm{f}}$ (i.e. no fine grid solutionexists for $\boldsymbol{\lambda} \boldsymbol{\lambda} \boldsymbol{\lambda}_{\mathrm{f}}$). In the opposite ase, there is no coarse gid solntion at λ^{*} so we cannot get started on that grid. Hence, in general, we have to be extremely careful in using MG methods and continuation arond singalar points.

Figere 3-1: Limit Points for Different Grids

4. Application to the Brate Problea

4.1 Bratu's Problez

As a typical example of an nonlinear elliptic eigenvalne problem, we consider the Bratu problem :

$$
\begin{align*}
G(u, \lambda) & =\Delta u+\lambda e^{n}=0 & & \text { on } \Omega \tag{4.1}\\
\mathbf{u} & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

Equation (4.1) arises in many physical problems, for example, in chemical reactor theory, radiative heat transfer, and in modelling the expansion of the universe. The domain Ω is the unit interval $[0,1]$ in R^{1}, or the unit square [0,1]x[0,1] in R^{2}, or the unit cube $[0,1] \times[0,1] \times[0,1]$ in R^{3}. There are no bifurcation points in this problem, all the singular points are limit points. The behavionr of the solution near the singular points has been studied numerically $[1,26]$ and theoretically $[14,20,21,24]$. Typical solution diagrams are shown in Figure 4-1. For both the one and two dimensional cases, the problem has exactly one limit point, whereas the three dimensional case has infinitely many limit points (if Ω is sphere). From now on we only consider the tro dimensional case, with Ω the unit square. For this case, the value of λ^{*} and the corresponding $\mid\left\|_{\mathrm{u}}\right\|_{\infty}$ at the 1 imit point are given by : λ^{*} $\cong 6.81$ and $\|v\|_{\infty}=u(0.5,0.5) \cong 1.39$. For $\lambda>\lambda$. Equation (4.1) has no solution, and for $\lambda<\lambda^{*}$, it has exactly two solutions.

Figure 4-1: Solution for the Bratu Problem

4.2 Arc-length Continaation with Direct Methods

We first apply the arc-length continuation method of Section 2 to Equation (4.1) nsing direct methods. For this problem, a trivial solution is $(u=0, \lambda=0)$. We can thus start at this trivial solution on the lower branch and march along the solntion branch, past the limit point, and continue on to the upper solution branch. Since the only singular point in this problem is a limit point, this in principle presents no problem to the arc-length continuation procedure, although the step size might have to be reduced and controlled appropriately near the limit point. If desired, the limit point can be accurately determined by other related techniques [1, 13].

The derivatives of the operator G in Equation (4.1) that are needed for the arc-length continuation technique are:

$$
\begin{align*}
& \mathbf{G}_{\mathbf{u}}=\Delta+\lambda \mathbf{e}^{\mathbf{u}}, \tag{4.2}\\
& \mathbf{G}_{\lambda}=\mathbf{e}^{\mathbf{u}} . \tag{4.3}
\end{align*}
$$

Now if we approximate the Laplacian operator by the standard five-point stencil on a uniform grid, the operator G_{u} will be approximated by the usual block tridiagonal matrix and the operator G_{λ} by a column vector.

In the application of the arc-length continuation technique, we will have to repeatedy solve linear systems of equations with the matrix given by G_{u}. The solntion of these linear systems is the central part of the arc-length contination method. Hence, an efficient linear system solver is crucial to the overall performance of the continuation technique. In this section, we present some computational results for Bratu's Problem using a direct method
(Gaussian Elimination) of solution of the linearized difference equations. For large problems, this would be prohibitively expensive. However, the results here are intended to demonstrate the performance of the contination procedure independent of the linear algebra method employed. In the next section, we shall investigate the use of multi-grid methods for solving the linear equations. It should be pointed out that G_{u} is generaliy not separable, and therefore we cannot use fast Poisson solvers directly even on rectangular domains. Moreover, this matrix is indefinite on the upper branch, and hence iterative methods like Successive-Over-Relaration cannot be used directly.

We present some of our computed results in Figure 4-2. Only the behaviour of the solution branch near the limit point for a few relatively coarse discretizations are presented. These are to be compared with the values $: \lambda^{*}=6.80811698$ and $u(.5, .5)=1.3916603$ for grid with $h=1 / 24$ with the nine-point finite difference operator as compated by Abbott [1] and to the easily obtainable exact solution $\left(\lambda^{*}=18 / e \approx 6.62183, q^{*}=1\right)$ for the case $h=1 / 3$. As expected, the step size $\partial s=s-s_{0}$ had to be suitably controlled near the limit point, but otherwise we encountered no difficulty in continuing past the 1 imit point.

4.3 Arc-length Continaation With Multi-Grid Methods

In this section we discuss the use of MG methods, rather than direct methods, for solving the linear equations that arise in the continuation procedure. The MG method that we use was described in Section 3 and

Figure 4-2: Compated Results for Bratu's Problem Near Limit Point

Gauss-Seidel is the smoothing relanation process. Since the Jacobian matrix G_{u} becomes indefinite on the npper branch, we nse a direct method on the coarsest grid in the neighborhood of the the limit point and on the upper branch.

We started the continuation procednre with the trivial solution ($\mathrm{n}=0, \lambda$ $=0$), with $h=1 / 4$ on the coarsest grid, and a total of forr levels of grids, making the finest grid with $h=1 / 32$. As expected, the MG method worked fine and we were able to continue up to very close to che limit point, at $\lambda \cong 6.804$ on the lower branch. However, we noticed that the convergence of the MG method deteriorates as we move in towards the linit point. For example, the number of equivalent relaxation sweeps on the finest grid required to reduce the residual norm by an order of magitude, which is a convenient way of measuring the efficiency of MG methods, went from about 5 at $\lambda=0$ to about 20 at $\lambda=6.803$ and to divergence at $\lambda=6.805$. The divergence occurred in the MG method and not in the Newton iteration. It is not due to the possible indefiniteness of the Jacobian matrix on the finest grid. This can occur near the limit point after a large Euler-predictor step. But we performed other tests starting on the upper branch, away from the limit point, where the Jacobian matrix is indefinite, and the MG method performed as efficiently as on the lower branch. From our experience, this divergence is strictly a phenomenon associated with the limit point, and to the best of our knowledge, has never been discussed or analysed in the literature. We study this effect in section 5 .

```
The exact value of \(\lambda\) at which this divergence first occurs varies slightly with the size of the coarsest grid \(h_{0}\), but is quite independent of the other parameters of the Cycle C algorithm (e.g. \(\eta\) and \(\delta\) ). In all the cases we have ran, this divergence made it imposible to continue past the limit point. Therefore, remedy is needed. Before we can find one, we most understand the reason for the divergence.
```


5. Analysis of Multi-Grid Methods for Near-singnlar 8ystems

For the present analysis, we assume that the linear operator L is self-adjoint and has the complete set of orthomromal eigenfunctions $\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right.$, \ldots... with corresponding roal eigenvalves $\left\{\mu_{1} \leq \mu_{2} \ldots \ldots\right\}$. The operator G_{u} in the Bratu problem clearly satisfies the sbove hypothesis. Thus the solution D to $L U=F$ can be written as:

$$
\begin{equation*}
0=\sum_{i=1} a_{i} \xi_{i} ; \quad a_{j}=\left\langle\xi_{j}, F\right\rangle, j=1,2, \ldots \tag{5.1}
\end{equation*}
$$

We assume that the discrete approximations L^{k} to the continuous L are symetric. Thes they have real eigenvalues $\left\{\mu_{1}^{k} \leq \mu_{2}^{k} \leq \cdots \leq \mu_{N}^{k}\right\}$ and a complete set of orthonormal eigenvectors $\left\{\xi_{1}^{k}, \xi_{2}^{k}, \ldots, \xi_{N_{k}}^{k}\right\}$. Here N_{k} is the dimension of the matriz representing L^{k}. For most reasonable approximations, and certainly for the five point formala ased for the Bratu Problem on a rectangle this is true.

Assume that after iterating (relaxing) on the grid G^{k}, convergence has slowed down and a transfer to the next conrser grid is desired. Let the current iterate be n^{k}, and the corresponding 'correction' be v^{k} so that $U^{k}=$
 section 3) by:

$$
\begin{equation*}
L^{k} \mathbf{v}^{k}=\mathrm{A}^{k}=\mathrm{F}^{k}-\mathrm{L}^{k} \mathbf{n}^{k} \text {, in } G^{k} ; \mathbf{V}^{k}=0 \text { on } \partial G^{k} . \tag{5.2}
\end{equation*}
$$

This is approximated on G^{k-1} by

$$
\begin{equation*}
L^{k-1} \nabla^{k-1}=I_{k-1}^{k} R^{k}, \text { in } G^{k} ; \nabla^{k-1}=0 \text { on } \partial G^{k-1} \tag{5.3}
\end{equation*}
$$

Using the eigenvector expansion of v^{k} in (5.2) we get:

$$
\begin{equation*}
v^{k}=\sum_{i=1}^{N_{k}} i_{i}^{k} \xi_{i}^{k} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}^{k}=\left\langle R^{k}, \xi_{i}^{k}\right\rangle / \mu_{i}^{k} ; i=1, \ldots, N_{k} . \tag{5.5}
\end{equation*}
$$

Suppose now that (5.3) is solved exactly (by either direct solution or Cycle C or any other means) on G^{k-1}. The solution v^{k-1} is then:

$$
\begin{equation*}
v^{k-1}=\sum_{i=1}^{N_{k-1}} \mathbf{a}_{i}^{k-1} \xi_{i}^{k-1} \tag{5.6}
\end{equation*}
$$

Where

$$
\begin{equation*}
a_{i}^{k-1}=\left\langle I_{k}^{k-1} R^{k} \cdot \xi_{i}^{k-1}\right\rangle / \mu_{i}^{k-1} \tag{5.7}
\end{equation*}
$$

The key idea in the MGethod is that if v^{k} and R^{k} are smooth onough, they can be well approximated on G^{k-1}. Thes it is important for efficiency considerations that ${ }^{3}$

$$
\begin{equation*}
\mathrm{I}_{k-1}^{k} \nabla^{k-1} \simeq \mathbf{v}^{k} \tag{5.8}
\end{equation*}
$$

Using (5.4) and (5.6), this is equivalent to:

$$
\begin{equation*}
\sum_{i=1}^{N_{k-1}}{ }_{i}^{k-1} I_{k-1}^{k} \xi_{i}^{k-1} \cong \sum_{i=1}^{N_{k}} \sum_{i}^{k} \xi_{i}^{k} \tag{5.9}
\end{equation*}
$$

This will be the case if
(a) $I_{k-1}^{k} \xi_{i}^{k-1} \simeq \xi_{i}^{k}, 1 \leq i \leq N_{k-1}$,

[^1](c) $\quad a_{i}^{k} \cong 0, i>N_{k-1}$.

Conditions (5.10) and (5.11) ensure that the coarse grid correction $\mathrm{v}^{\mathrm{k}-1}$ improves the lower modes of the iterate u^{k}. Condition (5.12) is essentially the smoothness required of v^{k} on G^{k} (i.e. negligible higher modes).

Now condition (5.10) is satisfied for the low frequency eigenfunctions of the continuous operator L if the grids G^{k} and G^{k-1} are both fine enough to resolve these eigenfunctions. This holds in many cases since the lower eigenfunctions of most second order elliptic operators over smooth domains are very smooth. For the Bratu problem, the eigenfunctions are very close to products of sines and cosines (the eigenfunctions of the Laplacian operator) and so the lower modes are easily resolved by very coarse grids. Condition (5.11), on the other hand, turns out to be violated if the operator L^{k} is near singular. This is what cansed the divergence of the Cycle C algoritho in the arc-length continuation procedure as we approach the limit point (see section 4.3). We shall analyse this case next.

From (5.5) and (5.7), condition (5.11) becomes:

$$
\begin{align*}
\left\langle I_{k}^{k-1} R^{k}, \xi_{i}^{k-1}\right\rangle & / \mu_{i}^{k-1} \cong\left\langle R^{k}, \xi_{i}^{k}\right\rangle / \mu_{i}^{k} \\
& i \leq i \leq N_{k-1} . \tag{5.13}
\end{align*}
$$

We claim that if condition (5.10) is satisfied, and if the transfer from G^{k} to G^{k-1} is done only after the residual R^{k} has been smoothed, then the numerators in (5.13) will have approximately the same value. To show this, we expand \mathbf{R}^{k} 28

$$
\begin{equation*}
\mathbf{a}^{k}=\sum_{i=1}^{N_{k}} r_{i} \xi_{i}^{k}, \tag{5.14}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{i}=\left\langle R^{k}, \xi_{i}^{k}\right\rangle \tag{5.15}
\end{equation*}
$$

Thus the numerator on the right hand side of (5.13) is precisely r_{i}. To estimate the numerator on the left hand side of (5.13), we proceed as follows:

$$
\begin{align*}
I_{k}^{k-1} R^{k} & =\sum_{i=1}^{N_{k}} r_{i} I_{k}^{k-1} \xi_{i}^{k}, \\
& =\sum_{i=1}^{N_{k-1}} r_{i} I_{k}^{k-1} \xi_{i}^{k}+\sum_{i=N_{k-1}+1}^{N_{k}} r_{i} I_{k}^{k-1} \xi_{i}^{k} \tag{5.16}
\end{align*}
$$

Now if condition (5.10) holds, its converse:

$$
\begin{equation*}
I_{k}^{k-1} \xi_{i}^{k} \tilde{\approx} \xi_{i}^{k-1}, 1 \leq i \leq N_{k-1}, \tag{5.17}
\end{equation*}
$$

also holds. Also, if R^{k} has been smoothed on G^{k}, then r_{i} [for $N_{k-1}<i \leq N_{k}$] must be small compared with $r_{i}\left[\right.$ for $\left.\left.1 \leq i \leq N_{k-1}\right]\right)$. Alternatively (5.12) assumes $a_{i}^{k}=$ $r_{i} / \mu_{i}^{k} \tilde{x} 0$ for $i>N_{k-1}$. Therefore, we can approximete in (5.16) by dropping the second sum on the right hand side to get

$$
\begin{equation*}
I_{k}^{k-1} R^{k} \cong \sum_{i=1}^{N_{k-1}} r_{i} \xi_{i}^{k-1} \tag{5.18}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\langle I_{k}^{k-1} R^{k}, \xi_{i}^{k-1}\right\rangle \equiv r_{i}, 1 \leq i \leq N_{k-1} . \tag{3.19}
\end{equation*}
$$

Therefore, from (5.15) and (5.19), we have, as clained earlier,

$$
\begin{equation*}
\left\langle I_{k}^{k-1} R^{k}, \xi_{i}^{k-1}\right\rangle \tilde{x}\left\langle R^{k} \cdot \xi_{i}^{k}\right\rangle \text { for } 1 \leq i \leq N_{k-1} \tag{5.20}
\end{equation*}
$$

The relations in (5.20) imply that condition (5.13) will be trae if

$$
\begin{equation*}
\mu_{i}^{k} / \mu_{i}^{k-1} \approx 1,1 \leq i \leq N_{k-1} \tag{5.21}
\end{equation*}
$$

Actually, these conditions need to be strengthened in order to guarantee that the visit to G^{k-1} actually improves the accuracy of u^{k}. This can be seen as follows. The error in the iterate \mathbf{u}^{k} before the transfer to $\mathrm{G}^{\mathrm{k}-1}$ is given by

$$
\begin{equation*}
\text { old orror }=v^{k}=\sum_{i=1}^{N_{k}} a_{i}^{k} \xi_{i}^{k} \tag{5.22}
\end{equation*}
$$

From (3.5), the new error in after comiag back from a visit to G^{k-1} is given by

$$
\begin{equation*}
\text { now error }=v^{k}-w_{k-1} I_{k-1}^{k} v^{k-1} \tag{5.23}
\end{equation*}
$$

In view of (5.4) and (5.6), the above gives:

$$
\begin{align*}
\text { now error } & \cong \sum_{i=1}^{N_{k-1}}\left(a_{i}^{k}-w_{k-1} a_{i}^{k-1}\right) \xi_{i}^{k}+\text { higher modes } \\
& \approx \sum_{i=1}^{N_{k-1}}\left(1-w_{k-1} a_{i}^{k-1} / a_{i}^{k}\right) a_{i}^{k} \xi_{i}^{k}+\text { higher modes } \tag{5.24}
\end{align*}
$$

From (5.5), (5.7) and (5.20), we have

$$
a_{i}^{k-1} / a_{i}^{k} \cong \mu_{i}^{k} / \mu_{i}^{k-1}
$$

and therefore we can write the new error in (5.24) as:

$$
\begin{equation*}
\text { new error } \approx \sum_{i=1}^{N_{k}-1}\left(1-w_{k-1} \mu_{i}^{k} / \mu_{i}^{k-1}\right) a_{i}^{k} \xi_{i}^{k}+\text { higher modes. } \tag{5.25}
\end{equation*}
$$

For obvious efficiency and convergence considerations, the new error should preferably be less than the old error, at least for the lower modes. In other words, condition (5.21) should be strengthened to

$$
\begin{equation*}
\left|1-\omega_{k-1} \mu_{i}^{k} / \mu_{i}^{k-1}\right|<1 \tag{5.26}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
0<w_{k-1} \mu_{i}^{k} / \mu_{i}^{k-1}<2, \quad \text { for } 1 \leq i \leq N_{k-1} \tag{5.27}
\end{equation*}
$$

Now if the ratios of eigenvalues in (5.21) are not close to unity, the interpolation factors, \mathbb{W}_{k-1}, should be chosen so that condition (5.27) is satisfied. Otherwise the new error can be larger than the old error in some modes.

It should be pointed out that, in general, condition (5.27) is not necessary for the convergence of the Cycle C algorithm. This is the case, for instance, if L and the $L^{k^{\prime}}$ s are all positive definite. Then Gavss-Seidel sweeps on any grid G^{k} will reduce the amplitude of every mode present in the error. In such cases, convergence on any grid can be achieved by merely doing enough relaxation sweeps. Then it is not necessary for the next coarser grid to provide any improvement on the current iterate, although it would obviously improve the efficiency of the overall algorithm if it does so. In fact, the NG method derives its efficiency from the very fact that the coarser grids do provide improvements in the current iterate u^{k} in the lower modes. These are precisely those modes that have poor convergence rates for the relaxation sweeps on G^{k}. Thus, even in the positive definite case, it is important (from an efficiency viewpoint) that conditions (5.27) hold, at least for small i's.

If the operator L and the L^{k} 's are indefinite the situation is different becanse some modes will grow if we simply perform relaxation sweeps on a fized grid. Such modes have to be corrected by going to coarser grids and using a direct method on the coarsest grid. Further the interpolation factors, "k-1, should be chosen such that condition (5.27) is satisfied for these modes. Condition (5.27) has been suggested by Brandt [4] for indefinite problens.

However as we show later, most nonlinear eigenvalue problems with limit points and bifurcation points abound with indefinite operators but they do not cause difficulties in the sense of violating condition (5.27). Essentially only one mode causes problems on each G^{k} and it is the mode that correspond to the eigenvalue that is nearest zero as the singular point is approached, Merely including the interpolation factors so that condition (5.27) is satisfied turns out to be very inefficient. Further, it is not clear that such factors, \mathbf{N}_{k-1}, can be found at all in this case.

Another source of difficulty is that the process of interpolating v^{k-1} into G^{k} introduces high frequency errors. That is, the exact relation corresponding to (5.10) is:

$$
I_{k-1}^{k} \xi_{i}^{k-1}=\xi_{i}^{k}+\sum_{j=1}^{N_{k}} b_{i j}^{k} \xi_{j}^{k}, \quad i=1,2, \ldots, N_{k-1} ;
$$

$$
\begin{equation*}
\text { for } 1 \leq i \leq N_{k-1} \text {. } \tag{5.28}
\end{equation*}
$$

and the coefficients $\mathbf{b}_{\mathbf{i j}}^{\mathbf{k}}$ may be large for $\mathbf{j}>\mathbf{N}_{\mathbf{k}-1}$. This woild result in a violation of (5.12). Fortunately, these high frequency errors are very efficiently smoothed out by the subsequent relaration sweeps on G^{k}, and thus these errors are automatically corrected.

For elliptic operators which are 'far' from being singular and with a reasonable grid system $\left\{G^{k}\right\}$ condition (5.27) can be assured. For example, if L is the negative Laplacian, $-\Delta$, on a nit square with Dirichlet boundary conditions, then it is known (e.g. [9]) that the eigenvelues of Lare given by

$$
\begin{equation*}
\mu_{m, n}=(m \pi)^{2}+(n \pi)^{2} . \tag{5.29}
\end{equation*}
$$

The corresponding eigenfunctions are:

$$
\begin{equation*}
\xi_{m, n}=\sin (m \pi x) \sin (n \pi y) . \tag{5.30}
\end{equation*}
$$

These eigenfanctions evaluated at the discrete interior grid points of a uniform mesh on the unit square, give the eigenfunctions of the discrete 5-point approximations, $L^{k}=-A_{h}$. with h being the uniform mesh size. The eigenvalues of L^{k} are, with $\delta x=\delta y=h_{k}$:

$$
\begin{equation*}
\mu_{m, n}^{k}=4\left[\sin ^{2}\left(m \pi h_{k} / 2\right)+\sin ^{2}\left(n \pi h_{k} / 2\right)\right] / h_{k}^{2} \tag{5.31}
\end{equation*}
$$

Some of these eigenvalues are tabulated in Table 5-1 for various mesh sizes, h_{k}. The ratios $\mu_{m, n}^{k} / \mu_{m, n}^{k-1}$ are given in Table 5-2. We see from Table 5-2 that condition (5.27) is satisfied, with $\sigma_{k-1} \cong 1$, for all lower modes shown. These ratios are very close to unity, even for the case where the coarsest grid has only one interior point. We have seen from condition (5.11) that this closeness to unity is very desirable and this fact partly explains the well-documented success of MG methods for the Laplacian operator.

Near the limit point of the Bratu problem, the operator $L=G_{u}=\Delta+\lambda e^{u}$ behaves very much like a shifted Laplacian operator. Clearly, if the factor e^{u} were replaced by a constant, a say, then G_{u} is replaced by the the Laplacian operator with a shift ad. Then the eigenvalue ratio $\mu_{1,1}^{k} / \mu_{1,1}^{k-1}$, valid for $a \lambda=0$, is replaced by:

$$
\begin{equation*}
\left(\mu_{1,1}^{k}-a \lambda\right) /\left(\mu_{1,1}^{k-1}-a \lambda\right) \tag{5.32}
\end{equation*}
$$

Since $0<n<1.4$ the factor e^{u} does not vary much and we assume this approximation to be valid for some $a>0$. The situation is depicted

Table 5-1: $\mu_{\text {m, }}^{k}$ for $-\Delta_{h_{k}}$

$1 \mathbf{k}=1$	0	1	2	3	∞	
$\|(m, n)\|$	$\mathrm{h}_{0}=1 / 2$	$\mathrm{h}_{1}=1 / 4$	$\mathrm{h}_{2}=1 / 8$	$\mathrm{h}_{3}=1 / 16$	$\mathrm{h}_{\infty}=0$	
\| 1,1		16.0	18.745	19.487	19.676	19.739
\| 1						
2,1	NA	41.37258	47.238	48.812	49.348	
1,2 \|	NA	41.37258	47.238	48.812	49.348	
\| 1						
\| 2.2		NA	64.0	74.981	77.947	78.957
1 \|						
\| 3,1		NA	NA	88.760	96.126	98.696
\| 1.3		NA	NA	88.760	96.126	98.696
\| 1						
\| 3.2		NA	NA	116.507	125.261	128.305
\| 2,3		NA	NA	116.507	125.261	128.305
1 1						
\| 3.3		NA	NA	158.033	172.575	177.653
1 1						

Table 5-2: Ratios $\mu_{m, n}^{k} / \mu_{m, n}^{k-1}$ for $-\Delta_{h_{k}}$

$\|(m, n)\| h_{k}=1 / 4, h_{k-1}=1 / 2\left\|h_{k}=1 / 8, h_{k-1}=1 / 4\right\| h_{k}=1 / 16, h_{k-1}=1 / 8$			
1,1	1.17	1.04	1.01
2,1	NA	1.14	1.03
1,2	NA	1.14	1.03
2,2	NA	1.17	1.04
3,1	NA	NA	1.08
1,3	NA	NA	1.08
3,2	NA	NA	1.08
2,3	NA	NA	1.08
3,3	NA	NA	1.09

Figere 5-1: Spectrum of Shifted Laplacian

graphically in Figure 5-1 for the grid system that was used for Table 5-1. As the shift ad approaches the group of eigenvalues corresponding to the (1,1) mode from below, the ratios in (5.31) increase. As ad continues to increase the ratio of eigenvalues will become greater than 2 , then increase towards $+\infty$, jump to $-\infty$ discontinuosly, and start increasing from $-\infty$ to 1 . The situation is depicted in Figure 5-2.

We thus see, under the above assumptions, that condition (5.27) is first violated by the lowest mode (i.e. the (1,1) mode) on the two coarsest grids G^{0} and G^{1}. In fact the lowest eigenvalnes for the Bratu problem compoted at the first point on the solution branch where Cycle C diverged, yields the ratio almost exactly 2! On the other hand, even at this point, condition (5.27) is satisfied by the (1,1) modes on the finer grids. In other words, the divergence of Cycle C is seen to be cansed by one near-singular grid out of the whole hierachy of grids present. The mode that becomes singular at the limit point of the Bratu problem is the (1,1) mode, and this occurs first on the G^{0} grid. As the limit point is approached, L^{k} on some of these grids may even become indefinite, while others (the finer grids) may still be positive definite. Essentially, the near-singular grid canses the (1,1) mode component of the correction v^{k-1}, when viewed as an approximation to v^{k}, to have the right direction, but the wrong magnitude. This phenomenon is not limitted to the Bratu problem. The only thing special about this problem is that it is the eigenvalue of the (1,1) mode that becomes zero at the limit point. For other probleas, the eigenvalue of the operator L that becomes zero as the

Figere 5-2: Spectrum Near Singular Point

singular point is approached might correspond to other modes. Although the singular point in the Bratu problen is limit point, we can expect the same beheviour at a bifurcation point.
Having now understood the canse of the divergence of the MG method, in
the nert section we shall discuss some modifications to the basic Cycle C
algorithm that are designed to overcome such difficulties.

6. Remedies and Nov Algorithes

In this section we discuss approaches that have been devised to overcome the difficulties with the MG method near singular points. The first goal is to modify the besic Cycle C algorithm so that it will converge for values of λ close enough to the limit point so that the arc-length continuation procedure can take us past the limit point onto the upper solution branch. A more ambitious goal is to modify Cycle C further so that it will converge arbitrarily close to the singular point. Such an algorithm, when used in conjunction with the arc-length continuation technique for tracing solution branches, will make the overall algorithm much more robust. Moreover, such an algorithm may prove to be useful for locating singalar points accurately, either using an arc-length contination based procedure [13], or some other procedure that uses the operator G_{u} near the singular point [22]. We shall see that the first goal is relatively easy to achieve, whereas the second goal is much more difficult. However, we have devised a Cycle C based algorithm that has performed very well when applied very close to the linit point. The approaches that we have tried and that lead to the final algorithm will be discussed in this section. We shall describe them in the sequence that they were tried.

[^2]than relaxation, even on the coarsest grid. Therefore, unless stated otherwise, we shall use a direct solntion on the coarsest grid even though the operators L^{k}, may be positive definite. This does not affect the overall efficiency very much becanse the coarsest grid has so few points that direct solution is very fast and efficient.

Another strategy concerns the treatment of the mode that canses the divergence; that is the mode with a near zero eigenvalne, say ξ_{1}. In all the algorithms that are discussed, this mode is treated separately from the other modes. To do this, it is essential to have approximations to this mode and to its corresponding eigenvalues, say $\bar{\xi}_{1}^{k}$ and $\bar{\mu}_{1}^{k}$, respectively. Here we have to strike a balance between accuracy and efficiency. If we compute the ξ_{1}^{k} exactly, then we can completely eliminate the ξ_{1}^{k} error components on each grid. Thus, the problem on G^{k} can be reduced to one in which a_{1}^{k} is zero (see (5.25)). When this is done, we do not need to satisfy condition (5.27) for this mode. On the other hand, the work involved in computing accurate approximations to μ_{1}^{k} and ξ_{1}^{k} for each k world be at least as much as solving the original linear systen. Our compromise has been to compute an approximation $\bar{\xi}_{1}^{0}$ to ξ_{1} on the coarsest grid, G^{0}, by few steps of inverse iteration with zero shift (since the eigenvalue we want is near zero). This is very inexpensive since G^{0} is quite coarse and the $L \mathbb{f}$ factors of L^{0} are already available. Then we interpolate $\overline{\boldsymbol{\xi}}_{1}^{0}$ onto the finer grids. To eliminate the high frequency errors introduced in these interpolations, we do two things: 1) nse higher order interpolation, e.g. cubic instead of linear, 2)
smooth the interpolated eigenfunctions by performing a few relaration sweps on $L^{k} \xi_{1}^{k}=0$. Estimates of the eigenvalues, \bar{H}_{1}, are then computed using the Rayleigh Quotients: $\left\langle\bar{\xi}_{1}^{\mathbf{k}}, \mathrm{L}^{\mathbf{k}} \overline{\boldsymbol{k}}_{1}^{\mathbf{k}}\right\rangle$. We view this as a preprocessing phase of the algorithm and the extra work is nsually minimal compared to the overall work. Furthermore, since the eigenfunctions (not the eigenvalues) do not change very much in the neighborhood of the singular points, we can use the same approximation for different linearized operators L^{k}. The storege required to store these eigenfunctions is less than twice the size of the finest grid.

Ve use the (η, δ) adaptive version of the Cycle C algorithm, unless otherwise stated. The first modified algorithm is the following.
6.1 Under and Over- Interpolation

The idea is to choose W_{k-1} in (3.5) for interpolation onto G, such that condition (5.27) is satisfied for ξ_{1}. Clearly the value:

$$
\begin{equation*}
w_{k-1}=\bar{\mu}_{1}^{-k-1} / \bar{\mu}_{1}^{k} \tag{6.1}
\end{equation*}
$$

is in some sense optimal since it eliminates the ξ_{1} termin (5.25). For the case discussed in Section 4.3, this modification allows the computation to continue past the point $\lambda=6.804$, where divergence of Cycle C first occurred. In fact (with a little luck) we succeeded in continaing around the limit point onto the ppper branch. Here the eigenfunction ξ_{1} no longer presented difficulties for the MG alsorithm. For some of these cases μ_{1} is actually negative and therefore (6.1) yields a aegative value for F_{1}. In this case the transfer from G^{0} to G^{1} violetes condition (5.27) for all modes other than ξ_{1}. The errors in these modes must be reduced by extra relazation sweeps on
$\mathbf{G}^{\mathbf{1}}$. In other words $G^{\mathbf{0}}$ only provides a proper correction on $G^{\boldsymbol{1}}$ for the $\boldsymbol{\xi}_{1}$ mode, all higher modes are treated incorrectly during the transfer. The efficiency of the algorithm thes suffers. This effect is especially pronounced if some factors w_{k} are either very large or negative or (vorse) both. The algorithm is very sensitive to the parameters (η, δ) and thes is not robust. It can even diverge if the higher modes are not reduced fast enough on G^{k} after the transfer from G^{k-1}.

Even worse, the above algorithm will not work for indefinite problems in which some intermediate eigenvalue is near zero. For example, if the spectra of the L^{k} are similar to those in Figure 6-1, the interpolation factors ware controlled by the ξ_{1}^{k} belonging to oigenvalues μ_{1}^{k} near zero. On the other hand, the eigenfunctions ξ_{-1}^{k} require that condition (5.27) be satisfied becanse these modes cannot be liquidated by relayation. Conflicts can occur when ξ_{1}^{k} requires w_{k} to be negative while ξ_{-1}^{k} requires $\mathbf{w}_{\mathbf{z}}$ to be positive. Indefinite problems of this type occur frequently in nonlinear eigenvalue problems. Mere under- or over-interpolation met ran into difficulties for such problems, near the singular points.

The above considerations make it clear that the eigenfunction with the near-zero eigenvalue must be isolated and treated different from the other eigenfunctions. We use the approximate eigenfunctions that are computed in the preprocessing phase for this purpose in the following procedure.

Pignee 6-1: Intermediate Eigenvalue near Zero

6.2 Onder and Over Interpolate the Singalar Eigenfanction Oaly

We use an interpolation different fron that in (3.5). Specifically if

$$
\begin{equation*}
\nabla^{k-1}=\sum_{i=1}^{N_{k-1}} 2_{i}^{k-1} \xi_{i}^{k-1} \tag{6.2}
\end{equation*}
$$

on G^{k-1}, we interpolate it onto G^{k} by

$$
\begin{equation*}
\mathbf{v}^{k}=w_{k-1} a_{1}^{k-1} I_{k-1}^{k} \xi_{1}^{k-1}+I_{k-1}^{k} \sum_{i=2}^{N_{k-1}} a_{i}^{k-1} \xi_{i}^{k-1} \tag{6.3}
\end{equation*}
$$

Further \mathbf{F}_{k-1} is chosen to satisfy (6.1). Since we only have an approximation to ξ_{1}^{k}, we use, instead of (6.3):

$$
\begin{align*}
\mathbf{v}^{k}= & I_{k-1}^{k}\left[v^{k-1}-\left\langle v^{k-1}, \bar{\xi}_{1}^{k-1}\right\rangle \bar{\xi}_{1}^{k-1}\right] \\
& +w_{k-1}\left\langle v^{k-1}, \bar{\xi}_{1}^{k-1}\right\rangle I_{k-1}^{k} \bar{\xi}_{1}^{k-1} \tag{6.4}
\end{align*}
$$

In practice, this performed much better than indiscriminate under and over-interpolation described in section 6.1. It was the more efficient when both procedures worked. In many cases when (6.1) yields large andor negative values for \mathbb{F}_{k}, only the current schese converges. In priaciple, it will also work for indefinite problems like that depicted in Figure 6-1. The efficiency in most cases was very respectable; in the range of 6-10 units per order of magnitude reduction in the residual. It is also quite insensitive to the parameters ($\eta, 8$). Thus, it can be used very efficiently and reliably with the arc-length continuation procedure for tracing ont solution branches.

Unfortunately, this improved algorithm fails when the magitude of $\mathbf{w}_{\mathbf{k}}$ becomes too large. This occurs when L^{k} is very nearly singolar, that is with μ_{1}^{k} very close to zero. Since we only have an approximation $\bar{\xi}_{1}^{k}$ to ξ_{1}^{k}, large factors W_{k} in (6.4) introduce very large errors in the other modes. Moreover,
the estimates $\bar{\mu}_{1}^{-k}$ using Rayleigh-Quotients tend to be too large (reiatively) When μ_{1}^{k} is very amall. Then (6.1) gives a value of ∇_{k} that is too small. Both of the above result in lower efficiency and reliability. In extreme cases, this makes the algorithm impractical. To overcome this difficulty, we devise an algorithm that will work even if one of the operators L^{k} is very nearly singular. For this we employ the idea of skipping a grid.

6.3 Skipping the Singniar Grid

The previous algorithm fails if the operator is very nearly singular on one of the grids, say G^{k}. The idea here is to simply delete this grid from the hierachy of grids used by the MG algorithm. If the remaining grids are not as singular as the deleted grid it would seem that the algorithm described in 6.2 should work. However, calculations show that skipping a grid can carse other problems. When G^{k} is skipped, the mesh changes more drastically from \mathbf{G}^{k-1} to G^{k+1}, and heace the interpolation in (6.4) (now I_{k-1}^{k+1} instead of I_{k-1}^{k}) introduces larger errors into the higher modes on G^{k+1}. These high frequency errors can cause divergence of the MG process unless controlled properly by the parameters (η, δ). A large value of η, say botween . 8 and .9, makes the algorithm more robst bat involves more vork than for smaller value of η, say . 5 . We encountered a case where, with all else the same, the new skipping algorith converges for $\eta=.9$ but diverges for $\eta=.6$ Granted with $\eta=.9$ the algorithe may be very reliable, such sensitivity to one parameter is very ndesirable. Therefore, we considered the following modification.

6.4 Skipping the Singnlar Grid for the Singrlar Eigenfunction Only

The idea is to skip the singular grid G^{k} for ξ_{1} only, and to keep it for smoothing the other modes. In the actual implementation, we modify the algorithm described in section 6.2 to use

$$
\begin{equation*}
w_{k-1}=\bar{\mu}_{1}^{k-1} / \bar{\mu}_{1}^{-k+1} \tag{6.5}
\end{equation*}
$$

for ξ_{1} and $w_{k-1}=1$ for all other modes to transfer from G^{k-1} to G^{k} and, after a few smoothing sweeps on G^{k}, transfer to G^{k+1} with $\sigma_{k}=1$ for all modes. Note that we do not try to solve the G^{k} equations for \boldsymbol{v}^{k}. Trying to do that wond result in large magnification of the ξ_{1}^{k} component in v^{k}, since μ_{1}^{k} is near zero. This would in turn canse problems during the transfer to \mathbf{G}^{k+1}.

In addition, we have experimented with using mixture of the adaptive ($\boldsymbol{\eta}, ~ 8$) strategy with the non-adaptive (p, q) strategy (cf. section 3.2). We have found a (η, q) strategy that is as good as any other we have tried. In this strategy, we use η to control when we terminate relaration on a certain grid and go on to coarser grid, and use q to control how many sweeps to do on a grid after transfer from a coarser grid before interpolating onto finer grid. A typical set of parameters that worked well is ($\boldsymbol{\eta}=.6, q=2$). The resulting algorithm is fairly insensitive to actual values of η and q and is quite robust. It is also quite efficient. It consistently achieved an efficiency of less than about 12 units per order of magnitude reduction in the residual for most problems that we have encountered. Some of these problems have very singalar grids which presented difficulties for all of the previous algorithms.

7. Sumary

In this paper, we study arc-length continuation techniques and multi-grid techniques for solving nonlinear elliptic eigenvalue problems. We have applied these techniques to solve a model nonlinear elliptic eigenvalue problem (the Bratu problem). We have found that as long as we stay away from singular points, the two techniques combined to give a very powerful and efficient procedure for tracing solution branches. Near singular points, however, the stendard multi-grid method has difficulty converging on the linearized elliptic systems that arise in the continuation procedure. One consequence is that we cannot continue past the limit point in the model problem. This divergence is successfully analysed and several modified multi-grid algorithms have been designed based on this analysis. The best of these modified algorithms performs efficiently and reliably arbitrarily close to the singular points. This enables the continuation procedure to continue past the limit point with no difficulty. It seems reasonable that this modified multi-grid algorithm can be useful in more general situations where nearly singular elliptic systems arise, such as in inverse iteration [11, 17].

REFRRENCES

[1]
J.P. Abbott, An Efficiont Algorithm for the Determination of Certain Bifurcation Points, Journal of Compntational and Applied Mathematics, 4(1978), pp. 19 - 27.
[2]
H. Amann, Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces, SIAM Review, 18 (1976), pp. 620-709.
[3]
N.S. Bakhvalov, Convergence of Relaxation Method with Natural Constraints on an Elliptic Operator, Z. Vycisl. Mat. i Mat. Fiz.. 6 (1966), pp. 861-885.
A. Brandt, Multi-level Adaptive Solution to Boundary Value Problems, Math. Comp., 31 (1977), Pp. 333-390.
T.F. Chan, Numerical Computation of Large Amplitude Internal Solitary Waves, paper presented at SIAM conference at Denver, Nov.. 1979.
B. Chen and P. Saffman, Nmerical Evidence for the Eristence of Nev Types of Gravity Haves of Permanent Form on Deep Hater, Studies in Applied Math., 62 (1980), pp. 1-21.
D. W. Decker and H.B. Keller, Path Following Near Bifurcation, Comm.

Pure and Appl. Math., 34 (1981), pp. .
R.P. Federenko, A Relazation Method for Solving Ellipicic Difference

Equations, Z. Vycisl. Mat. i Mat. Fiz., 1 (1961), pp. 922-927.
[9]
G.E. Forsythe and T.R. Wasow, Finite Difference Methods for Partial Differential Equations, John Wiley and Sons, New York, 1960.
F. Hactoush, On the Malti-Grid Method Applied to Difference Equetions, Computing, 20 (1978), pp. 291-306.
W. Hackbush, On the Comprtation of Approximate Eigenvalues and

Eigenfonctions of Elliptic Operators By Means of a Multi-Grid Method, SIAM J. Numer. Anal., 16 (1979). pp. 201-215.
H.B.Keller, Numerical Solntion of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, P. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359-384.
H.B. Keller, Global Homotopies and Nevton Methods, Recent Advances in Numerical Analysis, Carl de Boor and Gene Golub, ed., Academic Press, New York, 1978. pp. 73-94.
H.B. Keller and D.S. Cohen, Some Positone Problems Suggested By Nonlinear Heat Generation, J. Math. and Mech., 16 (1967), pp. 1361-1376.
H.B. Keller and R. Schreiber, Accurate Solutions for the Driven Cavity, In preparation.
[16]
M. Lentini and H.B. Keller, The von Karman Swirling Flows, Siam
J. App1. Math., 38 (1980), pp. 52-64.
[17]
S.F. McCormick, A Mesh Refinement Method for $A x=\lambda B x$, Manascript.
[18]
H.D. Mittelmann and H. Veber, Numerical Methods for Bifurcation Problems

- A Surver and Classification, Bifurcation Problems and their Numerical Solution, Workshop on Bifurcation Problems and their Numerical Solution, January 15-17, Dortmund, 1980, pp. 1-45.
[19]
R.A. Nicolaides, On Maltiple Grid and Related Techniques for Solving

Discrete Elliptic Systens, J. Comp. Phys.. 19 (1975), pp. 418-431.
[20]
S.V. Parter, Mildy Nonlinear Elliptic Partial Differential Equations and Their Nperical Solrtion. I , Numer. Math., 7 (1965). pp. 113-128.
[21]
S.V. Parter, Merimel Solptions of Mildiy Nonlinear Elliptic Eqnations, Numerical Solntion of Nonlinear Differential Equations, D. Greenspan,
ed., John Wiley, New York, 1966. pp. 213-238.
W.C. Rheinboldt, Numerical Methods for a Class of Einite Dimensional Bifurcation Probloms, SIAM J. of Numer. Anal., 15 (1978), pp. 1-11.
W.C. Rheinboldt, Solption Fields of Nonlinens Equations and Continnetion Methods, SIAM J. Numer. Anal., 17 (1980), pp. 221-237.
J.B. Rosen, Approximate Solntion and Error Bounds for Quasilinear Elliptic Boundary Valne Problems, SIAN J. Numer. Anal., 8 (1970), pp. 80-103.
S. Rosenblat and R. Szeto, Mnltiple Solotions of Nonlinear Bonndary Value Problems, Studies in Applied Math.. 63 (1980), pp. 99-117.
[26]
R.B. Simpson, A Method for the Numerical Determination of Bifurcation States of Nonlinear Systems of Equations, SIAN J. Numer. Anal., 12 (1975). pp. 439-451.
[27]
R.K.R. Szeto, The Flon Betwen Rotating Coaxial Disks, Ph.D. Thesis, California Institute of Technology, Pasadena, CA , 1978.

[^1]: ${ }^{3}$ We shall use the $\mathfrak{N} \cdot$ ' symbol to mean rather loosely 'approximately equal to'. The meaning'should be clear by contert. Also, we shall assume that the interpolation factor w_{k-1} in Equation (3.5) is equal to one unless stated otherwise.

[^2]: Before we proceed, however, we have to explain a few general strategies thet were used. First of al1, Ganss-Seidel and many other relazation schemes are not very effective in smoothing the lower modes, especially modes with near zero eigenvalues. Hence, these modes must be eliminated by means other

