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1.0 INTRODUCTION

This contract effort (under Air Force Contract No. F33615~77-C-2021)
encompassed experiments, development, experimental cell/battery fabrication,
and testing in sufficient depth and detail to make significant progress toward 1
the objective of providing safe and reliable lithium inorganic electrolyte
primary battery technology.

Investigations were made into Storage Degradation, Abnormal Cell Opera-
tion, Performance at Low Temperatures, Passivation, Preliminary Hazard
Analysis, and Deactivation and Disposal. Each of these categories is

discussed in its own section of this report. s

This final report details the various investigations made, results

obtained, and conclusions drawn. Program recommendations made in Section 8.0

of this report include a follow-on program to continue the development of the

Half-C cell, leading to its qualification.




2.0 STORAGE DEGRADATION i

2.1 INTRODUCTION

For the purposes of this study of Li/SOCl cells, capacity is defined as
the number of ampere-hours delivered by a cell of DD bobbin design at 3.0
volts. Thus, cells that run marginally near or below 3.0 volts are considered »
to have low capacity, even though substantial capacity remains at lower volt-

age.

The purpose of these tests was to determine the effect of long-term stor-
age and elevated temperature on capacity retention in Li/SOClz cells, both
cathode-limited and anode-limited. %

2.2 EXPERIMENTAL

Electrolyte was prepared in the usual way with attention given to
minimizing traces of metals, organics, and hydrolysis products. Special

electrolytes prepared to minimize voltage are described in subsection 5.2.

The cells used for these tests were standard DD bobbin cells with suffi-
cient lithium to produce either anode- or cathode-limited behavior. Three
cells were tested at each combination of storage temperature and time. Data

collection methods and instrumentation are given in subsection 5.2.
2.3 RESULTS

The baseline capacities for these DD cells are 9.4 and 28.7 Ah for the

PR

anode and cathode limited cell respectively, down to the 3.0-volt cutoff.

These represent averages of 20 cell discharges each.

Figures 1 and 2 show capacity loss for lithium-limited and cathode- !

limited DD cells, respectively. After 35 weeks of room temperature storage,

this type of cell has lost three to five percent capacity. However, this high
loss rate is not expected to continue in a linear fashion over longer periods.
Microcolorimetric data on small cells indicate that lithium corrosion rapidly

decreases in the first three months of cell life. S

Figure 1 shows a 50-percent capacity loss in lithium-limited DD cells
after only eight weeks of storage at 55°C. Figure 2 shows a 50-percent

decrease in capacity for cathode-limited cells under the same circumstances
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after 24 weeks. Since an almost five-fold excess of lithium is used in

cathode—-limited cells, no capacity loss is expected if only lithium corrosion

were responsible. Two explanations are offered for this phenomenon.

It is now known that one of the separator paper binders currently used
(polyvinyl alcohol) reacts over extended periods with electrolyte. The pro- ;
ducts of this reaction may increase the resistance of the separator paper,
causing the cells to run at lower voltage and to reach the 3.0-volt cutoff
prematurely. The second mechanism involves the recrystallization of LiCl in

cathode pores from the surface of lithium. It is known that the LiCl film on

lithium grows at elevated temperatures due to recrystallization and crystal
growth. The LiAlCl, salt in the electrolyte provides the medium for this
process. Thus, LiCl may be continually dissolving at the anode and redepos-

iting at the cathode.

The effect of the voltage delay additives on capacity retention of
lithium-limited cells for various 55°C storage times is shown in Figure 3.

The calcium and sulfur dioxide additives only deteriorate high-temperature

capacity retention, both in S07Cly and SOCly solvents. However, the

1.8M LiAlCl, in SO9Cl, showed remarkably good capacity retention up to
22 weeks at 55°C. This finding is of interest since it was felt previously ;
that chlorine from SO0,Cl, decomposition

- 3
S0,C1 =  SO,+ Cl,

would quickly consume all lithium. Chlorine gas does consume lithium when ;
bubbled through SOCl,. Evidently, either the SO,Cl, decomposition is
not extensive, or the S09Cl,-formed passive film is impermeable to the

chlorine formed. H

2.4 CONCLUSIONS AND RECOMMENDATIONS

There are several promising directions to explore in improving high-tem~
perature storability through chemical means. 805Cly and So3Cly/
S0C17 mixed electrolytes should be tested further. Lowering the LiAlCl4
concentration will decrease S0 solubility and conductivity but may
significantly decrease capacity loss on storage by decreasing LiCl

recrystallization on the anode and possibly in the cathode.
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3.0 ABNORMAL CELL OPERATION

Investigations were made by conducting abuse/environmental tests and
deactivation/disposal on both cylindrical and prismatic cells. Tests were
conducted on cylindrical D and DD cells and on prismatic 2,000 and 10,000
ampere-hour cells. These tests are summarized in this report with the

results realized.

Detailed test reports on both types of cells have been previously sub-
mitted under this contract. GTE Sylvania Document Number 00-1319104 dated 18
October 1978, covers cylindrical cell tests. GTE Sylvania Document Number
00-1319105, dated 8 May 1979, covers prismatic cell tests.

3.1 CYLINDRICAL CELLS

. The 13 different environmental and abuse tests conducted on cylindrical

cells were:

a. Discharge to 3.0 V cutoff
b. Salt immersion ‘
c. Discharge at excessive rates
d. Abusive charging

e. Puncture

f. Crush

g. Overheating

h. Drop

i. Vibration (bounce)
jo Shock

k. Incineration
1. Thermal shock

m. Deactivation and disposal

3.1.1 Discharge to 3.0 V Cutoff

Twenty-four cells were discharged at the rate of lmA/cm2 to the 3.0 V
cutoff line. Connectivity for discharge is shown in Figure 4. The group
included the following types of cells:

a. 12 each of the standard size D cells, lithium-limited (LL)
b. 5 each of the double D size cells, lithium-limited (LL)
c. 7 each of the standard size D cells, carbon-limited (CL)




Temperature

10 Ohms

Lithium ‘
| Cell 100 Ohms Data P

Adjustable

Logger

1 Ohm
+ 12

Current

Voltage

Figure 4. Discharge to Cutoff Connectivity

The average capacity obtained from lithium-limited D cells was 4.75 Ah,
with the high and low values being 5.67 Ah and 4.42 Ah, respectively. The
theoretical capacity of these cells, based on the amount of lithium used, was
4.4.2 Ah with the possible variation of + 5 percent from one cell to another,
due to nonuniformity in the thickness of lithium foil. The resultant average
cell capacity, obtained to 3.0-V cutoff line, represents approximately 84
percent of the theoretical capacity of lithium present. Obviously, this
figure would be different for different discharge rates applied, and also for
different voltage cutoff lines. The total exhaustion of lithium, and there-
fore the theoretical capacity, could be reached only at diminishing discharge
rates at the end of discharge and on discharge to approximate 0.5 V. The
average capacity obtained with the five DD lithium-limited cells, relative to
that obtained in standard D cells, could only be ascribed to a greater
accuracy in cutting lithium.

“
3




The carbon-limited cells in the standard D-size delivered an average of
12.74 Ah, with the high and low values of 13.42 Ah and 11.49 Ah, respect-
ively. The capacity obtained at lower discharge rate or to a lower cutoff
line would have been significantly greater, since the cathode polarization is
not so sudden as the disappearance of lithium in the anode-limited cells.

The average capacity obtained with these cells under the present discharge
conditions are considered very high. Table 1 summarizes the results obtained

in this test.

TABLE 1
DISCHARGE CAPACITY

Capacity at 1 mA/cm2 to 3.0V(Ah)

Type of Cell High Low Average 2% Aver. Theor.
D,LL 5.67 442 4.75 84
DD,LL 10.12 9.45 9.66 92
D,CL 13.42 11.49 12.74 -

Discharge curves for typical lithium-limited and carbon~limited cells

are shown in Figures 5 and 6, respectively.

3.1.2 Salt Immersion

One standard D size cell, lithium-limited, was subjected to the salt
immersion test for 24 hours in three-percent sodium chloride solution. No
leakage was observed from the cell during the test period. The change in the
ph of the salt solution from 4 to 6 during the test cannot be ascribed to
leakage (the change in case of leakage would have been in the opposite
direction). The corrosion of the plus terminal must have been the result of
an anode dissolution of the terminal material, caused by the electrolysis of
the test solution by voltage of the cell itself. A further proof of the
electrolytic process taking place outside the cell is the cell voltage drop

to 3.44 V measured imediately after the test. The cell recovered to the full
0 CV of 3.66 V after cleaning, washing, and standing in the air to dry.

i
|
|
|
|
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3.1.3 Discharge at Excessive Rates

Eight standard-size D cells were subjected to an excessive discharge :
rate by shorting them through a 100-A, 50-mV shunt. Following is a list E
of types of cells used, in fresh and discharged states, one each at 25°C 1
and 55°C:

a. 2 cells, D, LL, fresh ‘
b. 2 cells, D, CL, fresh !
c. 2 cells, D, LL, discharged
d. 2 cells, D, CL, discharged.

No venting, rupture, or explosion was observed during the tests with any
of the eight cells, The maximum temperature of 106°C was achieved, seven to

eight minutes from the beginning of discharge at the skin of the fresh cell,

which was thermally equilibrated at 55°C in a closed test chamber prior to
discharge. The maximum discharge current was 7 A after one minute of dis-
charge for fresh cells. The values were lower for all cells that were tested
in discharged states or at the temperature of the test chamber of 25°C. A
slow decrease in the discharge current, accompanied by the drop in tempera-

ture, were observed after these maxima were passed .

3.1.4 Abusive Charging

Charging tests were performed on standard size D cells of the following
types:
a. Constant current charging: 2 each, D, LL, fresh
2 each, D, LL, discharged
b. Constant voltage charging: 2 each, D, LL, fresh
2 each, D, LL, discharged.

Two different charging regimes were applied to both fresh and previously
discharged cells, one at constant voltage of 4.1 V and the other at a con-

stant current of 44 mA. The discharge current and the cell's case tempera-

ture were monitored during the constant current charging. The tests were
carried out for several hours in each of the tests, i.e., until the cells

reached stable conditions.

The charging of fresh cells under either of the two charging conditions

(Figures 7 and 8) showed a slow increase in temperature of 0.5°C/hour. The

12
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two charging regimes did not differ significantly as far as the electric
characteristics of cells are concerned. Under the constant voltage of 4.1 V,
the high charging current over 100 mA decayed rapidly and stabilized below 20
mA, while under a constant current of 44 mA the charging voltage remained be-
tween 4.0 and 4.1 volts over a period of eight hours. A slight difference in
the steady-state charging conditions, following the initial period, can be
attributed to individual differences in the geometry of the cells, as related
to the cell's ability to recombine the products of charging formed on the two
electrodes. Of the two cells tested under each of the charging conditions,
only one was represented in each of the diagrams, since there were no sub-
stantial differences in the behavior of the same type of cells tested under
the same charging conditions. Charging of the discharged cells under each of

the two charging conditions is shown in Figures 9 and 10, respectively.

The constant voltage charging of discharged cells showed much higher
charging current than those observed in charging of the fresh cells, with a
slight initial difference in the behavior of the two cells tested (Figure 6).
As a result, the rate of temperature increase was much greater, amounting to
2°C per hour over a period of five hours. A slow leveling off in the temper-
ature increase with time is probably influenced by both of two factors: the
cooling rate and the reduction of the charging current. The constant current
charging of discharged cells closely resembled the charging of fresh cells
under the same conditions. A steady increase in the cell's case temperature

of 0.5°C/hour was also observed with these cells.

No rupture, leakage, bulging, or explosion was experienced with any of

the cells used in the course of the abusive charging test.

The experience gained in these tests agrees with the observations made
during the charging tests with the 2,000-Ah rectangular cells, as well as
with the observations reported by others (Honeywell, Mallory, Power Sources
Conference, Atlantic City, NJ, June 1978). The tentative explanation is that
the chlorine generated on the cathode and fresh lithium generated on the
anode during charging combine quickly forming LiCL, so that the cumulative
effect of charging is just the formation of heat within the cell, corres-
ponding to the heat of reaction of chlorine and lithium, with some contri-

bution of ohmic heating due to the internal impedance of the cell.

15

e e i ‘
i e [V WL TRy PP N




J0 ‘TNAIVNIDGEL

114

(14

"

9T

14

[+

[43

e

1199 poSaeyosyq jo SuyBaey)y a8e3Top JueIsuo) °g 3andyy

SYNOH - IKIL

£

AT’y Jo a8we3jro

b jue3suod e palaey)y -

yu %y

® AD°E ©31 paBieydrsyq -
1130 @

\WNH\\\A&M&E&ms

*7 INA®WNNO

°T INAWND

9t

L't

| 8°¢€

6°t

o'y

sy

9y

Ly

CHARGING CURRENT, mA

16

i




1..1 " T G A i gionesaboe el it i bt

i 1190 pa8aeydsig jo SurBaeyy Juaiin) jue3suo) QO 2an814

SHAOH - AWIL
2 8 L 9 S 9 £ Z 1
r va %9
JO IUaIIND jJuBISUOD 3P padiey)d -
174
ve yylie A0"€ o3 pp3ireydsiq -
- 1130 d
m \\%\.\ 1
1 -
92 6°€ >
m TANLVYAIWAL J -
® ol
o . =
(o) -
8z oy 8
qA9V110A
ot ﬂ T
A S 'y

i TI30 QAOYVHISIA 40 ONIDYVHO INZWAND INVLISNOD

————




3.1.5 Puncture

Five cells of the following type and discharge status were subjected to
a puncturing test:
a. 1 each, fresh, D, CL, room temperature
D, LL, room temperature
b. 1 each, discharged D, CL
D, LL
DD, LL

The cells were punctured with an electric drill perpendicular to the
side, 1/4-inch deep, or until short circuited. No venting, rupture, or ex-
plosion was observed. The maximum cell case temperature was 75°C for a fresh
DD cell punctured at the ambient temperature of 15°C, 20 minutes after the
puncture. Lithium-limited cells discharged at 1 mA/cm? to 3.0-V cutoff
showed only one to two degrees C increase in temperature, four to five min-
utes after puncture. The carbon-limited cells, discharged under the same
conditions, showed an increase in temperature of 10 to 12 degrees C, 10 to 15
minutes after puncture. Figures 11 and 12 show the discharge characteristics

of discharged and fresh lithium-limited cells.
3.1.6 Crush

Three cells were subjected to a crush test, one each of the following:
a. D, CL discharged

b. D, LL, discharged

c. D, LL, fresh.

No venting or explosion was observed. The cells were crushed by press-
ing the middle of the can sideways until an internal short circuit was devel-
oped. The fresh cell developed the internal short circuit one minute after
the beginning of the test and under the force of 900 pounds, as indicted by a
sudden drop in voltage. The beginning of an increase in the cell temperature
of 55°C was reached 16 minutes from the beginning of the test. The dis-
charged cells did not develop short circuit upon crushing and did not show
any increase in temperature. Upon rupture under the crushing force (in the
area of the glass seal), a light white vapor was observed, probably origi-
nating from the hydrolysis of the SOCly vapors in contact with humid air.
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3.1.7 Overheating

Five cells were subjected to the overheating test in an oil bath placed
on the hot plate. Following were the types of cells used in the test.

a. 1 each, fresh D,LL and DD,LL

b. 1 each, discharged D,CL; DD,LL; and D,LL

The overheating test was performed by dropping the cell into preheated
oil (115°C) and maintaining the same oil temperature for one hour. Both
fresh cells, as well as the carbon-lmited discharged cell, maintained full
open circuit voltage throughout the test. Both lithium~-limited discharged
cells showed fast deterioration of the voltage upon heating. They did not
show recovery upon cooling, suggesting that the residual lithium, left after
discharge, was consumed in a direct chemical reaction during the overheating
test, resulting in permanent loss of the cell's open circuit voltage. None

of the cells vented, ruptered, or exploded.

3.1.8 Drop

Two cells of the standard size D, LL, one fresh and one discharged, were
subjected to a six-foot drop. The open circuit voltage was measured before
the drop test and then monitored for 40 minutes after the drop, along with
cell skin temperature. No venting, bursting, or explosion occurred as a
result of the drop. Also, no change in either the open circuit voltage or

cell skin temperature was observed.

3.1.9 Vibration (Bounce)

The vibration test was conducted in accordance with MIL-STD-810C, Method
514.2, Procedure XI, Part 2, using four cells:
a. 1 cell, DD, LL, fresh
b. 1 cell, D, LL, fresh
c. 1 cell, DD, LL, discharged
d. 1 cell, D, LL, discharged

The cells were tested on the machine designed to meet the MIL SPEC
requirements mentioned above. The test duration was 90 minutes in hori-
zontal position, followed by 90 minutes vertical, for each of the four cells.
No change in the cells’ skin temperatures and open circuit voltages were

observed. The specimens did not leak, vent, rupture, or explode.
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3.1.10 Shock

The shock tests were conducted using four cells of the following types:
a. 1 cell, DD, discharged '

b. 1 cell, D, LL, discharged

ce 1 cell, DD, LL, fresh

d. 1 cell, D, LL, fresh.

The shock pulses were terminal sawtooth shape, 100 milligrams in magni-
tude and six milliseconds in duration. The shock machine was a drop-impact
type with a table weight of approximately 1500 pounds. The impact material
consisted of cone-shaped lead pellets designed to produce a particular shock
pulse. Typical discharge curves for lithium-limited cells are shown in
Figure 13.

Each cell's open circuit voltage and skin temperature were monitored
during the test. No change in temperature or voltage was observed. The cells

did not leak, rupture, vent, or explode.
3.1.11 Incineration

The incineration test was conducted using three cells, one each of the
following types:
a. 1 cell, D, LL fresh
b. 1 cell, D, LL discharged
ce 1 cell, D, CL, discharged.

The cells were incinerated in the flames of burning diesel o0il, the
temperature of which was well in excess of the melting point of lithium. The
fresh cell exploded during this test as expected. Both of the discharged

cells vented through the positive terminal as expected.

The test results suggest that a fast spontaneous reaction was initiated
between the cell's active components as a result of heating to a high
temperature, leading to an explosion. The discharged cells, with a minimal
amount of active components left after discharge, expanded slowly during the
heating until the cell's top was sufficiently distorted to crack the glass

and open the cell to the atmosphere.
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3.1.12 Thermal Shock

Thermal shock tests were conducted using three cells, one each of the
following types: B
a. 1 cell, D, LL, fresh

b. 1 cell, D, CL, discharged i

c. 1 cell, D, LL, discharged.

The thermal shock test was conducted in accordance with MIL-STD-810C,
Method 503.1. The cells were equilibrated for four hours inside a chamber e
at 63°C and then, within a maximum of five minutes, transferred to another
chamber and equilibrated at -54°C, where they were left for another four
hours. The open circuit voltage and the temperature of the cells were

monitored throughout the test. The cycle was repeated two more times. H

The cells did not leak, vent, rupture, or explode. The lithium-limited
discharged cell showed a drop in its open circuit voltage, most likely due to
the disappearance of residual lithium at the high temperature of the cycle
(same phenomenon as in overheating tests). The other two cells did not show
any change in their open circuit voltage after the test relative tc¢ values

established before the test.

Discharge curves versus the thermal shock profile are shown in Figures

14 through 16.

3.1.13 Deactivation and Disposal

Three different categories of cells were subjected to deactivation
tests, depending on the state at which they were following the tests:
a. Physically undamaged cells
b. Physically damaged cells with ruptures and leaks
c. Debris of exploded cells.

A hole 1/4 inch in diameter was drilled in the bottom of undamaged cells
before deactivation. After that, all three categories were deactivated in
the same manner by submerging them into a water solution of a neutralizing
agent, namely sodium bicarbonate. Two weeks were allowed for the cells to
deactivate before the neutralized debris were buried. All cells used in
these tests were accounted for. With the exception of the few taken back to

GTE, all were deactivated and disposed of.
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3.2 PRISMATIC CELLS

This subsection presents the results of the investigations conducted on
large prismatic lithium thionyl chloride cells, both 2,000 and 10,000
ampere-hour capacity. The intent of the investigation was to maintain the
high energy density with the incorporation of features that improve safety in

handling, operating, and disposal of the cells.

Some of the abusive tests performed were a "first" for large prismatic
cells. It was therefore necessary to design and conduct this test program to
prove that in addition to maintaining proper open circuit voltage following

the abusive tests, there was no loss in discharge capacity.

Table 2 presents the design of the prismatic test program and correlates
test type with size/type of cell and start state of discharge. The test flow
and results for the 2,000 ampere-hour cells are presented in Figure 17. The
test flow and results for the 10,000 ampere-hour cells are presented in

Figure 18.

3.2.1 Dis-haige Performance

One objective of this program was to establish the practical limits of
the energy density and power demsity obtainable with the prismatic cells in
general, and also the reduction of the energy density, if any, resulting from

the inclusion of various safety features with the cell design.

Many of the discharge tests conducted under this program may have been a
part of another test that included a predischarge, while some other discharge
tests were conducted with the specific purpose of establishing if the tests

would meet the capacity requirements claimed by the design.

The operating characteristics of prismatic cells were reestablished at
the design drain rates using the 2,000-Ah cell and the 10,000-Ah cell.
Figures 19 and 20 show the constant load discharge curves at room temperature
for a 2,000-Ah (2K-W) and a 10,000-Ah cell (10 K-F), respectively. The
respective discharge rates were 8 A and 40 A, in proportion to the expected

discharge capacity of the cells.
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PRISMATIC TEST PROGRAM

TABLE 2

(Page 1 of 2)

STARTING STATE

*
TEST GROUP TEST TYPR CELL TYPE OF DISCHARGE
Discharge Discharge At 2K-W
Performance Constant Load LOK-F Fresh
Abuse Tests With 2K-D
Dumay Cell 10K-D
Mechanical Shock Tests 10K-F Discharged to OV
Abuge 10K-W Fresh
2K-W Presh
Vibration 10K-F Discharged to OV
Teats 10K-W Discharged to c/o
10K-W Fresh
Tip 10K-W Fresh
10K-W Discharged to c/o
Puncture 10K-W Discharged to c/o
Thermal Shock 2K-W Fresh
Thermal Temperature Soak 10K-W Fresh
Abuse Flamability 2K-W Fresh
Overheat 2K-W Fresh
Temperature
Altitude Test 2K-W Fresh
Lov Temperature 10K-W Fresh
Storage
Overdischarge 2K-W Fresh
Electrochemical 2K-W Fresh
Abuse Excesaive Discharge 2K-W Fresh
* Wellelded Cell F=Flanged Cell DeDummy Cell
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MECHANICAL ABUSE

Shock Test

Vibration Test

Tip Test

Puncture Test

THERMAL ABUSE
Thersal Shock
Temperature Soak
Flamability
Overheating Test

Temp/Altitude

TABLE 2
PRISMATIC TEST PROGRAM

100G

56 (5-50 Hz)
2G (50-2000 Hz)

Free Fall on Edge

CELL SIZE

Internal metal-to-metal short circuit

56°¢ o 63°%¢C

@ -54°C for 15 days

15 second flame impingment

011 immersion @ 121°C

-54°C to +65°C @ 40K ft.

ELECTROCHEMICAL ABUSE

Excessive Discharge 12 millicha short on 2
2.6 ailliohm short on 1

Overdischarge

Constant current for 150% of capacity

30
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10K
10K

2K
10K

10K

2K
10K
2K
2K

2K

2K
10K
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These figures show very stable operating voltages of each of the cells
throughout the entire active life of the cells. The end of life is signal-~
ized first by a slight increase in temperature and pressure (a few degrees
and a few psig, respectively) as the polarization of the cell begins. The
drop in voltage at the end of discharge is usually very sudden with this
electrochemical system, more so with the anode-limited cells and with the
cathode-limited cells with thin cathodes (below 0.050 inch).

The 2,000-Ah cell tested here delivered exactly 1976 Ah at the voltage
of 3.43 V to a cutoff voltage line of 3.00 V, thus resulting in the energy of
6778 Wh. The cell in question was equipped with extra insulating plates and
extra thick container walls, so that the realistic energy density could not
be estimated. However, based on the internal volume occupied by the elec-
trode structure and the extra electrolyte on top of the structure (586 cubic
inches), the structure produced an energy demsity of 11.5 Wh/cubic inch.
Obviously, this is far below the maximum energy density obtainable from an
optimized 2,000-Ah cell and must be considered as a study figure produced in

the course of a more complex experiment.

The 10,000-Ah cell delivered exactly 10,030 Ah at the voltage of 3.5 V
to a cutoff voltage line of 3.00 V. This amounted to 35,105 Wh in a volume
of 2874.5 cubic inches, or to the energy density of 12.6 Wh/cubic inch. The
figure is valid for a welded cell, using the overall cell dimensions and
disregarding the fact that the present test was conducted in a flanged cell
for practical reasons. Many safety features, overdesigned and incorporated
in this cell, were responsible for the reduction of the effective energy
density, but were used for the same reason mentioned above for the 2,000-Ah
cell. The same cell was used in a variety of mechanical abuse tests (see
Table 2) for the first time. The probability of accident could not be
estimated in advance, so the cell had to be made as safe as possible for

those first tests.
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3.2.2 Mechanical Abuse

Limited experience in abusive testing and hazardous behavior of large
cells showed that following events such as an internal short circuit at
explosion, it is difficult to establish the cause of the hazard. Distortion,
overheating, and corrosion of hardware components, loss of electrolyte by
leakage or evaporation, and loss of cathode and anode materials that might
have been involved in initiating the hazardous behavior complicate the
analysis of the event. For these reasons, abuse tests were conducted first
with a dummy cell, in which one or more of the active components would be
substituted with inactive ones that were similar in physical characteristics

but incapable of hazardous behavior.
3.2.2.1 Dummy Cell Tests

Two dummy cells were built, one each of the 2,000-Ah and 10,000-Ah
sizes. It was decided to use the real cathodes as the most fragile component
of the electrode structure. In order to simplify the incorporation of short
circuit sensors, as well as the transport of the dummy cells to the test
site, it was decided to substitute a nonflammable material for lithium.
Polyethylene sheets of equal thickness, clad with copper on one side, were
used. All other components, such as separators, insulators, plate inter-

connectors, etc., were kept the same as in real cells.

Three types of sensors were incorporated into the cell structure before

the test: short circuit sensors, accelerometers, and strain gauges.

The dummy cells, one each of the 2K and 10K sizes, were subjected to
mechanical shock test with a terminal sawtooth shaped pulse, 100G in
magnitude and 6 milliseconds in duration. The pulse was applied twice in
each of the three axes, with both pulses in two axes applied to the cell in
upright position and one pulse in X and Y axes for cells in each of the

upright and upside-down positions.

The same cells were subjected to vibratory motions over a frequency
range of 5 to 50 Hz at 5 G, limited to 0.8-inch double amplitude and 50 to
2,000 Hz at 2 G peak. The frequency range of 5 to 2,000 to 5 Hz was
traversed at a rate of one octave per minute. The vibratory motion was

separately applied to each of the three mutually perpendicular (orthogonal)
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: axes of the lithium cell. The following parameters were monitored and
% recorded: cell positive terminal cell case response, accelerometer, and

strain gauge responses.

The 2K cell withstood the shock and vibration tests with no visible or
detectable damage either to the casing and connectors or to the electrode
structure. No part of the case reached the yield point at any time during
the shock and vibration tests. The accelercmeters indicated a slight rela-
tive motion of the electrode plates, low enough in magnitude so that it did
not cause elther tear of separators or erosion of the carbon plates dis-
cussed below. The short circuit indicators showed no contact established
either between the cell terminals or between each of the terminals and the

cell case.

The tests with the 10K cell were conducted under identical dynamic
conditions as those established for the 2K cell. The strain gauges showed

that no part of the cell casing reached the yield point at any time during

the shock and vibration tests.

The two groups of accelerometers (internal and external) showed dif-
ferent effects of the shock and vibration. The external accelerometers in-
dicated the vibration of the case walls in X (or Y) direction, during the

shock and vibration tests along Z axis. The bottom and top of the case

showed similar vibration with the maximum amplitude obviously in the center
of each plane. The internal accelerometers showed a small relative motion of

the plates in the electrode assembly. They also showed a cumulative motion

of plates relative to the case wall, proportional to the distance of the
plates from the wall. This cumulative effect resulted in a bow formation
with a minimum total motion of the center plate during the vibration tests

along the Z axes.

The short circuit indicator installed to monitor the contact of cathodes
to the cell case showed a short circuit. Post-mortem inspection indicated
that the carbon of one of the end cathodes was extruded under pressure over
the edge of the side insulator plate, tearing the separator and making con-
tact with the wall of the case. This experience suggested that a perfect
line-up must be achieved of all plates of the electrode stack before it is

placed in the container.




3.2.2.2 Live Cell Tests

Two full-size 10,000-Ah cells were subjected to the mechanical shock

tests, one in the fresh state and one in the fully discharged state.

Figure 21 shows the typical result of the test performed with the 10K
flanged cell previously discharged to 0 V. There was no visual evidence of
leakage of the electrolyte. The post-test cell width measurement was 11.650
inches, compared with 11.375 inches baseline data. The open circuit voltage

was 0.1823 V. No change in pressure or temperature was observed.

The cell was moved to a site suitable for cell disassembly. It was then

disassembled, inspected, and packed for shipment.

Figure 22 shows the typical results of the shock test performed with the
10K welded cell in fresh state. Prior to the shock test, a one-hour dis-
charge test was performed verifying that the fresh cell was functioning pro-
perly. The cell was then subjected to the shock test in each axis twice. A
one—hour discharge test was performed after each shock in a given axis. In
each case the cell indicated normal operation during the one-hour discharge

following the shock tests.

A load was applied initially for three minutes, whereupon the output
voltage of the cell showed a value of 3.30 V, rather than the 3.45 V ex-

pected. The load was removed and the cell recovered to 3.6 V.

The load was reapplied and a similar indication occurred, an out-of-
specification voltage of 3.30 V. The load was removed, and the cell re-
covered to 3.6 V. Again a load was applied, and after one hour, the cell's

operating voltage was 3.18 V, unacceptable with respect to normal operation.

The post-test analysis indicated that one possible explanation is that a
portion of the stack lost good electrical conductivity with the bus, thus re-
ducing the number of plates participating in discharge, and therefore causing

a larger voltage drop under load.

Four cells were subjected to vibratory motions over a frequency range of
5 to 50 Hz at 5 G, limited to 0.8-inch double amplitude, and 50 to 2000 Hz at

2 G peak. The frequency range of 5 to 2,000 to 5 Hz was traversed at a rate
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of one octave per minute, a test period of 16 minutes per axis. The vibra-
tory motion was separately applied to each of the three mutually perpendi-
cular (orthogonal) axes of the lithium cell. Case temperature cell voltage,

and cell internal pressure were recorded throughout the vibration test.

For reasons of safety and with the purpose of acquiring initial test
data on large cells, the first one of the full size, the 10K cell, was
completely discharged to zero volts before it was subjected to the vibration
test. Being a lithium-limited cell by design, it was assumed that it con-
tained no lithium prior to the vibration test. The test was performed in all
three directions (X, Y, Z),while the voltage, the pressure, and the tempera-
ture were monitored continuously. The post-test inspection revealed no
visible evidence of damage or deformation. The open circuit voltage of
0.2634 V observed at the bnd of the test showed, as it should have, no

presence of lithium in the cell. The test results are shown in Figure 23.

Another 10K cell was discharged at the nominal rate of 34 A to the
cut-off voltage line of 3.0 V before it was subjected to the vibration test.
Although lithium-limited by design, the cell at the end of discharge to the
cut-off voltage line still contained an unspecified amount of lithium spread
over the anode screens, as evidenced by the quick recovery of the voltage to

the open circuit value upon discontinuation of the discharge.

One 10K cell was subjected to the vibration test in fresh state. A
one-hour discharge at 34 A was conducted before the test and after the
vibration in each of the directions in order to verify the proper discharge

performance of the cell. The test results are shown in Figure 24.

The open circuit voltage, the case temperature, and the cell's internal
pressure were monitored for the duration of the vibration. No change was

observed in any of the three parameters as a result of vibration.

There was no visible evidence of damage or deformation at the completion
of the test. The cell was later discharged to cut-off at 36 A discharge rate
and inspected. No visible damage was noted. The cell was then deactivated

(discharged to O V) and deposited in a deactivation well.
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3.2.2.3 Tip Test

One 10,000-Ah cell was subjected to a tip test both in the fresh and in

the discharged state.

Figure 25 shows typical results of the tip test (both surfaces) for the
fresh 10K cell. The cell continued to operate in a normal manner after the
tip tests. There was no evidence of electrolyte leakage. The post-test cell
width measurement was 11.685 iches compared to pretest measurement of 11.663

inches. Open circuit voltage was 3.67 V.

No rupture or case deformation was observed. The performance of the

cell was not affected after the tip test. No hazardous conditions occurred.

3.2.2.4 Puncture Test

A 10,000-Ah cell was subjected to the puncture test after discharge to
cut-off voltage value of 3.0 V at 34 A. The purpose of this test was to
determine the type and magnitude of hazardous conditions created in a dis-
charged to cut-off cell by penetrating the cell wall in the direction perpen-
dicular to electrodes and creating an internal metal-to-metal short circuit
between the metal substrates of the anode and cathode. Specifically, this
test was to demonstrate whether a discharged 10,000~Ah cell still has enough
energy (as does a freshly activated cell) to heat the metal-to-metal short

circuit area high enough to cause a spontaneous reaction and cell rupture.

The discharged to cut-off 10K cell was penetrated perpendicular to the
center of its largest side with a remotely operated l/4-inch diameter drill
bit. The depth of penetration was four inches, resulting in a metal-to-metal

internal short, as evidenced by a sharp drop in terminal voltage.

The open circuit voltage immediately dropped from 3.65 to 3.45 volts and
ocntinued to decrease gradually over the next 60 minutes until the cell
reached its 3-volt cut-off level. At this point, the 1/4-inch diameter drill
bit was removed. The maximum cell temperature recorded during the test was

32°C, indicating a three-degree rise and a maximum pressure of 4.2 psi.

Puncturing a discharged 10,000-Ah prismatic cell to a depth sufficient

to create an internal metal-to-~metal short will not result in an explosion.
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3.2.3 Thermal Abuse

3.2.3.1 Thermal Shock

The thermal shock test was performed on one 2,000-Ah prismatic cell to
demonstrate the resistance of the basic prismatic design to the anticipated
sudden changes in temperature and the possible adverse effects, if any, of

the sudden temperature changes upon the discharge performance of the cell.

Figure 26 shows the results of the thermal shock test. The cell was
held in each of the two temperature chambers for hours, and the cycle was
repeated three times. The open circuit voltage, the cell's case temperature,
and the internal pressure were monitored for the entire period of the thermal
shock test. Following the thermal shock test, the cell was allowed to
equilibrate at room temperature before the one-hour discharge test was
performed to determine the effect, if any, of the thermal shock on the
performance characteristics of the cell. The same one-hour discharge test

was applied to the cell prior to the thermal shock test, for comparison.

The internal pressure of the cell varied between ~7 psig and +7 psig,
dependent on whether the cell was going through the cold or hot part of the
thermal shock cycle. No change in the discharge performance of the cell was
observed as a result of the thermal shock test. No leakage, rupture,

venting, or explosion was observed during the thermal shock test.
3.2.3.2 Temperature Soak

A deep-freezing test over an extended time period was performed on one
prismatic cell for the purpose of demonstrating if such a treatment would
affect the discharge performance at ambient temperatures. The low temper-
ature was not expected to affect the electrolyte, since it was still far
above its freezing point, but proof was needed that all the other components

and subassemblies are unaffected by an extended exposure to low temperature.

To verify that the cell functioned properly, the cell was discharged at
a rate of 36 A for a period of one hour following the deep freeze test. The
cell continued to operate with the same performance as before the test. The
performance of the cell was not affected after the extended exposure to a

low temperature.
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3.2.2.3 Flammability

The thermal abuse test often includes a short-term exposure to flame. A
test was performed to demonstrate not only that the exterior of the cell is
not flammable, but also that the short-term exposure to flame would not ser-
iously change the vital signs of the cell (open circuit voltage, pressure

temperature) and its discharge performance after the test-

The flammability test was applied to one cell of the nominal capacity of
2,000 Ah by remotely applying a flame from torch for 15 seconds. The open
circuit voltage, the cell's case temperature on the flame side, and the in-
ternal pressure were monitored during the l5-second test and 24 hours fol-

lowing the completion of the test.

No change was observed in the cell's open circuit voltage, the internal
pressure, or the case temperature on the wall opposite the flame side. The
case temperature on the flame side climbed to 98°C in the 15 seconds of test,
and returned to the temperature of the opposite wall over the period 35 min-

utes following the flame test.
3.2.3.4 Overheating

The resistance of thionyl chloride cells to overheating had to be exper-
imentally established, since overheating accompanies many other mechanical
and electrochemical abusive treatments. Although the components of the fresh
cell are considered stable at elevated temperatures up to a point of a phase
change (such as the melting of lithium), the hardware components and sub-
assemblies may also be affected to the point where they could initiate other

forms of abuse, such as short circuit, leakage, etc.

The open circuit voltage changed only in the range expected, corres-
ponding to the increase in temperature. It settled down at the initial full

value, after cooling of the cell to room temperature following the test.

The cell's case temperature trailed closely the temperature of the oil
in the bath.
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The internal pressure of the cell climbed slowly to 6.3 psig during the
oil heat—up period in the first hour of thetest. At this pressure, the cell
vented into a scrubber, but the pressure contiued to climb thereafter, as the
temperature of the bath icreased, reaching a maxium of 23 psi 45 minutes
after the oil bath temperature maximum was achieved. The pressure steadily
declined over the last four hours of the test in spite of the constant

temperature of the bath oil.

The scrubber temperature climbed, following the venting point, from 35°C
to 105°C, when a slow, steady cooling of the scrubber started, reaching 40°C
at the end of the test.

Upon cooling to approximately 45°C following the test, the cell's
internal pressure reached -12.6 psig, which was expected, based on the fact

that the cell lost some of its electrolyte during the venting.

No leakage, rupture, or explosion occurred as a result of the

overheating.
3.2.3.5 Temperature/Altitude

The temperature/altitude test was performed using one cell of nominal
capacity of 2,000 Ah. The cell was subjected to this test in a temperature
altitude chamber. The chamber pressure was changed from ambient to that
equivalent to a 40,000-foot altitude (2.7 psi), after the chamber temperature
was changed from ambient to -65°F. This temperature change was accomplished
in one hour. These conditions were maintained for 50 hours thereafter. The
pressure was then changed to ambient over one hour, and the temperature was
raised to 65.5 2°C over a period of four hours. These conditions were also
maintained for 50 hours thereafter. Finally, the chamber temperature was

allowed to equilibrate with the ambient over the period of four hours.

No change of the cell's open circuit voltage was observed, other than
expected, due to the change in temperature. The performance characteristics
of the cell were established through a one-hour discharge period following
the test, and they do not appear different from those established through the

same type of discharge test prior to the test. The cell temperature and the

scrubber temperature followed closely the temperature of the chamber. The

cell pressure followed the pressure in the chamber closely at low temperature
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and showed a value of approximately +2 psig during the high temperature
period following the low temperature test. The cell was then discharged for
approximately one hour to confirm that it functioned properly after the

temperature/altitude test. Proper operation was verified.
3.2.3.6 Temperature Vent Profile

A 10,000-Ah prismatic lithium cell was subjected to a temperature vent
profile test to determine the venting system characteristics as a function of

cell pressure and temperature.

The temperature vent profile test data are shown in Figure 27. After
170 hours of discharge at a 35-ampere rate and at a chamber temperature of

26°C, the load was removed. The internal cell pressure had reached 4.2 psia.

The chamber temperature was increased to 38°C over a four-hour period
with the load removed. The internal cell pressure steadily increased, and at
5 psi, the vent valve cracked open. The maximum internal cell pressure
reached was 7.1 psi, at which point the vent valve was full open. The flow
rate was calculated to be 0.35 cubic foot per hour for approximately 10 hours

and then decreased to zero as the cell pressure decreased.

After 24 hours, the 35-ampere load was applied for 15 hours, during
which time the cell pressure reached 7.9 psia and the vent flow rate peaked
at 0.45 cubic foot per hour. The scrubber pressure was also increasing at

this time, indicating partial plugging in the vent system.

The test was discontinued to change the scrubber and vent valve, as well

as to change the data logger, which appeared erratic.

The test chamber temperature was increased once again to 38°C with no
load on the cell. Cell pressure increased to 3.8 psi at this point. The
36-ampere load was applied and the cell pressure reached 5.6 psi in approx-
imately 10 hours. The pressure remained constant at the valve for the next
70 hours until the 3.0 volt cutoff was reached. Erratic pressure data
indicated that possible venting occurred during the early portion of this

final discharge at a very minimal flow rate.

This test indicated that the vent valve flow rate does maintain a

constant internal cell pressure as designed.
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3.2.4 Electrochemical Abuse

Primary chemical power sources, in general, are subject to abuse in all
situations where either an excessive demand for power is made or the source
is driven by another source at excessive rates in either charging or dis-
charging direction. Some of them, such as the solid state batteries, can
withstand considerable abuse, due to their high internal impedance. They
respond to an excessive power demand by a strong polarization and, in fact,
assume the diffusion-limited mode of operation in which a maximum discharge
rate is achieved. For the same reason of high internal impedance, they cannot
easily be driven at considerable rate by the external power sources. The
high-rate primary power sources, such as lithium batteries with high surface
area electrodes, can meet very high power demands, but will develop high

internal temperature due to the voltage drop across the electrode structure.

The consequences of the internal overheating will depend on the energy
density and the design of the cell. The lithium batteries with high surface
area electrodes can support the excessive discharge rate for a long period of
time, due to their high energy density. They are also made with much
stronger closures so that they do not burst early enough to discontinue the
temperature rise. As a result, they reach high temperature and pressure
before the container bursts, and thus explode with considerable violence.

The same type of cells made with low surface area electrodes will resist the
high power demands in a fashion similar to the solid state cells; they will
show some increase in internal temperature, depending on the power demand,

but will proceed to discharge without visible external change.

Typical applications for large primary cells fall into the category of
low surface area cells. However, for practical reasons, they are made in
prismatic form, with the prismatic containers much more sensitive to internal

cell pressure than the customary cylindrical containers.
3.2.4.1 Overdischarge Test

The cell of the nominal capacity of 2,000 Ah was subjected to a full
discharge at a constant current of 8 A, followed by an overdischarge equi-

valent to 50 percent of the capacity obtained on discharge. The cell voltage,




the discharge current, the internal pressure, and the case temperature were
monitored for the duration of discharge and overdischarge. The test lasted
for a total of 380 hours. In the period of overdischarge, the voltage

remained at a constant value of 1.7 V for almost the entire period. The test

results are shown in Figure 28.
No leakage, rupture, or explosion occurred during the discharge test.
3.2.4.2 Excessive Discharge (Short Circuit) Tests

Figure 29 shows the results of the short circuit test for a 2K cell.
The cell sustained a peak current of 250.3 A without leakage, rupture, or
explosion. The design or intended drain rate during normal operation is 8

amperes.

The voltage of the cell, the discharge current, the temperature of the
case, and the internal pressure of the cell were monitored for the duration
of the test. The test under load lasted in excess of five hours, in which
period the cell voltage dropped from 3.67 V open circuit to 2.38 V immedi-
ately upon applying the load, then gradually increased to a maximum of 2.73 V
one hour from the beginning of discharge, before it started a gradual decline
to a minimum of 0.29 V. The open circuit voltage was fully restored upon

removal of the load at the end of the test.

The results of the short circuit test with the 10,000-Ah cell
(TD-010005) are shown in Figure 30. A current of approximately 700 A was
maintained for almost two hours above 2 V, before a gradual and then sudden
drop in both the current and the voltage were observed. The removal of the
load after the sudden drop of voltage showed a full recovery of the open
circuit voltage, but no capability of the cell to deliver any appreciable
current. No leakage, rupture, or explosion were experienced during this

test.
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4.0 LOW TEMPERATURE

4.1 PURPOSE

The purpose of this program is to develop a small cell (half-C) capable
of powering the so—called man pack radio even at temperatures of -40°C. The

desired capacity at -40°C is 25 percent of the room temperature.
4.2 GENERAL

It is established that LiSOCl,; cells can be used over a very wide
temperature range. However, at -40°C, the reaction mechanism is limited by
the kinetics of the system, which have a diminishing effect on the rate
capability of the cell.

Methods to overcome some 6f the low temperature problems are to increase
the surface area of the electrodes and the catalytic activity of the mater-
ials involved. For that reason, modifications on the carbon were introduced
to reduce the polarization effect of the cathode. The spiral-wound electrode
structure was chosen over the standard bobbin-type design for improved elec-
trode surface area. However, the maximum geometrical electrode surface area
obtainable with the wound structure is approximately 65 cm?. This requires
a current density that exceeds 2 mA/cm? to meet the man-pack radio require-
ments. Tests indicate (see interim report) that at the 1-mA/cm? rate, the
3.0-volt capacity was extremely low; sometimes -40°C temperature capacity

could only be oktained below 3-V operating voltage.

In view of these problems with the spiral-wound design, the multi-
electrode disc cell was developed. In this new design, disc type anodes,
cathodes, and separators are stacked under compression within the cylindrical
container (see Figure 31). All plates are connected in parallel and provide
a total surface area of 112.5 cmz, nearly twice the surface area of the

equivalent wound structure.

The discharge rate for the man-pack radio is 300 mA. This value can be
achieved in the half-C configuration by using thinner electrodes. However,
at present, the lithium suppliers cannot manufacture lithium in thicknesses
less than 0.005 inch. Each disc has its own current collector to reduce the

IR losses across the electrodes to a minimum, which results in a more uniform
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and better material utilization than realized with the jelly-roll config-
uration cell. In addition, the thermophysical properties of the disc design
should be much better, since each cathode is heat-sinked over its total

periphery to the can.
4.3 DATA

Wound C cell performance (Table 3) and cell voltage characteristics

(Figures 32 through 35) are included from the interim report for comparison

with disc cell results. Table 4 includes data on all disc cells tested and
Figures 36 through 56 show each cell's discharge characteristic.
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TABLE 3
HALF-C WOUND CELL TEST RESULTS

TEMPERATURE CURRENT DENSITY DISCHARGE CAPACITY (AH) TEST
°¢c mA/ cm? to a voltage cutoff line of NO.
3.0 2.0 1.0
25 1 1.91 2.10 - 1
1.97 2.10 - 2
3 1.46 1.70 - 3
1.86 1.97 - 4
-40 1 0.7 0.96 1.00 5
0.0 0.94 1.27 6
3 0.0 0.164 1.0 7
0.0 0.308 0.79 8
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The capacity obtained from disc cells with 50Cl; discharged at 1
mA/cm? at -40°C to 3.0-volt cutoff was 11.6 percent of the room-temperature
capacity and 33 percent for cells using S05Clj. Capacity to 2. O volts
cutoff was 40 percent for both electrolytes. These cells were warmed to room
temperature (RT) after -40°C testing and then discharged. The total capacity
obtained from these cells, at both -40° and RT, was 98 to 100 percent of the
total capacity obtained from an identical cell discharged at RT only (Figures
41, 43, 44, 48, 51, and 54). Disc cells were also discharged at 5 mA/cm?
at RT. The capacity to 3.0-volt cutoff was 70 percent, and to 2.0 volt cut-
off was 86.8 percent, of the cells discharged at 1 mA/cm2 and RT. The
voltage cutoff requirement for the man-pack radio is 2.66 volts. The capac-
ity of the cells discharged to 2.66 volts at -40°C was approximately 38,5

percent of room temperature capacity for both electrolytes.

Two abuse tests were performed: a shock test on cell ECO0001 (hermeti-
cally sealed with a total stack), and a short circuit test on cell No. 44
(single element). The shock pulses applied to cell ECO0001 were terminal
peak sawtooth in shape, 100 g in magnitude, and six ms in duration. The cell
was subjected to two shock pulses in the longitudinal axes (one in each
direction) and two shock pulses in the transverse axes (ome direction).
Throughout the test, the cell's open circuit voltage showed no significant
change or indication of physical damage. This cell was then discharged at RT
at 1 mA/cm2 to verify normal performance (Figure 54).

The short circuit test was conducted on a single element cell (No. 44).
The initial current was 3.18 amperes (424 mA/cm?). This figure, if com-
pared to a full stack, would be 47,7 amperes. This amount of current would
burn out the internal contacts before a hazardous level would be reached.
The short circuit test characteristics are shown in Figure 49. After the
short circuit test, the cell was discharged at 1 mA/cm?. This is shown in
Figure 50.
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4.4 CONCLUSION

During the course of the program, it could be demonstrated that with a
multi-disc half-C cell, the requirements to power a man-pack radio at -40°C
can be met if thinner lithium anode material could be procured from the
supplier. At -40°C, the cell delivered never less than 30 percent of its
room temperature capacity, and upon recovery to room temperature , most of

the remaining capacity could be obtained above 3.0-volt operating voltage.

This performance was demonstrated with SO0Clz and S02Cl7 electrolyte
using modified carbon material. The disc-type electrodes permitted to double
the role capability by increasing the geometrical electrode surface area

within the same volume occupied by a jJelly-role configuration.

Sufficient amounts of data have been obtained to qualify the electro-
chemical performance of the new disc design for its application. In addi-
tion, a short circuit test on a fractional stack and a shock test on a com-
plete hermetically sealed half-C cell were completed. However, to assure the
safe operation of the cell, a more complete test program needs to be con-
ducted. Additional cells have to be built for a better statistical evalu- ‘

ation.




5.0 PASSIVATION
5.1 INTRODUCTION

Passivation in L1/S0C1l; cells consists of the surface reaction of
lithium directly with thionyl chloride to produce a film of lithium chloride
(LiCl). This film prevents the complete and rapid reaction of lithium and
thionyl chloride at moderate temperatures. On discharge of a cell, lithium
ions must be conducted through this film from the lithium metal anode to the
electrblyte solution. The ionic conductivity is affected by film morphology,

porosity, thickness, crystallinity, and the presence of trace elements.

Under certain conditions, the passive film may grow to a thickness
sufficient to retard ionic flow. When a cell is first placed on load, a
thick film of LiCl on the lithium anode will cause a delay before normal
operating voltage is obtained. This delay is often accompanied by a voltage
drop, the magnitude of which is a function of applied dischérge rate, storage

time, storage temperature, and cell physical and chemical design.

The purpose of the tests described below was to establish the baseline
voltage delay behavior of single and double D cells (D and DD) at 25°C and

55°C after various storage periods.
5.2 EXPERIMENTAL

Lithium-1imited D cells of the bobbin configuration were used to study
passivation. Both voltage delay and capacity were measured for cells stored
for various lengths of time up to 20 weeks at 25°C and 55°C. Voltage delay
is defined as the time required for the cell to reach 3.0 volts with an
applied current of 2 mA/cm2. Capacity is defined in ampere-hours for a
cell discharged at 1 mA/cm? to a 3.0-volt cutoff.

Temperatures were maintained within + 3°C. Voltage, current, and

temperature were recorded using a Fluka Datalogger.

SOCl; electrolyte was prepared in the usual way to reduce trace
amounts of water, metals, and organics. The conductive solute was 1.8M
LiAlCl,. SOCl; + SOj was prepared by addition of 1.0M §0y to the
S0C1; electrolyte. SO0Cl1y + Ca electrolyte was prepared by addition of
0.5M Ca (A1Cl,) to the SOCl, electrolyte. S0,Cl; electrolyte was
prepared in a manner similar to SOCl; electrolyte using 1.8M L1AlCl, as

the conductive salt.




5.3 RESULTS i

None of the electrolyte combinations showed voltage delay when dis-
charged freely at room temperature. An initial set of 55°C storage results
ghown in Table 5 were tainted by the suspicion that the electrolytes used
Qere wet. Additional storage tests were conducted at 55°C using freshly
prepared dry electrolyte.
initially.

repregents the average of three to five tests.

The results proved to be like those obtained

The two sets of results are shown in Figure 57. Each point

Figure 58 shows average discharge curves for the second (dry elec- ;
trolyte) set of cells after five months storage at 55°C. Each curve is an '
average of five cell discharges. An error bar showing the average deviation

is included on each curve.

4

Figure 59 shows voltage delay results after storage at 55°C for five

months.
TABLE 5
VOLTAGE DELAY IN D CELLS STORED AT 55°C WITH VARIOUS ELECTROLYTES
Baseline Month 1 Month 2
Electrolyte Capacity Capacity Capacity
Type Delay (Ah) Delay (Ah) Delay (Ah)
SOCI2 5.112 3.891 0.2 sec 4.472 1.8h '
5.182 4,928 0.8 sec 1.821 2.0h
5.012 4.218 1.Z sec 3.157 2.0h
socl, + S0, 5.151 ~ 5.066 © 2h 1m lls 4.750  2.0h
5.054 4.600 1 16 45 5.768 2.0 ,
5.172 5.117 - 19 20 4.143 1.6
SOCl2 + Ca 5.132  0.31 sec | 4.055 0 2.17 2 hrs
4.949 0.37 sec | 4.035 6s 1.90 S6m 10s
. 5.009 0.50 sec | 4.616 0 2.18 50m Sls
802012 4.8 1.98 lm 29s 4.10 -
4.9 2.10 29 sec 4.35 -
4.6 2.00 34 sec 4.52 -
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5.4 DISCUSSION

The 80Clj, SO0,Cl; + Ca, and SOCl; + SO, electrolytes showed
similar voltage delay effects. In fact, the SOCl, + SO, electrolyte

produced higher voltage delay than the former two at 55°C storage for one

month (Table 5). The SOCl; + Ca electrolyte showed significantly lower

voltage delays after 55°c storage times up to six weeks. ;

The best results were obtained from the electrolyte containing 1.8M
J LiAlClg in SO2C13 with no additives. This was due in part to the
higher running voltage of S02Cl; cells. However, the low voltage delays

after 10 and 22 weeks of 55°C storage clearly showed superior performance of
the passive film.

B i

Several points should be kept in mind in interpreting these results.
The test discharges were all continuous. 1t is probably true that cells
discharged intermittently will behave differently. In particular, the effect
of the SO) additive will be much less on voltage delay for a cell started
after being discharged to some extent, since SO, is generated during dis-
charge. Furthermore, the length of time between discharges, especially at

elevated temperatures, will affect the voltage delay observed.

Ideally, the best electrolyte for low voltage delay should be one that

e = e R e

quickly and uniformly forms a thin ionically conductive passive film on
lithium. The rate of recrystallization of this film should be as slow as
possible, since this is the principle mechanism of film growth and cracking.

Lastly, the electrolyte should consume as little lithium as possible in
forming this film.

The results of this work indicate that pure SOCl; is superior to

pure SOCly or combinations of these electrolytes with calciva or sulfur

- v

dioxide. The SOCly + Ca, which shows low voltage delay after 55°C storage,
apparently accomplishes this through contrival dissolution of the passive
film and lithium metal, as was discussed in Section 2.0.
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5.5 CONCLUSIONS AND RECOMMENDATIONS

In view of the high capacity loss of SOCl, + Ca electrolyte, only the
1.8M LiAlCl, 302012 electrolyte is recommended for further testing as a
low voltage delay electrolyte. The effect of intermittent discharge and the
extent of 802012 decomposition need to be cosidered. Mixtures of soCl,
and S0,Cl, electrolyte should also be considered, especially for low

temperature applications.
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6.0 PRELIMINARY HAZARD ANALYSIS

6.1 INTRODUCTIONS

A system preliminary hazard analysis was performed, in accordance with
paragraph 5.8.2.1 MIL-STD-882 dated 15 July, 1969, to identify the hazards
and define any risks involved in using the lithium thionyl chloride cell.

6.2 METHOD OF ASSESSMENT OF IDENTIFIED HAZARDS

The identified hazards matrix of Table 6 specifies a Real Hazard Index
number for each of the hazards listed. This Index is the product of Hazard
Severity Value and Hazard Probability Value, and has been used as a guide
in ranking potentially hazardous conditions. Hazard Severity categories
with values are listed in Table 7. Hazard Probability categories with

values are listed in Table 8.
6.3 GROSS HAZARD TYPES

Safety in handling, transportation, discharging, and disposal is of
prime importance. Potential Gross Hazards, which cannot be tolerated
during test or operations, are as follows:

EX = Explosion

F = Fire

T = Toxic gases

C = Corrosive liquids
EL = Electrical Hazards

0

Other

These hazards are defined as follows:

a. Explosion (EX): An internal lithium~to-metal short resulting
from out-of-specification conditions can cause a high current
drain in the area of metal contact. This internal short
could cause heating sufficient to melt lithium (186°C) in a
localized area, which in the presence of thionyl chloride
could result in an explosive reaction in a cell sufficient to
rupture the cell case structure with possible mishaps to

adjacent equipment or personnel.




TABLE 6
IDENTIFIED CATEGORIES I AND II HAZARD MATRIX

LITHIUM POWER SOURCE
GROSS HAZARD TYPES
(']
g el o
Q gl >
Bazard | Bazard| Est. Real | 3 o123 3
Reference| Cate- | Prob- | Hazard S| o &| £35lc &l &
Number gory | abilicty| Index| &| Nl 5| 898 ol ©
w| | S| oam=xl S
PHAL1-1 I D 12 [EX F T C Safety Concern
PHA>-2 D 12 F EL O] Safety Concern
PHAL -3 1 D 12 rsx F T ¢ Safety Concern
PHAL -4 II E 6 ¥
PHAL -5 11 E 6 F
PHAL -6 I D 12 JF.X F T C Safety Concern
PHAL -7 11 D 9 T C
PHAl-8 11 D 9 T C
i!mA]-9 I D 12 F( F T C f.fety Concern }:ﬂe as
TABLE 7
HAZARD SEVERITY
SEVE
CATEGORY VALUE
I Catastrophic. May cause death or system loss. 4
II Critical. May cause severe injury, severe 3
occupational illness, or major system damage.
II1I Marginal. May cause minor injury, minor occup- 2
ational illness, or minor system damage.
v Negligible. Will not result in injury, occup- l
ational illness, or system damage.




TABLE 8

HAZARD PROBABILITIES

Deacriptioﬁ! Specific Individual Higher System - *prob.
Word Level Item Level [value
Frequent A Likely to occur fre- Continuously exper- 6
' quently. ienced.
Reasonably B Will occur several Will occur frequently. 5
Probable times in life of an
iten.
}Occasional c Likely to occur some- | Will occur several 4
time in life of an times.
item.
Remote D So unlikely, it can Unlikely to occur but 3
be assumed that this possible.
hazard will not be
experienced.
tremely E Probability of occur- { So unlikely, it can be| 2
improbable rence cannot be dis- assumed that this
tinguished from zero. hazard will not be
experienced.
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b.

Fire (F): Lithium can be ignited from explosion above or

alone in the presence of air (by exposure to water) and
become a primary source of fire, which can propagate to a
secondary fire of surrounding materials.

Toxic Gases (T): Thionyl chloride (SOCl;) liquid is a

basic constituent of the electrolyte. Sulfur dioxide (SOZ)
is a product of the discharge process and 1s dissolved in the
electrolyte. Electrolyte boils at 180°F at atmospheric pres-
sure, and is a highly toxic liquid with an industry recom-
mended threshold limit value of five parts per million in
air. Sulfur dioxide also has an industry recommended
threshold limit value of five parts per million in the air.
Corrosive Liquids (C): Thionyl chloride will attack most
metals and most plastics and, when combined with moisture,
will generate hydrochloric acid (a strong corrosive acid).
Electrical Hazards (EL): Extremely high current drain, 1if
shorted between terminals or plus to system structure, can

result in damage to equipments, electrical fire, and burns.

6.4 HAZARDS MATRIX

The identified hazards matrix, Table 6, lists hazards identified for

Categories I and II and indicates as a safety concern those with a Real

Hazard Index of 12 or more.

Descriptions of the Hazard Reference Number on Table 6 are:

PHA
PHA
PHA
PHA
PHA

PHA

PHA
PHA

PHA

1-1 External overheating

1-2  External burning from shorted terminals

1-3 Internal cell short circuit caused by handling abuse

1-4  Unauthorized cell disassembly and exposure to air

1-5 Internal short circuits caused by disconnected or
broken electrodes during disassembly

1-6 Case rupture leading to release of toxic and corrosive
materials or lithium reaction

1-7 Venting during discharge and neutralization

1-8 Leaking of corrosive and toxic materials due to
problems with manifold

1-9  Penetration of shipping container and enclosed cell(s)
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7.0 DEACTIVATION AND DISPQSAL

Deactivation of cells must be done through several different
operations if the goal of the procedure is reclamation of materials and
cell subassemblies. However, in order to carry out the operations with
highest efficiency and minimum efforts, the cells must be divided into
several categories according to the type of design, state of assemblage,

state of discharge, etc. Classes of cells that might have to be

deactivated are shown in Figure 60.

It appears from the table that there may be six different types of
cells, each type requiring different series of treatment steps, leading
through deactivation to a complete reclamation of all materials and sub-
assemblies. The treatment steps involved for each of the eix classes of
cells to be processed are summarized in Table 9. The steps will be further
discussed below, with a particular emphasis on neutralization and recla-
mation as procedures that might involve several substeps before they would

yield reusable materials or subassemblies.
7.1 DISCHARGE

The electrochemical discharge could sometimes be used as a first step
in deactivating cells. Obviously, it would be applicable only to operable
cells, carbon-limited or lithium-limited, that were not previously dis-
charged. This step reduces the amount of active materials present in the
cell and could reduce the degrees of violence, should a mistake be made in
handling the cells during deactivation. On the other hand, the discharge
is associated with elimination of costly materials such as lithium, and
results in formation of lithium salts that would be reprocessed into
lithium only through a series of costly operations. There is an obvious
economic advantage in avoiding this step, but, for safety reasons and until
the process is well established, this step should be practiced on all
operable cells prior to other deactivation steps.

Obviously, discharge will have different effects on the cells, depend-~

ing on whether they are constructed as carbon-limited or lithium—-limited.
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Figure 60. Classes of Cells to Be Activated




TABLE 9

TREATMENT STEPS FOR EACH CELL CLASS

DEACTIVATION PROCEDURES

cucis&sm DISCHARGE Mmﬂ E’gwr Dwﬁﬁm m ':s‘%
®
C.LDRY - - - X - X
LLDRY
€)
C.LD. - - X X X ‘ X
®
LLD. - - - x. x‘ x
® X | x| x | x | x| x
CLFO. - -1 X X X X
® X X | - X X X
Wes. | - | = [ X | X | X | X
®
G - x| x| x| x
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In the case of lithium~lmited cells this step leads to a complete elimina-
tion of one of the components (lithium); in the case of the carbon-limited

cells, it only reduces the amount of active materials in general.
7.2 POST DISCHARGE

All operable cells, previously involved in any of the discharge tests,
should be subjected to the post-discharge test before any of the other
deactivation tests are applied. This step is necessary because most of the
standard discharge tests are terminated at a particular voltage cutoff
line, signifying the lowest voltage at which they would serve in practice
before they were replaced. At the cutoff point these cells may contain
more or less of the active components still available for discharge,
"depending on whether the cells were constructed as carbon-limited or
lithium-limited and, also, depending on the rate at which they were dis-
charged.

The lithium limited cells can be brought to a complete discharge in
this step, eliminating the last quantity of lithium and, with it, any
danger of explosion. In most cases the post-discharge step with these
cells is not particularly time consuming and, certainly not costly, since
most of the active materials were already eliminated in the previous

discharge.

The carbon-limited cells can also be brought to a complete discharge
in this step since their "carbon-limited"” status was established based on a
particular discharge rate. By lowering the discharge rate, and allowing
more time for this step, the status of these cells can, in most cases, be
changed from the carbon-limited to the lithium-limited one, since the
carbon {8 a nonstoichiometric participant in the discharge reaction, yield-
ing higher capacity when the discharge rate is lower. Moreover, with the
experience of the last several years, very few cells will be built car-
bon-limited, and if they are, the excess lithium capacity will be suffi-

clently low to permit total exhaustion at lower rates.

e




From a safety point of view, there is a great advantage in eliminating
one of the active components from the cell, prior to any of the other deac-
tivation steps. With lithium absent from the cell, all possible mistakes
in handling become less consequential, short of gross negligence such as a
direct inhalation of thionyl chloride vapors. For this reason, the post
discharge stop should be employed at the least beginning of operation of
deactivation facility.

The simplest post-discharge procedure, using a fixed load resistor, is
recommended. When the cell's open circuit voltage, (with the load removed)
no longer recovers to 3.6 V, the post discharge step of an operable cell

can be considered completed.

The incineration of lithium thionyl chloride batteries has proved that
an unstable condition occurs when the melting point of lithium (180°C)
has been exceeded. In order to avoid a spontaneous reaction from within
the cell, care has to be exercised to store/handle/test within the speci-
fied temperature ranges (-40°F to 125°F) and discharge rate (lmA/cm2).




8.0 RECOMMENDATIONS

The results of the various test programs conducted on Li/SOCl; cells
under this contract indicate additional improvements in safety and/or per-
formance are attainable. Corporate-sponsored research has generated new
electrolyte and cell additives at the laboratory level. Design application
of these advancements to Li/SOCl; cells can improve their performance and
safety. Based upon the results of this contract and the new corporate
advancements, a program consisting of the following investigations is re-

conmended.
8.1 STORAGE DEGRADATION

There are several promising directions to explore in improving high
temperature storability through chemical means. 802Cl; and
$0,C15/S0Cl; mixed electrolytes should be tested further. Lowering
the LiAlCl, concentration will decrease SOz solubility and conductivity
but may significantly decrease capacity loss on storage by decreasing LiCl
recrystallization on the anode and possibly in the cathode. Also, a new

binderless separator material is being developed, which can be evaluated.
8.2 SHORT CIRCUIT PROTECTOR

An additive has been developed that, when added to a cell, will reduce
the electrolyte conductivity at high temperatures significantly enough to

prevent a thermal runaway condition.
8.3 LOW TEMPERATURE PERFORMANCE

A half-C cell has been developed that provides 30 percent of its room
temperature capacity at -400C. Since this is a high power cell that is
to deliver 125 mA continuously, additional abuse testing must be performed
to ensure its safe operation under all abusive and environmental

conditions.
8.4 VOLTAGE DELAY

In view of the high capacity loss of S0Cl; + Ca electrolyte, only
the 1.8m L1AlCl; S05Cl) electrolyte is recommended for further
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testing as a low voltage delay electrolyte. The effect of intermittent
discharge and the extent of 802C12 decomposition need to be considered.
Mixtures of SOCl; and SO,Cl; electrolyte should be considered,
especially for low temperature applications.

In addition, a new electrolyte salt is being evaluated at GTE Labora-
tories that shows great promise for significantly reducing voltage delay at
both room- and high~temperature storage. This electrolyte will also be

evaluated.
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