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-In the dynamic analysis, the stress response in a laminated composite due to
a unit step load applied at the boundary is obtained for points which are
(a) at a finite distance, and (b) at a large distance, from the impact end.
For the case (a), the composite may consist of a finite number of layers.
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CHAPTER 1

INTRODUCTION

The use of fiber reinforced composite materials for structural compo-

nents affords the designer the flexibility of choosing appropriate layer

orientations to achieve required directional stiffness. These materials

are particularly attractive in applications where high strength to weight

ratios are important. However, this flexibility comes an increased com-

plexity in the analysis of these structures and numerical techniques are

required.

TILe goal of the static response portion of the present project is the

nonlinear analysis of thin to moderately thick multilayer composite plate

structures. These structures may include cutouts and/or other free edges;

an important consideration is the possibility of severe stress gradients

near these free edges.

In order to obtain accurate prediction of nonlinear structural response,

accurate finite elements, coupled with an appropriate and accurate nonlinear

analysis scheme will be needed. In terms of the nonlinear analysis, alter-

nate schemes can be examined and compared using problems of elastic-plastic

analysis of single layer plates; the results of such a study should then

guide -he selection of the nonlinear scheme for multilayer plates.

T3 achieve this goal, four pilot studies are described which will serve

as building blocks for a future static analysis program. The studies in-

clude; (1) the analysis of edge effects in laminates under prescribed uni-

axial inplane strain, (2) the development of a single layer plate element

with a straight traction-free edge, (3) the elastic-plastic analysis of single

layer isotropic plates, and (4) edge singularity analysis. The rationale

for each of these tasks is described in the following.
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The assumed-stress hybrid finite element model is used in the first

three studies. Briefly, this model involves the selection of (1) an

intraelement stress field which satisfies the homogeneous equilibrium

equations, and (2) an intraelement (or element boundary) displacement

field which yields the required interelement boundary displacement con-

tinuity. Elements based on this model are often found to yield improved

convergence and intraelement stress predictions in comparison to corre-

sponding assumed-displacement elements. The hybrid-stress model is

ideally suited for multilayer plate applications since layer stress fields

can be defined which satisfy exactly interlaminar traction continuity and

upper/lower surface traction-free conditions exactly. In addition free-

edge conditions can, inprinciple, be satisfied exactly.

The three studies identified above are described in Chapters 2 through

4 of this report. Each chapter is reasonably self-contained and includes

pertinent literature survey, details of the formulations and developemnts,

example problems, and summary remarks. The following is a brief summary

of each study, including the relevance to the overall analysis objectives,

In order to better understand the nature of stress distributions in the

vicinity of cutouts and other free-edges, it is first necessary to better

understand the free-edge-vicinity stress distributions in a more well-

defined (simple) problem. One such pilot problem which is used by most

investigators is a multilayer strip (symmetrically stacked) of finite

thickness and width which are less than the strip length. This is intended

to simulate a tension test specimen. Mathematically, the problem is posed

as a generalized plane strain analysis (in the cross-section of the strip)
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in which the loading corresponds to a prescribed uniform inplane strain

(normal to the plane of analysis), Such a problem is useful in the present

study since relatively efficient 2-D generalized plane strain analysis can

be performed. In any finite-element analysis certain of the elasticity

field equations and boundary conditions are only approximately satisfied.

The purpose of one pilot study, described in Chapter 2, is to assess the

effects of enforcement of (1) traction-free edge or (2) interlayer strain

continuity conditions on the predicted stress distributions near the free-

edge. Although the present study utilizes pseudo 2-D elements, the results

obtained should provide insight into those conditions which should be

incorporated into more general 3-D multilayer plate elements designed for

use near free-edge zones of a structure.

In the analysis of more general multilayer plate structures with free-

edges, special-purpose multilayer plate elements may be required along the

free-edges. One such element currently envisioned is a multilayer plate

element for which the traction-free conditions are exactly satisfied

along one edge of the element, With the hybrid-stress model, this requires

that a layer stress field be defined which exactly satisfies the traction-

free conditions on that edge, Numerous plausible stress fields can be

defined, and numerical experimentation is required to identify the best

stress field. Extensive insight toward identifying the best stress field

can be obtained by considering a single layer pure bending moderately

thick plate element in which all components of stress (bending contributions)

are included. In Chapter 3, an 8-node moderately thick single layer plate

element with a straight traction-free edge is developed. Various stress

fields, each satisfying the free-edge conditions, are defined and compared

for selected example problems, The best stress field (element) is identified,
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and can serve as a basis for development of a special-purpose multilayer

plate element including both bending and stretching contributions,

The analysis program envisioned will include material nonlinear

effects. One phase of the present study is to evaluate alternate nonlinear

analysis schemes in terms of accuracy and efficiency, Alternate hybrid-

stress functionals are defined in Chapter 4 for material nonlinear analysis

using the initial-stress procedure, In this procedure, material non-

linearities are accounted for via an equivalent nodal force vector represent-

ing the difference between an assumed elastic stress state and the actual

stress state, The alternate functionals (approaches) are examined for

the elastic-plastic analysis of single layer plates, and the better approach

is identified. To extend the better functional to multilayer plates, the

single layer element can be replaced by a multilayer element, and the

elastic-plastic nonlinear material model replaced by appropriate existing

failure and post-failure nonlinear models for laminated composites,

In addition to the approaches used in Chapters 2 to 4, one could also

introduce a special element at the free edge point to account for the

exact singular nature of the stress there, To this end, the first step is

to determine analytically the order of singularity and the angular distri-

bution of displacements and stresses near the free-edge point, Although

the stress singularity analyses of the free-edge point have been done ex-

tensively for isotropic materials, there are few published works on corre.

sponding analyses for anisotropic materials. One of the difficulties is that

the Airy stress function for isotropic materials is no longer applicable

to anisotropic materials. The other difficulty is the possibility of

multiple eigenvalues for the elasticity constants and/or the order of

singularities, In Chapter 5 we analyse the form of stress singularities near
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the free-edge point of an anisotropic composite wedge. The changes in the

forms of stress singularities due to multiple eigenvalues are presented.

On the dynamic response of composites, the emphasis is placed on the

prediction of transient wave propagation. Although the dynamic response

of a composite subject to harmonic oscillation has been studied and well

understood, there seems to be no reliable way to predict the transient

response of a composite. In this report we consider two problems on

transient wave propagation.

In Chapter 6, we present a theory of viscoelastic analogy for wave

propagation normal to the layering of a finite periodically layered bi-

laminate. Each layer of the bilaminate can be elastic or viscoelastic

materials. The composite is modeled as an homogeneous viscoelastic material.

The crux of the problem is the determination of the relaxation function

of this "equivalent" homogeneous viscoelastic material. We obtain the

relaxation function by comparing the solutions to the wave propagation

problem in the finite layered composite and in the homogeneous viscoelastic

medium. Wave propagation in the layered composite is then obtained by

solving the wave propagation in the homogeneous viscoelastic medium.

Numerical examples for an elastic composite show excellent agreementsbetween

the solution obtained by this theory and the exact solution by the ray

theory.

The asymptotic solution in a semi-infinite bilaminate reported in

the literature shows that the stress response oscillates as time increases

when the bilaminate is elastic. If the bilaminate is viscoelastic, the

stress response is monotonic. This presents a paradox because an elastic

bilaminate is a special case of viscoelastic bilaminates; and yet the

asymptotic solution is oscillatory for the special case of elastic bi-

laminate, not for the general case of viscoelastic bilaminate, This para-

.4%,
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dox is solved in Chapter 7 by considering the interaction between the dis-

persion and dissipation of wave propagation in general viscoelastic bi-

laminates. If the distance traveled by the wave is not too large, the

dispersion effects dominate and the response is oscillatory. As the waves

travel farther, the viscous effects eventually prevail and the response

becomes monotonic. The distance beyond which wave propagation becomes

monotonic is also determined in Chapter 7.

Finally, in Chapter 8 we present a brief concluding remark on this

entire project.
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CHAPTER 2

FINITE-ELIENT STUDY OF EDGE-EFFECTS IN

LAMINATES UNDER INPLANE STRAIN

ABSTRACT

The hybrid-stress finite-element model is used for the analysis of symmetric-

ally-stacked arbitrary angle laminates subjected to a prescribed uniform inplane

strain. The analysis reduces to a 2-D analysis in the plane of the laminate cross-

section. Multilayer 2-D hybrid-stress elements are developed which utilize high-

order through-thickness distribution for displacements and stresses. Three types

of elements are developed: (I) Standard elements in which interlayer displacement

and traction continuity, and upper / lower surface traction-free conditions are

exactly satisfied, (2) Strain continuity elements in which the standard element

is modified to exactly satisfy appropriate interlayer strain continuity, and

(3) A traction-free edge element in which the standard element is modified to

exactly satisfy free-surface conditions on a lateral edge of the element. These

elements are applied to several example problems and results are compared with

existing results to assess the effects of the various elements/strategies used.

'4,-.* . mm~m m --



8

I. Introduction

The cause of laminate failure in multilayer composite structures has been a

source of speculation for some time. It is generally accepted that high interlami-

nar stress gradients exist near the free edge of these laminates which are a cause

or partial cause of laminate failure. Therefore, although classical lamination the-

ory, which does not include the effects of the interlaminar stresses, will provide

accurate stress predictions away from the free edge, it is unacceptable as a means

of solution for this problem near the free edge EI]. Consequently, the problem of

composite laminate failure has been approached by several investigators using a

wide variety of numerical techniques [2-71.

Although numerous stress results have been presented for both cross-ply and an-

gle-ply laminates, not any set of solutions has been accepted as completely correct.

.Aany discrepencies between solutions still exist. The effects of approximating known

stress and strain conditions which exist along the surface of the laminate and a-

cross interlayer boundaries of the laminate also remain a point of interest when

various solutions are compared.

In this study, a hybrid stress finite element model is used to solve the problem

of a composite laminate under uniform inplane strain (Figure 1). The assumed stress

hybrid formulation is well suited to this type of problem due to the fact that

stresses and displacements can be assumed independently within each layer. There-

fore, continuity of interlaminar stresses and continuity of inplane strains across

interlayer boundaries as well as continuity of displacements need not be approxi-

mated, but can instead be exactly satisfied. In addition, the traction free edge

condition along the outer surface of the laminate can be exactly enforced.

A special purpose multilayer element is developed which satisfies continuity of

interlaminar stresses across interlayer boundaries and which also satisfies the

traction free edge condition along the top and bottom of the laminate. A finite



1z9

(a) LAMINATE SUBJECT TO UNIFORM INPLANE STRAIN ?x

I z

TRACTION .TRACTION
FREE EDGE-- FREE EDGE

(b) PLANE OF ANALYSIS

Fig. 1 Problem Definition
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element mesh composed of these multilayer elements comprises the first approach

used to solve the above stated problem. Two additional analyses are also considered.

The first, modifies the multilayer element to include the traction free edge condi-

tion along the lateral side of the Laminate. This element is then coupled with the

standard multilayer element to comprise the second approach to the problem. In the

third analysis, the origiaal (standard) multilayer element is modified to include

the continuity of inplane strains (computed from stresses) across interlayer boun-

daries. A mesh composed of only these strain continuity elements comprises the third

approach.

In the chapters to follow, the formulation of the special purpose multilayer ele-

ment, including all additional modifications, is presented. Test cases, including

cross-ply and angle-ply examples, are described and stress results are shown. The

differences and similarities between the three approaches are discussed. Observa-

tions between the stress results for different laminate stacking sequences are also

discussed where appropriate.
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2. Formulation

A. Energy Functional and Element Matrix Definitigns

The general formulation of the hybrid-stress model for cross-ply laminates sub-

ject to uniform inplane strain is given in r.,91. That development will be expanded

here to include the more general angle-ply laminate case. The enforcement of cer-

tain displacement and stress/strain continuities will also be incorporated into the

formulation.

The basis of the assumed-stress hybrid formulation is a modified complementary

energy principle. This is a two field principle for which intraelement equilibra-

ting stresses and interelement compatible displacements can be assumed independent-

ly within each element. In the case of multilayer structures which are subdivided

such that a single element is composed of a number of layers, the energy must be

sunned over the numbers of layers within each element as well as the number of ele-

ments. Thus, the hybrid-stress functional for multilayer structures, disregarding

external forces, is given as

S = the summation over the number of elements

= the summation over the number of layers

v, a the volume of the i th layer for the nth element

7 -= the components of the stress vector for the ith layer

tha = the components of the strain vector in the i layer based on
displacements

= the material property matrix for the ith layer in the global
x,y.z system
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The effect of the uniform inplane strain, c x3 will be incorporated directly

into the complementary energy functional. In order to accomplish this, first con-

sider the expression for the material property matrix, S. A material axis system

is defined such that xI is in the fiber direction for the layer and x2 is perpen-

dicular to the fibers (inplane). Then the stress-strain relations in this material

.system are 1O]:

, a, . So 0 0 o 0 7

6, S al S, 5 1, o o 1(

f, a o e0 0 0 e
(:12 0 0 0 05A 0 r

E 631 0 0 0 0 0W a d

In general, fibers are not oriented in the global coordinate direction. The

material property matrix in terms of stress/strain in the global, x,y,z, system

(element coordinate system) can be defined by applying the appropriate transforma-

tion laws, and is given by [10]:

3. L a.;r 3

Et 31 5s n S~

its 0 0 0 ~ K

6$1 0,. 0 b d'w

where the T's are a function of the original terms in S and the layer fiber orien-

tation. The terms in S are defined in C10]
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Imposing the condition that the inplane strain E x calculated from stresses must

equal the prescribed inplane strain Ex permits elimination of a x according to:

_ (4)

In matrix form this can be expressed as:

0 1 Q 0 0 3a;o o a o a - s

0 o 0 0

ar 0 1 0 0 rya-am 0 o 0 o 1 0 - - O L

Substituting this relationship into the first term in (1) leads to:i
3 0 0 0 0

Ir0 sipi0i0
Cri 0 3Cg 0r (r.

U0 0

or simplifying:

L a-vy_ (7)

+3

-- .
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Using equation (5) and substituting the linear strain displacement relationships,

equation (1) becomes:

+3 L~ o-
( ,.:'(8)

Lu ,

.4.

where the linear strain-displacement relations are based on a displacement field

corresponding to uniform inplane strain in the x direction _4_:

U' X- yU' (eX +)
v' (xya) v 1 (9)

w' (xyae) -W (I,,)

Note that the constant terms have been dropped in view of the fact that it is the

variation of 1!mc which is ultimately of interest.

The stresses are now expressed within each layer in terms of a set of stress

parameters, 8, such that the homogeneous equilibrium equations are exactly satis-

fied. The reduced equilibrium equations, where the stress components are indepen-

dent of the x direction (in view of equations (9)), are:



+ L 0 (10)

4#Y a a
11

The stresses are therefore given as:

Y

where the form of the matrix P is chosen so that equilibrium is satisfied.

The displacements, also defined independently within each layer, are given in

terms of nodal displacements, q:

; A/ N(12)

The displacement interpolation, N, is formed such that continuity between elements

is guaranteed. Using the strain displacement relations, the matrix B is defined as:41
a

aay

Substituting (11) and (13) into (8) leads to:

JA

34 4.A (14)

IA~ & dA

'3 'd.jl
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where PR represents the first, second and fifth rows of P

Simplifying this expression by defining the following layer matrices:

H'R Pb 4(A '(15a)

d A (15b)

(15c)

leads to:

~ '~,4' 4~~*6,4L1 (16)

Up to this point, q1 and i are independent from layer to layer. Recalling that

a single element is composed of a number of layers, improved results can be found

by enforcing certain continuity conditions along interlayer surfaces such as con-

tinuity of displacements, continuity of tractions, and continuity of strains from

i
stresses. Appropriate relationships between the stress parameters, 3 , and nodal

displacements, q1, for a layer and-stress parameters, $LP and nodal displacements,

3L' for the laminate can be defined in terms of these continuity conditions. 
For the

present case of prescribed s x' they can be expressed in the following form:

(17a)
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(17b)

Substituting (17a) and (17b) into (16) and defining the following laminate matrices:

H 7& (18a)

jai

CL (18d)

or

leads to:

Recalling that the 6's are independent from element to element, the stationary

condition of 1 with respect to - eliminates the stress parameters on an element
Mc "L

level. Therefore, for an arbitrary 8L  O:

Ai~ (20)

Substituting this back into equation (19) yields:

I(21)

where:

4 (21 a)

q~~ 1 4 F. (21b)
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define the element stiffness matrix and the element load vector (due to C ) re-x

spectively.

After assembly of all elements, the solution of equation (21) results in the

values of the nodal displacements. Stresses can be found by using (20) to obtain

the laminate 6's, (17a) to obtain the layer 's, and finally using (11) for the

stress field.

B. Displacement Interpolation and Enforced Displacement Continuities

The same high order through thickness displacements assumption used in E ] and

-92 for the displacements v and w (in the y and z directions respectively) is util-

ized in this study. Furthermore, the u displacement (in the x direction) is chosen

to be of the same form as the v displacement. The position of the nodal displace-

ments for each layer is shown in figure 2b. Note in figure 2a that the total height

of the laminated element is H, and the total length is L. Also shown is the z co-

ordinate for the bottom of layer i which is designated hi, and that for the top as

h i . For convenience, a local coordinate, ;, is defined whose origin is at the mid-

surface of each layer. The local system is defined such that:

,7 h + - (22)

where -1 at z =h
1

=1 at z = hi 1

The displacement assumption 'in terms of the local coordinate ;, where the dis-
3 2

placements u and v are of order z and the displacement at w is or order :, is

given as:

r• -,;(j ;;"-1 + + ! + ?jp") x, + (q -27f - If + V ')

(23)

+ # zf f'z/) +-- +€ ). .
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- LAYER i hi+l

h3
LAYER 2

LAYER 1 h2
- ' I'hl

(a) ELEMENT GEOMETRY AND LAYER NUMBERING CONVENTION

.ivi ui  v

v3 U34 3 3

i I
NODE 1i W4 LAYER i W CO 2

v2u 2  u2'v2 ;

L i i i/-u v 1

(b) ELEMENT DEGREES OF FREEDOM FOR A TYPICAL LAYER

Fig. 2 Element Geometry and Degrees of Freedom
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*-+f 91"- ?f') ' (-z'- "f Z7' 7

w ) (-f+ . 0( ) - f ), ., ,

+ (-+."),,,' W if - )w." 4 (f+P ),Vil. ,A ('A

where the u displacement, as previously noted, is of the same form as the v dis-

placement.

This displacement interpolation insures compatibility between elements. To en-

force displacement continuity between layers, however, the nodal displacements for

layer i must be related to those of layer i+l. As can be seen from figures 2a and

2b, this would require:

(U 4 , , , . , (24)

This is the expression which relates the layer degrees of freedom to the laminate

degrees of freedom and it defines the transformation matrix T- used in (17b). When

the nodal displacements are given the ordering,

(2S)

where q represents the displacements at the bottom node of the layer and q re-
Ti

presents the displacements at the upper most node of the layer, the matrix Id be-

comes a Boolean matrix. The products defined in (18b) and (18d) can therefore be

accomplished by the use of assembly pointers which simply position the layer contri-

butions into the appropriate laminate positions within G and Js
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It should be noted that the displacement interpolation is written in terms of

the normalized coordinate, -,and consequently the matrix B, which is defined by

this interpolation using the strain displacement relations, is also in terms of

,. In order to perform the integral (lSb), a transformation of coordinates must

be defined. Furthermore, since all of the integrals will be evaluated by use of a

Gauss integration scheme, the limits of the integral must be from -1 to 1. There-

fore, an additional local coordinate, s, is defined in the y direction such that

7.1 (26)

The Jacobian of the transformation is then given as:

= -i ( A; -A.~.,) (27)

Thus, the B and Td matrices have been defined. It remains to define the stress

assumption and the continuity requirements placed on stress and strain.

C. Stress Assumption and Enforced Traction Continuities

The basic stress assumption used in C81 and [9] have been employed here where

a y are of order z , . and z respectively. The additional stress compo-

nents used here, namely aXY and axZ are chosen to be in the same form as a y and

4yz respectively. Although the basic stress assumption is the same, it has been

recast in the following form for reasons which will be discussed subsequently. Also,

recall that the following stress assumption is for a typical layer i:

"i'...~~~~ 2A 3'~7') r~- 1 ~' (28a)

- ' -64

.,



22

7/16&'y (+f) (-3!) T?, ~yZ /,~, y'4f)94f#

(~f~'.? (f 3 ) ~ §~L;.,3 ' )/# f 7-f )( (28)

-Z/ A(-fy,) #-,4 (f)(,f & z-
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3 -. 30'y; " '-i " f(J J - IA i 28 d

,, #< i.~ yF ' ''IIE , ~f

+, 4  +A Y ,4A ,)(3., zf,, +)()

where 4. for co is1 deie as th af thcke of lae . As, h

2 4 +2 )s s d e a(28e)

+/

where ti for convenience is defined as the half thickness of layer i. Also, the :

stresses defined above exactly satisfy the equilibrium equations (equations (0)
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The special form into which the stress assumption has been cast easily allows

the identification of all the stresses at the interlayer boundaries. This greatly

simplifies the enforcement of given stress/strain continuities along the layer in-

terfaces. The interlaminar transverse shear and normal stresses are only related

to appropriate T terms at the interlayer boundaries.

Ar a 4i ot f--i .'+*

Ar 'a. , d7 Y ,

. (29)
071 z " lll l t, " Y &il

A *A, 
Similarly, the inplane stresses are only related to appropriate terms at the in-

terlayer boundaries.

7 , j A A,4a
AT as Ole oC-,, 4 +,r+ ." / ,Y"

Aj A A oi A- Z

Ar ORk A A A
z ^A (30)' *;. A, +> y YA,

In this section, only the enforcement of interlaminar stress continuities and sa-

tisfaction of traction free conditions along the top and bottom of the laminate

will be considered. The purpose for casting y and a xy in the above form at the

layer interfaces will be discussed later.

The traction free conditions along the top and bottom of the laminate are easi-

ly satisfied as a result of the form of the given stress assumption (28). Referring

to equations (29) these conditions, along the top of the laminate, result in:
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where N is the total number of layers. Enforcing the same condition along the

bottom of the laminate leads to:

#- ' ""(31b)

This is accomplished by not assembling the contribution of these $'s into the

H and G matrices by setting the appropriate assembly pointers equal to zero. Thus,

the traction free conditions along the top and bottom of the laminate are exactly

satisfied.

Continuity of tractions across interlayer boundaries (i.e. az ayz , xz ) can

be satisfied exactly by again considering equations (29). If the stress parameters

are ordered in the following manner:

A.

(32)

where the form of P is defined by the stress assumption, then the transformation

matrix Ti is a Boolean matrix and the matrix Ci is zero (see equation (17a)). A-
s -S

gain, since the transformation matrix is Boolean, all matzix multiplications in-

volving the matrix i can be accomplished, as previously noted, by the use of as-
-s

sembly pointers.



26

Also, as previously discussed, all integrals involving the P matrix will be e-

valuated using a Gauss integration scheme, and therefore use will be made of an

additional local coordinate, s, and the Jacobian of the transformation.

In general, therefore, the complete formulation of a multilayer structure sub-

ject to defined displacement and traction continuities across interlayer boundar-

ies has been described. Besides the conditions already satisfied, however, use

can be made of additional stress/strain conditions which can be imposed on the

structure to perhaps provide a more realistic solution to the problem. Two of

these more specialized conditions are the enforcement of a traction free edge

condition along the right and left edges of the laminate (Figure 1), and the en-

forcement of certain strain continuities across interlayer boundaries. These ideas

will now be discussed in more detail.

D. The Traction Free Edge Condition

The traction free edge condition along the lines yub and y=-b as shown in fig-

ure (3a), is enforced in a manner similar to that of the traction free edge con-

ditions along the top and bottom of the laminate. The stresses to be considered

along y=b and y--b, however, are not of a special form as was the case along the

top and bottom of the laminate. The y locations of the traction free edges must,

therefore, be substituted into the general stress assumption (28) In order to de-

fine the 's which must be set equal to zero in order to enforce the conditions.

To facilitate this procedure, a local 7 coordinate is adopted at the left edge

of the lamisate. Also, due to the symmetry of the laminate about both the y and z

axis, only the upper left hand portion of the laminate need be analyzed. There-

fore, as shown in figure (3b), the line 7-0 is the only traction free edge which

need be considered. As a consequence of the translational invariance of the ele-

ment being used, the stress assumptions are written in terms of 7 and the trac-

tion free edge condition is applied to this set of equations resulting in:
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A,

Thus, if the elements are numbered from left to right (figure 3b), the contribu-

tion of the above Vs (33) into the H and G matrices is not taken into account for

the first element. Again, this is done through the use of assembly pointers. All

other featuxes of the element remain unchanged, therefore this traction free edge

(TFE) element remains compatable with the other elements to be used in the mesh.

One additional consideration is of importance when using the TPE element. The

work done by the tractions is given by:

08 (34)

as it appears in equation (19). For the case of the TFE element, where no work is

done along the left edge, (34) takes on the special form:

At~ Y27/A. ~(35)

where and q2 represent the displacements of nodes 1 and 2 respectively. Substi-

tuting the above form of the G matrix into the expressions for the element stiff-

ness matrix and the element load vector leads to:

0s Q 0 0L (36)

Recalling that the first element is taken to be the TFE element, the general form

of the system of equations after assembly is:
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;L (37)

where K*, q*, and Q* represent the assembled stiffness matrix, displacement vec-

tor, and load vector after the contributions due to node 1 are removed.

In practice, this system of equations can be solved in the conventional manner

by setting the displacements at node 1 equal to zero and setting the diagonal stiff-

ness terms equal to unity. This results in the system of non-singular equations:

~ * 0 1- A(38)
lo KJ° i°R

As can be seen from equation (20), the stress parameters will also be independent

of the displacements at node 1:E ot
~LmEZ(39)

The calculation of the stresses (11) which are the quantities of interest,

will not be affected by artificially constraining the degrees of freedom at node

1. Thus, the singularity which occurs in the assembled stiffness matrix, as a re-

sult of the enforcement of the traction free edge condition, can be eliminated in

this way. Solutions for q 1 can subsequently be obtained, but they are not calcu-

lated or used in this analysis.

E. The Strain Continuity Condition

In addition to the stress continuities previously defined across layer inter-

faces, certain strain continuities which are known to exist, can also be exactly

enforced. The layers of the laminate are assumed to be perfectly bonded and there-

fore, the u and v displacements along any xy plane (see Figure 1) are smooth con-
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tinuous functions. If this is the case, their derivatives with respect to x and y

are also continuous. Applying this to the linear strain-displacement relations,

based on the displacement field given in (9), shows that both e and -,, are con-

tinuous across interlayer boundaries.

Using equations (3) and (4), and the definition of the matrix R given in (6) and

(7), leads to the following expressions for y and Yxy (from stresses):

A411 A'a~ +~j Ar (40)

Continuity requires (see Figure 2a):

6y' (z mAz ) y -6 (A.k)v (41)

Substituting (40) into (41) and recalling that a z is continuous across interlayer

i i-Iboundaries (i.e. a = a = a ) leads to:
z z z

/ ' _~ T,, '_

•O L .1f 4 [rib (r)42)
- - '_, 0

where all stresses are evaluated at z = h.
1

Further, substituting (30) into (42), and collecting coefficients in y, results

in four sets of two simultaneous equations in I's and T's. Solving each set of e-

quations, eight of the i's are expressed in terms of the remaining 9's and T's.

This results in the following relationships between betas of layer i and i-i

required to satisfy the strain continuity condition:

An (43)
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The laminate betas correspond to the set of stress parameters remaining after the

interlayer traction and strain continuity conditions have been satisfied. Equa-

tions (43) define the transformation matrices Ti and Ci shown in (17a). Again,
-s -S

the calculations given in (18) are accomplished both by use of the transforma-

tion matrices and by the use of assembly pointers. All displacement calculations

are now done with respect to a complete set of laminate betas.

Recall that stresses however are assumed independently within each layer and,

therefore, must be calculated independently for each layer. This requires that the

original set of layer betas (for each layer where stresses are calculated) must be

calculated using (17a) where all quantities on the right hand side are known.

Prior to the consideration of the strain continuity condition, the transformation

matrix Ti is a Boolean matrix and all terms in Ci are zero. When this is the case,-S -S

the actual values of the layer betas remain unchanged, and it is only a matter of

identifying those betas in the laminate set of betas which correspond to each sub-

sequent layer by use of the assembly pointers. In the case where strain continutiy

is enforced, however, $l.4 and 89_12 have been redefined in terms of the set of

laminate betas. The relationship given in (17a) must, therefore, be used in con-

junction with the assembly pointers to recalculate the layer betas to be used in

the stress calculation. After the layer betas have been identified, the calcula-

tion of stresses is identical to that previously described (11).
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3. Eyanple Problems and Numerical Results

Three basic approaches can be defined for the analysis of cross-ply and angle-

ply laminates. Each approach exactly satisfies traction free edge conditions along

the top and bottom of the laminate and continuity of displacement and interlami-

nar stresses across layer interfaces. The element which satisfies these conditions

will be termed the standard element. Other special stress and strain conditions

are then imposed in addition to the above continuities and traction free conditions.

The three analysis used are: 1) NO SPECIAL ELVENT (NSE) analysis where the stan-

dard element is used throughout the mesh, 2) TRACTION FREE EDGE (TFE) analysis

where one special element exactly satisfying free edge conditions along the side

of the laminate is used in cdnjunction with the standard element throughout the re-

.aainder of the melh, and 3) STRAIN CONTINUITY (SC) analysis where the. continuity

of inplane strains across interlayer boundaries is exactly satisfied for all ele-

ments.

Five test cases have been chosen to illustrate the effects of exactly satisfy-

ing different stress and strain conditions. Due to the symmetry of the plane of

analysis, only one quarter of the cross section need be modeled. As previously

stated, the upper left hand plane is analyzed in order to facilitate imposing the

traction free edge condition. To be consistent with available results on this top.

ic, results corresponding to the upper right hand portion of the cross section are

plotted. Thus, the center line is along y=O and the traction free edge is along

the line y=b (Figure 3a). The test cases, shown in figure 4, are the 4-layer cross-

plys [90/03 s and [0/90 53, the 4-layer angle-plys E45/-45] s and the 8-layer lami-

nates 90/0/-4S/451 s and C4S/-45/0/90]s '

The finite element model is shown in figure 3b. The plane of analysis is broken

into two regions. More elements of a smaller size are placed in region one near the

traction free edge where the stress distributions are of the greatest interest.
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Fig. 4 Test Cases
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In the 4-layer cases considered, region one, where = .25 b, is subdivided

into 25 equal elements, and region two, where 2, = .75 b, is subdivided into S e ual

elements. This mesh was chosen on the basis of convergence studies which illus-

trated that the use of additional elements showed no appreciable change in the

predicted stresses C92. In analyzing the 8-layer cases, the use of 30 elements

is computationally prohibative. In order to retain accurate stress predictions

near the free edge, the size of region one is reduced such that 2 u .lb and X2

.9b. Region one is then subdivided into 5 equal elements and region two is sub-

divided into 6 equal elements. Additional convergence results, based on a 4-layer

laminate, show that only slight changes occur in the stress predictions when a

more refined mesh is utilized. No subdivisions are needed in the z direction, be-

cause the element is developed to be multilayered.

The total width of the ply is 2b while the height of each layer is h. The ratio

of width to height for both the 4-layer and 8-layer laminates considered is 4.

The boundary conditions are also shown in figure 3b. Symmetry conditions along

7=b (all u and v=0) and along z=0 (all w-0) are imposed. The elastic constants

with respect to the principal material axes of each ply for all cases considered

are:

E = 20.0 x 106 psi

E22 =2.1 x 106 psi

V12 = 3 1 'J 23 = 0.21

G12  G 31 = G23 ' 0.85 x 106 psi

The first case considered is that of the cross-ply laminates, C90/07 s and [0/

90] For the crees-ply case, the u displacement is a function of x only. Conse-

quently, referring to the expressions for the v and w displacement given in (9),

the inplane stresses vanish (i.e. a x . a = 0). Distributions of all stresses

(i.e. a k90° layer), 7 (Oc layer), or (900 layer), 1 (00 layer), ., and ay)
x x y y 0nyz

versus y along the 0190 interface are shown in iigures 5 and 6 for NO SPECIAL ele-
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Fig. 5 Stress Results for [0/90. laminate
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Fig. 5 (Continued)
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Fig. 6 Stress Results for [90/03 laminate
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ment, the TFE element and the SC element. Also shown as a basis of comparison, is

a solution by Wang based on a singularity eigenfunction expansion with boundary

point collocation [I].

For both the C90/0] s and [0/90] s cases all three approaches agree with lamina-

tion theory away from the free edge which is expected. The differences between the

solutions become apparent'as the free edge is approached. For the 0/90] s case

(Figures Sa through Sc), the solutions for a x in the 900 and 00 layers agree for

the 3 analyses. The solution for az essentially agrees, although az for the TFE

element deviates slightly from the other two approaches after approximately y/b =

.9. Solutions for a and a are nearly identical for the NSE and the SC approaches.y yz

In the TFE analysis, these stresses are forced to zero. In the other two cases,

both a y in the 900 layer and a yz tend toward zero despite the fact that this

condition is not exactly enforced. The value of a in the 00 layer, however, stays

near its constant value near the free edge for the NSE and the SC approaches and

does not tend toward zero.

Similar results are observed for the [90/0] s cases shown in figures 6a through

6c. Again the results for ax are similar for all three approaches, and the results

for a are similar although slightly different after approximately y/b = .9. Also,z

in the 00 layer and a for the NSE and SC element again tend toward zero, al-

though they are not forced to do so as in the TFE element case, whereas ay in the

00 layer does not.

Notable differences between the [90/0]s and [0/90] s cases occur in the results

for a z and a YZ. For the stacking sequence [O/907; s a is predominantly negative

and rises to around the zero point near the free edge, while for the [g0/0] s case,

the opposite occurs; however the two curves are not mirror images. az for the [O/90] s

case dips negative between about y/b a .5 and y/b = .9 and then rises up from y/b •

.9 to the free edge. For the stacking sequence 7i90/0- s ) 7 is positive up to about

y/b - .8 and then dips negative, rising again to about zero at the free edge.
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The important differences between the two different stacking sequences, and the

three different approaches is illustrated by looking at through thickness stress

distributions. a. ay and a yz are plotted through the thickness in Figures 7 and

8. Delamination of these multilayer structures is believed to be caused by a combi-

nation of stresses near the free edge. Consequently these distributions are of

interest.

For the E0/90]s laminate, the distribution of a shows about the same shape for

all three cases. The maximum positive value is larger for the NSE and SC analyses

than for the TFE case, where as the maximum negative value is larger for the SC

and TFE approaches. The NSE analysis remains negative within the second layer, while

the other two cases become positive and then become zero at the top of the laminate

along with the NSE approach. The stresses a and a shown in Figures 7b and 7cy yz

respectively are forced to zero in the TFE element case. a agrees very closely

for the other two approaches, tending toward a large negative value in the 900 lay-

er at the interface, and a large positive value in the 00 layer. The distribution

of a. oscillates about the zero point. The agreement between the two approaches,yz

NSE and SC, appears poor, but note that , is an order of magnitude less than theyz

other stresses in question.

The E90/01s laminate shows a much different distribution of az. Again, however,

the three approaches show the same general distribution with some disagreement in

the first layer. The distribution, however, is predominantly compressive, whereas

the distribution of a z for the EO/90js laminate is predominantly tensile. The shape

of ay for the [90/0 s laminate is the reverse of that for the [0/907s laminate.

The two appraches, NSE and SC, agree well. Recall that a and a for the TFE casey yz

are set equal to zero along the free edge. The distribution of ayz again oscillates

about zero, and is an order of magnitude smaller than the other stresses.

Recall that high order through thickness stress distributions have been assumed

3 o 4
within each layer; a is of order:, a is of order z and a is of order:z. if

y z yz
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lower order assumed stress distributions could accurately predict the actual stress

distributions, computation time could be reduced without effecting the results of

the analysis. If it is possible to reduce the order of the stress assumptions, from

equilibrium considerations, each stress component must be reduced by the same order.

It is evident from Figures 7b and 8b that the order of a y c-an not be reduced with-

out loss of accuracy. Therefore, the high order stress distibutions which have

been used are in fact necessary.

The high order displacement interpolations might also be lowered to save on com-

putation time. Through thickness distributions of v and w displacements along the

free edge and away from the free edge for the NSE and SC approaches are shown in Fig-
3

ures 9a through 9c. In this analysis the v displacement is of order : and the

2w displacement is of order z . The v displacement is chosen one order higher than

the w displacement so that their relative through thickness contributions to yyz

will be of the same order. Away from the traction free edge (Figure 9c) the w dis-

placement is only of order z. To be consistent, therefore, the v displacement would

be of order z2 although it appears almost constant in Figure 9c. At the traction

free edge, however, it appears that both the v and w displacement could be reduced

by one order of z without appreciably effecting the accuracy of the displacement

and stress distributions.

The next case considered is the angle ply E45/-457 s case. In this case, results

by Wang and Crossman E4" are presented as a basis of comparison where available. In

that analysis, constant strain triangles were used to model the problem. Later re-

sults by Herakovich, Nagarker, and O'Brien [7] , also using constant strain tri-

angles, show results which differ somewhat from Wang and Crossmn when a more

refined mesh is used. The results for this case are presented in Figures 10a through

lof. Included are distributions of a,, ay Cx and a along the 45/-45 interface
yz x: xy

and through thickness distributions of ax and az along the free edge.

Figure 10a shows the distribution of a z along the 45/-45 interface. Results



ArA

a --

4x-
- U.,

/x

LU <Z
U /L

-<

LU'

z
LUI

a -

CYC

..... ...... .. ..



52

Qj t
I LU,

/. Z
9 00.

/ (n
/ju

/
/j 0 w
/ '~ZZ

o0co

In,

0-

3n



53

0

-j >

z
-0

-- 0

U. --

--

UJ 0.
LU ft- c

20

CL..

LU



54

.X

2Jmb -- - - -- - - - ---

La

0 LU

d..

4
-0 'a

0 C')VL ,m~z 0
C,, N



55

9x
xx

.I',

A(

)( ~ LL

100

.. w

L6 0

o ci

oo



56

T..

I

I'D-

ul 0

CC cn

00<X0

-o z x
29-OLX



57

C

IL

i0

LL.

U.

In

LU <

13<~X 
Vo

a9.. OLx o6



u II
4 CIA (CD
U IA

LUI ~93

-- (A

o~<x x41
x'

'I XL)

U.)7i\( U

'~~~ ox I.

_ >

I '-a VA
\\0 (

I,5 4



59

IlaI

\L

L//

UlI

Uz 
M 

~~
u a
. I o (

" N4i CV

004.



60

for the three analyses are very similar. At the traction free edge all the solutions

reach a large negative value. The TFE element reaches the greatest value while the

NSE and SC analyses give similar results at the traction free edge. It is of in-

terest to note that the Wang and Crossman results tend to a large positive value

while all of the results presented here show a large negative value at the traction

free edge.

The three approaches also show very similar results for the distributions of

ay:7 ax, and u along the 45/-45 interface. Small discrepancies appear near the

traction free edge for the distribution of a . The TFE element is forced to havey:

a value of zero at this point, while the NSE analysis shows a small positive value

and the SC analysis shows a small negative value. The results for -xZ show that

the TFE approach again gives the largest value at the free edge, while the results

for the other two analyses are smaller and in better agreement. Note also that the

results for the SC analysis are slightly lower than the other approaches from

about y/b = .6 to the traction free edge. The differences observed in the distribu-

tion of a between the three approaches is also near the traction free edge.xy

Here the TFE analysis is again forced to be zero. It also shows lower values from

about y/b = .35 to the traction free edge when compared to the other two analysis.

The NSE and SC analyses give essentially the same results but do not reach zero

at the traction free edge.

The three approaches again show similar results for the through thickness dis-

tributions of a xZ and az at the free edge. The values of axz through the thickness

(Figure 10c) are all positive. The TFE element reaches a greater value at the 4S/

-45 interface than either the NSE or SC analyses, but the relative shapes of the

distribution for the three appraches is the same. Again, some dissimilarities are

observed between the three analysis for the distribution of 5_ (Figure 10f). They

do agree well at the midsurface, where the maximum positive value of a occurs. The

maximum negative value occurs at the 45/-45 interface, where the TFE element again
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reaches the greatest value while the NSE and SC approaches tend to have smaller

negative values.

The final cases analyzed are the E45/-45/0/907 and 790/0/-45/451 laminates.

Again, Wang and Crossman results are included on the graphs where available. Fig-

ures lla through llf show the results for the E45/-45/0/90Js case. The distribu-

tion of a, along the 0/90 interface and along the midsurface are plotted in Figures

lla and llb respectively. The three approaches give essentially the same results

up to the traction free edge where the NSE analysis drops off slightly. The results

for the distributions of -,Z along the 0/90 interface (Figure llc) and the distri-

bution of a X along the 45/-45 interface (Figure lld), again show that the three

analysis agree well up to the traction free edge. The distribution of a showsyz

the NSE approach dropping off again at the free edge. The TFE element drops down,

but then is forced back up to zero at the traction free edge, whereas the SC approach

rises smoothly to zero. All the results for J.x rise smoothly at the free edge. The

TFE element rises to the highest value while the NSE and SC approaches rise to smal-

ler vah ee which are again in better agreement.

Through thickness distributions of a and oxz for the E45/-45/0/903s laminate

are shown in Figures lle and lilf. The TFE and SC approaches show tensile stress fzr

7. in the 900 and 00 layers, and primarily compressive values of a z in the -450 and

45 layers. The NSE analysis gives smaller tensile values in the 900 layer, but re-

mains tensile up to the top of the 450 layer. Agreement between the three approaches

is slightly better for a x. Here only the value at the 0/-45 interface, where the

TFE analysis shows a larger negative value, and the value at the 45/-45 interface,

where the TFE analysis shows a much higher positive value, differ significantly be-

tween the three analysis.

Results for a, along the 0/90 interface, and z along the midsurface are shown in
z

Figures 12a and 12b for the .90/0/-45/451s laminate. Again the three analysis agree

well up the traction free edge. The NSE approach drops off to give a negative value



62

00

-- j

700 IT

-j I->
II.

00<X

I0 0a
ui 4 N C0

x~a9-oU,



63

CI,

0

I.

- 0

iZ&I C,,

L6 L

0 x ocJ 04

C140

x~~~ 39 I



64

cr.

0

z'

uInoz

o LI..

0 00a
/o

o ~ ~ x LI.

9--



63

U,

0

IU)

U)-

LLU

U.,

op 0

CYd

x 3 9 - O X z x .



66

-C,'

zN
03

XL.

00-4A
(ai

x'



67

z0

I In

IM'

I,"

II I-

Nj

>,



68

Wo0

LL

LLU

'um0

z I.0U

L6A

0

I CfA

X OL'Jz



69

.0.

'ma

- z a

CV)

-Z 02

LUU

UU-

C4 LC
661. LU

0 O<

04
I- z39 0t



70

for J, along the 0/90 interface while the TFE and SC analysis rise to positive val-

ues. Along the midsurface, the TFE and SC approaches reach larger negative values

than the NSE anlaysis at the free edge.

Distributions of a z and a xz through the thickness at the traction free edge for

the [90/0/-45/451s case are shown in Figures 1Zc and 12d. The NSE analysis again

shows smaller values throughout the laminate for a Just as in the !45/-4S/0/901

case it does not show the more definite peaks which are found in the distributions

for the TFE and SC approaches. The results for the TFE and SC analysis show that

1a is compressive throughout the first three layers and becomes tensile in the 900

layer. The NSE analysis remains compressive up to the top of the 900 layer, but its

value remains small. The distribution for a demonstrates the same behavior as that
xz

of the E4S/-45/0/90] s case between the three approaches. Large negative values, a-

Tain for which the TFE analysis shows the largest occur at the 45/-45 interface.

The TFE approach also shows the largest positive value at the 0/-43 interface where

all three approaches reach the maximum positive value through the thickness.

The differences in results observed between the F45/-45/0/902s and the [90/0/

-45/457s laminates are best illustrated by considering the through thickness dis-

tributions of a x and a z. The laminate stacking sequence where the 900 layer is

on the outside shows predominantly compressive behavior and the most significant

peaks in stress are compressive. The stacking sequence where the 900 layer is on

the inside, however, shows predominently tensile stresses and all significant peaks

are tensile. These are very important observations considering that the interlami-

nar stresses near the free edge are believed to be the cause of delaminatidn in

these types of laminates.
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4. Summary and Concluding Remarks

An assumed stress hybrid formulation has been presented for the problem of com-

posite laminates under uniform inplane strain. A special purpose multilayer ele-

ment has been developed which satisfies various stress and strain conditions ex-

actly. The multilayer element has been used in conjunction with three basic ap-

proaches to the problem; 1) NSE: a mesh of so called standard elements which satis-

fy continuity of interlaminar stresses across interlayer boundaries and traction

free edge conditions along the top and bottom of the laminate are used thoughout

the mesh, 2) TEE: the first element in the mesh is modified to satisfy the trac-

tion free edge condition while the remainder of the mesh consists of the standard

element, and 3) SC: the standard element is modified to satisfy continuity of in-

plane strain along interlayer boundaries and the entire mesh is comprised of these

elements.

Stress results for five laminate test cases, [90/0s, [0/90 s, E45/-45]5 ,

E90/0/-45/45] s and [45/-45/0/903s, have been presented and discussed. Basically

the three approaches show consistent results, The stress contributions which are

forced to zero in the TEE analysis in most cases also tend toward zero in the NSE

and SC analysis even though they have not been forced to zero. Exceptions to this

are ay (00 layer) for the CO/90] , C90/0ks laminates and a xy for the E45/-45] s

laminate. In general, the TEE analysis displays the most severe distributions,

exhibiting the highest peaks in both the negative and positive directions. The NSE

approach behaves well except in the analysis of the r90/O/45/-45Js and E4S/-45/0/

90_; laminates where the results for the NSE approach drop off at the traction free

edge and therefore do not agree with the TFE and SC approaches. Looking at the

through thickness plots of a, and a along the traction free edge, also for the
-xZ

[90/0/45/-45 s and E45/-45/0/903s laminates, it is apparent that the peaks in stress

exhibited by the TEE a xd SC approaches are smoothed out by the NSE anlaysis. This
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suggests that in the analysis of more complicated laminate stacking sequences,

some special conditions must be exactly satisfied in order to obtain con-

clusive stress distributions.

Some general observations can also be made concerning the differences

between laminate stacking sequences. It is observed when the 900 layer is

on the outside (i.e., both for [90/0] and [90/0/4S/-45] laminates) the
5 s

through thickness distributions for a and a (for the angle-ply only)z xz

show predominantly compressive stress values. Conversely, when the 900

layer is on the inside the distributions for these stresses are predominant-

ly tensile. This suggests that a laminate stacking sequence with a 90'

layer on the outside will be less likely to delaminate under an inplane

tensile load than one which has a 900 layer on the inside.

Three approaches have been used to solve the problem of composite

laminates under uniform inplane strain. All three analysis show basically

the same results. Observed differences do occur in the vicinity of the

free edge. It is not possible at this time to claim that one or the other

of the analysis provides the correct detailed stress distributions for the

problem in question. Conclusions of this nature must await an independent

analytical solution to the problem which, thus far, does not exist.
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CHAPTER 3

A STUDY OF 8-NODE SINGLE LAYER PLATE

ELEMENTS WITH A STRAIGHT TRACTION-FREE EDGE

ABSTRACT

The elements developed and tested in the last chapter were based on a

plane 2-D theory. For general multilayer plate problems involving free edges,

a multilayer plate element is required which satisfies the traction-free

conditions along one of its edges. The present chapter describes a study

which is needed to establish the basis for development of such a multilayer

element. Here eight-node single layer pure bending plate elements are

developed for which the traction-free conditions are exactly satisfied

along one straight edge. Transverse shear deformation and transverse shear

and normal stresses are included so that the elements are applicable to both

thin and moderately-thick single layer plates. Various plausible stress

fields are defined, and the best stress field (element) is identified by

comparison of results for selected example problems. The results obtained

in the computationally efficient pure bending study can then guide the de-

velopment of a multilayer element, where stresses and displacements are

assumed independent within each layer. In such an element, the present

stress/displacement fields must be extended to include stretching contri-

butions.
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1. Introduction

In the analysis of multi-layer, lamLnated, composite plate structures, it has

been observed [1,2] that near the traction-free edges of such structures severe

gradients in the interlaminar stresses may exist. These gradients can lead to de-

lamination as well as other forms of laminate failure. Therefore, it is necessary

that accurate representation of the stress fields near traction-free edges be ob-

tained. In employing the finite element method to solve this class of problems, ac-

curate analysis in the vicinity of traction-free edges appears to require the de-

velopement of a special purpose, multi-layer, plate element which exactly satisfies

the traction-free conditions along at least one edge. (i.e. normal and shear stresses

are zero along one edge of the element.)

Historically, plate elements have been based on the assumed-displacement formula-

tion. In this approach, displacement boundary conditions are exactly satisfied while

stress conditions are satisfied only in an approximate (weighted, integral) sense.

Alternatively, in the assumed-stress hybrid formulation both stress and displace-

ment boundary conditions can be satisfied exactly. The hybrid-stress model is a two-

field principle in which equilibriating intraelement stress fields and compatible

displacement fields are assumed independently. The stress parameters are eliminated

on the element level and a conventional stiffness matrix results 3]. In view of

the independent assumption of stresses within each element, it is possible to ex-

actly satisfy traction-free conditions by appropriate choice of the stresse fields.

This feature establishes the assumed-stress hybrid formulation as a viable approach

for developing such special purpose elements. In many cases t4,51, ,hybrid-stress

elements have been found to yield improved convergence and intraelement stress pre-

dictions in comparison with analagous assumed-displacment elements.

The hybrid-stress model is also well suited to the development of multi-layer,

laminated, composite, plate elements. Stresses and displacements may be assumed in-
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dependently within each layer and appropriate interlayer displacment and stress

continuity conditions satisfied exactly [6,7]. Such elements have been shown to be

applicable for up to moderately thick laminates [8]. Transverse shear effects can

also be included in a less general manner (i.e. on the laminate level [9]). These

hybrid-stress elements have been found to be more accurate than comparable assumed-

displacment elements [10,11].

Based on these observations, the hybrid-stress model appears to be the ideal choice

for the development of a special purpose, multi-layer, traction-free edge, plate

element. However, before this element can be developed, it is necessary to examine

the possible stress fields assumed in the element interior which satisfy the trac-

tion-free conditions along an edge. This is best accomplished by first considering

single-layer, isotropic, plate elements. Once the best stress fields are identified

for single-layer plates; the results can then be extended to multi-layer plates.

In general, the elements cited earlier in this discussion have been based on 4-

node bilinear displacement fields. But, in a recent series of articles [12,13,14]

a family of single-layer, isotropic, plate elements based on the hybrid-stress mod-

el have been developed and tested. These elements use displacement distributions

based on Mindlin plate theory [15] and include all components of stress. Their ad-

vantage over analagous assumed-displacement elements is that the element stiffness

matrix exhibits correct rank and accurate solutions can be obtained for arbitrarily

thin to moderately thick plates. That is, difficulties regarding -excessive stiffen-

ing (i. e. locking) observed in Mindlin-type assumed-displacment elements are avoided

in the hybrid-stress elements. Similar advantages should be expected if multi-layer

versions of these elements are developed for the analysis of laminated, composite

plates.

In the present study a single-layer, isotropic plate element is developed for which

traction-free conditions are exactly satisfied along one edge. After choosing an ap-

propriate displacement field, various plausible intraelement stress fields are de-
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fined. The resulting special purpose elements are coupled with the compatible stan-

dard element to perform the analysis of several plate problems which include a trac-

tion-free edge. The performance of the special purpose elements is evaluated and

their potential value is assessed for the development of a special purpose, multi-

layer, plate element.
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2. Formulation, Displacement and

Stress Interpolations

A. Basic Equations "

To establish a basis for the present work, the assumed-stress hybrid formulation

for plate E12] will be summarized here. The hybrid-stress functional can be writ-

ten as:

U a - ZT~d ds(1)

n

where: a . . . . stress vector

a. . .... strain vector calculated from displacements, u.

u . . . displacement vector

. . . . prescribed tractions

S . . . . material property matrix

V . . . . volume of the nth elementn
S . ... boundary of the nth element over which tractions
n prescribed

Based on Mindlin plate theory ElS, the through-thickness displacement distri-

butions are assumed in the form (pure bending only):

u(x,y,z) a zey x,.Y) (2)
v~xy,z) * - xX)

v(xz,z) * w(x,y)

-where positive sign conventions for displacements and rotations are shown in Figure

1.

From (2), the generalized displacements ey (Xy), ex (xy), and wCx,y) can be ex-

pressed in terms of a set of nodal degrees of freedom eYi , exi, and wi by construc-

ting a set of C0 continuous shape functions to use as displacement interpolations.

Applying the linear strain-displacement relations yields;
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where q is the vector of nodal degrees of freedom for an element, and the sub-

scripts 'T' and "s" refer, respectively, to flexural and transverse shear con-

tribut ions.

The stresses are expressed polynomial form in terms of a set of stress para-

meters, S. The stress assumption is required to satisfy the 3-0 homogenious

equilibrium equations. Moreover, for a plate loaded transversely at :=h (see

Figure 1). the free-surface conditions can be expressed as3

az (x,y,,'h)-0

a0 (x'Lh QC)

Based on the equilibrium equations and the free-surface conditions of (4), the

through-thickness distribution of stresses is assumed in the form (corresponding

to pure bending contributions only)j

a7- o i -Y

a -5C :6 t -Y)
7N2 2

CYa h~ z h-Zy)_r.. _ (_)

a " a: "/6 ( z 3 - h 2 r:- 2 h 3  r a t i e y , =1 l/ 6 ( n3 3 h 2e e2 h o n -

The ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~Y strsse ar xrse oyoilfr ntrso e fsres defined

From (5), it is obsrvesd that first the polynomials for - hoo nio

- -- .,h ) 0(-
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after which a, yn a are calculated from the last half of (5). Note that this

guarantees satisfaction of the 3-D homogeneous equilibrium equations. The stress

assumption can then be cast in the form:

OX

-Y
- |rs/h.. ...j

xz

Substituting (3) and (6) into (1) and manipulating the result (described in de-

tail in E23 ) yields the stiffness matrix for the plate element:

S 2h3  T -2

k a G"c 2s) f ) (7)

where: .........

Sf4Pf~fd
A, A (s)

!3 -

.-- . ..--

An

Sf" /E -
2 4h2 9

V 2h2  V 2h2  s2z 0-r -r"

0 0 0 2C1.v) J

and A. is the area of the midsurface of the nth element.

To implement this numerically, it is comon practice to combine the flexural and

transverse shear parts such that: G 2f + G S

3 2 (10)
2h C (Hf +-Hs)
3
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where: --

G= B d AJ ..... . Cla)
f (11a

H . 'dA (1b)

Then, the stiffness matrix is simply:

k G HIG (12)

The integrals in (11) are mapped from the x-y plane into the E-n plane and numer-

ically integrated by Gauss quadrature.

With this information as a basis, we will next look into the formulation of the

displacement interpolation (C_ - Bq) and the stress assumption (' a AS) necessary

to yield a single-layer, traction-free edge, plate element.

B. Displacement Interpolation

In the work presented in references [12,13,143, a family of isoparametric plate

elements based on the assumed-stress hybrid formulation and using the Serendipity

family of displacement interpolations was developed and tested. Comparison of the

elements in the family shows the 8-node and 12-node elements to be more accurate

per degree of freedom than the 4-node element [14]. However, 12-node elements are

generally perceived as too complex for practical applications and in applications

such as nonlinear analysis where computation time is strongly dependent on element-

level operations. In light of this, the 8-node element (element QHl [13] ) was cho-

sen to interface with the special purpose element.

In order to insure that displacements are continuous between elements, the dis-

placement interpolation of the special purpose element must be identical to the

displacement interpolation of the 8-node element; that is, the quadratic, Serendip-

ity shape functions. In the E-n plane, they are in the form:

- - ii~ -. (13)• 1 ----- --.
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e-cc.n) - U C.n)8

ey~q:, N IR _llney._'

where N. are the shape functions and 8yi, 6 x, wi are the degrees of freedom (gen-

eralized displacements) at node i.

For isoparmetric elements, the coordinate mapping is of the same form as (13)

(i.e. quadratic); but, for the special purpose element, only bilinear mapping is

allowed. This permits it to take on a general, quadrilateral shape, but insures that

its sides memain straight. (This is a requirement of the stress assumption, and will

be explained shortly). So, the mapping is given by the bilinear shape functions:

4
X- I N. Nn)x.

- 4 -" (14)

Ys I N.Ny.
.Ju

where (x, 7i) are the coordinates of node i.

Recasting (3) into the &-n plane results in:

o 0

0 ( a x a 
)

0 a a a (ax a ax a* In(,t)
(" F -W y(

3 aL rw- r, 0
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where I"j is the Jacobian of the coordinate transformation.

Substituting (13) into (15) yields the B matrix (6- Bq) which is used in the in-

tegral of lla).

C. Stress Assumption

The choice of a stress assumption for the special purpose element is not obvious.

In this section, several plausible stress fields are developed. Subsequently, they

will be subject to numerical tests in order to identify the better stress fields.

First, consider a rectangular element with sides parallel to the x and y axes as

shown in Figure 2a. Letting x-O be the traction-free edge leads to the requirement

that:

" X(OIyIZ)i 0
Sxy(O,y,z) - 0 (16)

aOx.O,y,z) 0

Since these conditions must hold for all values of z, the relations in (5) can be

used to specifically require that:

-x 0, L -0 (17a)

a y o,y) - 0 (17b)

xz ,) 0 (17c)

Notice, that these conditions simply require that a x aXY and F be zero along

the line x-O for all y. For all other x and y the stresses can vary according to

the polynomials which represent them in the stress assumption. In fact, for an ele-

ment of general, quadrilateral shape, it is possible, in a finite-element analysis,

to define a local coordinate system for that element such that its traction-free

edge is on the line 7-0 (see Figure 2b). Then the conditions of (17) can be applied

(replacing x by 7 and y by y) in the local system and k can be formed in that sys-

tem. Finally, k can be transformed into the global system by the standard transfor-

mation of displacements E163. Furthermore, equation (17) requires FxI Fxy and axz

to be zero on the line x - 0 (7=0) which is a straight line. Therefore, the sides of
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the element must remain straight in order for these conditions to apply. This ex-

plains why the coordinate mapping was defined to be bilinear: to allow the element

to take on a general, quadrilateral shape, but insure that its sides remain straight.

Another criterion which the special purpose element is subject to is: the number

of stress parameters, n,, must be greater -than or equal to the number of degrees

of freedom, nq, minus the number of rigid body modes, nr, i.e.:

n, ), nq - n. (18)

This relation is a necessary but not sufficient codition to guarantee an element

stiffness matrix of corTect rank [173.

To summarize, the stress assumption for the special purpose element is defined by

first defining the interpolations for a , ,y' and F' as functions of in-plane co-
y xy

ordinates, x and y, such that the conditions specified by (17) and (18) are met. The

forms of the remaining stress components, xzP ayz. and a z, are then determined from

the last three equations of (5). This guarantees that the equilibrium equations and

the free-surface conditions of (4) are satisfied exactly.

As a starting point, consider the followingstress field:
7 " S1 + o ' + 83y ' e4x 2  + * sxYr2 Y2 + 87X + Y + $9xY2 + idy  +

x. 12x3y. B1 3 X y2 1 4 x +
a +. .2 -+ (19)

-xy 816 8 1 7 x + $8 1 y + 8 1 9x + $20Y zl 8 2 2 x
3 + S23 Ve

B2 4xY2 + S 262  X 4 827X 3 Y + 2 8X 2 y 2 29xY + 830Y

6y "011 + 0 3 2 x 3 3 Y + 0 3 4 xY + B3 5x
2 + B3 6 Y2 + B3 7 Xy2 + B3 8 x 2y

Note that F' and y are full quartic polynomials, while F is identical to that

used in element QH1 [13J (a reasonable starting point since Fy is not constrained

by (17)).

Applying equations (17a), (17b), and (17c) (after calculation of Fx:) yields, re-
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spectively: 1 - 3  6 me1 0 BUS i 0

... . . .-. , .-- .... .. +-(20a)

t16.n18"821"025-030 -0 (2Ob)

(2oc)
B-a B 5 -US9 U 1 4 M 0

After imposing equations (20) and renumbering the Si. the stress field becomes:

O x 1)P 2 + szx 2y +  x2y2 + 2x + 8 x Y. +0 x 3

ay 7x. + .. 8xy + 9xy * 8Oxy3  O 8lx2 * 012x3y + a13x2y
2 + 014x 3. + 815. y+ 8 16x

4

aY = 7 + 8 y. 9 y B+$oy, + 2 1 1 x + 20 i2xy + 20 314x2 1 x + 1 xy (2+

. .. . . .. . .. ° _ .-

4816x + 819 + B2 0 x 2 2 2 Y + 2823xy, + 824x 2
16..

* 24

+-= -8 + 2y 2 + 60 x 685xy + 12 + 28 489 y + 6810y 4812
1 2_ + 3. 4 ... ..8

" 81s_ -61sx_ +1 222 2$23X

'17 '1 8 1 + 19~ + + ++ a1"  +23x r  + 82-4+ +'y
.1 .o Bis _ - 2..+ . .............y 4 20xy + 82lx + B22y *8 3 y*B 4

28,x-+ 284+ . 2 2 C + 30 + + 304x 2 y%+ y x 3 + * 88X + 28+xy 30

112x
2 + 2 1 3x

2y + 0lsx 3

The O-q relation of equation (18) for the 8-node plate elements is:

n 8 anq - = 24 - 3 = 21 (22)

Therefore, with 24 stress parameters, the stress assumption given by (21) satis-

fies the criteria established in equation (17) and (18) for the special purpose ele-

ment. Equation (21) can be cast in the form of (6) to yield the IF matrix which is

used in the integrals of (11).

The single-layer, traction-free edge plate element based on the 24-B field of (21)



90

will be denoted as element PL24.

In any finite-element formulation, a necessary first test of an element is to

check its rank by calculating the eigenvalues of the element stiffness matrix, k.

The number of zero eigenvalues should equal the number of rigid body modes in the

element. Any additional zero eigenvalues correspond to spurious zero energy modes

(i.e. additional kinematic modes, AKM) which must be eliminated or constrained be-

fore the element can be safely used in a general finite-element analysis 18].

Eigenanalysis of k for element PL24 shows 5 zero eigenvalues. With 3 rigid body

nodes, this indicates the presence of 2 AKM. Inspection of k reveals that the ro-

tational degrees of freedom at the center node along the traction-free edge (i.e.

node 8 in Figure 2) receive no stiffness contributions. This result is more appar-

ent by considering the more conventional expression for G (equation (lla)) calcu-

lated as an integral of tractions (from stresses) times displacements along the ele-

ment surfaces. All tractions (traction-free edge and upper/lower surfaces) which

multiply aye and 0Xe (rotational degrees of freedom at node 8) are zero. Hence, the

columns in G corresponding to e and 8 are zero, and the corresponding rows/col--ye xa

umns in k will be zero. Since these 2 degrees of freedom have no stiffness associ-

ated with them, they can be eliminated from k. Numerically, this is done by artifi-

cially constraining these degrees of freedom to be zero. Note that this operation

is equivalent to redefining the interpolations for ey and ex to be linear along the
traction-free edge. This resulting stiffness matrix essentially has two fewer de-

grees of freedom so that, in this case, nq = 24 - 2 a 22. This changes the require-

ment on number of stress parameters given by (22) to:

n, a nq - nr  = 22 - 3 - 19 (23)

A subsequent eigenanalysis of k for element PL24 with 8y e and 0xe constrained yielded

3 zero eigenvalues corresponding to the 3 rigid body modes. With the 2 AIM elimi-

nated through the constraint of 8 and 8 , element PL24 is a viable candidate for
ye xe
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use as a single-layer, traction-free edge, plate element.

Numerical experience of several authors [19,203 suggests that the "optimum" num-

ber of 8i is near the minimum. Since n8  19 and n= 24 in element PL24, it seems

reasonable to explore ways to reduce the number of 0 V Eliminating certain 8i can

resuit in the introduction of AKM, however. To determine which 8i can be safely elim-

inated, one must investigate the equation:

G a = 0 (24)

where G is given in (1la) and a is a vector of generalized displacement parameters

(coefficients of the polynomial interpolations for displacement which can be unique-

ly related to the actual degrees of freedom) for an element. The solution a = 0

corresponds to the rigid body modes; any other non-trivial solution corresponds to

AM E221.

Equation (24) was evaluated for element PL24 using a square of side length 2 (this

is a sufficiently critical geometry for investigating AKM). Based on the result,

the following observations were made:

1) 88 and 810 areredundant; 810 can be eliminated since it represents a higher
order term in a

2) 2 of the following 8. can be eliminated: 8, 8 B4, 6, B By ar-
guments of completeness, only consider elilinaing two of he ighest order
terms: 03 86 in F , 815 in a

3) 2 of the following 8. can be eliminated: 89,  3 814, B16* Again,_ only consi-
der eliminating two 6f the highest order terms. i13' 14'S16 in xy

With no further information, the task of eliminating 8. from (21) and identifying

the "best" traction-free eleement is one of trial and error. Numerous candidate

stress fields can be defined by elmination of combinations of stress parameters

(while preserving correct stiffness rank); however, certain of these fields have

been eliminated on the basis of preliminary numerical experimentation. The observa-

tions made in these preliminary tests will be briefly summarized.

First, from 1), setting 810 - 0 in (21) yields a 23-8 element which behaves al-

most identically to element PL24. This is expected since 010 represents a redundant
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equation in the solution of equation (24). (For this reason, aI1 will not be con-

sidered in any subsequent elements.) Second, removing all the quartic terms from

S(i.e. 10 B13= 15= 16  0) results in a 20-8 element. This element has correct

rank as expected; but yielded poor moment distributions in the preliminary tests.

It therefore seems advisable to have some quartic terms in aX." Based on these

observations, the candidate stress assumptions are reduced to the following few

which will be described and assessed in more detail:

ELEMENT PL21: Remove the highest order terms present in equation (21) (x4 in x

and xy) by setting 86=$16 a 0. (Also, 810 = 0)

ELEMENT PL19: Since the traction-free edge condition of (17) removes the constant

and linear terms in x from F and only the constant terms in x from
x

xy' it seems reasonable to expect Fx to be one order higher in x than

F . Therefore, by removing B from a to make it cubic in x, C
xy 6 x xy

should be reduced to a quadratic form in x by removing B14, 815, and

B16. So, set 86=814 =B1 5 = 16 a 0 and 810 a 0.
Bx - t ezr

ELEMENT PL20: The traction free-edge condition forces r as well as a to be zero

along the free edge. With these strict constraints, a x may have to be

of thehighest order possible in x in order to accurately predict the

stress field. So, referring to equation (21), retain all terms in ax

and remove 814' 8151 and 816 from xy as in element PL19; i.e.: 614=
815u816* 0 and 810 . 0.

Though several other stress assumptions were considered, the elements described

above are the best candidates to use as single-layer, traction-free edge plate ele-

ments.

In closing, it should be mentioned that attempts were made to develop traction-

free elements with arbitrary curved traction-free edges. In this approach, the ele-

ments were mapped into g-n space where the stress assumptions were to be applied.

However, the stress assumptions are required to satisfy the 3-D equilibrium equa-
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tions; which, in this case, had to be written in a non-orthogonal system, since the

elements had arbitrarily curved edges. Using a tensor analysis approach, it was

found that writing a stress assumption which satisfied the equilibrium equations in

a non-orthogonal space was not only an extremely long and difficult task, but, could

not guarantee greatly improved results for the additional effort. In fact, as will

be seen in the next chapter, approximating curved edges with straight segments yields

good results in most cases.
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3. Example Problems and Numerical Results

In the last section, several plausible single-layer, traction-free edge, plate

elements were developed.(Summarized in Table 1). All the elements satisfy the trac-

tion-free edge conditions of (17) as well as the $-q relation of (18). Also, the

stiffness matrix of each element, k, is of correct rank. (i.e., three zero eigen-

values corresponding to rigid body motion after elimination of the two AKM associated

with e8 and e x).

In order to determine the better elements, it is necessary to assess their per-

formance in the numerical solution of a few, selected, example problems. This will

not only identify the better special purpose elements, but, determine whether a need

exists for such elements in the analysis of single-layer, isotropic plates. More-

over, this may provide insight as to the potential value of these elements in subse-

quent development of multi-layer, traction-free edge, plate elements.

In this section, two example problems are considered. The performance of the

special purpose elements of Table 1 is compared with exact solutions as well as with

the non-traction-free edge element, QH1. (Note, that element PL24 is not considered

since, as mentioned earlier, it has too many stress parameters).

The first example problem is shown in Figure 3. It is a square plate (length,

L; thickness, 2h) with two opposite edges simply-supported and the other two free,

subject to a transverse uniform load, p[21]. By symmetry, it is possible to model a

quarter of the plate in the FEM analysis using an NxN mesh of elements. The special

purpose elements are situated along line AC. Results are presented for the case:

L=10.0 in, h=O.05 in, po=5.0 psi, E=3.OxlO7 psi, and v=0.3.

In Table 2 deflections at the center and left edge (free edge) of the plate are

compared. Notice, that even for the coarsest mesh, deflections are within 4% of the

exact solution, and as the mesh is refined the deflections converge to less than 1% erroi

Also, in the coarser meshes, the special purpose elements predict displacements slight-
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ELEMENT ZEROED 3'S NUMBER OF f'S

PL19 P6, f130, P14, P15,p 16 19

PL20 1l10,/314,1P15,/P16 20

PL21 P6, fPlO,316 21

PL24 24

NOTE: P'S BASED ON EQUA TIONS (21)

Table 1. Single-Layer, Traction-Free Edge, Plate Elements

4.
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L,2 SIMPLY-SUPPORTED
FREE EDGE EDGE

Figure 3. Problem 1. Rectangular Plate
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lx1 MESH
Wo______WC

ELEMENT EXACT FEM %ERROR EXACT WC , ' % ERROR

QH1 0.23824 0.2407 .1.033 0.27464 0.2848 -3.699
PL19 0.2403 -0.865 0.2826 -2.898

PL20 0.2372 0.437 0.2753 -0.240

PL21 0.2373 0.3951 0.2753 -0.240

2x2 MESH
_____WD_____WC

ELEMENT EXACT FEM %ERROR EXACT FEM % ERROR

QH1 0.23824 0.2386 -0,151 0.27464 0.2776 -1.078

PL19 0.2384 -0.067 0.2772 -0.932

PL20 0.2383 -0.025 0.2750 -0.131

PL21 0.2383 -0.025 0.2750 -0.131

4x4 MESH
_____WD W_____ ______

ELEMENT EXACT ' FEM 0 ERROR EXACT FEM 'OERROR

QHI 0.23824 0-2384 -0.067 0.27464 0.2753 -0.240

PL19 r 0.2384 -0.067 0.2753 -0.240

PL20 0.2384 -0.067 0.2743 0.124
PL21 - - , -,-

NOTE: %ERROR=(1- FEM/EXACT)X 100%

Table 2. Problem 1. Deflection Comparisons

~- . -.- i l-
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ly better than element QHl; but, in general, all of the elements converge quite

well and the special purpose elements show no particular advantage at this point.

The largest moments and stresses in Problem 1 occur along line CD. (Note: See

Figure 1 for sign convention for moments and stresses). To further assess the ele-

ments, Problem 1 was run with a 2x2 mesh and the moments, My and Mx, along line CD

were plotted (Graphs 1 and 2, respectively). My along CD is a maximum at the free

edge and decreases to a normalized value at the plate center. Notice, that all the

special purpose elements show some deficiency: either they over estimate the moment

at the free edge or underestimate the moment at the interface of the special pur-

pose elements and regular elements.Of the special purpose elements, PL19 provides

the best solution; however, the standard element, QH1, also yields a reasonable pre-

diction.

Mx is calculated from ax and so is zero at the free edge. Along line CD, it goes

from zero at the free edge to a normalized value at the center of the plate (Graph

2). Here, the first clear advantage of the special purpose elements manifests it-

self. Element QH1 only approximates the traction-free edges condition (20% error)

while all the special prupose elements exactly satisfy this condition. Among the

traction-free elements, PL20 follows the exact solution very well, while PL21 tails

off at the special element/regular element interface and the curve for PL19 has in-

creasing slope rather than decreasing slope as in the exact solution.

With no further quantities of interest in Problem 1 and too small a basis for

making any broad observations, a second example problem will be considered.

Shown in Figure 4 is a circular, annular plate (inner radius, b; outer radius,a;

thickness, 2h) with the inner edge free and the outer edge clamped. It is subject

to a transverse load of magnitude P distributed as a line load along the inner edge

such that: P-2rbQo [21]. Again, by symmetry, it is possible to model a quarter of

the plate in an FER analysis. Only one mesh size is necessary (since displacements

were shown to converge in Problem 1): 4 elements in the radial direction and 6 ele-
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y
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Figure 4. Problem 2. Annular Plate
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ments in the circumferential direction. The traction-free edge elements are placed

along the inner edge ACGE. Note, this problem also tests the performance of the

elements as general quadrilaterals which approximate the circular edge with straight

line segments. All results are presented for the case: a=12.0 in, b=4.0 in, 0 =0

1.0, E=1.0 x 107 psi, h = 0.5 in and v = 0.3.

Since this problem is axisymmetric, a closed form solution can be readily ob-

tained, and various quantities of interest can be compared with numerical solutions.

In Graph 3, the deflections along line AB are plotted. As before, all the elements

predict this quantity well. Furthermore, along any other radial line (e.g., CD, GH),

the curves should not change and this is verified in the numerical results. The ro-

tation about the y-axis, ey, along line AB is shown in Graph 4. Notice, that traction-

free elements PL19 and PL20 underpredict the rotations at the free edge. This is un-

desirable in itself and may affect the predictions of moments and stresses subse-

quently.

Graph 5 shows the variation of M along line AB. M starts as a positive quanti-
y y

ty, passes through zero, and is negative at the clamped edge. Observe that PL19 and

PL20 behave poorly in terms of predicting the moment at the free edge and at the

special element/regular element interface. Element PL21 does well at the free edge

but shows slight difficulty at the special element/regular element interface. On

the other hand, the non-traction-free element, QHl, follows the analytic curve very

closely at all points.

The other moment of interest, M along line AB, is plotted in Graph 6. Thisx

moment is zero at the free edge and increases to a maximum negative value at the

clamped edge. Here, all the elements predict the moment well at the free edge, but

at the special element/regular element interface all the special purpose elements

are poor. PLI9 and PL20 grossly overestimate the moments (over 300% error) while

PL21 exhibits an error of about 50% at the interface. Also, PL19 and PL20 cause

the regular element at the interface to predict the moment poorly. Finally, at the
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clamped edge (where element QHl is always used), the moment, M x is underestimated

in all cases. More will be said on this shortly.

In assumed-displacement elements, much work has been done to determine those lo-

cations within an element at which the stress (and moment) predictions are best

[23,24,16]. These points are called "optimal sampling" points and depend on the or-

der of the polynomials used in the displacement interpolations for the elements.

Though such points have not been rigorously defined for hybrid-stress elements, it

is at least reasonable to assume that these points will not lie on the edges of .....

these elements. Therefore, in Problem 2, line AB (Figure 4) is not expected to be

a line of "optimal sampling". Moreover, if the "optimal sampling" behavior of hy-

brid-stress elements is like that in assumed-displacement elements, then for 8-node

elements, the "optimal sampling" points are the points used for 2x2 Gauss Quadra-

tur e.

Referring to Figure 4, line CD is a typical radial line which contains the 2x2_

Gauss points. In Graphs 7 and 8, the normal and targential moments, respectively,

along line CD are plotted. Notice that even along a line of "optimal sampling" trac-

tion-free elements PL19 and PL20 are unable to predict moments well. The large mo-

ment at the free edge in Graph 7 is largely underestimated by PL19 and PL20, while

at the special element/regular element interface both moments are predicted poorly.

On the other hand, special purpose element PL21 and regular element QHl both follow

the analytic solutions remarkably well along this line; though QHl still only approx-

imates the traction-free condition since the tangential moment is not exactly zero

at the free edge (Graph 8).

Recall, that in Graph 6, the tangential moment was underestimated at the clamped

edge. Along a line of "optimal sampling" this discrepancy vanishes; as shown in

Graph 8 this moment is predicted adequately at the clamped edge in all cases. This

gives further credibility to the idea of evaluating stresses at "optimal sampling"

points rather than arbitrary or convenient points in an element.
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Based on these observations, element PL21 seems the best candidate to use as a

single-layer, traction-free edge plate element. Unlike PL19 and PL20, it predicts

both rotations and displacements well. Though it predicts moments better than PL19

and PL20 in general; along a line of "optimal sampling" it predicts moments ex-

tremely well and shows a clear advantage over those elements. As far as element

QHl is concerned, ignoring its inherent deficiency of approximating the traction-

free edge condition, it performs extremely well in all cases.
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4. Summarv and Concluding Remarks

In this study, a single-layer, isotropic plate element with a straight traction-

free edge has been developed based on the hybrid-stress model. It can be coupled

with the regular version of this element (element QHl [13]) to perform the numer-

ical analysis of isotropic, arbitrary thin to moderately thick plates with trac-

tion-free edges.

The element assumes a Mindlin-type displacement behavior which not only results

in displacement interpolations that are only required to be C0 continuous but fa-

cilitates satisfying the 3-D equilibrium equations and the free-surface conditions

of the element. By including all components of stress, the transverse shear stresses

are present for the analysis of moderately thick plates where their contributions

are significant. The stress assumption for the element is chosen so that along one

of its edges the tractions (i.e. appropriate stresses) are zero; and, the $-q re-

lation, a necessary condition in the assumed-stress hybrid formulation, is satis-

fied. The element mapping is such that it can take on a general, quadrilateral

shape.

Though the number of stress fields which satisfy these conditions is theoreti-

cally limitless, arguements of minimizing the number of stress parameters quickly

narrows the choices. Extensive numerical experimentation and testing results in

the conclusion that, of the numerous stress fields considered, the 21-B stress

field of element PL21 is the best for the applications considered.

Element PL21 yields a stiffness matrix which exhibits correct rank, avoids "lock-

ing" in the thin plate limit, and yields displacements which converge as the num-

ber of degrees of freedom increases. Moreover, in a numerical analysis, element

PL21 predicts displacements, rotations, and stresses (moments) quite well in gen-

eral, and especially well along lines containing the 2x2 Gauss points which appear

to be "optimal sampling" points from which to obtainor extrapolate stress (moment)
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information.

However, it is important to realize that in all cases element QHl performs well

in predicting displacements and stresses; and, its only shortcoming is its inher-

ent inability to satisfy the traction-free condition exactly along an edge. This

seems to indicate that in single-layer, isotropic plates, the traction-free edge

condition is not crucial when trying to obtain a numerical solution and that the

extra effort to develop and'.use special elements to better model this condition

may not be necessary.

On the other hand, the stresses which dominate the solution of multi-layer, lam-

inated, composite plates (i.e. a z, axz, ayz ) have minimal effects in single-layer,

isotropic plates. In fact, these stresses have not even been considered in any

great length in this study. For this reason, the advantages of the traction-fuee

edge elements over element QHl may not be evident in single-layer plates.

Therefore, a multi-layer, traction-free edge, plate element based on element

PL21 should be developed and tested. This element when compared to the multi-layer

version of QHI should prove to perform better and exhibit obvious advantages when

analyzing laminated, composite plate structures with traction-free edges.
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CHAPTER 4

ELASTIC-PLASTIC ANALYSIS OF

SINGLE-LAYER PLATES

ABSTRACT

Two alternate hybrid-stress-based functionals are examined for the incremental

elastic-plastic static analysis of single layer plates. Material nonlinear effects

are incorporated via the initial-stress approach so that an equivalent nodal force

vector is defined and the stiffness remains constant throughout the incremental

loading. The alternate functionals differ in the incremental stress which is assumed

to satisfy equilibrium; in the first, it is the actual stress increment, and in the

second it is the elastic stress increment. Results are presented for two example

problems, and comparisons of the alternate functionals and plausible iteration

schemes are given. The effects of variation of pertinent solution parameters are

also shown. A 4-node hybrid-stress plate element based on a Mindlin-type displace-

ment field is used for most cases; however, limited results are also presented

using an 8-node plate element, thus permitting comparisons of the relative effi-

ciences of the two elements.
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1. Introduction

In the elastic-plastic analysis of structures by the finite-element method, three

incremental procedures are most commonly used; the tangent stiffness, initial-strain,

and initial-stress methods. In the first, nonlinear effects are incorporated via an

updated stiffness, whereas in the latter two methods, the structure stiffness re-

mains constant and plasticity effects are included as equivalent nodal loads. In

most cases, the analyses are based on assumed-displacement formulations; textbook

accounts and appropriate references may be found, for example, in References 1 and

2.

A viable alternative to the assumed-displacement model for both linear and non-

linear analyses is the hybrid-stress nodel. This model is based on a modified com-

plementary energy principle. Compatible boundary displacements and equilibrating

intraelement stresses are independently interpolated; the stress parameters are

eliminated on the element level resulting in a conventional element stiffness matrix.

Elastic-plastic analyses based on the hybrid-stress model E3-101 have been reported by

Yamanda et al [3], Luk [4], Spilker and Pian [5,73, Horrigmoe and Eidsheim [8],

and Barnard and Sharman [9]; these include applications 6f all three elastic-plastic

procedures. A survey of incremental hybrid-stress formulations for nonlinear prob-

lems has been presented by Pian [10].

The initial-stress procedure was first used in conjunction with the assumed-dis-

placement model by Zienkiewicz et al [11]. In this approach, the effects of mater-

fial nonlinearity are accounted for by a fictitious initial stress, a , equal to the

difference between an assumed elastic stress increment, &a', and the actual stress

increment, Aa (see Figure 1). The equivalent load vector is calculated by a weighted- ep

fintegral of a , and therefore the accuracy of the numerical scheme will be dependent

on the accuracy of intraelement stress distributions. Since the hybrid-stress model

yields improved intraelement stress predictions compared with analagous assumed-

displacement elements in many cases [e.g. 12,137, this model appears to be ideally

suited for use in conjunction with the initial-stress approach.
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Figure 1. Schematic representation and definition of stress and strain
quantities for the initial-stress approach for a 1-D problem.
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Alternate hybrid-stress functionals using the initial-stress approach have been

derived in References 5 and 7. These functionals, denoted by TI and 7 I, differSmc mc'

in the stress increment assumed to satisfy equilibrium; in 11mc , it is the (approx-

imate) actual stress increment (Aa in Figure 1), while in 7I it is the elastic

stress increment, Ac'. Extensive numerical studies for axisymmetric structures,

also including equilibrium imbalance corrections, suggest that 11 is the more
mc

accurate and efficient approach CS, 71.

However, a potential disadvantage of UlI is the need for intraelemnnt compatible
mc

displacement interpolations (not required in 1c For plate elements based on

classical thin plate theory, the required C1 continuity intraelement displacement

fields are not easily constructed and a 11 approach would therefore be intractable.mc

Applications of the hybrid-stress model to elastic-plastic plate bending, using

classical plate theory elements, have been reported in References 8 and 9. In these
I

approaches, as in 1mc , displacements are interpolated only on the element boundar-

ies and thus no difficulties are encountered in defining the C1 continuity inter-

polations.

Recently, a family of hybrid-stress plate elements have been developed for which

independent transverse displacement and rotations are assumed, and in which all com-

ponents of stress are included _14-161; the elements are thus applicable for thin

and moderately thick plates. Because only C0 displacement continuity is required,

intraelement displacements/rotation interpolations are easily constructed, and

thus the III approach is possible. The family of elements are based on 4-node,
mc

8-node, and 12-node Serendipity shape functions. In each case, the element stiff-

ness Is of correct rank, and the plate thickness may be taken arbitrarily small

without inducing solution 'locking'. In numerical comparisons, these elements, in

general, yield superior displacement and intraelement stresses in comparison with

analagous reduced or selectively reduced integration assumed-displacement Mindlin

plate elements. Because the hybrid-stress plate elements do not require a formal

separation of flexural and transverse shear stiffness contributions, the
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application of these elements to nonlinear problems will be straightforward and

no special modifications will be required in order to analyze plates from moderate

to arbitrarily small thickness.

In the present study, the plate elements of [14,15 are used with 7 1 and .II
mc mc

for elastic-plastic analysis. Equilibrium imbalance corrections are included in

all cases, and the effects of solution refinement and integration sampling points

are explored, primarily using TI and a 4-node plate element. Comparisons of ITIi
mc mc

and TI (using alternate iteration schemes) are presented which again show 7TI tomc mc

be the better approach. Also, limited comparisons of the 4-node and 8-node elements

are presented to assess the relative efficiency and accuracy of these elements in

nonlinear analysis.

2. Hybrid-Stress Functionals and Matrix Formulation

Details of the derivation of the alternate hybrid functionals from the incremen-

tal virtual work expression are found in Reference 5; only the final forms and ele-

ment matrix definitions will be given here for the sake of completeness. In vector

form, 1I and 'II may be expressed as:
mc mc

I f~au =a + ff S (a f dV - f aTA ed
mc 71 V V( n

+ f f u d5 , R-

n

S a
n

TI(AaAu) Z 1/2 fA SAa'dV -f -Aa E dV(2

+ ( =T
fJ ATAu dS +R*

where S an--

V n volume of the nth eleme~nt.

S = portion of the boundary of the nth element over which tractions
n

are prescribed.
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S = material elastic compliance matrix ( E--Sc).

a-= elastic stress vectDr
f

a= fictitious initial stress vector (a prescribed quantity).

a actual stress vector (i.e. Aa = Aa - f ).

u = displacement vector

E= "strains" calculated from displacements, u, via the linear strain-

displacement relations.

= prescribed tractions.

( ) = increment in the quantity ().

( )o = total value of the quantity ().

The term R* appearing in both functionals corresponds to the equilibrium imbalance
n

correction [ 5] and is given by (for no body forces):

.=- faoTAPdv+ f TT&udS
n vn Sn (3)

If the total stress at the beginning of an increment satisfies equilibrium, and

the total tractions satisfy the mechanical boundary conditions, R* vanishes.
n

In c' the actual stress increment, La, must satisfy the equilibrium equation;

fS&a= E(Aa - a) = 0
. . . . . . (4)

where E is the differential operator matrix corresponding to the homogeneous equili-

brium equations. In HI 1 , the elastic stress increment, Aa, must satisfy equilibrium:mc

E A" = E(Aa + a ) =0
-- - -ep(S

where Ao ep is the actual elastic-plastic stress increment (see Figure 1). In view

of equations (4) and (5), TII appears to be the more "consistent" hybrid-stress
mc

approach, and TII may be viewed as a modified Hellinger-Reissner approach since only
mc

a portion of the actual stress increment satisfies equilibrium. It should also be
I

noted that the second integral in Imc appears as a surface integral over the ele-
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ment boundary in the original formulation E5,71 (by applying the Divergence theor-

om to this term, with equation (4)), so that displacements need be defined only on

the element boundary (if R* is elminated). However, for the present application
n

where intraelement displacements are easily interpolated, the present form is pre-

ferred. Note also that an intraelement displacement field is always required when

using , and when R* is retained in 1IMC n mc

In the element formulations, stresses are expressed in terms of stress parameters,

8 (usually in polynomial form);

AC = P as for I (6a)
-- -mc

Aa"- pAS for II
- - - mc (6b)

such that the appropriate equilibrium equations (equations (4) and (S)) are exactly

satisfied. The intraelement displacements, u, are interpolated in terms oi nodal

displacements, q, such that appropriate interelement continuity is guaranteed;

A~u - N Aq (7)

The linear strain-displacement relations are applied to equation (7) to give

6 E B A.q
(8)

Equations (6) through (8) are substituted into equations (1) and (2), and the

following element matrices are defined

H = fTSP dV (9a)

V nn

G = dV (9b)

n

(9c)

n
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F " /Tf .  dV (9d)

n

f ./ B ° dV (9e)
V "

n

f j ,d (9f)

SN T T dS (9g)Io NTd s

Sn

Following 75,77 , the stress parameters are eliminated on the element level from

the resulting functionals according to;

AS =H'1G Aq - H-1F I  for 1I
-~ mc(la

A8 = Hi q for rTI I

(lOb)

When equations (10) are substituted back into the functionals, both II  and 11i may
mc mc

be put in the form;

,1 III Z [1I/2 Aq Tk Aq .&q T(&Q + Qf +RO 0

mc n . - (-'J

where

k GTHG = element elastic stiffness matrix. (12a)

Q= incremental element external load vector. (12b)

R Q - a equivalent element load vector corresponding to

the equilibrium imbala!.ce correction. (12c)

The vector Qf is the equivalent element load vector corresponding to the fictitious
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initial stress and differs for the two functionals:

Qf GTHIF I  for hI (13a)

f FII  for 11I
S=mc (13b)

Following the usual assembly operations, the stationary condition of I! yieldsmc

the following system of equations, written-for the ith increment (fTo applied load

i-i to applied load i):

f* 0*
K q Q +Q + *R

I i - 1 -1
(14)

where the starred ( )* quantitites refer to the assembed system and K is the global

elastic stiffness matrix.

To solve equations (14), K is factored prior to the first load increment, after

which Aq. can be calculated at each increment by the forward/backward substitution

operations. Note that Q. is not known for the ith increment, but can be extrapo-

lated or estimated from data at the previous increment. In the present applications
f* f*

= Qi is used in conjunction with iteration within a load increment. The equi-

libri correction vector, R , is calculated from the total stresses and total
-2.

external load at the beginning of an increment, which are known.

3. Elastic-Plastic Material Relations

The effects of material nonlinearity are incorporated in the fictitious initial

stress, a f. In order to calculate a f, the correct "elastic-plastic" stress incre-

ment, A ep corresponding to an increment in total strain, A £, is required (Figure

1). This relation is given by

= D Ac lS

-Cep - ep - (is)

where Dep is termed the elastic-plastic material matrix.

- ep



124

The matrix Dep is determined from the flow theory of plasticity, assuming a

yield surface F(C,ic) - 0 and an associated flow rule. It can be shown that Ee.g. 5,

il1i

IS ,F TP 13F\T ~ -

"ep 2 - ROM-) t k5C ; (16)

where D is the elasticity matrix (a -D r) and E is the slope of the equivalent

stress versus equivalent plastic strain curve. D is symmetric and positive def-
-ep

inite and equation (16) is valid also for elastic, perfectly-plastic materials

p(i.e. E = 0). Note also that Dep is stress-history dependent and must therefore(i t ~ ep

be evaluated for each sampling station at each incremental step.

In the present analysis, the Huber-Mises-Hencky initial yield criterion is adopted.

For 3-D stress states (as in the plate elements to be used here), the yield surface

is:

F(o,K) = [(Cx _ y)2+ (a a)2 2

V-7 - Lx x z +(Oy -z) (17)

+ 6a2 + 6a2 + 6a2 1/2 0
xy x= yz 0

and therefore

1 -172 -112 0 0 0

-1/2 1 -1/2 0 0 0

3F 1 -1/2 -1/2 1 0 0 0 (18)
ao 0 0 0 3 00

0 0 0 0 3 0

0 0 0 0 0 3

where ao is the uniaxial yield stress.

The examples considered herein assume elastic, perfectly-plastic material behavior.

For strain hardening materials, various mathematical models Ce.g. 17-197 could be

incorporated.



4. Calculation of Equivalent Element Loads

The expressions for the equivalent element loads, Qf and F° , require the dis-

tributions of :r and 0 which, in the plastic range, can only be determined num-

erically. Thus, and F° are evaluated using a numerical integration rule (Gauss

quadratuze in the present case) so that af and a0 (and appropriate matrices) are

evaluated at numerical integration stations. A flow chart indicating the steps're-

quired for Qf and F0 for an element and for both 17 and .1II is given in Figure 2.
- -mc mc

I I
Note that steps unique to n1I or 11 have been prefaced by "I" or "II", respectively;

mc mc

otherwise the steps are identical for both functionals.

A comparison of the two precedures shows that i'l requires more core storaie
mc

(both H'IG and H"I must be stored for each element) and more operations. As a rough

benchmark estimate of the relative computation times required for the evaluation

of-Qf and F0 for 2I and :1 11(for one element), the number of multiplications
-mc MC

required for the matrix operations in Figure 2 can be determined. Table 1 gives the

multiplication counts for each of the operations in Figure 2; note that it has been

assumed that all matrix operations are done in full without accounting for symmetry

or zeroes. Summing the contributions, and ignoring the equilibrium correction, the

total multiplications (for one element), M and M for .I and Imc respectively," ' ' mc m

are:

M 33nn n nn n n In + n + a(Sn2+ 3n + n
Sq x y z s i s ns s 3 (19a)

M nn+I  n n {n s + n + L3 n q} + n
=n 3 nq *nxny z s { na 3n n (19b)

where a is the ratio of the number of integration stations per element at which

yielding occurs to the total number of integration stations per element, The

remaining parameters have been defined in Table 1. These expressions will be used

later to compare various solution strategies. Further discussion of the alternate

functionals and solution procedures is found in Reference (5].
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Table 1. Benchmark multiplication counts per element for the 127
evaluation of the equivalent load vector correspon-
ding to material nonlinearity.

Computations mI II

A_ 2nsn o  n na

oa, n nn nsn

4 ^ 2 2n n
SS __ _ __ _ _

-J. D 3n 3n
-.- - ep s s

2 2
(1) nn

FI I I  ) n2 + nsn nsn qS _
9f  nqn3

(1) These computations are necessary only if yielding occurs at

that station.

Legend:

n8 = number of 3's per element.
nq = number of degrees of freedom per element.
ns = number of stress components.

n z f number of z integration stations.

nx = number of x (or i) integration stations.

ny number of y (or n) integration stations.

_ :• . .: . : - . . , . , ' . ... . ..y.
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Finally it should be noted that the operations and computation time when using

the assumed-displacement model with the initial-stress approach :111 is roughly

equivalent to that required for TI 3s].
mc

S. Iteration Schemes

Typically, nonlinear schemes make use of a combination of load increments with

iteration within each load increment cycle. In the present study, two alternate

iteration schemes are used. In both, equation (14) is first solved for A-i cor-

responding to an applied increment in external load and including any fictitious

forces, Q , remaining from the previous step and, if desired, the load correspon-

ding to equilibrium imbalance. In the first iteration scheme, a series of itera-

tions, governed by the equation (for the kth iteration within the ith external

loading increment).

k Sk-l
(20)

are performed until the equivalent load corresponding to the fictitious initial

stress is sufficiently small; ie. until

/TI / < RCONV (21)

where RCONV is a small parameter (e.g. 0.01), k )I denotes the magnitude (squared)

of the vector (), and Q0  corresponds to the equivalent load vector prior to the

first iteration (comp~ited for the applied external load increment). This scheme

is termed iteration scheme A, and is depicted_ for a one-dimensional stress-strain

curve in Figure 3a. Note that displacments, stresses, and strains are continually

updated during the iteration cycle. When equation (21) is satisfied, the solution

proceeds with equation (14) for the next increment in external loading.

Scheme A has been applied to both HI and 11 in Reference 75,77 •mc mc

Note that equation (36) in Reference [11] is incorrectly stated and
should correspond to the present equation (21).
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However, it is believed that scheme A is best suited for .I as verified inMC ,

the studies of '5,7:. In those studies, the use of 7T and scheme A yielded Door
mc

predictions of strain. From Figure 3a, it is apparent that, with ,I f must van-S mc

ish in order for the assumed stress increment, a. to be equal to the actual stress

increment, aaep. In addition, from equation (5), a f = 0 is required if aep is to

Isatisfy equilibrium. In contrast, from Figure 1 and equation (4) for Tmc, it is observed

that c . 0 is not required in order for the interpolated stress Aa to be equal to

the actual stress, Aaep, and therefore A aep to satisfy equilibrium.

An alternate iteration scheme, termed scheme B 75,7Z, would therefore appear to

be more appropriate for a Ic . In this scheme, the equation governing the kth itera-
mc

tion within the ith external loading increment is

kq -1 -k-1 (22)

where Qf* (i.e. k=l) is zero. This scheme (see Figure 3b for an illustrative I-D

case) seeks to satisfy the condition

f f
Jk Ek-l (23)

which, if satisfied, implies that

Ai= Zaep i  (24)

for the ith external loading increment. The iteration process is determined to be

converged when /f*

9k-i /< RCONV

f*1 (2S)

is satisfied. In scheme B, total displacements, stresses, and strains are updated

only after equation (25) is satisfied, using the incremental quantities computed
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Figure 3. Schematic 1-D representation of iteration schemes A and B.



1ap

Ac 1 de

E 
A-

UNIAXIAL STRAIN, E
(b) LOAD ITERATION SCHEME B

Figure 3. (concluded)



132

for the final iteration step.

An advantage of scheme B with I is that, in view of equation (24), total stresses
mc

may be updated using ac. Since Aa satisfies equilibrium, the total stress, a , will

be in equilibrium and no equilibrium imbalance correction is needed. If R0 can be

ignored, no interior displacement field need be defined when using I . This ismc

particularly important for elements requiring C1 continuity, but is of no real con-

sequence for C continuity elements (as in the present application).

6. Description of Plate Elements

The plate elements to be used are taken from a recently-developed family (4,3, and

12 node) of hybrid-stress plate elements [14-16-. The elements utilize independent

interpolations for the transverse displacement, w, and cross-section rotations, Gx

and e y, so that any of the C0 continuity families of shape functions may be used
(in these cases, the Serendipity shape functions). In general, all components of

stress are included, allowing for the analysis of moderately-thick plates.

Results presented in References 14-16 show these elements to yield comparable or

superior results when compared to the analogous assumed-displacement plate element

(also based on a Mindlin-type displacement behavior and utilizing reduced or selec-

tive-reduced integration). Each of the hybrid-stress elements of this family has a

stiffness of correct rank (i.e. no spurious zero energy modes) and the elements will

not 'lock' for arbitrarily thin plates, independent of machine precision used.

Comparisons made in Reference 16 suggest that the 8-node and 12-node elements are

the more accurate per degree-of-freedom in the assembled structure. However, 12-node

elements may be impractical for general applications. Also, for nonlinear analyses,

where computation time is strongly dependent on element-level operations, the 4-node

element may be preferred. In the present study, both the 4- and 8-node elements will

be used (with most emphasis on the 4-node element).

The elements, both of which allow for isoparametric planforms, are shown in Fig-

ure 4. Briefly, the 4-node element (termed LH4 C14] ), contains 12 degrees of free-
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dom and is based on a 115 stress field (bilinear x,y variation for inplane stresses).

Note that a = 0 in LH4. The 8-node element (termed QHl [15] ), contains 24 degrees-

of-freedom and is based on a 23B stress field (bicubic x,y variation for inplane

stresses) with a z 0.

It is important to observe that a criticism E8] of , II for plate analyses - - -
mc

the requirement of an interior displacement field yielding C1 interelement contin-

uity - - - is no longer valid. The interior displacement fields for the present

plate elements (C continuity) are easily constructed, and 1II does not present
mc

any formulation or computational difficulties.

7. Example Problems and Numerical Results

The problem of a simply-supported thin beam subjected to a uniformly distributed

transverse load of magnitude, P, has been chosen as a first test. An analytic solu-

tion for this problem is available [203 under the assumption of elastic, perfectly-

plastic material behavior. Here, the beam length is 10.0 in, depth is 1.0 in.,

thickness is 0.1 in. The elastic material constants are E = 107 psi, and v = 0.3,

with a uniaxial yIl d stress of 104 psi. First yielding will occur at the beam

center at a load of 1.33 psi, and the fully-plastic load is PFP = 2.0 psi.

For initial comparisons, the 4-node plate element, LH4 [14],is used and half of

the beam span is modelled by a mesh of NDX by NDY equal-sized elements (see Fig-

ure 5).

For a given functional, effects of various parameters can be examined; these in-

clude iteration scheme (A or B), number of equal-size load increments in the load

range from initial to full plasticity, NINC (i.e. the load corresponding to first

yield, P=1.33 psi, is applied first, after which increments in load corresponding

to AP-(2.0-1.33)/NINC are applied. Loading ceases at the theoretical fully plastic

load), convergence ratio, RCONV, maximum number of iteration permitted per load

step, MAXIT, mesh size (NDX, NDY), and integration stations for computing the equiv-

alent loads (NGX,NGY,NGZ). Unless otherwise stated, NDX - 4, NDY = I is used;
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remaining parameters are defined on each figure. In all cases, the predicted nor-

malized center transverse displacement (normalized by the center deflection

at first yield) versus the applied load (normalized by the fully-plastic load,

PFP) is compared with the analytic result. In a first series of tests, only

1I will be used (determined to be the superior functional in C5,73). In all cases
mc

the equilibrium imbalance correction is included and iteration scheme A is used.

The effects of NINC (number of load steps from first to full plasticity) is shown

in Figure 6 where MAXIT = 1 so that no iteration is used. Decreasing load step

sizes lead to an improved response, particularly near the fully-plastic load. The

effects of maximum permitted iterations per load step, MAXIT, for load increments

NINC = 8,4, and 2 are shown in Figures 7a through 7c, respectively. In each case,

MAIT = 1 (no iteration), 10 and 20 are used. For smaller load steps (NINC = 8,

Figure 7a), iteration has a major effect only near the fully plastic load; however,

increasing MAXIT from 10 to 20 has no effect on the solution. For increasing load

step size (NINC = 4, Figure 7b), MAXIT has a greater effect and differences are

observed between MAXIT = 10 and 20. For large load steps (NINC - 2, Figure 7c),

solutions are poor even when MAXIT = 20.

The effects of convergence ratio, RCONV, are shown in Figure 8 for NINC = 4

and MAXIT = 20; a value of RCONV = .01 has been used previously. Increasing RCONV

to .1 has a discernable effect at all load levels, whereas decreasing RCONV to

.001 produces significant effects only for the last load step. Arbitrary

decreases in RCONV without a corresponding increase in MAXIT will not, in general,

lead to a significantly improved solution as MAXIT will terminate the iteration

cycle for load steps in severely nonlinear regions. For practical purposes, values

of RCONV a .01 and MAXIT a 10 are believed to be adequate. Converging results can

then be sought by increasing the number of load steps (smaller load increments).

The computation time required to compute the equivalent load vector is nearly

proportional to the number of integration stations employed (see Table 1 and equa-

tion (19b)). The question of through-thickness and inplane stations can, however,
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be examined independently. The through-thickness distributions used for all stress

components in the present hybrid-stress plate elements should correspond to the

'exact' distributions for thin to moderately-thick plates in the linear elastic

region. Yielding will, in general, initiate at and progress from the plate upper/

lower surfaces, resulting in discontinuous through-thickness stress distributions

(for cxa oy, and a xy). This, in principle, requires that increasing numbers of z

integration stations be used (which therefore locates stations closer to the upper/

lower surfaces). The effects of NGZ (number of z stations) are shown in Figure 9a

where NGX=NGY=3 and NINC=4. Decreasing NGZ from 3 (used in all previous cases) to

2 severely stiffens the solution, whereas increasing from NGZ=3 to NGZ=4 produces

only a slightlr improved solution. In view of the increased computation time asso-

ciated with NGZ=4 compared with NGZ=3 with only marginal improvement in the results

obtained, the value NGZ=3 would appear to be the appropriate choice.

The selection of the number of inplane stations, NGX and NGY, is dependent on

the accuracy of the predicted x-y intraelement stress distribution; i.e. there is

no merit in sampling stresses (from which equivalent loads are calculated) at lo-

cations where predicted stresses may be severely in error. For assumed-displacement

elements, optimal sampling points can be defined Ue.g.21,22] and used. No such

points have been rigorously defined for hybrid-stress elements; however, stre~s

results given in [14] for linear analyses suggest that LH4 yields good intraele-

ment stress predictions throughout the element, and therefore increasing NGX and

NGY should produce improved results. Figure 9b shows the effects of NGX and NGY

(for NGZ = 3). The results for NGX=NGY=3 are marginally improved compared with

NGX-NGY=2. The solution for NGX-NGY=l is slightly stiffer until the final load

step where an excessively flexible solution is obtained; once this point is fully

yielded, the entire element is assumed to be yielded and a mechanism forms pro-

ducing the excessive flexibility. In view of the results obtained and computation-

al considerations, NGX=NGY=2 is recomended.

The 1 point inplane integration can lead to acceptable results if a more refined
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mesh is used, as shown in Figure 10. Using the NDX-4, NDY=1 case as a basis for

comparison (with NGX=NGY=I), the excessive flexibility no longer appears when NDX=

S, NDY=l is used (note that a fully plastic :one has not yet been reached in this

solution at P=PFP). Increasing to NDX=8, NDY=2 shows a slight improvement.

Using the benchmark multiplication counts given in Table 1, total multiplications

(for a load increment or iteration cycle, and a specified number of elements, as-

suming yielding occurs at all integration stations) have been computed for a number

of cases of interest and are given in Table 2. Based on these benchmark counts,

the use of a 2 by 2 block of elements with NGX=NGY=l in each element should re-

quire a similar computational effort compared with 1 element and NGX=NGY=2. This

is analogous to an Sx2 mesh with NGX=NGY=l and a 4xl mesh with NGXZNGY=2. Results

for these two cases, shown in Figure 11, indicate that the first approach is su-

perior, despite the fact that the predicted elastic center deflecion is nearly iden-

tical for both meshes. This improvement would therefore appear to correspond to

superior stress accuracy at the element centroid compared with the 2x2 Gauss

stations.

II
The results presented thus far have been obtained using I . Similar studies have

been carried out using RI which verify the general trends (with regard to NINC,
mc

AXIT, RCON, and integration stations) observed for ' II. A more important con-mc

sideration is the effect of iteration scheme. Figure 12a shows results obtained

using iteration scheme A for a coarse load/iteration solution (NINC=4, LAXIT=l)

versus a refined solution (NINC=8, MAXIT=I0). In both cases, NDX=4, NDY=l, RCONV=

.01, NGX=NGY=2, NGZ=3 are used. The coarse solution is stiff (as expected) whereas

excessive flexibility is observed for the refined solution; the predicted center

displacement exceeds the exact value for P/PFP > 0.75. Such behavior is judged

unacceptable and it would appear that iteration scheme A is not well suited to

. Note that further solution refinement (results not shown) leads to increased
mc

flexibility.



146

0.- _Z 1if
x xI xI X0x

Ifto 4
J

z

w

o 0

z

14-4 C

0

u t4

(dd/d) 3VOl (33Z11VNON



147

Table 2. Multiplication count comparisons for various cases of interest.

Functional (l) Element (2) nxs nxny n. elemsP 5  mults.

I LH4 6 2 3 1 11,484

I LH4 6 1 3 1 3,168

_----

I LH4 3 2 3 1 2,592

I LH4 3 1 3 1 945

II LH4 6 2 3 1 10,860

II LH4 6 1 3 1 2,814

II LH4 3 2 3 1 2,256

II LH4 3 1 3 is 663
__-.-

II LH4 6 2 4 1 14,436

II LH4 6 1 3 4 12,672

II QH1 6 2 3 1 13,008

II QHl 6 3 3 1 28,578

II QHl 3 2 3 1 3,540

Notes: (1) "1" and "II" correspond to lI and 1II respectively.mc mc'

(2) For element LH4, n q 12 and n, = 11.q

For element QHl, n q 24 and nS  22.

(3) Number of elements for which the equivalent load is com-
puted. It is assumed that yielding occurs at all integra-
tion stations.
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By comparison, results obtained by using H I with iteration scheme B for themc

coarse and refined solutions are shown in Figure 12b. For the coarse solution,

scheme B yields a more flexible solution compared with scheme A, whereas the

refined solution by scheme B is stiffer than that of scheme A. The scheme B

refined solution is in good agreement with the analytic solution, although

slightly more flexible than the analytic solution, and is therefore the preferred

I
scheme with IT. Note that further refinement of the scheme B solution yields

no discernable change.

A comparison of 7I with scheme B and H with scheme A for coarse and refinedmc mc

solutions is shown in Figure 13. Recall that for all cases, load has been applied

only up to the theoretical fully-plastic load, PF. Thus, for example, the re-

fined n II run, which underestimates the displacements, would produce, effec-
mc

tively, infinite displacements by application of an additional small increment

in external load beyond P = P .P

Both functionals (with an appropriate iteration scheme) appear to lead to con-

vergence to the analytic solution. Such observations were also made in References
II

5 and 7 for axisymmetric structures. However, 11 requires less computation time
mc

per cycle; see References [5,7] and benchmark multiplication counts in Table 2.

Therefore, -i1 would again appear to be the preferred functional.
mc

Before presenting results for a more general plate problem, several observations

related to computation time should be made. In the cases considered here, all

components of stress have been included (i.e. ns = 6). For moderately thick

plates, all components should be retained, whereas for thin plates axz' ay." and

az are negligible and could be ignored in the computation of equivalent loads.

From Table 1, total multiplications are strongly influenced by the number of

stress components retained, ns, and for selected cases computed in Table 2, it

is apparent that a reduction from n5 = 6 to n. 3 can lead to substantial reductions

in multiplications (i.e. by a factor of 4-5 times). Results (not shown) for the

beam problems (thin plate) show the two solutions (n, 2 3,6) to be essentially iden-
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tical.

Results presented also suggest that NGZ=3 is adequate for through-thickness

integration. If the plate is thin so that ns = 3 can be used, the remaining

stresses (,:Tyaxy) are zero at z=O, corresponding to the center integration

station for NGZ=3, and this point can be skipped in the integration loop. The

result is a reduction of multiplications by approximately 33%. Finally, it is

noted that in the elastic-plastic plate analysis of Horrigmoe and Eidsheim r87,

the yield surface has been expressed in terms of moments, thereby avoiding through-

thickness numerical integration. There is no difficulty in adopting such a pro-

cedure with the present element and functionals by operating with analytically

integrated stresses. However this approach has not been pursued because of the

inherent smearing of actual partial yielding effects through the plate thickness.

The second example problem is a simply suppotted square plate of side length

10.0 in., thickness 0.1 in. subjected to uniform load of magnitude P (Figure 14).

The material is assumed to be elastic perfectly plastic with E = 107 psi, V =

0.3, and 0 = l0 psi. Upper/lower bounds for thi problem correspond to loads of

6.63 and 6.23 psi, per Hodge and Belytschko 723]. Symmetry is utilized and a quar-

ter of the plate is modelled by a uniform NDX by NDY mesh.

Because H is the computationally preferred scheme, only 1iI with iterationmc mc

scheme A and including equilibrium imbalance correction is used in this example.

In view of the parametric studies for the beam problem, the parameters MAXIT=10,

RCONV=.0l, NGX=NGY=2, and NGZ=3 are used unless otherwise stated. A load corres-

ponding to P = 3.47 psi is applied first, after which the range P = 3.47 to 6.63

psi is divided into NINC equal increments in load. Results are presented in terms
W D

of the normalized center transverse displacement M -  L (where D is the flex-p

ural stiffness, and Mp is the plastic moment at full yield) versus the normalized
pL

2 "

total load 7 = PL2

p
The effects of iteration (using a 2 by 2 element mesh for which the elastic

tip deflection is in error by less than 2%) are shown in Figure 15.
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Sides AB and AD: w=On--O
Side BC: Oy--0
Side DC: ex =0

Loading: Uniform of magnitude P (lb/in)
Mesh: NDX by NDY mesh of elements LH4 (shown)

or QHI.

Figure 14. Mesh, geometry, and boundary conditions for the exanple
problem of a square plate under uniform load.
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Increasing MAXIT yields a more flexible solution. The MAXIT=l0 solution will

produce a fully-plastic load slightly above the upper bound value, whereas the

MAXIT=20 solution will fall within the upper/lower bounds.

The effects of mesh size and inplane integration stations are shown in Fig-

ures 16a and 16b. The comparison between the case of a 2 by 2 mesh with NGX=

NGY=2, and the case of a 4 by 4 mesh with NGX=NGY=l (approximately equivalent

in terms of computational effort), Figure 16a, suggests that the latter approach

is superior; although the predicted fully-plastic loads will not differ substantially,

details of the load-deflection results are clearly different beyond a normalized load

of p>18.0. The effects of mesh (NDX,NDY), for NGX=NGY=l (Figure 16b) show little

change in predicted response beyond a 3 by 3 mesh.

In Reference [161, comparisons of the hybrid-stress family of plate elements

suggest that the 8-node element, QHI, is in general more accurate than the 4-node

element, LH4, per degree of freedom in the assembled mesh (an exception is the

simply-supported plate under uniform load). A reasonable comparison of these two

elements for elastic-plastic analysis corresponds to a 2 by 2 block of LH4 elements

with NGX=NGY=l replaced by one QHl element with NGX=NGY=2. Benchmark multiplication

estimates in Table 2 suggest that the LH4 analysis will require slightly less

computational effort. Results obtained using a 4x4 mesh of LH4 elements with

NGX=NGY=I, compared with a 2x2 mesh of QHI elements with NGX=NGY=2 are showm in

Figure 17. The two schemes are found to produce nearly identical results. Actual

CPU times show that the LH4 analysis requires approximately 80% of the time re-

quired for the QHl analysis. It should be noted that for the elastic analysis of

a simply-supported uniform loaded plate, LH4 is more efficient than QHl. However

for other boundary conditions/loading, QHl is more accurate per degree of freedom

[163 and advantages of QHl over LH4 in the elastic-plastic analysis may be found.
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8. Concluding Remarks

The elastic-plastic analysis of plates has been performed by using alternate hybrid-

stress functionals based on the initial-stress approach for material nonlineari-

ties. Accurate results have been obtained using both ITI with iteration scheme B,
mc

and rIU with iteration scheme A. In principle, III has the potential difficultymc mc

of requiring an intraelement displacement field. However, this poses no problems

for the plate elements used here for which such interpolations are easily constructed.

On the basis of computational effort, n I is preferred over ITmc mc"

Results obtained suggest that a 2 by 2 inplane and 3 point through-thickness

integration rules are adequate for evaluation of the equivalent nodal loads corres-

ponding to plasticity effects for the 4-node element. Although no such examples have

been shown, the elements and procedure used here can also be applied to moderately-

thick plates. Because the 4-node plate element produces good intraelement stress

distributions, the use of a 2 x 2 inplane Gauss rule leads to improved results

compared with a 1 point rule, for fixed mesh size. However, the 1 point rule, coupled

with a more refined mesh may be more effective from a computation time versus accuracy

viewpoint. Significant computational savings can also be realized for thin plates

by using only the inplane stresses to compute the equivalent loads and bypassing

the z=O integration station of the 3-point through-thickness rule.

A single comparison betweente 4-node element (LH4) and 8-node element CQHI)

shows that the use of the simple LH4 element is more efficient computationally.

However, for other loadings and boundary conditions, this observation could be

reversed. In QH1, a is included, whereas a Z 0 in LH4. If, for example, the pres-

ent elements/analysis were extended to the material nonlinear analysis of multi-

layer laminated composite plates, a QHl-type element should be preferred because

of the dominant role of a near free-surfaces for relatively thin laminated plates

[24, 25].
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EDGE SINGULARITIES IN A.NISOTROPIC COMPOSITES

ABSTRACT

The stress singularity at the vertex of an anistropic wedge has the

torm r 'Fir,i) as r-O. where 0 < < 1 and F is a real function of

the nolar coordinates (r,5). In many cases, F is independent of r.

The explicit form of F(r,@) depends on the eigenvalues of the elasticity

constants, called p here, and on the order of singularity <. When <

is real, =<. If < is complex, is the real part of <. The p's

are all complex and consist of 3 pairs of complex conjugates which reduce

to ±i when the material is isotropic. The function F depends not only

on p and <, it also depends on whether p and < are distinct roots

of the corresponding determinants. In this paper we present the function

Fr ,9) in terms of p and < for the cases when p and < are single

roots as well as when they are multiple roots. The reiationsiip oet',een

the complex variable Z introduced in the analysis and the polar

coordinates (r,e) is interpreted geometrically. After presenting the form

of F for individual cases, a general form of F is given in Eq. (64).

We also show that the stress singularity at the crack tip of general

anisotropic materials has the order of singularity = which is a

multiple root of order 3. The implication of this on the form F(r,9) is

discussed.

.
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1. INTRODUCTION

For isotropic materials, use of the biharmonic function, or the Airy

stress function, seems to bt the universal approach in the analysis of

stress singularities [1-4]. There appears to be no universal approach in

analyzing the stress singularities in anisotropic materials. Lekhnitskii

[S] introduced two stress functions to analyze general anisotropic materials.

His approach was used by Wang and Choi [6] to study the thermal stresses

at the interface in a layered composite. Green and Zerna [7] employed a

complex function representation of the solution. Their approach was used

by Bogy [8] and Kuo and Bogy [9] in conjunction with a generalized Mellin

transform to analyze stress singularities in an anisotropic wedge. It

should be mentioned that plane deformation was assumed in [7-9] and hence

the material property was assumed to be symmetric with respect to the plane

of deformation.

In this paper we use the approach of Stroh [10] whose analysis was

further developed by Barnett and his co-workers (see [11], for example) to

study the surface waves in anisotropic elastic materials. An excellent

review article on surface waves in anisotropic elastic materials was given

by Chadwick and Smith [12]. Although no stress singularities were studied

in [10-12], their approach is used here to find the stress distribution at

an anisotropic wedge. A recent study by Dempsey and Sinclair [3] on

isotropic elastic wedge problems shows that the singularity analysis can be

accomplished without resorting to the Mellin transform even when the

boundary conditions are not homogeneous [4]. Following their analysis and

using the approach of Stroh, we present here possible forms of stress

distribution near the vertex of a wedge or a composite wedge of anisotropic

materials.
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The stress distribution near the vertex of a wedge or a composite

wedge depends on whether the eigenvalues p of the elasticity constants

are distinct. It also depeads on whether the order of singularity K is

a single or multiple root. The purpose of this paper is to show how one

can derive the form of stress distribution when p and/or K are not

single roots. We also show the geometrical meaning of the complex variable

Z in terms of the polar coordinates (r,e).

Finally, as an application, we consider the stress singularity at a

crack tip of general anisotropic materials.

2. BASIC EQUATIONS

In a fixed rectangular coordinates xi, (i=1,2,3), let ui, ij

and e.. be the displacement, stress and strain, respectively. The

continuity condition, the stress-strain law and the equations of equilibrium

can be written as

Cij = (u i/axj + Du /axi)/2 (1)

aij = cijkZ 'kZ (2)

30i /3x. = 0 (3)

where

cijkZ = ¢jikZ = 'ijZk = 'kZij (4)

are the elasticity constants of the anisotropic material. Unless stated

otherwise, repeated indices imply summation.

We assume that ui and aij are independent of the x3-coordinate.

Hence we assume that

Z = x1 + px2 (5)
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u. = uif(Z) (6)

a.. -- T..df(Z)/dZ (7)
1j 1J

where f is an arbitrary function of Z and p is an eigenvalue of the

elasticity constants to be determined shortly. u. and T.. are indepen-
1 1j

dent of x1 and x2 but they depend on the eigenvalue p. Substitution

of Eqs. (6,7) into Eqs. (1-3) yields the results

Tij = (cijkl +Pcijk2)Uk (3)

DikUk =0 (9)

where

Dik = cilkl +P(Cilk 2 +Ci 2 kl) +Pzci 2 k2  (10)

For a non-trivial solution of uk, the determinant of Dik must vanish.

This provides the eigenvalues p. Equation (9) then provides the eigen-

vector U..1

3. EIGENVALUES AND EIGENVECTORS OF THE ELASTICITY CONSTANTS

In view of Eq. (4), CijkZ has only 21 constants. If we wxrite

Eqs. (2) and (4) as

(.= .. ., c.. =c.. (Ii)1 13J 1j j i
where

a1 1 il 02 = 022, 03 033,
(12)

04 023, as - 013, 06 a 12,

C, = ll, C2 
= C2 2 , E3  E 33 ,

E4 = 2F23, E5 = 2c13, C6 2 12. (13)

the coefficients in Eq. (10) can be written as
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c11  Cl6 cis

Qik = Cilkl = c6
1 c6 6  c65

c 51 c56 c55

c16 c12 c14

R =c = i c6 6 c6 2 c6 4  (14)Rik Cilk2 (4

[c5 6 c5 2 c54

c66 c62 c64"

Tik = ci2k2 =I c 26 c2 2 c 2 4

I 46  c42 c44 .

Equation (10) can then be written as

Dik = Qik + p(Rik + Rki) + p2Tik (15)

and vanishing of the determinant D ik means

C1 1+2pc 16+p C66 c16 +P(C1 2+C66 )+P c26 Cls+p(C 1 4 c5 6 )+P c4 6

c16+p(C 1 2+c66 )+p c26  c66 +2pc 26 +p C22  CS6+P(C2 5+C4 6 )+p 2c24  0 (16)
2 2 2

Cls+p(CI4 +C56 )+p c4 6 c56 +P(C25 +C46 )+p c2 4  c5 5+2pC 45 +p C4 4

Eq. (16) provides six eigenvalues of p.

For each of p the associated u 's are obtained from Eq. (9). In1

general, Ui, (i= 1,2,3) are all non-zero. Hence, u,, u2 and u. are

coupled.

As to Tij, we let j = 1 and 2, respectively, in Eq. (8) and use

the notations of Eq. (14) to obtain

il (Qik + pRik)uk

(17)
i2 (Pki +pTik)uk

i m~~mm m lra m ml m m m mlmm W ml mmm mlmmmml m m m m m-4
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It follows from Eqs. (9,15,17) that

Til +PTi2 = 0 (18)

and hence

1= "PP22' T1 1 = P2_22' C13 -PT23  (19a)

Therefore, of the six components Tij, all we need is T2 2' T33 and T2 3'

They are obtained from Eqs. (17) and (8) with the aid of Eq. (14). The

results can be casted in the following form:

(Cil + PCi6) + (ci 6 + PCi2) U+ (ci 5 + PCi4)U3  (19b)

(i = 2,3,4)
where

T2 T 2 2 ' 3 = T33' T4 
= T 23  (19c)

Notice that since Qik and Tik are symmetric, so is D. Notice

also that c3j, (j = 1,2,...,6) are not present in Eq. (16). Therefore, the

eigenvalues p are independent of these elastic constants. In fact, the

stress singularities are also independent of these elastic constants.

Equation (16) is a sextic equation in p. If the strain energy is

positive definite, it can be shown that p cannot be real [10,121. There-

fore, we would have 3 pairs of complex conjugate roots for p.

When the material property is symmetric with respect to the (x,x3)
2' 3

plane or to the (xl,x 3) plane, Eq. (16) reduces to a cubic in p2  [10].

Since every cubic has at least one real root, one of the p's will be

purely imaginary when (x2,x3) or (xl,x 3) is a plane of symmetry.

4. UNCOUPLING OF u3 FROM ul AND u2

When the material property is symmetric with respect to the (x1,X2)

plane, we have

c14 = c1 5 = c24 = c25 = c 34 = c 35 = c 4 6 = c56 = 0 (20)
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Equation (16) then reduces to

c11 +2pc 16 +P'c66  c16 +p(c12+c6 6 )+P c26  0

2 2 0= 0 ( 1
c 6+p(C 2 +C66 )+p c2 6  c6 6+2pc 26 +p 2  0 0 (21)

2
0 0 c55 +2pc 4 S+p c4 4

Therefore, instead of a sextic we have a quartic equation and a quadratic

equation in p.

If p is a root of the quartic equation, we see from Eqs. (9,21) that

U3 = 0. Moreover, Eqs. (19) show that T13 =T 23 =0. Hence, we have a plane

deformation.

Similarly, if p is a root of the quadratic equation, u, =u 2 = 0 and

rll=r 22 =r33 =r 2 =0. This is an anti-plane deformation.

Therefore, when Eq. (20) holds, the plane deformation and the anti-

plane deformation are uncoupled. Since the system is linear, we may consider

them separately when Eq. (20) holds.

5. GEOMETRICAL INTERPRETATION OF Z = x1 + Px2

Let a and 8 be, respectively, the real and imaginary part of p so

that

p= +i , > 0 (22)

We assumed a>0 because the conjugate of p will have the negative

imaginary part. Using the polar coordinates with the origin at x= x2 = 0,

we have

x= r cose , x = r sine (23)

Hence,

Z = xI +px 2 = X+iY = rpe i  (24)

i.
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where

X/r = cose + asine = pcos )
Y/r = sin6 = psjn (25)

p2 = (cose + csinO)
2 + 2sin 2

It is not difficult to show from Eqs. (23-25) that a unit circle in the

(xlx 2) plane maps an ellipse in the (X,Y) plane, Fig. 1. If the (xl,x 2 )

plane is a stretchable sheet, one obtains the ellipse by first stretching

the circle uniformly units in the x,-direction and then shear the

sheet with the xI-axis fixed until point b displaces a unit horizontally.

From point a in (x1 ,x2) and (X,Y) planes we see the geometrical relation-

ship between e, p and '. From Eq. (25), notice that p and depend on

e and p but are independent of r. Notice also that

p = 1 =O, at 6 = 0 + Tr (26)

If p is purely imaginary, we also have, in addition to Eq. (26),

P = a, ' = 0, at 0 = ±Tr/2, ±3Tr/2 when a = 0 (27)

For isotropic materials, p= ± i is a multiple root of order 3. Thus

the ellipse in the (X,Y) plane reduces to a unit circle. Hence,

p=l, =0, (28)

and

Z = xI +ix = re (29)

which is the well-known complex coordinate for (xl,x 2) in two-dimensional

elasticity problems of isotropic materials.

6. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p's ARE DISTINCT

To find the stress distribution and the stress singularities at the

vertex of a wedge, we choose
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f(Z) -K (30)

where K is the order of singularity to be determined by the boundary condi-

tions. As we mentioned earlier, the eigenvalues p are all complex numbers

and consist of three pairs of complex conjugates. In this section we assume

that the eigenvalues are distinct. Using Eq. (30) in Eqs. (6,7) for all

eigenvalues and forming a linear combination of them leads to

-- 1-K
ui = (A l'i -z +3 )/(1-) i ... (31)

1 --l1ij -

.ij ATij Z +t Jz +... (32)

where A, B1 ... are constants which may be complex and an overbar denotes

a complex conjugate. For simplicity only the terms associated with one pair

of eigenvalues are written explicitly to avoid introducing an additional

subscript for the eigenvalues. The dots denote terms associated with the

remaining two pairs of eigenvalues.

It should be pointed out that u as given by Eq. (9) is not unique

and can have an arbitrary multiplicative constant. The constants A and

i. in L . 1,32j rei)resent this arbitrary multiplicative constant.

For a wedge or a composite wedge, ;y substituting Eqs. (31,32) in the

boundary conditions (which include the interface conditions if the wedge is

a composite), one obtains a system of linear algebraic equations in AI,

B1 ,..., which may be written as

Kijj qi (33)

where K. is a square matrix which depends on <, c. is a column matrix
Ij 3

whose elements are AIB 1 ... , and qi is a column matrix which depends on

the boundary conditions. If the boundary conditions are homogeneous, q = 0.
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In this case, a nontrivial solution exists if the determinant of K..

vanishes. The roots of this determinant provides the values for K. Let

K = * + fli a (34)

where and n are real. If O< <1, we have a singularity at r=O.

Since u. and a.. are real, only the real parts or the imaginary1 13

parts on the right-hand sides of Eqs. (31,32) should be considered. They

will have different expressions depending on if the root K is real or

complex.

A. K = , Real

Since u. and T. . are in general complex, let

iai  ibid

u. = v.e T.. = t.e (35)
1 1 13 13

where v., ai, tij and b..i are real and repeated indices do not imply

summation here. With Eqs. (24,35), the real parts of Eqs. (31,32) can be

written as

ui = (rp) - vi{M1cos~ai+(l-QP]+N lsin[ai+(1- )p]}/(1- )+... (36)

a.. = (rp) t {M cos(bi - P)+Nlsin(bij-4)}+.. (37)
1)ij 1 13 i

where MI,N .... are related to AIB 1 .... and are real. The imaginary

parts of Eqs. (31,32) provide no new expressions.

B. K = +in, complex

When K is a complex root there is no loss in generality in

assuming r >0 because if K is a root, so is K. We then have

-K iW--f lp -i C p -in

Z = (rpe ) -  = (rp)-'e ei (rp) -

= (rp)_e e-i( +nln(rp)) (38)
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The real parts, or the imaginary parts of Eq. (32) now become

.. = (rp)- t. .e %(Mcoso - J.sino ) +e- T (M~cosi +N+ sin.1 1 + (39)
ij= 3ij I 1 ii l j I i "

where
= b ij- nln(rp) (40)

and M N are real constants and are related to A and B A similar

equation may be written for u.. We see that a.. is oscilatory and

unbounded as r-O. As expected, Eq. (39) reduces to Eq. (37) when fl=0.

In the sequel, we will consider only the cases in which K is a

complex. The solution for a real < is deduced by letting r = 0.

7. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p IS A DOUBLE ROOT

When p is a double root of Eq. (16), we have only two pairs of

distinct eigenvalues instead of three. It is not difficult to see that, if

u = u. i-/(l-K) (41)1i 1

a.. = ri..Z- ' (42)

are the solutions corresponding to the double root p, so are

1 -d ( U i 1 I <
ui dI-< dp

L 1 '...-K -= uzl<+ uiZ- x 2  (43)

1-K i . 43

' Z-K .-K-1 (44)

3ij T1- -ij x1

where a prime stands for differentiation with respect to p. Since

x 2 = (Z-I.)/(2p), (45)

we have
i = I U 1-K _ I 7 -KU -(.- U.+ . .Z - . ...-2p)z= (46)

a. (T KT) K +K T .- K-1 (47)
ij p 1 ' 2p ij"
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u! is obtained by differentiating Eq. (9) with respect to p:i

D. U' +D' U =0 (48)ikk ik k

The existence of a solution for uk and U from Eqs. (9,48) will not be

discussed here. Likewise, !. is obtained by differentiating Eq. (8) with
1j

respect to p.
Notice that u' and Uk  obtained from Eqs. (9,48) are not unique.

They both have a multiplicative constant, say A1  and A2, respectively.

The Z-  term in Eq. (47) together with the same term with p replaced by

p is essentially similar to Eq. (32) and hence would yield an expression

similar to Eq. (39). The last term in Eq. (47) will produce a second

independent solution. This is obtained from

Kij = A- -l-i , BK --S Ti - (49)

ij 2 2p 13 2 2p 1J

by taking the real or imaginary parts of the right-hand side. Therefore,

when p is a double root, we have the following second independent solution

for a. in addition to Eq. (39):

a..o = (rp) % t -2 2W) + N2sin(i - 2W)]
1) 2(ri)-2tij

+ e -[Mcos( i+ 2W) + N+sin( i - 24)] (50)
2

where ij are defined in Eq. (40) and M, N 2 are related to A2, B2, P

and K. Equation (50) applies to the case when K is complex. For a real

K, we simply let r = 0.

8. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p IS A TRIPLE ROOT

For isotropic materials, p= ± i is a triple root. However, since u3

is uncoupled from uI and u2  for isotropic materials, p is actually a

double root when we consider u1  and u2 only. Hence the previous section

on a double root p applies to isotropic materials.
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We have not seen an example other than isotropic materials for which

p is a triple root. If there is one, and if u3 is not uncoupled from uI

and u2, we see that a third independent solution is

1 d2  1-K
-- d-u -{uiZ } (51)

d2  (52)
ij -" i -

Following a similar procedure in deriving Eq. (50), the real expressions for

the third independent solution when p is a triple root can be obtained

from Eq. (30) with 24 replaced by 4y and the subscripts 2 replaced by 3.

9. STRESS NEAR THE VERTEX WHEN K IS A DOUBLE ROOT

Up to now, we tacitly assumed that K is a single root of the

determinant of K.. and hence, other than a multiplicative constant, theIi

homogeneous equation of Eq. (33) has a unique solution for c. whoseJ

elements are the coefficients A1 ,BI,... If K is a multiple root, then

AI,1P .... may not be unique and we have other new solutions.

Let K be a double root of the determinant K.. defined in Eq. (33)

with qi = 0. Then, not only Eqs. (31,32) are the solutions, but also are

d A 1 d B =1-K}

U U i dK {1 i K ( -K

Ci. = i {A ZK } + T {Bl +... (54)

ij ij dK ij dK

Since

d{ dA . Z " -K A T Z -KlnZ (55)
ijdK dK i ij

the first term on the right is essentially the same as the first term of

Eq. (32). The second term provides a new solution for a. when K is a

double root:
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a.. = A2T ijZ'InZ + B2_ij2KIn Z (56)

The real or imaginary parts of Eq. (56) have different expressions depending

on whether p is a single root or a multiple root.

A. p is a single root

When p is a single root, the real or imaginary parts of Eq. (56)

have the expression:

a.. = (rp)- ti {e 2[M;(in(rO)cosOi - sin(.i7)

+ N (ln(rQ)sinOi. + tpcoso. .)I
2 13 13

+ e-"[M+(ln(rp)cos4i.- sinO i)

+ +
+ N (ln(rp)sin. i. + + cos~i)]1 (57)

2 13 13

As before, are defined in Eq. (40) and M, N2 are related to A'

and B2 .

B. p is a multiple root

Let us consider first the case in which p is a double root.

Then, in addition to Eq. (56), we also have the solution

a.j = A2 d(T iZ
-KInZ) + B d -KInt- (58)~ 2  4 Bj2 d- PTijZlZ

However, since

d Z KInZ) = (T T )ZK lnp (Tij j 2p ijI

L -K_ -K- + - Z- K-InZ (59)
2 ij( - p) 1 ) lij

where use has been made of Eq. (45), only the last term provides a new solu-

tion. The rest of the terms in Eq. (59) have appeared in Eqs. (56,32,47).

Therefore, a new solution when p is a double root is
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K 1 KiK- ---A.. = A2  Z InZ + B - 1 IZZ lnZ (60)
2p ii . 2 2 i

The real or imaginary parts of Eq. (60) have the expression which is obtained

from Eq. (57) with i replaced by ( t. - 2,P).

Similarly, if p is a triple root, it is not difficult to show that

the new solution is obtained from Eq. (57) by replacing 0i. by (0. -

We see from Eq. (57) that a.. has the singularity of r- in r. The

existence of a solution of Eq. (57) depends on the existence of a solution

for A and dA/dK in Eq. (55). Since A is an element of c. in3

Eq. (33), the existence of A and dA/dK depends on the existence of a

solution for cj and dc./dK from the following equations

K..c. = 0 (61)

Kij (dc./dK) + (dK ij/dK)c • = 0 (62)

A discussion of the solution of Eqs. (61, 62) can be found in [3].

10. STRESS NEAR THE VERTEX WHEN K IS A TRIPLE ROOT

When K is a triple root, one can follow the same reasoning as in the

previous section for a double root K. Therefore, the new solution for a

triple root K is obtained by replacing d/dK by d2/dK2  in Eqs. (53,54).

Equation (56) then is replaced by

= A2TiZ-K(I n Z) z + B2i2-K (InZ) (63)
2 ij 2 i6

and Eq. (57) is modified by replacing In (rp) by (In (rp)] 2 - ,p2  which is

the real part of (in Z)2, and t by 2i In (rp), which is the imaginary part

of (In Z)2.
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11. GENERAL EXPRESSION

We can summarize the results obtained so far in the following form.

be the multiplicity of p and m be the multiplicity of K. If

we write

a. = r-F.. (r,e) (64a)

then F. consists of a linear combination of the real and imaginary parts
13

of the following expression

t ij o- et Jn{ in(rp)±i ;
m " i cos [b ij- -2(n-li) ;nln (rp) ] (64b)

+ i sin [b ij- k-2 (n-l) +nln(rP)]

for each p and for all integers m 
and n subjected to the limitations

I O I<n<np< 3 (b4c)

As we stated before, p and 4 depend on 6 but not 
on r.

12. SINGULARITY AT A CRACK TIP FOR ANISOTROPIC SOLIDS

Consider an infinite anisotropic solid with a crack plane 
which is

located at xI <0 of the (x1,x3) plane. Hence, a2j =0, (j =1,2,3) at

8 = t r. Using Eq. (26), Eq. (37) for e = Tr and -iT reduces to

t 2 j {M1cos(bj-&) + N1sin(b 2j - ir)} + ... 0

(65)

t 2j{Mcos(b2j + 1) + N sin(b 2j +,)} + 0

(j 1,2,S)

If we set & , we have

t2j Msin(b2 )-NlcoS(b2 j)} + "'" =O (66)

r 2 j (-M 1sin(b2j)+N1coS(b2j)} + .

(j = ,2,3)
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Equation (66) consists of 6 equations for MI,NI ... and can be written in

the form of Eq. (33) with O= 0. Since the first three equations are

identical to the last three equations, : is a triple root of the deter-

minant. We can therefore let C= , q= 0, m,= 3 in Eqs. (64). Disregarding

the dependence on 8, the singularities at the crack tip in a general

anisotropic material are r 2  and possibly r- 1nr and r 2 (inr)2 . The

existence of - in r and r- (In r) 2 depends on the existence of a

solution for c., dc./dK, d2c./dK2 from Eqs. (61,62) and an equation

obtained by differentiating Eq. (62) with K.

13. SUMMARY AND CONCLUSION

We have presented here a means to determine the order of singularity K

at the free-edge of an interface in a layered composite in which each layer

is anisotropic. Although the order of singularity does not depend on the

stacking sequence of the layers in the composite, the coefficients of the

singular terms which are related to the intensity factor do. These co-

efficients can be determined only by solving the complete boundary value

problem. One may use a special finite element at the free-edge using the

analyses presented here and regular finite elements elsewhere in solving the

complete boundary-value problem.
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CHAPTER 6

TRANSIENT WAVE PROPAGATION NORMAL

TO THE LAYERING OF A FINITE LAYERED MEDIUM

ABSTRACT

Plane wave propagation in the direction normal to the layering of a

periodically layered medium is studied. A period consists of two layers

of homogeneous, isotropic, linear elastic or viscoelastic materials. The

layered medium is of finite extent and hence consists of a finite number

of layers. A theory is presented by which the layered medium is replaced

by an "equivalent" linear homogeneous viscoelastic material such that the

stress or the velocity in the latter and in the layered medium are identical

at the centers of the alternate layers. Transient waves in the layered

medium are then obtained by solving the transient waves in the "equivalent"

homogeneous viscoelastic medium. Solutions at points other than the centers

of the alternate layers are also presented. Numerical examples are given

for transient waves in an elastic layered medium due to a step load applied

at one of the boundary while the other boundary is fixed. Comparisons with

the exact solutions by the ray theory show that the present theory can predict

very satisfactorily transient waves in a finite layered medium. The theory

of viscoelastic analogy applies to other cases for which exact solutions by the

ray theory are not available, such as the case of finite layered medium

with prescribed boundary conditions which are time-dependent.
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1. INTRODUCTION

Most of the approximate theories for wave propagation in a layered

medium focus on the determination of the dispersion relation or the fre-

quency equation due to a harmonic oscillation (1-4], although some of the

theories are able to predict the late-time asymptotic solution in a semi-

* infinite layered medium due to a step load applied at the boundary. For

the latter, exact theories may be used to find the asymptotic solution and

the wave-front solution [5-7].

To predict the transient response at points not necessarily far away

from the impact end (where the asymptotic solution does not apply) and to

points not necessarily near the wave-front, a new theory based on the

analogy between the dynamic response of a semi-infinite layered medium and

a semi-infinite homogeneous viscoelastic medium has been proposed recently

by Ting and Miukunoki [8]. The fundamental idea is to characterize the

layered medium by an "equivalent" homogeneous viscoelastic medium such that

the dynamic response of the latter is identical to that of the layered medium

at the centers of the alternate layers. Although the idea of modeling a

composite by a viscoelastic medium is not new [9,103, the "theory of visco-

elastic analogy" introduced in [81 succeeds in obtaining the exact form of

the "equivalent" relaxation function for the layered medium.

Since wave propagation in a homogeneous linear viscoelastic medium can be

solved easily by many known numerical schemes (see [11], for example), one

can obtain the transient wave solution in a layered medium by solving the

transient waves in the "equivalent" homogeneous viscoelastic medium.

The layered medium considered in [83 is of semi-infinite extent. In

this paper we extend the theory to the case of a finite layered medium.

First, we derive the general solution in the form of Laplace transform for
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waves propagating normal to the layerings of a finite layered medium. The

general solution, which is applicable to any point in the finite layered

medium, contains two arbitrary coefficients which can be determined from

the boundary conditions of the finite layered medium. Next, we apply the

general solution to certain points in the layered medium, namely, the centers

of each layer. We show that the general solution at the centers of each

layer is analogous to the general solution for waves propagating in a homo-

geneous viscoelastic medium. From this analogy we obtain the viscoelastic

relaxation function of the "equivalent" homogeneous viscoelastic medium.

Several analogies can be made depending on wh~ther one is interested in the

stress response or the velocity response in the layered medium. The

analogies obtained here are more general than that presented in [8] and

can be applied to the semi-infinite medium as well. In finding a means

for determining the response at points other than the centers of the layers,

we inadvertently obtain a characteristic relation in an integral form for

one-dimensional waves in homogeneous viscoelastic media. In the literature,

this is in a differential form.

2. BASIC EQUATIONS

Consider a periodic layered medium as shown in Fig. I in which each

period 2w consists of two layers of homogeneous, isotropic, linear elastic

or viscoelastic materials. The two different materials in the layers will

be designated as material I and 2, respectively. Thus material I occupies

layers 1, 3, 5... while material 2 occupies layers 2, 4, 6... The thick-

nesses of individual layers are denoted by 2hi (i= 1,2) where the subscripts

I and 2 refer to material 1 and 2, respectively. We will assume that the

layered medium is initially at rest and occupies the region 0 < x 5 Z. 'e

choose the central surface of layer I as x= 0 and the other boundary, x
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is assumed to be at the central surface of layer N where N can be an even

or odd integer. Hence,

Z = (N- I) (1)

We will consider plane wave propagation in the direction x in which the

only non-vanishing component of the displacement is in the x direction.

We therefore have a one-dimensional wave propagation problem in which the

equation of motion and the continuity of the displacement are given by

;a : (i = 1,2) (2)

av. : = .ii =: 1 ,2) (3 )axi

where a dot stands for differentiation with respect to the time t, and

Gip Ci' vi, Pi (i =1,2) are the normal stress, normal strain, particle

velocity and mass density, respectively. Let Xi(t) and pi(t) be the re-

laxation functions of the materials. For elastic materials, Xi(t) and

Pi (t) are independent of t and are identified as Lamg constants. The

stress-strain relation can be written in the form of Stieltjes convolution

rtJi(x,t) - I gi(t-t) dei(x,t') , (4)

0

gi(t) = Xi (t) + 2 i (t) , (5)

where we have assumed that

Ci(X,0") = vi(x,0-) = ei(x,0-) 0 (6)

3. GENERAL SOLUTIONS

The general solution to Eqs. (2-6) can be obtained by the method of

Laplace transform and by the use of the Floquet theory. We define the Laplace .
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transform, f(p), of a function f(t) by

P(p) = f f(t)e - pt dt (7)

'0

After applying the Laplace transform to Eqs. (2-6), the general solution for

the stress and the velocity in layers I and 2 can be written as

Cl(xP) = cosh (klX) +B1 sinh (k 1 X) (8a)

vl(x,p) -i- {Alsinh (klX) +B cosh (klX)} (8b)

a2 (x,p) = A2 cosh (k 2 x - k2 W) + B2 sinh (k2x - k2 W) (8c)

v 2 (xP) = !22 sinh (k 2 x - k2 ) + B2 cosh (k2 x - k2 ). (8d)

where

= h +h

k i = 0'i P/gi41(9)

mi = P, p/ki = ,Pgi

A. and B. (i = 1,2) are determined by the continuity condition at x = hI

(h 1 ,p) = (hI ,p) (10)

and the quasi-periodicity property of the solution together with the con-

tinuity condition at x = 2w -h

[ 1 (2w -hl,P) = (-h 1 ,p) e -
2K (11)

2 1

where K is the characteristic exponent [12]. Substitution of Eqs. (8) into

Eqs. (10) and (11) leads to four homogeneous equations for A. and §.. The1 1
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requirement for a non-trivial solution results in the following equation

for the characteristic exponent K:

cosh(20w<) = 8 cosh(2k1h1 + 2k2h2) - (8-1) cosh(2k1h1 - 2k2h2) (12)

a ( + 2 + 1 (13)

Moreover, A. and B. are related by1 1

*2 ---i -W
= pAe- K  -pme

A 1 A1

(14)

B1 B2-=-pL I ,--= -pL 2 ,

A 1  A2

where

= m1RpM , L = m2R/(PM)

1mCIC2 + m2S1S2 m2 cosh(wK)

m 1 cosh(wK) m2C1C2 + MIS1 2

(15)

l 1S2 + M2C21 sinh(wK)

m m sinh(w) mC S + m C2S
1 2 212 12 1

C. = cosh(kihi ) , S. = sinh(kihi)

Notice that if we interchange the subscripts 1 and 2, the expression for pR

remains unchanged while pR becomes (p-)- . Therefore, we can obtain the

Stieltjes inversion of M(t) by simply interchanging the subscripts I and 2

in the expression for pR and applying the Laplace inverse transform.

With Eq. (14), the general solution in the layers I and 2 as expressed

by Eq. (8) can now be reduced to a solution containing only one coefficient,

say AI" The solutions in other layers are obtained by the quasi-periodicity

relation:;"i
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(2nw+ x,p) = (x,p) e - 2nwK (16)

where n is an integer. Moreover, we see from Eq. (12) that if K is a

characteristic exponent, so is -K. Therefore, in addition to the general

solution with A1 as the coefficient, we obtain the second general solu-

tion by changing the sign of K. The coefficient of this second solution

will be denoted by . Consequently, the general solution for the stress

and velocity at any point x in the layered medium can be written as, using

Eqs. (8,14,16),

aI (2nw+x 1 ,p) = A 1 {cosh(k1 x) -pLI sinh(kIx 1) I e-2nwK

+ A {cosh(k1xl) + PL sinh(k1x)) e 2 n - <K (17a)

A, - oskll e-2nwK

Vl(2nw+x 1 p) = I {sinh(kXl) - pLcosh(kx e

+AI {sinh(k xl) + p cosh(kxl) }2nK (17b)+ I 1 L 117b1

a 2 (2n + w+ x2 ,P) AIpMi {cosh(k2x2) - p 2 sinh(k2x2)}e-(2n+l)wK

+ A'pA {cosh(k2 x2 ) +p[ 2 sinh(k 2 x 2 )}e( 2 n+l)WK (17c)

v (2na + w + x2, {sinh(k2 x2 ) -P)€2n(+0 2'P) -- 2PR2 2f  2 csk2x2)}-2~~

+ AI pA sinh(k x2)+ pL 2 cosh(k 2x 2 )e ( 2 n+ l )JK (17d)
m2 2 2 2

where

- hi. xi hi , (i = 1,2) (18)
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When proper values for n and x1 (or x2) are chosen, Eqs. (17) can be used

to determine solution at any point in the layered medium. The two co-

efficients A and A are determined from the boundary conditions at x =0
1

and x = Z.

In the next section we will show how one can obtain the solution at

the centers of the layers by solving the wave propagation problem in an

"equivalent" homogeneous viscoelastic medium. Having found the viscoelastic

analogy for the solution at the centers of the layers, we then show how one

can obtain the solution at points other than the centers of the layers in

terms of the solution at the centers of the layers.

4. SOLUTION AT CENTERS OF LAYERS

The stress and velocity at the centers of the layers have specially

simple forms. By letting xI = x2 = 0 in Eq. (17), we have

12n, p) = e- 2nwK + A'e2nWK

l(2nw'p) = -i 19

2 (2nw+w, p)= pM(Ale-(2n+l)wK + X'e(2n+l)w K )

PL 2 pI -(2n+l)wK -, (2nl)wK)

v2 (2nw+w ,p) = -m p e- + Ale

We now consider a homogeneous, isotropic, linear viscoelastic medium

which occupies 0 xSZ and which is at rest at t =0- and is subjected

to certain prescribed boundary conditions at x = 0 and x = Z. Let 4, tj

and V be the normal stress, normal strain and particle velocity, respec-

tively. Also, let p and G be the "equivalent" mass density and the

"equivalent" relaxation function of this homogeneous viscoelastic material.
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The equation of motion, the continuity condition, the stress-strain relation

and the initial conditions are

30ax

ax
t (20)

O(x,t) = J Gt- t') dn (x,t')
D(x,O) = V(x,O) = n(x,O) 0

By applying the Laplace transform to Eqs. (20), the general solution for the

stress and velocity will contain the exponential term

exp (± i-- x) (21)

In view of the exponential terms in Eqs. (19), we will define the "equivalent"

relaxation function G(t) by the relation

K = /pp/ (22)

We will also define the "equivalent" mass density p by the average mass

density in the layered medium [4,8]:

p = (Plh1 + P2h2)/(hl+ h2 ) (23)

With Eq. (22), the general solution to Eq. (20) can be written as

- KX

(x,p) = a e-KX + a' e (24a)

V(xp) = . ( i e-Kx eKX) (24b)

where a and i' are arbitrary functions of p.

There are several ways to identify the analogy between Eqs. (19) and (24).

If the stress in material I is of main interest, we may set
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A a A(25)

we then have

a1 (x,p) = pD(x,p) for x = 2nw (26a)
1l(x,P) = PJlV(Xp)

and

G,(x,p) = p-l(x,p) I
-for x =(2n+l)w (26b)

v2 (x,p) = pM{pJ 2V(x,p)} f

where
PPEi

j. -- , (i = 1,2) (27)
2. Km.

It should be pointed out that while and V as given by Eq. (24) are

defined for all x, Eqs. (26a) and (26b) apply only to x = 2nw and

x = (2n+l)w, respectively. By using the identity,

jl /J 2 (pM) 2 = m2 I/(ml 2) (28)

the last of Eq. (26b) can be written as

vxp) i p 1 (x,p)} , x = (2n+l)w (29)

With Eq. (29), we rewrite Eqs. (26) in the following form:

a1(2nwt) = c(2nw,t) (30a)

v1 (2nw,t) = V*(2nw,t) (30b)

t
C 2 (2nw + ,t) = fO-M(t -t') dO (2nw + wt') (30c)

v2(2nw +W,'t) = M-l(t -t') dV* (2nw+w,t') (30d)2

where t I

V*(x,t) f O (t - t') dV (x,t') (30e)

- ~,- miEmit
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and M I is the Stieltjes inverse of M. (See the discussion following Eq. (15)

regarding the Stieltjes inverse of M.) Thus the stress and velocity at the

centers of the layers are related to the stress (P and velocity V in the

"equivalent" homogeneous medium. In particular, the stress at the centers

of the odd layers, a 1 (2,t), is identical to the stress in the"equivalent"

homogeneous viscoelastic medium.

As an illustration for the theory of viscoelastic analogy, we consider

an elastic layered medium which is fixed at the center of the 14th layer

(i.e., Z = 13) and subjected to a unit step stress applied at x = 0. Since

the 14th layer is occupied by material 2, we have the following boundary

conditions:

aI(0,t) = H(t) , v2(l3w,t) = 0 (31a)

where H(t) is the Heaviside step function. In view of Eqs. (30), the corre-

sponding boundary conditions for the "equivalent" viscoelastic medium are:

,(0,t) = H(t) , V (13j,t) = 0 (31b)

We now replace the elastic layered medium by the "equivalent" homogeneous

viscoelastic medium whose mass density p and the relaxation function G(t)

are given by Eqs. (23) and (22). Because of the complicated expression for

K as given by Eq. (12), analytical inversion of the Laplace transform

G(p) from Eq. (22) does not appear feasible. We therefore resort to a

numerical Laplace inversion of G(p), [13]. The result is shown in Fig. 2

along with the physical parameters of the elastic layered medium used in the

calculation. The physical parameters are taken from [4]. Unlike for most

real viscoelastic materials, the relaxation function for the "equivalent"

viscoelastic medium is not a monotonically decreasing function of t. This

was also predicted by Christensen [10] based on the dielectric theory. In
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[8] one can find a discussion on the behavior of G(t) as t-0 and t-- as

well as the value of G(t) at t = 0.

With G(t) given by Fig. 2 and the boundary conditions given by

Eq. (31b), we integrate Eq. (20) numerically by the method of characteris-

tics [14] for the stress D and velocity V in the "equivalent" homogeneous

viscoelastic medium. The stress and velocity at the centers of the layers

in the layered medium are then determined by using the viscoelastic analogy

Eqs. (30). In Fig. 3 we present D(4w,t) which is the stress history at

the center of the Sth layer. For this example, the exact solution in the

elastic layered medium using the ray theory can be obtained numerically by

keeping track of every reflected and transmitted waves at the interfaces

of the layers [8]. This exact solution is also shown in Fig. 3 for compari-

son. It is seen that the agreement is excellent.

In Fig. 3 we also show the solution obtained by the effective modulus

theory [15]. With this theory, the elastic layered medium is replaced by

a homogeneous elastic medium whose effective modulus geff is given by

h + h) (32)geff 91 g2J 1 "1

and whose effective mass density is identical to the "equivalent" mass den-

sity defined in Eq. (23).

In Figs. 4 and 5 we show, respectively, the velocity history at the

center of the 5th layer and the stress history at the center of the 8th

layer by using Eqs. (30b) and (30c). Since $(x,t) and V(x,t) have already

been determined, all we need is the functions Jl(t) and M(t) which are

defined in Eqs. (27) and (15). JI(t) and M(t) are obtained numerically by

inverting their Laplace transforms. Again, the solutions by the ray theory

*4

-.
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and the effective modulus theory are also shown in the figures for compari-

son.

The function J. as well as functions M, R, and Li. (i = 1,2) defined

in Eq. (1S) are called the "auxiliary" functions. Like G(t), the auxiliary

functions depend only on the physical properties and the geometrical layer-

ing of the layered medium. They are independent of the boundary conditions.

For the viscoelastic analogy given by Eqs. (30), only the functions Jl'm,

and M] are needed. Of course, if aI(2w,t) is the only quantity desired,

no auxiliary functions are needed.

Before we study the solution at points other than the centers of the

layers, we will discuss other forms of viscoelastic analogy in the next

section.

S. OTHER FORMS OF VISCOELASTIC ANALOGY

In Eqs. (30) we present one form of viscoelastic analogy between

Eqs. (19) and (24). The analogy, Eqs. (30), is convenient for the case

when the stress in material 1 is of main interest because according to

Eq. (30a) aI is identical to D. If the stress in material 2 is of main

interest, then the analogy given by Eq. (30c) requires a convolution inte-

gral with the auxiliary function M(t).

There are of course other forms of viscoelastic analogy which would

be more convenient for other situations. If the stress in material 2 is

of main interest, one may set

pM~l a(33)
pt A1  ,

Then the analogy between Eqs. (19) and (24) can be written as
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ar(onw+w,t) = D(2nw+w,t)

v,(2nw +w,t) = V*(2nw +w,t)
t

S1 (2nw,t) = M-I(t - t') dD (2nw,t')
0( (34)

t

vI(2nw,t) = M(t - t') dV* (2nw,t')

t
V*(x,t) = J 2 (t - t') dV (x,t') f

With this analogy, the stress D in the "equivalent" viscoelastic medium is

identical to a2 at x = (2n+l)w.

Likewise, if the velocity in material I is of main interest, the visco-

elastic analogy can be written as

vI(2nw,t) = V(2nw,t)

a1 (2nw,t) = D*(2nwt)

v2(2nw +w,t) = M-(t-t dV(2nw+w ,t') (35)

CT,('nw +w, t) = M t-t)dD* 2w+w '

t 0-

*(x, t) = fO - i I(t -t') dl(x,t')

Finally, if the velocity in material 2 is of main interest, we can write

v2 (2nw +w,t) = V(2nw +w,t)

2 (2nw+w,t) = D*(2nw+wt) (36)

t

v (2nw,t) = M(t - t') dV (2nw, t')

0-
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t

a (2nw,t) = - Ct - t') d4* (2nw,t')

0- (36)

t Cont ' d

4*(xt) f J2 
1 (t - t') dl(x,t')

0-

Sometimes the boundary conditions may influence the choice of a visco-

elastic analogy. For example, suppose that one is interested in the stress

in material 1 for the problem in which the velocity is prescribed at x = 0

(i.e., v1 (0,t) is known), and the other boundary x = Z is fixed. We could

use either the analogy Eqs. (30) or the analogy Eqs. (35). If we use

Eqs. (30), we obtain al directly from D but then we have to transform

the boundary condition v (0,t) to V(0,t) by using Eqs. (30b,e),

t

V(0,t) f J1
1 (t - t') dv 1 (O,t') (37)

G-

before we solve for D and V in the "equivalent" homogeneous viscoelastic

medium. If we use Eqs. (35), we can solve for ( and V immediately since

V(0,t) = vI(0,t), but to obtain aI from D a convolution integral is

required.

6. SOLUTION AT ARBITRARY POINTS

If we solve for A and A' from the first two equations of Eqs. (19)
11

and substitute the results into Eqs. (17a,b), we have

a (2nw + x1, 1 (eklXl + e-klXl (2nwp)

e k1X - e klX ) ml l( 2nw ,p) 
(38a)

+ kx - k

V (2nw+x 1 ,p)= (e + e -klxl ) v (2nw,p)

(38b)

eklXl)k i l(2nwp)SeklXli
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Similar results can be obtained for a2(2nw+ w+x 2,p) and v2 (2n+w +xxp).

We will define the Laplace transform of the functions DI(XIt)

E1(xlt) and F1(Xlt) by

- 1 -k x1
D1 (xlp) = - e 1 1

l P -

E (XVp) = 1 eklxl (39)

_ ml -klxl
F1(xl p) = e

Dip E1 and F1 have the following physical interpretation. Suppose that

material I occupies the semi-infinite space x 0 and is initially at rest.

Then DI(xl,t) and E1 (Xl,t) are, respectively, the stress and velocity

history at x = xI due to a unit step normal stress applied at x = 0.

FI(X,,t) is the stress history at x = x1 due to a unit step velocity

applied at x = 0. We now rewrite Eq. (38a) as

n+ (2n,p) e- p x 1 /C 0 p Dl(Xl,P) e10 /l0

(40)

where

i g(0)/iP , (i = 1,2) (41)

and DI(-X1,t) is obtained from DI(Xlt) by analytically extrapolating the

later from x1 > 0 to xI < 0. Similar definition applies to F1 (-xlt).

Equation (40) can now be inverted as
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t

a1 (2nw+Xl 't) + x,{ (2 nw t + - -t dD (x t -1 0 1Cl10 ' c1

+ T nt t- - dD1 lx ti + - )
f - 1clO0 clO0

(42)

+ { vQ2nwt + -1 - t) dF -x I1 -'

0-
f- clO-- ) dF10 1 10

Equation (42) can be written in a compact form if we observe that al(2nw,t)

and v1 (2nw,t) vanish for t < 0, and DI(±X1 ,t) and F1 (± xit) vanish for

t<+-1i/C 10and that -h 1  xI < h1 by Eq. (18). We have

t

a1 (2nw +
x l,t) 1 f a 1 (2nw,t - t) dDl(-xl,t') + Dl (xl,t')}

(-h1/C1 0 ) (43a)
t

+ .f vl(2nw,t - to) d{ 1 (-xl 3 t') - Fl(xl~t')}

(-h 1 /Co1 0 )

By a similar argument, we obtain from Eq. (38b),

t

1 1
v(n+×lt a .J(2n,t -t ) d (-X l t ) (X t )

(-hI/C 10)-

When material I is elastic, mI is a constant and DI, E1 and F1 are

step functions:
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D1 (±x 1 ,t) = H(t ; c

El(- xlt) = -LH TX1

F (± xit) = m1 Ht t L)

Equations (43) then reduce to (when material I is elastic)

1 xn~ 1 i2n lo

al(2nw+xlt) = j 2 nwt + 1 + a ', -

(45a)

+ M, v. 2nw,t+ X1) - v1 (2nw,t - l

vl (2nw +x1 ,t) = (2nwt+ + V (nw, t -

+ 1 a (2nw,t + ) - 1 (2nwt - x, (45b)

This is nothing more than the familiar characteristic relation for one-

dimensional waves in a homogeneous elastic medium. As such, Eq. (43) may

be regarded as the characteristic relation in an integral form for one-

dimensional waves in a homogeneous viscoelastic medium.

After finding the stress and velocity at the center of the 5th layer

in Figs. 3 and 4, we use Eq. (45a) to find the stress history at the inter-

face between the 4th and the 5th layers by letting n = 4 and xI = - h

The result is shown in Fig. 6 along with the exact solution by the ray theory.

7. DISCUSSION AND CONCLUDING REMARKS

Several analogies between the solutions of transient waves in a finite

layered medium and in a finite homogeneous viscoelastic medium are established.
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The analogies between the solutions apply to the centers of the alternate

layers in the layered medium. Solutions at points other than the centers

of the alternate layers are obtained in terms of the solutions at the centers

of the alternate layers through the use of convolution integrals with auxi-

liary functions introduced in the paper. The materials in the individual

layer of the layered medium can be elastic or viscoelastic, although numeri-

cal examples are given for an elastic layered medium.

The viscoelastic analogies derived here lead us to an exact expression

G(p), which is the Laplace transform of the relaxation function G(t) for

the "equivalent" homogeneous viscoelastic medium. The relaxation function

G(t) is obtained by numerically inverting its Laplace transform using the

method outlined in [13,14]. The method used in [13,14] tends to provide

the value of G(t) only at a finite number of t's which are close to t = O.

It provides poor information on G(t) for large t. Fortunately, our

relaxation function approaches rapidly to the equilibrium relaxation

modulus G so that the inversion obtained by the method in [13,14] is

adequate for most cases. One could certainly obtain a better numerical

inversion of a Laplace transform by using other techniques such as the fast

Fourier transform [16].

Even though the relaxation function G(t) obtained here is quite crude,

we have reached an excellent agreement between the solutions by the visco-

elastic analogy and by the exact ray theory. The differences in the

solutions are caused mainly from the numerical Laplace inversion of the

relaxation function G(p) and the auxiliary functions R(p) and Ji(p). For

those solutions which require no auxiliary functions, the differences in

the solutions are less noticeable. Some of the auxiliary functions, namely,

M, R, L1 and L2 defined in Eq. (15) can be determined exactly when the
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constituents of the layered medium are elastic. With the use of exact

auxiliary functions, the differences between the solutions by the visco-

elastic analogy and by the ray theory can be made smaller [141.

One might ask the relative advantages of the viscoelastic analogy

over a direct numerical computation of the original layered problem.

In a direct computation of waves in the original layered medium, the

calculations are feasible when the boundary conditions are constant in

time and the individual layers are elastic. Moreover, keeping track of

every reflection and transmission of waves at the interfaces between the

layers may soon exhaust the storage capacity of the computor, not to

mention the computing time. The situation is particularly acute when

there are a large number of layers involved as in a real composite.

These shortcomings are not present in the theory of viscoelastic analogy.

One possible shortcoming of the theory of viscoelastic analogy approach

is the less accurate result for the solution at points other than the

centers of the layers. This shortcoming is not serious in practical

aplicaticns en -he individual layers are very thin such that the

solution at the center of a layer and at other points in the layer are

practically the same.

In connection with the present work on transient waves in a finite

layered medium, we would like to point out that harmonic waves in a finite

layered medium has been considered by Herrmann, Beaupre and Auld [17]. In

contrast to the normal stress waves studied here, the harmonic waves con-

sidered in [17] are horizontally polarized shear waves. However, one can

see from the analyses presented here that if we replace the normal stress

and the normal displacement by the shear stress and the transverse displace-

ment, respectively, the analyses presented here apply to the transient

shear waves in finite layered media as well.
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CHAPTER 7

THE EFFECTS OF DISPERSION AND DISSIPATION ON WAVE PROPAGATION
IN VISCOELASTIC LAYERED COMPOSITES

ABSTRACT

In Chapter 6, stress response at a finite distance from the impact

end in an elastic or viscoelastic layered composite is studied. In this

Chapter, the stress response at a large distance from the impact end of a

viscoelastic composite is investigated. If the distance is not large enough,

the stress response is oscillatory due to the dispersive nature of the com-

posite. As the distance increases, the dissipation effect of the visco-

elastic materials becomes pronounced and eventually wipes out completely

the oscillatory response. The transition from the oscillatory response to

the monotonic response is controlled by a parameter y which contains (a)

the impedence mismatch of the composite which contributes to the dispersion,

(b) the dissipative properties of the viscoelastic materials and (c) the

distance traveled by the wave.

1. INTRODUCTION

Consider a semi-infinite periodic layered composite as shown in Fig. I

in which each period 2w consists of two layers of homogeneous, isotropic,

linear viscoelastic materials. The thickness of individual layers are 2h.1

(i=1,2) where the subscripts 1 and 2 refer to materials 1 and 2, respective-

ly. We will consider plane wave propagation in the direction x which
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is normal to the layers. For the problem considered here, the surface x= 0

need not be the central surface of the first layer. We will assume, however,

that the first layer in which x= 0 is located is occupied by material 1.

The composite is initially at rest and at time t=O, time-dependent,

uniformly-distributed normal and shear stresses are applied at the surface

x=0. Since the problem considered is linear, the solutions due to the

applied normal stress and the shear stress can be treated separately. The

two solutions are mathematically identical. Therefore, we will consider

only the solution due to the applied normal stress at x= 0. Ioreover, we

will assume that the applied normal stress at x= 0 is the Heaviside unit

step function in time t, because the solution for a more general applied

normal stress can be obtained by a linear superposition.

The stress response at a position x which is sufficiently large can

be obtained by an asymptotic analysis. When both layers are elastic, the

solution can be expressed in terms of an integral of an Airy function [1,2].

The stress, as a function of time t, oscillates around the Heaviside step

function. When one or both layers are viscoelastic, the asymptotic solution

an zx;ressed in terms of an error function [1 ,22. The stress response is

no longer an oscillatory function of t, but a monotonically increasing

function-of t which approaches to the unit stress as t increases.

Since elastic materials are special cases of viscoelastic materials,

one might ask how a monotonic solution becomes an oscillatory solution when

the viscoelastic materials become elastic. Alternately, one might ask what

would be the behavior of the asymptotic solution if the relaxation functions

of the viscoelastic materials are nearly step functions. Clearly, when the

position x is not large enough, the dissipative effect of the viscoelastic

materials does not have enough time to prevail and the stress response is
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essentially governed by the dispersive nature of the composite which causes

the solution to be oscillatory. As x increases, the dissipative effect,

no matter how small, becomes prominent and dampens the dispersive mechanism

so that the solution is non-oscillatory. The purpose of this paper is to

study the effects of the dispersion, dissipation and the distance of wave

propagation have on the wave profile. To simplify the analysis, we will

consider only solutions at x= 2wN where N is an arbitrary positive

integer.

It should be pointed out that a similar problem was studied by Sve [1]

for two special viscoelastic materials. The imaginary part of the wave

number for the special materials is assumed to be proportional to the abso-

lute value of the frequency or proportional to the square of the frequency.

Hegemier [3] obtained asymptotic solutions for elastic composites as well

as viscoelastic composites. However, his solutions differ from that obtained

here and in [2]. A discussion on the differences will be given later.

2. SOLUTION FOR x = 2wN

The equations of motion and the continuity of the displacement are

given by

a v , (i = 1,2) (1)

av.
1 . (i = 1,2) (2)

where ai, -i' vi' Oi (i= 1,2) are the normal stress, normal strain, normal

particle velocity and mass density, respectively, A dot stands for differen-

tiation with respect to time t. The initial and boundary conditions are

a.(x,O) = vi (x,O) = i (x,O) = 0 (i = 1,2) (3)
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a.i(O,t) = 0 (i = 1,2) (4)

CF(0,t) = H(t) (5)

where H(t) is the Heaviside unit step function. The relation between a.1

and e. is written in the form of Stieltjes integral1

t

J. (x,t) = F gi(t-t') dE. (t') (i = 1,2) (6)

0

where g (t are the relaxation functions of the viscoelastic layers.

Let f(p) be the Laplace transform of f(t):

(tp) = f(t)eptdt (7)

0

Equations (1-6) then reduce to

S= k2 C.Ys
x 2  i i

.(%p) 0 0 ' a °'p) = 1 (9)

where

k .=v/%ip . (10)

Since ki  is periodic in x with periodicity 2w, by using the Floquet

theory [4] the solution for x= 2wN where N is an arbitrary positive

integer is

a (x,p) = e-KX (11)

1 p

where < is the characteristic exponent given by (see [2,5,6])

cosh (2WK) = a cosh (2k1hI + 2k2h2) - (a-1) cosh (2klh1 - 2k2 h2) (12)
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= + 1221 + (13)
4 k I p1k 2  /

Therefore, the solution for x= 2wN is

C (xt) = 1 f I e Kx dp (14)

Br

For a large x, the main contribution to the Bromwich contour integral

of Eq. (14) appears to come from the values of integrand near p= 0.

Hence we must study the behavior of K near p= 0 before we evaluate

Eq. (14) for large x.

3. BEHAVIOR OF K NEAR p = 0

For most viscoelastic materials, the relaxation function g.i(t),

(i= 1,2) is a monotonically decreasing function of t. Let g.O= be the

value of gi(t) at t=-. For most viscoelastic solids gia is non-zero.

If gi(p) is the Laplace transform of gi(t),

00

pgi(p) = p 2 i(t)e-t dt

0 oo(15)

= i = +  [gi(t) - gioo]e -Pt dt

0

For small p, e-Pt = I- pt ... Hence

Pgi (p) = gi (1 +aip- aiTi p 2 +*"") (16)

where
00

aigi= rf [gi(t) - g.] dt

0
'0 0(17)

T. = - f [gi (t) - g. ]t dt
i aigi 0
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It is seen that a igio is the area between the curve gi(t) and the

horizontal line a (t)=gi while Ti  is the distance of the centroid of this

area from t = 0. According to [7], ai  provides a measure of the "viscosity"

of the viscoelastic materials. An example of relaxation function which

yields Eq. (16) is the standard linear viscoelastic solid

g (t) = gil +. et/Ti (18)

Using Eqs. (16), (10) and (13), the right-hand side of Eq. (12) can

be expanded into power series in p. If we assume that, for small p, K can

be expressed as

pO 2 p3 + (19)

!-T 2 .

and use of this to expand the left-hand side of Eq. (12) into power series in

p, we can determine the constants c,,, u and by comparing the coefficients

of same powers of p on both sides of Eq. (12). After a lengthy algebra,

one obtains

-- g / , (20)

I aln an2

+go (3a+4T2) +g. g1~gl--- (a1 - a2)

where

i = ha/w , n +n2  1

(23)

2'I "2 3l n I

= nll 2 n. 1 n2()

+ Ol 2 +~g1  g" ( a2

whee -)0 9-- - -
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We see that p and g. are, respectively, the effective mass density and

the effective equilibrium modulus of the composite.

When both layers are elastic, a. = 0 and hence u= 0. Moreover, only1

the first term of a remains and a > 0 .  Notice that the first term of

is proportional to the difference in the impedances of the two layers and

becomes zero when the difference in the impedances is zero. Since the dis-

persive nature of the composite comes from the impedance mismatch, the first

term of S is responsible for the oscillatory nature of the stress response.

When one or both of the layers are viscoelastic, U is positive and

non-zero while 5 can be positive, negative or zero. Not only is U

responsible for the dissipative nature of the stress response, the second

part of a is also responsible for the dissipation.

The case when both U and a vanish will not be considered here.

4. ASYMPTOTIC SOLUTIONS

From Eqs. (19) and (14), we have

a1 (xt) = 1$--- .exp (t- P+2- p2+ p +... dp (24)

Br

We will assume that x is sufficiently large that the terms denoted by the

dots can be ignored. We will also assume that a#O. The case B = 0 will

be discussed later. Let

b T I /  (t - ×)/b
b 2c.= coor= --

(25)

y = b T XU3 ,1/3

-7 
2C
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Equation (24) then takes the form

+ i ep p2+lp

Cy(yT)= - -e- p' dp (26)

Br

where the subscript I of a has been omitted and the + sign is for S > 0

and - sign for < 0.

By taking the Bromwich contour LI  as shown in Fig. 2, it is not

difficult to show that

S(,,r) + (-,-:) = 1 (273

We will therefore consider only the case 3 > 0 and hence the integral

znr+yp2+~ __P3

17,i f j e ' dp (28)

Br

Using the identity

T

eTP =-+ esp ds (29)
P P

0

the integral in Eq. (28) can be divided into two parts:

SI I , (30)

1 2' 1
1 ( iYp2l3

= --i e dp, (31)

Br

T l p y2 + 1 3
12 -- ds feP+Yp 3pde *~ p~ .(32)

0 Br

Notice that I1 - c-,O) and hence is the magnitude of stress at t=x/c.. By

taking the Bromwich contour L. of Fig. 2, one obtains

..............................
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00 1 2 3
1 + I e sin yr2  dr
1 T r

0 (33)

1 1/ r( 31/33 V+ 3- y -

where r(x) is the Gamma function. If y is very large, we take the

Bromwich contour L1  and obtain

00

_ f J 1 e sin r3 dri 2 r r

0
(34)

-' 352 12 "'"
2 l2V~ 144 "

where

=-3/2 = 2cj 2)l/26 \ = 7- ] (35)

We now turn to the integral 1 2. By replacing the variable p by

p = z -y , (36)

Equation (32) can be written as

2 3 2 Z 3 di

= e ds f e 3 dz (37)

0 Br

or

2 -y 3:

12 : e oY Ai(-s+y2) ds (38)

0

where the Airy function is defined as [8]

1 'SZ +  -Z3

Ai(s) = 2 e dz (39)

L 
2
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CO

- cos sr+ I r dr (39)
7T 3 (Cont 'd)

0

Two extreme cases of y = 0 and y= - have been studied in the

literature. Before we evaluate a for arbitrary y, we will obtain these

two extreme cases from Eq. (30).

(1) y = 0

For elastic composites, u = 0 and hence y= 0. Equations (30), (33)

and (38) then yield

T

i(0,-) + Ai(-s) ds (40)

0

This is precisely the asymptotic solution obtained in [1,2]. The stress a

is an oscillatory function of r (see Fig. 3).

(2) y =

For viscoelastic composites, u# 0 and $ of Eq. (24) may or may

not be zero. In [2] the tern containing a was ignored. This is equiva-

lent to assuming that S = 0 and hence y=o. For a very large y, the

Airy function has the expression [8]:

1 2 s3/2
Ai(s) - 2Y77 e (41)2i/T sl/4

Use of this expression in Eq. (38) results in

" 2VW e d ( ( - erf (42)

0
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where

xb*/b b(/4

2C * Fs2

erf (x) = x J* es 2 ds 
(43)

0

Therefore, when =0, (i.e., y= - or 6=0), Eqs. (34), (42) and (30) yield

the following asymptotic solution obtained in [1,2] ;

= I + erf(T*/2) (44)

The stress a is a monotonically increasing function of T", Fig. 4.

5. NUMERICAL RESULTS AND DISCUSSION

For an arbitrary y, the stress a as a function of T may be

obtained from Eq. (30) where I1  is given by Eq. (33) or (34) and 12 is

given by Eq. (38). Since both I and I require a numerical integra-

tion, it might be simpler to evaluate a directly from Eq. (28). If we

take L2 of Fig. 2 as the Bromwich contour, Eq. (28) reduces to

001 1 1' -r - r
a(y,t) r- -- 3rs (Tr+yr dr (45)3 Tr fr L

0

For the contour L ,  we have

1'

1(yr) + 1 I1e sin T*r- -r3) dr (46)
2 IT r

0

where T* and 6 are defined in Eqs. (43) and (35). Notice that

T = T* when y = 6 = 1 . (47)

Notice also that because of the factor (l/r)e -r  in the integrand of

Eq. (46), the absolute value of the integrand diminishes rapidly as r

ir
2  

-3increases. For instance, at r= 2, (l/r)e =9xi0 - and at r=3,
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(i/r)e - 4x10" . Therefore, the infinite integral can be replaced by an

integral of finite interval say 0 r 5 3. A similar argument applies

to the integral in Eq. (45).

Equation (45) is used to calculate a for y = 0, 0.1, 0.3, 0.6 and

1.0. The results are shown in Fig. 3. Equation (46) is used to calculate

a for y= 1 and y=-, (i.e., 6= 1 and S= 0), Fig. 4. We see that the

stress response differs very little for y = 1 and y=-.

The example of stress response at the 30th layer considered in [2]

has a negative value of and y= 0.58. On the other hand, the example

considered on p. 110 of [3] has a positive value of $ and y= 0.68.

For a given viscoelastic composite, u and 5 are known and fixed.

y then depends on x and increases as x increases. We see from Fig. 3

that the oscillatory nature of the stress diminishes as y increases.

Since for y i the oscillation is practically non-existence, we may say

that for

2c S2
3 - (48)

the stress resnonse is monotonic.

The asymptotic solution for viscoelastic composite derived in [3] is

different from Eq. (24). Using the notations of Eqs. (20-22), the asympto-

tic solution derived in [3] is based on the equation

O(x,t) = I-" I exp tp + p2 _ jR - 1/2  dp (49)

Br

If we expand the last term in the exponent into a power series in p and

ignore the terms of order higher than p3, Eq. (49) is identical to

Eq. (24). Ile are able to verify that 'J in [3] is identical to the one

obtained in Eq. (21). However, in [31 appears to be different from the

expression in Eq. (22).
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6. CONCLUSION

The parameter y defined in Eq. (25) consists of the variables u,

and x. The dissipative nature of the viscoelastic material is represented

by U and a part of a, while the remaining part of a represents the

dispersive nature of the composite. The distance traveled by the wave is

represented by x. Thus y contains the influences on the wave profile

due to dissipation, dispersion and the distance traveled by the wave. With

y determined from Eq. (25), Figs. 3 and 4 provide the wave response.
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CHAPTER 8

CONCLUSIONS

Static and dynamic analyses of multilayer composite laminates and/or

pilot studies leading toward such analyses have been presented in this report.

Detailed summaries and conclusions have been included with each chapter. The

present chapter is intended to briefly summarize these conclusions and, where

possible, to make suggestions for further investigations.

Three approaches were investigated in Chapter 2 for the finite-element

analysis of edge-effects in symmetric laminates under prescribed inplane strain.

Although these approaches produce essentially identical results away from the

free edge, some differences are noted in the magnitude, and in selected cases

the form, of the stress distributions near the free-edge. Until further analytic

results are available it is not possible to conclude which of the strain contin-

uity or traction-free-edge approaches is the more accurate. Some insight into

this comparison may be obtained by combination of the stress predictions with

appropriate failure criteria; the better analysis should be capable of consis-

tent predictions of laminate first-failure in comparison with experimental

results.

Of the 8-node single layer plate bending elements with a straight traction-

free edge, developed in Chapter 3, the best element is identified as one based

on a 21l stress-field. This element produced displacement and stress predic-

tions which were, in general, superior to all other elements tested. Although

the superiority of this element over a standard hybrid-stress plate element

is not evident in all cases, it is expected that the superiority will be

- - - - - - -
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apparent in examples where free-edge effects are dominant, such as in multi-

layer laminates. In the dIevelopment of an 8-node multilayer plate element,

a layer stress field analagous to that used in the 21$ element is recommend-

ed.

In Chapter 4, alternate initial-stress approaches based on the hybrid-

stress model were compared for the elastic-plastic analysis of single layer

plates. Results obtained for selected example problems suggest that hybrid

functional II, coupled with iteration scheme A, is the preferred approach.

This approach should therefore be used in extension to include material non-

linear effects in multilayer laminated plates.

Chapter 5 provides a means for analysing the nature of singularities

at the free edge of a composite whose individual layers are anisotropic.

The results obtained can be used to formulate a hybrid-stress singularity

element for the free-edge point.

The two dynamic problems studied in Chapters 6 and 7 contributed signif-

icantly to the literature of dynamic response of composites. A theory of

viscoelastic analogy presented in Chapter 6 offers a reliable way to pre-

dict the transient response of a layered composite at finite times. More-

over the dimension of the layered composite is finite. This problem was

not solved successfully before.

The other dynamic problem, namely the transient response of a visco-

elastic layered composite studied in Chapter 7, sheds much light on the

nature of interaction between the effects of dispersion, dissipation and

the distance traveled by the wave. The results show how an oscillatory

wave approaches a monotonic wave as the distance traveled by the wave

increases.
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