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CHAPTER SIX

AREAS FOR FUTURE RESEARCH

6.1 Modifications of the Algorithm

Two types of modifications are available which might improve
the execution times of our algorithm. One type would stick with the
procedures detailed in Chapters 3 and 4 but attempt to carry them out
more efficiently, while the other would make changes in the procedures
themselves., In this section we examine the steps of the algorithm
considering both types of changes.

It was mentioned in Section 4.2 that Hillier's heuristic pro-
cedure was modified in a rather rudimentary way to take advantage of
(BILP). A more thorough adaptation would cut down on computer times
for all of our problems.

As detailed in Section 5.4 the bounding technique has performed
its function admirably. For this reason changes in the procedure itself
seem inadvisable. However, there ig a way to more quickly fathom some

partial solutions for the J_. variables. 8ince the bounding inequality

N
reads
I
(1) P ox /G <1,
Jjed
N
each time pg is updated (whenever a new incumbent is found) we may
fix any JN variables satisfying

1/(x§3)) >1 -0}
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at zero for the remainder of the algorithm., This follows since any
eligible partial solution must satisfy (1). In our summary in the
Appendix we see that this added step would fathom a partial solution
where such a variable is fixed at level one in Step () rather than
in (:) (iii). Analyzing further the results of our computer tests we
found that this additional test would have been satisfied in several
cases. At the moment further modifications of the bounding technique
are not anticipated.

Before considering changes in the hybrid portion of our algorithm
it is useful to examine Geoffrion's (1969) algorithm in greater detail.

Since we found our bounding technique eliminating essentially the same

LY

partial solutions as his surrogate constraints, but with considerably

A

less computation effort, we might wonder what our results would be
using the remainder of his algorithm with our bounding technique.

3 As described in Section 4.5 our backtracking step is identical to

his. His branching step, however, is different. Initially, he performs

- the following change of variables to define x" e R? for any X € R":

yielding the problem

maximize x2 = c¢"x"

0 -
(BILP)"  subject to: A"x" < b"

x" binary
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from (BILP). This change of variables assures g" < 0 and the branching
step uses this information. In particular at a given partial solution
S which is not fathomed he branches on the variable xj satisfying

0

m

S
2 max min{0, B - a",
(2) iéi n{0, i ala]

where bgs = b; - jéé a;jx?s. The maximum in (2) is taken over all

those J such that xg is not binary-valued in the solution to (BILP)ﬁS.
The branching variable is set at level one yielding the new partial
solution S'. The motivation for this choice is as follows: if the
maximum in (2) is zero, the solution to (BILP)ﬁS' is xg =0, j£8
(since ¢" < 0) and S*' may be fathomed immediately.

Now we are ready to make some observations on this choice of
branching variable in regard to our algorithm, First, we cannot in
general achieve a form of the problem where the objective function
coefficients are nonpositive. In the bounding technique we perform
a necessary change of variables which may result in c3 > 0 for some

jJed Reversing this action would mullify our bounding inequality.

N
However, the success of Geoffrion's more rudimentary branching procedure
may still provide a lesson and a model for us. In both algorithms LP
relaxations are solved as part of the fathoming process; in Geoffrion's
algorithm these relaxations in addition provide surrogate constraints
while in our case they provide the information to compute the Tomlin
penalties. For this reason we may hypothesize that our execution times

are suffering due to the time involved in computing the penalties and
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not due to the actual solution of LP relaxations. Certainly it is more
time consuming to use the penalties than Geoffrion's approach. In
particular, in the case where the mumber of variables in JB is large
we compute a very large number of penalties. Hence, the problems least
favorable to the bounding technique are also least favorable to the
branching step.

We propose to cxperiment with a procedure in which the Tomlin
penalties would still be used but not at each branching opportunity.
In particular in the problems where the size of JB is large we feel
that a sophisticated choice of branching variable such as that dictated
by the Tomlin penalties is desirable at those branching steps reached

soon after a new partial solution for the J variable is reached.

N
Even though this is where the greatest numder of penulties is ¢ mputed,
getting off on the right track is crucial in such problems. However,
instead of continuing to do this, we propose to shift Lo a more rudi-
mentary procedure as the size of the partial soluti.ns at hand rets
larger. As those variables with the greatest effcct (as indicated by
the Tomlin penalties) on the objective function are fixed, the compu-
tational cxperience available indicates that the penalties become closer
in magnitude and thus we tend to make choices between similar options.
To do so at great computational expense is a mistake,

In summary, we will experiment with modifying our branching
step as follows., Penalties will be used until they are within some
tolerance of each other and then a quicker process will be applied until
a new partial s lution for the J, wvariables is reached. In problems

N

where JB is small we may wish to abandon the use of penalties altogether

R




if computational testing indicates that better times can be achieved.
The new branching process could be similar to Geoffrion's where we
modify (2) to take into account both positive and negative coefficients

in the objective function. This may be more computationally expensive

‘s

than is necessary but only commtqtional testing can answer that question,

\‘ Clearly more test problems need to be run both to further examine
N the performance of the algorithm in its present form and to test the
' utility of the aforementioned modifications. In particular, we want ‘
3 ,‘ to use some large and sparse problems with a favorable constraint to i
“‘2 variable ratio. Such problems would lead to LP relaxations best suited 3
( i
%

to MINOS so we could see the effect of appealing to the strong points

rmmm ea bkt o o

of the two major perts of our algorithm.

6.2 Extension of the Algorithm to the Mixed Case

The most desirable extension for this algorithm would be a
version that would handle the mixed binary integer linear programming

problem. This problem may be stated as:

X
maximize Xy =g * -
L
x
subject to: A <b
¥y
(MBILP)
1 X
~- 20
¥
L <e
X binary
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where x is a column vector in Rs, Y is a column vector in Rt,

e 1is the unit vector in Rt, and s +t=n with ¢, A, b and O

as in (BILP). This problem is referred to as mixed since Xx is a
binary vector while the components of y vary continuously between O
and 1. Of course, the major work involved in such an extension would
be the adaptation of the bounding technique to this case. We may

define # 1in the same way and find the extreme points E(J). As a
matter of fact, the bounding inequality itself still holds; however,
there may be some components of y in the JN variables, in which

case partial solutions fixing only binary variables will not contain
these continuous variables. However, we do have an additional inequality
which the continuous variables must satisfy. Hence, depending on the
number of nonbinary variables found amongst the JN variables our
bounding inequality may be weakened considerably. Hence, any adaptation
to (MBILP) would depend heavily on further work regarding the nonbinary
variables in J, or, more generally, on the type of hybrid procedure

N
used to handle the y variables.

6.3 Conclusions

The author intends to carry out the suggestions in Section 6.1
in the near future and results will be reported. After the fine tuning
of the algorithm has been achieved, work on (MBILP) will be undertaken.
In addition, any hybrid algorithm is always open to improvement achieved
by utilizing new techniques presented in other algorithms. We will

continue to watch the literature for such opportunities.,
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APPENDIX

DETAILED SUMMARY OF THE ALGORITHM
Use the simplex method to find the solution x* to (BILP)R.

Execute the heuristic to obtain an initial feasible point EF with

objective function value xg.

Perform the change of variables for variables at level 1 in x¥,

yielding (BILP)®.
Find the extreme points 5(1) (i=1, «e., n) of the region & .

Determine the maximal number of variables in JN which may be at

a positive level in an eligible partial solution for these variables.

F

I ¥ xI = x' and adjoin the constraint

crss I
Initialize pO =0, XO = xO » X
I

e'x' > x; to (BILP)'.
If 1/(x§‘])) > 1, fix x5 = 0 for the remainder of the algorithm.

Initially all variables in JN are set at level O, Subsequently
we search for the first zero variable not permanently fixed at O
and set it at level 1. All preceding variables in JN are set

at O, If no zero entry is found, the algorithm terminates,

Check to see if the partial solution § from @ is eligible:

(1) Check for binary and conditionsl binary infeasibility in {

I
o .
If the former occurs, go to . If the latter occurs, :

augment S appropriately to obtain S' and go to . :

E'x' 2 x
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(ii)  Check to see if the bound from (5) is satisfied. If not,

go to .

(1ii) Check the bounding inequality. If it is violated go to .
Solve (BHP)I;S; if infeasible go to ().

If the solution in is binary we have a new incumbent. If not,
go to @ .

I I I
Update x7, x5, Py Go to .

Compute up and down Tomlin penalties for those fractional valued

variables in 10 not at a quasi-integer level.
Attempt to fathom using penalties. If successful, to to .

Branch on the variable yielding
max(max(up penalty, down penalty))
in the direction giving the largest penalty. Denote the new partial

solution by S?.
1
Solve (BILP)};S . If feasible, go to .

Using the backtracking scheme of Section 4.5 attempt to generate

a new partial solution S' without altering the values of the JN

variables. If this is not possible, go to .

Go to .

If the solution is not binary, go to @

A new incumbent has been found. Update x', xI, pg. Go to (7).
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