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UPDATING A DISCRIMINANT FUNCTION

ON THE BASIS OF UNCLASSIFIED DATA

G. J. McLachlan and S. Ganesalingam

ABSTRACT

The problem of updating a discriminant function on the basis of data

of unknown origin is studied. There are observations of known origin from

each of the underlying populations, and subsequently there is available a

limited number of unclassified observations assumed to have been drawn

from a mixture of the underlying populations. A sample discriminant func-

tion can be formed initially from the classified data. The question of

whether the subsequent updating of this discriminant function on the basin

of the unclassified data produces a reduction in the error rate of suffi-

cient magnitude to warrant the computational effort is considered by

carrying out a series of Monte Carlo experiments. The simulation results

are contrasted with available asymptotic results.
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1. Introduction

The problem of updating a discriminant function on the basis of un-

classified data is considered. For simplicity it is assumed that each

object belongs to one of two possible populations, say HI and H2 ; the

procedures to be discussed can be extended in a straightforward manner to

cover an arbitrary number of populations. A discriminant function is to

be formed for allocating an unclassified object to H or H2 on the

basis of a p-dimensional feature vector, y, which can be observed on each

object. The density function of y in Hi is denoted by fi(y), and

Sly and r2y = 1-aly denote the prior probabilities of y belonging to

H and H2P respectively.

The optimal or Bayes rule of allocation assigns an unclassified object

with observation y so as to maximize 1 (y) over i=l and 2, where

-
(y )  iy fi(Y)/ {I ly f1 (y) + T2y f2(y)

}  (1.1)

is the posterior probability that the object belongs to Hi given y. In

practice the densities are either unknown or, if their forms are known,

their parameters are unknown. The estimation is usually carried out on

the basis of mi classified observations xil , ... , x im, sampled from

H (i-, 2). One way of proceeding is to assume some parametric form

for the fi(y), such as the normal or the logistic families (Anderson,

1951 or Anderson, 1972), and estimate the unknown parameters of the parti-

cular family adopted. If this is not possible, some nonparametric approach

must be used, such as kernel estimation (Reume et al., 1980, Aitchinson and

Aitken, 1976, and Titterington, 1980). For the .ase of two populations
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Greer (1979) has presented a solution to the problem of consistent nonpara-

metric estimation of allocation rules that are best in a given class of

linear rules.

2. Model

We consider the model where in addition to the m - ml4m2 classified

observations there are subsequently available n unclassified observations

Yl' ...,' Yn" It is supposed here that they have been drawn from a mixture

of H1 and H2 in some unknown proportions, say w 1  and iT2 - 1-t1 ; that

is, each yi has the mixture density

f(yi) = ri1 f1 (yi) + 7r2 f 2 (yi) ' (i-l, ... , n) (2.1)

This model is usually associated with two problems of somewhat different

aims. With one problem the aim is to estimate the mixing proportion 7It;

the classified data are assumed to have been obtained by sampling separately

from H1 and H2, and so provide no information about ii. This situation

corresponds to a number of important problems in practice; see, for example,

Hosmer (1973), Odell (1976), Odell and Basu (1976), Switzer (1979), and

McLachlan (1980). The standard discriminant analysis approach is to use

the classified data to form a discriminant function which can be applied

to the unclassified data to obtain an estimate of I given by the pro-

portion assigned to HI . Alternatively, if the form of the densities are

known, we can apply the EM algorithm of Dempster et al. (1977) to obtain

the maximum likelihood (ML) estimate of 7t1 based on all the data. The

latter involves more computation but is asymptotically more efficient pro-

viding regularity conditions hold. The efficiency of the former estimator
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of 7T corrected for bias relative to the ML estimator has been derived

asymptotically by Ganesalingam and McLachlan (1981) for two multivariate

normal populations in which

y - N(Pt, Z) in Hi (i1-, 2) . (2.2)

They concluded that if the discriminant analysis approach gives disparate

estimates of the mixing proportions, then one should proceed further and

compute the ML estimates, particularly if n is large relative to m.

Otherwise there may be a considerable loss in efficiency.

The other problem associated with the model (2.1) concerns the updating

of the discriminant function formed initially from the classified data.

Here the primary aim is not to estimate the mixing proportions, although

they will have to be estimated along the way, but rather to use the unclas-

sified data to improve the initial estimate of the densities f1 (y) and

f2(y) and hence the performance of the discriminant function as assessed

by its overall error rate in allocating a subsequent unclassified observa-

tion. If the form of the densities is known, then the discriminant function

formed initially from only the classified data can be updated using the ML

estimates of the population parameters based on the combined data. Providing

regularity conditions hold, there should be a reduction in the error rate,

at least asymptotically, since the updated discriminant function is based

on asymptotically more efficient estimates of the population parameters.

In the context of the first problem where interest is focused on the

estimation of the mixing proportions, there is generally only a limited

number of classified observations available, but there may be quite a large

number of unclassified data. In the updating context there are also only
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limited classified data available, but the unclassified data may be limited

too. For example, at any one time in a continuing discriminant situation,

say in medical diagnosis, the n unclassified observations may consist of

the data collected up to date on those objects whose true populations of

origin are not known with certainty. Therefore, n may not be large, at

least initially. Hence there is the question of how large n must be in

order for updating to produce a reduction in the overall error rate which

warrants the computational effort involved.

There would appear to be few small sample results on the possible gains

from updating on the basis of n unclassified observations under the model

(2.1), in particular as n varies for a given number of classified obser-

vations, m. O'Neill (1978) has studied asymptotically the performance of

a discriminant function formed from classified and unclassified data com-

bined. However, it follows from the work of Ganesalingam and McLachlan

(1978, 1979a) for the cluster analysis problem (m=O) that the asymptotics

do not always provide a reliable guide as to what happens with small 4

sample sizes. Hence the updating problem is still essentially unresolved.

Little (1978) has commented that there may be no discernible gain from

updating.

In order to provide more information on the question of whether

updating on the basis of a limited number of unclassified data is a worth-

while exercise, a series of simulations was performed over various com-

binations of the population parameters, the mixing proportions It1  and

iT 2 , and the sample sizes n and m. Attention is concentrated on the

normality case (2.2). This is a straightforward situation to handle and,

if updating does not produce any worthwhile gains in this instance then
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it is unlikely it will in more difficult situations where normality does

not apply. Updating procedures appropriate for non-normal situations have

been suggested by Murray and Titterington (1978) who expounded various

approaches using distribution-free kernel methods and Anderson (1979) who

gave a method for the logistic discriminant function. A Bayesian approach

to the problem was considered by Titterington (1976) who also considered

sequential updating.

3. Updating Procedure

Under (2.2) the rule based on (1.1) with parameters replaced by their

usual estimates computed from the classified data reduces to allocating y

to H2 or H1 according as

W(y) = a'y + b

is greater or less than the cut-off point C = log(T1 /r2y), where

-l~x - I )
a= S (X2 -xI

1-- 1
b= (xl+x 2) ( 1 2)

and x' x2, and S denote the sample means and pooled sample covariance

matrix formed from the mi classified observations from Hi (i-1, 2).

The vector a of discriminant coefficients is that originally obtained

by Fisher (1936).

For the model (2.2) the estimates a and b can be updated on the

basis of the n unclassified observations Y1 9 ...' Yn by maximizing the

combined likelihood
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2 m ' n

L = H 1 fi(xij) II {n 1 fI(yk) + 72 f2 (yk
) "

i-1 J=l k-1

The updated estimates, aU  and bu, are given iteratively by

=-1 A * * A*

aU  V ( 12 -)/{IlIr 2 (I2-V)' V-(j 2 - I1 )

and

1 ^2)bU =-_ya( + 2

where

n
Ti w Aik/n , (1-1, 2),

k=l

lk -W2k l(Yk) = / + exp(ay k + bU + log(^2/' )}

ni--(m xi +  I" Wi Mk/m + n~i) (i=l, 2),

k=l

i= (mi + n'ri )/(m+n) , (i=l, 2)

and V denotes the sample covariance matrix of the combined sample. The

EM algorithm of Dempster et al. (1977) ensures the convergence of these

estimates to a local maximum; see also Day (1969), O'Neill (1978), and

Ganesalingam and McLachlan (1979b).

An obvious choice of starting values for aU and bU  are the esti-

mates based solely on the classified data, a and b. Ideally, one should

try several starting points in an attempt to locate the global maximum.

However, if starting the iterations with a and b does not lead to a

solution which is near to the one corresponding to the global maximum,

then the selection of more appropriate starting values would be a diffi-

cult exercise, particularly with high dimensional data. Therefore, if the
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updating procedure is to be implemented in a straightforward manner in

practice, the use of a and b as starting values should lead to satis-

factory estimates for the updated discriminant function coefficients.

Hence in our simulations updating was performed starting with a and

b always.

Frequently when no suitable estimate for nly is available, the

convention ly 2y = 0.5 is adopted, which yields the minimax

rule for ml--m2. In the updating example given in the previous section

where y can be regarded as the (n+l)th unclassified observation to be

recorded, 7Tly = under the model (2.1), and so it can be estimated by

the ML estimate of i 1 obtained during the updating process. In our

simulations ly was not taken to be data dependent, but was set at a

predetermined value. At least two levels of ly , including 7ly =T i

were taken with each combination of the other parameters.

4. Relative Efficiency

Let r(m,n) denote the overall unconditional error rate that the

updated discriminant function, W(y; au, bu), misallocates the observa-

tion y with prior probabilities ly and T2y = 1-7ly of belonging

to HI and H2 respectively; r(m,O) and r(m+n, 0) refer to the cor-

responding error rates for the initial discriminant function based solely

on the classified data and for the discriminant function obtained if

updating were performed knowing the true origin of each of the unclassi-

fied observations. For a given 7tly

E(7Ty) {r(m,0) - r(m,n)}/{r(m,0) - r(m+n, 0)} (4.1)
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can be used as a measure of how efficient the updating is relat 'e to

the standard procedure where the origin of each unclassified observation

is known. The various unconditional error rates on the right-hand side

of (4.1) can be investigated through simulation by using the sample means

of their simulated conditional values which can be calculated exactly from

the normal distribution.

A series of 30 trials was performed for each of the 32 different com-

binations of A, p, m, n, and 7i considered, where A = {(li-I2)'

E-1(W1-12 )) /2  is the Mahalanobis distance between H1 and H2 ' On a

given trial the same simulated data were used to compute the conditional

error rates for different levels of Trly in the cut-off point. The con-

venient canonical form

il = -112 = A2 A, 0, ... , 0)' and E = ((6ij))

was adopted without loss of generality. The method of Box and Muller (1958)

was used to generate normal variables from uniformly distributed deviates

which were produced by a multiplicative congruential generator of the form

xi+IlE cxi (modulo d), where c = 1429 and d = l 3 .

The updating problem is only of interest in those instances where the

performance of the discriminant function based on the classified data is

well below that of the optimal version; that is, in situations where m

is not large relative to the number of dimensions p. Consequently in

the simulations m was taken to be small relative to p. Various levels

of n were taken for a given level of m. On all the trials the m

1
classified observations were obtained by sampling I m observations from

2

H 1  and from H 2.
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5. Simulation Results

The simulated values obtained for the relative efficiency measure

(4.1) for the updating procedure are displayed in Table 1 for the various

combinations of the parameters considered. All entries are expressed as

percentages, and an entry for (, r ly ) corresponds also to the case

(1- 7T1 , 1- Tly)

For widely separated populations such as with A=3 the discriminant

function formed initially from the classified data should be able to pro-

vide a fair degree of separation between the populations, and so the

unclassified data should be able to be used quite effectively in the

updating process to reduce the overall error rate. This is clearly sup-

ported by the simulation results in Table 1 which show that the reduction

in error rate from updating is generally an appreciable proportion of the

reduction possible where updating is performed knowing the true classifi-

cation of the data. The relative efficiency is for most combinations well

above 50%.

For populations which are not widely separated a discriminant function

based on only a small number of classified observations is unable to pro-

vide good discrimination, and so it is of central interest to see to what

extent updating on the basis of unclassified data is able to reduce its

error rate. The simulation results for A=2 in Table I demonstrate that

in such situations some worthwhile redu,:tion in the error rate car e

achieved by updating if the unclapsified data have been sampled in 4i

parate proportions from each population. Otherwise the results suggest

that if p is not very small updating would have to be performed on the
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basis of an extremely large number n of unclassified observations rela-

tive to p to produce any practical gain in the error rate. Indeed, for

four combinations with A=2 and wI = 0.5 the change in the error rate

is simulated as an increase. In these instances n/p is at its lowest

level (12.5) which apparently represents a situation where there are

insufficient unclassified data relative to p. For higher levels of n

relative to p at the same levels of the other parameters a reduction in

the error rate was obtained as a result of updating.

Regarding the effect of increasing n on the results in Table 1, it

can be seen that for most combinations the simulated relative efficiency

of the updating procedure increases with n. On the effect of different

Trly for a given W., there is generally not an appreciable change in the

relative efficiency as wly varies over 0.25 and 0.5, and also 0.75

for Tr = 0.25 (for wr = 0.5 the relative efficiencies are the same at

Tly 0.25 and 0.75). For most combinations the relative efficiency

decreases as 7Ty increases from 0.25 to 0.5, and increases as 7ly

increases further to 0.75 for i = 0.25.

As the aim of updating a discriminant function is to reduce its

error rate, it is worth examining further those combinations in Table I

for which an increase in the overall unconditional error rate was reported

as a consequence of updating. In these cases for which n I = 0.5 and p

is either equal to 4 or 8, the decrease in error due to updating is either

so small that it is simulated as an increase or the error rate has actually

increased. In order to investigate this somewhat further another 30 trials

were generated for each of the relevant combinations. On this occasion
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positive values were obtained for the simulated relative efficincies,

namely 21%, and 4% at rl = 0.25 and 0.50 respectively with i= 0.5,

p = 4 , m = 40, n 50, and 4%, and 1% at iTly = 0.25 and 0.50 respec-

tively with iT = 0.5, p = 8, m = 40, n = 100. On the basis of the com-

bined 60 trials per combination, the change in error rate due to updating

was simulated still as an increase in all but one of the four cases. How-

ever, as the differences between the expectations of the error rates are

apparently not large relative to the standard errors of their simulated

values, it would require an extremely large number of simulation trials

in order to demonstrate with a high degree of confidence that the error

rate has been increased after updating in these instances.

For the cluster analysis problem where there are no classified data,

Ganesalingam and McLachlan (1979a) have reported some very encouraging

results in the univariate and bivariate cases for forming a linear dis-

criminant function which provides adequate separation even in small samples

from populations close together. They noted, however, as did Day (1969),

that there are problems with multiple maxima for p > 3. The results in

Table I for p = 4 and 8 show that even when we have some classified

data available to provide what would hopefully be reasonable starting

values in the search for the global estimates, updating does not neces-

sarily improve the performance of a linear discriminant function if the

unclassified data are limited and drawn in approximately equal proportions

from the respective underlying populations.
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6. Asymptotic Results

It is of interest to compare the simulations of the previous section

with available asymptotic results in order to assess how applicable the

latter are to small sample sizes. O'Neill (1978) has considered asymp-

totically the relative efficiency measure,

fr(m+n), 0) - r(-,O))/{r(mn) - r(c,0)}

where r(c,O) refers to the overall error rate of the optimal discriminant

function. His underlying model also differed from the present one in that

the classified data were obtained by mixture sampling in the proportions

7i and T2 and that r ly was set equal to the updated estimate of 7i.,

Ti"V These last two cnnditions are important from an analytical point of

view as the problem can be then reparametrized in terms of aU and

bU = b + log(n2/ I) without difficulty, which subsequently enables the

information matrix for aU and but and hence the asymptotic error rates,

to be derived. In a similar manner we can derive the asymptotic relative

efficiency based on our measure (4.1), providing of course these two con-

ditions are retained. The asymptotic relative efficiency so obtained should

be fairly similar to that in the case of known nly equal to Ir., and in

Table 2 it is contrasted with our simulated efficiencies for these combina-

tions with 7y = i".

It can be seen that there is good agreement for p=l; the simulated

relative efficiency always exceeds the corresponding asymptotic value.

However, for higher levels of p, the simulated relative efficiencies are

always less than the asymptotic predictions. There is still reasonable

13



agreement except for combinations with A=2 and i = 0.5 where the

simulated relative efficiencies are appreciably below the asymptotic

values.

7. Conclusions

The simulations conducted for the updating of a discriminant function

by maximum likelihood on the basis of unclassified p-dimensional data

drawn from a mixture of the underlying populations suggest that the error

rate can be reduced by a substantial percentage for widely separated popu-

lations. In situations where the number of classified observations is

small relative to p and the populations are not far apart, and so where

an efficient updating of the discriminant function is most needed, the

results are not so encouraging. Indeed, if the n unclassified observa-

tions have been sampled in approximately the same proportions from the

populations, then there appears to be little if any gain from updating in

cases with p > 2, say, unless n is quite large relative to p. A com-

parison of the simulations with available asymptotic results appropriate

for a similar model suggests that the asymptotics give a reasonable guide

as to what happens with finite sample sizes for univariate populations and

in those instances where the multivariate populations are widely separated

or are represented in the unclassified data in disparate proportions.

8. Discussion

If it is not appropriate to adopt the mixture sampling scheme (2.1)

for the unclassified data, then one might consider iterati ely updating
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a discriminant function by applying it to the unclassified data and then

recomputing the estimates of the population parameters on the basis of

the combined observations with the unclassified data partitioned accord-

ingly, and so on (McLachlan, 1975). This process may be viewed as applying

the so-called classification maximum likelihood approach with starting

values equal to the estimates based solely on the classified data. With

this approach there is an identifying label associated with each unclassi-

fied observation, and the labels are treated as unknown parameters to be

estimated; see Hartley and Rao (1968), Scott and Symons (1971), John (1970),

and Sclove (1977). It is well known (Marriott, 1975 and Bryant and

Williamson, 1978) that this approach does not yield consistent estimates

of the population parameters. The results of McLachlan (1975, 1977)

suggest that it should not be used unless one can be sure that the unclassi-

fied observations are present in approximately the same proportions from

each population. Some recent Monte Carlo experiments undertaken by

Ganesalingam and McLachlan (1980) in a cluster analysis context suggest

that, even if the unclassified observations are obtained by sampling

separately from the individual populations, maximum likelihood estimation

performed on the basis of mixture sampling leads to reasonable results.

Note. This manuscript was prepared while the first author was on

leave with the Department of Statistics at Stanford University.
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TABLE 2

Simulated Relative Efficiency of Updating Procedure for

7ly = 7T Versus Asymptotic Relative Efficiency for

ly M 1 (in Parentheses)

7r 1
0.25 0.5

A

p m n 2 3 2 3

1 20 50 31 68 34 74

(23) (62) (28) (67)

100 38 84 59 78

(33) (74) (40) (77)

200 60 87 77 87

(48) (84) (55) (86)

4 40 50 30 38 -25 57

(33) (68) (28) (66)

100 54 58 11 66

(45) (78) (40) (77)

200 49 72 15 70

(59) (87) (55) (86)

8 40 100 35 52 -16 51

(48) (79) (40) (77)

200 42 76 9 73

(62) (87) (55) (86)
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