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ABSTRACT

The problem of Frequency track storage is one
small part of implementing a comprehensive signal
analysis system. This paper deals only with their
storage and does not discuss the signal analysis
problem. The frequency tracks are used in signal
classification and an optimal data base allowing
graphics and statistical analysis is sought.
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INTRODUCTION

This paper deals with the topic of frequency track storage. The stored

frequency tracks will be used in a graphics oriented signal analysis system

requiring graphics data base storage. The requirements on the data base will
be given followed by several possible schemes to accomplish the task. The

best choice of the schemes will be made according to how well it satisfies the

requirements.

Before the topic of frequency track storage is pursued, an explanation of

what frequency tracks are and why they are useful will be given.

Continuous acoustic data is recorded as a voltage amplitude over time.

The signal is then digitized and stored as discrete voltage amplitudes

sequentially written onto disk. By using a number of points from the

digitized wave form, a fast fourier transform (fft) produces the

representation of the wave, over the given sample points, in the frequency

domain. The output of the fft is a series of complex numbers defining

discrete frequency bins between zero and half the sample rate of the original

data. For example, sampling the continuous wave at a rate of 18,000 samples

per second gives a fft output range of 0 to 9000 cycles per second. By

squaring and adding the real and imaginary parts of each complex number along

the frequency domain, the power spectrum for that set of data-points is

computed. The power spectrum is the power used at the various frequencies to

create the wave (see figure #1). The power peaks in the spectrum are the

objects of interest for analysis of the acoustic data. Each peak has four

parameters associated with it. These are amplitude, band width at the half

power point, frequency at which the peak occurs, and phase. The phase of a

peak is a parameter obtained from the original complex number. A vector is

defined between the origin of the complex plane and the complex number for the

power peak. The angle between the real axis and the vector is the phase of

the power peak. The phase is computed as PHI=arctan (y/x) where y is the

imaginary component and x the real component of the complex number. Taking

power spectra for a number of points repeatedly, while moving along the data

for each new power spectx.a, yields a related set of power spectra in time.
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The set of power spectra is used to observe the frequency distribution of

power over time of a signal. The connecting of power peaks on different

spectra (time slices) in the set is called tracking. The tracking algorithm

decides which peaks belong to a track by frequency bandwidth and amplitude

considerations (see figure #2). Figure #2 shows thirty power spectra (time

slices) which have had the peaks connected to form tracks. Note the

possibility of tracks splitting and merging. Also note that tracks can cross

time slices where no peak is marked since the tracking algorithm fills in a

peak when it is deemed necessary in order to continue a track.

The purpose for examining tracks is to extract unique characteristics

about various signal phenomena. Once the ability to extract significant

features from data is achieved, one can classify data into groups without

knowledge of the signal's source.

4
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OBJECTIVES

We begin by stating the requirements imposed upon the frequency track

storage data base.

LOW STORAGE REQUIREMENTS

Given several viable alternative storage schemes, the one with the least

storage requirements should be given greatest consideration. Low storage is

especially important with regard to core memory storage. For disk storage,

size is not as important as whether the data on disk can be partitioned into

smaller sets that are independently useful and can be placed in core memory

quickly.

EFFICIENT DISPLAY OF DATA

The tracks are to be displayed on a C.R.T. for the user's examination.

Many power spectra usually are taken for a signal but for resolution purposes,

not all time slices will be displayed on the screen at one time. Figure #2

earlier showed a sample display. The number of time slices that can be seen

at one time with satisfactory resolution is set at 30. The displaying

mechanism must be able to display time slices n thru n + 29 where n is any

number between 1 and the total number of power spectra taken (minus 29). For

resolution purposes the whole frequency range of the power spectra also is not

displayed. Proper resolution is achieved when a frequency band for the

display is set for n to n + 1799 Hz. Each display therefore is a window in

time and frequency into the data. The ability to create the display implies

sequential ordering of the peak data in time.

EFFICIENT EXAMINATION OF A DISPLAY

While a display window is being viewed, the ability to observe the

underlying phase, bandwidth, and amplitude data is desired. A method that

allows the user to move from peak to peak on the display and have it's 4

6



vector of information displayed is needed. The faster this can be done, the

greater it will enhance the perception of the data being viewed.

PROPER HANDLING OF INTERSECTIONS

As was seen in figure #2, tracks can have intersections. If tracks will

not be stored as complete units (branches stored seperately) the decision as

to which branch will contain the junction peak must be made. Both branches

may have to contain the peak, creating some redundancy.

7



STORAGE GROUPING

In the discussion of frequency track storage, one of the three objects

shown in figure #3 will be used as a basic storage structure.

1. PEAK:

Each individual peak could be stored with indices to the 2 peaks it

connects, both upward and downward in time.

2. SEGMENT:

Each connected set of peaks having no more than one peak per slice can be

stored with indices referring to segments joining the top or bottom peaks.

3. TRACK:

The complete disjoint set of peaks can be stored as an independent unit.

These three objects form the basis for many variations of the general

algorithms for storage that will be mentioned. All three objects will not

always be applied in discussion of methods.

8
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TRACK MATRIX

The first method to be considered will be called the "Track Matrix". As

can be seen in figure #4, this is a set of fixed length arrays.

The vertical axis of figure #4 labeled "time" is the maximum number of

power spectra that can be tracked. Each segment has this total number of time

slices reserved with space for the 4-vector of information on each time slice.

The track Matrix uses segment storage grouping since the array allows for only

one peak per time slice per stored object. Every segment found is stored in

its own segment array over the appropiate time slices. Time slices not

occupied by that segment are zeroed out.

A standard example of 500 power spectra and 200 tracks (or segments) will

be used for the track matrix and later methods to be considered. The standard

will be matched against the objectives stated earlier for all methods.

Track Matrix storage requirements for the example are easily computed.

Frequency, phase, and bandwidth numbers each require a word of storage.

Amplitude data is stored as a real number requiring two words. The

computation is as follows:

wordsX50 pes
5 wordskX 500 pakse X 200 segments = 500,000 words

peak segment

500,000 words is high compared to other methods. The reason for large

storage requirements can be understood as follows. Most segments only run

about 25 time slices on the average. The segment arrays therefore have many

spaces wasted (zeroed out) because the segment is not the maximum length (500

slices).

Creating a display on the C.R.T. is easily accomplished because of the

indexing ability of the arrays and the sequential time ordering of the

segments. Any time slice can be found quickly and all segments containing an

entry for that time slice can be noted.

10
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For the same reasons as above, examining the display is efficient. Those

peaks on a segment pertinent to the display screen can be read into core

memory quickly. Retrieval of the information from the peaks in core memory

will be fast and easy.

The last objective to be considered is proper handling of intersections.

The storage structure for the track matrix must store an intersection peak on

all segments meeting at that peak. Intersections can be noted by the user on

the C.R.T. but no internal mechanism notes the intersection. An examination

scheme where a marker (cursor) is moved along segments by the user's control

would not allow the marker to be moved onto a segment being intersected in

this case.

In summary, two of the four objectives are achieved well for the track

matrix. Intersections are handled; but somewhat inconveniently.

Applying peak or track grouping to this method would have little effect on

its storage size shortcoming. Solving the size problem by making each segment

run end to end in one long array allows one to fix a total length limit on all

segments and eliminate much of the wasted storage. Indices would have to be

kept indicating where each segment begins in the array and at what time it

begins. This idea is a step toward the best solution, but its lack of time

ordering across time slices needs to be corrected.

12



GRAPH STORAGE

Since tracks can both split and merge, a graph is the ideal

representation. When a graph memory representation on a computer is being

considered, an associative memory (non-sequential memory) is needed. The

ability to create dynamic variable while running a program is achieved on the
1

PDP 11/45 computer via "The Graph Information Retrieval System (GIRS) In

GIRS, cells with pointers can be created as needed during execution of a

program. One cell consists of a node-link-node tiple.

To represent a track with GIRS, define a node to be the starts, stops, and

intersections of tracks. The nodes are connected by pointers oriented in

time. Two specialized nodes are reserved, the head node which points to the

starts of tracks and the tail node at which the last node in tracks point.

Each non-specialized node is associated with all peak data that appears

between itself and the next node downward in time. Data Pointers at each such

node supply the reference to an index file. In turn, the index file has

information about the starting time and length of each segment of the track,

the starting location of the list of peaks in the data file associated with

each segment.

The graph storage method appears to be a storage by segment method,

however the whole tracks are actually stored as complete units. Segments also

are well defined units in the graph.

Figure #5 shows a track and its graph representation. Note that the node

corresponding to the split in the track has two pointers. Since cells are

created as needed, lists of pointers can be generated for each node. To make

the example clearer, we will now form the track of figure #5 segment by

segment as the tracker would form it, thus giving insight into the procedure

by which the graph is made.

1 Zaritsky, I.S., "GIRS (Graph Information Retrieval System) users Manual,"

Report DTNSRDC-79/036 (April 1979)
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First the tracker finds a segment and starts a new graph (see figure #5A).

A node has a pointer to the index file and in turn the index there gives

access to the time sequential peak data for that segment. Next, another

segment is added to the track (see figure #5B). In this step, the previous

entry length is divided because a junction node is inserted into the graph. A

new index is entered for the second part of the divided data. Then the next

segment found is also added in the data and an index entry created. Lastly,

the final segment is found and the graph of figure #5 is completed.

Now the graph storage method will be analyzed with respect to the

objectives.

The graph has the least storage requirements of all methods considered.

The data and index files are fixed length arrays and declared in advance by a

direct access unformated Fortran file procedure. The graph itself varies in

size according to the amount of data to be tracked. Graph size also depends

on the number of intersections in the data since extra nodes are made for

intersections. By computing the storage of the fixed length arrays and

estimating a typical graph with an average amount of intersections, the

storage requirements can be compared for the standard example.

words
Index file: 3 X 200 segments = 600 words

segments
words

Data: 4,500 peaks (max. allowed) X 5 peak = 22,500 words

Graph: between 50 and 2,900 words
Total: between 23,150 and 26,000 words

The lack of explicit ordering of tracks on time slices creates some problems

with the graph. Each node contains a list of peaks in time, but these lists

overlap in a random manner. To display an interval between slices n and n +

29, the whole graph will have to be traversed to search for relevant data.

Inefficiency also occurs with display examination. Traversing a given

segment can be performed well since the time sequenced data for the segment

can be quickly brought into core memory via the node index pointer. However,

jumping to other segments covered by the same or a different node is

difficult. Figure #5C gives an example of this. The user is viewing peak 4

15
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vector information at point A on the track display. He then wants to jump to

the next higher frequency on the same time slice (Point B). If the jump

mechanism moves to the segment on the indicated time slice by using the

nearest node that has a segment on that time slice, point C will be reached

since both points A and C are covered by the same node. Therefore, a search

of the entire graph must be done in jumping from segment to segment on the

display screen.

Intersections are taken care of naturally in the graph method and no

problems will occur.

In summary, the graph storage method corresponds to a time space product

similar to that of the Track Matrix, although here storage size is low and

retrieval time is long. Before going on to the last general idea, a few

variations of the graph will be mentioned.

VARIATIONS OF THE GRAPH METHOD

Peak graph

With regard to the peak-segment-track storage grouping options, one might

have each peak in the track have its own node with pointers. This idea makes

the graph correspond one-to-one with the track. The storage overhead

associated with GIRS (four words per node link node triple) and the many nodes

required for this variation causes the storage size to become very much larger

than originally. The purpose of the graph storage method would be defeated

with this variation.

Tagged display

One way of helping display examination of the graph structure is by

placing tags adjacent to each segment on the display screen. In this scheme,

the tracking routine marks each segment found in the graph with a tag number.

The tag number is in a GIRS cell with a pointer to the index file. The tags

18



are to be displayed on the screen adjacent to its corresponding segment. The

user explicitly prompts the examination mechanism by supplying the tag when a

new segment is to be examined. An example of this is shown in figure #5D. A

potentiometer knob on the PDP 11/45 is used to move a horizontal time cursor

up and down the display via the Fortran graphics library routines. The cursor

is set on a time slice and the command "SEG=6" is entered on the keyboard.

The segment information would be read into core and the 4 vector information

for the peak marked by the cursor would appear on the screen. Other peak

information on that segment would be obtained by moving the time cursor along

the segment.

The tagged display idea is an attempt to help display examination only.

Because of the tags, display creation presents even more problems. An

algorithm that places the tags not only within bounds of the display, but at a

place clearly marking the segment it belongs to is needed. The extra problems

incurred from the tag idea offset the benefits. The tags also will increase

storage requirements but not significantly.

Specialized links

Adding special links will help traversal of the graph. Links could be

added to the graph during creation that would fix a predetermined order of

traversal. The examination routine would not have to search for a new

segment, but the user would have no choice in the order of segment

examination. A time link set could be maintained by having time links for all

slices having one or more tracks on it. The time link would point to all

nodes containing segments crossing that time. Many time links would be needed

causing a large storage addition offsetting the benefit obtained. Many

specialized link ideas can be derived, however, storage increases and

ambiguity of traversal under certain situations kept specialized links from

being implemented.

19



TIME MATRIX

In this method, the cartesian ordered index and data files of the graph

are kept but the graph itself is exchanged for the time matrix. The time

matrix will have slots for each time slice possible. Only a few segments will

occur over the same time range, therefore the slots will be limited in number

per time slice (see figure #6). As was mentioned earlier, the track matrix

wasted space because segments did not occupy but a few of the time slices

allocated. Savings are made by realizing the limited number of segments that

can appear on the same time slice. The peak picking algorithm that marks

significant peaks in the power spectrum, shown earlier in figure #1, will pick

at most 10 peaks and store them. On the average, only six to eight of the

peaks on a time slice will get involved in tracks. Interpolations across time

slices produced by the tracking routine add the possibility of creating extra

peaks on a time slice. If the segment grouping option is used, junctions

peaks will be stored on both joining segments adding an extra peak to the time

matrix. Under real situations it was found that no more than 11 peaks per

time slice occured in tracks. Making some approximations in order to perform

statistics gives the probability of exceeding 13 peaks on a time slice very

small. Therefore the time slots in figure #6 are limited to 13 peaks. The

slots in figure #6 are indices corresponding to the storage group containing

the peak residing on that time slice. Again, the storage group could be peak,

segment, or track. The time matrix for peak oriented storage grouping would

have a different number in each slot of the time matrix. The number would be

the index into the data file having the 4 vector information for that peak and

indices for the peaks connected above and below. A problem occurs when

creating the track display. More than one peak can connect to another peak.

Creating the display by following the peak indices will allow over drawing a

previously displayed segment making that segment darker than others and

wasting computer time. If one wanted just to display the tracked peaks as

points with no connections the peak grouping method is fine. The user could

not see the connected peaks, however a cursor could move from peak to the next

peak in the track by using the peak links stored in the data. Having to view

non-connected peaks is undesirable and a better storage grouping exists.

20



0))
u'
c4-

ca

time -

21



If the time matrix method were to use track grouping, the slots in the

matrix would refer to which track that particular peak belonged to. The data

file would need no pointer indices, but a different problem arises. Because

of intersections, the same number could be contained in more than one slot on

the same time slice. In this case, the index in the slot will refer to the

same place in data storage, but for different parts of a track! Therefore,

something special would be needed to distinguish between the different parts.

Segment storage grouping is the best alternative. Each slot in the time

matrix is a number referring to a particular segment. The index in the slot

is used in the index file of figure #7. A "'4"1 in a time matrix slot refers to

the fourth row of the index file. Each row of the index file has five numbers

pertaining to a segment. The first is a number referring to the place in the

data file where peak information starts for that particular segment. Next is

the time slice number for the start of the segment. Then the number of peaks

for the segment is given followed by segment numbers for upward and downward

intersections. A zero entry represents no intersection. The data file

contains sequential 4 vector information for each peak.

The example in figure #7 will now be explained. The tracking algorithm

first finds segment A. Each slice in the time matrix pertaining to segment A

is updated with the number one (first segment found). The first row of the

index file is filled in with the appropriate numbers and the data file has the

peak information added. Segments B and C are then found and the files

updated. Note segment C joins segment B at B's beginning peak. This is noted

in the third entry of the index file. The data file in figure #7 contains

some artificial numbers for the first few peaks as an example. The data file

has a limit to the number of peaks. Though each time slice has room for 13

peaks, only six to eight peaks on the average are involved in tracks.

Allowing for a miximum of 9 peaks per time slice leaves plenty of space. The

data file length limit is set at 9 times the number of time slices. In the

example having 500 time slices, the number of peaks allowed is 4,500.
Exceeding either the time matrix or data file limits would be noted by the

22
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t

tracker during storage and the effect to particular parts of the data could be

avoided.

Storage requirement for the time matrix method with segment grouping are

computed as follows:

words
500 slices X 13 slice = 6,500 words

words
+ 200 segments X 5 segments = 1,000 words

~words
+4,500 peaks X 5 peak - 22,500 words

peak 30,000 words TOTAL

Note: track matrix method -- 500,000
graph method -- 23,150 to 26,000 words

The small amount of extra storage space over the graph method has bought

much time ordering in the time matrix method. The sequential data storage and

easy indexing gives efficient display creation and examination. Figure #8

shows a display and the cursor used in examination. The display screen

presents 3 tracks (4 segments) and below this the 4 vector values for the peak

marked by the cursor (asterisk). A buffer of the same depth as the display

screen (30 slices) is maintained in core memory. The peak data for the

vertical movement is used to specify which peak on the segment will be

examined. If a disjoint segment is to be examined, the horizontal knob is

turned clockwise for a right jump and counter-clockwise for a left jump.

Using the time matrix, the examination mechanism fills in the data buffer for

the segment desired. If one wishes to examine a segment joined to the top or

bottom of the current segment, the cursor is moved across the junction using

the vertical knob causing an implied jump with the segment number being

supplied by the up link instead of the time matrix.
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SUMMARY

The time matrix method meets all the objectives for the Frequency Track

storage problem and therefore is to be used as the optimum storage method.
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