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DARCY'S LAW FOR FLOW IN POROUS MEDIA

AND THE TWO-SPACE METHOD

Joseph B. Keller

Stanford University
Stanford, California

§1. INTRODUCTION

A common problem in engineering and science is to derive
simple equations governing complicated phenomena. Often com-
plicated governing equations are known, but they are too dif-

ficult to analyze. Therefore it is desired to simplify them

in such a way that the phenomena of interest will still be
adequately described, while finer details which are not of
interest can be disregarded. An example of a simplified equa-

tion is Darcy's law, which describes flow of a viscous fluid

through a porous medium. The more complicated equation for
the same phenomenon is the Navier-Stokes equation. As an ex-

ample of a general method for simplifying equations, we shall

show how to derive Darcy's law from the Navier-Stokes equation.

Simplified equations are often called "homogenized equa-

tions," and the procedure of replacing the original equations

by them is often called "homogenization." Traditionally,

engineers and scientists invent homogenized equations from

physical considerations. In recent years, mathematicians have

developed new methods for deriving them from the original com-

plicated equations. These methods all involve averaging of

one kind or another. In some case it is stochastic averaging,

in other cases it is spatial averaging, and sometimes it is

space-time averaging.

429



430 Joseph B. Keller

The introduction of averaging depends upon the fact that

the problems involve two widely different scales. There is a

long scale of variation which is of interest and is to be re-

tained, and there is a short scale of variation which is not

of interest and is to be eliminated. The purpose of averaging

is to eliminate the variations on the short scales. Therefore

the region over which a spatial average is taken must be large

compared to the small scale and small compared to the large

scale.

These competing requirements have traditionally made the

derivation of simplified equations a heuristic, nonrigorous

procedure. However, by the introduction of the two-space

method, it is possible to convert it into a formal and rigor-

ous method. In fact, whenever apparently contradictory assump-

tions are used in a heuristic analysis, that is an indication

that the analysis concerns an asymptotic phenomenon. Usually

by appropriately recognizing this feature, it is possible to

replace the heuristic argument by a systematic and formal

asymptotic analysis.

The mathematical study of such asymptotic phenomena has

been pursued by Spagnolo [11, DiGiorgi and Spagnolo 123,

Sanchez-Palencia [3,4], Babuska [5], Bensoussan, Lions, and

Papanicolaou [6,7], Larsen [8,9], McConnell [10], Keller [11],

and others. I shall employ the two-space method which I devel-

oped for this purpose in 1973. It has been used and improved

upon by Bensoussan, Lions, and Papanicolaou [6,7] and Larsen

[8,9]. This method has been used by Burridge and Keller [12]

to derive the equations of linear poroelasticity from the lin-

earized Navier-Stokes equation and the linearized equations of

elasticity. That derivation has many points of similarity to

the present one.

Before deriving Darcy's law, we shall consider first a

simpler example, that of heat conduction in one dimension.

The thermal conductivity will be assumed to vary rapidly with

position, and we will seek a less rapidly varying effective

conductivity. In Sec. 2 we will derive it from the explicit

solution of the heat conduction problem. Then in Sec. 3 we

will rederive it by the two-space method, which we shall later

use to get Darcy's law.
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§2. EFFECTIVE THERMAL CONDUCTIVITY IN ONE DIMENSION

Let us consider one-dimensional heat flow along a rod in

which the thermal conductivity k varies very rapidly with dis-

tance x along the rod. To describe rapid variation we write

k = k(x/e) where e is a small parameter. Then dk/dx - e-k ',

so dk/dx is large when E is small even though k' is bounded.

If the thermal conductivity also varies on a slow scale, we

write k = k(x,x/E}. Then the steady state temperature distri-

bution along the rod satisfies the equation

d [k (x,x/e) - U] = A g(x) 0 5 x 5 1 (2.1)

Here dg/dx represents a heat source, which has been written as

a derivative just for convenience, and we also assume that

g(l) = 0. As boundary conditions we will suppose that one end

of the rod is kept at temperature zero and the other end is

insulated, so we have

u(O) = 0 du(l) = 0 (2.2)

dx

The solution of (2.1) and (2.2) can be found at once by

integration. By using the assumption that g(l) = 0, we get

the result

U(x,() (2.3)u~x k k(x x / ) dx '

We have indicated that u depends upon L, which is a measure of

the small scale on which k varies. As a consequence of the

small scale variation of k, u also varies on this small scale.

Our goal is to eliminate this small scale variation of u, if

possible, by considering the limit of u as e tends to zero.

We shall show that under suitable conditions on k, u(x,E)

has a limit u0 (x),

u0 (x) = lim u(x,c) (2.4)

Furthermore, u0 is given explicitly by

Uo (x dx' (2.5)
00k 0 (xi

* --.,.--------



432 Joseph B. Keller

Here the "effective conductivity" k0 (x) is defined by

1 x+Ax dx'
iJThT = lim a k(x,x'/T)0O X

.(x+Ax)/ d

- lim (xA)/ (2.6)E-0 fx/C &y

Our hypothesis about k is that the limit in (2.6) exists uni-

formly in x and is independent of Ax.

Before proving (2.5) we deduce from it that u0(x) satis-

fies the equation

0 1 () = d g(x) 0 ! x n 1 (2.7)

and the boundary conditions

u0(0) = 0 (l) (2.8)

Thus u0 (x) satisfies the same equations as does u(x) with

k(x,x/E) replaced by k0 (x). This justifies the name "effec-

tive conductivity" for k0 (x). We note that k0(x) is the har-

monic mean of k(xx/c) with respect to its second argument.

To prove (2.5) we consider the general integral I(x,E)

defined by

I(x,C) = J f(x',x'/c)dx' (2.9)

We let x. = jx/N, j - 0, ..., N - 1 where N > 1 is an integer,)
and we set Ax - x/N. Then we rewrite (2.9) as a sum

N-l ~~

I(X,C) 2 N f(x',x'/c)dx' (2.10)

~3

Next we assume that f is continuously differentiable with re-

spect to its first argument and that IfxI B uniformly in c.

Then we have

lf(x',x'/) - f(xj,x'/) - I(X' - xj)fx(RjX'/E)i BAX

x t x'z xj+1  (2.11)

_ __
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Here Rii is some point in the interval xj 5 x. i xj+ I .

Now we can use (2.10) and (2.11) to write

N-i xj+l
j I(x,e) - f(xj,x'/E)dx'

Ni x j + l If(xt,x'/c) - f(xj,x'/elidx'
j=l xj

: NB(Ax) Bx2/N (2.12)

Upon taking the limit as c tends to zero in (2.12), we obtain

N-1 E .(xj+Ax)/E

lim I(x,C) - I Ax lim - f(xj,y)dy
E*0 j=1 C*0 x /E

N-i 2
lir I(x,c) - I Ax f(xj) 5 Bx /N (2.13)
C-0 j=1

Here f(x) is defined by the following limit, which is assumed

to exist uniformly in x and to be independent of Ax:

e (x+AX)/F
?(x) = lim -  x f(x,y)dy (2.14)

Finally, we let N - - in (2.13), and the last sum tends to the

integral of ?(x) while Bx2 IN tends to zero. Thus we obtain

rx
lim f f(x',x'/c)dx' J f(x')dx' (2.15)
E+O 0 0

This is the desired result, which we shall summarize as a

theorem.

Theorem Suppose that fx is continuous, that f x(X,X/e)l
i B uniformly in c, and that the limit in (2.14) exists uni-

formly in x and is independent of Ax. Then (2.15) holds.

The result (2.15) might be called an integration by parts

formula, were that name not preempted, since part of the in-

tegration is done first in (2.14) and the other part later in

(2.15). When the theorem is applied to (2.3) it yields (2.5).

From the method of derivation of the theorem, it is clear

* how to extend it to the case of more than one rapidly varying

argument. The result isi I
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lrn f(ss~x/.x/e x//E)dx'

Ix A A,---AnfX 1 Y~**~ )dx' (2.16)

Here A.i denotes the operation of averaging with respect to

the variable y. This extended theorem can be applied to (2.3)

in which k = k(X,X/Eo ...,rX/E ). The result is again (2.5) with

ko given by

10x 1 n A (Ili~n (2.17)

§3. THE TWO-SPACE METHOD

We shall now solve the problem of the preceding section

by the two-space method, which is applicable to more general

problems. In doing so we shall permit the source term to be

rapidly varying also. Thus we replace (2.1) by

a X [k(x,x/e)a X Ju = h(x,x/e) 0 f- x !: 1 (3.1)

To solve this equation we define y = x/e, write u(x,E) = v(x,y,s)

and replace 3 by 9a + c-1a yin (3.1). Then (3.1) becomes

[C_ a yk(x,y)a y+ E- (3k x -ka 9yk3x) +a3k3aXv =h(x,y)
(3.2)

Now we seek v in the form

v~~~e v(~) v1 xy)+e2 2
V(XYI) =V (XY)+ E 1(X,) Ev 2 (x,y) + OCE ) (3.3)

we substitute (3.3) into (3.2) and equate coefficients of the

first three powers of c to obtain

3 Yk3 Yv 0 =0 (3.4)

Sy ka yv 1  0 x a+3Y DX) (3.5)

a yka v2  (a-(a ka + a y a X)v 1 a x a xv 0+ h (3.6)

y y x1 x-7
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The solution of (3.4) with yo arbitrary is

v0 (X,y) v v(x,y0 ) + k(x.y0 )[a v (xfY0 )] 1y k1'(x,y')dy'

(3.7)

We now require that v 0 (x,y) be a bounded function of y. Then

if k is positive and bounded, as we assume, vo given by (3.7)

will not be bounded unless D Yv 0 (x,y0 ) = 0. Since yo is arbi-

trary this implies that v 0 is independent of y:

v 0 = v O(x) (3.8)

Upon using (3.8) in (3.5) and solving for vi, we get

v1 (x,y) = v (x,y0 ) - -y 0 )axvo(x) + k(x,y0 )[ayv (xiy0 )

+ 3 V0 (x)) J k- (x,y')dy' (3.9)

We next impose the requirement that v 1 be a bounded func-

tion of y. Then upon dividing (3.9) by y - yo and letting

y - ,we get

X v 0(x) = k(x,y0 )[ (y v 1 (x,y0 ) + axv0 (x)k k0 
1 (x) (3.10)

Here k 0 (x) is defined by the following limit, which we assume

to exist and to be independent ofyo

(x1 lim y y k(x,y')dy' (3.11)

Now we solve (3.10) for ka y v1 and substitute the result

into (3.6), which we rewrite as

3 yka yv2 + 3 yka v = -a X k 0(x)3 v 0(x)] + h(x,y) (3.12)

Integration of (3.12) from y0 to y yields

(ka y v2 + k3 xv1)I -(y -oa~oxav~)

+ J h(x,y')dy' (3.13)

A __ ___
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Dividing (3.13) by y - y0 and letting y yields, in view of

the assumed boundedness of terms on the left side of (3.13),

Sx[k0 (X)axv0 (x)] = h(x) (3.14)

Here h(x) is the average of h(x,y) with respect to y.

The result (3.14) is the desired equation for v 0(x), the

leading term in u(x,E) = v(x,y,c). The effective conductivity
k0 (x) given by (3.11) is the same as that defined by (2.6) in

Sec. 2.

§4. FLOW IN POROUS MEDIA

Let us now consider the flow of a compressible viscous

fluid through a rigid porous medium. The pore "diameter" is

assumed to be small compared to the macroscopic scale of the

medium. We shall denote by c the ratio of the pore diameter

to the macroscopic scale, and by De the interior of all the

pores. Then the equations governing the fluid flow, which are
the Navier-Stokes equation, the continuity equation, and the

equation of state, hold in De. These equations are
21

p(a u + u.Vu) = -Vp + (jV2 + 1 VV.)u + f (4.1)
t

at + V.(pu) = 0 (4.2)

p = p(p) (4.3)

Here p, p, u, and p are the fluid density, pressure, velocity,

and viscosity coefficient, respectively, while f is the exter-

nal body force per unit volume. In addition to these equations,

we have u = 0 on D

Our goal is to derive simplifiA3 equations for the fluid

motion by taking advantage of the smallness of E. To this

end we first introduce y and T defined by

y = x/e T = t/E1 / 2  (4.4)

Then we write u, p, p, U, and f in the forms

u = I/2(x,y,t,C) p = (x,y,T,E) p = (xFy,,)

f = f(x,y,T,C) P = C3/2 (4.5)

- -- . ___doom
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Note that P is required to be small of order c 3/2 We use
these variables in (4.1)-(4.3) and replace V by VX + E-l y to

obtain

[a i + .(V + EV )a] V -(E- 1 V + Vx) + f[(V + cV x)2

+(V + cV )(V + EV ).]u + (4.6)

a ( + +x (V(PUi) = 0 (4.7)

= P(P) (4.8)

To solve these equations, we assume that U, , , and f

have expansions of the form

i(x,y,rc) = u (x,y,T) + EUl(X,yE) + o()

= P 0 + EPl + o()4

= P0 + Epl + o(C)

f = f 0 (xt) + cf1 + o(c)

We substitute (4.9) into (4.6)-(4.8) and equate coefficients

of the lowest power of E in each equation to get

VyP 0 (xyT) = 0 (4.10)

dT + V Y. (P0u0) 0 (4.11)

P0 = P(P 0 ) (4.12)

Then from the next lowest power of e we obtain
2 1

P0(aTu0 + u0 "VyU0) = -yPl + j(V2 + V. Vy*')U 0

+ f0 - VxP 0  (4.13)

al + y'(P 0u1 + 1lU0 +x (P0u0 ) = 0 (4.14)

,l = Pp (P0)Pl (4.15)

From (4.9) we see that p0 is independent of y, and then

from (4.12) so is P0:

P 0 = P 0 (x,' ) (4.16)
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P0  P0 (x,t) = P[P0 (x,r)] (4.17)

Next from (4.1) we find that Vy.U 0 = 0  and from (4.17)

we conclude that Vy .u0 is independent of y. Therefore,

VV *U0 = 0, so this term can be omitted from (4.13).

Now we consider (4.11) and (4.13) as a system of equations

for u0 and p1 as functions of y and i, in which x occurs as a
parameter. In these equations we view p0 (x,T) and f0 (x'r) -

VxP0(x,t) as a given time dependent density and a given time

dependent body force, respectively. Both of them are indepen-

dent of y. We seek a solution u0 , p1 of these equations with

the normal component of u0 vanisning on the boundary of the

domain, which may depend upon x. If the medium is spatially

periodic in y, we require thF! solution to have the same

periodicity; otherwise, we require it to be a bounded function

of y. In either case we assume that the solution is unique.

Then we can write it as a functional of p0 and f0 - VxP0 in

the form

u0 (x,y,T) = U[x,y,T,p 0 ,f0 - Vxp 0] (4.18)

Pl(X,y,T) = P[x,yt,p0 ,f0 - V xp 0  (4.19)

The functionals U and P involve their argument functions only

for t' T.

We now define the average of any function of y by inte-

grating it with respect to y over a large domain D of the
fluid, dividing the integral by the volume V of D, and letting

D and V tend to infinity. In particular, by averaging (4.18)

and (4.19) we obtain

u0 (x,T) = U[xtP 0,f0 - V xP01

= lim U[x,yTlP0f 0  Vxpldy (4.20)

PllX,T) = P[x,T,P 0 ,f 0 - VxPo 1

= lim - PIx, y,TP 0 ,f0 - V pldy (4.21)
V V fD0
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These two rclations express u0 and p, as functionals of Vxp0
and P0' so together they represent a generalization of Darcy's

law to nonlinear time dependent compressible flows. We shall

examine them further in the next section.

§5. DARCY'S LAW

Relations (4.20) and (4.21) can be used to derive an

equation for p0 (X,T). To obtain it we average (4.14) in the

manner just described. Integration of the term V y (P0U1 +

Plu 0 ) yields a surface integral over the "ends" of the pores,

since u0 and u vanish on the rigid boundaries. When divided

by V this integral tends to zero, and then (4.14) leads to

a T [pP (p 0 )pl] + Vx - [Pou0] = 0 (5.1)

In (5.1) we have used (4.15) to replace p1 by p pl" Now we

use (4.20) and (4.21) for u0 and pl in (5.1) to obtain

T{P p(P ) P[x,T,p 0,f 0  - VxP ]}

+ Vx.{P 0U[x,T,p 0,f0 - VxP0]} = 0 (5.2)

Equations (5.2) and (4.17) are a pair of equations for p0 (x,t)

and p0 (x,t). If (4.17) is used to eliminate P0 ' the result is

a single equation for P0(X,T).

We shall now consider some special cases of (4.20) and

(4.21) which are closer to the usual form of Darcy's law.

First, for an incompressible fluid of constant density P0 ' we

need not indicate the argument p0 in (4.20), which then becomes

U 0 (x,T) = U[x,T,f 0 - Vx p0  (5.3)

Furthermore, pp 0 so Pp(p 0 )P = 0, and then (5.2) simplifies

to the following equation for P0(x,T):

Vx -[x,T,f 0 - Vx 0 ] = 0 (5.4)

In the steady incompressible case 5 is just a function of

f0 - VxPot rather than a functional, and it is independent of

T. Then (5.3) and (5.4) simplify accordingly, and (5.3) is a

nonlinear form of Darcy's law for steady incompressible flow.
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In the case of steady compressible flow, (4.20) and (4.21)

become

u0 (x) = U[x,p0 (x),f 0 (x) - VxP0 (x)] (5.5)

pl(x) = P[xP 0 (x),f 0 (x) - Vxp0 (X)] (5.6)

Here U and P are ordinary functions, and not functionals, !o

(5.5) is a nonlinear Darcy law for steady compressible flow.

The corresponding equation for p0 is, from (5.2),

Vx.{P 0U[x,p0 ,f0 - VxP0 I} = 0 (5.7)

Finally, we shall consider the case in which p0 (x,T) is
close to a constant density m and f - V p0 is close to zero.

Then we can linearize the functionals U and P. In doing so,

it is helpful to return to Eqs. (4.11) and (4.13) by means of

which U and P are defined. The linearized forms of these

equations are

aTp 0 + mVy.U0 = 0 (5.8)

ma u0 = -VyPl + (V2 + 3 VyVy')u 0 + f0 - VxP0  (5.9)

We seek the bounded solution u0 , p1 of these equations

which has vanishing velocity on the rigid boundaries of the

pores. This solution is a linear functional of the inhomoge-

neous terms 3T and f0 - Vxp 0. Therefore we write it in the

form

u0 (x,y,T) = A(x,y,T)(f 0 - Vxp0 ) + B(x,y,T)3 p0  (5.10)

pl(X,y,T) = C(x,y,T) (f0 - V xp0 ) + E(x,y,T)a 0  (5.11)

Then

u0 (x,T) = A(x,T) (f0 - Vxp0 ) + B(x,T)a 0  (5.12)

PI(X,T) = C(x,T)(f 0 - VxPO) + E(X'T)T PO (5.13)

These results are the linearized forms of the generalized

Darcy law for time dependent compressible flows.
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The linearized form of (5.1), in view of (5.12) and (5.13),

is

p (T)3T [C(f 0 - V xP 0 ) + EP 0

+ mVx.[A(f0 - V xP) + Bp 1P0 0 (5.14)

Here ir is the constant unperturbed pressure corresponding to

the density m.

In the steady case (5.12) simplifies to the usual form of

Darcy's law

u 0 (x) = A(x) [f0 (x) - VxP 0 (x)] (5.15)

Here A(x) is just a matrix which transforms as a tensor. The

steady form of (5.14) is a linear equation for P0(X):

Vx.{A(x) [f0 - Vxp0] } = 0 (5.16)

For an incompressible fluid (5.12) simplifies to

u0 (x,r) = A(x,T) (f0 - VxPO) (5.17)

Since pp = 0 in this case, (5.14) becomes

Vx.{A(f 0 - VP 0 )} = 0 (5.18)

In the steady incompressible case, (5.17) reduces to the usual

Darcy law (5.15). When the medium is macroscopically isotropic,

A(x) is a scalar.

§6. CONCLUSION

After illustrating, on one-dimensional heat conduction,

the two-space method for deriving simplified equations, we

have applied it to flow in porous media. Then we were able

to derive Darcy's law and various generalizations of it. To

determine the coefficients in this law and its generalizations,

it is necessary to solve a difficult problem which we have not

considered. That problem involves the detailed pore configura-

tion. Our goal was to determine the form of the law and to

characterize the coefficients in terms of the solution of a

specific problem. In the heat conduction problem we could

actually find the coefficient because the problem was so simple.

__ I
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