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DARCY'S LAW FOR FLOW IN POROUS MEDIA
AND THE TWO-SPACE METHOD

Joseph B. Keller

Stanford University
Stanford, California

§1. INTRODUCTION

A common problem in engineering and science is to derive
simple equations governing complicated phenomena. Often com-
plicated governing equations are known, but they are too dif-
ficult to analyze. Therefore it is desired to simplify them
in such a way that the phenomena of interest will still be
adequately described, while finer details which are not of
interest can be disregarded. An example of a simplified equa-
tion is Darcy's law, which describes flow of a viscous fluid
through a porous medium. The more complicated equation for
the same phenomenon is the Navier-Stokes equation. As an ex-
ample of a general method for simplifying equations, we shall
show how to derive Darcy's law from the Navier-Stokes equation.

Simplified equations are often called "homogenized equa-
tions," and the procedure of replacing the original equations
by them is often called "homogenization." Traditionally,
engineers and scientists invent homogenized equations from
physical considerations. 1In recent years, mathematicians have
developed new methods for deriving them from the original com-
plicated equations. These methods all involve averaging of
one kind or another. 1In some case it is stochastic averaging,
in other cases it is spatial averaging, and sometimes it is

space-time averaging.
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430 Joseph B. Keller

The introduction of averaging depends upon the fact that
the problems involve two widely different scales. There is a
long scale of variation which is of interest and is to be re-~
tained, and there is a short scale of variation which is not
of interest and is to be eliminated. The purpose of averaging
is to eliminate the variations on the short scales. Therefore
the region over which a spatial average is taken must be large
compared to the small scale and small compared to the large
scale.

These competing requirements have traditionally made the
derivation of simplified equations a heuristic, nonrigorous
procedure. However, by the introduction of the two-space
method, it is possible to convert it into a formal and rigor~-
ous method. 1In fact, whenever apparently contradictory assump-
tions are used in a heuristic analysis, that is an indication
that the analysis concerns an asymptotic phenomenon. Usually
by appropriately recognizing this feature, it is possible to
replace the heuristic argument by a systematic and formal
asymptotic analysis.

The mathematical study of such asymptotic phenomena has
been pursued by Spagnolo {l1], DiGiorgi and Spagnolo [2],
Sanchez-Palencia [3,4], Babuska [5), Bensoussan, Lions, and
Papanicolaou [6,7), Larsen [8,9}, McConnell [10], Keller [11],
and others. I shall employ the two-space method which I devel-
oped for this purpose in 1973. It has been used and improved
upon by Bensoussan, Lions, and Papanicolaou [6,7] and Larsen
[8,9]. This method has been used by Burridge and Keller [(12]
to derive the equations of linear poroelasticity from the lin-
earized Navier-Stokes equation and the linearized equations of
elasticity. That derivation has many points of similarity to
the present one.

Before deriving Darcy's law, we shall consider first a
simpler example, that of heat conduction in one dimension.

The thermal conductivity will be assumed to vary rapidly with
position, and we will seek a less rapidly varying effective
conductivity. 1In Sec. 2 we will derive it from the explicit
solution of the heat conduction problem. Then in Sec. 3 we
will rederive it by the two-space method, which we shall later

use to get Darcy's law,

e
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§2. EFFECTIVE THERMAL CONDUCTIVITY IN ONE DIMENSION

Let us consider one-dimensional heat flow along a rod in
which the thermal conductivity k varies very rapidly with dis-

tance x along the rod. To describe rapid variation we write
k = k(x/e) where ¢ is a small parameter. Then dk/dx = e'lk', 1
so dk/dx is large when ¢ is small even though k' is bounded. J
If the thermal conductivity also varies on a slow scale, we

write k = k(x,x/c). Then the steady state temperature distri-
bution along the rod satisfies the equation

é;lk(x,x/e) 3 u] =3 g 0sx=1 (2.1)

; Here dg/dx represents a heat source, which has been written as
{ a derivative just for convenience, and we also assume that J
f g(l) = 0. As boundary conditions we will suppose that one end
of the rod is kept at temperature zero and the other end is

insulated, so we have 3

du(l)

u(0) =0 ax

=0 (2.2)

The solution of (2.1) and (2.2) can be found at once by
integration. By using the assumption that g(l) = 0, we get
the result

x
(x')
u(x,c) = J —7—$——T7—T dx* (2.3)
0 ki{x',x'/e

We have indicated that u depends upon ¢, which is a measure of
the small scale on which k varies. As a consequence of the
small scale variation of k, u also varies on this small scale.
Our goal is to eliminate this small scale variation of u, if
' possible, by considering the limit of u as e tends to zero.
We shall show that under suitable conditions on k, ul(x,€)
has a limit uo(x),

1
f ug(x) = lim u(x,e) (2.4)
! e+0

Furthermore, u, is given explicitly by

X g

x') '
ug (x) = [o %;TiTT dx (2.5)
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Here the "effective conductivity" ko(x) is defined by

Ix-fo dx'

1
= lim =
kolxs e+0 ax x,x'/e

€ I(X+AX)/€

X

= lim —
e+0 AX

ET%%;T (2.6)

Our hypothesis about k is that the limit in (2.6) exists uni-
formly in x and is independent of Ax.

Before proving (2.5) we deduce from it that uo(x) satis-
fies the equation

x/€

d C _a - <
a;[ko(x) = ~0(x)] =& g 0=xs1 (2.7
and the boundary conditions

duo(l)
uo(O) =0 3% " 0 (2.8)

Thus uo(x) satisfies the same eguations as does u(x) with
k(x,x/c) replaced by ko(x). This justifies the name "effec-
tive conductivity" for ko(x). We note that ko(x) is the har-
monic mean of k(x,x/c) with respect to its second argument.

To prove (2.5) we consider the general integral I(x,ec)
defined by

x
I(x,e) = Io flx',x"/e)ax’ (2.9)

We let x. = jx/N, j =0, ..., N - 1 where N > 1 is an integer,
and we set Ax = x/N. Then we rewrite (2.9) as a sum
N-1 Xi,1
I(x,e) = J I I £(x',x"/e)ax’ (2.10)
j=1 ‘x
Next we assume that f is continuously differentiable with re-
spect to its first argument and that lfxl = B uniformly in ¢.
Then we have

l£(xt,x* 7€) = £(xgox'/e)] = J1x' = x )£, (R ,x'/e) | = BAx

xj = xX'=< xj+1 (2.11)
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~
<

Here ij is some point in the interval x. < xj < xj+1'
Now we can use (2.10) and (2.11) to write

N-1 rx.
I(x,e) - ] I it fix.,x'/c)dx’
j:l xj J

[

N-1 ¢x.
h J I ekt x'/e) - £(x.,x"/c) |ax"
3=1 Jx, J

NB(ax)2 = Bx2/N (2.12)

(A

Upon taking the limit as ¢ tends to zero in (2.12), we obtain

N-1 {x.+AXx) /¢
lim I(x,e) - }] 4x lim fi J J £(x,,y)dy
£+0 j=1 g+0 0% x;/¢ J
N-1 _ 2
= lim I(x,e) - ] Ax £(x.) = Bx“/N (2.13) :
€+0 j=1 J i

Here f(x) is defined by the following limit, which is assumed

to exist uniformly in x and to be independent of Ax:
e (x+4Ax) /€
F(x) = lim ix I fix,y)dy (2.14)

e+0 x/€

Finally, we let N » = in (2.13), and the last sum tends to the
integral of f(x) while BxZ/N tends to zero. Thus we obtain

x x
lim [ £(x',x"/e)dx' = I F(x')dx® (2.15)
e+0 ‘0 0

This is the desired result, which we shall summarize as a
theorem.

Theorem Suppose that fx is continuous, that lfx(x,x/e)l
<= B uniformly in €, and that the limit in (2.14) exists uni-

formly in x and is independent of Ax. Then (2.15) holds.

The result (2.15) might be called an integration by parts
formula, were that name not preempted, since part of the in-
tegration is done first in (2.14) and the other part later in
(2.15). when the theorem is applied to (2.3) it yields (2.5).
From the method of derivation of the theorem, it is clear
how to extend it to the case of more than one rapidly varying

argument. The result is
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x 2 n
lim I £(x',x"/e,x" /€%, ..., x"' /e )dax"
e+0 /0

X
= j A1A°“‘Anf(x"yl'y2""’yn)dx' (2.16)
0 L3

Here Aj denotes the operation of averaging with respect to
the variable y.. This extended theorem can be applied to (2.3)
in which k = k(x}x/e,...,x/en). The result is again (2.5) with

ko given by
1l A ...A 1 (2.17)
Eoixi 1 n ET%,yl,...,yn) :

§3. THE TWO-SPACE METHOD

We shall now solve the problem of the preceding section
by the two-space method, which is applicable to more general
problems. In doing so we shall permit the source term to be
rapidly varying also. Thus we replace (2.1) by

ax[k(x,x/e)ax]u = h(x,x%x/¢) 0 =x=<1 (3.1)

To solve this equation we define y = x/€, write u(x,e) = v(x,y,€)
and replace 3 by 3 + e_lsy in (3.1). Then (3.1) becomes

-2 -1 _ ;
(e ayk(x,y)ay + € (axkay + aykax) + 3. kd_lv = h(x,y) i
(3.2)

[ o Now we seek v in the form
_ 2 2
vix,y,e) = vo(x,y) + evl(x,y) + € vz(x,y) + o(e”) (3.3)

We substitute (3.3) into (3.2) and equate coefficients of the
first three powers of ¢ to obtain

Bykayvo =0 (3.4)
aykayvl = -(8xkay + aykax)vo (3.5)

1
Sykayvz = -(Bxkay + Bykax)vl - Bxkaxvo + h (3.6) .
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The solution of (3.4) with Yo arbitrary is

Y oo-1
Vo) = volxiyg) + Kix,yg) [a,vg (x,¥0)] Jy k"Lix,yray
0 (3.7)
We now require that vo(x,y) be a bounded function of y. Then
if k is positive and bounded, as we assume, Vo given by (3.7)

will not be bounded unless ayvo(x,yo) = 0. Since Yo is arbi~
trary this implies that Vo is independent of y:

Vo = vo(x) (3.8)

Upon using (3.8) in (3.5) and solving for Vi we get

vl(x,y) = vi(xyy) - 5 - yo)axvo(x) + kix,y5) [ayvl(x.yo)

y a1
+ vao(x)] J k “(x,y")dy’ (3.9)
Yo

We next impose the requirement that vy be a bounded func-
tion of y. Then upon dividing (3.9) by y - Yo and letting

y - », we get

3V (X) = k(x,yg) [3,v) (x,y0) + 3,V (x) kg (x) (3.10)

Here ko(x) is defined by the following limit, which we assume
to exist and to be independent of Yo!

S D 1 Y .-1 '\ ot
ko (x) = lim ————— k “(x,y')dy (3.11)
y+© y Yo y

Now we solve (3.10) for kayvl and substitute the result

into (3.6), which we rewrite as

aykayvz + aykaxvl = -Bx[ko(x)axvo(x)] + hix,y) (3.12)

Integration of (3.12) from Yy, to y yields
b4
(kayv2 + kaxvl)ly = -(y - yo)ax[ko(x)axvo(x)]

y
+ J h(x,y')dy’ (3.13)
Yo

VIR Y WP i L TR 7R e
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Dividing (3.13) by y - Yo and letting y » « yields, in view of
the assumed boundedness of terms on the left side of (3.13),

Bx[ko(x)axvo(x)] = h(x) (3.14)

Here h(x) is the average of h(x,y) with respect to y.

The result (3.14) is the desired equation for vo(x), the
leading term in u(x,e) = v(x,y,€). The effective conductivity
ko(x) given by (3.11) is the same as that defined by (2.6) in
Sec. 2.

84. FLOW IN POROUS MEDIA

Let us now consider the flow of a compressible viscous
fluid through a rigid porous medium. The pore "diameter" is
assumed to be small compared to the macroscopic scale of the
medium. We shall denote by € the ratio of the pore diameter
to the macroscopic scale, and by DE the interior of all the
pores. Then the equations goverming the fluid flow, which are
the Navier-Stokes equation, the continuity equation, and the
equation of state, hold in De’ These equations are

p(atu + uevu) = -Vp + u(vz + % yvelu + £ (4.1)
Btp + Ve(pu) =0 (4.2)
p = p(p) (4.3)

Here p, p, u, and y are the fluid density, pressure, velocity,
and viscosity coefficient, respectively, while f is the exter-
nal body force per unit volume. In addition to these equations,
we have u = 0 on BDE.

Our goal is to derive simplifiecd equations for the fluid
motion by taking advantage of the smallness of €. To this
end we first introduce y and 1 defined by

y = x/¢ T = 'c/el/2 (4.4)
Then we write u, p, p, 4, and £ in the forms

e1/2

u = G(XIYITle) P = 5(xIYIT!€) P = f’(X,Y:TpC)

£ E(x,y,1,¢) U= 83/2ﬁ (4.5)

L}
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Note that u is required to be small of order 23/2. We use

these variables in (4.1)-(4.3) and replace V by Vx + 5—17y to

obtain

cin S Lo, o 2
p[aTu + u-(Vy + er)u] = =-(e Vy + Vx)p + p[(Vy + evx)
1 Ry
+ §(vy + svx)(vy + eV )]l + f (4.6)
315 + (vy + evx)-(aﬁ) =0 4.7)
5 = p(p) (4.8)

To solve these equations, we assume that 4, §, P, and f
have expansions of the form

U{x,y,T,€) = u,(x,y,7t) + eu,(x,y,17) + o(g)
9 1

o

= ps + €p, + O(g)
0 1 (4.9)
=pg t ep; + o(e)

Fhe TR
[

fO(X,T) + efl + o(e)

We substitute (4.9) into (4.6)-(4.8) and equate coefficients
ot the lowest power of ¢ in each equation to get

Vypo(x,y.r) =0 (4.10)
9P + Vy-(pouo) =0 (4.11)
pg = e (pg) (4.12)

Then from the next lowest power of ¢ we obtain

oo(aTu0 + uoovyuo) = -Vypl + ﬁ(v; + % vyvy-)uo

+ f0 - pro (4.13)
3.0y * Vy-(poul + pjug) + Vet logug) =0 (4.14)
Py = op(po)p1 (4.15)

From (4.9) we see that Py is independent of y, and then
from (4.12) so is Pgt

Py = po(x,r) (4.16)
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P = Poxy1) = o[po(X.T)] (4.17)
Next from (4.1) we find that ¥ -u, = -palano, and from (4.17)

we conclude that Vy.uo is independent of y. Therefore,

o = 0/ sO this term can be omitted from (4.13).
Now we consider (4.11) and (4.13) as a system of equations

Vyvy‘u
for U, and p, as functions of y and 1, in which x occurs as a
parameter. In these equations we view DO(X,T) and fO(X,T) -
pro(X,T) as a given time dependent density and a given time
dependent body force, respectively. Both of them are indepen-
dent of y. We seek a solution Uys Py of these equations with
the normal component of U, vanisaing on the boundary of the
domain, which may depend upon k. If the medium is spatially
periocdic in y, we require the solution to have the same
periodicity; otherwise, we require it to be a bounded function
of y. In either case we assume that the solution is unigue.
Then we can write it as a functional of o and fO -V Py in

X

the form
Uy (x,y,1) = U[x.y,r,po,f0 - vxpol (4.18)
pl(x,y,T) = P[x,y,'t,po,fo - prol (4.19)

The functionals U and P involve their argument functions only
for ' = 1.

We now define the average of any function of y by inte-
grating it with respect to y over a large domain D of the
fluid, dividing the integral by the volume V of D, and letting
D and V tend to infinity. In particular, by averaging (4.18)
and (4.19) we obtain

Eo(x,r) = ﬁ[x,r,oo,fo - 9,.pg]
o1
= lim 7 J U[x,y,r,po,f0 - prO]dy (4.20)
Voo D

E’l(xlT) = ﬁ[xITlpolfo - VXPO]

.1
lim = J Plx,y,1,0,.f, - YV p.)dy (4.21)
vao VY Ip i 0’70 x5n
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These two rclations express ﬁo and 51 as functionals of V p, {
and Pgr SO together they represent a generalization of Darcy's
law to nonlinear time dependent compressible flows. We shall
examine them further in the next section.

§5. DARCY'S LAW

Relations (4.20) and (4.21) can be used to derive an
equation for po(x,r). To obtain it we average (4.14) in the
manner just described. Integration of the term Vy-(pou1 +

pluo) yields a surface integral over the "ends" of the pores,
since u, and uy vanish on the rigid boundaries. When divided
by V this integral tends to zero, and then (4.14) leads to

3T[°p(po)91] + Vx-[poﬁol =0 (5.1)

In (5.1) we have used (4.15) to replace Py by p py- Now we

- - p
use (4.20) and (4.21) for u, and py in (5.1) to obtain

BT{CP(PO)P[X;T:DOrfO = prol}
+ Vx-{poU[x,T,oo,fo - VPell =0 (5.2)

Equations (5.2) and (4.17) are a pair of equations for po(x,t)
and po(x,t). If (4.17) is used to eliminate Por the result is

a single equation for po(x,T).

We shall now consider some special cases of (4.20) and
(4.21) which are closer to the usual form of Darcy's law.
First, for an incompressible fluid of constant density Por we
need not indicate the argument Po in (4.20), which then becomes

ﬁo(x,r) = U[x,t,f, - V,Pol (5.3)

0

Furthermore, pp = 0 so pp(po)§ = 0, and then (5.2) simplifies
to the following equation for po(x,T):

vx-ﬁlx,r,f - Vpyl =0 (5.4)

0

In the steady incompressible case U is just a function of
fo - pro, rather than a functional, and it is independent of
1. Then (5.3) and (5.4) simplify accordingly, and (5.3) is a

nonlinear form of Darcy's law for steady incompressible flow.
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In the case of steady compressible flow, (4.20) and (4.21)

become
Uy (x) = Ulx,pq(x),£o(x) = 9, po(x)] (5.5)
Py(x) = Blx,pg(x) , £5(x) = ¥ po(x)] (5.6)

Here U and P are ordinary functions, and not functionals, so
(5.5) is a nonlinear Darcy law for steady compressible flow.
The corresponding equation for Pgy is, from (5.2),

Vx'{pou[xlpolfo - prol} =0 (5-7)

Finally, we shall consider the case in which po(x,T) is
close to a constant density m and f0 - pro is close to zero.
Then we can linearize the functionals U and P. In doing so,
it is helpful to return to Egs. (4.11) and (4.13) by means of
which U and P are defined. The linearized forms of these
equations are

] + mV_su, = 0 (5.8)

0 y 0

- - Sp2 4 L . -
maruO = Vypl + u(Vy + 3 Vyvy )u0 + £, pro (5.9)

We seek the bounded solution Uy, Py of these equations
which has vanishing velocity on the rigid boundaries of the

pores. This solution is a linear functional of the inhomoge-
neous terms ano and f0 - pro. Therefore we write it in the

form
uo(x,y.r) = A(x,y, 1) {f, - VPo) *+ Blx,y,1)3 0 (5.10)
Pl(x,y,T) = C(x,y,T)(f0 - pro) + E(x,y,r)atp0 (5.11)
Then
g (x,1) = Alx,7) (5 - V,pg) + Bx,1)2 g (5.12)
Py (x,1) = CUx, 1) (fy = V,py) + E(x,1)3 0, (5.13)

These results are the linearized forms of the generalized
Darcy law for time dependent compressible flows.

o
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The linearized form of (5.1), in view of (5.12) and (5.13),
is

Pp(ﬂ)aT[C(fO - pro) + Eanol
+ mVx-[A(f0 - V.Py) + B3 Pyl = 0 (5.14)

Here m is the constant unperturbed pressure corresponding to
the density m.

In the steady case (5.12) simplifies to the usual form of
Darcy's law

Uy (x) = Alx) [£5(x) - Y pg(x)] (5.15)

Here A(x) is just a matrix which transforms as a tensor. The
steady form of (5.14) is a linear equation for po(x):

vx-{i(x)[f0 - V.pgl} =0 (5.16)

For an incompressible fluid (5.12) simplifies to

Eo(x,r) = Zi(x,r)(f0 - V,py) {5.17)
Since pp = 0 in this case, (5.14) becomes
Vx'{A(f0 - pro)} =0 (5.18)

In the steady incompressible case, (5.17) reduces to the usual
Darcy law (5.15). When the medium is macroscopically isotropic,
A(x) is a scalar.

§6. CONCLUSION

After illustrating, on one-dimensional heat conduction,
the two-space method for deriving simplified equations, we
have applied it to flow in porous media. Then we were able
to derive Darcy's law and various generalizations of it. To
determine the coefficients in this law and its generalizationms,
it is necessary to solve a difficult problem which we have not
considered. That problem involves the detailed pore configura-
tion. OQur goal was to determine the form of the law and to
characterize the coefficients in terms of the solution of a
specific problem. In the heat conduction problem we could

actually find the coefficient because the problem was so simple.

o
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