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CONFERENCE INTRODUCTION

MARSHALL J. FARR, DIRECTOR

PERSONNEL AND TRAINING RESEARCH PROGRAMS

OFFICE OF NAVAL RESEARCH

I am proud to introduce these Proceedings of the 1979 Computerized Adaptive
Testing Conference. This was the third conference of its type sponsored by the
Office of Naval Research (ONR) in conjunction with various co-sponsors, which
for this conference included the Navy Personnel Research and Development Center,
the Air Force Office of Scientific Research, the Army Research Institute for the
Behavioral and Social Sciences, the Military Enlistment Processing Command, and
the Defense Advanced Research Projects Agency.

The growing international interest in computerized adaptive testing was
evidenced by the fact that representatives from Australia, Austria, Belgium,
Japan, and West Germany made up part of the more than 80 invited participants in
this conference. Equally impressive was the widespread representation from fed-
eral agencies: In addition to those from the sponsors, participants came from
the U.S. Marine Corps, Air Force Human Resource Laboratories, the U.S. Coast
Guard, the Navy Guided Missile School, the U.S. Civil Service Commission, and
the Naval Aerospace Medical Research Laboratory.

Computerized adaptive testing (CAT) has come a long way in a short span of
years, thanks to an ever-burgeoning interest in the field, which continues to be
spearheaded by the ONR contractors represented in these proceedings. Since the
1977 CAT conference, the Defense Department has formally recognized its promise.
in January 1979 a memorandum issued at the level of the Office of the Secretary
of Defense directed "the development and further evaluation of the feasibility
of implementing computerized adaptive testing in the Department of Defense." The
memorandum went on to call for a Defense Department-wide research and develop-

Ni ment program, which will eventually transform the Armed Services Vocational Ap-
titude Battery (ASVAB)--now used by all the Services for enlisted personnel se-
lection and classification--into a computerized adaptive examination. That its-
plementation-feasibility study is now underway, guided by a steering committee
representing the Navy, Army, Air Force, Marine Corps, and the Military Enlist-
ment Processing Command (MEPCOM).

The Office of Naval Research is generally acknowledged as one of the para-

mount forces, if not the leader, in constructing the theoretical research foun-

tht u support of research on important theoretical questions in CAT continues
unabated. I believe strongly in the potential of CAT for possibly revolutioniz-

ing estadministration and scoring in the measurement of both ability and
achievement. I further believe that having computers readily available for on-
line testing will encourage the development of new kinds of test items, admin-

istration, and scoring, over and above the changes to be wrought by CAT.

IW<1
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SESSION 1*:

ADAPTIVE TESTING STRATEGIES FOR MEASURING ABILITY

ADAPTIVE VERBAL ABILITY TESTING

IN A MILITARY SETTING

JAMES R. MCBRIDE

NAVY PERSONNEL RESEARCH AND

DEVELOPMENT CENTER

PARALLEL FORMS RELIABILITY AND

MEASUREMENT ACCURACY COMPARISON

OF ADAPTIVE AND CONVENTIONAL

TESTING STRATEGIES

MARILYN F. JOHNSON AND

DAVID J. WEISS

UNIVERSITY OF MINNESOTA

A COMPARISON OF THE ACCURACY OF

BAYESIAN ADAPTIVE AND STATIC

TESTS USING A CORRECTION FOR

REGRESSION

STEVEN GORMAN

DEPARTMENT OF THE NAVY

DISCUSSION

I BRIAN WATERS

AIR UNIVERSITY

*A paper entitled "Criterion-Related Validity of Conventional and Adaptive
Ability Tests in a Military Environment," by James B. Sympson, was also pre-
sented in Session 1, but was not available for inclusion in these Proceedings.
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ADAPTIVE VERBAL ABILITY TESTING IN A MILITARY SETTING

JAMES R. MCBRIDE
NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER

Since January 1976 all military services have used a common battery of men-
tal tests for enlisted personnel selection and classification: the Armed Ser-
vices Vocational Aptitude Battery (ASVAB). The battery includes 12 subtests of
cognitive aptitudes. These subtests are necessarily short; they are usually
scored by hand; the raw scores are manually converted into service-specific
scaled scores using conversion tables; and the scale scores are manually recor-
ded and manually transcribed into permanent individual personnel records.

The U.S. Marine Corps has identified some difficulties with the ASVAB test-
ing program. Now that the ASVAB has supplanted service-specific classification
test batteries, a single test battery must serve all the special testing needs
of the four services. In many cases, ASVAB subtests are excessively difficult
for Marine Corps selection and classification purposes; this can result in inef-
ficient and inaccurate classification. There has been some compromise of ASVAB
test security: Test booklets and answer keys have been stolen. This problem, if
uncontrolled, could seriously degrade the validity of the tests for classifica-
tion purposes. The manual nature of the test scoring, score conversion, and
score recording procedures provides opportunity for clerical error, and it is
believed that such errors may have resulted in numerous accession errors.

The Marine Corps formulated an operational requirement to lessen or elimi-
nate the impact of the problems discussed above. Computer-administered adaptive
testing (CAT) was identified as one potential solution to all of these problems.
In an adaptive test, test difficulty is tailored dynamically to the ability lev-
el of the individual examinee; in principle, then, CAT eliminates the problem of
excessive test difficulty and should yield scores that promote accurate selec-
tion and classification decisions. CAT addresses the test security problem by
eliminating printed booklets and scoring keys and by administering an individu-
ally tailored set of test items to each examinee. Additionally, since CAT auto-
mates test administration, test scoring and recording are automated as well,
thereby eliminating human clerical error from the testing system.

Recognizing the potential of CAT for selection and classification testing,
the Marine Corps tasked NPRDC with investigating the feasibility of CAT as part
of a program of phased research and development related to military personnel

accessioning.
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Purpose

The research reported here was intended to assess the feasibility of using
computerized adaptive testing (CAT) in a Marine Corps recruit/applicant popula-
tion and, at the same time, to verify the claimed merits of CAT as a psychologi-
cal measurement technique. These two research issues could only be addressed by
administering adaptive tests to appropriate examinee samples. The capability to
do this haa to be developed--equipment identified, software written, and large
banks of test items assembled and calibrated using item characteristic curve
(ICC) models. After this development was completed, a pilot study involving
verbal ability tests was conducted. This report describes the pilot study of
the feasibility and psychometric merits of an adaptive procedure for measuring
verbal ability.

Background

Group-administered paper-and-pencil "objective" ability tests date back to
World War I, when the introduction of the Army Alpha test signalled an era of
vast improvements in the administrative efficiency of psychological testing.
The price paid for this efficiency was loss of flexibility, since all examinees
had to answer a common set of test questions. The psychometric effect of this
was not too serious, provided that a test was designed to have a difficulty lev-
el appropriate to its intended application or that a test was sufficiently long
to overcome minor design deficiencies. For persons whose ability level was not
near the target difficulty level of the test, however, the paper-and-pencil test
was not a particularly accurate or precise measuring instrument.

The psychological tests used by the armed services for selection and clas-
sification are group-administered paper-and-pencil tests. Such tests, as just
discussed, lack the flexibility to measure well over a wide range of ability.
In order to achieve that flexibility, the difficulty level of the test would
have to be chosen to fit individual ability levels. Since individual ability
levels are not known prior to testing, this is not practical; however, it can be
accomplished using an adaptive test in which test items are chosen sequentially
on the basis of the examinee's performance. This sequential item choice can
best be accomplished using automated test administration, for example, by having
the test administered at an interactive computer terminal.

The historical development of computer-administered adaptive testing was
reviewed by Weiss and Betz (1973) and by Wood (1973). Weiss surveyed a variety
of alternative adaptive testing methods (1974) and summarized a number of poten-
tial advantages of CAT over conventional paper-and-pencil tests (1975). Despite

those potential advantages, most research into adaptive testing had been at the
basic research level, until 1975 when the U.S. Civil Service Commission began
moving toward early 1980s implementation of computer-based adaptive administra-
tion of its PACE examination (Gorham, 1975).

The U.S. Civil Service Commission's implementation plans were based on re-

search conducted by Urry and his colleagues (e.g., Urry, 1977). Urry chose t-
adopt a Bayesian sequential adaptive testing procedure proposed by Owen (1969,
1975) and demonstrated that the procedure could achieve satisfactory levels of

6

'4i

I.

.1 # -



-6-

measurement reliability in substantially less than half the number of items re-
quired of a conventional test; in one instance he estimated that an adaptive
test was equivalent in reliability to a conventional test fivc times as long
(Urry, 1977). It is this efficiency of measurement which has motivated most
psychometric interest in adaptive testing, although test users have often been
more attracted by its practical advantages, which were discussed above.

Marine Corps interest in CAT for personnel selection and classification
testing resulted from dissatisfaction with certain aspects of the joint service
paper-and-pencil testing battery. Subtests used for selection decisions were
also used as a basis for personnel classification and assignment to specialized
training; a test designed for one of these purposes would likely be inappropri-
ate for the other, and this might result in disproportionate numbers of selec-
tion or assignment errors. Clerical errors in the manual scoring and score re-
cording processes were fclt to be another serious source of accessioning errors;
and the effects of test compromise were inevitable with the use of the same test
battery over a period of several years.

Recognizing that computerized test administration could eliminate scoring
and clerical errors and that adaptive testing could substantially reduce test
compromise, Marine Corps Headquarters tasked NPRDC with evaluating the feasibil-
ity of CAT for testing Marine recruits. The purpose of this paper is to report
the iesults of the first in a series of studies investigating both.the feasibil-
ity and the utility of CAT in comparison with a conventional test design.

The study was designed in part to address three research questions: (1) Is
computer-based testing of military recruits administratively feasible? (2) Is a
computer-administered adaptive test more reliable than a conventional test,
holding test length constant? (3) If so, what is an appropriate length criterion
for an adaptive test?

These questions were motivated by the results of previous research done
elsewhere. The first question--that of administrative feasibility--seems trivi-
al buL is not. Interviews with military testing personnel indicated some mis-
givings about the ability of military recruits to use relatively sophisticated
automated testing equipment, such as CRT computer terminals. This potential
man-machine interface problem is the analogue of administrative difficulties
encountered years earlier with paper-and-pencil tailored tests. For example,
Seeley, Morton, and Anderson (1962) found that a substantial proportion of their
military examinees did not successfully follow instructions on an experimental
sequential item test; this experience may have caused a five-year lapse in mili-
tary research on tailored or adaptive testing. Olivier (1974) had a similar
experience using a paper-and-pencil flexilevel test in a sample of high school
students.

The question of the advantages of adaptive tests over conventional ones in
terms of reliability has a clear and positive theoretical answer: Holding test
length and all else constant, a good tailored test design is superior, provided
that highly discriminating test items are available (Urry, 1970).

This theoretical advantage is not always corroborated in empirical investi-

I
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gations. For instance, Bryson (1971) questioned the advantage of tailored test-
ing over certain methods of conventional test design; Olivier (1974) failed to
find an advantage for the flexilevel tests he used; and the results reported by
Weiss and his colleagues have been less than unanimous in favor of adaptive
tests. All these results are in contrast with those of Urry (1977), who re-
ported that for his sample of 57 Civil Service job applicants an adaptive verbal
ability test achieved an 80% reduction (compared to a conventional test) in the
test length required to attain any of several specified levels of reliability.
Urry's result was extraordinary. The only cloud over it is that it was based on
indirect evidence: The conventional test reliabilities were based on Spearman-
Brown equation adjustments to the reliability obtained in an independent sample,
and the tailored test reliability was merely assumed, not rigorously verified.

Previous research into the reliability, validity, and efficiency of adap-
tive tests has often been incoclusive because of design flaws or nuisance fac-
tors. The major problem has en the lack of suitable means for estimating the
adaptive test's reliability without making dubious assumptions. Another problem
has been the general failure to match adaptive and counterpart conventional
tests in item quality, with an unfair advantage usually in favor of the adaptive
test. The research reported here was intentionally designed to remove those two
problems--to provide credible indices of reliability that are appropriate for
both test types and to provide a fair comparison by matching item quality across
the test types. With those two problem sources eliminated, there is hope for an
unequivocal comparison between adaptive and conventional test designs.

Method

The general method used was that of equivalent tests administered to inde-
pendent examinee groups. One group took two equivalent computer-administered
adaptive tests. The other group took two equivalent conventional tests, also
administered by computer. In order to control for item quality, both test types
were made up of items from the same source--a common pool of 150 verbal ability
items, which had previously been calibrated in large samples of Marine recruits,
using ICC methods.

Research Design

Each examinee was randomly assigned to one of the two treatment groups--
Group A or C. Group A took two 30-item adaptive verbal ability tests, follow.d
by a 50-item criterion test of word knowledge. Group C took two 30-item conven-
tional verbal ability tests, followed by the same criterion test. All tests
were administered at a computer terminal. Figure 1 is a schematic representa-
tion of the research design.

Observations. For each examinee who completed the tests, the following

data were observed and automatically recorded:

I. Elapsed time for the testing session;
2. Elapsed time to complete pretest instructions;
3. Number of errors made during the instructions;
4. Number of times the proctor was called;
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Figure 1
The Research Design for Administration
of the Experimental and Criterion Tests

Tests

Treatment Adaptive Conventional

Group Form I Form 2 Form 1 Form 2 Criterion

A X X X
C X X X

5. Raw item scores (correct/incorrect);
6. Cumulative raw score after each item;
7. Latent trait ability estimates (experimental tests only);

8. Bayes posterior variance of the ability estimate after each item; and
9. Criterion test raw score.

The format for these observations is schematized in Figure 2.

Figure 2

Example of Examinee Record (Abbreviated)

Raw Ability Posterior
Score Estimate Variance

Form: 1 2 1 2 1 2

Stage
1 0 0 -.69 -.73 .548 .533
2 1 1 -.36 -.37 .401 .394
3 2 2 -.10 -.20 .332 .318
4 2 3 -.30 .02 .248 .266

5 3 4 -.14 .25 .229 .213
6 4 5 .01 .48 .193 .210
7 4 6 -.17 .65 .160 .184
8 5 6 -.05 .45 .145 .143
9 5 6 -.22 .26 .124 .115

10 6 7 -.15 .33 .115 .107

30 20 21 .59 .97 .053 .048

Criterion score 27
Total time 57.3 minutes

Instruction time 8.5 minutes
, Instruction errors 1

Proctor calls 0

:i I. .



Independent variables. For the comparisons between the adaptive and conven-
tional testing methods there were two independent variables: (I) test type
(adaptive versus conventional) and (2) test length (5, 10, 15, 20, 25, 30
items).

Within the adaptive testing method, the test termination rule was treated as
an independent variable for some analyses: Tests were terminated (I) at a fixed
test length (5, 10, ..., 30 items) or (2) at a specified posterior variance
(variable length). The number-of-items termination rule resulted, of course, in
a test of predetermined length; and the posterior variance rule resulted in a
variable length test, depending on the number of items required to attain speci-
fied levels of the Bayes posterior variance.

Dependent variables. Measures of the dependent variables were formed from
the individual observations. The dependent variables included:

1. Testing time;
2. Instruction time;
3. Number of keyboard errors;
4. Number of proctor calls;
5. Alternate tests reliability coefficient after 5, 10, ..., 30 items; and
6. Test-criterion correlation after 5, 10, ... , 30 items.

Procedure

Items. The 150 items in the pool were calibrated using Urry's ancillary
estimation method and were selected according to the prescriptions given by Urry
(1977): All ICC slope parameters exceeded .80. The average value of the dis-
crimination (a) parameter was 1.24; item difficulty (location, or b) parameters
ranged from -2.0 to +2.0; and there were no items with a pseudo-guessing (c)
parameter greater than .30.

Examinees. Male Marine recruits reporting for duty at the Marine Corps
Recruit Depot, San Diego, were the examinees. They were tested one at a time at
a Burroughs TD832 terminal controlled by a Burroughs B1717 time-sharing minicom-
puter system. Assignment to groups (Group A or C) was randomized. Two hundred
one examinees completed the tests--96 of these took the adaptive tests and 105
took conventional tests.

Tests. The conventional tests administered to Group C were rectangular
tests spanning the difficulty range of the item pool. This broad range of dif-
ficulty was chosen in order to simulate the psychometric design of the verbal
tests used in the ASVAB. Two 30-item equivalent forms--Form 1 and Form 2--were
constructed from the 150-item pool. Items were chosen to be as highly discrimi-
nating as possible, consistent with the broad difficulty range. The two forms

were constructed to be "weakly parallel" (Samejima, 1977), i.e., to have approx-
imately equal test information functions. Within each form, the 30 items were
sorted into five difficulty levels, then arranged in descending order of dis-
criminating power within each level. The first five items in each form were the
most discriminating items at their respective difficulty levels; items 6 through

S. -
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10 were the second most discriminating items at each level; and so on. This
arrangement resulted in two 30-item tests consisting of a sequence of si.x 5-item
subsets each. This design was intended to permit meaningful analysis of the
psychometric properties of rectangular conventional tests of lengths of 5, 10,
15, 20, 25, and 30 items. In order to equalize any effects due to test length,
fatigue, or other extraneous factors, the two conventional tests were adminis-
tered in counterbalanced item order, i.e., the two 30-item tests were adminis-
tered as one 60-item test in the following order:

Item sequence: 1 2 3 4 5 6 7 8
Test Form: 1 2 2 1 2 1 1 2

The two 30-item adaptive tests were based on Owen's (1969, 1975) Bayesian
sequential tailored testing procedure. For each examinee and each test form an
initial normal prior distribution of ability was assumed, with mean 0 and vari-
ance 1.0. The test form (either 1 or 2) was counterbalanced for each examinee
in a manner identical to that of the conventional tests: 12212112.... Both
forms of the Bayesian test--Form 1 and Form 2--drew items from the same 150-item
pool; counterbalancing the order of administration here served the added purpose
of equalizing item quality across the two forms. The two adaptive tests were
independent of each other except for their use of a common item pool.

The criterion test was formed by concatenating two obsolete operational
test forms measuring word knowledge. This resulted in a 50-item test expected
to be a highly reliable and fairly broad-range test of an important facet of
verbal ability.

Results and Discussion

Feasibility

Data pertaining to the feasibility of using computer terminals to admini-
ster tests to military recruits are summarized in Table 1. Mean testing time
was 61.0 minutes for the adaptive test group versus 50.4 minutes for the conven-
tional test group. These were the mean times to answer 110 items--60 items from
either the adaptive or the conventional alternate forms, followed by 50 criteri-
on test items common to both groups. The adaptive tests required about 11 more
seconds per item, or as much as 39% longer to answer than the conventional
tests. Some or all of this difference may have been due to computations re-
quired for adaptive item selection, but this result does agree generally with
Waters' (1977) finding that an adaptive test required significantly longer exam-
inee processing per item than a similarly administered conventional test. In
the present study, however, the observed time difference may be due in large
part to idiosyncrasies of the computer system; if so, differences of the size
reported here would not be expected if a faster computer were used to control
and to administer the adaptive tests.

Instruction time averaged 9.5 minutes for the adaptive test group and 10.3
*' minutes for the conventional group; overall, the instructions required an aver-

age of 9.9 minutes. During this time, the examinees were familiarized with the
CRT and keyboard by means of a programmed instructional sequence with special
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Table I
Testing Time and Examinee Error Summary for

Computer-Administered Test Sessions

Group and Test
A C
Adap- Conven-

Data tive tional Overall

Number of examinees 96 105 201
Mean time (minutes)

Total 70.5 60.7
Instructions 9.5 10.3 9.9
Testing 61.0 50.4

Errors
Procedural errors 25 30 55
Proctor calls 5 12 17

Note. Each session consisted of programmed instruction,
60 experimental test items, and a 50-item
criterion test.

branching following procedural errors and with an audible call to the proctor if
the examinee had difficulty correcting an error. Errors and proctor calls were
counted. As the table indicates, there were 55 errors in all, in 201 test ses-
sions; in only 17 cases was the proctor called. This amounts to about one pro-
cedural error per 4 test sessions and to a requirement for proctor intervention
about one time per 12 test sessions.

Psychometric Characteristics

Reliability. Table 2 summarizes reliability and criterion validity data
for both the adaptive and conventional alternate forms tests at lengths of 5,
10, 15, 20, 25, and 30 items.

Table 2
Psychometric Characteristics of the Computer-Administered

Verbal Ability Tests as a Function of Test Type and Test Length

Psychometric

Characteristic Test Length
and Test N 5 10 15 20 25 30

Reliability
Adaptive 96 .79 .87 .88 .90 .91 .91
Conventional 105 .59 .73 .80 .83 .86 .89

Validity
Adaptive 93 .77 .82 .83 .84 .85 .85
Conventional 103 .73 .81 .84 .85 .85 .87

* Relative efficiency 2.70 2.50 1.90 1.80 1.70 1.30

* t 1-.
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Reliability was operationalized as the correlation between scores on alter-
nate forms at a given test length. The scoring procedure used was the same for
both test types--latent ability estimation using the sequential estimation for-
mulae developed by Owen (1969). From the table it is clear that the adaptive
tests had substantially higher reliability coefficients than the conventional
tests for any given test length. Viewing these data another way, it can be seen
that the adaptive test reliability at a 5-item test length was practically
equivalent to the conventional test's reliability at 15 items; similarly, the
adaptive test's reliability at a length of 10 was superior to that of the con-
ventional test at a length of 25.

Figure 3 contains a graphic comparison of the adaptive and conventional
tests in terms of alternate forms reliability as a function of test length.
Analysis of Table 2 and Figure 3 indicates that in terms of test length required
to attain a given level of reliability, the adaptive tests had a substantial
advantage over the conventional tests. This advantage was essentially the same
for both fixed length and variable length stopping rules; there was no apparent
advantage to variable length, as opposed to fixed length, within the adaptive
testing method.

Figure 3
Alternate Forms Reliability Plotted as a Function of
Test Length for the Conventional and Adaptive Tests
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Relative efficiency. Thus, the adaptive tests achieved specific levels of
reliability more efficiently than the conventional tests. How much more effi-
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ciently is indicated in row 3 of the table, labeled "relative efficiency." These
data, based on the Spearman-Brown equation, estimate for each test length how
much the conventional tests would have to be lengthened to attain the reliabil-
ity of the adaptive tests. For example, the adaptive test reliability at 5
items, .79, was estimated to be equivalent to that of a conventional test 2.70
times as long, or 13.5 items in length. Notice that the relative efficiency of
these adaptive tests always exceeds unity but diminishes as test length in-
creases. Thus, the adaptive tests are more advantageous, at least in terms of
relative efficiency, at fairly short test lengths. At lengths of 10 or fewer
items, these adaptive tests were at least 2.5 times as efficient as the conven-
tional tests. At lengths of 15 and more, however, the advantage, although still
appreciable, is not quite so striking.

Validity. The advantage of adaptive tests was not so clear when the valid-
ity of the two test types is compared. Validity was operationalized as the cor-
relation between test scores and the examinee's raw score on the concurrently
administered 50-item Word Knowledge test. From their superior reliability, it
would be expected that the adaptive tests would also be superior in validity at
any constant test length. As Table 2 indicates, the adaptive tests had higher
validities at test lengths up to 10 items; at lengths of 15 and up, however, the
conventional tests had slightly higher validity. None of the validity differ-
ences was statistically significant at the .05 level.

Conclusions

Based on the data reported above, several conclusions are offered with re-
gard to the feasibility and psychometric merits of adaptive aptitude testing of
Marine recruits.

1. Testing Marine recruits with CRT terminals is feasible from both prac-
tical and human engineering standpoints. Embedded programmed instructions can
effectively teach the recruits the use of the testing terminals. The number of
proctors or attendants required to supervise and to assist in the testing room
appears to be acceptably small.

2. Striking psychometric efficiency was demonstrated for the adaptive
tests of verbal ability used in this study. It appears that in military person-
nel testing applications, well-constructed short adaptive tests can achieve high
levels of measurement reliability with less than half the number of items re-
quired using conventional testing procedures.

3. There is no apparent psychometric advantage to the intuitively appeal-
ing notion of variable-length adaptive tests, at least for the adaptive testing
method used here.

4. Short fixed-length adaptive tests of about 10 items per examinee seem
to be sufficiently reliable for personnel testing purposes. The adaptive tests

Aachieved a minimally satisfactory reliability level (.80) in just 5 items; addi-
tional test lengths beyond 10 items did not yield psychometric returns propor-

S tional to the added administration time required.
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PARALLEL FORMS RELIABILITY AND MEASUREMENT ACCURACY

COMPARISON OF ADAPTIVE AND CONVENTIONAL TESTING STRATEGIES

MARILYN F. JOHNSON AND DAVID J. WEISS
UNIVERSITY OF MINNESOTA

Prior research at the University of Minnesota has compared the parallel
forms reliabilities of adaptive and conventional vocabulary tests as a function
of test length. The results are shown in Figure 1, which displays alternate
forms reliabilities of Owen's Bayesian adaptive test and a conventional test as
a function of number of items administered. The conventional test was peaked in
information at 0 = 0.0; and test items were administered in order of informa-
tion, from high to low values. The Bayesian adaptive test was scored by Bayes-
ian methods; whereas the conventional test was scored by both proportion-correct
and Bayesian methods. Both tests consisted of five-alternative multiple-choice
vocabulary items.

As expected, the plots in Figure 1 show an increase in reliability as test
length increased for both testing strategies. However, rather than the expected
asymptote of reliabilities for both strategies as test length increased, the
reliability of the Bayesian adaptive test surpassed that of the conventional
test. The approximate difference in reliabilities at test termination was r =
.05, with a 30-item reliability of .92 for the Bayesian test and .87 for the
conventional test scored by the Bayesian method. The difference in reliabili-
ties between Bayesian and proportion-correct-scored conventional tests was .04
at the 30-item test length.

The analysis also included a comparison of concurrent validity obtained by
correlating the ability estimates with number-correct scores on a 120-item vo-
cabulary criterion test also composed of five-alternative multiple-choice ques-
tions. These results (see Figure 2) indicated that although the Bayesian adap-
tive test was more reliable than the conventional tests, the conventional tests
yielded higher validities when correlated with the criterion test. Figure 2
shows that the validities, similar to the reliabilities, increased as a function
of test length, with the conventional test yielding higher validities after four
items. The validity of the Bayesian test at 30 items was .797; that of the
Bayesian-scored conventional test was .834; and the proportion-correct-scored
conventional test obtained a validity of .841.

Purpose

Due to the apparently contradictory nature of these findings, the present
research was designed to replicate them. There were, however, some modifica-

LI'
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Figure 1

Alternate Forms Reliabilities of Ability Level
Estimates from a Bayesian Adaptive Test and

a Conventional Test Scored by Proportion-Correct
and Bayesian Scoring, as a Function of the Number

of Items Administered
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tions to the basic design of the comparison study, and an additional dependent
variable, measurement accuracy, was used to compare the testing strategies. In
addition, the present study compared peaked conventional, Bayesian adaptive, and
maximum information adaptive testing strategies. The conventional test was also
peaked in information evaluated at e = 0.0. Items on the conventional test were
administered in order of item information but, for purposes of analysis, were
arranged in random order. The item pool was composed of the same items that
were used in the original study, but they were reparameterized after the origi-
nal study and prior to the present investigation (Prestwood & Weiss, 1977).

AComparisons of the three testing strategies were made in terms of parallel forms
reliability as a function of test length and in terms of measurement accuracy as
a function of e level. Accuracy of measurement was operationalized as the pos-
terior variance of the Bayesian-scored testing strategies and as standard errors
of measurement for the maximum likelihood-scored testing strategies. Compari-
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Figure 2

Correlations of Ability Level Estimates
from a Bayesian Adaptive Test and a Conventional Test

Scored by Proportion-Correct and Bayesian Scoring
with Criterion Test Score,

as a Function of the Number of Items Administered
(Averaged Across Two Test Forms)
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sons of scoring strategies, including Bayesian, maximum likelihood, and propor-
p tion-correct scoring, were made on the basis of parallel forms reliability.

Method
Subjects

Undergraduate and graduate students from the University of Minnesota volun-
teered to participate .in the fall 1978 and winter 1979 quarters. These students

were recruited from Introductory Biology 1-011, Introductory Psychology 1-001,
and a measurement course, Psychology 5-862. Students from the introductory psy-
chology and biology courses participated in the study in order to obtain experi-
mental points, which counted toward their final grade. Volunteers from the mea-
surement course, beth graduate and undergraduate students, participated at the
request of the instructor.

. . .. .. .I I I l l
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There were 373 students in the conventional testing condition, 390 in the
Bayesian testing condition, and 233 in the maximum information testing condi-
tion. Testing spanned two quarters in order to obtain an adequate number of
students; a total of 996 students were tested during this period. Although stu-
dents were recruited from varying subject pools, no difference in population was
suggested because the undergraduate students were all from the College of Liber-
al Arts. In addition, students were sequentially assigned to one of the three
testing strategies. The introductory biology and psychology students also par-
ticipated in other studies during their experimental hour. In the case of the
biology students, the experimental tests for this study were administered after
a biology test. The fall 1978 introductory psychology students participated
solely in this experiment, whereas the winter 1979 introductory psychology stu-
dents first took the experimental test for this study, and then took another
test. In each case, only data from the alternate forms verbal ability tests
were analyzed.

Procedure

All students took the tests at an individual cathode-ray terminal (CRT)
connected to a Hewlett-Packard real-time computer system. A test proctor was
present during testing to provide assistance to the examinees. The students
were assured that they could take as much time as necessary to complete the
tests. Prior to administration of items on the first test, however, instruc-
tional screens explaining the operation of the CRTs were displayed. After stu-
dents reviewed the test instructions and responded to a number of identification
and demographic questions, the experimental tests were administered. Students
responded to the five-alternative multiple-choice vocabulary questions by typing
a number into the CRT corresponding to the chosen alternative.

Item Pools

Adaptive test. The Bayesian and maximum information tests used the same
item pool from which to select items. The pool was composed of 256 items se-
lected for the purposes of this study from the total vocabulary pool, which con-
tained 358 items. The 358 items were newly parameterized items, based on com-
bined data sources from conventional tests administered between fall 1969 and
winter 1978. The items were parameterized with Urry's (1977) ESTEM program us-
ing a 3-parameter logistic ICC model. All items were assumed to have a guessing
parameter of c = .20. (Details regarding the parameterization procedure can be
found in Prestwood & Weiss, 1977.) Selection of items from the larger pool was
based on several criteria, which varied by difficulty levels of the items. Be-
cause there were few very difficult or very easy items, fewer items at these
extremes on the difficulty continuum were eliminated. Items with discrimination
parameters of a = 3.00 were routinely rejected because this value was identified
as a statistical artifact of the parameterization program and not as a true re-
flection of the item's discrimination value.

Based on a stratification of the items into difficulty levels, items were

eliminated if their discriminations were low. This criterion., however, varied
by difficulty level. In Levels 6 and 7, items were omitted if the discrimina-
tion parameter fell below a = .30. In Levels 3, 4, and 5, where there were more
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items, the culling criterion was set at a = .35. In these levels, also, items
were omitted if the sample size on which the parameters were calibrated was less

than 100. In many cases the items rejected on the basis of sample size were
also of low discrimination.

Conventional test. The alternate forms of the conventional test were each
composed of 30 vocabulary items arranged in descending order of item information
evaluated at e = 0.0. The 60 most informative items at 0 = 0.0 were selected
from the vocabulary pool composed of 256 items. By this procedure, items with
relatively higher discrimination levels and difficulties of about b = 0.0 were
selected. Each test was thus peaked with respect :o item information. Items
were ordered by information at e = 0.0, and the 60 items were divided into Test
Form A and Test Form B according to an ABBABAAB selection scheme. This proce-
dure was used to insure that the alternate forms did not systematically differ
in item information. The items were administered in order of descending item
information. However, for purposes of analysis, pairs of items from the two
test forms were randomly formed to simulate conventional paper-and-pencil test-
ing conditions. The conventional test items were selected from the adaptive
test pool so that it was possible that adaptive test items could also be used in
the conventional test, since an independent groups design was being used.

Adaptive Testing and Scoring Strategies

Alternate forms of the adaptive tests were dynamically selected from the
item pool by a special algorithm. Using an ABBABAAB rotational scheme, Form A
of the adaptive test was given an opportunity to select an item from the pool of
unadministered items, based on the item selection algorithm (Bayesian, maximum
information) in use; and the ability estimate for that form of the adaptive test
was updated. For administration of the next item to a testee, Form B then se-
lected an item from the current pool of unadministered items; and the ability
estimate for that form was updated. This procedure continued, using the ABBA-
BAAB rotation, until 30 items were administered for each of the alternate
forms--Form A and Form B--and the ability estimates for each form were saved
after each item was administered.

Bayesian adaptive testing strategy. Items were selected and scored during
the adaptive procedure according to Owen's (1975) Bayesian model. The prior
distribution of ability was assumed to be normal, with a mean of 0.0 and a vari-
ance of 1.00. These values served as initial estimates of ability at the start
of testing for each of the two forms for each individual. Testing was termi-
nated after 30 items had been administered for each of the two forms. (Details
concerning the Bayesian scoring algorithm can be found in McBride & Weiss,
1976.)

Maximum information adaptive testing strategy. Items were selected accord-
ing to a maximum information item selection routine, and ability estimates were
updated by scoring the responses by maximum likelihood methods (Bejar & Weiss,
1979). The initial estimate of ability was 0.0 for each form. Testing was ter-
minated after 30 items had been adminstered for each of the two alternate forms.

The adaptive tests were scored after testing by a scoring strategy other

.4."
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than the one used during testing. The Bayesian test protocols were scored by
maximum likelihood methods, and the maximum information test protocols were
scored by Bayesian methods. Scores were calculated after each of the 30 items
in both parallel tests. Responses to the two alternate forms of the convention-
al test were also rescored by Bayesian and maximum likelihood scoring methods at
each test length from I to 30 items.

Independent Variables

Testing strategy was the major independent variable of interest. The
strategies compared were the conventional, Bayesian, and maximum information
testing strategies. Methods of scoring were also compared. These included lo-
gistic maximum likelihood scoring, Bayesian scoring, and (for the conventional
test) proportion-correct scoring. Test length was a third independent variable
of interest. Thirty test lengths were obtained by scoring each 30-item test 30
times. That is, a test was scored after the first item, after the first two
items, after the first three items, and so on until 30 scores were obtained. In
this way, 30 test lengths, varying from I to 30 items, were generated for each
of the alternate forms.

Dependent Variables

Parallel forms reliabilities. Testing strategies were compared on the ba-
sis of parallel forms reliability by correlating corresponding ability estimates
obtained from Forms A and B for a given testing strategy. Since the test proto-
cols were scored in at least two ways, Bayesian and maximum likelihood, a total
of seven testing-scoring conditions were compared on the basis of parallel forms
reliability. Scoring strategy was compared on the basis of parallel forms reli-
ability by comparing reliabilities of a single testing strategy scored by more
than one method. Three of the parallel forms reliabilities paired the appropri-
ate scoring method with each of the three testing strategies. These were pro-
portion-correct scoring of conventional tests, maximum likelihood scoring of
maximum information tests, and Bayesian scoring of Bayesian-administered tests.

The remaining four parallel forms reliabilities were obtained by scoring
the test protocols by a scoring routine other than the appropriate one. In this
way, reliabilities were obtained for the Bayesian-scored maximum information
test, the maximum-likelihood-scored Bayesian test, the Bayesian-scored conven-
tional test, and the maximum-likelihood-scored conventional test. Proportion-
correct scores were not obtained for adaptive tests. Reliabilities were calcu-
lated as a function of test length. That is, reliability was calculated not
only from end-of-test ability estimates but also for each of the 30 test
lengths. Scoring method correlations were obtained by correlating estimates
obtained from different scorings of the same testing strategy. These correla-
tions were used to analyze the similarity of ability estimates obtained from
different scoring techniques applied to a single set of data.

Errors of measurement. The three testing strategies were compared on the
basis of their errors of measurement. This was assessed by two methods--one
method estimated errors of measurement on the basis of maximum likelihood scor-
ing methods; and the other, by Bayesian scoring methods. In the first method,
test protocols were scored by maximum likelihood methods, and the standard er-

. .... . ,. o
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rors of measurement (SEM) associated with each ability estimate was calculated.
These values are the reciprocal of the square root of test information at a giv-
en e level. They indicate how accurate the estimate is and how much it is like-
ly to vary from the true 0 value; the larger the standard error, the more likely
the estimate will be inaccurate.

The SEM values were averaged within each of 20 e intervals ranging from
approximately -3.0 to +2.0, and the mean SEM values were then plotted as a func-
tion of 0. This was done on a single randomly chosen parallel form for each of
the three testing strategies.

The posterior variance of the Bayesian ability estimate was also used to
compare the testing strategies on the basis of measurement accuracy. Posterior
variances were averaged within each of 20 b intervals ranging from -2.0 to +2.0.
These mean values were plotted at the midpoint of the 0 intervals and the points
were connected to yield a continuous line. The posterior variance is analogous
in meaning and interpretation to the standard errors of measurement.

Although one or the other of these measurement accuracy indices might have
been adequate in comparing the testing strategies, both were included to mini-
mize any biased conclusions regarding measurement accuracy of the adaptive
tests. In general, posterior variance of Bayesian ability estimates will be
less when items are selected according to a Bayesian testing strategy than when
items are selected by any other adaptive procedure. Use of the posterior vari-
ance alone in the comparison of the adaptive testing strategies may bias conclu-
sions toward the Bayesian testing strategy. For this reason the standard errors
of measurement was also used as an index of measurement accuracy. This index,
in general, will favor the maximum information testing strategy because items
were selected and scored according to a maximum likelihood testing procedure.

Results

Were the Tests Parallel?

Several analyses were performed to determine whether the alternate forms
were functioning as parallel forms. These included comparisons of the means and
variances of the ability estimates as a function of test length for the alter-

nate forms of each testing strategy.

Score means. In general, the score means of the three testing strategies--
conventional, Bayesian, and maximum information--showed an adequate level of
parallel relationship between Forms A and B. Because the proportion correct
score metric differs from the 6 metric, the adaptive and conventional mean abil-
ity estimates are not directly comparable. Adaptive test comparisons of the
means (Figure 3) show that there were greater differences between mean ability
estimates for the alternate forms of the maximum information testing strategy
than for the Bayesian testing strategy; this was because of the tendency of the
Bayesian item selection and scoring routine to yield conservative estimates of
ability. As cesting progressed, however, differences between the ability esti-
mates for the two alternate forms of each test decreased for both adaptive
testz.. Figure 3 also shows that the Bayesian mean ability estimates fell be-
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tween the Form A and Form B means from the maximum information testing strategy.
Thus, both adaptive procedures yielded about the same average ability estimates
for the students selected from a common population.

Figure 3
Mean Ability Estimates from Parallel Forms A and B

of Maximum Information and Bayesian Adaptive Tests,
as a Function of Number of Items Administered
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Means of the conventional parallel forms were obtained by averaging propor-

Stion-correct scores at each of 30 test lengths, based on randomly ordered items.
~Figure 4 shows that mean proporton-correct scores stabilized to a final valueof •.43.

i Score variances. Variances of the ability estimates from the maximum in-

formation testing strategy (Figure 5) were relatively high up to 3 items, and

then decreased steadily. The greatest difference in variance between the two

alternate forms was at 3 items (1.25); whereas at 30 items the difference was

, only half (.75). Figure 5 also shows that ability score variances decreased

~from the beginning to the end of the test. Thus, score variances from the maxi-

• mum information tests showed both a decrease in difference between alternate

forms and a decrease in amount of variance as testing proceeded.

In comparison to the ability scores from the maximum information test,
, variance in Bayesian ability scores showed a similar maximum difference in varl-

ofI.43
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Figure 4
Mean Proportion-Correct Score of the Conventional Test

for Alternate Forms A and B,
as a Function of Number of Items Administered
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ance for tests of about 5 items in length, followed by decreased differences, as
shown in Figure 5. Level of variance increased, however, as testing proceeded,
reflecting the reduced dependence of the Bayesian ability estimates on the prior
ability estimate. The restriction in Bayesian ability estimates due to the re-
gression effect was still evident even at 30-item test lengths, since the abili-
ty estimate variances for the Bayesian tests were substantially lower than those
of the maximum information tests.

Proportion correct score variance of both parallel forms of the convention-
al test decreased rapidly, from a possible maximum of .25 at I item to .06 at 30
items, as shown in Figure 6. Based on both the score means and score variances,
the alternate forms of the conventional test were closer to being parallel than
the alternate forms of either of the adaptive tests.

Errors of measurement as a function of test length. Samejima (1977) de-
fines weakly parallel tests as tests that yield the same information functions.
Thus, evidence for the parallel relationship between the adaptive forms included

* examination of their errors of measurement as a function of number of items ad-
ministered. Average standard error of measurement, the reciprocal of the square

9.. ' . ....,_,"
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root of theoretical test information, was used to compare alternate forms of the
maximum information testing strategy. The error of measurement curves for the
maximum information tests (Figure 7) showed the same form with variance decreas-
ing rapidly to a final value of .40.

Figure 5
Average Variances of Ability Estimates for Forms

A and B of Maximum Information Adaptive Tests and
Bayesian Adaptive Tests, as a Function of

Number of Items Administered
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~The error of measurement index for the Bayesian testing strategy was they posterior variance of the ability estimates. These data are also shown as a
", function of test length in Figure 7. Means of the Bayesian posterior variancesi for the two alternate forms were almost identical, decreasing from an initial

value of .68, after Ii tem was administered, to a final variance of .10, after
30 items were administered. As Figure 7 shows, there was less variance in
Bayesian ability estimates than in the maximum likelihood ability estimates; but
the data show that both the Bayesian and maximum information adaptive tests

: yielded parallel forms in terms of their mean errors of measurement, at almost
all test lengths.

Parallel Forms Reliability

Optimal scoring method. The optimal scoring method was maximum likelihood

thedat sow ha boh he ayeia an mximm nfomatonadatie ts-
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Figure 6
Variances of Proportion-Correct Scores from
Alternate Forms A and B of the Conventional

Test, as a Function of Number of Items Administered
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for the maximum information testing strategy, Bayesian for the Bayesian testing
strategy, and proportion correct for the conventional test. Alternate forms
reliability correlations were computed at each test length for each testing
strategy using these optimal scores.

Reliabilities of the three testing strategies as a function of test length
are shown in Figure 8. The peaked conventional test yielded substantially high-4er reliabilities after 11 items than either of the adaptive tests. The greatest
difference between reliabilities was r = .09 between the adaptive and conven-
tional tests at the 30-item test length; the reliabilities of the adaptive tests
were r - .81, compared with the final reliability of r - .90 for the convention-al test. The data in Figure 8 show essentially the same level and shape in re-

liabilities for the adaptive tests, although there was greater fluctuation in
reliabilities for the maximum information test. The conventional test reliabil-
ity was nearly identical to that of the Bayesian test up to the 10-item test

IA
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Figure 7
Means of Standard Error of Measurement from
Parallel Forms A and B of Maximum Information
Adaptive Tests and Mean Posterior Variance of

Parallel Forms A and B of the Bayesian Adaptive Tests,
as a Function of Number of Items Administered
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length, but after that point the conventional test reliability increased moreV quickly than that of the adaptive tests. Although adaptive test reliabilities
shoved signs of leveling off toward the end of the test, the reliability of the
conventional test seemed to increase steadily.

Other scoring strategy. Reliabilities were also obtained from testing
strategies scored by other than optimal scoring strategies. Four testing-scor-
Ing combinations were of Interest: Bayesian-scored maximum information tests,
maximum-likelihood-scored Bayesian tests, Bayesian-scored conventional tests,
and maximum-likelihood-scored conventional tests. These reliability results are
shown in Figure 9 as a function of test length.

|w

- ' E .
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Figure 8
Parallel Forms Reliabilities of Optimally Scored
Conventional, Bayesian, and Maximum Information

Testing Strategies, as a Function of
Number of Items Administered
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In general, Figure 9 shows that the Bayesian scoring procedure yielded
higher reliabilities under nonoptimal conditions than the maximum likelihood

scoring procedure. Bayesian scoring of the conventional test yielded essential-

ly equivalent reliabilities at every test length, as did proportion-correct
scoring of the conventional test. Bayesian scoring of the maximum information
tests yielded higher reliabilities at most test lengths beyond about 12 items
than the optimal scoring strategy for that test. In addition, Bayesian scoring

of the maximum information test tended to decrease substantially the differences
in reliabilities observed between the conventional and adaptive tests. Figure 9

shows that the reliability for the Bayesian-scored maximum information test was
higher than that of the conventional test for test lengths from 3 to 12 items.
The maximum difference between these two reliabilities was r = .05 at 30 items,
as compared to r = .09 for the data in Figure 8. These data indicate that

a Bayesian scoring of an adaptive test may yield more stable estimates of ability
than maximum likelihood scoring.

The data also illustrate the inappropriateness of scoring conventional

€ t~ -*... _ .., - .., ,
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Figure 9
Parallel Forms Reliabilities of Non-Optimally Scored
Testing-Scoring Strategies, as a Function of Number

of Items Administered
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tests with maximum likelihood scoring methods. As Figure 9 shows, maximum like-
lihood scoring of the conventional test resulted in extremely low reliabilities
at all test lengths, reaching a maximum of only .74 at 30 items.

Scoring Method Correlations

To study the generality of the findings of Kingsbury and Weiss (1979), in
their study of correlations among latent-trait scoring methods in achievementVtest data, comparisons of the ability estimates from the various scoring methods
were made by correlating scores obtained from different ways of scoring the same
testing strategy. For both adaptive testing strategies, Bayesian scores were
correlated with maximum likelihood scores. Conventional test comparisons were
made by correlating proportion-correct scores with Bayesian scores, proportion-
correct scores with maximum likelihood scores, and Bayesian scores with maximum
likelihood scores. For each testing strategy, one of the two alternate forms
was randomly chosen for these analyses. These five scoring combinations are
shown in Figure 10 as a function of test length.

As Figure 10 shows, the highest correlations were between Bayesian and pro-
portion-correct scores of the conventional test. These correlations varied in

6 - _- _ -I I I ... . . I l
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Figure 10

Correlations Between Scoring Methods
for the Same Alternate Form, as a

Function of Number of Items Administered
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value between 1.00 for a 1-item test to .85 for a 15-item test, with most corre-
lations between .97 to .99. The second highest level of correlation was between
the Bayesian- and maximum-likelihood-scored maximum information test, with most
correlations between .93 and .95. With the exception of the latter half of the
correlations between Bayesian and maximum likelihood scores from the Bayesian
test, there were few differences among the other three sets of correlations; the

modal correlation for these three plots was .88. The correlations between
Bayesian and maximum likelihood scores from the Bayesian test increased steadily
after the 15-item test length to a final value of r = .94.

Measurement Precision as a Function of Ability Level

Figure 11 shows plots of the average standard errors of measurement as a
function of the maximum-likelihood-derived ability distribution. These data are
the reciprocal of the square root of the test information function for each
test. The distribution obtained from this sample varied from about -3.00 to
+2.00 and was divided into equal frequency intervals (N > 20), separately for

each testing strategy.
.4

The data indicate that at no point on the ability continuum were the stan-
dard errors of measurement smaller in the conventional test than in the adaptive
tests. In general, the maximum information testing strategy yielded smallest
standard errors or greatest measurement precision. The Bayesian test, when
scored by maximum likelihood, had poorer measurement precision at the lower ex-

I .... .... . ,. ..
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Figure 11
Average Standard Error of Measurement as a Function

of Ability Level for Conventional, Bayesian,
and Maximum Information Testing Strategies

(Non-Converging Values Eliminated)
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treme of the ability continuum than did the maximum information test. Precision
of measurement for all the testing strategies was greatest at the central por-
tion of the ability distribution than at the extremes.

Bayesian posterior variance comparisons are shown in Figure 12 as a func-
tion of the Bayesian-derived ability distribution. The distribution varied from
about -2.00 to +2.00. The average posterior variance was greater at all points

along the ability continuum for the conventional strategy than for either of the
adaptive tests. The Bayesian and maximum information testing strategies had
about the same level of measurement accuracy in the center of the ability dis-
tribution. At the extremes of the ability continuum, the Bayesian testing
strategy resulted in slightly better measurement precision than did the maximum
information testing strategy.

In both error of measurement comparisons, there was poorer measurement at
the low end of the ability distribution, although the extremes--both positive

"* and negative--were less precisely measured than the center of the ability con-
tinuum. The results indicate that the adaptive tests yield about the same level
of measurement precision and that these levels were greater than those obtained
from the conventional test at all levels of ability.

I i j
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Figure 12
Average Bayesian Posterior Variance of

Ability Estimates as a Function of
Ability Level for Conventional, Bayesian,
and Maximum Information Testing Strategies
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Discussion

The major finding in this study was that the conventional test yielded
higher alternate forms reliability than did the adaptive tests. However, when
the maximum information adaptive test was scored by the Bayesian scoring algo-
rithm, reliabilities of short adaptive tests were higher than those of the con-

, ventional test, and differences in reliabilities were smaller at longer test
lengths. Limitations of the item pool might account in part for the lowered
reliability of the adaptive tests in comparison to the conventional test, since
adaptive tests depend heavily on the quality of the items in the item pool.
When an item pool consists of highly discriminating items, every ability level

along the latent trait continuum can be measured with a high degree of precision
using adaptive tests (McBride & Weiss, 1976). When there are few items to mea-
sure abilities at the extremes and/or the available items are of low discrimina-
tion, abilities at the extremes cannot be measured accurately.

The item pool used for the two adaptive tests had fewer items at the ex-
tremes of the ability range and these items had relatively lower discrimination
parameters. It is likely that, especially at abilities where there were fewer
items, the correlations between ability estimates would be attenuated and the
adaptive process would be at a disadvantage as testing progressed. The result
would be that toward the end of testing there would be fewer and fewer items

available at a given ability level.

- - -
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The adaptive test scoring process also depends on accurate parameterization
of items and on testees responding according to a single latent trait. Experi-
mental subjects taking a test that does not relate to any course they are taking
and that does not count for a grade may respond carelessly, with less than full
attention. It is unknown to what extent the item parameters are inaccurate. An
optimal research strategy for comparison of conventional, Bayesian, and maximum
information testing strategies on the basis of parallel forms reliability is

through simulated testing. The disadvantage of inaccurate item parameters, non-
optimal item pool characteristics, and the possibility that students did not
respond exclusively in accordance with their ability level can be alleviated in
simulation.

One additional factor that limits the comparison of the testing strategies
in terms of alternate forms reliability correlations is the distribution of
ability in the population. Since values of the Pearson product-moment correla-
tions depend on the distributions of the ability estimates involved, different
ability distributions can result in different levels of correlation. Thus, the
reliability correlations confound the distribution of the ability estimates with
the measurement precision of the testing strategies. Information is a measure
of precision of measurement, yielding comparisons of testing strategies that are

unconfounded by the distribution of the ability estimates. As Figure 11 shows,
both adaptive testing strategies yielded scores with greater precision/informa-
tion (lower errors of measurement) than did the conventional testing strategy.

On the basis of the reliability data, few conclusions can be drawn about
the relative merits of the adaptive testing procedures. Bayesian scoring of the
Bayesian test showed higher reliability than the maximum-likelihood-scored maxi-
mum information test. Bayesian scoring of the conventional and maximum informa-
tion testing strategies yielded higher reliabilities than maximum likelihood
scoring of the conventional and Bayesian testing strategies. This might indi-
cate either that the Bayesian scoring algorithm yields more reliable estimates
of ability or that it yields the same regressed or biased estimate of ability.
The Bayesian test would tend to yield higher parallel forms reliabilities than
the maximum information testing strategy in the case where most items measuring
abilities at the extremes of the distribution are of lower discrimination. Be-

*, cause the Bayesian adaptive test yields regressed estimates of ability and re-
quires fewer items measuring abilities at extreme 0 values, the Bayesian ability
estimates obtained, although biased, would be more stable than ability estimates
from the maximum information testing strategy.
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A COMPARISON OF THE ACCURACY OF BAYESIAN ADAPTIVE AND
STATIC TESTS USING A CORRECTION FOR REGRESSION

STEVEN GORMAN

DEPARTMENT OF THE NAVY

The vast changes in computer technology have made a strong impact upon the
field of ability measurement. The increased capabilities and decreased costs of
computer use have opened the door to application of latent trait theory. Two
Bayesian procedures for ability estimation have become popular--the Bayes modal
procedure (Samejima, 1969) and the Owen (1975) algorithm. Both Bayesian proce-
dures use a prespecified distribution, usually the Gaussian normal distribution,
as the prior variance of ability. The item characteristic curve (ICC; also

called the item response function) is employed as the likelihood function. The
product of the prior distribution and the likelihood function is the posterior

distribution of ability. These two procedures can be used in either convention-
al or adaptive mode.

McBride and Weiss (1976) have studied Owen's Bayesian adaptive procedure
and have determined that with this procedure, ability estimates regress toward
the mean. That is, high-ability examinees tend to achieve lower ability esti-
mates, and low-ability examinees tend to have higher ability estimates. Urry
(1977) has suggested a correction, namely, dividing the Bayesian regressed abil-
ity estimate by the test reliability. A second, potentially more serious, prob-

lem is the reliance upon accurate 3-parameter logistic item parameters. Urry
(1976) developed OGIVIA3, a computer program to estimate these item parameters.
The effectiveness of this estimation procedure for use in the Owen algorithm was
reviewed by Gugel, Schmidt, and Urry (1976). OGIVIA3 has been revised (Croll &

Urry, in prep.) and has been renamed ANCILLES.

The purpose of the present paper is to evaluate the effectiveness of two
Bayesian ability estimation procedures with a correction for regression using
known and estimated parameters. Specifically, the studies simulated the Owen

algorithm and Bayes modal testing methods in both adaptive and static mode with
a correction for regression using known parameters and the parameters estimated

using ANCILLES.

Study 1:

An Analysis of the Verbal Scholastic

__ Aptitude Test
• Background and Purpose

Lord (1968) applied the 3-parameter logistic model developed by Birnbaum
(1968) to the Verbal Scholastic Aptitude Test (VSAT). Until Lord's article,

'-
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little research had been conducted using Birnbaum's model. However, since this
article, with the exception of a few articles involving the maximum likelihood
procedure (Bejar, Weiss, & Gialluca, 1977; Kolakowski & Bock, 1970, 1972; Wood,
Wingersky, & Lord, 1976), the overwhelming majority of latent trait research has
applied the work of Birnbaum to adaptive tests and not to conventional tests.
Samejima (1968) detailed the mechanics of a Bayes ability estimator based on a
response pattern of test items. She proved that with an assumed normal distri-

bution of ability as a prior distribution, and using the ICC as a likelihood
function, the mode of the posterior distribution will provide an absolute maxi-
mum, which can be used as an ability estimate. Urry (1976) incorporated the
Bayes modal procedure in the second stage of his item parameter estimation pro-
gram. Owen (1975) developed a Bayesian procedure for estimating ability; howev-
er, this procedure was developed for the adaptive mode. Bejar and Weiss (1979)
programmed the Owen algorithm for scoring static tests, but no data on its ef-
fectiveness were made available.

The purpose of this study was to investigate the efficiency of the Bayes
modal and Owen's Bayesian ability estimation procedures relative to a conven-
tional rights-only scoring. In particular, the issues investigated are (1) con-
ditional bias, (2) conditional accuracy, and (3) precision of test scores.

Design of the Study

Artificial data were generated according to the 3-parameter logistic model:

Pi(e) = C. + (1 - c.) 11 + exp(-l.7ai(6 - bi))][

using the LVGEN program developed by Urry (1971). This program provided vectors
of responses, correct (1) or incorrect (0), for the simulated examinees (sims).
The test items used had the parameters of the first 80 VSAT items reported in
Lord (1968).

For the purpose of this study, it was assumed that the item parameters re-
ported in Lord's study were the actual parameters and not estimated, as they
actually were. The 80 item parameters were administered to 2,000 sims from a
normal distribution (mean 0, variance 1) generated by the LLRANDOM Computer Pro-
gram (Learmonth & Lewis, 1973) in conjunction with the LVGEN program. The re-
sulting vectors of simulated binary responses were analyzed by the ANCILLES Pro-
gram; estimates of the 80 "known" VSAT parameters were the resultant output.
This allowed a comparison of the robustness of the Bayesian ability estimation
programs to inaccuracy in the item parameter estimates. An additional 2,000
normally distributed sims were administered the VSAT items. This permitted com-
putation of the correlation of known ability with the various ability estimates
and the mean and variance of raw scores so that a Z-transformation could be com-
puted. This allowed comparison of a simpler scoring procedure based on classi-
cal test theory with the two scoring procedures based on latent trait theory.

Five conditions of scoring the same item responses were examined: (1) Bayes
modal ability estimates based on known item parameters, (2) Bayes modal ability

~estimates based on estimated item parameters, (3) Owen's Bayesian ability esti-
mates based on known item parameters, (4) Owen's Bayesian ability estimates

i1'A
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based on estimated item parameters, and (5) ability estimates based on raw score
to Z-score transformations.

To properly address the evaluation mentioned above required examination of
the test score characteristics as a function of ability level. Therefore, the
ability distribution consisted of 100 sims at each of 11 equally spaced values
in the interval -2.5 < b < +2.5.

For each of the five simulated test administrations, conditional bias, con-
ditional accuracy, and conditional precision were estimated from the 100 obser-
vations at each ability level (0 e).

Conditional bias. This statistic provided an indicator of the magnitude
and direction of the error between true ability and ability estimated by each of
the scoring procedures at various levels of the trait continuum where

bias = bele e = e - [2]

where
be = average bias for each of 11 values of on the trait

continuum,
ee = true ability of examinees for each value, and

6e - average ability estimates for each value.

Conditional accuracy. The accuracy of the test scores was provided by the
root mean square error computed for the 11 values using the formula

n
eIe n-1 [3]

where

tile = root mean square error conditional upon ability level,
n =1 00,

A - known ability level, and
6 e - the ability estimate.

Conditional precision. This statistic was provided by the test score in-
formation function. The information generated by a score about a given ability
level can be compared to the precision of measurement at that point. Samejima
(1977) stated that the inverse of the square of information can be considered as
the standard error of measurement when number of items and test information are
sufficiently large. Birnbaum (1968) provides a formula for information:

2
3 E ( ̂ 6e le

(e-) =1 - _ [4]ae ̂ ^ leeI ae O~e

[ e.
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where Ie (e') is the information about 0 provided by score x. Sim scores were

calculated at each of 11 equally spaced ability levels -2.5 < x < +2.5; these
test score means were used to estimate the slope by fitting a curve through
three consecutive values. Because test score means were required on either side
of the information point, information values could not be computed for the ends
of the continuum (-2.5, +2.5).

Results

Estimation bias. The comparisons between the two Bayesian procedures for
scoring static tests using estimated parameters and the raw score to Z-score
transformation are in Figure 1. The figure shows that the absolute value of
bias for the Z-score was much greater than for the two Bayesian procedures at
ability level -2.5. The absolute value of Bayesian score bias tended to be
equal to or lower than that of the Z-score along the entire trait continuum. Of
the two Bayesian procedures, the Bayes modal bias was greater at upper trait
levels.

Figure 1
Bias of Three Scoring Procedures, Using

Estimated Item Parameters in a Static Test
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Table 1 shows the bias values of the two Bayesian procedures under condi-
tions of known and estimated parameters, as well as the conventional Z-score
method. The boyes modal scores using known parameters still suffered to some
degree from the regression to the mean effect, although deviations from zero
were mostly lower than the bias from either estimated Bayes or Z-score methods.
Improvements to the estimation of item parameters could decrease the bias of the
two Bayesian static procedures significantly.
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Table 1
Bias of Conventional Z-Score Method and Two Bayesian
Scoring Methods Using Estimated and Known Parameters

in a Static Test

Parameters

Estimated Known
Ability Bayes Bayes
Level Z-Score Modal Owen's Modal Owen's

-2.5 1.027 .789 .541 .482 .366
-2.0 .621 .488 .253 .260 .059
-1.5 .300 .221 .022 .087 -.143
-1.0 .010 .077 -.062 .065 -.142
-0.5 -.097 .022 -.058 .051 -.083
0.0 -.200 -.056 -.081 -.019 -.064
0.5 -.126 -.058 -.035 -.023 -.008
1.0 .031 -.048 .037 -.027 .046
1.5 .220 -.013 .132 -.030 .104
2.0 .260 .023 .206 -.044 .138
2.5 .130 .044 .188 -.060 .109

Figure 2

Root Mean Square Error of Three Scoring Methods
Using Estimated Item Parameters in a Static Test
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Conditional accuracy. Figure 2 displays the root mean square error (RMSE)
of ability estimation for the two Bayesian algorithms using estimated parameters
and the Z-score method. All three methods followed the same trend of having
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high RMSE values at the low-ability levels and diminishing asymptotically to a
value of about .2 at the trait level +.5. This phenomenon appeared to be a
function of the test itself, with its emphasis on more precise measurement at
the higher ability levels. The conventional scoring procedure tended to have
the highest inaccuracy, with two exceptions (ability levels -1.0 and +2.5).
Table 2 lists the RMSE values for the two Bayesian methods using known and esti-
mated parameters.

Table 2
Root Mean Square Error of the Z-Score Method

and Two Bayesian Scoring Methods Using
Estimated and Known Parameters in a Static Test

Parameters
Estimated Known

Ability Bayes Bayes
Level Z-Score Modal Owen's Modal Owen's

-2.5 1.048 .875 .686 .703 .537
-2.0 .652 .567 .412 .486 .365
-1.5 .386 .418 .405 .482 .463
-1.0 .263 .325 .361 .370 .425
-0.5 .296 .284 .338 .300 .382
0.0 .328 .243 .273 .241 .288
0.5 .281 .203 .221 .191 .213
1.0 .264 .195 .215 .185 .212
1.5 .313 .176 .233 .160 .204
2.0 .314 .205 .293 .188 .239
2.5 .191 .266 .280 .252 .231

Conditional precision. The test score information values at the nine abil-
ity levels, -2.0 to +2.0, for the two Bayesian scoring methods using estimated
parameters and the conventional scoring procedure, are in Figure 3; numerical
values are in Table 3. The data in Table 3 coincide with two trends of the ear-
lier study (Lord, 1968, p. 998) on the VSAT. First, the data in Table 3 (as
well as in Table 2) illustrate the more precise measurement on the VSAT at upper

ability levels. Second, the data show that significant increases in precision
can be gained by using the Bayesian scoring procedures.

The original study weighted items based on the logistic model and found
this procedure provided greater information than conventional scoring. The av-
erage score information value for conventional scoring was 12.195; the average
for the Owen scoring was 13.800 and was 14.120 for the Bayes modal scoring, with
estimated item parameters used in the scoring procedures. Slightly higher aver-
ages (13.960 for the Owen and 14.503 for the Bayes modal scoring) occurred when

qj the known item parameters were available.

Fidelity. Fidelity coefficients, the correlations of the known ability of
2,000 sims from a normal population with their estimated abilities, were comput-
ed from the various test scoring methods and are in Table 4. Although the in-
crease in the correlation is only roughly .02 for the two Bayesian methods over

.-.4
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Figure 3
Test Score Information of Three Scoring Methods, Using

Estimated Item Parameters in a Static Test
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Table 3

Test Score Information of Conventional Z-Score Method

and Two Bayesian Scoring Methods Using Estimated and

Known Parameters in a Static Test

Parameters

Estimated Known

Ability Bayes Bayes

Level Z-Score Modal Owen's Modal Owen's

-2.0 1.910 2.285 2.215 2.185 1.876

-1.5 2.775 2.713 2.817 2.796 3.177

-1.0 5.316 6.343 6.640 6.930 6.963

-0.5 12.545 10.645 10.189 9.986 9.407

0.0 13.963 15.200 15.484 14.807 14.725
0.5 16.876 23.884 22.631 26.225 24.184

1.0 25.307 30.190 29.836 29.441 28.582

1.5 29.386 37.179 36.691 38.875 38.288

4 2.0 26.066 26.880 25.294 28.293 26.353

the conventional method, at this high level (.94 to .96) the result is highly

significant (p < .0001). The fidelity coefficient of the 80-item VSAT test

scored with either Bayesian method is comparable (via the Spearman-Brown proph-
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Table 4
Correlation of Known Ability with Ability

Estimates for a Conventional Z-Score
Scoring Method and Two Bayesian Scoring

Methods Using Known and Estimated
Parameters in a Static Test

Scoring Method r

Conventional Z-Score Transformation .941
Bayes Modal

Estimated Parameters .959*
Known Parameters .960*

Owen's Bayesian
Estimated Parameters .958*
Known Parameters .958*

*Values significantly different from conven-
tional Z-score transformation r at p < .0001.

ecy formula) to a fidelity coefficient of a 120-item test scored conventionally.
Also of interest is the fact that the fidelity coefficients computed using
either Bayesian procedure with known item parameters were not significantly dif-

ferent from the fidelity coefficients computed from Bayesian scoring with esti-
mated item parameters. This attests to the robustness of the Bayesian scoring
procedure to errors in item parameter estimation.

Conclusions. It is apparent that improvements in the measurement of exam-

inees on conventional tests can be realized by the use of mathematical scoring
procedures that are based upon latent trait theory. Bias seems to be dimin-

ished, and test score accuracy and precision are improved with these two Bayes-
ian scoring procedures, compared to the conventional scoring method.

Study 2:
An Analysis of the Effect of the

Correction for Regression and Parameter Estimation
Errors Upon Two Bayesian Adaptive Testing Procedures

Purpose

The present study simulated an adaptive test using both Owen's Bayesian

procedure and the Bayes modal procedure. The research attempted to determine
the effect of item parameter estimation errors upon the test characteristics as
a function of ability level. In addition, this study investigated the effect of
a correction for regression applied to the ability estimates obtained using the
Owen algorithm. The Bayes modal procedure already incorporates this regression
correction.

Owen's Bayesian Procedure and the Correction for Regression

The Bayesian adaptive ability estimation procedure has been well documented

1*
ID
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elsewhere (McBride & Weiss, 1976; Owen, 1975) and will not be reported here.
However, to understand the correction, a brief conceptual description is in or-
der. The procedure assumes a normal distribution of the ability estimates with
mean 0 and variance 1. The item bank is then scanned to identify the item that
will minimize the expectation of the posterior variance of the distribution if
administered. That item is then administered, and a new ability estimate (mean
of posterior distribution) and variance about that estimate are computed. The
ability estimate is then used as the prior mean, and an item is again selected
to minimize the expected value of the variance of the posterior distribution.
This procedure is repeated iteratively.

A correction for regression is applied to the final ability estimate. The
correction consists of dividing the final ability estimate by what Urry (1977)
refers to as the test reliability. This reliability is 1.0 minus the Bayesian
posterior variance, and this value obviously will differ for each individualized
test. Urry believes that more accurate measurement is attained by terminating
adaptive tests based on a fixed posterior variance, rather than a fixed number
of items. However, Urry (1977) concedes that this correction should be effec-
tive for both fixed and variable-length tests. This study investigates the
fixed-length test only.

Bayes Modal Adaptive Procedure

The Bayes modal adaptive ability estimation procedure developed for this

study consisted of two algorithms--one to estimate ability and one to select
appropriate items to be administered. The ability estimation algorithm was
based on the Bayesian scoring procedure developed by Samejima, using the item
response function and an assumption of a normal distribution of ability. Urry
(1976) uses this procedure in the second iterative stage of his item parameter
estimation procedure. The item selection procedure chooses that item which pro-
vides the highest level of item information for the current ability estimate.
The item response function for all administered items is computed. The product
of all item response functions and the assumed normal density function is the
posterior distribution; the mode of this distribution is the ability level esti-
mate. This value is then unregressed using the same correction as stated earli-
er. However, unlike the Owen procedure, the corrected estimate is then used as
the starting point for the next iteration of item selection.

Design of the Study

Two "ideal" banks were generated, each consisting of 101 items at equal
increments of b = .05 over the range -2.5 < b < +2.5. One bank used items whose
item discriminitions were set at a = 1.6; the other, at a = .8. The item param-

eters were estimated by the ANCILLES program on a group of 50 items based on the
responses of 2,000 sims. The procedures differed from Study 1 in that the items
were scrambled with the parameters from item banks of another study (Gorman, in

4 prep.). The analysis was based upon three test characteristics as a function of
ability level-bias, accuracy, and precison-as documented in Study 1.

Results

Conditional bias. Figure 4 displays the score bias from the 25-item adap-

it. I I I
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tive test employing the Owen algorithm, with and without the correction for re-
gression, and the Bayes modal procedure. The three lines represent the bias in
the adaptive procedures using the item bank with item discriminations of a =
1.6, based on estimated parameters. The Owen procedure with the correction pro-
vided the least bias.

Figure 4
Effect of Regression Correction Upon Bias of
25-Item Bayes Modal and Owen Adaptive Tests

(a = 1.6) with Estimated Parameters

e Owen's Scoring, Corrected for Regression
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Table 5 shows the effect of regression upon the ability estimates from the
Owen procedure using known and estimated parameters. An interesting result is
that the regression phenomenon was more prevalent when known parameters were
used in the Owen scoring with a correction than with estimated parameters using

*. the same correction. This may be due to sampling errors in parameter estimation
working in the preferred direction on this criterion.

Using the less discriminating item bank (a - .8), the regression was more
extreme, but the correction using estimated parameters again adequately compen-
sated. The regression correction was less effective when using known parame-
ters.

The Bayes modal adaptive test did not fare as well as the Owen adaptive
test. This ran be seen in Table 6, which lists the bias for the two item banks
under conditi~ns of known and estimated parameters. With known parameters, the
bias was tolerable with the better item bank. The bias under the other three
conditions was significantly greater.

3

Conditional accuracy. Table 7 shows the effect of the regression correc-

1re-
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Table 5
Effect of Regression Correction Upon Bias of the 25-Item
Owen's Adaptive Test with Estimated and Known Parameters

for Two Item Banks

Item Bank Parameters
and Estimated Known

Ability Level Corrected Uncorrected Corrected Uncorrected

a=.8 Item Bank
-2.5 .063 .468 -.055 .416
-2.0 .021 .351 -.167 .237
-1.5 -.036 .222 -.127 .179
-1.0 -.029 .146 -.124 .091
-0.5 -.053 .042 -.067 .043
0.0 .008 .007 .008 .006
0.5 .049 -.047 .102 -.019
1.0 .011 -.165 .075 -.143
1.5 -.027 -.283 .154 -.186
2.0 .046 -.306 .268 -.205
2.5 .036 -.403 .275 -.314

a-1.6 Item Bank
-2.5 .091 .326 -.008 .242
-2.0 .019 .207 -.077 .125
-1.5 .055 .193 .001 .151
-1.0 -.004 .093 -.046 .061
-0.5 -.040 .013 -.068 -.009
0.0 .031 .028 .007 .006

0.5 .115 .055 .071 .010
1.0 .054 -.046 .064 -.050
1.5 .071 -.077 .117 -.059
2.0 .054 -.140 .161 -.077
2.5 .041 -.221 .153 -.150

tion upon the root mean square error (RMSE) of the 25-item Owen adaptive test.
The average RMSE value for the Owen ability estimates using known item parame-
ters without the correction was .225; using estimated item parameters with the
correction, .233; using known item parameters with the correcton, .241; and us-
ing estimated item parameters without the correction, .225.

The a = .8 item bank followed this same trend, only to a greater degree,
with the exception that the highest average RMSE value was with the Owen proce-
dure using known item parameters and corrected for regression. This result is
counter to the expected result. The reason for this may again be due to errors
in item parameter estimation favorable to the Owen procedure. Another trend for
both item banks was that the RMSE values were lowest about the mean and in-
creased in magnitude as a function of distance from the mean.

3 Table 8 lists the RMSE for the Bayes modal adaptive test. On the item bank
with a - .8 using estimated paLameters, the conditional accuracy was poorer than
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Table 6
Bias of the 25-Item Bayes Modal Adaptive Test

Using Estimated and Known Parameters,
with Two Item Banks

Item Bank
a .8 a 1.6

Ability Estimated Known Estimated Known

Level Parameters Parameters Parameters Parameters

-2.5 .575 .213 .324 .115

-2.0 .382 .133 .232 .085
-1.5 .262 .101 .228 .156

-1.0 .094 .027 .143 .097

-0.5 .049 .035 .058 .047

0.0 .066 .043 .143 .059

0.5 .087 .084 .099 .066
1.0 -.049 -.013 -.067 -.002

1.5 -.067 -. 101 -.002 -.038

2.0 -.195 -.092 -.208 -.058

2.5 -.343 -.080 -.251 -.038

Table 7
Effect of Regression Correction Upon Root Mean Square Error

of the 25-Item Owen Adaptive Test with Estimated and
Known Parameters for Two Item Banks

Item Bank Parameters
and Estimated Known

Ability Level Corrected Uncorrected Corrected Uncorrected

a-.8 Item Bank
-2.5 .370 .556 .413 .532

-2.0 .423 .497 .454 .417
-1.5 .404 -403 .384 .347
-1.0 .432 .388 .433 .349
-0.5 .368 .305 .387 .310
0.0 .352 .291 .390 .313

0.5 .447 .370 .420 .325

1.0 .401 .372 .445 .376
1.5 .351 .404 .416 .357
2.0 .339 .416 .531 .411

2.5 .395 .512 .541 .475
a-1.6 Item Bank

-2.5 .2907 .4054 .2440 .3181
-2.0 .2411 .2973 .2481 .2434
-1.5 .2629 .3020 .2202 .2496
-1.0 .1864 .1926 .2088 .1927
-0.5 .2223 .1980 .2353 .2025
0.0 .2297 .2072 .2133 .1906

0.5 .2351 .1945 .2386 .2034
1.0 .2142 .1953 .2399 .2118

1.5 .2069 .1923 .2512 .2060
2.0 .2333 .2452 .2670 .2033
2.5 .2487 .2988 .2861 .2558

1~J
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Table 8
Root Mean Square Error of the 25-Item Bayes Modal Adaptive Test

Using Estimated and Known Parameters, with Two Item Banks

Item Bank
a =.8 a= 1.6

Ability Estimated Known Estimated Known
Level Parameters Parameters Parameters Parameters

-2.5 .783 .445 .589 .393
-2.0 .593 .431 .393 .327
-1.5 .428 .373 .388 .279
-1.0 .366 .386 .290 .245
-0.5 .411 .384 .261 .264
0.0 .412 .351 .339 .290
0.5 .426 .414 .268 .233
1.0 .321 .327 .234 .228
1.5 .328 .395 .172 .215
2.0 .320 .368 .269 .206
2.5 .447 .340 .364 .210

Table 9
Test Score Information of Two 25-Item Bayesian Tests,

Using Known and Estimated Parameters, with Two Item Banks

Item Bank
Adaptive Test a .8 a = 1.6

and
Ability Known Estimated Known Estimated
Level Parameters Parameters Parameters Parameters

Owen's Bayesian
-2.0 2.591 4.738 15.776 17.847
-1.5 5.519 8.359 14.786 22.501
-1.0 5.311 6.475 23.878 21.238
-0.5 7.975 8.726 21.079 21.571
0.0 9.808 9.009 25.752 28.516
0.5 5.181 6.974 26.434 21.809
1.0 5.425 6.021 22.470 21.041
1.5 8.975 9.519 26.369 24.226
2.0 9.863 5.897 18.315 23.473ABayes Modal

-2.0 1.325 4.210 5.067 9.898
-1.5 2.850 5.822 5.435 13.496
-1.0 4.476 5.689 8.919 13.241 [
-0.5 4.859 6.425 11.277 11.670
0.0 6.347 8.906 10.608 12.359
0.5 4.982 5.695 17.014 18.389
1.0 7.565 6.504 24.089 15.992
1.5 6.621 5.594 21.752 19.452
2.0 5.142 7.703 8.609 23.604
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with the Owen procedure. On the other hand, with the same item bank using known
parameters, accuracy was greater with the Bayes modal procedure. With the bet-
ter item bank, the Owen procedure was superior to the Bayes modal on this crite-
rion.

Conditional precision. Table 9 lists values of score information for
25-item tests with both Bayesian adaptive methods and two item banks. The item
parameter estimation errors rearranged the test score distribution and, hence,
its information. The Owen procedure provided more information about the mean
and dropped off somewhat at the extremes. The Bayes modal procedure provided
considerably less information; hence, the standard error of measurement was
larger at all ability levels.

Conclusions

The correction for regression effectively diminished the regression to the
mean effect. Fortunately, the errors of parameter estimation provided by ANCIL-
LES worked in favor of less biased measurement. The accuracy of the Owen adap-
tive fixed-length test with this correction was somewhat poorer with parameters
estimated by ANCILLES than with known parameters. This drop in accuracy did not
appear to be severe enough to discount the Owen procedure for adaptive testing.
The Bayes modal adaptive procedure as implemented in this study needs further
work to equal or surpass the Owen algorithm, even with more accurately estimated
parameters.
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DISCUSSION: SESSION 1

BRIAN WATERS

AIR UNIVERSITY

The Department of Defense enlists, classifies, and assigns hundreds of
thousands of men and women annually, with test scores a major determinant of
these decisions. The testing function must be performed more efficiently, accu-
rately, and equitably; and computerized adaptive testing (CAT) provides the
promise of greatly improved large-scale testing efficiencies. Work such as that
reported by this session's authors on various adaptive testing strategies is
therefore important.

These papers represent two lines of needed research--basic and more applied
research on CAT. We still have many theoretical questions best addressed by
simulation studies such as Gorman's, as well as myriad practical problems, which
are best investigated with live data empirical studies such as McBride's and
Johnson and Weiss's. I enjoyed reading each of these papers, particularly the
mental exercise of analyzing the contradictory results of the latter two stud-
ies.

The primary result from the Johnson and Weiss paper and the McBride paper
that caught my attention were the opposite results obtained on McBride's Figure
I and Johnson and Weiss's Figure 8. These two analyses of Bayesian adaptive
testing versus conventional testing both examined parallel forms reliability as

a function of test length. McBride's results were consistent with the bulk of
similar work done in the past, but the Johnson and Weiss results were startling-
ly different. The latter paper showed the conventional test yielding consist-
ently higher reliabilities after about 10 items. In an effort to explain this
difference in two similarly designed studies, Tom Warm of the Coast Guard Insti-
tute, Jim McBride, Marilyn Johnson, Brad Sympson, and I tried to determine what
could have led to the conflicting results. Figure 1 shows a plot of the results
from the two studies on comparable data. My tentative conclusions attribute the
differences to either the parameterization process, the test difficulty* or the
examinee characteristics differences. My best "guess" is that the former is the
major cause of the contradictory results.

McBride designed an item pool that was extraordinary by any standards. In
effect, he followed Urry's guidelines for selection of item characteristics for

an adaptive test. All a parameters were more than .80 and all c parameters were
less than .30. His aver-age a values for the conventional and adaptive tests
were 1.40 and 1.20, respectivell. In addition, McBride's items were parameter-
ized on a group of 4,000 examinees from a directly comparable population and
produced a nearly rectangular distribution of information. .

r
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Figure 1
Alternate Forms Reliability Coefficients

from the McBride and Johnson and Weiss Studies
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Johnson and Weiss had test item a parameters as low as .65, with a mean of
1.05 and a range of .65 to 2.25 on the conventional test. The adaptive test a
parameter range, however, was .04 to 3.00, with a mean of .76. Particularly in
the extreme ranges of ability, some of the items were adding practically no in-
formation to the adaptive test. The items were parameterized on far fewer exam-
inees (82 to 1,861 with a median of about 300), and the item distribution was
much more peaked. As McBride (paraphrasing Urry, 1970) stated in his paper, "a
good tailored test design is superior [to conventional testing], provided that
highly discriminatory test items are available." From a purely psychometric
viewpoint, I would expect McBride's items to be more effective in an adaptive
test as compared to a conventional test and to have more stable item parameter
estimates than Johnson and Weiss's.

These contradictory results concern me in another way. Johnson and Weiss's
data come from a much more "real world" situation. McBride's careful item se-
lection, parameterization, and design are to be highly commended; however, in
many applications, the "ideal" item pool he used is simply just not obtainable.
Unfortunately, most of us will be faced with a pool more like that of Johnson
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and Weiss. If, in fact, their results become typical, the practical application
of adaptive testing is threatened. The Johnson and Weiss study thus needs rep-
lication.

McBride's study was exceptionally well done. It is nice to see data from
the real world rather than from just "Psychology 101" students. I would have
liked to have seen test statistics, including reliability, reported for the
50-item criterion test used in the validity analyses. McBride's results of a
large increase in reliability with no significant change in validity is not
atypical. More information on the criterion measure would have helped the read-
er conjecture why the validities did not increase with the reliability coeffi-
cients. My feeling is that it is related to the fact that the correlation coef-
ficient only uses mean values and that the criterion measure was a conventional
test score. If, as the errors of measurement suggest, the adaptive scores had
less error variance and more true variance in them, then I would expect less
correlation between adaptive and conventional scores than between two conven-
tional scores. The additional true variance would be unique to the adaptive
scores, whereas some of the error variance would be common, by chance, to the
conventional test scores.

In a recent conversation with McBride, I discovered that since the confer-
ence he has acquired another criterion score on the examinees from this study.
He reports that the validity coefficients on the adaptive tests were consist-
ently higher (up to .19) than the conventional test validities, with the largest
gain at shorter test lengths.

Before leaving these two papers, I would like to comment briefly on Mc-
Bride's conclusion that fixed test length was as reliable as variable test
length. I have a difficult time conceptually accepting this result, if for no
other reason than that I believe that individual differences must make a differ-
ence. Practically, fixed length is certainly logistically and legally more re-
alistic, which are perfectly valid reasons for using this testing strategy.
Theoretically, however, I feel that potential efficiencies must exist with vari-
able length. As Richard Anderson of the University of Illiniois has said, "You
can't let bad data ruin a good theory."

Gorman's paper really consisted of two independent monte carlo simulation
studies that followed up work suggested by McBride and Weiss (1976) and Urry
(1977). It focused on the relative merits of two Bayesian models--the Owen al-
gorithm and Samejima's Bayes modal procedure--and conventional rights-only scor-
ing. Gorman's first study evaluated the efficiency of the two Bayesian models
and conventional scoring on static (i.e., nonadaptive, or conventional) tests
using three measures of efficiency: (1) average bias, (2) average accuracy, and
(3) test score precision. He generated 2,000 simulated examinees (sims) from a
normal distribution (mean 0, variance 1) and 80 item scores for each sim for
both Bayesian and conventional sim group members. He then used ANCILLES to ana-
lyze the data.

Gorman's first study results showed considerably less bias of estimation
for the two Bayesian procedures than for the conventional scoring at all points

-1
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on 0 except at 0 = -.5 to +.5, with the Owen scoring generally better than the

Bayes modal scoring at the lower 0 levels and vice versa at the higher 0 levels.

On his second measure of efficiency, conditional accuracy, again the con-
ventional scoring yielded less accurate parameter estimation than the two Bayes-
ian methods. Little accuracy differences between the latter two methods
evolved, although the Owen procedure did show slightly more error than the Bayes
modal model for most of the ability continuum.

Gorman's conditional test score precision measure showed substantial gains
for both latent trait scoring models over conventional scoring, with nearly
identical results between the two mathematical models. He also found statisti-
cally significant, though relatively small (.02), gains in fidelity coefficients
in favor of the latent trait models. He concluded from his first study that
measurement improvements can be realized through the use of the latent-trait-
theory-based models to score static tests.

Gorman's second study was a follow-up of Urry's (1977) suggestion on Mc-
Bride and Weiss's (1976) study results, which documented the regression to the
mean effect using Owen's procedure. Urry suggested dividing the Bayesian re-
gressed ability estimate by the test reliability (the Bayesian posterior vari-
ance squared). Gorman followed this procedure in a monte carlo simulation using
ANCILLES, the revision of OGIVIA3, for evaluating the efficiency of the Bayes
modal and the Owen models with the correction for regression applied.

Gorman's study results showed the Owen procedure to be generally preferable
to the Bayes modal procedure in terms of conditional bias, conditional accuracy,
and conditional precision when the correction for regression was used.

Considering the work performed on differences between the various computer
program ability estimates, such as Bejar and Weiss (1979) showed for different
maximum likelihood and Bayesian procedures, I am glad to see studies such as

Gorman's being done. Somehow, we need to settle the arguments of the advantages
and disadvantages of the various models whereby the results of each study are
questioned by the proponents of other models. Algorithm comparisons with known
parameters are an effective way to address this research question.

As a final observation on the subject of this session, I was very pleased
to see two empirical live-data studies done. Although basic research is impor-
tant, many of our funding agencies respond more to data from real people as op-
posed to simulees. I would suggest that future empirical studies include cost
data in their battery of dependent variables. There has been a dearth of these
data, and they have substantial impact on a funding agency's decisions. I rec-
ommend that proposals for future empirical adaptive testing studies should all
include cost variables. In the competition for limited research dollars, this
information could well be the difference between obtaining funding and not; but

more importantly, the information is important for us as adaptive testing re-
"4 searchers.

S ,
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A VALIDITY STUDY OF AN ADAPTIVE TEST OF READING COMPREHENSION

LUTZ F. HORNKE AND MICHAEL P. SAUTER
UNIVERSITY OF DUSSELDORF

Adaptive means that a test adapts to the testee's proficiency level in the
proper "can-do" sense. A fair number of items are placed at the testee's dis-
posal; and solely by means of tactical rules, the testees self-select their own
individual subset of items. To achieve this, their previous responses are used
to help in making item-to-item decisions. In addition, restrictions on test
time are imposed to insure unidimensional interpretations.

In the literature many variants of adaptive schemes are described and dis-
cussed (see Hornke, 1976, 1977, 1979a, 1979b, 1979c; Hornke, Sauter, Suessmilch,
& Burghoff, 1979; Lord, 1971; Weiss, 1974; 1975; Weiss & Betz, 1973; Wood,
1973). Generally speaking, the idea utilized is that of branching from item to
item or between groups of items utilized: The item someone is branched to is
made contingent on his/her response(s) to earlier item(s). Thus, whenever a
testee answers an item correctly, he/she is presented with more a difficult one
on the assumption that his/her proficiency level at this intermediate stage is
somewhat higher than that displayed in the item just mastered. The contrary
holds for incorrect responses. The complexity and variety of branching rules is
not limited (see Hornke, 1976; Weiss, 1978). The more flexible the branching
technology, the more adaptive the decision process will be, and this yields very
reliable information about a testee's proficiency and his/her can-do potential.

The term branching technology is used here intentionally because many adap-
tive testing projects already use computers. According to highly sophisticated
estimation procedures based on probabilistic mathematical response models (see
Fischer, 1978; Lord & Novick, 1969), items are deliberately retrieved from a
larger pool. These approaches use item parameters to estimate a person's proba-
ble standing. After several cycles of item administration and parameter estima-
tion, a person parameter emerges that confidently reflects an individual's pro-
ficiency level. Since items and persons are calibrated on the same scale, by
looking at those items (i.e., behaviors), the parameters of which lie in the
vicinity of the person parameter, interpretations are readily available.

Computer terminals and micro-computers are quite costly, however, so that

paper-and-pencil versions deserve some attention. The basis of their measure-
ment is somewhat less stringent compared with flexible computer-assisted tests;
but when properly designed, they should allow equivalent or even better measure-

ment precision than conventional tests (see Hornke, 1979b, Hornke et al., 1979).

.t
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The test booklet may look the same as that for conventional tests; the differ-
ence is that the testee is asked to use a special pen for marking his/iIer an-
swer. He/she has to pass this lightly over a bracketed field next to the chosen

answer. Chemicals then react and render visible the number of an item to be
attempted next. By following these numbers as they appear, a testee is branched
through the item set (see Hornke, 1979a; Sauter, 1978, 1979; Sauter & Hornke,
1979). The testee is intended to be guided to just that subset of items that
tells something about his/her can-do level, while leaving out all the other bor-
ing or otherwise frustrating items. Since a testee zig-zags through a pyramidal
item arrangement, he/she will finally end in a score category, a self-evaluating
feature of this tactical test design.

Thus, with branching tactics, flexible, fair, self-scoring, and interpre-
table tests are at hand. Since any mathematical response model or pyramidal
pencil-and-paper test rests, respectively, on the quality of the items and the
model or arrangement more successful assessment is guaranteed as long as quality
levels are maintained. Even conventional tests, however, require some degree of
item validity and reliability, unless any interpretation is better than random
guesswork. Whether and how adaptive tests will and should be used is still an
open research question.

Adaptive Test Designs

Individualization is a concept that meets approval on many different sides.
To some extent, assessing an individual in his/her own right solely by what
he/she is doing seems fair. Saving time by asking nonsuperfluous questions cap-
italizes more on the economy and less on the psychology of testing, though in

that area, too, something might be gained. Reduction of the stress induced by
testing, maintenance of motivation, and lack of boredom are but a few psycholog-
ical effects. So far very little is known about these side effects and the ben-
efits of individualized testing; these seem to be areas of potential that await
further evaluative research.

At present, individualized testing is thought to have positive or at least
non-negative effects on testees. To understand the entire range of adaptive
programs better, three possible adaptive designs are considered below.

Curtailed item sampling. This approach, a naive type which has some intui-

tive appeal, resembles the examination models used in classrooms. A teacher
asks a student several questions, with content and complexity varying according
to the answers given. After a specified period of time the teacher stcps and
evaluates the student. In comparing several oral examinations, considerable
variation would easily be found in the number as well as in the difficulty of
questions: This is a genuinely adaptive approach. Thus, two students may earn
the same grade but may have been asked different questions as far as number and/
or complexity was concerned. Variation in the number seems fair because stu-
dents who are asked more have a chance to demonstrate their true behavior level;
whereas with others, final evaluations are quite obvious after only a few ques-
tions.

Computer-assisted testing. Curtailing the numbers of questions, i.e., re-
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stricting the sampling of items from a behavioral domain, is a reasonable deci-
sion. For adaptive tests this would mean evaluating a testee's distance from a

set of criterion levels. Testing is stopped when, for a fixed number of items,
a testee is irrevocably located on either side of the decision point. This may
be achieved fairly soon. When there are 16 items and the criterion is set at

50%, testing should stop after 8 correct responses. However, this could occur
when all the first 8 responses are correct. A testee who made an error on the
first 2 items has to be tested for at least 8 more items, yielding a total of
10. Varying numbers of items will occur when several students are tested, one
typical aspect of flexible adaptive tests. The example of an oral examination
given above dealt with two possible adaptation criteria: (i) the number of ques-
tions before a terminal decision can be made and (2) the quality of questions
needed to make a procedural decision. A very flexible adaptive testing program

will have to consider both criteria; this may be possible with computer-assisted

testing (see Weiss, 1975, 1978).

Paper-and-pencil pyramidal tests. Since large-scale adaptive testing by
means of computers is hampered by costs, other means have been invented and used

to achieve a branching test system, even with group testing; and a pyramidal
test design for use with paper-and-pencil devices has emerged. According to its
feasibility and overall value, it lies somewhere between curtailed sampling and
computer-assisted testing. By pyramidal is meant an item arrangement that is
structured like a network. For a certain population the item locations on some
dimensions are known.

In order to design such a test, items are deliberately selected to form a

desired hierarchical item order (see Figure 1). At the top the testee gets the
starting item (Item 1), which has to be answered by each candidate. When a cor-

Figure 1
Model of a Pyramidal Item Order

16 17 8 1915

-Test Score0 2 3 4 5 6 7 Category
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rect answer is given, testees are branched to the right. Consequently, a more
difficult item has to be attempted. The contrary holds for an incorrect re-
sponse. Thus, contingent on their responses, testees are individually branched
through the item arrangement and will finally end in a test score category that
tells something about the behavioral level attained.

To contrast this approach with curtailed and computer-assisted testing, it
becomes quite obvious (1) that there are available far more items than a given
testee has to attempt, (2) that testees find their individual paths through the
item network and come (or ought to come) close to the upper bounds of their pro-
ficiency level, (3) that testing ends after a preset number of items has been
attempted, and (4) that the final item leads directly to a test score category,
i.e., no further scoring is necessary because the test is essentially self-
scoring. The dominant design feature is to adapt the quality of the items, and
not their number, to any testee.

The pyramidal test is a fixed strategy as far as item number and arrange-
ment are concerned, but a testee works more or less flexibly on items that are
assumed to suit his/her proficiency level more and more. The technical problems
with the pencil-and-paper format and group testing were undertaken by means of
chemicals. The list of adaptive test designs here is far from complete; many
other versions have been described (e.g., see Hornke, 1976; Weiss, 1976, 1978).

*The report above was meant to examine closely various construction characteris-
tics, i.e., flexibility in item number, item difficulty, or both.

Construction of an Adaptive Pyramidal Test

The studies of Sauter (1978) and of Hornke et al. (1979), looked closely at
the adaptive test format and especially at the pyramidal item order in use. It
was the aim of both Sauter (1978) and Hornke et al. (1979) to construct and to

evaluate such a test design; nevertheless, the choice of the linguistic item
material was not accidental. The pyramidal item order requires question forms
that can be evaluated objectively, e.g., multiple-choice items or items with a
blank. Moreover, it should be possible to rank these items according to their
empirical, as well as according to their content, difficulty, which should re-
flect a higher level of linguistic competence. In addition, the choice of the
item material was influenced by the fact that it was not possible, or necessary
for this purpose, to construct and to evaluate new items. It was therefore in-

evitable to seek proven items in existing tests.

One test that approximately meets the above prerequisites is the Cologne
Placement Test (see Bonheim & Kreifelts, 1979), which is a traditional placement
test for students at the beginning of their first semester in the course "Eng-
lish as a Foreign Language." It consists of four subtests: Vocabulary, Grammar
and Usage, Reading Comprehension, and Style and Verbal Logic. According to the

needs of a pyramidal item order, reading comprehension items seemed to fit best.

* In fact, however, it is not very easy to show what reading comprehension
questions actually do test. Definitions are usually tautological: "Reading com-
prehension tests the ability to read and to understand a particular language."
This definition, however, covers a multitude of aptitudes that have only been

1~i
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described very incompletely up to now. Some language and test experts (see Har-
ris, 1969; Heaton, 1975; Lado, 1967; Pynsent, 1972) have tried to discover a few
of the factors involved and to put them into a hierarchical order with regard to
their level of difficulty and complexity. Obviously, at a more basic level
reading comprehension requires the understanding of the meaning of words or word
groups in the context in which they appear as well as the recognition of struc-

tural clues and the comprehension of structural patterns. These aspects of lan-
guage are usually dealt with in tests of vocabulary and grammar-that is, the
testee has to show his/her ability to ascertain the verbal meaning of a
straightforward sentence or phrase. On an advanced level, reading comprehension
involves higher mental abilities, such as how to comprehend paragraphs and to
select the main ideas, how to draw conclusions from the text, and how to make
inferences and to read between the lines. The level of reading comprehension
that is actually tested depends to a certain extent on the item type that is
used. For example:

Example 1

He asked me to ...... him two thick slices of beef.
(A) carve (B) slash (C) peel (D) split (E) shave

(Jackson, 1976, p. 171)

It is obvious that this question form does not put too great a demand on

the testee's reading comprehension abilities and can rather be looked upon as a
vocabulary item. The testee has only to know that "carve" is the appropriate
word for meat. He/she can answer this item correctly just on the basis of
his/her knowledge of vocabulary. To a limited degree this item type can also
test grammatical knowledge by offering choices/words that all seem to fit ac-
cording to their meaning; but, in fact, only one fits for syntactical reasons.
With this item type it is therefore very difficult to say to what extent reading
comprehension is involved (cf. Jackson, 1976).

Item types that do not lay too much stress on the knowledge of particular
words are more usual, and items consisting of a short reading extract of only a

few sentences that ask the testee to interpret it in some way seem more appro-

priate.

Example 2

Parents can give their children enormous help so long as they don't talk
too much, give the game away, or block the children's thought. "Come a-
long, dear, we're going to play with this lovely clay, let's see what we
can make with it. I think we can make a lovely elephant, come along, what
about the trunk dear..." That poor child will have made a mental note that
whatever he takes up as a career it won't be sculpture.

*Why is this child called "poor"?

(a) He is not allowed to work out his own ideas.

(b) He will never wish to become a sculptor.
(c) He has begun to dislike playing with clay.

i -
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(d) He is being taught skills for which he is too young.
(Sauter & Hornke, 1979, p. 165)

Example 2 shows clearly that it tests not only the testee's knowledge of
syntactical structures and vocabulary but primarily his/her ability to interpret
the text in some way, for the correct answer is not just a paraphrase of the
item stem. This item type seems to be capable of testing what Carroll (1968)
calls "complexity of information processing--at what level of complexity can the
individual process linguistically-coded information?" (p.53)

This should be the linguistic dimension that reading comprehension items
test, at least in the adaptive test. In practice, however, it is very difficult
to find items that represent this dimension even approximately. Even factor-
analytic studies can give little help. Thus, it is inevitable that what were
regarded as reading comprehension items in the above-mentioned sense do, in
fpct, correspond rather to a lower level of reading comprehension. The problem
with any test construction is that this can cause some confusion, especially in
The pyramidal item order by branching testees to incorrect items with regard to
their own level of reading comprehension ability.

In this Cologne Placement Test (Bonheim & Kremfelts, 1979), reading compre-
hension items had been administered to an average of 750 students (up to a maxi-

mum of nearly 2,000 students) from 1974 until 1978. Since the placement test
had been newly assembled at the beginning of each semester, proven as well as
newly constructed items were used, and those items that did not turn out to be
satisfactory were left out. The item pool finally contained 88 items from which
items were systematically borrowed in order to construct the adaptive test.
Each of the 88 items had been carefully analyzed to see whether it could be
placed at a certain branching point within the pyramidal item order (see Figure
1). However, with the present state of knowledge, these decisions were not eas-
ily made, because there were neither guidelines nor previous experience for item
selection that could guarantee a successful branching order. Additional prob-
lems that had to be solved were those of time limits and the positional effects
of the items in the Cologne Placement Test (for a detailed description, see
Hornke et a]. 1979; Sauter, 1978; Sauter & Hornke, 1979).

Twenty-eight items were borrowed from the item pool in order to form a py-
ramidal test, which consisted of seven stages and extended to a difficulty level
from P (Probability of a Correct Response) = .75 to P = .15. All items were
placed on branching positions according to their empirical difficulty and dis-
crimination. Figure 2 compares the ideal item order with the actual order that
is based on the available item data. It shows only relatively small deviations
from the positions on the ideal model.

The testee begins with a medium-difficult item (P1 
= .45) and is branched

to a more difficult (P3 = .40) or an easier item (P2
= .50), depending on whether

he/she answered the preceding item correctly or incorrectly (see Figure 2). In
this way, he/she is branched through the item order until he/she finally reaches
his/her score group. He/she is given only one item at each stage, which eventu-
ally means that he/she has to work on only 7 out of 28 items. This seems to be
re-Aaable, assuming that those items that are easier than the items he/she an-

, € .k 4 . .. .
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Figure 2
Pyramidal Order of the Adaptive English Test with

the Branching Path of a Hypothetical Testee
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swered correctly are probably too easy for him/her. On the other hand, those
items that are more difficult are supposedly too difficult for him/her; he/she
would most probably answer them incorrectly (see Hornke, 1976, 1977). Thus,

only those items are presented to the testee that are most suited for him/her
using the pyramidal item order. With the test under consideration, the invisi-
ble ink response mode was used in a group setting.

Results of Two Empirical Investigations

Two adaptive reading comprehension tests were investigated--one in a pilot
study by Sautet (1978) and the other in a larger validity study by Hornke et al.
(1979). Both studies showed that adaptive testing by means of the paper-and-
pencil version is quite feasible in group settings. Students had hardly any
problems in following branching instructions properly by themselves.

Validity of the Pyramidal Item Order

The design of Sauter's (1978) study asked each student (1) to work through
an item set of 28 items in the branching manner and (2) to solve all items left
out during the branching in the conventional manner. This yielded two scores

per person--an adaptive score and a conventional score, where the first was
based on 7 items and the second on 21 residual items. Thus, complete response

* data were available on all items. This allowed the validity of the pyramidal

item order to be investigated in some detail.

The results of an item analysis indicated that all 28 items had become eas-

: _' -- . .. . . - - .. -,' 
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ier than in the original conventional test. However, rank orders between previ-

ous and present item difficulties correlated as highly as r = .77, indicating
that the order as such had largely survived. Of particular interest was the

correlation between scores on the 7 adaptive items and the 21 conventional re-
maining items, which was r = .47 for 93 testees. Taking the unreliability of
the entire set of items into accourt, however, a stepped-up correlation of r =

.64 resulted. Thus, a score based UiL the 7 optional items had quite a reason-
able predictive power to a score based on 21 items.

Validity of the Adaptive Test

The second study (Hornke et al., 1979) had two main purposes, namely, to
investigate the validity of an adaptive test and to look at the details of py-
ramidal item hierarchies. In order to answer the first question, a multitrait
approach was used. According to the underlying theory, reading comprehension
items ought to call for processes that are different from vocabulary or grammar
exercises. Thus, it was expected that there would be a closer relationship be-
tween scores for an adaptive and a conventional reading comprehension test than
with scores from both grammar and vocabulary tests. The study used a two-
method--Adaptive versus Conventional--by three-trait--Reading Comprehension CRC)
× Grammer (G) x Vocabulary (V)--design. Due to financial restrictions, however,
it was impossible to investigate adaptive and conventional test formats with all
three traits. The study thus contrasted adaptive versus conventional reading

comprehension only.

It is quite obvious that all three traits should correlate with each other
because they are genuine parts of language behavior themselves. However, the
results in Table 1 indicate that despite all that they have in common, the three
item sets measured quite differentiable aspects that pertain to the hypothesized
discriminant relation. This means, too, that the data warrant an interpretation
of three different traits, even though intercorrelations were not zero (but they

are low enough).

However, reading comprehension scores, assessed either in the adaptive or
in the conventional way, did not converge to the extent expected. The resulting
correlations were too low for tests designed to measure the same trait. The
correlation between RCI (adaptive) and RC1 (conventional remainder) especially
contradicted any convergent interpretation, despite the fact that both item sets
are virtual subsets of a larger one. Here, a correlation of .6 to .7 would be
more suitable to justify any convergence. It still remains an open question
whether adaptive branching of items used with reading comprehension tests intro-

duced a source of error or variation that accounted for the low correlations. A
comparison of RC1 (conventional remainder) with the RC2 (conventional) scores
indicates some dissimilarity in the item sets, which appear to be more different
than their common label would lead one to expect.

Conclusions

Although adaptive tests are initially intriguing, there are many problems
to overcome. The major problem lies in the fact that for foreign language test-
ing, a properly defined construct is necessary. Consequently, all items ought
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Table I
Correlations Between All Tests and Formats Used

RCI

Conventional

Adaptive Remainder Conventional (28 Items)

Variable (7 Items) (21 Items) RC2  G V

Convergent
RC1 Adaptive - .405 .379

Conventional

Remainder .531 - .419

RC2
Conventional .218 (.403) -

Discriminant

G (Conventional) .295 .511 (.068) (.419)
V (Conventional) .355 .431 (.214) -

Note. Correlation coefficients in parentheses are based on group
means instead of individual data.

to belong to an appropriately defined behavioral domain. This is not always
easy to achieve, and there might often be a lack of expert consensus. Instead,
empirical studies are needed to substantiate any item's relation to the con-
struct in question.

A quite substantial problem for adaptive tests may be seen in the necessary
heierarchical order for a pyramidal arrangement. Any branching decision here
implies strongly that the hierarchy is valid and stable across samples of the
population. The two studies cited above indicated, however, that this may not
be the case. As far as there are changes in item difficulties from one sample
to the other, this might not matter very much as long as all item positions stay
within the hierarchical order intended. Whenever there are changes or shifts in
positions, the pyramid is invalidated locally, and false branching occurs. To
circumvent this problem, rigorous item analysis may help to keep this weakness
within limits. It has to be questioned, too, whether difficulty indices (i.e.,
the proportions of answers correct) are good and reasonable criteria for a hier-
archical ordering of items. With narrowly defined populations and applications,
this might be practicable. However, better estimates of an item's scale and
hierarchical position are available and should be used. With these two studies
cited, it was not possible to perform item analyses, since data were not avail-
able for this purpose.

Taking these two arguments together, it follows immediately that there will
be hardly any chance to take a conventional test, to rearrange its item order,
and to get an adaptive version. With any test construction, careful item writ-

"* ing and analysis is necessary. This is true for adaptive as well as convention-
al tests; ad hoc test construction hardly conforms to the careful scrutiny that

* is called for. It should not be expected that adaptive or conventional tests
from this source have any value in decision making at all. In foreign language

-- .
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testing only after a good deal of research and empirical investigation has been
carried out will there be adaptive tests for a variety of purposes; but, in
fact, they are essential in a program where students' proficiency is expected to
vary considerably and where decisions of some kind are to be made.
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COMPUTERIZED TESTING IN THE

FEDERAL ARMED FORCES

WOLFGANG WILDGRUBE

GERMAN MINISTRY OF DEFENSE

The Federal Armed Forces (FAF) consists of about 480,000 soldiers (240,000
of these are draftees); the FAF administration comprises 170,000 civilians; and
in the FAF Psychological Service there is a civilian staff of 1,300 psycholo-
gists. Figure 1 presents an overview of the organization of the FAF Psychologi-
cal Services. The center of activities is in personnel psychology, with more
than 80% of the psychologists in the area of aptitude diagnosis. Figure 2 shows
the psychological aptitude testing procedures for selection and classification
for both the FAF and the FAF administration. Aptitude diagnoses are carried out
for various purposes for large samples, such as for draftees (about 300,00Q di-
agnoses per year); for volunteers (about 30,000 per year); for advancement from
sergeant to an officer career; and for selection of pilots, pyrotechnists, civil
servants, and personnel for linguistic services. Aptitude and intelligence
tests are administered by paper and pencil to groups of about 50 persons. Spe-
cial apparatus tests or other special procedures and psychological interviews
follow as necessary, dependent on the selection process or on the individual
result. With these procedures, the Psychological Service thus attempts to make
the best possible personnel decision.

Problems

The large number of testing procedures and the wide areas of testing create
numerous problems. Mass testing (about 350,000 testees per year) requires a
large quantity of material and manpower. The test application, scoring, and
decision-making consist of many routine activities that require a great expendi-
ture of personnel.

For each selection procedure all testees of a group process standard test-
ing batteries: All testees undergo the same test battery during a limited peri-
od of time. For a certain number of testees the test is too difficult; for oth-
ers, too easy. Thus, motivation decreases and fatigue increases. Special
knowledge, attitudes, or personal spheres of interest or inclinations are not
taken into consideration. Moreover, very rarely are special procedures possi-
ble, so that in the limited time allotted only some aptitude dimensions are car-
ried out in an undifferentiated manner.

At present the mass data, collected by paper and pencil, do not permit fol-
low-up analyses. Statistical evaluations of the testee data are impossible, and

J1 - - . . - -- ~.
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changes within the tests--for singular items or for the whole norm values--are
not analyzed. Technical, organizational, and legal problems (as for instance,
the security of tests) are connected with the mass testing and the different
areas of aptitude diagnoses. It is necessary that the tests and the selection
procedures be modified shortly. Above all, not only do the tests--that is, the
psychological selection procedures within the scope of decisions or careers--be-
come obsolete very soon but the patterns for their solutions (the items and the
corresponding correct answers) become known after a very short time. It is not
possible to perform a permanent modification in addition to the tests for career
selection with the limited capacities available for such updates.

Requirements for the Diagnostic Process

Cognizance of these problems of aptitude diagnoses as well as the daily
practice in the FAF provides a basis for the following requirements for future
diagnostic work:

1. Improvement of the diagnoses is necessary; greater importance should
be given to the differential diagnoses. A useful method should be
found for solving the "bandwidth fidelity dilemma" so that, in spite
of the use of mass testing, differential decisions are possible ("the
right person in the right place"). This problem will become urgent
for the FAF from about 1985 onward, when there will not be enough
draftees available because of the rapid decline of the birthrate in
the late 1960s.

2. Paper-and-pencil tests alone will not suffice in the future; with the
improvement of diagnoses and the consideration of further aspects,
skills, and experiences, it will be necessary to include new testing
procedures and to test other psychological dimensions. Additionally,
interests, motivations, and personality aspects should be tested, and
perception and motor tests should be carried out to make more perfect
diagnoses.

3. In addition to the test result--the score or ability parameter--other
data should be included in the diagnostic process. Therefore, re-
search programs concerning the testing process are necessary, includ-
ing item solution time or time needed for solving a subtest, so that
testing protocols (e.g., for counseling) can be produced.

4. Finally, mass testing makes it necessary to develop economy in the
entire testing process and aptitude diagnosis. Scores and other com-
putations should be carried out during the session, and results should
be directly available at the end of testing. With these procedures
and the proposed applications of items and subtests, it will be possi-
ble to save time and, moreover, to improve the diagnostic process.

Potential Solutions

jComputerized testing will provide solutions to these problems in the fol-
lowing three areas:

... ,
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Item production. Parts of item production can be performed by computer-
assisted test construction (CATC). In a separate project, software was produced
and implemented for item production and for individualization of tests, modify-
ing the tests by computer. The first computer tests are in the empirical phase,
and extensive results are expected in 1980.

Test data. For computation and interpretation of test data (selection and
decision; "the diagnostic process") multi-faceted aids are possible: Simula-
tions are being used in the FAF for computerized decision-making, and possibly
the test results will be used to call up draftees.

Use of tests, the presentation of items, and scoring procedures. In addi-
tion to the presentation and computation of items using the classical concepts,
there is a special case of test application--Computerized Adaptive Testing
(CAT). Considerable savings and improvements of the aptitude diagnoses in the
FAF are expected, especially from the adaptive methods and the new techniques of
CAT.

Components of Computerized Testing

For the planning stage and implementation of computerized testing in the
FAF a catalog was produced, containing the most important components of comput-
erized testing and therewith also of CAT. These components, some of which will
be empirically investigated by the FAF, include the following (the minimum re-
quirements are preceded by an

Hardware

The requirement is defined to set up a test station, for example, for 50
testees carrying out diagnostic procedures of draftees. Many technical details
(e.g., conception: connection to a large-size computer or stand-alone terminal
station or a microprocessor for each testee; CPU and periphery, special screen
and keyboards, and other facilities) are clarified and compared. Different
products will be rated with regard to the requirements in the FAF.

1. *Requirement for flexibility of technology (e.g., extensions, innova-

tions) and modular concept of hardware;

2. *Concept of the test station (connection to a large-size computer or
stand-alone computer or microprocessor for each testee); system of
minicomputers with foreground (input/output operations) and background
(e.g., computations, estimations); multi-tasking, multi-processing;

3. *Central Processing Unit/Core Memory: construction, capacity/size, re-
sponse/access/cycle time (e.g., station with 50 terminals testing

J draftees); byte or word, bit per word; accuracy/precision; floating
4 point arithmetic (hardware or software, binary or decimal; number of

bits for parameter estimations); *real-time execution, system-response
time (processing an input immediately, without delay time);

I
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4. *A printer for each testing station (production of testing protocols,

plots); console display; possibility of storage, capacity of disks
(magnetic disks or floppy disks); other storage on periphery; access
mode and time; *archives/output of the raw data, compatibility (making
copies to magnetic tapes, computations on an IBM large-size computer);
processing the data on line/off line (among others, for the personnel
division, using the test data in the data bases); connection to other

computers in the FAF; definition of interfaces;

5. Equipment for a testing station for each testee (number of places con-
nected to one processor); *special displays for presentation and pro-
cessing the items; special keyboards (only digits and few buttons);
display quality (sharp definition, contrast); graphic with 200,000
points, color equipment; use of video pictures; periphery, connection
of further equipment/devices (tachistoscope, light pencil for figural
tests or labyrinth items); usage of other apparatus or testing addi-
tional psychological dimensions with hardware or/and software (e.g.,
determination tool); controlling the testing process by acoustic stim-

ulus, input of the answers using the terminal keyboard; employment of
an A/D converter, making digitals using the physiological data or fur-
ther testee data from other equipment;

6. *Infrastructure (e.g., power, power consumption, air conditioning);
*mobility, possibility for transportation when testing draftees at
different locations.

Test Applications/Concepts

The type of aptitude diagnoses to be taken over by a computer needs to be
specified, for example, which psychological dimensions should be tested, which
contents and methods should be used during the pilot projects (among others, the
item-response time for ability estimation), and which further tasks (e.g., -xt
item presentation and scoring) are possible with the test station, for example,
computerized decision-making or counseling aspects.

1. *Flexibility for using different tests or methods; flexibility for time

limits, sequence of subtests, power/speed tests, types of items, item
material; flexibility for different data, changing the input of the
test station (e.g., insertion of personal data or item-solutionV. times); recording further psychological dimensions (perception, motor
skills, concentration, coordination, fatigue, curves of learning,
tracking); recording of interests, motivations, personality aspects;
*possibility for different testing processes, omnibus procedures ver-
sus criterion-referenced measurement;

2. *Application of tests using the classical concept, presentation of con-
ventional items by display (such as the present procedure for draft-
ees); *jumping to different items, similar to the paper-and-pencil
application (selection of different items by the testee, jumping for-
ward and backward, as in a test book); *usage of sequential strategies
based on subtests (screen and-main test; indication of "critical
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items" for the next subtest or for use in the interview); *processing
the tests in groups of testees but continued application of individual
tests/subsets of items;

3. Testing the pyramidal approach with the self-scoring aspect (in sensu
Hornke, 1978); *application of tests with variable branching strate-
gies, using different methods, different algorithms for parameter es-
timations, different scoring procedures, different criteria for cut-
off; solving different methological problems using different estima-
tion procedures (Bayesian, maximum likelihood, and so forth); inquiry
of CPU/execution time using different methological approaches (diffe-
rent probabilistic models, various software);

4. Input of additional criterion data (e.g., age, date of final gradua-
tion from school), interests, special knowledge; recording the bio-
graphic data (using a questionnaire or free responses); *immediate
computation of test data during the test process so that results are
finished at the end of the session (i.e., scoring, norm values); in-
terpretation of the test data, computerized diagnoses (classification
with discriminant or cluster analyses); decision-making, placement
recommendation for the draftees, taking into consideration the differ-
ent requirements, priorities, or various criterion data of the armed
forces; computerized personnel management (in contact with the data
bases for the military personnel in the FAF); additional use of the
test station for counseling aspects (e.g., possibilities of career,
study at the universities of the FAF);

5. Possibility for giving feedback, processing several subtests; noting

time limit if tests with time limit are in use (rest time per subtest,
time used per item); *recording the item-solution time and processing
the time as an additional ability estimator or for counseling; produc-
ing testing protocols with the response patterns (method for solving

the subtest);

6. Possibility of computerized test construction; computation of follow-
up analyses, validity approaches, and so forth.

Software

The system and the assembler programs monitoring the microcomputer, the
possibilities for updating, the compatibility to an IBM large-size computer for
follow-up analyses, and the real-time execution for presentation and computation
of items should all be considered.

1. *Requirement for a modular system of software, implementation of new

methods and testing procedures within a short time;

2. *Conversational/dialog program for processing the test sessions (selec-
tion of items, presentation, and computation; processing the item-so-
lution time; possibly giving feedback); supervision of the test sta-
tion (e.g., input/output, computations, interruptions, error han-
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dling); monitoring the test process, operating log (e.g., internal
statistics for usage of the subtests, items, error for handling, CPU
time); *introduction for handling the CRT and the keyboard, processing
of examples, operating the keyboard by various types of items; *check
of the input for formal correctness (e.g., only one digit permissible
or only a digit less than 5);

3. Requirement for programming the minicomputer by the user (e.g., the
psychologist); using the higher software languages, such as FORTRAN or
BASIC (interpreter or compiler); installation of a compiler for all
stations or only for the development institution; usage of overlay
techniques or virtual storage concepts, optimizing the core capacity;
expense for programming, implementation of new tests, new methods, new
software; support by utilities; improving the software and the assem-
bler programs; updating the system of the minicomputer (e.g., presen-
tation of the items, data management to archive the raw data, initial
calculations); *storage of the data for follow-up analyses, transfer-
ring to a file of a large-size computer (calculations by SPSS or other
software), development of software using a large-size computer via
teleprocessing, simulating the minicomputer (e.g., conversational pro-
cessing, compiler, assembler);

Organization and Usage

Checkpoints are the organization of the testing session during the entire
selection process (with sport examination, medical check-up by physician, inter-
view by psychologist, and so forth), operating the test station and the single
screen/keyboard, handling for system trouble, and maintenance services.

1. *Requirement for simplicity of operations (nonspecialized operation of

the testing station); *explanation for handling the CRT and keyboard
for the testees (e.g., input, corrections, skipping forward and back-
ward, giving assistance by a function HELP); monitoring the test pro-
cess using the classical concept, i.e., for side-by-side terminals,
parallel versions are presented;

2. Handling the test station for system trouble; restarting/restoring the
system, rerunning the session, continuing with similar items (control-
ling the last transfer operation, the last processed item; successful
processing of the last written operation; security of data (safe dump
of the the raw data).;

3. Breakdown time; maintenance services, agreement; spare parts; require-
ment for high readiness of operations;

4. Cost for purchase or lease, for maintenance and spare parts, and for
operation (price-performance ratio);

5. Specific points of the firms (special features not described by the
requirements above).

AA
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Planning and Procedure

Following the information and concept phase, in which information is col-
lected and redefined for application of adaptive tests using a computer and for
incorporation into the FAF, the first research programs are planned for examina-
tion and trial of the different contents, methods, and techniques; and the cor-
responding pilot projects are prepared. After checking computerized test appli-
cations in the FAF--their methods and te-hniques--the following parts and steps
are designed:

1. Application of tests using the classical concept; presentation of con-
ventional items by display; research program for the "psychology of
computerized testing"; an experiment by Birke (1979) on the use of
item-solution time as an additional ability estimator;

2. Testing the pyramidal approach with self-scoring (in sensu Hornke,
1977, 1978); and

3. Application of tests with variable branching strategies using differ-

ent methods and approaches.

For these pilot projects item pools have been prepared and larger tests/
subtests are presently in preparation. The extensive software should be pro-
duced in FORTRAN using the existing TSO connection to an IBM computer 370/168
and simulated corresponding test applications. Parallel to the planning of con-
tent and methods is the procuring of hardware, considering the components as
previously designated in the catalog.

Since last yeat the FAF has had intensive contacts with the German firms
Zak and Hogrefe, which--after many years of experience with the productio of
psychological-physiological tools--have offered microprocessor-based stand-aione
computers for test application and for analyses of physiological data. Both
firms are in the development phase, thus all offers have still not been realized

(e.g., graphic equipment for 200,000 points, light pencil, use of video-tapes).
Zak offers a modular system with 10 intelligent terminals, two floppy disk
drives, and the central processor for one station; whereas Hogrefe offers a
screen, a CPU, and a floppy disk for each testee.

The developments in the market are being observed and checked. Based on

the requirements of the FAF, directions and concomitant requests are being for-
* mulated, and the German Ministry of Defense is providing a test station for the

first pilot project for computerized test application.

ConclusionA The Psychological Services of the FAF is today at a starting-point of a
new, rapid development of the testing process and aptitude diagnoses. At this
time there is neither background experience nor a special approach to computer-
ized testing in the FAF. Until now, problems of discussion and research designs
have been oriented toward the practice in the FAF, derived from the everyday
aptitude diagnoses rc.quirements. I am certain, however, that in the coming

*.
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years the traditional concept of testing by using paper and pencil will be elim-
inated.
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SOME DECISION PROCEDURES FOR USE

WITH TAILORED TESTING

MARK D. RECKASE
UNIVERSITY OF MISSOURI

There are many applications of testing technology that require decisions to
be made as to whether a person is above or below a criterion score. Cri.terion-
referenced testing and its special case, mastery testing, are examples of such a
decision. In the criterion-referenced testing application, it would be espe-
cially useful if decisions could be made quickly and conveniently for each stu-
dent in an individualized instruction program. The recently developed technolo-
gy of tailored/adaptive testing (Lord, 1970) has the potential to fulfill the
requirements of such a testing system. However, there is no generally accepted
procedure for making classification decisions using tailored testing, probably
because these testing techniques are still relatively new. The few procedures
that do exist are either based on randomly sampling items (Epstein, 1978; Sixtl,
1974), which does not take advantage of the power of tailored testing, or on
heuristic techniques (Weiss, 1978), which do not have a sound theoretical base.
The purpose of this paper is to present some decision procedures that operate
sequentially and can easily be applied to tailored testing without loss of any
of the elegance and mathematical sophistication of the examination procedures.

Tailored Testing Procedures

Numerous tailored (i.e., adaptive, response contingent, sequential) testing
procedures now exist in the research literature, ranging from simple two-stage
procedures (Betz & Weiss, 1973) to complex Bayesian procedures (Owen, 1969; see
Weiss, 1974, for a good review of the tailored testing procedures that were de-
veloped prior to 1974.) Although many procedures exist, for the purposes of this
paper only tailored testing procedures using item characteristic curve (ICC)
theory and maximum likelihood ability estimation will be considered. It will-
also be assumed that the tests are administered to the examinees on a computer
terminal and that the items are selected to maximize the value of the informa-
tion function at the previous ability estimate. Despite the narrow definition
of tailored testing used for this paper, the results should generalize to any
procedure based upon ICC theory.

In applying the decision procedures discussed in this paper, two specific
ICC models will be used: the I- and 3-parameter logistic models. Although any
other ICC model could just as easily have been used, these models were selected
because of their frequent appearance in the research literature and because of
the existence of readily available calibration programs (LOGIST, CALFIT) and
tailored testing programs (Reckase, 1974).
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Sequential Decision Procedures

A cursory review of the statistical literature indicates that much has been
written about sequential estimation and classification procedures. Although
somewhat more obscure than ANOVA and regression procedures, most intermediate
level mathematical statistics books include at least one chapter on sequential
analysis (for example, see Brunk, 1965, chap. 16). In an ongoing review of the
extensive literature on this topic, it has been found that most procedures fall
into one of three categories: 1) sequential probability ratio tests (SPRT;
Wald, 1947), (2) Bayesian sequential procedures (e.g., DeGroot, 1970), and (3)
curtailed single sampling plans (Dodge & Romig, 1929). Of these procedures,
only the SPRT is narrowly specified--the other two refer to families of proce-
dures rather than a single technique.

Although these statistical procedures are widely applied for quality con-
trol, little use has been made of them in the area of mental testing, probably
because operable sequential testing procedures did not exist until recently. To
date all references in the testing literature to sequential decisions have used
the SPRT (Epstein, 1978; Reckase, 1978; Sixtl, 1974). The SPRT will therefore
be described first, followed by the Bayesian procedures, since the curtailed
sampling plans cannot readily be applied to the commonly used tailored testing
procedures, they will not be discussed in this paper.

The Sequential Probability Ratio Test

The sequential probability ratio test (SPRT) was initially developed by
Wald (1947) as a quality control device for use by the Armed Forces during World
War II. In addition to Wald's (1947) excellent book on the subject, this proce-

dure has been clearly described by Epstein (1978). It will, therefore, be only
briefly described here in order to generalize the procedure so that it will more

directly apply to tailored testing.

Application to Mastery Decisions

Wald originally developed the SPRT as a statistical test to decide which of
two simple hypotheses is more correct. For example, it might be interesting to
determine whether a student can answer correctly 60% or 80% of the items in an
item pool. The basic philosophy behind the procedure used to decide between

these two alternatives was to determine the likelihood of an observed response
to an item under the two alternative hypotheses. If the likelihood were suffi-
ciently larger for one hypothesis than the other, that hypothesis would be ac-
cepted. If the two likelihoods were similar, another observation would be
taken. Wald (1947) has shown that one hypothesis will always be selected over
another using a finite set of items.

To demonstrate this procedure, suppose an item is randomly selected from an
item pool and administered to a student. If a correct response were obtained,

the likelihood under H, (80% knowledge) would be .80, and the likelihood under
Ho (60% knowledge) would be .60. To evaluate these likelihoods, Wald takes the
ratio of the two,

II
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-81-

L(x = 11i)

= .8 0 .6 l
L(x = 1H o ) .60 1.67

If the ratio is sufficiently large, H, is accepted; if it is sufficiently small,
HO is accepted; and if it is near 1.0, another observation is taken. The values
of this ratio that are considered sufficiently large or small depend upon what
is considered acceptable for the two possible decision errors: (1) accepting H1
when H0 is true (a error) and (2) accepting H0 when H, is true (8 error).

Although Wald (1947) developed a procedure for determining the exact values
of these decision points, the procedure is very complex and is seldom used.
Instead, good approximations can be determined using the following formulas:

lower decision point = B = [2
1 - a 3

upper decision point = A = -a [3]

Thus, if the likelihood ratio is less than or equal to B, H0 is accepted with
error probability approximately 8. If the likelihood ratio is greater than or
equal to A, H, is accepted with error probability approximately a. If the ratio
is between B and A, another item should be randomly sampled and administered and
the decision rule implemented again. If a = .05 and 8 - .10, for example, the
decision points would be at B = .105 and A - 18. Since the likelihood ratio
(1.67) is between these two values, no decision would be made, and another item
would be selected and administered.

Since the responses to the items follow a binomial distribution in this
example, a general expression for the likelihood ratio can be developed for the
administration of n items:

Ex. n- Ex•
L(x , 9x 2 .... , xnI ) =H Pl 1 - P,
L(x i  x 2 ... , x I) Ex. n-x.

Ex. n-Ex.
1' 1-

x is the score on item i (0 or 1),
P is the proportion of Ttems known by the student in the item pool under
Pi H1, and

p is the proportion known bn the Item pool under H .

L e ,

||"~ 0
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If
L(x,.., Xn HI )5]

l ..XnH °  A, accept H,.

n

If L(xI , .... xn H)
. .I < B, accept HY. [6]

L(x i, .... xnH -

Otherwise, continue administering items.

This procedure was originally developed to test simple hypotheses, but Wald
(1947) has shown that the procedure operates in the same way for composite hy-
potheses. For example, suppose it is desirable to know whether a student knew
more than some proportion, p,, of the items in an item pool. In order to use
the SPRT to make this decision, a region for which it does not matter which de-
cision is made must first be selected around p, say, p0 < p < pl. If .o is
close to pl, a very precise decision is required. If p0 and pi define a wide
indifference region around p, a rather gross decision rule is all that is need-
ed. The SPRT is then carried out in exactly the same fashion as above, using p0
and * as the values for hypotheses HO and H1 ,respectively. When the decision
points A and B are computed as above, the error rates, ot and 8, hold for true
values of p at p0 and p. For true values of p more extreme than p0 or p,, the
error rates are lower.

Evaluating Outcomes

In order to evaluate the properties of the SPRT, two functions have been
derived: the operating characteristic (OC) function and the average sample num-
ber (ASN) function. The OC function is defined as the probability of accepting
hypothesis H0 as a function of the true proportion of the item pool known by the
student. Although the derivation of the OC function is somewhat complex, the
function can be approximated by the following two formulas:

fh

___PPO1)[7]
h -1 - )h

and

(1 8)1 -h 8

, L(p) a 8

- (h 
)h

These equations are used by substituting various arbitrary values of h and solv-
ing for p and L(p). L(p), the probability of accepting H0 , is then pTotted
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against p to describe the OC function. Figure 1 shows an OC function for a -
.05, 8 - .10, yo - .6, and p, = .8. Note that at p - p0 the height of the curve
is equal to I - a, and at p = P, the height of the curve is equal to $. Note
that the OC function is only dependent upon a, a, p,, and p,. Also, the steeper
the curve, the more accurate the SPRT decision rule.

Figure 1
Example of the OC and ASN Functions

1.0. 100

.8 OC FUNCTION- -  
-SO

.6- 60
g0

o P P,

-J S .4- 40 0

ASN FUNCTION---,

.2.2

0 J[ .2 . .4 .5 .6 .7 .8 .9 1.0

PROPORTION (p)

The ASN function is defined as the expected number of items required to
make a decision at the various values of the true proportion of known items,
E(nlp). The formula for the ASN function for the binomial case described above
is

E(nlp) = L(p) InB + (1 - L(p)) tnA [9]

p n + (I - p) I0

where all of the symbols are as described above and the logarithms are to the
base e. Figure 1 also shows the ASN function for the example presented above.
Note that the ASN function is highest between the points y, and and that the
closer together the values of p_ and p are, the higher the curve in that re-
gion. In general, the lower the ASN curve, the more efficient the decision
rule.

Application to Tailored Testing

Although the SPRT as defined above is a valuable procedure for decision-
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making in many situations, it makes an implicit assumption that limits its use-
fulness for tailored testing. The model as presented assumes that the probabil-
ity of a correct response is the same for all items in the pool. This assump-
tion is reasonable if items are randomly selected and p is the proportion of the
items that a student can answer correctly, but it is not reasonable if items are
selected to maximize information at an ability level. Under the tailored test-
ing model assumed by this paper, the probability of a correct response changes
with each item, requiring a modification of the model.

Fortunately, a detailed analysis of Wald's (1947) work indicates that the
sequential random sample assumption is not necessary for the application of the
SPRT but is needed only for the derivation of the OC and ASN functions. The
SPRT can then be directly applied to tailored testing, but the OC and ASN func-
tions must be determined in a different manner. One approach to determining
these functions will be presented later.

To demonstrate the application of the SPRT to tailored testing as. defined
by this paper, suppose that a tailored test is being used to determine whether a
student has exceeded the criterion specified for a criterion-referenced test.
Although the method for selecting this criterion is currently not well speci-
fied, assume that a value, Oc' has been determined and that students above this

value on the latent achievement scale pass the unit, while those below 6c are
given more instruction.

In order to use the SPRT, a region must be specified around 6c for which it

does not matter whether a pass or a fail decision is made. If high accuracy is
desired for the decision rule, a narrow indifference region must be specified,
but more items will be required to make the decision. As the region gets wider,
the decision accuracy declines, but fewer items are required. Values of 0, 80,

* and 01 mark the boundaries of this indifference region (00 < 08 < O1). Once

these values have been selected, the likelihood ratio can be defined as

* n x. l-x.

* L(x, Xn0 P (61 ) 7Q 7(1)
", ) = i=l [10]~L(x ... Xnl o  n x. 1-x.l l

II Pi(O0) 0Q(0o)

where
-L(x ...,Xnlek), k - 0, 1, is the likelihood of the student's response

string of n items administered so far;
xi is the 0, 1 score on tem i;

Pi(Ok) is the probability of a correct response to item i as-
suming ability Ok determined from the appropriate ICC
model; and

Qi(Ok) = 1 - Pi(ek).

If the i-parameter logistic model is used as a basis for the tailored test-
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ing procedure, Equation 10 becomes

n xi(e1  - b)
HeL(x 1 ,..... XIO1 )_ i=l 1 + e ( O  

-
i ) [11]

L(x 1  ... *, x nje0) n xi(e o - b

i=l ( 0 - b i)1+ e

where bi is the difficulty parameter for item i. Equation 11 can be simplified
to

n
L(x1 . . r xi(e 1  - 80) n (0 - b i )
__x__....____n___) i=+ -

e (81 bi) [12]L(x1 ,.. ''''' i=1 1l+e -

The values of this likelihood ratio can then be used to test whether the student
is above or below ec using the same method presented earlier. If the ratio is

greater than A = the student is classified as being above 6c; if it isa

below B = - the student is classified below the criterion; otherwise,
(1 - O

another item is administered. If the 3-parameter logistic model is the basis
for the tailored testing procedure, the SPRT procedure is applied in exactly the
same manner as above, except that

Da i(8 - b.)

Pi(ek) c, + (i - C e [13]i k ai(S - b )

i+ e k

is used in Equation 10 instead of the simple logistic form.

The evaluation of the OC and ASN functions cannot be performed as easily as
for the simple binomial model due to the presence of the item parameters in the
formula for computing the probability of a correct response. Since the item
parameters for the next item to be administered are dependent on the item pool
used and on the responses to the previous items, the derivation of these func-

A 0 tions depends on a complex string of conditional expectations. The conditional
probabilities involved make the derivation of these functions, for all practical
purposes, impossible. Therefore, the OC and ASN functions can only be approxi-
mated using simulation techniques, but these approximations should be adequate
for most purposes. Some OC and ASN functions for tailored tests based on the 1-
and 3-parameter logistic models will be presented later in this paper. Note,
however, that although the full OC function cannot be derived, the value of the
function is equal to 1 - a at 0o and to a at 01, assuming that the item parame-
ters are known. In reality, these two points are not known either, since in all
cases except simulations the item parameters are only estimated.
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Bayesian Sequential Decision Procedure

The Bayesian decision procedure is an alternative to the SPRT for deciding
whether or not a student has exceeded the criterion, ec . Although this proce-

dure is much more complicated than the SPRT, it has the capability of using ad-
ditional information in making the decision. This added information may improve
the decision process.

Basic Concepts

Initially, it is assumed that a population of students exists such that
each student has some definable achievement level, 0. Individual achievement
levels are labeled Oi . Each person is to be tested and a decision is to be made

concerning placement above or below the criterion. The decision to place above
the criterion score is labeled d1 ; and the decision to place below the criterion
score, d2 .

In order to decide upon a decision rule using Bayesian methodology, three
pieces of information are required in advance. These are (1) a prior distribu-
tion of 0, (2) a loss function relating the achievement levels to the decisions,
and (3) the cost of each observation. Using these three types of information, a
decision rule (technique for selecting a decision) and a stopping rule (tech-
nique for deciding when a decision should be made) can be determined.

The basic concept used in choosing a decision rule is the concept of risk.
Risk is defined as the expected loss, given a decision. Obviously, the decision
that minimizes the risk is the desired one. When a Bayesian prior is used, this
minimum risk is called the Bayes risk.

The stopping rule used with the Bayesian sequential decision procedure is
also based upon the Bayes risk concept. If the expected risk after taking an-
other observation plus the cc- if the observation is less than the risk before
the observation is taken, the sampling should go on. However, if the expected
risk plus the cost of a new observation is greater than the risk without the
observation, then sampling should cease. In some cases, it is best not to take
any observations at all, because the expected risk plus the cost of an observa-
tion is greater than the initial risk of a guess based on the prior distribution

of achievement.

Based on this framework, theorems have been proven showing that an optimal
procedure exists and that the optimal procedure will reach a decision after some
finite number of observations (DeGroot, 1977). If the rib" decreases with each
observation, the procedure is called a regular sequential decision procedure.
Only regular procedures will be considered here, since it is assumed that each

*item administered yields some positive information rather than providing some
misinformation.

*Simplified Example

Although this example is not realistic, it demonstrates the basic concepts
without requiring complicated mathematical expressions. The extension of the

* - - . - -
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procedure to realistic situations is direct, but the mathematics is cumbersome.
Suppose that two types of individuals exist in the population of interest, those
with 01 - -.8 and those with 6i - +.8 on a latent achievement dimension. A tai-

lored test is to be used to classify the individuals into two groups--those
above the criterion score 0.0 and those below. Thus, two decisions are possi-
ble: (1) classify as d. those above the criterion and (2) classify as d2 those
below the criterion.

If persons with ability -.8 are classified above the criterion, a loss of
25 is incurred in each case. If they are classified below the criterion, there
is no loss. If persons with ability +.8 are classified above the criterion,
there is no loss, whereas a loss of 15 is incurred for each person classified
below the criterion. This loss function is summarized in Table 1; it should be
noted that these loss function values are totally arbitrary.

Table 1
Loss Function

Decision
Ability (0i) Ai d2

+.8 0 15
-.8 25 0

Suppose that the prior belief that a randomly selected person has ability
+.8 is .6 and the prior belief that he/she has ability -.8 is .4. Then, the
first step in using a Bayesian sequential decision process is to determine the
risk associated with d, and d2 when no observations are taken. The expected
loss (risk) if decision di is made is

E(lossId1 ) = P(e )k(dj !a1) + P(O2 lM(d11e2 ) [14]

*= .4 X 25 + .6 X 0

- 10,

* i where P(Oi) is the prior probability of 0i and Z(d]ji) is the loss from making

decision d when a is true. The expected loss (risk) if d2 is made is-j ei
E(lossjd 2) = P(O)k(d2 161) + P(e2 )k(de 2 ) [15]

= .4 x 0 + .6 x 15

- 9.

Thus, the Bayes decision when no observation is taken is d 2, and the Bayes risk
* is 9. The decision d2 is obviously chosen because it has the lower risk.

Although the proper decision has been determined for the case when no ob-
servations have been taken, it has not been determined whether or not an obser-

i 4-C
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vation should be taken. To do that, the expected risk after one observation
plus cost must be compared to the Bayes risk without an observation. Determin-
ing the expected risk after an observation requires several steps, the first of
which is determining the posterior distribution of ability after an observation.

Suppose that an item of 0.0 difficulty is administered to a person with
ability +.8 or -.8. Depending upon whether the response is correct or incor-
rect, a Bayesian posterior can be determined using Bayes theorem

P(ex) = P(xje i ) P(8.) [161

2
E P(xIe.) P(e.)

i=l

If a correct response to the item is obtained, the posterior probability of a
+.8 ability is given by

= 1) P(lI.8)P(.8) [173
P(.81x =i p(l.8)P(.8) + P(l .8)P(-.8)

The probabilities of an ability of +.8 or -.8 were given in the prior distribu-
tion as .6 and .4, respectively. The probability of a correct response, given
the known ability, can be determined from the appropriate ICC model. For exam-
ple, using the I-parameter logistic model,

P(l1.8) e ( '8 -O) - .69 [18]

where P(11-.8) - .31. The posterior probability of +.8 is then P(.811) = .77.
Similarly, the posterior probability of -.8 is P(-.811) - .23. The posterior
probability of the +.8 and -.8 abilities, given an incorrect response, can like-
wise be determined using Equation 16. The posterior probabilities, given an
incorrect response, are P(.810) - .37 and P(-.810) = .63.

The next step is to determine the risk using the posterior distributions
just computed. If a correct response is obtained, the expected loss for d, is
.23 x 25 + .77 x 0 - 5.75. The expected loss for d2 is .77 x 15 + .23 x 0 -
11.55. Thus, if a correct response is obtained, the Bayes decision is d, with a
Bayes risk of 5.75. If an incorrect response is obtained, the expected loss for
d, is .63 x 25 + .37 x 0 - 15.75, while the expected loss for d2 is .37 x 15 +
.63 x 0 - 5.55. Thus, after an incorrect response, d 2 is the Bayes decision
with a Bayes risk of 5.55.

Since it is not known whether a correct or incorrect response will be giv-
en, the expected risk must be computed regardless of the response. To compute
the overall expected risk, the probability of a correct and an incorrect re-
sponse is needed. The probability can be obtained using the following formula:

P(1) P(ll.8)P(.8) + P(1!-.8)P(-.8) [191

r4
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= .69 x .6 + .31 x 4

= .538

P(O) = 1 - P(1) = .462.

The expected risk after a response can now be determined from

Etrisklresponse) = E(lossll)P(l) + E(loss!O)P(O) [20]

= 5.75 x .538 + 5.55 x .462

= 5.66

At this point, whether or not another observation should be taken can be
determined. If the expected loss after an observation plus cost is greater than
the risk before an observation, then administration of items should cease. If
the risk before an observation is taken is greater, then another item should be
administered. In the example given here, assume the cost of a response is I
unit. The expected loss after a response plus cost is then 5.66 + I = 6.66.
Since the Bayes risk with no items administered was 9, another item should be
administered. Depending on the response to the item, decision di or d2 could be
selected. After the item is administered, the appropriate posterior becomes the
new prior and the process continues as above. A flowchart of the entire deci-
sion process is presented in Figure 2.

Limitations

Althcigh there are many positive factors in the use of the Bayesian proce-
dure, the very information that makes the control of the testing situation more
precise also makes it difficult to implement initially. For example, specifying
reasonable loss functions on the same metric as the cost of an observation is
difficult for most educational applications. What is the cost of misclassifying
persons below the criterion's score when they really should be classified above
it? Some attempts have been made by this author to specify loss functions for
tailored testing applications, but no satisfactory results have been obtained so
far.

A second difficulty in the application of this procedure is in specifying
the prior distribution of achievement for a group. This is not as serious a
problem as determining loss functions, since performance data are usually avail-
able from previous groups. Of course, the more accurate the prior distribution,
the more accurate the decision based on the procedure.

It should be realized that the procedure presented here is a simplification
of a procedure that would be used for actual tailored testing applications.
Achievement levels are usually continuous rather than discrete, as presented
here; and the loss due to an incorrect decision is a function of the person s
distance from the criterion score rather than a constant value. The procedure
can also be modified by changing the cost of observations with increasing test
length to allow for fatigue effects. Unfortunately, the Bayesian decision pro-

,,1
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Figure 2
Flowchart of Bayesian Decision Process
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cedure as described here has not yet been implemented in conjunction with Pnf
operational tailored testing procedure. Plans are being developed, however, to
evaluate an operational version at the Tailored Testing Research Laboratory at
the University of Missouri.

Research Design

The purposes of this research were (1) to obtain information on how the
SPRT procedure functioned when items were not randomly sampled from the item
pool; (2) to gain experience in selecting the bounds of the indifference region,
O o and O1; and (3) to obtain information on the effects of guessing on the accu-
racy of classification when the 1-parameter logistic model was used.

3 . ..- ._ .. - .. .' "
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Tailored Testing Procedure

To determine the effects of these variables, the computation of the SPRT
was programmed into both the 1- and 3-parameter logistic tailored testing proce-
dures that were operational at the University of Missouri-Columbia. Since these
procedures have been described in detail previously (Koch & Reckase, 1978), they
will be merely summarized here. The programs implementing both models used a
fixed stepsize method for branching through an item pool until both a correct
and an incorrect response had been given. After that point, all ability esti-
mates were obtained using an empirical maximum likelihood estimation procedure.
Items were selected for both models to maximize the item information at the pre-
vious ability estimate.

To evaluate the decision-making power of the SPRT, subjects with known
ability were needed. Therefore, a simulation routine was built into the tai-
lored testing program in place of the responding live examinee. At the begin-
ning of each simulation run, the true ability of the simulated examinee was in-
put into the program. This value was used to determine the true probability of
a correct response to the administered items based on the model used (I- or
3-parameter logistic) and the estimated item parameters. A number was then ran-
domly selected from a uniform distribution in the range from 0 to 1. If the
randomly selected number was less than or equal to the probability of a correct
response, the item was scored as correct. If the randomly selected number was
greater than the probability of a correct response, the item was scored as in-
correct. This procedure continued for each item in the tailored test.

Tailored tests were simulated 25 times at each true ability using different
seed numbers for the random number generator. True abilities from -3 to +3 at
.25 intervals were used for both the i- and 3-parameter models to evaluate the
performance of the SPRT. In addition, simulations were run on a composite pro-

cedure in which tailored test procedure and the probability ratio calculations
(Equation 11) were based on the 1-parameter model, but the item responses were
determined by using the 3-parameter model. This was done to determine the ef-
fects of guessing on correct classification using the I-parameter logistic mod-
el.

Criterion Values

In computing the probability ratios, three sets of limits of the indiffer-
ence regions were used: +.3, +.8, +1. A criterion of 0c - 0 was assumed in all

cases. The ratios were computed after each item was administered, and the re-
sults were compared to an A value of 45 and a B value of .102. These were de-
termined based on a = .02 and = .10. A classification was made the first time
these limits were exceeded. If the limits were not exceeded before 20 items had
been administered (an arbitrary upper limit on test length), the values above
1.0 were classified as above 6 c and the values below 1.0 were classified as be-

low 0 c . This is called a truncated SPRT. At each true ability used for the

simulation, the proportion of the 25 administrations classified below e and the
S. c

average number of items administered were computed. Plots of these values

against the true abilities approximate the OC and ASN functions, respectively.

.s,_ - . .... ... •
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These plots were made for each combination of indifference region and tailored
testing method, yielding nine plots of the OC and ASN functions.

Item Pools

Two different item pools were used for this study. For the analyses using
just the 1-parameter or the 3-parameter model, an existing pool of 72 vocabulary
items were used. This item pool had an approximately normal distribution of
difficulty parameters. For the 1-parameter tailored test using 3-parameter re-
sponses, an item pool with 181 items, rectangularly distributed between -3 and
+3 in difficulty was used. These simulated items had constant discrimination
parameters of .588 (this value yields a 1.0 when multiplied by D - 1.7) and a
pseudo-guessing parameter of .12. This simulated item pool was selected over
the real vocabulary pool to have better control over the guessing parameters.
The 1-parameter procedure used only the b-values from the pool.

Results

1-Parameter Model

Figure 3 shows the OC functions for the 1-parameter logistic model based on
the vocabulary item pool. The figure shows three graphs, one for each of the
+.3, +.8, and +1 indifference regions. Note that the curves are similar regard-

Figure 3
One-Parameter OC Functions

for Three Indifference Regions
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less of the indifference region. The data indicate that in all three cases the
classification accuracy was nearly the same.
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The values of the curves at the limits of the indifference region give fur-
ther evaluative information. At the lower point the OC function should pass
through 1 - a. At the -.3 value the curve is in fact .85 when it should be .98,
showing the degrading effects of restrictive stopping rules used by the tailored
testing procedure. At the -.8 and -1 points for the corresponding curves, the
results are about as expected, being .94 and 1.00 rather than .98.

At the upper limit of the indifference region, the OC function should have
a value of .I. For the +.3 case it is in fact .5 rather than .1, again showing
the effects of truncating the procedure. At the values Lt. +.8 and +1 the values
of the OC function were near or better than what they should have been, based on
the theoretically expected results.

The ASN functions for the 1-parameter model are given in Figure 4. The
curves plotted correspond to the ASN functions, using indifference regions for
+.3, +.8, and +I. It can immediately be seen that there was a substantial dif-
ference in the-average number of items needed to reach a decision, with the
greatest number required when the indifference region was narrowest. It can
also be seen that the largest expected number of items was near the criterion
score 0.0 and that the average number dropped off at the extreme abilities. The
slight lack of symmetry in the curves is due to the fact that a was not equal to
B. For abilities beyond +I, an average of only about 3 to 5 items was needed
for classification for the wider regions, but 6 to 11 items were needed for the
+.3 indifference region. Note that the +.3 curve approached the arbitrary
TO-item limit for the tailored tests.

Figure 4
One-Parameter ASN Functions

for Three Indifference Regions

20- INDIFFERENCE

REGION

0A. .e
4 - . . . ....... ... ....0

i-3 -1

* ACHIEVEMENT (B)

'I /1 '~- "...- " - ,



-94-

Figure 5 shows, for comparison purposes, the theoretical curves for the ASN
and OC functions based on the +.3 indifference region. An infinite number of
items with difficulty 0.0 was assumed for the theoretical functions, and the
tests were assumed to have no upper limit on the number of items administered.
A comparison of Figures 3 and 4 with Figure 5 shows that the OC curve for the
theoretical function is steeper at the cutting point than the simulated curves,
and that the ASN function is substantially higher. The difference in the theo-
retical and simulated OC curves shows the effect of the 20-item stopping rule
and the selection of items of differing difficulty.

Figure 5
Theoretical OC and ASN Functions
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3-Parameter Model

The results of the simulation of the 3-parameter logistic tailored test are
i given in Figures 6 and 7. Figure 6 presents the OC functions for the 3-parame-
[. ter model, again using the indifference regions of +.3, +.8, and +1. Notice
, that as with the 1-parameter model, the OC curves are fadrly similar for the

three indifference regions throughout most of the range of ability. However,

there are discrepancies for the +1 indifference range curve near the +1 and -1
points, indicating a decline in decision precision for that region. At the -.3
value for the +.3 indifference range, the value of the curve is .96, fairly

~close to the .9T8 theoretical value. At the upper end (+.3), however, the value
, is .2 instead of the .1 value that it should be. This may show the effects of

guessing on the decision process. The +.8 and +1 indifference regions again
~yield better error probabilities than would be expected from the theory.

The ASN function for the 3-parameter model (Figure 7) also shows similar

4,im
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Figure 6
Three Parameter OC Functions

for Three Indifference Regions

1.0

INDIFFERENCE
REGIONS

0\ . ............. ±1.0

.6-

0

w .4

C-

A-4

3 -2 -1 0 1 2 3

ACHIEVEMENT (e)

results to those obtained from the 1-parameter model. The +.3 indifference re-
gion required the greatest number of items, while +.8 and +1.0 required about
the same number. As before, the largest number was required near the criterion
score. However, with the 3-parameter model far fewer items, on the average,
were required to make a decision than for the 1-parameter model. Of special

note is the ASN value of about 1.0 in the -1 to -3 range on the ability scale.
* Decisions seem to be possible with very few items in that range.

Because of the guessing component of the 3-parameter logistic model, the
ASN function tended to yield more asymmetric results than the 1-parameter model.
More items were required when classifying high than when classifying low to com-
pensate for the nonzero probability of a correct response. Also, the ASN curve
for the +.3 indifference region.was much more peaked than its 1-parameter coun-
terpart. If the simulated curves for the 3-parameter model are compared to the
theoretical curves presented in Figure 5, the OC functions can be seen to match
the theoretical functions fairly closely, while the ASN functions show that sub-
stantially fewer items were required. Over much of the ability range, as many
as 10 times more items were specified by the theoretical ASN curve when unlimit-
ed identical items were assumed. However, it should be noted that the theoreti-
cal curves are based on the 1-parameter model.

Effect of Guessing on the 1-Parameter Model

Figure 8 shows the OC functions for the 1-parameter model when the 3-param-

...1. . . .. _ ._ _ _ _ __i " ._
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Figure 7
Three Parameter ASN Functions
for Three Indifference Regions
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eter model was used to determine the responses. The figure shows three graphs,
one for each of the +.3, +.8, and +1 indifference regions. Note that the curves

i are fairly similar regardless of the indifference region but that they are
! shifted substantially to the left compared to the previous OC curves. This in-

dicates that the probability of classifying a person below ec has dropped off

* Isubstantially until an ability of about -2 has been reached. In other words, it
is much easier to be classified above the criterion score with this procedure

~than when guessing does not enter into the decision. Instead of being at zero,
* the effective criterion has been shifted down to -1.5. Clearly, the values ef

the OC function at the limits of the indifference region are entirely different
i- from the theoretical values.

" The ASN functions for the three indifference regions---.3, +.8, and +1-are
i shown in Figure 9. The difference between these graphs and those presented In

~Figure 4 are that the curves are higher Cmore items were required) and the high--4 est point of the curve is shifted to the steepest part of the OC curve. The
, relationship between the height of the ASN function and the width of the indif-

ference region still holds; however, as the region gets wider, the average nun-
~ber of items decreases.

, Summary and Conclusions

~The purpose of this paper has been to describe two procedures for making

fD 8
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Figure 8
Composite OC Functions

for Three Indifference Regions

1.00.*

INDIFFERENCE

REGIONS

.80-

......... 1.0

0-
6.60

_ I
.40 ,

U I

(L .20,

-3- - 0 

ACHIEVEMENT (0)

binary classification decisions using tailored testing--the sequential probabil-
ity ratio test (SPRT) and a Bayesian decision procedure--and to present some
simulation data showing the characteristics of the operation of the SPRT for two
ICC models. The first procedure described, the SPRT, was developed by Wald for
quality control work. It has not been widely applied for testing applications
because the assumption of an equal probability of a correct response was made to
facilitate the derivation of the operating characteristic (OC) and average sam-
ple number (ASN) functions. Since this assumption can only be met for testing
applications by randomly sampling items for administration, the procedure has
not been used with tailored testing. In this paper the probability of a correct
response was allowed to vary from item to item, although it made the derivation
of the OC and ASN functions impossible. Simulation procedures were then used to
estimate these functions.

The SPRT procedure described is operational at the Tailored Testing Re-
search Laboratory of the University of Missouri-Columbia in two forms: a live
tailored testing procedure and a simulated procedure. The results of the appli-
cation of the simulation procedure to three studies were described in this pa-
per. The first study estimated the OC and ASN functions for a 1-parameter lo-
gistic based tailored testing procedure in which the size of the indifference
region around the criteron score was varied. The results of the study showed
that the average number of items needed for classification was quite low when
the true ability of a simulated person was not too close to the criterion score1?
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Figure 9
Composite ASN Functions

for Three Indifference Regions
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and that the width of the indifference region did not greatly affect the OC
function. The width of the indifference region did have a substantial effect on
the ASN function. The accuracy of classification of the simulated tailored test
was not quite as good as administering a large number of items with difficulty
values equal to the criterion score. This result was explained by the arbitrary
20-item limit imposed on the tailored test and by the variation in the diffi-
culty parameters of the items administered.

The second study estimated the OC and ASN functions for a 3-parameter lo-
gistic tailored testing procedure, also varying the size of the indifference
region. The results were similar to those for the 1-parameter model, but even
fewer items were generally needed for classification. The results of these
first two studies both indicated that the SPRT could be successfully applied to
tailored testing.

The third simulation study estimated the OC and ASN functions for the 1-pa-

rameter model when guessing was allowed to enter into the responses to the items
administered. The results showed that, in effect, guessing lowered the criteri-
on score, making it easier to classify an examinee above the criterion and rais-
ing the average number of items needed for classification. This spurious shift
in the criterion greatly increased the error rates in classification. The ef-
fect was strong enough to preclude the use of the 1-parameter model for classi-
fication decisions when guessing is a factor.

' N I II I II I[
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The second decision procedure described in this paper allows the use of a
greater amount of information in making a decision than the SPRT. The Bayesian
procedure includes a prior distribution of student achievement, a loss function
for incorrect decisions, and the cost of observations in the development of the
decision rule. The basic philosophy of this procedure is to administer items
until the expected loss incurred in making a decision is less than the expected
loss after the next item is administered plus the cost of administration. At
that point a decision is made that minimizes the expected loss. The Bayesian
procedure is described in detail, and a simple example is given of its use. The

Bayesian procedure is not yet operational for making decisions under tailored
testing because appropriate loss functions for educational decisions have not
been determined. However, simulation studies of the procedure will commence in
the near future.

Both of the decision procedures described in this paper show promise for
use in tailored testing. Both also require substantial research effort before
they can be applied with confidence. It is hoped that this paper will help to
stimulate that research.
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A MODEL FOR COMPUTERIZED ADAPTIVE TESTING RELATED TO
INSTRUCTIONAL SITUATIONS

STANLEY J. KALISCH
EDUCATIONAL TESTING SERVICE, ATLANTA

The present study involved the formulation and evaluation by computer simu-
lation of a model for computer-based adaptive testing related to instructional
or training situations. Specifically, the model adresses tests composed of
items corresponding to hierarchically related instructional objectives. The
purpose of the endeavor was to formulate and to analyze a model that would re-
duce testing time without compromising the necessary level of accuracy in deci-
sions regarding the mastery or nonmastery of objectives.

The adaptive testing model developed in this study combines the models of
Ferguson (1969, 1970) and Kalisch (1974a, 1974b). Ferguson's procedure employs
the Wald probability ratio test (Wald, 1947, 1973) to determine mastery/nonmas-
tery of hierarchically related objectives. Kalisch's procedure employs a pro-
cess that predicts item responses based upon prior examinees' data. For the
present study a combination of obtained and predicted item responses was used
with the Wald binomial probability ratio test and hierarchical configurations of
objectives to ascertain each examinee's mastery/nonmastery of objectives.

The Adaptive Testing Model

Configuration and Relative Importance of the Objectives

A hierarchical configuration of objectives, such as in Figure 1, defines
the interrelationship of the objectives to be mastered by each trainee. Objec-
tive 5 has Objectives 2 and 3 as its immediate subordinates or prerequisites.
This means that mastery of the skill or competency represented by Objective 5
requires that both Objectives 2 and 3 be mastered. Nonmastery of either or both
Objectives 2 and 3 implies nonmastery of Objective 5. The figure indicates no
prerequisite to Objective 2. Objective 1 is prerequisite to both Objectives 3
and 4. The immediate prerequisites to Objective 6 are Objectives 2, 3, and 4.

No prerequisites are indicated for Objective 7.

Generally, some objectives are considered more important or critical.
Other objectives may be subordinate or prerequisite to the former objectives--

those of primary concern. If mastery can be ascertained for the "objective of
primary concern," then there appears to be little, if any, need to assess per-
formance on the subordinate objectives. If direct assessment of performance on

I.
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Figure I

Hypothetical Hierarchical Configuration of Objectives
(* Indicates an "Objective of Primary Concern.")

5* 6*
I!LII

a'] the objectives was desired, then every objective would be identified as an
objective of primary concern.

The model assumes that mastery of an objective implies mastery of all its
immediate subordinate objectives; nonmastery of an objective implies neither
mastery nor nonmastery of the immediate subordinates. Mastery classification on
an objective of primary concern results in an assumption that all the immediate-
ly prerequisite or subordinate objectives are mastered, unless a subordinate is
also of primary concern. Nonmastery classification on an objective of primary
concern results in testing each immediate subordinate as if it were also an ob-
jective of primary concern.

Basing Decisions on a Data Base

The decisions made in the adaptive testing process are dependent upon in-
formation collected from prior examinees. Although the existing model assumes
that each prior examinee has answered all the items for each objective, it could
accommodate a data base consisting of responses by prior examinees to overlap-
ping subsets of item pools. Decisions such as selection of items for presenta-
tion and prediction of correctness/incorrectness of item responses are made on

': the basis of the interrelation of item responses by prior examinees whose re-
, sponse patterns match the present examinee's pattern. For each item response

obtained from an examinee using the adaptive test, a smaller subset of prior
subjects' data is used to make decisions--a subset of examinees' dichotomously
scored responses exactly like the present examinee's response pattern., )
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Two response-matching procedures were defined. With the first method a

vector 9 of dichotomuously scored responses is generated for an examinee; for
each additional response collected within a test, the i' vector increases. The

individual's vector is matched with sets of responses in the data base; but
only data base sets with exactly the same t vector (the same pattern of "l's"

and "O's" to exactly the same questions answered by the examinee) are consid-
ered. With the second method, not only is the 9 vector used, but also an r vec-

tor of mastery/nonmastery classifications for objectives is employed. Only data
base sets with exactly the same 9 and i vectors are considered. With both meth-

ods the matching procedure provides the subset of data base entries that is used

for making predictions and selecting other items for presentation.

Predicting item response correctness/incorrectness. Based upon the dichot-
omously scored responses to items presente to an exaoinee, conditional proba-

bilities for answering the item correctly or incorrect'y are determined on the
basis of response patterns in the data base matching the examinee's. If either

conditional probability exceeds prespecified levels, the correctness/incorrect-
ness of the examinee's expected response is assumed.

Selection of items for presentation. Based upon an examinee's response

pattern and the subset of the data base response matching the examinee's, items

that are expected to provide the most information about the objectives of prima-
ry concern are selected for presentation. Two selection criteria were investi-

gated in this study: item-objective agreement and inter-item agreement. For
each method a coefficient was computed for each item not presented and for which

prediction of correctness/incorrectness had not yet occurred. The item with the

highest coefficient was presented to the examinee.

For the item-objective method, a coefficient of agreement between item i

and the n objectives of primary concern was calculated as follows:

CC(i;01,0 2, ... On 
Ir ,s

n
S[Prob(,i = 1)] [Prob(i

u=1

nrs
+ [ E [Prob(O = O)1(',',i' = O)J[Prob(i = O)Ii,;]}]/n [i1

u=1

4where

i is the item under consideration;
o 0 2 1 .... ,0 are the n objectives of concern;

1 1 means item i is answered correctly;
i = 0 means item i is answered incorrectly;

Ou 1 means objective u is mastered;

u  0 means objective j is not mastered;

1:
' r~9
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is the vector of objective mastery/nonmastery
classifications for the examinee; and

is the vector of the examinee's dichotomously
scored item responses.

For the inter-item method a coefficient of agreement between item i and the
n other items corresponding to the objectives of concern is computed according
to the following formula:

n
.E= [Prob(i. = 1)1(rst = 1)]

.1=1
n

[Prob(i = 1)1r,s]} + { E [Prob(i. = O , 0)]
j=1

" [Prob(i = 0) Ir,s]}/n [2]

where

i= 1 is the probability of answering item i correctly;

j 0 is the probability of answering item.j correctly;

r is the objective mastery-nonmastery pattern for the
examinee; and

is the item response pattern (correct/incorrect) for

the examinee.

Examinee response inconsistencies. "Untrue" responses by an examinee are

those responses that do not agree with the examinee's "true" response (the exam-
inee's response that is not arrived at by guessing and has not been erroneously
selected or created). "Untrue" responses are expected to occur in such cases as

I. Selecting the correct answer by guessing, when in actuality the examin-
ee should have answered the item incorrectly;

2. Providing an incorrect answer because of misinterpretation of part of
the question; and

3. Pressing an unintended key on a terminal keyboard.

Item responses that are provided by an examinee, but are contrary to the

examinee's "true" response, introduce potential measurement error into any test-
ing process. In the adaptive test model, erroneous responses introduce error
into -, the item response vector. Vector - affects predictions of other item
responses and selection of items for presentation. Generally, it is expected
that item prediction errors will affect the accuracy of the system, whereas er-
rors in item selection will reduce the efficiency of the system. Prediction and
selection errors may occur, since the adaptive testing process relies on match-
ing the examinee's - with exactly the same response vectors in the data base.
Errors introduced into - would produce a comparison between the examinee's per-
formance and the wrong subset of prior examinees. Even if some of the response
sets in the data base contain the same errors as those made by the present exam-
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inee, it would be expected that for each item the majority of prior examinees
had provided responses that concur with their "true" responses. Hence, errors
introduced into the examinee's item response vector would be expected to compare
the examinee's performance to an inappropriate subset of prior examinees.

The adaptive testing model included an optional component that checks for
potentially "untrue" responses by comparing the examinee's inter-item response
consistency to the inter-item response consistency demonstrated by all prior
examinees whose data are included in the data base. When this option was se-
lected, it was necessary that at least two items be presented for the examinee's
responses prior to making predictions or to making other item selections based
on the item response vector I. The present model requires that a set of items
be independently selected and presented. In this study the number of items pre-
sented was sufficient so that the probability of answering all of them correctly
by chance alone was less than or equal to .5.

The purpose of obtaining responses to a set of independently selected items
was to determine whether the examinee has demonstrated sufficient consistency in
his/her response pattern to warrant this pattern serving as the item response
vector. A coefficient of relative interrelationship Rx between item x and all

other items for which responses have been obtained was computed as follows:
SG(x,i)

S,__ [31
x E I(x, i)

i

where
1 if both responses to item x and item i were correct

G(x,i) = or if both responses were incorrect

0 if one response was correct and the other was wrong,

and

I(x,i) = {[E Prob(i = lix = 1)] x Prob(x = )}

+ {Prob(i = OIx = 0) x Prob (x = 0)} [41

G(x, i) was computed on the basis of the examinee's responses to item x and all
the other items presented.

Rx indicates the examinee's consistency as compared to prior examinees'

consistency. It is possible that a given examinee demonstrated greater consis-
tency than prior examinees, but when the examinee's consistency was less than
that for prior examinees, his/her item response pattern contained "untrue" re-
sponses. In this study the criterion for sufficiently consistent responses by
an examinee required that for each item x, Rx .90. If the criterion was not

attained for each item, t, ie w.0 the lowest R value was temporarily re-

moved from consideration as a member of the item response vector -. Prior to
making decisions based on -, the item response vector must contain at least the
required minimum number of-elements (equal to the number of items to be answered
to insure that the probability of guessing the correct answers is less than the
criterion). If - contained fewer elements, other items must be independently
selected s. Whenever the number of elements in s equaled or exceeded the mini-
mum requirement, item selections and predictions were based upon ;. After the
presentation of each additional item, all items for which responses were ob-
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tained were included in the calculations of the Rx values. Hence, although an

item response may be questioned and not included in 1, a future recalculation
may indicate the item response to be consistent with the examinee's other re-
sponses. Likewise, items once contained in s may be excluded on a future recal-
culation.

Determining Mastery/Nonmastery of Objectives

For an objective of primary concern, the dichotomously scored results to
all its items for which correctness/incorrectness has been determined or pre-
dicted were used with the Wald probability ratio test.

For example, suppose that for an objective, responses were obtained to
three items and predictions were made for six other item responses. These nine
responses (correct/incorrect for each item) were then used in the following for-
mula:

S = R x log 1 0 Cp)+ (N - R) x l~go 1 ) [51

where

R = number of items answered (or predicted as being

answered) correctly;
N = number of items (number presented plus the number predicted);
Cf= the critical nonmastery score (difficulty of the

objective for nonmasters);
Cp= the critical mastery score (difficulty of the objective

for masters).

Mastery/nonmastery classifications were determined by comparing the value
of S to ratios involving a and a (Type I and Type II errors); a is the error
associated with falsely classifying an examinee as a nonmaster, and 8 is the
error of falsely classifying an examinee as a master:

1. I-

I. If S < log 1 0  , the objective was not mastered.

i 2. If S ! log1 0 I- , the objective was mastered.

3. If neither of the above conditions was true, no mastery/nonmastery

classification was possible (and additional item responses were neces-
sary).

The model assumes that the classification of an objective for which insuf-
ficient items exist for a mastery/nonmastery decision is "indeterminate." This

S decision occurred whenever the pool of available items was exhausted before a
mastery/nonmastery decision could be made. Such an objective is presently
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treated as "unmastered," although this could be altered without affecting other
components of the model. Rather than assuming the objective to be unmastered,
the process could ascertain which classification zone was approached by the ex-
aminee's proportion of items answered correctly. Ferguson (1969) used this pro-
cedure, but only after asking for 30 item responses for the objective. It ap-
pears that if an examinee cannot demonstrate mastery performance within a real-
istically expected number of items, immediately prescribing remedial instruction
would be more efficient than giving a lengthy test to make a decision. An ob-
jective for which an undesirably high proportion of "indeterminate" classifica-
tions has been made indicates an insufficient number of items, insufficient item
discriminations, or unrealistically high specifications for acceptable misclas-
sification errors.

The adaptive testing procedure terminated when either of the following con-
ditions occurred: (1) all objectives were classified as mastered or unmastered;
or (2) the number of prior examinee observations in the data base upon which
predictions are based was less than two. For the first condition, the test was
Lerminated. For the second condition, unpresented and unpredicted items corre-
sponding to objectives of concern were randomly presented to the examinee. Ter-
mination of the test occurred when each objective was classified.

Eight Versions of the Adaptive Testing Model

The adaptive testing model formulated for this study was applied in a 2 x 2
x 2 configuration of options. These derive from three options, each with two

conditions: (1) two methods of item selection based upon item-objective agree-
ment and inter-item agreement; (2) two response matching procedures based upon
only item response patterns (only ) and upon both item response and objective
classification patterns (both d and); and (3) a dichotomous option regarding

examinee response inconsistency. Table 1 provides a delineation of the options
used for each version; the numbers used in the remainder of the report refer to
combinations of options employed.

Phase I: Monte Carlo Simulations

'! The purpose of this phase of the study was twofold: (1) to test for the
relative accuracy and efficiency of the eight versions of the adaptive testing
model and a control version and (2) to study the relation of loss to individu-
als' achievement levels for the adaptive testing versions. Accuracy was exam-
ined in terms of correct mastery/nonmastery classifications. Efficiency was
investigated in terms of the number of items presented to examinees.

The control version to which the adaptive testing versions were compared
involved the testing of every objective. For each objective a prespecified num-
ber of items was randomly selected for each examinee. Under the control treat-
ment, examinees generally received different items for an objective, but each
received the same number of items. For each objective a randomly selected inte-

*I ger between 3 and 6, inclusive, was chosen for the number of items to be presen-
ted. Mastery of an objective was obtained if an examinee obtained a score of
N-I or higher, where N equals the number of items presented. A score of less

1~m



-108-

Table 1
Options Employed in the Eight Versions

of the Adaptive Testing Model

Testing Item Selection Response Matching i  Inconsistency
Version Method Procedure Check

1 Item-objective Only s No

2 Inter-item Only No

3 Item-objective Both r and s No

4 Inter-item Both r and No

5 Item-objective Only s Yes

6 Inter-item Only - Yes

7 Item-objective Both and Yes

8 Inter-item Both r and s Yes

s is the item response vector and 1 is the objective
mastery/nonmastery classification vector.

than N-I resulted in a nonmastery classification. The resulting lengths of the
tests and the mastery criteria reflected the parameters used in the Air Force
Weapons Mechanics training program at Lowry Air Force Base, Denver, Colorado.

Item response generation. Item response data were generated for hypotheti-
cal examinees who were to demonstrate some consistency in performance across
examinations. This assumes that individuals in instructional programs demon-
strate a certain consistent performance in mastering or not mastering objec-
t ives.

For each examination by adaptive test version, two sets of examinee data
were generated--one representing past examinees responses and the other includ-
ing responses that would be obtained from present examinees. For the control
version, only one set of data was generated for each examination. A set of ex-
aminee responses was generated in two steps using two computer programs, GENTAB
and GENRESP. For each examinee GENTAB produced values for elements of consis-
tency to be demonstrated across testings. These elements were the examinee's
achievement level and risk of guessing. The values from GENTAB and additional
parameters were used to produce item responses through program GENRESP. Parame-
ters specified for GENRESP included the following: (1) hierarchical configura-
tion of the objectives; (2) objective parameters, such as difficulty; (3) dis-
crimination, and passing criteria; (4) proportion and type of hierarchical er-
rors; and (5) guessing factor for answering items correctly.

Generation of examinees' true item responses. For each objective, each
" item response for an examinee was based on a probability of answering the item

, ,,. rc -- '' , ,
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correctly. The algorithm used was

d + 66 (i - d) if 6 > 6

P (u = 1) = [6]

d + - d if o < a

where

P(u = 1) = the probability of answering the item
correctly;

d = difficulty of the item;
= examinee's objective score; and

6 = mean objective score of the corresponding
mastery/nonmastery group.

A random number r in the closed interval 0 to 1 was selected. If r < P(u = 1),

the examinee was assigned a correct item response; otherwise, an incorrect item
response was assigned.

Inclusion of examinee error. The factor of successful guessing was includ-
ed in GENRESP. The probability that an examinee would attempt to guess the cor-

rect answer, given that his/her "true" response would be incorrect, was derived
by the formula

P1 = g1(l - 6d) [7]

where

9 1 is the risk factor for the examinee (from GENTAB);
0 is the examinee's objective score; and
d is the item difficulty for the examinee's mastery or

nonmastery group.

A random number r in the interval 0 to 1 was selected. If/ r P, the
examinee would attempt to guess the correct answer. The probability of guessing
correctly was obtained from the formula

P2 = + q2 ed [8]

where g2 is the guessing factor for the item (the probability of randomly se-

lecting the correct answer), and 0 and d are the same as defined previously.
For all items, &2 was set equal to .2, assuming five alternatives to each item.
A random number in the interval 0 to 1 was selected. If r2 < P2 , the examin-

ee was credited with answering the item correctly.

Experimental Design

The design employed 90 cells comprised of an element from each of the fol-

1:. .
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lowing two dimensions (independent.variables): (1) Testing Version (8 adaptive
test versions and 1 control test version) and (2) Examination (10 examinations).
For each testing version, data were simulated for 50 hypothetical examinees,
each of whom was to take 10 examinations using only I testing version across the
10 examinations. Hence, there were 450 hypothetical examinees, each taking 10
examinations.

Separate split-plot factorial analyses of variance were conducted for each
of two dependent variables. The dependent variables were (1) total loss associ-
ated with errors in mastery/nonmastery classifications and (2) total number of
items presented.

Total loss. A loss value is a positive or zero number assigned to an ac-
tion-outcome combination (Hays & Winkler, 1970). A zero loss value is assigned
to any combination that reflects the best actions under the true circumstances.
If an action is less desirable than the best actions, an error is associated
with the action and is assigned a positive value reflecting the level of error
involved.

The loss values appearing in Table 2 represent the relative amounts of loss
attributed to each mastery/nonmastery/indeterminate decision made, given the
"true" mastery/nonmastery status.1 It can be seer. in Table 2 that under the
known true situation of mastery, the best decision was to classify performance
on an objective as "mastery." The positive numbers for decisions of "nonmastery"
and "indeterminable" indicate there were errors involved with these decisions--
the greater error being associated with the latter. Total loss equals the sum
of the separate losses incurred for each objective decision for an examinee.

Table 2
Matrix of Loss Values Provided for

Objectives of Primary and Secondary Concern

True Classification
Classification Decision Mastery Nonmastery

Objectives of Primary Concern
Mastery 0 10
Nonmastery 5 0

Indeterminable 7 3
Objectives of Secondary Concern

Mastery 0 6
Nonmastery 4 0
Indeterminable 5 2

Total number of items presented. Items for the adaptive tests were presen-

ted to provide information for predicting correctness/incorrectness of other

oi Roger Pennell of the Air Force Human Resources Laboratory at Lowry Air Force
Base provided losses based upon values independently obtained from individuals
knowledgeable of the Air Force Weapons Mechanics training program.

II.4.



-- 11

items. The total number of items presented refers to the number of items an-
swered by an examinee in order to make mastery/nonmastery decisions on objec-
tives.

Experimental model. The split-plot factorial model used was

Xijkm = + A i + B + k(i) + AB. + B rk + [91

where

Xijkm is the dependent variable;

Ai is the testing version;
Bj is the examination; and

lrk(i) is the subject effect.

A posteriori tests. With regard to the testing version effect, the Dun-
nett's t statistic was computed for each adaptive testing version with the con-
trol treatment. This a posteriori test was used for each dependent variable,
regardless of the F value obtained using the analysis of variance (Winer, 1971,
p. 201). Therefore, each version was compared with the control treatment. For
other effects, Newman-Keuls tests were performed only when significant F values
(a - .05) were obtained from the analyses of variance.

Sample size. Each data base from which predictions were made was composed
of 300 sets of responses. For each of the 90 testing versions by examination
cells, 50 hypothetical examinees were used.

a and $ levels. In this phase of the study, the values of a and a relative
to the Wald procedure were set at .2 and .1, respectively.

Results

All of the adaptive testing versions were significantly more efficient than
the control version. Only one adaptive testing version demonstrated signifi-
cantly smaller losses than the control version. An analysis of variance indi-
cated significant Examination and Testing Version x Examination effects (a -
.05). A quasi-F statistic was computed for the testing version, since the
mixed-effects model did not directly provide a mean sums-of-squares estimate for
the required denominator (Winer, 1971, pp. 375-378). Table 3 shows the results
of the analysis of variance, and Table 4 provides the descriptive statistics for
each testing version.

The use of Hartley's test for homogeneity of variance (Winer, 1971,
pp. 207-208) resulted in a rejection of the equal variance assumption. Hence, a

4 more conservative test proposed by Box (Winer, 1971, p. 206) was used. The de-
grees of freedom corresponding to each numerator were reduced to one. The test
effect remained significant at the .05 level, but the Treatment x Test interac-
tion did not.

Dunnett's test indicated that the only adaptive testing version signifi-

, .w .-...., *I



-112-

Table 3
Analysis of Variance For Total Loss

Mean

Source df Square F

Between Subjects 449
Testing version 8 623.32 1.14
Subjects-within-groups 441 525.15
Estimates for quasi-F

calculations 457 544.624
Within Subjects 4050

Examination 9 754.74 36.61*
Testing version x

examination 72 40.09 1.94**
Examination x subjects-

within-groups 3969 20.62

*p <.01.
**p <.01 for df(72,3969); p <.25 for df(1,3969).

cantly different (a = .05) from the control test was the sixth version--Adaptive
Testing Version 6, using the inter-item agreement, based only on the item re-
sponse vector, and employing the inconsistency check. Although the obtained t
value of Adaptive Testing Version 7 did not exceed the critical value, the dif-
ference in the two was extremely small. The losses obtained for both versions
were extremely close. Adaptive Testing Version 7 used item-objective agreement,
based on both item response and objective classification vectors, and employed
the inconsistency check.

Table 4
Descriptive Statistics of Total Loss for

Each Examinee per Testing Version

Testing Range
Version Mean SD Min Max

1 1 5.84 10.25 0 52
2 5.52 9.56 0 48
3 5.88 9.79 0 52

4 5.39 9.25 0 60
5 5.03 8.46 0 46
6 4.73 8.63 0 49

7 4.84 8.55 0 50
8 5.05 8.40 0 44

Control 8.40 8.45 0 60

The Newman-Keuls test indicated no pattern of significantly different losg-
es among the examinations. Although significant differences did occur between
some pairs of examinations, no trend was indicated. The Testing Version x Exam-

I
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ination interaction was not significant using the conservative F test. There
was a tendency for all versions of the model to obtain approximately the same
losses for each examination and to have losses less than the conventional test,
except for the third examination.

For the number of items presented, an analysis of variance indicated sig-
nificant Testing Version, Examination, and Testing Version x Examination effects
(a = .05). As with the other dependent variables, a quasi-F statistic was cal-
culated for the testing version effect. All the effects were also significant
(a = .05) for the more conservative F test, used because of the heterogeneous
variances. Table 5 shows the results of the analysis, and Table 6 provides the
descriptive statistics for the number of items presented.

Table 5
Analysis of Variance For Number of Items Presented

Mean

Source df Square F

Between Subjects 449

Testing version 8 31285.58 256.06*
Subjects-within-groups 441 2.56
Estimates for quasi-F 72 122.18

calculations
Within Subjects 4050

Examination 9 276.51 142.53*
Testing version x

examination 72 121.5b 62.66*
Examination x subjects-

within-groups 3969 1.94

*j<.01.

The results of the Newman-Keuls tests for the testing version effect showed
that each adaptive test required significantly fewer (a = .05) items than the
control test. There were no significant differences among the adaptive ver-
sions.

Although significant differences existed in numbers of items presented for
the 10 examinations, the adaptive testing versions varied only slightly in their
relative efficiency. A version that appeared to require the fewest items on one
examination may have required the most on another examination. The differences
in the number of items required by the adaptive versions for any one test were
not substantially different.

Loss as a Function of Achievement Levels

Although Adaptive Testing Version 6 demonstrated overall superior accuracy,
the losses incurred for all examinees were not the same. More importantly, the
losses relative to examinees' general achievement may be small for some levels
but high for others. The mean losses as a function of examinees' achievement

I .... ..
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Table 6
Descriptive Statistics for Number of Items Presented

Testing Range
Version Mean SD Min Max

1 2.88 1.50 2 11
2 3.09 1.72 2 9
3 2.92 1.38 2 7
4 2.84 1.30 2 8
5 3.45 1.60 2 12
6 3.48 1.92 2 14
7 3.47 1.90 2 15

8 3.34 1.64 2 14
Control 26.90 4.35 20 34

levels are shown for Adaptive Testing Versions 4 and 6 and for the control test-
ing version in Figure 2.

The comparison of losses with respect to achievement levels demonstrated
that both adaptive testing versions performed equally well throughout the

Figure 2

Mean Total Loss Corresponding to Levels of Achievement

S..... ........ '

Sthe lower end of the achievement levels. This was probably due to the consis-
B tency check employed in Version 6.

-I. --- - -,,
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The adaptive testing versions had smaller losses for the middle and upper
achievement levels, but this was reversed for the lower levels. This difference
could be eliminated by reducing the a level. It may be recalled that 6 was set
to .1, whereas a was set at .2. Since the false nonmastery error would be larg-
er than the false mastery error, a higher proportion of false classifications
would be expected for those at the lower achievement levels.

The adaptive testing versions may have produced more inaccurate classifica-
tions due to the paucity of data representative of poorer-achieving students.
Since only a small proportion of examinees in the data base did not master the

objectives, the predictions made for the poorer-achieving students were often
based on relatively few data cases. Such was not the case for those with higher
achievement levels.

Selection of Adaptive Testing Versions for the Next Phase

The intention of the next phase of the study was to compare the results of
some of the adaptive terting versions with those obtained in the present testing
system used in the Air Force Weapons Mechanics training program at Lowry Air
Force Base. Adaptive Testing Versions 4 and 6 were selected. No version was
significantly superior in numbers of items presented. Adaptive Testing Version
6 was selected because of its superior accuracy. Adaptive Testing Version 4 was
selected, however, solely on the basis of the mean number of items presented for
item prediction.

Phase II: Real Data Simulations
Purpose

The purpose of this phase of the study was to compare (1) the relative ef-
ficiency of Adaptive Testing Versions 4 and 6 with each other and with the pre-
sent testing method used in the Weapons Mechanics training program and (2) the
classification decisions made from the adaptive testing versions with those made
by the pesent method used in the Weapon Mechanics training program.

Design

The control testing version for this phase was a testing procedure consist-
ing of a fixed set of items for each objective. Hence, all examinees answered
the same set of items under the control treatment.

Classification decisions made by the adaptive testing and control testing
versions were compared using an index defined as the number of agreements minus
the number of disagreements. An agreement in classifying an examinee's perfor-
mance on an objective was obtained when both indicate "nonmastery." Since for
the adaptive tests, performance classified as "indeterminate" dictated proce-
dures identical to those classified as "nonmastery," this condition was also

considered an agreement. The a and B values selected were the same as in the
previous phase--.2 and .1, respectively.

* Data that were actually collected on four examinations in the Weapon Me-
chanics training program were used in the computer simulations for this phase.
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For each examination, from 250 to 290 response sets were available. It was not

feasible to match student identification codes across the examinations, since
there was no control over the forms of the tests taken by the examinees. For
each examination, the first 150 response sets, sorted in ascending chronological
order, were used to form the data base. Of the remaining subjects, 50 were ran-
domly selected as the examinees who were to take the simulated adaptive tests.
Hence, within each examination the same 50 trainees were used as examinees, re-
gardless of the testing version; but the same 50 trainees were not used across
examinations.

The assumed hierarchical configurations for the objectives for each exami-

nation were provided by Roger Pennell of the Air Force Human Resources Labora-
tory, Lowry Air Force Base, Denver, Colorado. The mastery score for an objec-
tive with N(> 2) items was set to N - I, as is presentlys done with conventional
testing procedure, which is referred to here as the control testing version. If
N equaled 1, the cutting score was set to 1.

Correlated t tests were used to compare adaptive testing versions. A t
test for a mean equal to a constant was employed for each comparison of each
adaptive testing version to the control testing version.

Results

Both adaptive testing versions used in this phase of the study demonstrated
that each required significantly fewer items than the control testing version.
Version 4 of the model required the presentation of fewer items than Version 6.

Efficiency. Adaptive Testing Version 4 required statistically significant-
ly (t = 8.30, df = 199, p < .001) fewer items than Version 6. The descriptive
statistics for these versions are shown in Table 7. Althoug there was a sta-
tistical difference, the superior efficiency of Version 4 amounted to less than
one item per examinee per examination.

Table 7
Descriptive Statistics for Adaptive

Testing Versions 4 and 6

Adaptive
Testing Version

Variable and Statistic 4 6

Number of Items Presented
Mean 3.02 3.92
SD 1.19 1.42

Index of Agreement
Mean 6.15 5.54
SD 3.39 3.27

M-ttery/nonmastery decisions. Adaptive Testing Version 4 had a statisti-

cally significantly (t = 5.58, df = 199, p < .001) higher agreement in mas-
I'
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tery/nonmastery classifications than Version 6. The descriptive statistics for
these versions are also shown in Table 7.

The average number of objectives per examination was 7.25. Hence, the
range of the index could be from -7.25 to 7.25. A complete agreement in deci-
sions would result in an index value of 7.25; a complete disagreement would re-
sult in a value of -7.25. In terms of percent of agreements in decisions, Ver-
sions 4 and b had 92% and 88% agreement with the control testing version, re-
spectively.

Separate t tests were performed on the number of items presented for each
of the adaptive testing versions compared to the number required by that of the
control version. The mean number of items presented under the control testing
version across the four tests was 15.25. The number of items required by the
adaptive testing version are presented in Table 8. The visual comparison of the
tabled values reveals such large differences that no statistical test was neces-
sary.

Since the four examinations differed in hierarchical configurations, number
of objectives, and number of available items, Table 8 presents the percent of
reduction in test items required by the adaptive testing versions in relation to
the control testing version for each examination. The table also shows the per-
cent of agreements in mastery/nonmastery decisions between each adaptive testing
version and the control testing version.

Table 8
Comparison of Results of Adaptive Testing Versions 4 and 6

to Control Testing Version for Each Examination

Number of Items Percent of
Adaptive Presented Mastery
Testing Adaptive Percent Number and Non-

Version and Control Testing of Item of Mastery
Examination Version Version Reduction Objectives Agreements

Version 4
1 20 4.3 79 14 91
2 12 2.6 78 4 98
3 14 2.5 82 6 86
4 15 3.2 79 5 99

Version 6
1 20 5.1 75 14 87
2 12 4.2 65 4 92
3 14 2.4 83 6 84
4 15 4.0 73 5 93

The results show that both Adaptive Testing Versions 4 and 6 made most of
the same mastery/nonmastery decisions as were presently being made by the Air
Force in its Weapons Mechanics program; but the adaptive testing versions make
the decisions with approximately 75% fewer items than the conventional, or con-
trol, version.

1i
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Discussion and Conclusions

Both simulation phases of the study have shown that the adaptive testing

versions could make mastery/nonmastery decisions much more efficiently than

testing on each objective with a constant number of items for each objective

presented.

The real-data simulation showed that the mdstery/nonmastery agreement be-

tween the control testing version and the adaptive testing versions was higher

for Adaptive Testing Version 4. This does not mean that Version 4 is more accu-

rate than Version 6. On the contrary, in the first simulation it was demon-

strated that Adaptive Testing Version 6 was the only adaptive pru.cdure that had

significantly smaller loss than the control version. In essence, Adaptive Test-

ing Version 4 and the control version in the second simulation phase would be

expected to be equally as inaccurate in mastery/nonmastery decisions. Adaptive

Testing Version 6 would be expected to be more accurate than the control version
and, hence, would have fewer agreements with the control version than would Ver-

sion 4.

Although in both phases statistically significant differences were found

among the adaptive testing versions, the assignment of different values to the

version's parameters might equalize all results. All the adaptive testing ver-

sions were used with the same values specified for the model's parameters. For

example, for all versions, a and were set at .2 and .1, respectively. The
versions may be differentially sensitive to the parameters. Hence, two versions

may be expected to perform exactly the same, but only by specifying different

values for the same parameters.

For both simulation phases of the study the number of sets of responses

needed in the data bases were unknown. For the second simulation phase it was

estimated that 150 sets would be sufficient. The results indicate that an aver-

age of 29 sets matched each examinee's set on each test. The average of 29 sets

per examinee did not give sufficient information as to whether the data base was

of sufficient size. The ranges in number of sets indicated that for every test

and for every adaptive testing procedure the data base was completely depleted
for some examinees. As in the first simulation, it may not be that the data

base contained insufficienL numbers of response patterns but that there was an
insufficient number of patterns for poorer performing individuals. In both

phases the data bases were composed of response patterns representative in type
and proportion to those patterns expected in the population of examinees. It

appears that when a high proportion of examinees mastered the objectives, as in

the Weapons Mechanics program, such a data base is insufficient for predictions

of performance by nonmastering examinees. Hence, in such a situation, oversam-

pling of nonmastering examinees may be required in order to provide adequate

data for all levels of performance.

Because of the similarity of the results for all the adaptive testing ver-

sions in the !rjnte carlo simulations and the superior efficiency demonstrated by

Adaptive Testing Versions 4 and 6 procedures in the real-data simulations, it

appears that any of the adaptive testing variations used in this study would be

much more efficient than the conventional testing procedure used by the Air

Force.

..
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A COMPARISON OF ICC-BASED ADAPTIVE MASTERY TESTING AND THE
WALDIAN PROBABILITY RATIO METHOD

G. GAGE KINGSBURY AND DAVID J. WEISS
UNIVERSITY OF MINNESOTA

The use of criterion-referenced achievement test interpretation has gained
great support within the educational measurement community since its introduc-
tion less than two decades ago (Glaser & Klaus, 1962). It is intuitively ap-
pealing to educators to be able to measure students' performances against an
absolute standard of behavior on prespecified learning objectives, and the use
of criterion-referenced test interpretation gives educators this capability.
One of the most basic forms of criterion-referenced test interpretation involves
classifying students into two categories--one containing students who have
achieved a sufficient command of the subject matter (mastery) and the other con-
taining students who have not achieved a sufficient command of the subject mat-
ter (nonmastery). Traditionally, a student is declared a master if his/her
score on a conventional classroom achievement test is as high or higher than a
prespecified cutoff point or is declared a nonmaster if his/her score on the
test is lower than the cutoff point. This form of classroom testing has been
called mastery testing and can be useful (1) in determining the degree of stu-
dent proficiency within a classroom and (2) as a diagnostic tool to identify
individuals who need further training in specific instructional areas (Nitko &
Hsu, 1974).

As traditional mastery testing has been developing its own technology,
adaptive testing technology has also developed to allow educators to make maxi-
mum use of classroom testing time while reducing the amount of time spent on
testing to a minimum. The use of adaptive testing techniques has recently been
shown to be effective in reducing test length while obtaining high-fidelity
achievement level estimates in several instructional settings (e.g., Bejar,
Weiss, & Gialluca, 1977; Brown & Weiss, 1977).

Mastery and adaptive testing technologies have each shown their usefulness

in the academic setting for different, but compatible, reasons. It is therefore
not surprising that a fusion of the two techniques should occur in order to al-

low mastery testing to be accomplished in the shortest possible class Lime while
maintaining the accurate decisions necessary for correct diagnoses of student
instructional problems.

Approaches to Adaptive Mastery Testing

* Two attempts that have been made to combine mastery and adaptive testing
technologies have been Ferguson's (1969, 1970) application of Wald's Sequential
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Probability Ratio Test (SPRT) to mastery testing and Kingsbury and Weiss's
(1979a) formulation of an item characteristic curve (ICC) approach to adaptive
mastery testing (AMT). Both of these testing procedures attempt to accomplish
two common ends. First, the procedures seek to shorten the length of the test.
Second, the procedures use statistical techniques designed to hold the number of
misclassifications (i.e., individuals for whom the wrong decision is made) to
some acceptable minimum. The methods by which these two procedures attempt to
accomplish these ends are quite different.

The very fact that two procedures exist that attempt to accomplish the same
basic ends through different techniques renders a comparison of the two methods
desirable. The prime objective of this paper, then, was a comparison of the
efficiency with which these two procedures for mastery testing achieved their
goals of reducing test length while obtaining a high percentage of correct deci-
sions. The first level of comparison presented here is a descriptive comparison
based on the theories underlying each of the procedures. This is followed by an
empirical comparison of the two testing procedures within the context of a monte
carlo simulation of test responses designed to fit a number of theoretical con-

tingencies.

Wald's SPRT Applied to Mastery Testing

The SPRT procedure. Wald's (1947) SPRT was originally designed as a quali-
ty control test for use in a manufacturing setting. It was designed to deter-
mine whether a large consignment of products (e.g., light bulbs) contained a
small enough proportion of defective bulbs to pass some prespecified quality
criterion while only testing a small sample of the light bulbs in the consign-
ment. Wald's solution to this problem was to draw light bulbs sequentially from
the consignment, to test the light bulb drawn at each stage, and to determine at
each stage the relative probabilities of the following two hypotheses:

H0 : P p0  [1]

H P = Pl [2]

where
p = the proportion of defective elements (light bulbs) in the population

, (consignment);
PO = the proportion of defective elements in the population below which it

is always desired to accept the quality of the population; and
p" = the proportion of defective elements in the population above which it

is always desired to reject the quality of the population.

Since each stage of the sampling procedure may be viewed as a Bernoulli
trial (given that each element is sampled at random without replacement from the

* population of equivalent elements and assigned either nondefective or defective
status), the probability of observing a certain number of defective elements in
a sample of a certain size, given that either H0 or H, is true, may be described
with the binomial probability function. Consequently, the probability of ob-
serving W defective elements in a sample of m elements (Wm), under H0 : P.=i
is -

I7
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PO = p(m-Wm) (i - PO ) W m  31

Under H1 : p = Pi, the probability becomes

(m- WM ) (1 - )WmPl P, Pl [4]

M

The ratio of these two probabilities yields an index of the relative
strengths of the two hypotheses such that at each stage in the sampling proce-
dure the quality of the consignment may be either rejected or accepted, or sam-
pling of elements may be continued. The stringency of the test is based (1) on
the proportion (a) of errors willing to be tolerated in rejecting the quality of
the consignments that actually do have the quality desired and (2) on the pro-
portion (0) of errors willing to be tolerated in accepting the quality of con-
signments that do not actually have the minimum acceptable quality.

In its final log form the test used by the SPRT at each stage of sampling
specifices that if

-1

tog Log [5

m

the consignment is rejected; if

p1
Log Log a [61

the consignment is accepted; and if

21 sLog < Log m < Log [7]

sampling continues.

Wald (1947) has shown that this testing procedure results in error levels
approximating a and across consignments. Further, it has been shown that the
probability of not obtaining a decision for a consignment approaches zero as the
sample size increases.

Ferguson's application to mastery testing. Ferguson (1969) has applied the
J SPRT within a mastery testing situation using test item responses in place of

light bulbs and a domain of items that represents an instructional objective
instead of a consignment. The quality that Ferguson evaluated was students'
command of the content area being tested. Ferguson also branched through an
instructional hierarchy, applying the SPRT to various objectives of instruction.
The present study, however, will concentrate on the application of SPRT to a
single instructional unit.

(,4jK
6.1..
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To employ the SPRT in a mastery testing situation, the educator must speci-
fy the following:

1. Two criteria of performance (po and pI), which serve as the lowest lev-

el at which a mastery decision will be made and the highest level at
which a nonmastery decision will be made and which bound the uncertain-
ty region in which testing will continue.

2. Two levels of error acceptance (a and ), which determine the strict-
ness of the decision test and should reflect the relative costs of the
two error types.

3. A maximum test length to constrain the testing time for individuals who
are very difficult to classify.

One characteristic of this form of adaptive mastery testing is that it is
fairly simple to implement within a classroom situation. The decision rule is
easily incorporated into a chart that shows the teacher or the student how many
questions need to be answered correctly or incorrectly for each test length in
order to terminate the test. Once the charts are made for various values of.po,

p1i CX, and , the statistical work is completed. This puts the power of the

SPRT procedure into the hands of the educator quite readily. The procedure is
not fully adaptive, however. Items are selected at random or in a fixed se-
quence; it is only the test length that varies for individuals.

ICC-Based Adaptive Mastery Testing (AMT)

The paradigm for AMT that Kingsbury and Weiss (1979) have proposed makes
use of ICC theory and Bayesian statistical theory to adapt the mastery test to
the individual's level of skill during the testing process. ICC theory is used
to estimate the parameters that most efficiently describe each of the items in
the item pool. Given these parameter estimates, it is possible to prescribe a
type of adaptive procedure that may allow mastery decisions that are quite accu-
rate to be made while shortening the length of the test needed for most individ-
uals.

The AMT procedure is based on three integrated procedures. These are (1) a
procedure for individualizing the administration of test items, (2) a method for
converting a traditional (proportion correct) mastery level to the latent
achievement metric, and (3) a procedure for making mastery decisions using
Bayesian confidence intervals.

Individualized item selection. To make mastery testing a more efficient
process, it is desirable to reduce the length of each individual's test (1) by
eliminating test items that provide little information concerning an individu-
al's achievement level and (2) by terminating the AMT procedure after enough
information has been gathered so that the mastery decision can be made with a
high degree of confidence. To operationalize this goal, an item to be adminis-

J tered to an individual at any point during the testing procedure is selected on
the basis of the amount of information that the item provides concerning the
individual's achievement level estimate at that point in the test, since that
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item should provide the most efficient use of testing time. A procedure that
selects and administers the most informative item at each point in an adaptive
test--the maximum information search and selection (MISS) technique--has been
described by Brown and Weiss (1977) and is part of the AMT procedure.

The information that an item provides at each point along the achievement

continuum may be determined using the ICC model that is assumed to underly indi-
viduals' responses to test items. The AMT procedure assumes the 3-parameter
logistic ICC model (Birnbaum, 1968). Using this model, the information avail-
able in any item is (Birnbaum, 1968, Equation 20.4.16)

= (I - c ) a2 [DL.(6)] / {p[DL.(0)]

+ [-DL(0) ] , [8]

where
Ii (8)= the information available from item i at any achievement level,

0;

= the lower asymptote of the ICC for the item;

D = 1.7, a scaling factor used to allow the logistic ICC to closely
approximate a normal ogive;

a = the discriminatory power of the item at the inflection point of the
ICC;

= the logistic probability density function;
Li(e) = ±i(0 - bi) where bi is the difficulty of the item; and

= the cumulative logistic function.

If it is assumed that the achievement level estimate (6) is the best esti-
mate of the actual achievement level (0), the item information of each of the
items not yet administered may be evaluated at e at any point during the test.
The item that has the highest information value at the individual's current lev-

*el of 6 is thus chosen to be administered next.

For this study a Bayesian estimator of the individual's achievement level,

developed by Owen (1969), was used. This estimation procedure has been shown to
yield biased estimates of trait levels (Kingsbury & Weiss, 1979; McBride &
Weiss, 1976). This bias may be attributed to the assumption of a normal distri-
bution of 0 in the population made by Owen's procedure or due to inappropriate

, prior information concerning 0 on the individual level (Kingsbury & Weiss,
1979b). The bias inherent in this scoring strategy may render the MISS tech-
nique less efficient than it would be under optimal conditions, thereby reducing
the efficiency of the AMT technique as a whole.

To use MISS under optimal conditions, trait level estimates should be ob-
tained by maximum likelihood estimation, which yields asymptotically efficient

estimates (Birnbaum, 1968). Maximum likelihood estimation techniques are not
able, however, to obtain trait level estimates for consistent item response pat-
terns (either all correct or all incorrect) or for item response patterns for
which the likelihood function is extremely flat. The Bayesian technique will
yield an 6stimate for any response vector. This inability to estimate 0 for
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some response patterns mitigated against the use of a maximum likelihood estima-
tion procedure for AMT. Consequently, the Bayesian estimation procedure was
used in the AMT procedure on the assumption that the capability to obtain a 0
estimate for each individual at each point during the test would outweigh any
efficiency lost due to the bias inherent in the estimation procedure. The use
of the Bayesian estimation strategy in this study also allowed the use of easily
interpretable Bayesian confidence intervals to make the mastery decision.

Mastery level. The classical mastery testing procedure specifies a per-
centage of the items on a test that must be correctly answered by an individual
in order for him/her to be declared a master. Using ICC theory, it is possible
to generate an analog to the percentage cutoff of classical theory for use in
adaptive testing, even though the use of MISS will tend to result in each person
answering about 50% of the items correctly, given a large enough item pool (be-
cause items administered will most probably be close to the individual's level
of 0). The analog is based on the use of the test characteristic curve (TCC;
Lord & Novick, 1968). The TCC is the function that relates the achievement con-
tinuum to the expected proportion of correct answers that a person at any level
of 0 may be expected to obtain if all of the items on the test are administered.

For this procedure the assumption was made that a 3-parameter logistic
ogive described the functional relationship between the latent trait (achieve-
ment) and the probability of observing a correct response to any of the items on
the test. This assumption yields a TCC of the following form:

n 1 + exp[l.7a (b. - e)]/
E(PIe) = E (I - c.) + C. n [91

=1 exp[l.7ai(b )]

where
E(PIO) = the expected value of the proportion of correct answers observed

on the test given at any achievement level;
n = the number of items on the test;

ci = the estimate of the lower asymptote for the ICC of item i;

= the estimate of the discriminatory power for the item;

b = the estimate of the difficulty of the item; and

0 = any given achievement level.

This monotonically increasing function enables the expression of any given
level of 0 to its most likely proportion correct or, more importantly in this
context, to determine the level of e that will most probably result in any given
proportion of correct answers. To exemplify the use of the TCC in determining a
level of 0 that is comparable to a desired percentage mastery level, a hypothet-
ical TCC is shown in Figure 1. Assuming that some items from the test repre-
sented by this TCC are to be administered in some adaptive manner (e.g., MISS)
and that a level of 0 is to be determined that corresponds to, say, 70% correct
performance on the entire test, it may be done using the following steps:

1. Draw a horizontal line (Line A in Figure 1) from the .7 mark on the
vertical (expected proportion correct, or P) axis of the TCC figure to
the TCC.
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2. Drop a vertical line (Line B) from the point of intersection of the TCC

and the horizontal line drawn in Step 1 to the horizontal (achievement

level, or 0) axis. This point (0 m ) on the achievement level axis is

designated the mastery level in terms of the achievement (0) metric.

3. The mastery level specified in Step 2 above may now be used to make

mastery decisions in place of the .7 mastery level originally specified
using any subset of items from the original test, provided that indi-
viduals' item responses are scored with a method that will put the 0

estimate on the same metric as the TCC. Any ICC-based scoring proce-

dure (e.g., Bejar & Weiss, 1979) will result in a 0 estimate that will

be on the correct metric. This procedure allows the transformation of

any desired proportion correct mastery level to the 0 metric Once
this transformation is made, ICC theory and its technology may be used

to increase the efficiency of present mastery testing techniques.

Figure 1

Hypothetical Test Characteristic Curve Illustrating Conversion

from the Proportion Correct Metric to the Achievement Metric

A

A
.7

: 'B

1.

-4.0 -3.0 -2.0 -1.0 0" 0, 1.0 2 .0 3.0 4.0

Achievement (e) Level

1Making the mastery decision using Bayesian confidence intervals. Although

any a~hievement level estimate of any subset of the items from a test obtained
'1sing ICC-based scoring will be on the same metric as the TCC for the original
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test, two different subsets of items may result in 0 estimates that are not
equally informative. For example, if one test consisted of many items and the
other used only a few items, the longer test would probably yield a more precise
8 estimate, provided that the items in the two tests had similar ICCs. Thus,
ICC-based 8 estimates that are on the same metric are comparable except for
their differential precision. Comparisons of ICC-based e estimates should
therefore be based on confidence interval estimates instead of the raw achieve-
ment level point estimates.

For this reason, the AMT strategy makes mastery decisions with the use of
Bayesian confidence intervals. Specifically, after each item is selected and
administered to an individual--for this application MISS is used to choose the
appropriate item at each point in the test-- a point estimator of the individu-
al's achievement level (0) may be determined using Owen's Bayesian scoring algo-
rithm, using information gained from all items administered previously. Given
this point estimate and the corresponding variance estimate, also obtained using
Owen's procedure, a Bayesian confidence interval may be defined such that

1.96(02)2 < 0 < 0. + 1.96(o') with p = .95 [10]

where
. = the Bayesian point estimate of achievement level, calculated following
1 item i;2

i = the Bayesian posterior variance following item i; and

0 = the true achievement level.

Equation 10 may be interpreted as meaning that the probability is .95 that the
true value of the achievement level parameter, 0, is within the bounds of the
confidence inteval. It might also be said that there was 95% confidence that
the true parameter value lies within the confidence interval.

After this confidence interval has been generated, it is a simple matter to
determine whether or not 0 m, the achievement level earlier designated as the

mastery level on the achievement metric, falls outside the limits of the confi-
dence interval. If it does not, the testing procedure administers another item
to the individual and recalculates the confidence interval. This procedure con-
tinues until, after some item has been administered, the confidence interval
calculated will not include em, the mastery level on the achievement continuum.

At this time the testing procedure terminates and a mastery decision is made.
If the lower limit of the confidence interval falls above the specified mastery
level, em, the individual is declared a master; if the upper limit of the confi-

dence interval falls below 6m, the individual is declared a nonmaster. Given a

finite item pool size, however, the testing procedure may exhaust the pool be-
A" fore a decision can be made in this manner. It is possible to make a decision

concerning mastery for any of these individuals based on whether the Bayesian
* point estimate of their achievement level (0) is above or below the specified

mastery level, 6m. These decisions, however, cannot be made with the same de-

gree of confidence as those made with confidence intervals that do not contain
the mastery level.

2A
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Wald's SPRT versus ICC-Based AMT Procedure

The two mastery testing strategies described above differ in a number of
characteristics. The most salient of these differences are as follows:

1. Treatment of the items in the domain.
2. Treatment of the uncertainty of decisions.
3. Treatment of the mastery cutoff.
4. Treatment of the achievement metric.

Treatment of items. The SPRT in the simple form outlined above, treats all
of the items in the mastery test as if they were perfect replicates of each
other. Thus, an individual's response to a particular item is viewed solely as
a probabilistic function of the individual's true mastery status. This assump-
tion is most appropriate in the production setting in which Wald originally de-
signed his procedure; each light bulb can be expected to be like every other
light bulb. This assumption may be less tenable in the mastery testing situa-
tion, where an individual's responses to test items may vary as a function of
differential characteristics of the items themselves, as well as his/her mastery
status.

The AMT procedure assumes that if items differ, their individual character-
istics may be described by a logistic ogive that varies as a function of the
item's power to discriminate among individuals with different achievement levels
(a), the item's difficulty (b), and the ease with which an individual may answer
the item correctly with no knowledge of the subject mattery (c). This assump-
tion concerning the operating characteristics of the items is less restrictive
than the assumption made in the SPRT procedure described above; but to the ex-
tent that the items do not conform to the logistic form specified, the assump-
tion might still restrict the efficiency of the AMT procedure.

Both mastery testing procedures, therefore, postulate some systematic simi-

larities among the test items. To the extent that one of the postulations is
closer to the actual state of the world than the other, it might be expected
that the corresponding procedure would perform more efficiently. Thus, the
characteristics of the item pool to be used for mastery testing yields the first
point at which it might be decided which of the two models is more appropriate
for use in a given situation.

Treatment of uncertainty. The SPRT makes use of traditional hypothesis
testing methods to determine the point at which an individual's item responses
are sufficient evidence for making a decision concerning his/her mastery status.
Here "sufficient" is defined in terms of the a and a error rates that one is
willing to accept across all the students tested, a and a may be set indepen-
dently to reflect the educator's concerns over the relative costs of the two

' error types.

The AMT procedure uses a symmetric Bayesian confidence interval to make the
mastery decision. This functionally sets a equal to 5 and, by doing so, implies
equal costs for the two error types. To the extent that the costs of the two
error types are not equal, the SPRT provides the educator with more flexibility
than the AMT procedure, as currently operationalized.

A.



-129-

Treatment of mastery level. The SPRT uses an uncertainty region, rather
than a single mastery level, to define the mastery and nonmastery regions. The
specification of this uncertainty region is based on a decision by the educator
concerning the range that appropriately reflects uncertainty as to whether the
student's performance is actually the performance of a master or a nonmaster.
By contrast, the AMT procedure defines a single mastery level and determines
whether an individual is significantly above or below the mastery level using a
Bayesian confidence interval.

This difference between the two testing procedures renders tentative any
comparison that might be made. The performance of the SPRT procedure will vary
widely as a function of the uncertainty band chosen. For the AMT technique this
uncertainty is not directly taken into account. Any comparison between the two
techniques is conditional upon the width and absolute bounds of the uncertainty
region.

Treatment of the 0 metric. The decisions made by the SPRT are dependent on
the percentage of items that are correctly answered for any specific test
length. Thus, the metric of achievement assumed in this procedure is the pro-
portion-correct metric. The AMT procedure assumes, due to the differential
properties of the items in the item pool, that there is a nonlinear transforma-
tion of the proportion-correct metric, which more accurately represents the
achievement of the individuals taking the test. This latent continuum serves as
the achievement metric for the AMT procedure.

This difference in the achievement metric again renders comparisons between
the two procedures somewhat difficult, since the "true" achievement levels of
individuals must be postulated to fit one of these metrics. Any differences
noted in the performance of the two procedures may be due to this difference in
the achievement metrics assumed.

EMPIRICAL COMPARISON OF THE SPRT AND AMT PROCEDURES

To delineate circumstances in which one of the mastery testing procedures
might have an advantage over the other, monte carlo simulation was used to com-
pare the two testing procedures under several conditions.

Method

The method used to compare the two variable-length mastery testing proce-
dures to one another, as well as to a conventional (fixed length) testing proce-
dure, consisted of five basic steps:

1. Three item pools were generated in which the items differed from one

another to different degrees.

2. Item responses were generated for 500 simulated subjects (simulees) for
each of the items in the three item pools.

I

3. Conventional tests of three different lengths were drawn from the larg-

1 -,4 , .. ... .
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er item pools; these conventional tests served as item pools from which

the SPRT and AMT procedures drew items.

4. The AMT and SPRT procedures were simulated for each of the three dif-

ferent item pool types and the three conventional test lengths.

5. Comparisons were drawn among the three types of tests (AMT, SPRT, con-
ventional) concerning the degree of correspondence between the deci-

sions made by the three test types and the true mastery status. Fur-

ther comparisons were made based on the average test length that each
test type required to reach its decisions.

Item Pool Generation

Three 100-item pools were generated to reflect different types of pools

that might be used in a mastery test.

Uniform pool. The uniform pool consisted of 100 items that were perfect
replications of one another. Each item had the same discrimination (a = 1.00),
difficulty (b = 0.00), and guessing probability (c = .20). This pool-was de-
signed to correspond to the SPRT procedure's assumption that all items in the

test are similar.

b-variable pool. The b-variable pool varied from the uniform pool only in

that the items had a range of difficulty levels. Eleven values of b were
assigned to an approximately equal number of items in the pool. The values of b
chosen were -2.50, -2.OG, -1.50, -1.00, -0.50, 0.00, 0.50, 1.00, 1.50, 2.00, anj

2.50. Nine items at each level of difficulty were used in this pool, along with
an additional item with b = 0.00 to bring the pool to 100 items.

a-, b-, and c-variable pool. The a-, b-, and c-variable pool differed from
the b-variable pool in that the discriminations and guessing levels of the items
were allowed to spread across a range of values. The a values used were .50,
1.00, 1.50, and 2.00. The c values used were .10, .20, and .30. All a and c

values were approximately equally represented. The parameter estimates were-
arranged such that each level of difficulty was represented by items that had

approximately the same average a level and the same average c level (i.e., the
pool was approximately rectangutlar).

Item Response Generation

Achievement levels for 500 simulees were drawn from a normal distribution
with a mean of zero and a standard deviation of one. Item responses for each of

these simulees were then generated for each item in each of the three item pools
using the 3-parameter logistic ICC model. That is, knowing the 0 level of the

simulee and the parameters of the item in question, the probability of a correct
response was calculated. A random number was then drawn from a uniform distri-
bution ranging from zero to one. If this number was lower than the probability
of a correct response, the simulee was given a correct response to the item. If
the number was higher than the correct response probability, the simulee was
given an incorrect response.

I' V
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Thus, in this study, the achievement metric and the item response generator

correspond closely to the model assumed by the AMT procedure. The "true" mas-

tery level for each simulee was determined by comparing the e levels used to
generate the item responses with the proportion correct mastery level expressed

on the 0 metric.

Conventional Tests

Conventional tests of three different lengths (10, 25, and 50 items) were
drawn at random from each of the three item vools, with the stipulation that the

shortest conventional test served as the first portion of the next longer con-
ventional test and that this test in turn served as the first portion of the

longest conventional test. These nine conventional tests served as subpools
from which the AMT and SPRT procedures drew items during the simulations. This

random sampling from a larger domain of items was designed to correspond to the
traditional mastery testing paradigm and to the random sampling model underlying

the SPRT.

Simulation of the Testing Strategies

Using the item response data for the 500 individuals and the item parame-

ters available for each of the items (for the AMT procedure), the three testing
strategies (AMT, SPRT, conventional) were employed to make mastery decisions for

each individual. Each testing procedure was used with each of the nine sub-

pools.

Conventional test. The conventional test assumed a mastery criterion of
60% correct responses. After all of the items in the conventional test were

administered, if the individual answered 60% or more items correctly, the indi-
vidual was declared a master. If the individual's score was less than 60% cor-

rect, the individual was declared a nonmaster.

SPRT procedure. For the SPRT procedure the limits of the uncertainty re-

gion were set at proportion-correct values of .50 and .70. Values of a and B
were each set to .10. For individuals for whom no decision was made by the Wald

procedure before the item pool was exhausted, the mastery decision was made by
0 the conventional procedure, using a mastery proportion of .60.

AMT. For the AMT procedure the mastery levels in each of the 100-item
pools corresponding to 60% correct were designed to be equal to 0 = 0.00. This

mastery level was used with each of the smaller item pools, even though they had

not been designed to result in a mastery level of 0 = 0.00. This procedure ad-

ded some sampling error to the AMT procedure, to more appropriately rcilect the
error that is inherent when using estimated item parameters to determine the
mastery level. For the AMT Bayesian scoring procedure, each individual was as-

sumed to have a prior mean of 0.00 and a prior variance of 1.00.

Comparison among Testing Procedures

For each of the three testing procedures (AMT, SPRT, conventional), the

value of the procedure may be judged by the average length of the test required
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to make the mastery decision and by how well the decisions that are made reflect
the true state of nature. Specifically, the ANT and SPRT procedures were com-
pared in terms of the average reduction in the length of the test required to
make mastery decisions across the entire group of individuals. Further, all
three procedures were compared in terms of how well the decisions they made cor-
responded with the true mastery status of the individuals.

Comparisons within each testing procedure concerning the average test
length and the correspondence of decisions with true mastery status were made
across all nine combinations of test lengths and item pool types.

RESULTS

Test Length

Table 1 shows the mean test length required by each of the testing proce-
dures to make a decision concerning the mastery status of the simulees in the
test group.

Table 1
Mean Number of Items Administered to Each Simulee
for Three Mastery Testing Strategies Using Each Type

of Item Pool, at Three Maximum Test Lengths

Maximum Test Length
Item Pool and

Testing Strategy 10 25 50

Uniform Pool
Conventional 10.00 25.00 50.00
AMT 9.03 15.99 23.00
SPRT 8.75 13.12 15.39

b-Variable Pool
Conventional 10.00 25.00 50.00
AMT 9.43 18.09 27.17
SPRT 9.62 16.79 21.41

a-, b-, and c-Variable Pool
Conventional 10.00 25.00 50.00
AMT 8.73 16.35 23.39

* SPRT 8.62 13.42 15.70

i Uniform pool. As can be seen from Table 1, the AMT procedure resulted in
some test length reduction for each maximum test length (MTL), with the reduc-
tion in test length increasing as the MTL increased. For the 10-item MTL, the
percentage by which the conventional test length was reduced was 9.7%; for the
25-item MTL the reduction was 36%; and for the 50-item MTL the observed reduc-
tion was 54%.

For the SPRT procedure, again, increasing test length reduction was noted

. .
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as MTL increased; and some reduction was noted at each level of MTL. For the
10-item MTL, the reduction observed was 12%. The 25-item MTL resulted in a 48%
reduction. For the 50-item MTL the reduction was 69%. At all MTL levels the
SPRT procedure resulted in a greater reduction of test length than the AMT pro-
cedure.

b-variable pool. For the pool in which the difficulty levels of the items
differed, the data in Table I show the same trends that were noted for the uni-
form pool. The AMT procedure reduced the test length at each MTL, and the re-
duction increased with the MTL level. For the 10-item, 25-item, and 50-item MTL
levels, the AMT procedure reduced test length by 6%, 28%, and 46%, respectively.

The SPRT procedure also reduced test length at each MTL level, with larger
reductions for the longer MTL levels. At the 10-item, 25-item, and 50-item MTL
levels the test length reductions observed were 4%, 33%, and 57%, respectively.

For this pool the AMT procedure resulted in slightly greater reduction in
test length at the 10-item MTL level, whereas the SPRT procedure resulted in
greater test length reductions for the longer MTL levels. Across all MTL lev-
els, both procedures reduced test length somewhat less for this item pool than
for the uniform item pool.

a-, b-, and c-variable pool. Table 1 shows that when the AMT procedure was
used with this item pool, test length was again reduced at each MTL and this
reduction was greater for the longer MTL levels. For the 10-item, 25-item, and
50-item MTL levels, the observed reductions in test length were 13%, 35%, and
53%, respectively.

For the SPRT procedure with this item pool, test length reduction was once
more observed, with an increasing reduction as the MTL increased. The reduc-
tions noted were 14%, 46%, and 69% for the 10-item, 25-item, and 50-item MTL
levels.

For this item pool the SPRT procedure terminated using a smaller average
number of items for each MTL. Further, the degree of test length reduction in
this pool for both procedures, at all MTL levels, was quite similar to that ob-

served for the uniform item pool.

Correspondence with True Mastery Status

For each of the simulees in the sample, the true 0 level was known: It was
the level that was used to generate the item responses. Given this, it was
known whether the individual's 0 level was actually above or below the prespeci-
fied mastery level on the achievement metric (0 - 0.00). Phi correlations be-
tween true mastery status and the mastery state determined by each of the three
testing procedures for each MTL level and pool type are shown in Table 2.

J
3Uniform pool. For the uniform pool one major trend was observed. For each

testing procedure an increase in the MTL level was accompanied by an increase in
the correlation between the true and estimated mastery states. (These correla-
tions may be referred to as correspondence coefficients.)
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Table 2
Phi Correlations Between Observed Mastery

State and True Mastery State for Each Mastery

Testing Strategy, Using Each Type of Item Pool,
at Three Maximum Test Lengths

Maximum Test Length

Item Pool and
Testing Strategy 10 25 50

Uniform Pool
Conventional .771 .837 .875
AMT .775 .840 .871

SPRT .771 .837 .867
b-Variable Pool

Conventional .541 .667 .783
AMT .615 .715 .828
SPRT .541 .656 .704

a-, b-, and c-Variable Pool
Conventional .290 .670 .735
AMT .470 .733 .787
SPRT .290 .592 .571

In addition to this major trend, it was observed that for the 10-item and
25-item MTL levels, the AMT procedure produced the highest correspondence coef-

ficient observed (r = .775 and .840, respectively). For the 50-item MTL level

the conventional procedure resulted in the highest correspondence (r = .871).

It should be noted that the differences in correspondence between any two
MTL levels within any testing procedure (the smallest was .03, between the

25-item and 50-item MTL levels for the SPRT procedure) were much larger than the
largest difference noted between any two testing procedures within a single MTL

t level (.008, for the conventional and SPRT procedures in the 50-item MTL level).

b-variable pool. The same major trend that was found for the uniform pool
was again observed in the b-variable pool. Each testing strategy resulted in
higher correspondence as the MTL level increased. For each MTL level, the AMT

procedure resulted in the highest correspondence coeffifcients. The conventional
procedure resulted in the next highest correspondence !evel for all three MTL
levels (tied with the SPRT procedure at the 10-item MTL level).

Differences in correspondence coefficients observed between testing strate-

gies within an MTL level were larger in this pool than in the uniform pool but
were still somewhat smaller than the differences noted between MTL levels, on
the average. It was also noted that each correspondence level observed was low-

er for this pool than for the uniform pool across all MTL levels and testing
procedures.

a-, b-, and c-variable pool. The same trend of increasing correspondence

with increasing MTL level was again noted for the conventional and AMT proce-

r ' ' ' -.".. .... .. ........... ........
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dures. For the SPRT procedure the correspondence peaked at r = .592 at the

25-item MTL level and dropped to .571 at the 50-item MTL level.

The AMT procedure produced the highest correspondence for all three MTL
levels. The conventional procedure resulted in the next highest level of per-
formance at all MTL levels (again tied with the SPRT procedure at the 10-item
MTL level).

Once again, the average difference in correspondence was much greater be-
tween MTL levels within testing strategies than between two testing strategies
within a single MTL level. Further, on the average, the correspondence coeffi-
cients for this pool were lower than for either of the other pools, with rather
large decreases at the 10-item MTL level, particularly for the conventional and
SPRT strategies.

Frequency and Type of Errors

To further compare the performance of the three mastery testing strategies
the frequency with which each procedure made incorrect decisions (false mastery,
false nonmastery) was examined; the percentage of decision errors made by each
of the testing strategies with each of the item pools at each MTL is shown in
Table 3. This table shows the frequency with which each of the testing proce-
dures made false mastery and false nonmastery decisions in each of the testing
conditions. It may be noted that the "Total" column in Table 3 reproduces the
information already reported from the correlational analysis, but in a different
manner. For each situation in which a high correlation was noted, a correspond-
ingly low total error rate is noted in Table 3, as expected.

Uniform pool. For the uniform pool each of the testing strategies resulted
in the same general pattern of errors across MTL levels. Each procedure result-

ed in more false nonmastery decisions than false mastery decisions at all MTL
levels. Each procedure also resulted in fewer errors of each type with in-
creased MTL. The difference in the frequencies of false mastery and false non-
mastery decisions was smaller with larger MTL levels for all procedures. The
differences among the procedures in terms of the types of false decisions made
were minimal.

b-variable pool. For this item pool the patterns of errors made by the
different testing strategies were less regular than in the uniform pool. The
conventional and SPRT procedures produced more false mastery than false nonmas-
tery decisions at all MTL levels. The AMT procedure produced more false mastery
than false nonmastery decisions at the 10-item MTL level but produced more false
nonmastery than false mastery decisions at the two higher MTL levels. For the
AMT procedure the discrepancy in the frequencies of the two types of errors was
smaller than for the other two procedures at all three MTL levels and was quite
small (less than 2%) at the two higher MTL levels. For the conventional proce-
dure the difference in the frequencies of the two types of errors was quite
small at the highest MTL level; but for the SPRT procedure, a fairly large dis-
crepancy between the two error rates (20% to 80%) was observed at each MTL lev-
el. )
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In all testing conditions but one (AMT with a 25-item MTL), the use of the
b-variable item pool resulted in higher discrepencies between the two observed
error rates (as well as higher absolute error rates) than when the uniform pool
was used.

a-, b-, and c-variable pool. For this item pool, each of the testing pro-
cedures resulted in higher frequencies of false nonmastery decisions than false
mastery decisions for the 10-item and 25-item MTL levels. For the 50-item MTL
level the conventional procedure resulted in a higher frequency of false mastery
decisions, but the AMT and SPRT procedures still resulted in higher percentages
of false nonmastery decisions. As with the b-variable item pool, the AMT proce-
dure used with this item pool resulted in smller differences in the frequencies
of the two error types than either of the other testing procedures at each MTL
level. For the 50-item MTL level the AMT procedure produced a very small dif-
ference in the two error rates (.6%). The conventional procedure also produced
a small difference in the two error rates for the 50-item MTL level (1.6%). The
SPRT procedure resulted in the highest difference between the two error rates at
all MTL levels (tied with the conventional procedure at the 10-item MTL level).

One interesting result was observed when the errors made with the b-vari-
able item pool were compared with those made using the a-, b-, and c-variable
item pool. For the b-variable pool each of the testing procedures was more
likely to make false mastery decisions than false nonmastery decisions. This
tendency was reversed for the a-, b-, and c-variable item pool, where each of
the procedures made more false nonmastery decisions than false mastery deci-
sions. These trends were most noticeable for each of the testing procedures at
the 10-item MTL level, and most noticeable for the SPRT procedure across all MTL
levels. It is probable that these trends were artifacts of the random sampling
of items used to create the conventional tests, since the shorter conventional
tests would be less representative of the item domain due to the small sample of
items taken. The results obtained here would be explained by a very easy
10-item conventional test being drawn from the b-variable pool and a very diffi-
cult 10-item test being drawn from the a-, b-, and c-variable pool. In fact,
the mean b-value for the 10-item conven-ion-al test drawn for the b-variable pool
was -.80; for the a-, b-, and c-variable pool, it was 1.25. This-would also
explain the observation that the SPRT procedure most clearly showed these
trends, since the SPRT procedure used shorter test lengths, on the average, than
the other two procedures to make its final decisions and therefore was most
prone to small-sample artifacts.

.1

DISCUSSION AND CONCLUSIONS

Several trends were noted in the data concerning the performance of the
three testing strategies in the three different item pools. In every instance

the AMT and SPRT procedures produced reductions in the mean test length required
to make mastery decisions. This reduction increased with the MTL level in each
circumstance. The AMT procedure resulted in reductions of 6% to 54% from the

* length of the conventional test. The SPRT procedure resulted in reductions of
4% to 69%. On the average, the SPRT procedure required fewer items to make the
mastery decision.
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The correspondence between the estimated mastery status and the true mas-
tery status systematLcally increased with MTL for all testing procedures in each
item pool. The correspondence fairly systematically decreased from the uniform
pool, to the b-variable pool, to the a-, b-, and c-variable pool. The AMT pro-
cedure resulted in the highest level of correspondence in all circumstances but
one (the conventional test performed best for the 50-item MTL with the uniform
pool). On the average, though, the differences between different MTL levels
were more pronounced than differences between testing procedures. Further, the
type of item pool used had pronounced effects on the correspondence obtained.

The AMT procedure resulted in the most even frequencies in the types of
decision errors made across most MTL levels and item pools. This was desirable,
since both error types were assumed to have the same relative cost. Further, it
was noted that the SPRT procedure was most susceptible to small-sample arti-
facts, resulting in an imbalance in the frequencies with which the two types of
errors were made.

To prescribe the best testing strategy of those described here requires
specification of priorities and conditionals. If a uniform item pool is as-

sumed, the SPRT procedure required the fewest items while resulting in decisions
having correspondence coefficients that were quite comparable to the other two
procedures. If, however, the item pool includes items with variable a, b, and c
parameters, the SPRT procedure may result in the shortest tests, but the AMT
procedure will make more accurate classifications. These factors must be con-
sidered before any decision is made as to which procedure is "best."

It should also be noted that this simulation was based on the assumption
that the latent achievement metric, rather than the propertion-correct metric,
was the correct metric; and to the extent that the proportion-correct metric is
the correct metric, the findings of this study are less relevant. In addition,
several variations on the SPRT procedure and the AMT procedure that were not
examined in this study are possible; thus, additional research is necessary be-
fore firm conclusions can be drawn concerning the utility of adaptive mastery
testing strategies.
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DISCUSSION: SESSION 3

MELVIN NOVICK

UNIVERSITY OF IOWA

I shall discuss some general methodological issues that bear on the papers
by Reckase, Kalisch, and Kingsbury and Weiss and. also on previous papers presen-
ted, integrating into the discussion relevant points that have been made by
Lord, Wainer, Samejima, Lumsden, and others.

The results that have been obtained in these papers are contradictory.
There seems to be difficulty deciding whether or not adaptive testing is worth-
while with a Bayesian approach--which is related to the kinds of models that
have been adopted and the kinds of statistical analysis that are being per-
formed. Lord made an important comment about the metric in which a least
squares analysis is performed; and although the suggestion he made in that con-
text was very good, it opens up the question, which is the correct metric?

Wainer's comments about robustness are also very important; indeed, some of the
problems that we have had have resulted from allowing a few outliers to mar the
analyses. An important part of my discussion will also bear on his comment,
"Let's look at the ends, because it doesn't matter what's going on in the mid-
die." Samejima's comments about dimensionality are crucial; and Lumsden's com-
ment about the importance of choosing the statistical analysis for the particu-
lar decision at hand is central to my discussion.

I am absolutely delighted to see that everyone is using Bayesian methods:
It is a dream come true. The realization of the dream, however, remains impre-
cise. Although Bayesian procedures are being used, the analyses are not all
Bayesian which is part of the problem I hope to correct.

A brief discussion is in order about the development of pre-Bayes statisti-
cal theory and its application in a Bayesian decision theoretic context. First
was Gauss's work on least squares, which led to a certain mean value as an esti-
mate; this was followed by the Gauss-Markov theorem, which tied least squares
with the normal distribution. At about the same time, La Place was working with

jabsolute error loss, which is typically a better loss function than squared er-
ror, and in my judgment La Place deserves more credit than he has been given.
Once the question, how to obtain an estimator, has been posed and considered in
terms of the appropriate loss function, a whole new set of problems arises.

Even though absolute error loss may be better than squared-error loss, in
some of the applications this places too much weight on those large discrepan-
cies. In terms of mastery testing, for example, it does not matter if the per-

i , son is three standard deviations from the criterion or four. Certainly, as
Wainer has said, we do not want the analysis to be affected very much by that,

-A
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particularly when it is recognized that the distributions are not normal but
that there are all kinds of outliers and unusual data values. This is not a
minor point. It affects all the analyses that are being done. A very careful
look must be taken at the loss function in deciding whether the decision rule or
even an estimator is any good. In my judgment, none of the loss functions that
have been talked about at this conference are acceptable.

I did use threshold loss in papers published several years ago; but at that
time, Bayesian methods with threshold loss were better than classical methods.
Now there are better methods, and recent papers discussing more general loss or
utility functions provide much more acceptable methods. In these papers the
normal ogive is used as a utility function. This is a clear improvement over
threshold utility. However, there is a Stage 3 in which a cumulative data dis-
tribution may be used--perhaps some other ogival forms--as a utility function.

One of the techniques that was used in a paper in an earlier session was to
ascertain how adaptive testing improves reliability and squared-error loss. The
difference between looking at a reliability and looking at a squared-error loss
is that reliability forgets about any kind of bias. However, squared-error is
actually irrelevant to a context in which a mastery decision or a selection is
being made. This does not mean that I repudiate either classical test theory,
which is built largely on mean-squared-error, or latent trait theory. Those
methods are useful in certain contexts, e.g., when developing a test that is
going to be used for a wide range of purposes, when interest is in discrimina-
tion across the whole range if ability and some overall measure is needed, and
for the SAT and ACT tests. These methods are much less useful in the context in
which there is a question of mastery or selection and one has a fair idea where
that selection is going to be. Then, it is desirable to peak the tests at
roughly that point, but it is also desirable to use a loss function, or better
yet, a utility function that focuses on that point. Therefore, looking at ques-
tions of reliability and squared-error loss does not really address the question
of the efficacy of the procedure, in any real way.

On a related issue, there has been discussion on using Bayesian modal esti-
mates or maximum likelihood estimates, which are, of course, also Bayesian modal
estimates assuming a uniform prior distribution on a particular parameteriza-
tion. These are appropriate only in terms of a zero-one loss function, a most
unrealistic loss function in this context. Therefore, the analyses based on
maximum likelihood or a Bayesian modal estimator may be unrealistic.

The dimensionality issue is crucial. Something like the reliability-
validity paradox may, in fact, be occurring here, as Samejima suggests. It
would not surprise me at all if we are dealing with a test that is multidimen-
sional and a criterion that is almost certanly multidimensional. If this is
true, and if a dominant trait is focused on, we may be building up reliability
and not measuring the other traits that are essential in prediction. Thus, va-
lidity will suffer. The answer to this is probably to study the predictor and
the criterion carefully and to define the factors or traits and see that each
one is measured carefully.

.N

~Next, if least squares is to be used, which I do not really advocate, there
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is the question of what metric to do it in. Should it be done in a latent vari-
able metric? This causes problems because computations sometimes do not con-
verge. Should it be done in the true score metric, which is tighter? Although I
do not know the answer to that question at present, the question should not be
ignored.

The questions that need to be considered are (1) How much efficiency is
being obtained? (2) Where is the efficiency being sought? and (3) What is the
appropriate measure of efficiency? If a procedure is being designed to assist
in selection near the top of the distribution or at some other criterion point,
it really does not matter whether or not better estimation is being obtained
away from that point. It is totally irrelevant to state that there is only a 5%
increase in efficiency overall. A 50% increase could be obtained where needed,
still averaging out to 5% overall. That would not be bad. This is a question
of how the gains are computed, which, again, may be related to the question of
robustness. We may be doing terrible things with some outlier; but if a testee
is completely off the scale, perhaps it does not really matter, because a large
error will not affect the decision.

The Owen procedure is a good Bayesian procedure: It does make some assump-
tions. Even though some of the assumptions that it makes may not be terribly
well satisfied for the first one-half dozen items, improvements are possible,
but that is not important. If any reasonable Bayesian procedure is used, a
great deal will be gained from the Bayesian allocation. If a person is seated
at a terminal, it may not be very significant whether he/she takes 5 items or 6
items. Thus, I am not so sure that the emphasis on variable stopping is impor-
tant. Some rules could probably be worked out that, by and large, would provide
good results if all testees were given a Bayesian allocated test of specified
length and the decision were made at that point. The advantage would be that
most of the inaccuracies in the approximations of the Owen procedure would be
eliminated. If, indeed, the saving of one item,,on the average, has a high pay
off, then presumably someone would be willing to make a large investment to ob-

* tain the needed refinements.

* Now, I should like to treat some specifics of the Reckase and Kingsbury and
Weiss papers. In each paper there is an emphasis on the Wald Sequential Proba-
bility Ratio Test (SPRT). The original application of this method was that
there was a production process in control with a certain error rate that was
tolerable. The concern was that something had happened that seriously degraded
production quality and it was desirable to identify the problem very quickly.
Therefore, it was very reasonable to take a certain point hypothesis, a 3% error
rate, with the recognition that if the process was not in proper working order,
that error rate was going to go up to 10% and therefore the alternative hypothe-
sis of 10% should be used. That paradigm is not correct in the context of adap-
tive testing. What the SPRT formulation gives is utility functions with three
levels corresponding to the false positive, false negative, and indifference
zones. In fact, an appropriate utility function would be continuous and not
abrupt in change of magnitude of the first derivative (see Novick & Lindley,

*1978). This is very important because it has a very substantial effect on the
analysis, both in terms of the number of observations needed and in terms of the

decision rule to be adopted.

4re
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A minor technical point is that one simply cannot look ahead one step, com-
puting the cost of taking an observation and comparing this with the expected
gain, and then stopping when it is discovered that the expected gain does not
exceed the cost of the observation. In fact, all possible sample sizes would
have to be investigated to make sure that none yielded an expected gain. I am
not, however, arguing for this complication; indeed, I am arguing for a simpli-
fication to fixed sample sizes.

Finally, although there are a half a dozen other examples within an epsilon
of the one I selected to discuss, Kingsbury and Weiss's paper presents the most
simple and striking example of doing Bayesian analysis without a saturation of
understanding Bayesian theory. The idea of looking at the Bayesian confidence
interval, or as I would prefer to call it, the Bayesian credibility interval,
and then stopping when that Bayesian interval no longer included a particular
point is perfectly reasonable. In the context of mastery decision making, how-
ever, I cannot understand why a two-sided interval was computed. It makes no
sense at all from any kind of Bayesian logic. Any consideration of a concept of
utility or loss must lead to a one-sided interval. That struck me as being the
most glaring failure to bring decision theory to bear on what is being done. If
pressed, however, I could find a half a dozen more examples; and that, I think,
is discouraging.

REFERENCES

Novick, M. R., & Lindley, D. The use of more realistic utility functions in
educational applications. Journal of Educational Statistics, 1978, 15,
81-91.

4 %



SESSION 4:

ESTIMATING RESPONSE FUNCTIONS

WITHOUT ASSUMING A PARAMETRIC 
MODEL

CONSTANT INFORMATION MODEL

ON THE DICHOTOMOUS

RESPONSE LEVEL

FUMIKO SAMEJIMA

UNIVERSITY OF TENNESSEE

DISCUSSION

ROBERT TsUTAKAWA

UNIVERSITY OF MISSOURI--

COLUMBIA

A'

It
I>



CONSTANT INFORMATION MODEL ON THE DICHOTOMOUS

RESPONSE LEVEL

FUMIKO SAMEJIMA

UNIVERSITY OF TENNESSEE

Generally speaking, the fundamental role of the mathematical model in psy-
chology is to simulate psychological reality following some sound rationale,
using well-defined parameters. The normal ogive model in latent trait theory,
for example, is one of such mathematical models. Another role of the mathemati-
cal model may be to provide some mathematical convenience, just as the logistic
model does in its relationship with the normal ogive model.

Mathematical models of a third type, which have their specific usefulness
in the context of comprehensive theories and methods, can be conceived. The
direct simulation of psychological reality is less important for this type of
model than it is for the first two types of models. The Constant Information
Model belongs to this new type; its role is to be of assistance in the develop-
mental stages of theories and methods, rather than to simulate psychological
reality directl.

The Constant Information Model (Samejima, 1979) is a new model on the di-
chotomous response level (Samejima, 1972). This model provides a constant item
information for a finite interval of a latent trait. Although the usefulness of
the model has not yet been fully investigated, an effective use of the model has
been found in the process of estimating the operating characteristics of item
response categories (Samejima, 1977b, 1977d, 1978a, 1978b, 1978c, 1978d, 1978e,
1978f).

Let e be ability, or latent trait, which is assumed to be unidimensional.
Let g (= 1, 2,..., n) be an item and 25g (= 0, 1, 2,..., fg) denote an item re-

sponse category, or item score. The operating characteristic, P (0), of the

item score x is defined by

PX (0) = prob.[xq[I] [1]

Let V be a response pattern, such that

S= (x 1 , x 2  ... , . , Xn) [21

and PV(0) be its nperating characteristic. Because of the assumption of local

independence,

4.
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P (e) = P1 PX (e) (3]
V F

can be written. The item response information function (Samejima, 1969),
Ix (e), is defined by

I (e) - -k-1 log P (0) [4)Xj 2 Xg

and the item information function, Ig(0), is the conditional expectation of the

item response information function, given 0, so that

m
I (0) ElIX (e)101 = E9 I (e) P X()
g g x =0 Xg x(

g

x =0 g 9g

(cf. Samejima, 1969, chap. 6). The response pattern information function,
IVe), can be written for a specified response pattern V such that

Iv(0) = - 2 log Pv(e) = I () ,[6
202 xacV X q

and the test information function, 1(0) , is defined as the conditional expecta-
tion, given 0, of the response pattern information function, which can be writ-
ten

n
E (I) = I() Efi I (0) [7]
V g=l

When item g is binary (i.e., is scored either 0 or 1), g is used for the

item score category instead of x • The item characteristic function, Pg(e), is
defined by -9

P g(0) = prob.[ug=iI]i [8]

and the other operating characteristic for Ug - 0, which is denoted by Qg(O),
can be written as4

Q (0) = prob.[u -01e] - 1 - P (0) [9]g" g g

From Equations 5, 8, and 9

Ig(0) M [- Pg( e) 2 [Pq(O) qg(e) -  [10]

iiii i
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which is identical with the item information function defined by Birnbaum
(1968), can be obtained for the item information function.

The Constant Information Model

The item characteristic function of the new model, the Constant Information
Model (CIM), is given by

2

sin [a (0 - b ) + (v/4)] , for 6 < 6 <

= 0 otherwise, [11]

where

12

[7ag /4 1+ b

Figure 1

Item Characteristic Functions of Five Binary Items
Following the Constant Information Model
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.. a3 0.75 and b3- 2.00

. * - a 1.00 and b - -1.50a
/ .a- 2.00 and b-0.50
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.Figure 1 presents five examples of the item characteristic functions in the

, CIM with varieties of sets of parameters. From Equations 9 and 11, Qg(e) can be
• ! written for the other operating characteristic such that

0 ./

- . .. ... . .. • . • . . 4 ,.lp ,,
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cos 2 [ag(8 - bg + (r/4)), for 0 > >

Qg9(8) [131

= otherwise.

Since

P = 2 sin [a (8 - b ) + (n'/4)] x

cos [a (e - b) + ('T/4)] x ag

= 2 ag [P Q()Qg(e)] [141 4
can be written for the interval of 0 such that

-1 -1

[-Tra /41 + b g < [ia /41+ bg [151

it is obvious that in this model:

(A) the item characteristic function is strictly increasing in 8 in the above
interval of 0,

and

lim
(B) P+ g(6)=0

' ' [16]I l l m Pg(O) = i [16

For convenience, hereafter, the CIM will be considered only for the range of 8
given by Equation 15, unless otherwise stated. The mathematical models which
satisfy (A) and (B) will be called models of Type I.

It is obvious from Equations 11, 13, and 14 that the model provides constant
item information such that

1g(6) = 4a2 = C [17]

where C indicates the constant amount of information. Figure 2 presents the

item information functions for the five items whose item characteristic func-
tions are given in Figure 1. The length of the interval of 8 for which the item
information function equals Cg is given by

S- e , rc -  " TI[2a8] [18] 4

IT II I



-149-

Figure 2
Item Information Functions of Five Binary Items

Following the Constant Information Model

al- 0.25 and b, = 0.00

a2= 0.50 and b2 = 0.50
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The basic function, Ax () (SameJima, 1969, 1972), which is defined by
!g

A (6) = P (0) [191

g g

for the item response category x , is obtained for the CIH from Equations 11,
13, 14, and 19 such that

= -2a [P (0)] [Q (e)]-

= -2a tan[a (6 - b ) + r/4]

for u W 0

Au (8) [20]
9g = 2a [Qg(6)] (P (8)] - h

9 9

= 2a cot[a (6 - b ) + n/41
9 9 9

for Ug -

Figure 3 presents these basic functions for the five items shown earlier. It is
clear from Equation 20 that the basic function for Hg - 1 is a strictly decreas-
ing function of 8 with positive infinity and zero as its two asymptotes and that
for Ug -0 it is a strictly decreasing function of 8 with zero and negative in-

.. . . . . - . .I. . " . . . ' " - . .



-150-

Figure 3
Basic Functions of Five Items Following the Constant Information Model

forag - 0 (Upper Graph) and for 2 - 1 (Lower Graph)

-3.1416 -2.2854 -1.0708 0.1073 0.9528

% % ._ s

0 C

° i

t.

-3.00 -2.00 -1.00 0.00 1.00 2:00 3.00

0

' "I B

°I S

o C )

LJETATe-0 1 3.47

S *= S

u I

al : 0 5Sdb-00

z I

0

TRIT0 007

Co -025ad l-00

a 4 - 1.00 and b4- -1.50

a. - 2.00 and b5= 0.50

;Ll1 l _li" '' . . .



-151- r

finity as its two asymptotes, respectively. This is also confirmed visually by
Figure 3.

The item response information functions for each of the binary scores, u-
0 and = , are given from Equations 4, 11, 13, and 14 by

2
= 2a2 sec [a (0 - b ) + Tr/4]g g g

2 [Q
= 2a [Q()1 - 1 > 0

for u = 1
1 (0) g [211

U

g 2 2= csc [a (6 - b ) + 1/41=2g g

= 2a 2 [P ()] -  > 0

forU =1
g

Figure 4 illustrates these two functions for the item with parameters a 0.25

and b 9 0.00, together with the constant item information (-0.25). The re-~-g
sponse pattern information function, (6) , is written from Equations 6 and 21
such that

-u U
1 (6) = 2 Z a2,[P (6)] g[Q (0)] [221

! u~gy

and the test information function, 1(6), is given from Equations 7 and 17 by

H n
1(6) = 4 Z a . r23]

g=1 g

Figure 5 presents both the set of four response pattern information functions
and the test information function for a hypothetical test of two binary items,
whose item parameters are a, - 0.25 , b, M 0.00 , a2 - 0.50, and b2 - 1.00, each

of which follows the CIM.

It should be noted that the interval of 0 for which the item information is
a positive constant is always finite. This is related to the fact that

f: [1g(0)]h d6 = 7 , [241

.f
for any model of Type I , which includes the CIM (Samejima, 1979). Thus,

- ~. -'
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C (e - 0) ',T [251
9

and (0 -0) must therefore be a finite value.

Figure 4
Item Response Information Functions of an Item Following

the Constant Information Model, with the Parameters
ag f .25 and b = 0.0 for ug =0 and for uz_ = 1,

Together with the Constant Item Information Function
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Use of the Constant Information Model in the Estimation of the
Operating Characteristics of Item Response Categories

The methods and approaches for estimating the operating characteristics of
the item response categories of a test item developed so far (Samejima, 1977b,
1977d, 1978a, 1978b, 1978c, 1978d, 1978e, 1978f) have common characteristics
such that (1) they are made without assuming any prior mathematical form and (2)
they use a relatively small number of examinees in the process of estimation.
One common restriction in these methods and approaches is that what is needed is
the Old Test, consisting of the items whose operating characteristics are known,
which provides a constant test information function for the interval of latent
trait, or ability, e, of interest. With this setting, each examinee's ability

* tlevel is estimated from his/her response pattern by the maximum likelihood esti-
mation; and the set of these maximum likelihood estimates is the main informa-
tion source of the estimation procedures.

;p.~ .~ - - . -
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Figure 5
Response Pattern Information Functions of the Four Possible

Response Patterns of Two Binary Items Following the
Constant Information Model with the Parameters

a - .25, b1 = 0.0, a2 = .50, and b 2 - 1.0
0

C)| Response Patterns

0,

-.

zI
o 

I I I != ,

4.

U,o 1. I

u_ i l

o - I ]/ ... -

c1.0 -10 0:00 1:0 20 1 Y0 .0i n Ol Testi mat an

inee's Fbliynctoionroi ivn

z I I I

" I Ith ailboe seting ih t iser cmmodan tatprace lare nuberf tes aitemso

whicherenlemany its of itermediateandfftcusiese is administered tom te

grou pool of e me hoever, thepse ofdvaping te item pool. If,

among the items administered, a substantially large subset of binary items can

'ii I i I ] 1



-154-

be found which can be regarded as equivalent items, then that subset of items
can be used in place of the Old Test. Even though their item characteristic
functions are not known, this can be done with the aid of the CIM. In other
words, it is possible to expand the estimation methods developed so far L3 make
them usable when there is no Old Test.

Estimation Procedures

In practice, it is necessary to identify these equivalent items without
knowing their operating characteristics. This can be done as follows: First of
all, the proportion correct must be obtained for each item. If a subset of
items exists whose proportions correct are around .5 and close enough to one
another, then these items make a good candidate for the subset of equivalent
items. Second, a 2 x 2 contingency table, as exemplified in Table 1, must be
made for each pair of items in the subset. In order for the items to be equiva-
lent, it is necessary that within the range of sampling fluctuations, these 2 x
2 contingency tables of the bivariate frequency distributions should be symmet-
ric and identical for all the pairs of binary items. This can be checked for
every pair of binary items that have passed the first screening, and, very like-
ly, more items must be eliminated through this second screening. Now there can
be progression to the third screening of 23 contingency tables, to the fourth
screening of 2 contingency tables, and so forth. Note, however, that an in-
creasingly large number of more complicated contingency tables is usually en-

Table 1
Two Typical 2 x 2 Contingency Tables
for a Pair of Equivalent Items with a
Common Low Discrimination Parameter

and with a Common High Discrimination Parameter

Item h

Item g uhO e hl Total

Low Discrimination Parameter
u =0 110 243 353

'4 -g
Rg=l 248 399 647

Total 358 642 1000
High Discrimination Parameter

Rg-O 300 53 353

U =1 58 589 647

Total 358 642 1000

countered as progression is made to higher stages of screening. Some criterion
must be set for terminating this process, therefore, the remaining items must be
accepted by assuming their equivalence. Table i illustrates two typical 2 x 2
contingency tables--one is for a pair of equivalent binary items that has a com-
mon low discrimination parameter and the other Is for a pair that has a common
high discrimination parameter.

After the subset of equivalent binary items has been identified, then the
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CIM is assumed for each equivalent item. This assumption is made without loss
of generality, since the scale of the latent trait is subject to any strictly
increasing transformation (Samejima, 1969, 1979).

The next step is to obtain the maximum likelihood estimate, 6, of 0 on the
response pattern of each of the N examinees, with respect to the above subset of
equivalent items. Let V* be the examinee's response pattern on the subset of k
equivalent items. Since they are equivalent items, the simple test score, t,

such that

t E U [26]U E:V* 9
g

is a minimal sufficient statistic, regardless of the model that these item char-
acteristic functions follow (cf. Birnbaum, 1968). Thus, the procedure of maxi-
mum likelihood estimation becomes much simpler, using the test score t instead

of the response pattern V*. In general, for any model on the dichotomous re-

sponse level

U l-u
Pv*(8) ff I [P (6)] g[Q (8)] g [27]

g

Since this operating characteristic of the response pattern V* is itself the

likelihood function in estimating the examinee's ablity, the symbol LV*(O) will

be used for this function in the present section. When all the items are equiv-
alent, Equation 27 can be rewritten in the form

LV*(e) = (P (6)]t[Q (8)] k-t [28]

Thus, for the likelihood equation

" log LV*() = [ P (6)][t - kP (M)] [29]

[Pg9 )Q 9(6)] -  0

and the equation

t -i kPg(0) [30]

is obtained. For the maximum likelihood estimate 8,
A -1I

'A - P (tik) [311

Now, Equation 11 must be substituted into Equation 31, which results in
A -

a [sin- (t/k) r/41 + b [32]A6 ag -s

I . .. . .. ..
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It is obvious from Equations 15 and 32 that the range of 0 is given by

-Trr -/4] + b < 0 < [ra 1/4] + b [33]
g g- _ 9

Thus, the maximum likelihood estimate of each examinee is obtained, based
upon his/her test score for the subset of k equivalent items. This set of N
maximum likelihood estimates can be used in place of the one obtained on the Old

Test, and the process of the operating characteristic estimation in any combina-
tion of a method and an approach can be followed. The error variance, o2 , is
given by

a2 = [kC] - ' [4ka2] - 1  [34]

where

C, = C 2 =... =Ck =C [35]

and

a1 =a 2 =... = ak a [36]

After the process of estimation has been completed, the latent trait 0 can
be transformed to another latent trait T by any strictly increasing function,
r(e). To give some examples, if 0 is transformed to t by

T = P*- ([sinta (6-bg) + (7t/4)}1 2 ) [37]

where

P*(T) = (2 r) 9 - exp[-t /2]dt , [38]9 00
then all the equivalent items will follow the normal ogive model specified by
Equation 38, and

[391

if the transformation is such that

T = -a - ) sin2 [ag ( - b ) + (1T/4)] + a , [40]

then they will follow the linear model, whose item characteristic is given by

Pg(6) =(0-a g)( g-a9)-  [411

L. )

: - . .. . . . ... ... , . - -. . .
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with

= g[42]

and if 6 is transformed to T by

t = [1/(Da*)] log[tan 2 {a (e-b ) + (/4)}] + b* , [43]

then they will follow the logistic model, which is characterized by

P*(T) = [1 + exp{-Da*(T-b*)}]' [44]gg g

with the 6 and e given in Equation 39. Similar transformations can be made to
change the item characteristic functions of k equivalent items from those of the
CIM to those of any other models of Type I. In each case, the newly estimated
operating characteristics of the other items will be transformed according to
the specific transforihation of the latent trait 6 to T.

Some Necessary Considerations

In using the generalized method of the operating characteristic estimation,
which was described in the preceding section, a few problems must be considered.
First of all, the constant test information provided by the subset of equivalent
binary items with the CIM should be substantially large, so that the normal ap-
proximation for the conditional distribution of 0, given 0, will be acceptable.
On the other hand, a substantially wide range of ability 0, for which the test
information is constant, is needed in order to make the estimation of the oper-
ating characteristics of the other items in the item pool meaningful. These two
are opposing factors, as is obvious from Equations 15 and 17. The solution for
this problem is to use a substantially large number of equivalent binary items,
whose common discrimination parameter is low.

Another problem is the effect of the range of 6 on the speed of convergence
of the conditional distribution of 0, given 0, to the normal distribution, N(6,

! {kC}- ). Since the range of 0 is a finite interval which is given by Equation
33, it should be expected that the truncation of the conditional distribution
makes the convergence slow around the values of 0 close to - /4) + bg and

(ira81/4) + b, as is illustrated in Figure 6. A solution for this problem
-9 -

is again to use a subset of equivalent binary items whose common discrimination
parameter is low so that the range of 0 is wide enough to include all the exam-
inees sufficiently inside of the two endpoints of the interval of 0. An alter-
native for the above solution is to exclude examinees whose O's are close to

. (-..v 1/4) + b or (72j/4) + b. In the second solution, however, the number of

examinees usable for the estimation will be decreased, and this may substantial-
ly affect the accuracy of the estimation of the operating characteristics. It
is worth noting that the solution for the first problem also seems to be the
best solution for the second problem.

3e
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Figure 6
Graphical Illustration of the Conditional Density
Functions of the Maximum Likelihood Estimate 0,

Given the Latent Trait 8

(-Ira 1/4) + b

g

(-Ira -1/4) + bz  b Ta-14

LATENT TRAIT e

, Monte Carlo Study

~Method. To pursue the speed of convergence that the conditional distribu-

tion of the maximum likelihood estimate, 6, approaches normality, N(6, I(O) -  )

' a monte carlo study was done. One hundred hypothetical examinees were assumed
to exist at each of eight different levels of ability 0, i.e., -3.0, -2.2, -1.4,-0.6, 0.2, 1.0, 1.8, and 2.6. it was assumed that each examinee had taken 20
sessions of equivalent tests, In each of which 10 equivalent binary items were

given. Each binary item was assumed to follow the CIM with the paramerers a

•25 and bg 9 0.00, and the response pattern was calibrated by the monte carlo

~method for each examinee in each of the 20 hypothetical sessions of testing.
~The cumulative test score was calculated after each session by summing all the

binary item scores that the examinee had obtained. In this way, the number of
the binary items used for the computation of the cumulative test score was 10

' after the first session, 20 after the second session, 30 after the third Bes-
sion, and 200 after the completion of the twentieth session. The maximum like-

' lihood estimate of ability was obtained for each of the 800 examinees, based
upon each cumulative test score following the method described in the preceding

~section.
i~e  Results. Figure 7 presents the resultant cumulative frequency distribution

I I I I I
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Figure 7
Cumulative Frequency Distributions of the 100 Maximum Likelihood Estimates

for e=-2.2 for Group 2, Based on 10, 20, 50, lO0,and 200 items
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of the maximum likelihood estimates of the 100 examinees whose ability le'el was
-2.2 (i.e., relatively close to the lower endpoint, -n, of the interval for
which the item information, 1g(6) assumes the positive value, -.25), after the

completion of each of Sessions 1, 2, 5, 10, and 20. In each graph, the normal

distribution functions are also presented with 0 (- -2.2) and I(6)-f as the two
parameters and with the mean and the standard deviation of the observed 100 max-
imum likelihood estimates. As was expected, the cumulative frequency distribu-
tion shows a substantial skewness to the positive side, when the number of bi-
nary items is as small as 10; and therefore the normal distribution function
with the two empirically obtained parameters provides a curve that is located

further to the right side of N(6, I(0) ). This tendency still holds, though
slightly, even when the number of binary items is as large as 100.

For the purpose of comparison, Figure 8 presents a similar set of graphs for
another group of 100 hypothetical examinees whose ability levels were uniformly
.2 (i.e., a value which is far from the two endpoints, -iT and iT, of the interval
for which the item information function of each equivalent binary item assumes
the positive constant). The results illustrated in Figure 8 make a good con-
trast with those in Figure 7, in which the two normal distribution curves almost
overlap each other, even when the number of items used for obtaining the maximum
likelihood estimate is as small as 20. This indicates a much faster convergence
of the conditional distribution of the maximum likelihood estimate to normality

with 0 and I(e) as the two parameters, in comparison with the case in which
the ability level is closer to one of the two endpoints of the interval, (-IT,
T).

If the latent trait 0 is transformed to T through Equations 38 and 39 so
that each equivalent binary item follows the normal ogive model with a* = 1.00

and b = 0.00, then the values of T corresponding to 0 = -2.2 and 0 - 0.2 are,

approximately, -1.60 and .13. If Equation 44 is used for the transformation so
that each equivalent binary item follows the logistic model with the same param-
eters--a* and b*--with the scaling factor D = 1.7, then these corresponding val-

-g g
ues of T are approximately -1.68 and .12, respectively. A similar transforma-
tion by means of Equation 41, which provides the linear model with the parame-
ters ag = -2.5 and Og = 2.5 for each of the equivalent binary items, results in

-2.23 and .25 as the approximate values of T corresponding to 0 = -2.2 and 0 =
0.2, respectively.

Discussion and Conclusion

A new model for a binary item, the Constant Information Model, has been in-

troduced, and its characteristics and usefulness have been discussed. As was
pointed out (Samejima, 1975, 1977a, 1977b, 1977c, 1977d, 1978a, 1978b, 1978c,
1978d, 1978e, 1978f), latent trait theory enlarges its horizon if full use is
made of information functions, enabling types of research to be conducted which
could not otherwise be done. For this reason, the Constant Information Model
will contribute to the productivity of research in the area of computerizediadaptive testing as well as in other areas, as exemplified in this paper.
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Figure 8
Cumulative Frequency Distributions of the 100 Maximum Likelihood Estimates

for 0=.2 for Group 5, Based on 10, 20, 50, 100, and 200 Items
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DISCUSSION: SESSION 4

ROBERT TSUTAKAWA

UNIVERSITY OF MISSOURI

In reading Samejima's paper, one soon realizes that her ideas are quite

different and provocative: She appears to be knocking on the door of the foun-
dations of latent trait theory. In my discussion of her paper I will attempt to
provide appropriate motivation for the Constant Information Model (CIM) and
point out its relation to other statistical methods, reviewing some of the im-
portant issues and raising points that could be discussed further.

The problem that motivates the CIM is not unique to mental testing. Gener-
ally, in estimating a parameter 0, the estimator will have a variance depending
on the unknown parameter 0. When estimating several parameters 0 1'...,N, say,

the ability of N people, there will be estimators with different variances. (An
important exception to the general property is the normal linear model where the
constancy of variance plays an important role.) If interest is in making sta-
tistical inferences based on the estimated values, the constancy of variance
will open up a variety of statistical procedures, such as the analysis of vari-

ance. Moreover, in designing an experiment the constancy of variance will per-

mit the running of an experiment with guaranteed precision.

Consider the item characteristic function of the CIM given by

2P (0) = sin [a (a - b ) + r/4], e < e < e [i]
g g g -g g

If its value is denoted by p, the inverse transformation is

a sin-1 (p + b9 0 < p < ['i = g 4a '- g " [2 ]

In this form it can be noted that this is essentially the arc sine transforma-
tion, which was used in the 1930s and 1940s to stabilize the variance of binomi-
al proportions and to obtain a better normal approximation. The arc sine trans-
formation is also used by Bayesians for binomial samples to achieve likelihood
functions that are "data translated" and was used by Jeffereys to obtain the
noninformative prior for an unknown proportion. Samejima's transformation4 should thus be of particular interest to Bayesians.

Regarding the range of e in the CIM, it is disconcerting to restrict 0 to

intervals depending on the item. It seems more realistic to extend the range to
the whole real line by defining it as

,. ' . . . . . . .. . . . . , ... ,.-'. . .,
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0 if 0 < 0

P (e) = as above if e < 0 < 0
g j-g g

1 if 8 > [3]

With this extension, different response functions can be dealt with, allowing
for the probability ofa correct response on a given item, j, to be 1 whenever
the ability 0 exceeds 0 and 0 whenever it is less than 0. Note that when e >

8 :8
6g or 0 < 0, the formal information is 0. However, the experimenter may have

some idea about whether 0 is very low or very high.

Given a fixed number of items n, equivalent tests are not only a conven-
ience but a practical necessity in order to attain constant total information
over all 0 in the range of interest. With nonequivalent tests the total infor-
mation will generally (with rare exceptions) depend on 0. This raises the im-
portant question about how to find a set of equivalent items.

There are two simple ways of constructing tests so the items are equiva-
lent. One is to use the n items in random order. In this case the probability
of a correct response is constant for any ability 0; the assumption of local
independence, however, is violated. Another method is to select the n items at
random from a large pool. In this case, the probability of a correct response
tor ability 0 is equal to the average probability of correct response (averaged
over the whole pool), and the assumption of local independence can be defended.
If the items are very different, however, Bayesians would consider this poor
practice.

Given a set of n nonrandom items, testing their equivalence is a chal-
lenging statistical problem. Although Samejima has given some suggestions, con-
siderably more work is needed before these suggestions can be put into practice.

There are implications for the use of the Constant Information Model in
tailored testing. It seems reasonable to start with items with low at the

beginning when the location of 0 is uncertain, and then use those with higher AS

as the region in which e is likely to belong is narrowed. With a good selection
rule, this is likely to be more efficient than having a large number of equiva-
lent items with low a The gain in efficiency will more than offset the incon-

venience of not having constant total information.

I)
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A TEST OF THE ADEQUACY OF CURVILINEAR SCORE
EQUATING MODELS

GARY MARCO, NANCY PETERSEN, AND ELIZABETH STEWART

EDUCATIONAL TESTING SERVICE

In many common testing situations it is necessary to compare the test
scores of examinees who have taken different forms of a test. In practice, two
forms of a test cannot be expected to be of exactly equal difficulty for exam-
inees at all ability levels. Therefore, a comparison of raw scores on two forms
of a test will be unfair to the examinees who have taken the more difficult
form. Statistical procedures that have been developed to deal with this problem
are referred to as equating methods.

In an ideal psychometric world, tests on which scores need to be equated
would be parallel in all important respects: An anchor test, if used, would be
parallel to the total tests, and random samples on which to base the equating
would always be available. In actual testing practice, however, scores must
sometimes be equated under less than optimum conditions. This study is the
first part of a larger study, the purpose of which is to examine the adequacy of
score-equating models when certain sample and test characteristics are systemat-
ically varied. The emphasis in this part of the study is on curvilinear models,
whereas the second part focuses on linear models. This study is more comprehen-
sive than previous studies of equating models (e.g., Levine, 1955; Rentz &

4Bashaw, 1975; Slinde & Linn, 1977, 1978; Tucker, 1974) in that it includes a
greater variety of equipercentile, linear, and ICC models and investigates
equatings based on dissimilar samples as well as on random samples.

EQUATING MODELS

ti An equating method is an empirical procedure for determining a transforma-
tion to be applied to the scores on one of two forms of a test. Its purpose is,
ideally, to transform the scores in such a way that it makes no difference to
the examinee which form of the test he or she takes. This ideal can be reached
only if (1) the two forms of the test measure exactly the same latent trait
(ability or skill) and yield scores that are equally reliable and (2) the equat-
ing transformation is invertible.

Because an equating method is an empirical procedure, it involves a design
for data collection and a rule for determining the transformation. There are

.1 three basic designs for data collection and three general rules for determining
the transformation. Any of the three designs for data collection can be used
with any of the three transformation rules.

17t'T
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Data Collection Designs

The three designs for data collection are the single-group method, the
equivalent group method, and the anchor test method (Lord, 1975). All of the
equating procedures used in this study assume that the data were collected using
the anchor test method. An anchor test design requires administering one form
of a total test to one group of examinees, a second form to a second group of
examinees, and a common anchor test to both groups. The anchor test can be

either internal or external to the tests to be equated. The anchor test is used
to reduce equating bias resulting from differences in ability between the two
groups.

Transformation Rules

The three general rules for determining the transformation are:

1. Equipercentile equating. Choose a transformation such that scores from
the two tests will be equated if they correspond to the same percentile
rank in some group of examinees.

2. Linear equating. Choose a'linear transformation such that scores from
the two tests will be equated if they correspond to the same number of
standard deviations from the mean in some group of examinees.

3. Item characteristic curve (ICC) equating. Choose a transformation such
that true scores from the two tests will be equated if they correspond
to the same estimated level of the latent trait underlying both tests.

All three types of equating were represented in this study.

Equipercentile and linear methods using anchor test data can be further

classified as to whether the equating is done directly or indirectly by frequen-
cy estimation. In direct equipercentile equating, scores on each test and on
the anchor test are first equated separately within each group. Then, scores on
the two tests to be equated are said to be equivalent if they correspond to the

same score on the anchor test. Frequency estimation (Angoff, 1971, pp. 581-
582), on the other hand, makes use of the combined distribution of scores onAthe anchor test. The score distributions of the tests to be equated are esti-
mated for the combined group of examinees, and these estimated distributions are
then used as if they had been observed from a single-group design. The result-
ing marginal distributions on the two forms are used in the case of equipercen-

tile equating; the resulting estimated means and standard deviations on the two
forms are used in the case of linear equating.

Operationalizing the Models

Many of the linear methods require error variance estimates. The three
methods of estimating error variances that were used in this study were Angoff's
(1953) method, which uses anchor test data; Feldt's method (1975), which uses
part-test data; and coefficient alpha, which uses item-response data.

I
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One of the ICC procedures utilized the ICC parameters (item difficulties)
from the 1-parameter logistic test model; the other utilized the ICC parameters
from the 3-parameter logistic test model. The computer program LOGIST (Wood &
Lord, 1976; Wood, Wingersky, & Lord, 1976) was used to estimate item parameters
and examinee abilities. For both models, true formula scores (R-W/4) were
equated by calculating the true formula scores on each test form corresponding
to selected ability levels (Lord, 1975) and interpolating as necessary. Since
for either model there is a functional relationship between ability and true
score, the true formula score is readily computed by the equation

R - (N - R )ICA - 1),[i

g g

where
R is the true number-correct score at ability g computed by summing the

item proportions correct under the model,
N is the number of test items, and
A is the number of response options for the items in the test (five choices

in all cases).

The various equating models used in this study are described briefly in
Table 1. The models are categorized by whether the procedure results in a lin-
ear or curvilinear transformation between observed or true scores. The table
provides references and information as to the major assumption underlying each
model, the kind of data required, and whether specific error variance estimates
are needed. If the codes for the model differ for an external and an internal
anchor test, then the formulas for computing the transformation parameters dif-
fer in the two cases. A total of 40 linear (including 4 based on the marginal
means and standard deviations resulting from frequency estimatiun), 2 equiper-
centile, and 2 ICC equating models were used in the study.

STUDY DESIGN

Computer files for two nation'al administrations (April 1975 and November
1975) of the verbal portion of the College Board Scholastic Aptitude Test were
obtained from Educational Testing Service (ETS). Fourteen pairs of total test
scores were equated on the basis of the data from each of the two administra-
tions. Records of test scores, responses to test items, and responses to a Stu-

V dent Descriptive Questionnaire (SDQ) were accessed to construct samples having
specified characteristics, to extract or to calculate selected scores for a num-
ber of special purpose total tests and anchor tests, and to compute item sta-
tistics and other data needed for the various equating models.

Equating Design

The combinations of total test and anchor test used in the various equat-
ings for each of the two administrations can be classified into five categor-
ies, referred to here as test variations. (There were 11 test variations used

* 4 in the full study of which this study is a part.)

it
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Equating a Test to Itself

In this part of the study (see Table 2), a single form of the operational
verbal portion of the SAT (SAT-V) was treated as if it represented two different
forms; that is, it was to be equated to itself. (This type of design was first
used by Levine, 1955.) This part of the study was designed to investigate the
effects of varying (1) the relative difficulty levels of the total test and the
anchor test and (2) the degree of similarity between the two samples on which
the equating operations were based.

Table 2
Design for Equating a Medium-Difficulty Test

to Itself through an Anchor Test of Similar Content

Relation SAT-Verbal Score Level
Test Anchor Test Between New Form Old Form

Variation Location Difficulty Samples Sample Sample

1 External Medium Random Middle Middle
Dissimilar Middle High

4 Internal Medium Random Middle Middle

Dissimilar Middle High

5 Internal Easy Random Middle Middle
Dissimilar Middle High

Internal Hard Random Middle Middle

Dissimilar Middle High

SAT-V was equated to itself through two anchor tests that, like the total

test, were of medium difficulty. One was external (Test Variation 1), and one
was internal (Test Variation 4). SAT-V was also equated to itself through two
internal anchor tests that differed from it in difficulty (Test Variation 5).
One of the internal anchor tests was easier than SAT-V; and the other, more dif-
ficult.

For each administration a single pair of random samples and a single pair
of dissimilar samples were used for all equatings of SAT-V to itself. The dis-
similar samples, by virtue of the sample selection procedure, were expected to
be of middle and high verbal ability, respectively.

Equating Tests of Different Difficulty

In this part of the study (see Table 3), three total tests were constructed
for each administration from a pool comprising the operational SAT-V items and
the items in a nonoperational section of verbal material. The purpose of this
part of the study was to examine the effects of varying (1) the relative diffi-
culty levels of the two total tests on which scores were to be equated and (2)
the degree of similarity between the two equating samples.

J S . .. - , . ... . . ...%. -' - -



-173-

Table 3
Design for Equating Tests that Differed Only in Difficulty through
an Internal Anchor Test of Similar Content and Medium Difficulty

Relation SAT-Verbal Score Level
Test Total Test Difficulty Between New Form Old Form

Variation New Form Old Form Samples Sample Sample

8 Easy Medium Random Middle Middle
Dissimilar Low Middle

Medium Hard Random Middle Middle
Dissimilar Middle High

9 Easy Hard Random Middle Middle
Dissimilar Low High

Pairs of total tests constructed to differ in difficulty were equated
through an internal anchor test of medium difficulty. The random and dissimilar
samples used in equating SAT-V to itself were used in these equatings also, a-
long with an additional sample expected to be of low verbal ability.

In Test Variation 8 an easy test was equated to a medium-difficulty test
and the medium-difficulty test was equated to a hard test. In Test Variation 9
the easy test was equated to the hard test. For equatings based on dissimilar
samples, data from the low-ability sample was used for the easy test; from the
middle-ability sample, for the medium-difficulty test; and from the high-ability
sample, for the hard test.

Tests

Several scores calculated as part of the normal processing for SAT adminis-
trations were included in the study. Included also were scores computed on a
number of tests constructed retrospectively solely for use in the study. The
general approach followed in constructing the special purpose tests entailed (1)
developing content and statistical specifications for all special purpose tests,
(2) identifying sets of items in accordance with those specifications, and (3)
identifying subsets of items on which separate scores were to be obtained for
use in calculating one of the three sets of reliability estimates required for
the equating analyses.

Test content was specified only in terms of distributions of item types,
although more detailed specifications are followed in developing operational
forms of SAT-V. SAT-V is composed of three types of discrete five-choice
items--antonyms (25 items), analogies (20 items), and sentence completions (15
items)--and of five zeading comprehension passages, each of which is followed by
5 five-choice items based on the passage.

Statistical specifications were stated in terms of the item statistics con-
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ventionally used in the development of ETS tests (described by Angoff & Dyer,
1971, pp. 9-10). The equated delta (Ae) served as the index of item difficulty;

and the biserial correlation (Kb) of the item score with the total score on the

operational test in which the item appeared, as the index of item discrimina-
tion. The statistic Ae is an estimate of the difficulty of the item for a stan-

dard reference group. It ranges in value from about 6 (very easy) to 18 (very
hard). If a test composed of five-choice items were of middle difficulty for
the reference group, its mean 6e would be 12.0.

The item statistics used to construct the tests were taken from the results
of item analyses routinely conducted for each new form of the SAT-V. The analy-
ses were based on systematic samples of approximately 1,700 to 2,000 examinees
each. After all full-length total tests and anchor tests had been identified,
part tests for use in reliability estimation (Feldt, 1975) were created. Each
part test was parallel, except for length, to the full-length test from whichit
was derived.

Tests Used in Equating a Test Itself

For each administration, scores were available on an external anchor test
(a nonoperational section of verbal material) similar in content to the SAT-V.
The external anchor tests each contained equal numbers of items of the four
types included in the SAT-V. The difficulties of the external anchor tests were
not subject to experimentation. The mean difficulties of the external anchor
tests were within about one-half a Ae point of the mean for SAT-V, but both the

standard deviations of the Ae's (CA ) and the mean rb's tended to be somewhat

lower for the anchor tests. e

For each administration, three internal anchor tests for equating SAT-V to
itself were specially constructed for the study from the pool of 85 operational
items in each form. The internal anchor tests were constructed to be similar in
content to SAT-V but to vary with regard to each other in mean difficulty. In-
ternal anchor tests constructed from the April 1975 item pool each contained 10
antonym, 6 analogy, 8 sentence completion, and 10 reading comprehension items.
The number of items in these respective categories from the November 1975 item
pool were 10, 8, 8, and 10. For the medium-difficulty anchor tests, e' Ae'

e
and rb were made to match the corresponding values for SAT-V as closely as pos-

sible, given the prescribed content distribution. The CA 's for the easy and
e

hard anchor tests were, of necessity, smaller than those for SAT-V and the medi-
um-difficulty anchor test. The item summary statistics and identification codes
for the total tests and the anchor tests used in equating a test to itself are

, given in Table 4.

Tests Used in Equating Different Tests

For each administration, an expanded item pool consisting of the 85 SAT-V
items and the 40 items in the verbal external anchor test was used for creating

1,__ _

.. . .
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three total tests. The tests within each set were systematically different in
average difficulty but were similar in content and equal in length. The total
tests constructed from the April 1975 and the November 1975 item pools each con-
tained 15 antonym, 13 analogy, II sentence completion, and 15 reading comprehen-
sion items.

For each administration a 20-item internal anchor test of medium diffi-
culty, similar in content to SAT-V, was constructed for use in equating the spe-
cial-purpose total tests. The internal anchor tests constructed from the April
1975 and the November 1975 item pools each contained 6 antonym, 5 analogy, 4
sentence completion, and 5 reading comprehension items. The item summary sta-
tistics and identification codes for the total tests and the anchor tests used
in equating different tests are given in Table 4.

Samples

Two base samples were used for the study, one each from the April 1975 and
the November 1975 Saturday administrations of the SAT-V. The April base sample
(No. 32) was selected from those candidates who took Verbal Equating Test FM;
the November base sample (No. 44), from those who took Verbal Equating Test FG.
(Six base samples were used in the full study.)

Each base sample consisted of 4,731 cases, from which 5 subsamples of 1,577
cases each were created in two different ways. Two nonoverlapping subsamples
("random" samples) were selected by use of an IBM recursive random number gener-
ator. Three nonoverlapping subsamples ("dissimilar" samples) were selected by
an algorithm designed to yield samples dissimilar in mean verbal ability. Two
variables from the SDQ--level of educational aspiration and amount of high-
school foreign language training--were used to select the dissimilar samples.
These variables were known from prior information to have a high relationship
with SAT-V scores.

Thus, a total of 10 subsamples of 1,577 cases each, 5 for each of the 2
base samples, were used in the study. Tables 5 and 6 give the summary statis-
tics for the total tests and the anchor tests used in the various equating anal-
yses.

Evaluative Procedures

Vl Discrepancy Indices

For each raw score x there is a corresponding criterion score t and an es-
timated criterion score t' derived from a specific equating model. The smaller
the difference d between t' and t, the smaller the equating error and the more
appropriate the equating model.

The standardized weighted mean square difference and squared bias were se-
lected as the most useful summary indices for evaluating the effectiveness of
the various models. The weighted mean square difference gives the greatest
weight to those values of x that are most likely to occur and is consistent with

J what is used to represent total error in the statistical literature. The in-
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Table 4
Item Summary Statistics and Identification Codes for Total Tests

and Anchor Tests Used in Equating at Two Administrations

Administration Test Description ID n e CAe  rb

Equating a Teat to Itself
April 197, Total Test

SAT-V FT2XX 85 11.40 3.38 .47
Anchor Test

External FE2FM 40 11.14 3.06 .43
Internal

Easy FE2DE 34 9.39 2.90 .49
Medium FE2DM 34 11.40 3.26 .49

Hard FE2DH 34 12.96 2.49 .47
November 1975 Total Test

SAT-V FT4XX 85 11.36 3.40 .48*

Anchor Test
External FE4FG 40 12.01 2.95 .43
Internal

Easy FE4DE 36 9.40 2.68 .51
Medium FE4DM 36 11.44 3.43 .49

Hard FE4DH 36 13.29 2.18 .48
Equating Different Tests

April 1975 Total Tests
Easy FT2DE 54 9.34 2.89 .46
Medium FT2DM 54 11.34 2.80 .46

Hard FT2DH 54 13.26 2.95 .44
Anchor Test

Internal FE2PA 20 11.31 3.26 .46
November 1975 Total Tests

Easy FT4DE 54 9.59 2.94 .50
Medium FT4DM 54 11.69 2.49 .46
Hard FT4DH 54 13.51 2.77 .45

Anchor Test
Internal FE4PA 20 11.58 3.05 .47

t !*Based on 84 of the 85 items.

dices were standardized (expressed as a proportion of the criterion standard

deviation) so that results could be compared across equating situations as well
as across equating models.

The standardized weighted mean square difference or total error is equal to

the variance of the difference plus the squared bias, that is,

2 2 - 2 -2 ,
•f.d Ins = Efj(d -d) Ins' + ,[2

Sa i o tr + s

or Total Error - Variance of Difference + Squared Bias,

I ,! f

S ,-c-'
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where

-j
L= the estimated criterion score for raw score xj;

t = the criterion score for xj;

df d jj/n;

= the standard deviation of the criterion scores tj;

fj the frequency of _j;

n =f

and the summation was over that range of x for which extrapolation was unneces-
sary for any of the models studied. If the ratio of the squared bias to the
total error is 1, then the criterion line and the conversion line are parallel.
If the difference is less than 1, then there is an interaction between the
model and the criterion.

Criterion Equatings

In the case in which a test was equated to itself, the criterion for the
various equatings was the test score itself. The new and old forms were treated
as different tests, when in reality they were one and the same test. The ideal
equating would reproduce the score on the old form exactly; that is, the conver-
sions from raw to scaled scores would be the same for the new form as for the
old form. The criterion was not so simply established in the case in which a
test was equated to a different test. In these instances, it was necessary to
calculate "true" conversions by equating the tests in as ideal a manner as pos-
sible.

The criterion equatings were accomplished using data from all of the cases
in the two base samples (No. 32 and No. 44) from which subsamples were selected.
Since all 4,731 cases in each base sample had scores on the tests being equated,
it was possible to equate the scores using a single sample, an ideal equating
situation. The scores could be linked directly without involving an anchor
test.

Two equating methods were used to establish the two criteria against which
to compare the results of the experimental equatings: equipercentile equating of
estimated true scores derived from the 3-parameter logistic test model (the ICC
equipercentile criterion) and equipercentile equating of observed scores (the
direct equipercentile criterion). Although the criterion equatings using esti-
mated true scores were based on ICC methodology, the method was different from
that used in the experimental equatings. Nevertheless, the ICC equipercentile
criterion could be biased in favor of ICC equating methods. Thus, the direct
equipercentile criterion was also used. This criterion might be biased in favor
of equipercentile, but not ICC, methods. For the study of the curvilinear meth-
ods reported here, both methods were appropriate, since the total tests were
equal in length and yielded scores with nearly equal reliabilities. (True score
equating will generally yield better conversions than observed score equating
when the new and old form scores have unequal reliabilities.)

. . . . . . . . . . . . . . .. . . . . ..jm l I l l . . . .



178

Table 5
Formula Score Means, Standard Deviations, and Correlations' Between

Anchor Test and Total Test Scores for Base Sample No. 32 (April 1975)

Sampleab
No. of Random Dissimilar

Test Items 321XX 322XX 327XX 328XX 329XX

Equating a Test
to Itself

Total Test
FT2XX 85

Mean 34.47 34.67 32.95 40.28
SD 15.48 15.57 14.47 14.82

Anchor Test
FE2DE 34

Mean 19.91 19.96 19.43 22.27
SD 6.78 6.72 6.46 6.00

rxv  .93 .93 .92 .92

FE2DM 34
Mean 14.00 14.12 13.39 16.56
SD 6.98 6.98 6.58 6.66

.94 .94 .93 .94

FE2DH 34
Mean 9.15 9.27 8.45 11.83
SD 7.35 7.36 6.90 7.37

.94 .94 .93 .95

FE2FM 40
Mean 16.99 16.63 16.01 19.52
SD 8.06 8.06 7.78 7.86
-xv .87 .87 .85 .86

Equating a Test to
a Different Test

Total Test
FT4DE 54

Mean 31.61 27.94
SD 10.17 10.20
rxv  .88 .86

FT4DM 54

4 Mean 21.26 21.14 21.47
SD 11.67 11.08 10.99

.90 .89 .89

FT4DH 54
Mean 11.89 16.17
SD 9.53 10.89
- v .89 .89

Anchor Test
FE2PA 20

Mean 8.46 8.42 7.25 8.02 9.72
SD 4.15 4.17 3.97 3.99 4.07

aCorrelations are between the indicated anchor test score and total test

score FT2XX in the case of a test being equated to itself, and between
anchor test score FE2PA and the indicated total test score in the case of
a test being equated to a different test. All anchor test scores were
included in the total test score except FE2FM.

bme last two digits of the sample number refer to the total test and
anchor test score combination used for a particular equating.
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Table 6
Formula Score Means, Standard Deviations, and Correlationsa Between

Anchor Test and Total Test Scores for Base Sample No. 44 (November 1975)

Sampleab
No. of Random Dissimilar

Test Items 441XX 442XX 447XX 448XX 449XX

Equating a Test
to Itself

Total Test
FT4XX 85

Mean 36.34 35.97 36.70 42.18
SD 15.77 14.92 14.74 15.10

Anchor Test
FE4DE 36

Mean 21.82 21.74 22.15 24.19
SD 7.13 7.11 6.76 6.43
r., .93 .93 .93 .92

FE4DM 36
Mean 15.31 15.23 15.47 17.81
SD 7.13 6.85 6.75 6.89

.x, .95 .95 .94 .95

FE4DR 36
Mean 9.19 8.98 9.12 12.02
SD 7.85 7.29 7.56 8.06
rxv .94 .93 .93 .95

FE4FG 40
Mean 14.38 14.15 14.57 17.22
SD 8.32 8.02 7.80 8.24
rx, .87 .86 .85 .87

Equating a Test to
a Different Test

Total Test
FT2DE 54

Mean 31.88 28.61
SD 10.05 10.25

.89 .87

FT2DM 54
Mean 21.99 22.07 20.85
SD 10.95 10.92 10.38
rxv  .91 .90 .89

FT2DH 54
Mean 12.94 16.47
SD 10.21 10.45
v .89 .89

Anchor Test
FE4PA 20

Mean 8.12 7.93 6.66 8.08 9.48
SD 4.36 4.13 3.89 4.07 4.39

aCorrelations are between the indicated anchor test score and total test

score FT4XX in the case of a test being equated to itself, and between
anchor test score FE4PA and the indicated total test score in the case of
a test being equated to a different test. All anchor test scores were
included in the total test score except FE4FG.

s bThe last two digits of the sample number refer to the total test and

anchor test score combination used for a particular equating.

%-W 
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-180-

To determine the ICC equipercentile criterion, the 3-parameter logistic
test model was applied separately to Reading (reading comprehension and sentence
completion) and Vocabulary (antonym and analogy) items, so that unidimensional-
ity did not have to be assumed across all item types. The following scores were
equated:

Base Sample No. 32 Base Sample No. 44
New Form Old Form New Form Old Form

FT2DE FT2DM FT4DE FT4DM
FT2DE FT2DH FT4DE FT4DH

FT2DM FT2DH FT4DM FT4DH

The following steps were required to accomplish the 3-parameter logistic
ICC criterion equatings:

1. LOGIST was used to calculate item parameter estimates and examinee
ability estimates separately for each set of relatively homogeneous
items (Reading and Vocabulary).

2. For each of the three scores, for each examinee, an estimated true raw
(RfW/4) score was calculated across the item types represented in each

score. The true raw score (Ra) was estimated as follows:

R = EPi(eia) - [EQi(Qia)]l4 [31

where
8ia is the estimated ability of examinee a on the item type repre-

sented by item i (if item i is a Reading item, then 6ia is
the estimate of'the examne's reading ability, and so
forth);

Pi is the probability of examinee a answering item i correctly
(as calculated frod the 3-parameter logistic test model);

Qi = 1 - Pi; and

1/4 is the correction factor for guessing for five-choice multi-
ple-choice items.

(Each summation was over only those items to which examinee a actually
responded.)

3. For each of the three pairs of scores, the scores were directly equated
by the equipercentile method. Raw and scaled score equivalents were4 generated for each integral score on the new form for which it was pos-
sible to establish a conversion. (The true raw scores did not usually
extend over the possible score range, thus making it impossible to es-
tablish a conversion for some scores.)

*-A
9

* S



-181-

RESULTS AND DISCUSSION

Comparisons of Equating Models

Tables 7 through 12 and Figures I through 6 summarize discrepancies between
the results of the experimental equatings and the criterion equatings. The dis-
crepancies are stated as mean square error and squared bias. To make the re-
sults comparable for different tests, the discrepancies are expressed on a scale
on which the standard deviation of the criterion scores would be 100 for a stan-
dard reference group. The discrepancy indices for Tables 9 and 11 and Figures 3
and 5 were calculated in relation to criterion equatings in which the 3-parame-
ter logistic test model was used (the ICC equipercentile criterion). The dis-
crepancy indices for Tables 10 and 12 and Figures 4 and 6 were calculated in
relation to criterion equatings in which the equipercentile equating method was
used (the direct equipercentile criterion).

The test variations represented in Tables 7 through 12 are characterized in
Tables 2 and 3. The statistical characteristics of the tests on which the total
test scores and the anchor test scores were based are described in Table 4. The
first three digits of the numeric codes in the column labeled "Sample Number"

identify the subsamples on which the equatings were based (see Tables 5 and 6
for sample statistics).

The column labeled "Best Lin" identifies the linear model that had the
smallest mean square error under the condition specified. The linear models
considered are enumerated in Sections I (observed score models) and III (true
score models) of Table 1, which also gives the identification codes for all mod-
els. The models identified in Tables 7 through 12 as Equi% (Dir), Equi% (FE),
3-Par ICC, and 1-Par ICC correspond, respectively, to Sections IIB, IIA, IVA2,
and IVAI of Table 1.

Figures 1 through 6 correspond sequentially to Tables 7 through 12. It is
essential to note that the size of the scale units represented on the y-axis is
different in different figures. The scale on the left side of each figure is in

terms of standard deviation units and is the square root of the linear scale of
mean square error shown on the right side of the figure. Contiguous bars repre-
sent the results for one model or, in the case of "Best Lin," for the best of a

'i set of models. The results for random samples are shown in the top half of the
figure; and the results for dissimilar samples, in the bottom half. The outer

bars represent total error; and the inner shaded bars, bias.

The bars in each set, from left to right, appear in the successive rows in
the comparable area of the corresponding table. For example, the first bar in
each set in Figure 1 represents the results obtained with an internal anchor
test for a pair of April 1975 samples, which were either random or of middle and
high ability, respectively; the second bar, an external anchor test for the same
April samples; the third bar, an internal anchor test for a pair of November
1975 samples; and the fourth bar, an external anchor test for the same November
samples.
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Equating a Test to Itself

Test Variations 1 and 4. The data in Table 7 (and Figure 1) show that for
both similar and dissimilar samples the best linear model had the smallest
amount of total error across replications, followed by the 1-parameter ICC and

Figure 1

Comparisons of Equating Models: Equating a Test
to Itself Through a Medium-Difficulty Anchor Test

8' *64

48

32 LU

OX. 163

0- 0

X. :1 16
5 !32

48

-64X, 
:0i i~i

*11

-- 80

1 "96

,I

::::: -- 112

*Outer Bar: Total Error -128Inner Bar: Bias

12 - 144

Beat Equi% Equi% 3-Par 1-Par

LIN (DIR) (TE) ICC ICC

3-parameter ICC models. The direct equipercentile and frequency estimation
equipercentile methods had relatively more error. Surprisingly, the total error

for dissimilar samples was very similar to the total error for random samples,
implying, perhaps, that if the anchor test is nearly parallel to the total
tests, the differences between samples is not so important. The only method
showing noticeably more error for dissimilar samples was the frequency estima-
tion equipercentile method. In this instance, bias accounted for a large pro-
portion of the error. For dissimilar samples, the equatings through an external
anchor had noticeably more error for all but the 1-parameter ICC model.

Test Variation 5. For random samples the total errors for Test Variation 5
(Table 8 and Figure 2) were similar to the total errors for Test Variations 1

J
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and 4. The fact that the total error for the best linear model was small for
random samples suggests that the curvilinear relation of the anchor test and the
total test had little effect on the equating.

The total error for the best linear model was substantially larger when
dissimilar samples were used. The ICC models were noticeably superior to the
other models in this case, suggesting that these models are relatively robust
when the anchor test is different in difficulty from the total test and the
samples differ in ability.

Figure 2
Comparisons of Equating Models: Equating a Test

to Itself Through an Easy or Difficult Anchor Test

6- 36

32
S28

24

20

4 16

. 12

I224

X , 4
12 52

40 -

240

32

Oiier Bar: Total Error
l nner Bsr: Bias 36

6.36

Best Eq .i .Equ
1  

3-Par i-Par 2
lIN (D18) (FE) ICC ICC

Equating a Test to a Different Test

Test Variations 8 and 9. The introduction of some curvlinearity in the
~relation between the scores of the tests being equated (due to differences in

44

difficulty) resulted, as expected, in a very large total error for the best lin-ear model (see Tables 9 through 12 and Figures 3 to 6). For the most part, sam-
* ple variation seemed to have little effect on total error for the curvilinear

j models. All of the curvilinear models had noticeably less error than the best
linear model, but the 1-parameter ICC model had substantially more error than

84
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the other curvilinear models. For most equatings, the model with the smallest
total error was the 3-parameter ICC model. For the most part, when greater dif-
ferences in total test difficulty were introduced (greater curvilinearity), the
total error tended to increase substantially for all models, becoming exceeding-

ly large for the best linear model.

Figure 3
Comparisons of Equating Models: Equating a Test to

a Different Test Using Easy and Medium or Medium and
Difficult Tests (ICC Equipercentile Criterion)

16 256

-224

192
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64 64
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Criterion Bias

Equating a Test to a Different Test

The total error and bias for the two criteria for Test Variations 8 and 9
can be compared in Figures 3 and 4 (Tables 9 and 10) and in Figures 5 and 6 (Ta-

| bles 11 and 12). It may be noted that for random samples the experimental equi-

percentile equatings had less error than the 3-parameter ICC model when the
equipercentile observed-score criterion was used, suggesting that the equiper-

centile criterion equatings based on true scores may be biased in favor of the
3-parameter ICC model, just as the equipercentile criterion equatings based on

observed scores seem to be biased in favor of the equipercentile models. Inter-
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estingly enough, the 3-parameter ICC model has less total error than the 1-pa-

rameter ICC model regardless of which criterion was used, although the differ-
ence between the models was less for the direct equipercentile criterion.

The criterion bias was less obvious in the case of dissimilar samples; in
fact, the rank ordering of the models in terms of total error was not affected
by the choice of criterion. The 3-parameter ICC model had the smallest error
under both criteria, but the size of the error decreased for the equipercentile
and 1-parameter ICC models and increased for the 3-parameter ICC model when the
direct equipercentile criterion was used.

Figure 4
Comparisons of Equating Models: Equating a Test to a
Different Test Using Easy and Medium or Medium and

Difficult Total Tests (Direct Equipercentile Criterion)
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Equating a Test to Itself

3The criterion would seem to be well established when a test is equated to
*itself. However, it is possible that the criterion in this case is biased in

favor of a model that comes closest to fixing all of the item parameters at the
same values, in this case, the 1-parameter ICC model.

*, *> ' . . ... - - .
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It is easily seen that if the a's, b's, and c's in the 3-parameter logistic
test model are fixed at some constant values, the-true raw scores for the old
and new forms corresponding to a given ability level have to be the same, since
the probability of getting a particular item correct is then a function of only
the item parameters and ability.

In the 1-parameter logistic test model, c is fixed at 0 and a at i for all
items. Since only the b's are estimated, it might be expected that the 1-param-
eter ICC model is more Tikely than the 3-parameter ICC model to yield the appro-
priate conversions. Is it of any consequence, then, if it is found that the
1-parameter ICC model seems to be superior to the 3-parameter ICC model in
equating a test to itself? What is really desired is to know which of the models
works best when a test is equated to a different #st, particularly when a test
is equated to a parallel test. It would seem, then, that there may be a natural
bias in favor of the 1-parameter ICC model when a test is equated to itself, but
this probably does not affect the other models.

Figure 5
Comparisons of Equating Models: Equating a

Test to a Different Test Using Easy and Difficult
Total Test (ICC Equipercentile Criterion)
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Figure 6

Comparisons of Equating Models: Equating a
Test to a Different Test Using Easy and Difficult
Total Test (Direct Equipercentile Criterion)
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CONCLUSIONS

Several conclusions can be drawn from the study. They should be considered
tentative because of possible criterion bias, which has been only partially con-
trolled; because it was not possible to study all test variations in the full
design, in particular, the variations in which parallel, but not identical,
tests were equated; and because the results showed occasional inconsistencies
that have not yet been explained:

1. When a test is equated to itself (or, to generalize, to a test like
itself) through a parallel anchor test, a linear model yields very good
results regardless of the type of samples used. However, whether any
particular linear model consistently gives satisfactory results re-
quires further study. The best linear model for a particular test

4variation and type of sample was used here.

2. Curvilinear models give results nearly comparable to those of the best
*linear model when a test is equated to a test like itself through an

internal anchor. When an external anchor is used, of the curvilinear
models the ICC models (particularly the 1-parameter model) give rela-

, i* . rarI I I I , Io n I I I l . . .
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Lively better results. However, the criterion may be biased in favor
of the 1-parameter model.

3. The types of samples have a relatively small and unsystematic effect on
the quality of the equating results if the anchor test is similar in
content and in difficulty to the total tests. The one exception is the
frequency estimation procedure, which seems not to perform well when an
external anchor and dissimilar samples are used.

4. The equatings involving an internal anchor have less total error than

comparable equatings with an external anchor. Whether or not this in-
consistency would obtain when a test is equated to a test of different
difficulty needs to be studied. The possibility that the criterion is
biased in favor of an internal anchor also needs investigation. Howev-

er, it may simply be due to the fact that the external anchor tests
were not quite as similar to the total tests in content and statistical
characteristics as were the internal anchor tests.

5. When a test is equated to a test like itself through an easy or hard

anchor test with random samples, all of the models have a small mean
square error. When dissimilar samples are used, however, the ICC mod-
els give clearly superior results.

6. When total tests differ considerably in difficulty, linear models yield
unsatisfactory results in that the mean square error becomes very
large; but they tend to yield better estimates of the mean than the
curvilinear models. The 1-parameter ICC model and the frequency esti-
mation method also give unacceptable results in many instances. This
result is consistent with the Slinde and Linn (1978) findings that the
Rasch model yielded poor results for vertical equating.

7. The 3-parameter ICC model is the best equating model when total tests
of unequal difficulty are equated through a medium-difficulty anchor

test with dissimilar samples. It would appear that the 3-parameter
model is the equating model most likely to yield acceptable results
under unusual or extreme conditions.

This study, though comprehensive in its coverage, is limited in that SAT-V
items made up the item pool. These items are known to be relatively homogeneous
and somewhat difficult for the current test-taking population. Similar studies
are needed in situations where the content of the anchor test is allowed to de-
part by varying degrees from the content of the total tests and where the test-
taking population is from a different age group.
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THE EFFECTS OF CONTEXT ON LATENT-TRAIT MODEL ITEM

PARAMETER AND TRAIT ESTIMATES

WENDY M. YEN

CTB/McGRAw HILL

Latent trait models hold the promise of being particularly useful in the
development of test item pools. Items for an item pool can be accumulated by
administering different sets of items to different groups of examinees; all the
items' parameters can then be linked to the same scale through a common subset
of items called anchor or linking items. After an item pool is created, differ-
ent examinees can take different items from the pool, and all examinees' trait
estimates should be on a common scale. An examinee's trait estimate should not
be systematically affected by the choice of items, although unsystematic ef-
fects, as reflected in the standard error of measurement, can occur.

The successful use of latent trait models in the development and use of
item pools relies on (1) the lack of systematic effects on item parameter esti-
mates when they are obtained in different contexts with different examinees and
(2) the lack of systematic effects on trait estimates when they are obtained
with different items. Previous research on the invariance of item parameter
estimates has typically examined the effects of changing samples on a fixed
group of items and has not examined variations in the identities and arrange-
ments of the items. The present research examines such variations, as well as
the effects of changes in items on trait estimates. The effects of the choice
of latent trait model on parameter stability aad trait equating are also exam-
ined.

* Method

Construction of Test Booklets

Items were chosen from the California Achievement Tests, Forms C and D
(1977), Level 14, Reading Comprehension (Reading--80 items), and Level 16, Math-
ematics Concepts and Applications (Mathematics--90 items). The Reading items
all had four-answer choices and the Mathematics items all had five-answer
choices. Preliminary analyses were performed on data for students who took both
test forms (N = 294 for Reading, N = 379 for Mathematics). Chi-square goodness-
of-fit statistics were used to evaluate the items in terms of their fit to a
2-parameter logistic model; item difficulties and discriminations were reviewed
to identify items with extreme difficulties or discriminations.

Using these results, five sets of items were created in each content area.
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The first set of items (Set A) had a range of difficulties and relatively good
model fit; these items were used as anchor items for linking item parameters
obtained in different booklets. The second and third sets of items (Sets V and
W) had relatively poor fit and, in some cases, extreme difficulties or low dis-
criminations; these items were included to alter item contexts. The fourth and
fifth sets of items (Sets X and Y) had relatively good model fit and discrimina-
tion and nonextreme difficulties, and were the items of major interest. Table 1
contains the number of items chosen for each set for each content area.

Table 1
Number of Items in Each Set

Number of Items
Set Reading Mathematics

A 10 11

V 10 11
W 10 11

X 20 22
Y 20 22

Using these sets of items, seven booklets were created, as described in
Table 2. The items in the different sets were intermingled within the booklets,
and the sequences of items were varied over booklets. Because of the connection
of Reading items to passages and the connection of some Mathematics items to
graphs, there was necessarily some similarity over booklets in the local con-
texts for some items. The sequence of answer choices for an item was held con-
stant over all booklets.

Table 2
Composition of Test Booklets

Number of Items
Booklet Sets Reading Mathematics

I X+Y 40 44
2 A+V+X 40 44
3 A+W+Y 40 44
4 A+X 30 33
5 A+Y 30 33
6 A+X 30 33
7 A+Y 30 33

To indicate the degree of similarity of the sequence of X and Y items
across booklets, the sequential positions of the X items and of the Y items iVre
determined. Spearman rank-order correlations between items' positions in Book-
let I and their positions in the other booklets are contained in Table 3.

S.

(4
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Table 3
Spearman Rank-Order Correlations Between the Position

of X or Y Items in Booklet 1 and the Position
of Those Items in Booklets 2 to 7

Correlation with Booklet I
Booklet Set Reading Mathematics

2 X .90 .05
3 Y .56 .4O

4 X .59 -.06
. Y .70 .62
6 X .10 -.06
7 Y .30 .03

Note. Each correlation is based on 20 items for Reading

and 22 items for Mathematics.

Test Administration

Students were tested in Grade 4 for Reading and in Grade 6 for Mathematics.
Time limits for test administration were adjusted for the length of the booklet

and were made comparable (on a time-per-item basis) to those given in the Cali-
fornia Achievement Tests Examiner's Manual, Levels 14-19, Forms C and D (1977.
For the first testing each student took one of the seven booklets. Booklets 2
and 3 (as well as Booklets 4 and 5 and Booklets 6 and 7) were administered to

students in the same classrooms on an alternate-seat basis. (This alternate-
seat testing was done for a study of equipercentile equating that will not be
reported here.) Two weeks later, all students took Booklet 1. The number of
examinees with usable answer sheets for both first and second testings appear in
Table 4.

Table 4
Number of Examinees with Usable Answer

Sheets for Both First and Second Testings

First-Testing Reading Mathematics
Booklet* (Grade 4) (Grade 6)

1 470 450
2 225 228
3 216 232

4 193 230
5 198 219
6 186 232

J 7 190 221

Note. Booklets 2 and 3, 4 and 5, and 6

and 7 were administered on an
alternate-seat basis.

*All second testings used Booklet 1.
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Latent Trait Models

Two latent trait models were used--the 3-parameter logistic model and the
1-parameter (Rasch) logistic model (see Allen & Yen, 1979, for a further de-
scription of these models). For the 3-parameter logistic model, the item char-

acteristic function for the ith item and the kth examinee is

1 - .
I + e -"7ai(k -hi)

where 6k is thu latent trait value for examinee k and .i, b., and ci are the

discriminati-i power, difficulty, and lower asymptote, respectively, for item i.
The item cha, zteristic function for the I-parameter model is

( = 1 , [2]
Pik 1 + e 1. 7 a(Ok - bi )

where a is the item discrimination power common to all the items.

To obtain latent trait and item parameter estimates, examinees' item re-
sponse vectors were analyzed using the LOGIST computer program provided by Wood,
Wingersky, and Lord (1976). Trait estimates were not obtained for examinees who
had zero or perfect scores, and using a default option of the Wood et al. (1976)
program, trait estimates also were not obtained for examinees who did not answer
at least a third of the items being scaled.

Item Linking

The item parameters for the X and Y item subsets were placed on the same
scale using different procedures for Booklet I and Booklets 2 to 7. For Booklet
1, examinees took both X and Y items; item response vectors for the two sets
were analyzed together, and their item parameters were automatically placed on
the same scale. This procedure was followed whether Booklet 1 was administered
in the first testing or in the second testing. In some analyses, those exam-
inees who took Booklet I at the first testing were divided into two approximate-
ly equal-sized groups, and item parameters were obtained separately in the two
groups. For convenience, these groups were labeled Booklets IA and IB, even
though the 1A and 1B test booklets were tbe same; "A" and "B" merely indicated
different samples of examinees.

For Booklets 2 to 7, booklets were linked in pairs: 2 and 3, 4 and 5, 6 and
7. For example, the responses to all the items in Booklets 2 and 3 were pooled
and analyzed jointly. This was done by treating the items in the A, V, W, X,
and Y sets as if they were all contained in one test booklet. Examinees' re-
sponses were used for all the items they completed, and they were given a "not
reached" code for every item they did not take. Examinees who took Booklet 2
were given "not reached" for items in Sets W and Y, and those who took Booklet 3
were given "1not reached" for items in Sets V and X. Using the LOGIST program,
an examinee's trait value was based only on the items the examinee actually
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took; not reached items were ignored. Similarly, an item's parameters were es-
timated using only the responses of examinees who actually completed the item.
This joint analysis of Booklets 2 and 3 placed the parameters for the A, V, W,
X, and Y items on the same scale.

For some analyses, responses for Booklets 2 to 7 were pooled and jointly
analyzed. Thus, responses to Booklets 2, 4, and 6 entered into the estimation
of the item parameters for the X subset, responses to Booklets 3, 5, and 7 en-
tered into the estimation of the item parameters for the Y subset; and responses
to all six booklets entered into the estimation of the item parameters for the A
subset of items.

Analysis of Context Effects

To examine context effects on the means and standard deviations of the item
parameters from the first testing, it was necessary to place the item parameters
estimated from different samples and booklets on the same scale. To do this,
the item parameters obtained from the pooling of Booklets 2, 4, 6 and 3, 5, 7
were scaled so that the corresponding trait estimates had a mean of 0 and a
standard deviation of 1, and mean item difficulty and mean item discriminations
were obtained from the Set A items. The item parameters from the other pairs of
first-testing booklets that contained Set A items (i.e., Booklets 2 and 3, 4 and
5, 6 and 7) were linearly transformed so that their Set A mean item difficulties
and mean discriminating powers equaled the Set A means obtained from the pooled
2, 4, 6 and 3, 5, 7 booklets. This transformation theoretically placed all the
first-testing item parameters on the same scale--a scale that produced trait
estimates with a mean of 0 and a standard deviation of I for examinees who took
Booklets 2 to 7. The X and Y item parameters could then be compared across
booklets to examine systematic context effects. (Note that this comparison
would not be made for Booklet 1, which did not contain Set A items.)

The square root of the mean square difference (RMSD) between two sets of
estimated statistics (e.g., item parameters or trait values) was found as

WD i , n (zi - z , [31RMDm,m' n i m Ziml ,

where zim and .im' represent statistics in sets m and m' and there are n statis-

tics being compared. The RMSD also can be expressed asr 1
RMSD Mm' S + S 2 + - - 2 ,)2 _ [41

' m Zm m m' mm 'J

where
s and s, are the standard deviations of the statistics
- m

in the two sets,
z and z dare the means of the statistics in the two

sets, and
rMM is the correlation between the two sets of statistics.

4,
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Chi-square goodness-of-fit statistics were calculated in the following

fashion. Examinees were rank ordered on the basis of their trait estimates and
then divided into 10 cells with approximately equal numbers of examinees in each
cell. The chi-square for an item was

10 N.(Oij - ij )2

X2 = [5]i j=1 Eij (1 - Eij )

where
Nj was the number of examinees in cell j,
Oij was the observed proportion of examinees in cell j that

passed item i, and
Ej, was the proportion of examinees in cell i expected to pass

item i.

E. ._ 1 [6]
i N. i(k)

J ktcell j

where jpi(Ok) was the item characteristic function evaluated using the trait es-

timate for examinee k and the estimated item parameters for item i. When item
parameters were estimated from the data on which the chi-square is based, this
chi-square statistic had 10 - 3 = 7 degrees of freedow for the 3-parameter mod-
el and 10 - 1 = 9 degrees of freedom for the 1-parameter model.'

Results

Item Parameter Estimates

Table 5 contains the number of examinees whose responses entered into the

first-testing item parameter estimations for the various booklets. These sample
sizes usually were slightly smaller than those in Table 4 because examinees were
not used if they did not answer at least a third of the items or if they had
zero or perfect scores.

First testing. For the 3-parameter model the lower asymptotes, c, had ho-

mogeneous values centered at .20 for Reading and .15 for Mathematics. Correla-

tions of the X + Y difficulty and discrimination parameters estimated in the
different first-testing booklets are contained in Table 6.2 Recall that Booklets

IA, IB, and I had the same context and differed only in terms of the samples and
sample sizes used to estimate their parameters. The correlations between Book-

A simulation study found that when 40 item responses for 500 pseudo-examinees
were generated for a model and these responses were used to estimate traits

4 and item parameters for that model, the resulting chi-squares had expectations
" approximately equal to their degrees of freedom.

Note that these correlations were a function of the particular items being cor-

J related, and the correlations cannot be meaningfully compared across content

areas.
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Table 5
Sample Sizes Involved in Parameter
Estimations for the First Testing

Sample Size
Booklets Reading Mathematics

IA 232 225
IB 228 224
1 460 449
2&3 223 + 214 228 + 232

4&5 187 + 195 228 + 218
6&7 183 + 184 228 + 218

2,4,6&3,5,7 593 + 593 684 + 668

Note. Some of these sample sizes are slight-

ly smaller than the corresponding sam-
ple sizes in Table 3 because examinees
were excluded if they had zero or per-

fect scores or if they did not answer
at least a third of the items.

lets 1A and 1B can be compared to the correlations among Booklets 2 and 3, 4 and
5, and 6 and 7 to examine the degree to which changes in context affect the sta-
bility of item parameters for sample sizes of about 200. It is clear from the
data in Table 6 that a change in context substantially decreased the stability

of all the item parameter estimates.

First versus second testing. Another comparison of the correlations be-
tween item parameters was made. Item parameters were obtained for the X + Y
items using all the second-testing data. (Recall that all the second testings
used the same booklet, Booklet 1.) These parameter estimates were based on rela-
tively large sample sizes and therefore had fairly small standard errors. Cor-
relations between these second-testing parameter estimates and the first-testing
parameter estimates are contained in Table 7. Correlations involving Booklets
IA, IB, and I give information about the stability of parameters over a constant

context. Correlations involving Booklets 2 to 7 give information about the sta-
bility of parameters over a varying context.

Booklets 1A, IB, 2 and 3, 4 and 5, and 6 and 7 all had item parameters es-
timated on the basis of about 200 examinees. For the item discriminations the
change in context produced a consistent reductica in the correlations. The
change in context also decreased the stability of the item difficulties for both
the 3-parameter and 1-parameter models. By examining the correlations for Book-
lets 2, 4, 6 and 3, 5, 7, it can be seen that when data were pooled over differ-

3ent contexts, and sample sizes were therefore tripled, there was an increase in
the strength of the linear relationship between first- and second-testing item
parameters. However, the correlations for Booklets 2, 4, 6 and 3, 5, 7 (which

J involved parameter estimates based on sample sizes of about 600) were always

lower than the corresponding correlations for Booklet 1 (which involved parame-
ter estimates based on N 400), and usually lower than the correlations for

.1 .. ..
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Table 6
Correlations Between First-Testing Item Parameter Estimates

for 40 X+Y Reading Items (Lower Triangles)

and 44 X+Y Mathematics Items (Upper Triangles)

Booklets

Model, 2,4,
Parameter, 6&3,
and Booklet 1A LB I 2&3 4&5 6&7 5,7

3-Parameter Discrimination
1A .78 .92 .55 .45 .54 .61
1B .63 .96 .65 .50 .46 .63
1 .90 .88 .64 .48 .51 .64
2&3 .47 .52 .52 .41 .64 .80
4&5 .39 .28 .40 .31 .47 .77
6&7 .16 .04 .L1 .29 .36 .83

2,4,6&3,5,7 .40 .31 .39 .67 .74 .67
3-Parameter Difficulty

IA .94 .98 .82 .80 .75 .84
LB .87 .99 .87 .85 .75 .88
1 .96 .97 .87 .85 .78 .89
2&3 .77 .72 .76 .91 .72 .95

4&5 .83 .73 .80 .69 .76 .96
6&7 .73 .62 .69 .54 .64 .88

2,4,6&3,5,7 .90 .81 .87 .88 .87 .84
L-Parameter Difficulty

IA .98 .99 .88 .86 .85 .90
1B .95 .99 .89 .88 .87 .92
1 .99 .99 .89 .87 .87 .91
2&3 .76 .77 .78 .95 .83 .97
4&5 .71 .65 .71 .68 .85 .97
6&7 .65 .63 .65 .55 .68 .93

2,4,6&3,5,7 .81 .81 .82 .84 .88 .88

Booklets 1A and LB (N = 200). For Reading the 3-parameter and 1-parameter mod-
els had similar stabilities for item difficulties; for Mathematics the I-parame-
ter model produced slightly more stable difficulties. It is not clear if the

* difficulty parameters of one of the models was affected more by changes in con-
text than the parameters of the other model.

Effect of Linking

The X and Y item parameters from Booklets 2 to 7 were linked by the use of
the anchor items. It is possible that there were inadequacies in the linking

"procedure that caused the reduced correlations between parameters estimated in
these booklets and those in Booklet I. Therefore, a check on the importance of
the linking procedure in affecting item parameter correlations was made. Corre-
lations were computed between the item parameters obtained for Set X using the

first-testing booklets and the parameters obtained for Set X using the second-

'I * -~ . . . . . . .. . - . . .
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Table 7
Correlations of First-Testing Item Parameters

with Second-Testing Item Parameters
for 40 X+Y Reading Items and 44 X+Y Mathematics Items

First-Testing Discrim- Difficulty
Booklets ination 3-Parameter 1-Parameter

Reading
1A .76 .95 .92
1B .72 .84 .89
1 .81 .92 .92
2&3 .63 .76 .82
4&5 .60 .81 .81
6&7 .30 .73 .73
2,4,6&3,5,7 .67 .89 .90 K)

Mathematics

IA .76 .92 .97
lB .78 .96 .99
1 .80 .96 .99
2&3 .67 .91 .92
4&5 .59 .91 .92
6&7 .61 .84 .89
2,4,6&3,5,7 .76 .95 .95

Note. Sample sizes used for estimating the second-testing

item parameters were 1,660 for Reading and 1,810
for Mathematics.

testing booklet, Booklet 1; analogous correlations were obtained for Set Y.
There was no linking procedure influencing these item parameters. These corre-
lations are contained in Table 8. In the vast majority of cases, the correla-
tions in Table 9 fell within the range of correlations in Table 10 produced by
the X items and the Y items correlated separately. These results suggest that
the linking procedure did not cause the reduction in item parameter correlations
from Booklet 1 to Booklets 2 to 7.

Item Parameter Statistics

con The means and standard deviations of the first-testing item parameters are
,4 contained in Table 9. Differences between booklets in these means and standard

deviations can be the result of context and/or sampling effects. For the item
discriminations there were systematic context/sampling effects, particularly for
Mathematics. The item difficulties displayed substantial context/sampling ef-
fects for Reading, but very small effects for Mathematics. For Reading there
were larger mean differences in item difficulties for the 3-parameter model than
for the 1-parameter model. Table 10 contains the RMSDs between the item parame-
ters estimated with the various first-testing booklets. For the item difficul-
ties the 1-parameter model produced smaller RMSDs than the 3-parameter model.

'i)

f I.. jr
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Table 8
Correlations of First-Testing X or Y Item Parameters

with Second-Testing X or Y Item Parameters for
20 Reading and 22 Mathematics Items

First-Testing Discrim- Difficulty

Booklets ination 3-Parameter 1-Parameter

Reading
X Items

IA .70 .95 .92
IB .75 .79 .89
1 .79 .90 .92
2 .58 .90 .91
4 .60 .84 .85
6 .44 .83 .86
2,4,6 .70 .95 .96

Y Items
IA .85 .95 .94
lB .69 .91 .91
1 .85 .95 .94
3 .66 .78 .86

5 .55 .78 .76
7 .17 .63 .58
3,5,7 .62 .85 .83

Mathematics

X Items
IA .72 .90 .98
1B .65 .97 .99

1 .67 .96 .99
2 .67 .91 .93
4 .60 .93 .94
6 .67 .90 .94

2,4,6 .81 .96 .96
Y Items

IA .80 .96 .98
1B .86 .95 .99
1 .89 .97 .99
3 .76 .91 .91
5 .60 .91 .90
7 .61 .77 .81

3,5,7 .78 .95 .93

Trait Estimates

Context effects. Using the second-testing data, trait estimates were ob-
tained for the X items (OX) and the Y items (Oy) for all examinees who answered

at least a third of the X and a third of the Y items and who did not have zero

or perfect scores. The item parameters on which the traits were based were
linked in jhe first testing, as previously described (see Table 4 for sample

.re
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Table 9
Means and Standard Deviations of First-Testing Item Parameters

for 40 X+Y Reading Items and 44 X+Y Mathematics Items

Difficulty

Discrimination 3-Parameter 1-Parameter
Booklets Mean SD Mean SD Mean SD

Reading
2&3 .98 .42 -.15 .93 -.50 .56
4&5 1.11 .54 .43 .71 -.14 .56

6&7 .94 .46 -.14 1.15 -.56 .83
2,4,6&3,5,7 .97 .36 .03 .68 -.40 .55

Mathematics
2&3 .83 .37 -.10 .86 -.43 .86
4&5 .97 .50 -.10 .95 -.42 1.00
6&7 1.03 .54 -.09 .88 -.36 .91
2,4,6&3,5,7 .89 .36 -.08 .80 -.39 .87

sizes for item parameterization); 0 estimates were based on 20 items for Reading
and 22 items for Mathematics. Because the item parameters were linked on the
basis of the first-testing data, eX and Oy theoretically were equated. Table 11

presents the relationships between OX and 6y. For item parameters estimated

with Booklet 1A, the 1-parameter model produced higher correlations between eX
and 8y than the 3-parameter model. However, the 3-parameter model produced

closer equatings of means and standard deviations than the 1-parameter model.
The RMSD/Se between eX and Oy was greater for the 3-parameter than for the I-pa-
rameter model.

Table 10
Root Mean Squared Differences Between First-Testing Item Parameters

for 40 X+Y Reading Items and 44 X+Y Mathematics Items

Difficulty
Discrimination: 3-Parameter: 1-Parameter:

Booklets Booklets Booklets
2,4, 2,4, 2,4,
6&3, 6&3, 6&3,

Booklets 4&5 6&7 5,7 4&5 6&7 5,7 4&5 6&7 5,7

Reading
2&3 .59 .52 .32 .90 1.01 .49 .58 .71 .32
4&5 .59 .40 1.05 .54 .74 .37

6&7 .35 .71 .47
Mathematics

2&3 .50 .45 .24 .39 .65 .28 .34 .52 .22
4&5 .55 .33 .63 .30 .54 .25
6&7 .34 .42 .34

'. " - -" -*-' - , ' " ' "
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The results for Booklet 1A can be compared to those for Booklets 2 and 3 to
examine the extent of context effects. The change in context between the param-
eter estimation and the trait estimation did not systematically affect the cor-
relations between OX and 6y. The change in context did decrease the closeness

of the equating of the means and standard deviations and increase the RMSD/SQ
for Reading but had little effect on Mathematics.

For Booklets 2, 4, 6 and 3, 5, 7 the 1-parameter model produced higher cor-
relations between traits than the 3-parameter model. The means and standard
deviations were equated with about equal accuracy for the two models. The dif-
ference between he models in correlations was reflected in the lower RMSD/S 0

for the 1-param ter model.

Effects of Ur -al Item Difficulties

In order to examine the equating of traits based on items of unequal diffi-
culty, the X and Y items were divided into sets of easier (E) and harder (H)
items. This division was based on the proportions of examinees who passed the
items in the second testing. The distributions of item difficulties overlapped

for the E and H sets, but the mean difficulties for the two sets differed by
about as much as is common for adjacent levels of standardized achievement

tests. There were 20 items in the E set and 20 items in the H set for Reading
and 22 items in each of the two sets for Mathematics. The item parameters 'for
these sets were those obtained in the first testing on the basis of the pooled
data for Booklets 2 to 7, and trait estimates were based on second-testing data.

Table 12 presents the relationships between the traits based on the E and H
sets. The quality of the equating of the E and H sets can be compared to the
equatings of the X and Y sets in Table 11 for Booklets 2, 4, 6 and 3, 5, 7. The
correlations for OE and OH were very similar to the corresponding correlations

for 0X and Oy. For Mathematics with the 3-parameter model, the OE and 
0H equat-

ing was only slightly worse than the corresponding O6 and Oy equating. For

Reading for both models and for Mathematics with the 1-parameter model, the eE

and OH equatings of means and standard deviations were noticeably poorer than

the O and y equatings.

il For Reading the 1-parameter model produced higher correlations and lower

RMSD/S0 for 0E and OH than the 3-parameter model, whereas the 3-parameter model
i produced slightly better equatings of means and standard deviations. For Mathe-

matics the 3-parameter model produced closer equatings of means and standard

deviations, a slightly lower RMSD/S0, and an equal correlation of OE and OH as

compared with the 1-parameter model.

Effect of Trait Level

S! For all the second-testing trait equatings, the difference between the I-

I

I *
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Figure 1
Second-Testing RMSD/Se for eX vs. ey, Based on Item

Parameters Estimated Using First-Testing Booklets 2, 4, 6 & 3, 5, 7:

(a) Reading

3.0

2.0 3-Parameter

mm 1-Parameter

~0 0I ° "

-4 -3 -2 -1 0 1 2 3

(Ox+ Oy)/ 2

(b) Mathematics

3.0

3-Parameter2.0-
m 1-Parameter

RMSD

4' Se

1.0w

0

I ,, To

-4 -3 -2 -1 o 1 2 3

(eX+ oy)/2

!K



-211-

and 3-parameter models in terms of correlations and RMSD/Sq was essentially the
result of relatively large between-trait differences for low trait values esti-
mated by the 3-parameter model. To display this effect, the average trait esti-
mate for the X items and the Y items; (OX + ey)/2, was found for each examinee.

The range of these values was divided into 20 cells. Examinees were sorted into

cells on the basis of their mean trait values, and within each cell the RMSD/Se
between eX and ey was found. Figure 1 contain plots of these RMSD/Se for traits

based on item parameters estimated using Booklets 2, 4, 6 and 3, 5, 7. For low
trait values, the RMSD/Se was much greater for the 3-parameter model than for
the 1-parameter model; these trait values correspond to number-correct scores
below those expected by random guessing. The RMSD/Se was lower for the 3-param-
eter model than for the I-parameter model for cells which included about 70% of
the examinees for Reading (Figure la) and about 60% of the examinees for Mathe-
matics (Figure ib).

Observed versus expected proportion passing an item. Cross-validations of

the model predictions were made using chi-squares from the examinees' item re-
sponses in the second testing; these item responses produced the observed pro-
portions passing the items (Oij). The expected proportions passing the items

(Eij) were found using the item parameters estimated in the first testing and

the traits estimated in the second testing that were based on the first-testing
item parameters and the second-testing item responses. (These trait estimates
produced the results in Table 11.) The chi-squares were obtained for the X items
and for the Y items. The means (taken over items) of these chi-squares appear
in Table 13.

Table 13
Mean Item Chi-squares for the X+Y

Items for the Second Testing

Model
First-Testing Booklets 3-Parameter 1-Parameter

Reading (N=1,525)
1A 35 60
2&3 54 63
2,4,6&3,5,7 37 53

Mathematics (N=1,778)
IA 34 53
2&3 60 72
2,4,6&3,5,7 43 57

Because no item parameters were estimated from the data on which the chi-
squares were based, each item chi-square had 10 degrees of freedom for both the
I- and 3-parameter models. Comparing the mean chi-squares for Booklets 1A and 2
and 3, it can be seen that when there was a change in context from the first to
the second testing, chi-squares were higher than when the context was constant
from the first to the second testing. Pooling over contexts and increasing sam-
ple sizes for the item parameter estimates (Booklets 2, 4, 6 ad 3, 5, 7) de-
creased the chi-squares below the level found for Booklets 2 and 3, but usually
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not below the level for Booklet 1A. The chi-squares for the 3-parameter model
were lower than the chi-squares for the 1-parameter model. An examiration of
the observed and predicted proportions of examinees passing the items revealed
that, on the average, the 3-parameter model made more accurate predictions than
the 1-parameter model.

Discussion and Conclusion

Item Parameters

It was a c+nsistent finding that X + Y item parameters estimated from the
same booklet were more highly correlated than X + Y item parameters estimated
from different booklets. There are several factors that could have produced
this finding:

1. The inclusion of extra items (Sets A, V, or W) in some
of the booklets;

2. The linking of parameters from different booklets by the
use of anchor items;

3. Differences in the sample size used for the parameter
estimations;

4. Interactions between the ability level of a sample and
the parameter estimations;

5. Differences in the number of items scaled together;
6. Systematic differences in the sequence in which items

appeared in different booklets; and
7. Unspecified context effects other than sequence.

The evidence for and against the importance of these factors is examined as fol-

lows.

Inclusion of extra items (Sets A, V or W) in some of the booklets. Book-
lets 4 to 7 contained anchor items (Set A items) that were not included in Book-
let 1. It is possible that these items altered the trait measured by the book-
let. For example, imagine that the Mathematics Set A items were all graph-read-
ing items and that no graph-reading items appeared in Sets X and Y. (This did
not occur, but it gives an extreme example of how the Set A items could alter
the trait being measured.) To all appearaLces, the Set A items did not seem to
have content systematically different from the X + Y items, but it is possible
that they were statistically different from the X + Y items. If the Set A items
did alter the trait being measured, then the item parameters could have been

affected. If this occurred, the correlations between item parameters estimated
in Booklets 4 and 5 and 6 and 7 (r4 &5 ,6&7) should have been higher than rIA,4&5,

rIB,4&5, .IA,6&7, and rIB,6&7" It would also be expected that .L4&5,6&7 would

approximately equal lA, IB" An examination of Table 6 does not support these

hypothesized relationships among the correlations.

Booklets 2 and 3 contained not only Set A items but also Sets V and W.
Thus, Booklets 2 and 3 differed more in content from Booklet 1 than did Booklets
4 and 5 and Booklets 6 and 7. If the inclusion of extraneous items caused item

fi
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parameters to change, the rlA,2&3 and rIB,2&3 should be lower than rA,4&5,

rIB,4&5, LIA,6&7, and rlB,6&7" However, an examination of Table 6 reveals that

the correlations between items in Booklets 2 and 3 and Booklets 1A or lB tended
to be higher than the correlations between Booklets 4 and 5 or 6 and 7 and Book-
lets IA or 1B.

Thus, it does not appear that the inclusion of extra items in Booklets 2 to
7 was a major factor in reducing the correlations between item parameters for
those booklets and Booklet 1.

The linking of parameters from different booklets by use of anchor items.
Results indicate that the linking procedure did not cause the reduction in item
parameter correlations from Booklets 1 to Booklets 2 to 7. It should be noted
that the procedure used here for linking the items was chosen as the best proce-
dure from among several others: linking by estimating the item parameters in
matched samples, linking by using the first principal component of the anchor
item difficulties, and linking by using the mean anchor item difficulties and
discriminations. The procedure used here produced, in general, the highest cor-
relations among the item parameters and the best equatings of OX and 6y.

Differences in sample size used for the parameter estimations. For Reading
the sample sizes used for obtaining parameter estimates for Booklets 2 and 3, 4
and 5, and 6 and 7 were smaller than those for Booklets 1A and lB. It is possi-
ble that these sample sizes were sufficiently smaller to have caused the item
parameters to be noticeably less stable. Because Booklets 2 and 3 had the high-
est sample sizes among Booklets 2 to 7, it would be expected that rIA,2&3,

LIB,2&3, and rl,2&3 would be higher than riA,4&5, ilB,4&5, !1,4&5, rlA,6&7,

rLiB,6&7, and rl,6&7" An examination of Table 6 verifies this pattern of corre-

lations. The differences in sample sizes would also suggest that .2&3,4&5 and

L2&3,6&7 should be higher than r4&5,6&7; this pattern of correlations does not

appear in Table 6. Furthermore, it should be recalled that for Mathematics the
sample sizes were as large or slightly larger for Booklets 2 and 3, 4 and 5, and
6 and 7 than for Booklets 1A and 1B; but the reduction in i.tem parameter corre-
lations observed with a change in booklets appeared for Mathematics, as well as

for Reading.

Interaztions between ability level of a sample and the parameter estima-

tions. It is possible that the samples of examinees obtained for Booklets 2 to
7 were systematically different from the samples obtained for Booklet 1. For
example, severe floor or ceiling effects could affect the accuracy and values of

item parameter estimates. However, the distributions of abilities for the
first-testing booklets appeared quite similar. The mean proportion of items
passed for the various first-testing booklets ranged from .57 to .61 for Reading

and from .54 to .59 for Mathematics. These results argue against the sample

composition having had an important impact on the item parameter estimates.

* Differences in the number of items scaled together. There were the same

number of items calibrated in Booklets 1, and 2 and 3, but fewer items were cal-

.. ... ...... .. .,, i I T I II I II I II Ih
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ibrated in Booklets 4 and 5 and 6 and 7. Item parameters may have been estimat-
ed more stably when more items were calibrated together. To examine this hy-
pothesis, the parameters for Booklets 2 and 3 were recalibrated excluding the V
and W items. In this recalibration, Booklets 2 and 3 had the same number of
items as Booklets 4 and 5 and 6 and 7. The resulting parameters for Booklets 2
and 3 were correlated with the second-testing Booklet I parameters, and these
correlations were compared with the corresponding correlations in Table 7. Only
two of the six correlations changed: for Reading the 3-parameter item discrim-
ination and difficulty correlations changed from .63 to .61 dnd from .76 to .77.
Thus, it appeared that the number of items being calibrated did not have an im-
portant effect on the stability of the item parameter estimates.

Systematic differences in the sequence in which items appeared in different
booklets. The sequence in which items appeared within a booklet could have had
an influence on item parameter correlations. If sequence is important, it would
be expected that item parameters obtained from booklets with similar item se-
quences would be more similar than item parameters obtained from booklets with
dissimilar item sequences. Recall that Table 3 contains rank-order correlations
of item sequences between Booklet 1 and Booklets 2 to 7. These correlations
would lead to the expectation that for Reading, E1, 2 would be greater than r1 ,4 ,

which would be greater than r1 ,6; also, r1 ,5 would be greater than r1,3, which

would be greater than rl,7. For Mathematics the sequences of Set X items in

Booklets 2, 4, and 6 had similar correlations with Booklet I, which would lead
to the expectation that rj,2, r,4, and r1 ,6 would be similar; for the Set Y

items, it would be expected that rl,5 would be greater than r1 ,3, which would be

greater than r1 ,7. The correlations in Table 8 are partially consistent with

these expectations. In particular, the booklets with the most similar item se-
quences tended to have more highly correlated item parameters than the booklets
with the least similar item sequences.

These results indicate that the similarity of item arrangements might have
an influence on the similarity of item parameters. Part of this influence could
be the result of examinee fatigue or impatience to finish the test. If so,
items should be relatively less difficult if they appear at the beginning of a
booklet than at the end of a booklet. In Table 8 Reading item parameters for

Ni Booklet 7 had particularly low correlations with the parameters for Booklet 1.
A passage that appeared at the beginning of Booklet 1 and near the end of Book-
let 7 was identified. The items for this passage were all relatively more dif-
ficult in Booklet 7 than in Booklet 1. These items also had relatively higher
discriminating powers in Booklet 7 than in Booklet 1. It did not appear that
speededness was an important factor because 93% of the examinees who answered at
least a third of the items in Booklet 7 answered the last item in the booklet.
A possible explanation is that a significant number of the examinees who an-
swered questions about this passage near the end of Booklet 7 did not take the
care that examinees took when the passage was at the beginning of Booklet I, and
that for Booklet 7 items for this passage were important in discriminating be-
tween the higher scoring/more careful examinees and the lower scoring/less care-
ful examinees.

f. . . . - ... .
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Several other analyses similar to the one described in the previous para-
graph were conducted. Items appearing at the end of booklets frequently, but
not always, were relatively more difficult than the same items appearing at the
beginning of another booklet. Results for item discriminations were not as sys-
tematic. Thus, it appeared that the location of an item in a booklet could
have, but did not have to have, an impact on the item's parameters.

Unspecified context effects other than sequence. Although the location of
items in the booklets appeared to be a partial explanation of context effects on
item parameters, location did not appear to be a complete explanation. It is
possible that other factors related to context could have influenced the parame-
ters. For example, such factors might be specific to the particular content of
items. It is not apparent, however, exactly what these factors would be.

Conclusions. After an examination of seven factors that could possibly
have influenced the stability of parameter estimates, the conclusion reached is
that context effects are not artifacts but can be the result of an item's loca-
tion in a booklet and, conceivably, other unexplained context effects. It may
not be possible to obtain truly context-free item parameters. However, it may
be possible to obtain approximately context-free item calibrations by basing the
item calibrations on data pooled over administrations of the items in a variety
of contexts.

Traits

Systematic differences in item parameter estimates can be important. For
example, suppose that the second-testing trait estimates were based on the X + Y
items using parameters from the first testing. Because the mean item difficul-
ties varied as a function of thp first-testing booklet and sample (see Table 9),
the means of the second-testing traits would also vary. Variations in the esti-
mated item discriminations would influence the standard errors of the traits
that would be predicted by the 3-paramter model.

Obtaining equated trait estimates is one of the most important tests of the
usefulness of the latent trait models. When item parameters were based on data
pooled over contexts (Booklets 2,4,6 and 3,5,7), second-testing trait estimates
based on items of approximately equal difficulty (OX and Oy) were fairly well

equated. Trait estimates based on items of systematically different difficulty
levels (0E and eH) were less well equated. It is encouraging that well-equated

traits were obtainable despite the presence of context effects on the item pa-
rameters, but it is apparent that equating errors can be expected to be greater
for vertical, than for horizontal, equating.

One potential use of latent trait models with item pools is in basing an

, examinee's trait estimate on a subset of the items in the pool and predicting

whether the examinee would have passed items in the pool he or she did not take.
This provides a method of criterion referencing an examinee's trait value. If
context effects influence item parameters, such criterion referencing will be

* inaccurate.
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Models

Recall that one of the criteria in the selection of items for this study
was fit of the items to the predictions of a 2-parameter logistic model (in
which ci = 0 for all items). The V and W items were chosen from the items that

had relatively poor fit to that model; and the A, X, and Y items were chosen
from the items that had relatively good fit. In theory, an item that fits the
2-parameter model will fit the 3-parameter model but will not necessarily fit
the 1-parameter model. This theory implies that the item selection procedure

was biased in favor of the 3-parameter model. In practice, however, this bias
did not occur. Selection on the basis of fit to the 2-parameter model had the
effect of discj:ding items that had the poorest chi-squares for both the I- and
3-parameter models.

The item that were retained for Sets A, X, and Y were among those that had
the best fit for both the I- and 3-parameter models; but these items were not
those that systematically had the best fit for either one of the models. The
mean item chi-squares for the items that were discarded or placed in Sets V and
W were 10.5 (Reading) and 12.3 (Mathematics) for the 3-parameter model and 21.5
(Reading) and 24.7 (Mathematics) for the 1-parameter model. The mean item chi-
squares for the items chosen for Sets A, X, and Y were 7.1 (Reading) and 7.7
(Mathematics) for the 3-parameter model and 14.6 (Reading) and 13.8 (Mathemat-
ics) f~r the 1-parameter model. It is clear that the selection of the A, X, and
Y sets of items had a much greater effect on the mean of the I-parameter chi-
squares than on that of the 3-parameter chi-squares. It is also clear that the
items chosen for Sets A, X, and Y fit the 3-parameter model much better than the
1-parameter model. Even if the items had been chosen on the basis of having the
best fit with respect to the 1-parameter model, the chosen items would have had
a higher mean chi-square for the 1-parameter than for the 3-parameter model.

For small sample sizes (N ! 200), the 3-parameter model produced less sta-
ble item difficulties than the 1-parameter model. For larger sample sizes, the
two models' difficulties were essentially equally stable. This result argues
for the use of the 1-parareter (Rasch) model for small sample sizes. However,
the trait equatings based on item parameters estimated with small sample sizes
were frequently so poor that it does not appear prudent to use either model with
small sample sizes.

The two models differed in the types of errors they displayed in the equat-
ing of traits. The 3-parameter model tended to produce more unsystematic or

random error than the 1-parameter model for low trait values (i.e., trait values
associated with number-correct scores below those expected by random guessing).
The 1-parameter model tended to produce greater systematic errors in trait
equatings than the 3-parameter model, as exhibited in the quality of the equat-
ing of means and standard deviations.

3

When the predictions of the latent-trait models were evaluated in a type of
cross-validation (see the mean chi-squares in Table 13), the 3-parameter model
produced more accurate predictions, on the average, than the 1-parameter model.

* 3For an explanation of these results, see Lord (1980), in this volume.

II -. . . . .
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This result argues for the use of the 3-parameter model rather than the 1-param-
eter Rasch model, particularly for multiple-choice tests with few answer

choices.
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EFFECTS OF SAMPLE SIZE ON LINEAR

EQUATING OF ITEM CHARACTERISTIC CURVE PARAMETERS

MALCOLM J, REE AND HARALD E. JENSEN
AIR FORCE HUMAN RESOURCES LABORATORY

The application of the technology of computer-driven adaptive testing re-
quires the development of large banks of test items. Each bank may contain 250
to 400 items, and all must measure the same ability on the same metric or scale.
It is unreasonable and impracticable to assemble a single group of 2,000 sub-

jects for 250 to 400 minutes in order to obtain data on all the items; there-

fore, a method for linking together subsets of items administered to varying
groups must be investigated. Item characteristic curve (ICC) theory offers a

unique method of linking subsets of test items due to the invariance property of

the ICC parameters. This invariance property rests on the two major theoretical

assumptions of latent trait theory: (1) unidimensionality and (2) local inde-

pendence.

Unidimensionality means that only a single ability is being measured and is

assumed to be the property of an item pool, even when assembled into subsets.

Local independence means that testees' responses to an item are independent of

their responses to another item. More simply stated, this means that an item

response is a function of ability and no other factor. In effect, this is a

restatement of the unidimensionality assumption. If an item pool is unidimen-

sional, then any shift in score metric that is due to a linear transformation

may be corrected or adjusted by application of the proper complementary linear

transformation. This is what is meant by the idea that latent trait parameters
are invariant to a linear transformation, and it is this theoretical property

that allows item pools to be linked and transformed to a common metric.

In previous research efforts, item pools have been linked by the method of

linear equating (see Lord, 1977; Ree, 1977; Sympson & Ree, in press) with appar-
ent success. To date there has been little research on the efficacy of these

linking procedures and the effects of errors in ICC parameter estimation on

their (linearly) transformed values.

ICC Parameters

The three-parameter logistic model of Birnbaum (1968) is the most frequent-

ly used for relating item responses to testee ability. The three parameters--a,

b, and c--are item discrimination, item difficulty (or location), and probabilT-

t y of chance success (or lower asymptote), respectively.
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The curve described by these parameters takes the shape of an (cumulative
frequency) ogive or an "S," with the upper asymptote approaching a probability
of 1.0 and, usually, with a lower asymptote of a probability greater than 0.0.
The ogive describes the probability of obtaining a correct answer to an item as
a monotonic increasing function of ability.

The item discrimination parameter (a) is a function of the slope of the ICC
and generally ranges from .5 to about 2.5. The value of a equal to about 1.0 is
typical of many test items, a values below .5 are insufficiently discriminating
for most testing purposes, and a values above 2.0 are infrequently found.

The item difficulty parameter (b) describes the point of inflection of the
ICC and is usually scaled between -2.5 and +2.5, although the metric is arbi-
trary. The item guessing parameter (c) is the lower asymptote of the ICC and is
generally interpreted as the probability of selecting the correct item option by
chance alone. Most test items have c parameters greater than 0.0 and less than
or equal to .30.

Figure I shows three ICCs. The horizontal axis is scaled in units of abil-
ity, 0, and the vertical axis is the probability of answering the item correctly
[P(I1). The solid curved line shows an ICC for an item of average difficulty
with acceptable discrimination and the lower asymptote appropriate for a five-
item multiple-choice item. The dashed line shows an item of identical diffi-

Figure 1
Item Characteristic Curves
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culty, with a c value of .28, but a lower a value. Note how the slope of the
curve is less steep. The third curve, dot-dash line, shows an item with a c
value of .30, an a parameter of 1.0, and a b parameter equal to 1.0. As the b
parameter changes, the location of the inflection point of the curve is dis-
placed along the horizontal axis.

Equation 1 presents the mathematical function describing the curve.

(-1.7a.(e - bi) -

P(). c.( + (1 - c (l + e I

Previous research (Ree, 1978) indicates that the ICC parameters may be estimated
with some reasonable degree of accuracy, providing a sufficient sample of exam-
inees with an appropriate distribution of ability (8) is available.

Linking Paradigms

Two fundamental linking procedures may be defined and are known as the
Anchor Items Method (AIM) and the Anchor Subjects Method (ASM). In AIM every
subset of items is administered to a different sample of subjects, but embedded
into the group of items to be analyzed is a common (or anchor) set of items.
During analysis the anchor items are identified, and the following linear trans-
formation is applied to the resultant ICC parameters:

bt rs 2 b-b

where bt is the item location parameter transformed to the desired scale and sb

and sb 2 are standard deviations of the desired scale and observed scale, respec-
tively. A similar procedure for the a parameter is defined by

:,sb 
2

at = a2 • 31

8bt

where
is the item discrimination parameter transformed to the desired scale;

a2 is the observed a parameter; and
sbt and sb2 are as in Equation 2.

Because the c parameter is measured on the probability axis, it does not change
and no transformation need be applied.

"3 The ASM requires that the same group of subjects be available to take each
subset of items. It is extremely unlikely that the same 2,000 subjects could be

* assembled to take items over a long period of time, as would be required to
place tests on the same metric from year to year. For this reason the ASM meth-



-221-

od seems less likely to find long-term practical application. Because of its
potential for use, the AIM procedure is the subject of the present study.

Method

In order to have a known standard for reference, a simulation study was run
using 2 groups of simulated testees, a single set of 20 anchor items, and 2 dif-
fering groups of 60 experimental, or nonanchor, items. These two groups of
items were assembled into two tests. Both groups of simulees, designated SI and
S2, were specified to have about the same normal distribution of 0. Table 1
shows the mean, standard deviation, and minimum and maximum of e for Groups SI
and S2. These two groups represent what might be expected if subjects for ex-
perimental testing were chosen from a larger pool, such as candidates for mili-
tary enlistment. Response vectors for these simulees were generated on the two
tests.

Table 1
Mean, Standard Deviation, and

Minimum and Maximum of e for
Groups SI and S2

Group

Statistic S1 S2

Mean -.014 .025
SD .998 1.004
Minimum -2.600 -2.600
Maximum 2.600 2.600

Generation of Item Responses

In order to generate a vector of item responses for each simulee, the 0
values were used in Equation I to compute the likelihood of correctly answering

each item.

Because Equation I yields a number P(O)j such that 0.0 < P(e)j < 1.0, a

number Xj was drawn from a uniform (rectangular) distribution ranging from 0.0

to 1.0 and compared to P(O)j. If Xj was larger than P(e)j, then an incorrect

response was specified for the item; otherwise, a correct response was speci-
fied. Thus, a simulee with P(e)j=.90 would answer an item correctly 9 in 10

times, and a vector of item responses was developed for each simulee in each

data set. These response vectors were then used to investigate the AIM linking
4procedures.

Table 2 shows the distribution of ICC parameters for the 80 items for Test
a I (Tl) and Test 2 (T2), and Table 3 shows the ICC parameters for the 20 anchor

items common to both tests.

Simulees from Group SI were administered only the items in Test 1, and sim-

1,'
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Table 2
Mean and Standard Deviation of the

Generated Item Parameters for
Tests l and 2

Item
Parameter

and Statistic Test 1 Test 2

a
Mean 1.056 1.045
SD .279 .239

b

Mean .085 -.056
SD .844 .858

C

Mean .188 .202
SD .054 .047

ulees from Group S2 only the items in Test 2. In order to study the effects of
sample size, the ICC parameters were estimated on 4 samples drawn with replace-
ment as follows: 250, 500, 1,000, and 2,000. The ICC parameters were estimated
on these 4 sample sizes for both groups. Anchor ICC parameter values from the 4
samples administered Test 1 served as the input values for the anchor item pa-
rameters to the second test. This permitted the 4 sizes of the calibration sam-
ple (250, 500, 1,000, 2,000) to be varied and to be applied in the 4 samples
used to estimate the anchor item ICC parameters.

Results

Table 4 shows the intercorrelations between the known item parameters and
the estimated parameters. As past research indicates (Urry, 1976), correlations
increased with increasing sample size. The correlations in Test 1 for b and
estimates of b started high, at .952, and increased to an exceptionally-high
.992. Correlations for a and estimates of a began moderately, at .666, and
climbed to .869; but the correlations of c and estimated c increased from only
.031 to .115. In Test 2 much the same pattern was observed except that the cor-
relation of c and estimated c increased from .164 to .315 as sample size in-
creased.

Because correlations are insensitive to constant differences, as might be
found if ICC parameters were either over- or under-estimated by a constant
amount, summed absolute deviations of the estimated parameters from the known
parameters were computed for each parameter in each sample size. Table 5 pre-
sents the summed absolute deviations (or summed errors) for both tests with the
four sample sizes. Figure 2 displays this graphically.

There was a large drop in summed error when the a parameter was estimated
on progressively larger samples up to and including the difference between 1,000

3 and 500 simulees. Between 1,000 and 2,000 simulees the difference in summed

1
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Table 3
ICC Item Parameters of the 20

Anchor Items Common to Both Tests

Anchor
Item ICC Item Parameter

Number a b C

1 .80 -1.50 .10

2 .80 -1.35 .10
3 1.00 -1.20 .15
4 1.00 -1.05 .15
5 1.10 -.90 .20
6 1.20 -.75 .20
7 1.20 -.60 .22
8 1.20 -.45 .20
9 1.30 -.30 .20

10 1.40 -.15 .20
11 1.40 .15 .22
12 1.30 .30 .25
13 1.20 .45 .20
14 1.20 .60 .22
15 1.10 .75 .22
16 1.00 .90 .20
17 1.00 1.05 .25
18 .80 1.25 .25
19 .80 1.35 .25
20 .80 1.50 .25

Mean 1.06 .00 .20

SD .21 .95 .04

error was smaller. The relationship between error and sample size for the b
parameter was more nearly constant. That is, the line on the figure for esti-
mates of b is generally straight, which means error tended to be reduced in di-
rect proportion to the number of simulees. The almost flat line for the c pa-
rameter indicates that virtually no reduction of error occurred with increasing
sample size for that parameter. The average absolute deviation for the c param-
eter was almost one-third of the entire range of the parameter, as the c-parame-
ter is generally estimated between .00 and .30. However, past research-(Ree,
1979) indicates that even for low-ability subjects, the effects of errors in the
estimation of the c parameter are small.

Summed deviations of known ICC parameters from the equated value of the ICC
parameters were computed for the a and b parameters for the 16 combinations of
calibration sample size and equating sample size. Table 6 shows the summed ab-
solute deviations and the per item deviation for both parameters for the 16 com-
binations. The equated a parameter showed large summed deviations whenever the

o sample was limited to 250 simulees, whether in the calibration or the equating
3 sample. The lowest error rates for the a parameter occurred when the anchor

item values were estimated on 2,000 simulees. The effects of the size of the )

K.
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Table 4
intercorrelations between Known and
Estimated ICC Item Parameters for
Tests TI and T2 for Both Groups

with Varying Sample Sizes

Item Parameter
and

Sample Size Test 1 Test 2

a
250 .666 .512
500 .671 .725
1000 .831 .813
2000 .869 .886

b
250 .952 .929
500 .964 .962
1000 .980 .979
2000 .992 .987

C

250 .031 .164
500 .035 .109
1000 -.012 .331
2000 .115 .315

Table 5
Summed Absolute Deviations (ElErrorl) and Average Absolute
Deviations (JE-rrorl) for the Three ICC Item Parameters for

Tests 1 and 2, for Both Groups with Varying Item Sample Sizes

Item Parameter

and Test 1 Test 2
Sample Size -1Error7 Errorl ZErrorl Irr-rI

a
250 30.645 .383 30.529 .382
500 22.809 .285 20.691 .259
1000 15.749 .197 16.891 .211
2000 15.598 .195 15.139 .189

250 23.505 .294 20.847 .261
500 19.860 .248 16.607 .208

1000 17.689 .221 13.805 .173
2000 12.735 .159 11.513 .144

C

250 7.736 .097 7.235 .090
500 7.360 .092 7.512 .094
1000 6.908 .086 7.318 .092
2000 6.440 .081 6.864 .086



- 225 -

Figure 2
Errors in Estimation of ICC Parameters
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calibration sample were not as clear. When 2,000 subjects were used to estimate
the anchor item ICC parameters, the magnitude of the error was approximately the
same for all calibration sample sizes except 250.

With increasing calibration sample size the error rate increased by some
small amount, as indicated by the average (per item) absolute deviation error.
This is an unexpected result; an explanation may be found in the relationship
between the sets of estimated a parameters. If the estimated a parameters were
all estimates of the same value and if the test scale were unidimensional (a
basic assumption of the theory), then the estimated a parameters should be lin-
ear transformations of one another and should be correlated 1.0, as correlations
are invariant to a linear transformation. This was not found to be the case,
and Table 7 shows the intercorrelation of the estimated a parameters. Only the
correlation between the estimate of a calculated on 1,000 simulees and the esti-
mate of a calculated on 2,000 simulees approached this relationship. This lack
of linearity may be due to the assumption of normality and to the rescaling used
in the calibration procedure; these may interact in such a way as to produce the
anomalous results.

Table 7 also shows the intercorrelations of estimated b parameters. All
exceeded .90, and the summed deviations also showed a stead y decrease as sample

size increased for the b parameter, indicating a virtually linear transformation
* of estimated b parameters from sample to sample. However, with 500 simulees in

the equating sample, a similar anomaly was observed, which may also be due to
*normal assumptions and to rescaling.
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Table 6
Summed Absolute Deviations (EjError ) and Average Absolute

Deviations (lEr-ror) for Item Parameters a and b for
Various Calibration and Equating Sample Sizes

Item Parameter
Sample Size a b

Calibration Equating ZiErrori lErrorl EIErrorl IError 1

250 2000 34.226 .428 23.368 .292
500 2000 15.128 .189 21.934 .274

1000 2000 15.987 .120 16.366 .205
2000 2000 16.596 .207 13.458 .168
250 1000 38.363 .480 25.644 .321
500 1000 17.679 .221 24.341 .304

1000 1000 19.587 .245 19.116 .239
2000 1000 21.032 .263 16.883 .211
250 500 48.611 .608 25.437 .318
500 500 24.558 .307 22.899 .286

1000 500 28.829 .360 18.187 .227
2000 500 31.209 .390 15.833 .198
250 250 44.312 .554 26.201 .328
500 250 21.577 .270 24.416 .305

1000 250 24.439 .312 19.484 .244
2000 250 27.024 .338 17.326 .217

Table 7
Intercorrelations, Means, and Standard Deviations of the

Estimated a Parameters (Lower Triangle) and b Parameters
(Upper Triangle) for Test 2

Sample Size b

Sample Size 250 500 1000 2000 Mean SD

250 .952 .940 .935 .056 .856
500 .757 .978 .969 .059 .838

1000 .690 .860 .986 .074 .870
2000 .595 .803 .926 .056 .873

a
Mean 1.353 1.254 1.235 1.227
SD .484 .335 .325 .306

Discussion

* The results of the study present new evidence of the critical interrela-

tionship between item calibration and equating sample sizes and the values of
ICC parameters.

i.
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Estimating and Equating a

For the 16 combinations of calibration sample sizes and equating sample
sizes identified in Table 6, the least deviation of estimated a from its known
value occurred with an equating sample size of 2,000 and a calibration sample
size of 500. As mentioned in the previous section, although the least error
between an estimated and known a value was expected with a match of 2,000 equat-
ing and 2,000 calibrating sample sizes, error actually increased very slightly

with increasing calibration sample sizes beyond 500. This discrepancy appar-
ently resulted from a nonlinear transformation with sample sizes of 250 and 500
but tended toward linearity with sample sizes of 1,000 and 2,000.

During equating procedures a sample size of greater than 500 should be used
to ensure an acceptable degree of confidence that the estimation of a does not
significantly depart from its "true" value. In the same light, estimation of a

suffers considerably using equating sample sizes of less than 500 such that
equating samples of 1,000 or 2,000 are highly desirable to minimize error in
estimating a.

Estimating and Equating b

Table 6 also shows the linear relationship between error and sample size
for the b parameter. The b parameter was best estimated with calibration and
equating samples of 2,000 each, although a calibration sample size of 1,000 with
an equating sample size of 500 can be tolerated without an appreciable increase
in error. With all combinations of calibration and equating sample sizes, b was
estimated quite well.

Estimating and Equating C

The flat line drawn in Figure 2 representing the data from Table 5 shows
the estimation of the c parameter to be nearly insensitive to increases in sam-
pie size. As sample size increased from 250 to 2,000 subjects, error decreased,
but only very slightly. With c defined as the lower asymptote of the ICC and
representing the probability of extremely low-ability examinees correctly an-
swering an item, the inability to estimate c with precision could be disturbing.
However, it has been pointed out (Lord, 19705) that if a(6 - b) < -2, then the
probability of a correct response is c. Therefore, if there are a large number
of subjects with ability 6 so that 0 7 -(2/a - b), c can be accurately estimat-
ed. If this requirement is not met, c will-be poorly estimated.

Conclusions

A stable and accurate estimate of the a and b parameters requires large

numbers of subjects over a broad range of ability. The estimation of c requires
large numbers of subjects at very low ability levels. This holds for both
equating and calibrating samples; therefore, it is necessary to administer test
items, whether to be calibrated or equated, to the largest samples available.

)
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DISCUSSION: SESSION 5

GAIL IRONSON .
BOWLING GREEN STATE UNIVERSITY

Two key questions seem to arise from the three papers on item linking and
equating. Can information be obtained from various combinations of adminis-
tering subsets of items to samples of people in order (1) to put the items' pa-
rameters on a single scale and (2) to put all examinees' trait estimates on a
common scale? To the extent that these two questions can be answered affirma-
tively, different forms of a test can be given to different examinees. For the

first question, dealing with the invariance of the parameter estimates, the pa-
pers considered sample size, context effects, and the choice of latent trait
model. For the second, which deals with equating the traits, there can be a
consideration of whether latent trait theory improves equating over classical
models (and in what circumstances), a consideration of the problems in vertical
versus horizontal equating, and a comparison of the efficacy of the models.
These two questions will be discussed interchangeably.

At various points in the studies presented, an anchor test design was used.
Two different groups of people each get a basically different set of items, but
some of the items are the same. The items commonly given to both groups are
called "anchor items."

The question of parameter invariance will be considered first. Theoreti-
cally, the item characteristic curve (ICC) parameters estimated using different
samples of subjects should be invariant within a linear transformation. Meas-
ures of the accuracy of the invariance of parameters are typically the correla-
tion coefficient and some type of error function. In the Ree and Jensen study,
an anchor subset of items was embedded in two otherwise different tests adminis-
tered to two different samples of simulated examinees. Both groups of simulated
subjects were specified to have about the same normal distribution of ability.

V Since it was a simulation study, the true ICC parameters were used. Ree and
Jensen looked at both the correlation coefficients and the summed absolute devi-
ations of estimated parameters from the true parameters.

There are two overall trends that have been noted previously in the litera-
ture. The first is the relative accuracy in estimating the a, b, and c parame-
ters. Mhe second concerns the sample size, and here there are some consisten-
cies and some inconsistencies. In looking at the correlations, it is found that
the correlations for the b parameters run in the mid 90s, even with a small sam-
ple size of about 250. The correlations for the a parameters range from the mid
60s to the mid 80s, and it seems that the effect of increasing the sample size
is most potent for this parameter. (Unfortunately, the exact function for the a
parameter has not yet been determined. Is it a log function, a linear function,
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or something else?) And the c parameter is not estimated well at any sample
size, the correlations ranging from .03 to .31.

With respect to the summed absolute deviations, the error in estimating a
is largest, but it seems to decrease more rapidly than for the other parameters.
The error for b is less, and it decreases more slowly. And, as mentioned above,
even with an increase in sample size, there is no reduction in error for the c
parameter. Although the c parameter has the smallest error, the error is about
one-third of the range, so that the relative error is quite large.

In Yen's study the correlations between the parameters for various sample
sizes can also be examined. With a sample size of 200, different samples took
the test in the same context; in other words, it was a sample that was just
split into two. These were Yen's la and lb samples. (This can be compared to a
sample size of 250 in the study by Ree and Jensen.) The a parameters correlated
.63 and .78, which is approximately the same level of correlation observed pre-
viously. The b parameters correlated .87 and .94 for two tests--Reading and
Math--and the Rasch difficulty parameters correlated higher, .95 and .98. Her
study also showed that the change in the context substantially decreased the
stability of the parameters: The correlations dropped. This was particularly
true for the a parameters. As an example of a change in context, she also noted
that the items at the end of the booklet seemed to be relatively more difficult
than when they appeared at the beginning of the booklet.

In comparing the 1-parameter and the 3-parameter models, she found that the
Rasch model produced slightly more stable difficulties. But it is not clear,
according to Yen, whether the parameters of one of the models were affected more
by changes in context than the parameters of the other model.

In comparing the joint effect of the sample size and the effect of context,
she noted that increasing the sample size increased the correlations between
parameters when the context was held constant. However, when pooling over dif-
ferent contexts to increase the sample size, lower correlations were obtained
compared to the correlations with smaller samples in the same context. For ex-
ample, correlations based on N = 600 with items in different contexts were lower
than correlations based on an N = 400 in the same context. Thus, as the sample
size increased, the correlations increased, but thf3 did not compensate for a
change in context. Yen summarized this by statin 6 that the X and Y item parame-
ters estimated from different samples were more highly correlated than X and Y
item parameters estimated from different booklets (i.e., different contexts).
Finally, she presented an excellent discussion of possible reasons for the in-
variance, eliminating several reasons.

It is possible that context effects may also be present in the study by
Marco, Petersen, and Stewart. They found, for instance, that equating may be
different depending on whether the anchor test is internal or external, with
more error if the anchor test is external. Though there are many reasons why
this could be true, one of them might be the change in context. Since they did
not use the same items for the different internal and external tests, that may
partially explain the finding. However, context effects could be investigated
In that regard.

1



-231-

Ree and Jensen used calibration sizes of 250, 500, 1,000, and 2,000 and
equating sample sizes at those four levels; altogether they had 16 combinations
of calibration sample size and equating sample size. They looked at the summed
deviation of the known ICC parameters from the equated values. For the various
calibration sample sizes, the equated b parameter error decreased most when go-
ing from 500 to 1,000. For the equated a parameter, the error decreased from
calibration sample sizes of 250 to 500 and then increased surprisingly as the
sample size went up. Although I do not have the answer to why this happened, I
think it is a question that needs to be answered. That same table may be used
to look at the equating sample size as well as the calibration size. The equat-
ed a parameter showed smaller deviations as the sample size increased except
whe-n the equating sample size was between 250 and 500, where it increased. The
equated b parameter had less error with the sample of 500 than with either 250
or 1,000. Thus, there are several anomalies in that same table. The others
could be seen by rearranging the table, switching the calibration and equating
sample size.

Another observation is that it seems to be more important to keep the cali-
bration sample size above 250 in estimating the a parameter. Errors were larger
with small calibration samples and large equating samples than with large cali-
bration and small equating samples when sample sizes were between 250 and 500.
Finally, in looking at the total combined effect, it seems that if calibrating
and equating samples of 250 and 250 are compared to calibrating and equating
samples of 2,000 and 2,000, there is roughly a 50% decrease in the error.

The second question was concerned with a comparison of the models. In
Yen's study the i- and 3-parameter models were used, but in some of the subsets
of items, one of the criteria for selection was fit to the predictions of a
2-parameter logistic model (in which .Si = 0). However, it should be noted that

there were certainly items that were selected that did not have zero c's. Also,
in two of the subsets of items she allowed items that did not fit welT. For the
items selected on the basis of fit to the 2-parameter model, she noted that this
interestingly ,had the effect of discarding items that had the worst chi-squares
for both the I- and 3-parameter models. The items retained (Sets A, X and Y),
however, fit the 3-parameter model better than the 1-parameter model.

For small sample sizes, an N of 200, the Rasch model generally had slightly
more stable difficulty estimates than the 3-parameter model. For large samples
the difficulties were stable for both models. However, trait equatings based on
item parameters estimated with small sample sizes were so poor that she recom-
mended neither model be used.

The two models differed in terms of the types of errors in equating of the
traits. The 3-parameter model tended to produce more unsystematic or random
error than the Rasch model for low trait values. The Rasch model had greater
systematic errors than the 3-parameter model. The Rasch model also had higher
correlations between traits and lower root mean square differences, but the
3-parameter model generally had closer equatings of means and standard devia-
tions. Yen noted that this seemed to be essentially the result of relatively
large between-trait differences for low trait values estimated by the 3-parame-
ter model. Finally, the 3-parameter model made better predictions in cross-val-
idation.
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In the ETS study the 1-parameter model seemed to be superior to the 3-pa-
rameter model ICC in equating a test to itself. However, Marco, Peterson, and
Stewart noted that there may be a natural bias operating here because the a's
and c's were fixed. The 3-parameter model was the best equating model when
total tests of unequal difficulty were equated through a medium difficulty
anchor test with dissimilar samples.

The question might be asked, which method seems to hold more promise for
some of the problems that are investigated in measurement, for instance, hori-
zontal versus vertical eqaating? In an ideal horizontal equating study the test
forms would be at comparable difficulty levels; there might be minor unintended

differences in ability level of the samples; and the anchor test would be rough-
ly parallel to the whole test. Under these conditions the conventional methods
seem to work. In fact, some, but not all, of these conditions are necessary.
For example, to generalize from Petersen's study, when a test is equated to a

test like itself through a parallel anchor test, then the linear model yields
good results even if different samples are used. If samples of different abili-

ty are taken and there are test forms at comparable difficulties, and if the
anchor test is different in difficulty from the total test, then the ICC methods
would be best--the 1-parameter slightly better than the 3-parameter model.

In the typical situations in vertical equating there would be two test
forms that would be different in difficulty, and groups of examinees who would
normally differ in ability level. This is, of course, a more difficult problem.

The results from Yen's paper suggest that equating errors would be greater for
vertical than for horizontal equating because the trait estimates based on items
of systematically different difficulty were less well equated. However, she had
the same ability level for that particular result, whereas in some vertical
equating situations there would be different ability levels.

The results from the Marco, Petersen, and Stewart study suggest that the

1-parameter model would not handle vertical equating very well. The study found
that when total tests differ in difficulty, the I-parameter model gave unaccept-
able results in many instances. This is also consistent with the findings of

Slinde and Linn (1977). It seems that the 3-parameter model holds more promise
for vertical equating.

44 In summarizing some of the evidence on trait equating from Yen, it should
V! be noted, as she pointed out, that obtaining equated trait estimates is one of

the most important tests of the usefulness of latent trait models. The first
finding is that trait estimates based on items of approximately equal difficulty
were fairly well equated. As previously mentioned, the Rasch model had higher
correlations between trait estimates and lower root mean square differences,
though the 3-parameter model was better for equating the means and standard de-
viations. The second conclusion that Yen came to was that trait estimates based
on items of systematically different difficulty (i.e., an easy versus a hard
test) were less well equated. Third, she found that traits can be equated well
despite the presence of context effects on item parameters if there are large
samples.

The ETS study presented by Marco, Petersen, and Stewart examined the ade-
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quacy of five types of score-equating models when certain sample and test char-
acteristics were systematically varied. The equating models were linear models,
equipercentile models, and ICC models. The samples were either random or dis-
similar. They looked at several variations on the test characteristics, paying
particular attetntion to the relationship of the anchoring items to the whole
test. The study was basically divided into two parts. The first part was
equating a test to itself. The second part was equating a test to a different
test. For the first part Marco, Petersen, and Stewart looked at anchor tests
that were either internal or external and at anchor tests that were either more
difficult or easier than the whole test. In the second part-equating a test to
another test through an internal anchor test--they examined the effects of the
difficulty of two total tests and the similarity of the equating samples. They
had two different methods of obtaining the criterion scores. The extent to
which that might have influenced the results is not entirely clear; however,
they are fully cognizant of that problem and did say that the findings were ten-
tative.

The results of the investigation are displayed clearly in a series of fig-
ures in the paper. In equating a test to itself, they found that for medium
difficulty anchor tests of similar content to the total test, the best linear
model had the smallest total error, followed by the 1-parameter and 3-parameter
models. They also found that if the an.hor test is almost parallel to the total
tests, the difference between samples is not so important, i.e., whether it is a
similar or dissimilar sample. Another finding was that there was less error, in
general, with internal anchor tests than with external anchor tests. The second
part of the exploration of equating a test to itself examined easy and difficult
anchor tests. The effect of similarity of the samples is potent; having similar
samples is more important if the anchor test difficulty is off-center, compared
to the total test difficulty. The second point is that linear models are still
best if the samples are similar; however, ICC models are superior when the
anchor test is different in difficulty from the total test and the samples dif-
fer in ability.

For equating a test to a different test (of different difficulty) using an
internal anchor of similar content and medium difficulty, they found that the
smallest error was present for the 3-parameter model; that was followed by the
equipercentile method. There was little effect of the sample.

Several questions have been raised by these studies. First is the question
why the increase in calibration sizes changed the accuracy of the a parameter
during equating in the Ree and Jensen study. Could this possibly have something
to do with the Urry program? I really do not know.

In addition to asking how stable the parameter estimates are and how well
traits can be estimated on a common scale, we ought to start looking at the
characteristics of those items whose parameters are not stably estimated and
where on the scale things are not working properly and why. The c parameter
seems to be particularly difficult to estimate; we might do better if we "stuf-
fed the ends." For instance, it might be found that the c parameters are not
stably estimated when there are not enough low-ability e7aminees. It might also
be found that if a rectangular distribution of ability is used, more stable es-
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timates of the a parameters are obtained and even more stable estimates of the b
parameters might be obtained for those items that are off-center. It might be -
asked where on the scale things are not working properly for equating of traits,
too. For example, Yen found that the 3-parameter model tended to produce more
unsystematic or random error than the Rasch model for low trait values--which is

a step in the right direction.

The next question is one raised by Marco, Petersen, and Stewart: To what
degree are their results influenced by the criterion equating procedure? They

also noted that in some of the cases the rank order remained the same, which
would, of course, give a little more confidence in terms of the generalizability

of the results.

We have looked at equating under various conditions, for example, the char-
acteristics of the test, the anchor items and their relation to the test, and
the sample characteristics. Of course, we could continue getting every possible
combination and permutation of these, and this would at least keep us busy until
the next adaptive testing conference. One combination that Marco, Petersen, and
Stewart mertioned was the effect of internal versus external anchors when equat-
ing tests of different difficulty. We might also look at the length of the
anchor test and see how that affects equating.

What conclusions are to be drawn? The first conclusion is that under opti-
mum conditions, everything works well. Of course, it helps to have a few thou-
sand people at one's disposal. Second is a finding that has been repeated over
and over again. The b parameter is estimated the best, then the a parameter,
and the c parameter i-s estimated rather poorly. With small samples it was found
that the-Rasch difficulty parameter was more stably estimated by the Rasch model
than by the 3-parameter model. A third conclusion is that the changes in con-
text have substantial effects on item parameters, but if there is a large sample
size for estimating parameters, trait equatings usually are good.

Fourth, as we already know, vertical equating seems to be more of a problem

than horizontal equating. Fifth, using various combinations of the whole test
characteristics, the anchor test characteristics, and the samples, the condi-

tions under which the various equating procedures work best have been described;
there is now a source to consult to find out the best procedure under given cir-

cumstances.

As I mentioned before, the papers in this session shed light on two major
questions of interest: To what extent are the parameters invariant? and To
what extent can traits be estimated by different items and be put on a common
scale? Obviously, we still have a long way to go, but I think we are moving in

the right direction.

4
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A MODEL FOR INCORPORATING RESPONSE-TIME DATA IN SCORING

ACHIEVEMENT TESTS

KIKUMI TATSUOKA AND MAURICE TATSUOKA

UNIVERSITY OF ILLINOIS

The study by Tatsuoka and Birenbaum (1979) raised an important issue with
respect to adaptive diagnostic testing and computer-managed routing by which
each examinee is sent to his/her level of instruction: that it is necessary to
consider an alternative scoring procedure in which individual differences in
information-processing skills are taken into account along with individual abil-
ity or achievement levels.

In Tatsuoka and Birenbaum's study a computerized diagnostic adaptive test
for a series of pre-algebra signed number lessons was given to eighth graders at
a junior high school, and a computer-managed routing system sent each examinee
to the instructional unit corresponding to the level of skill that he/she
reached in the initial test. The adaptive test for signed numbers consisted of
12 groups of items representing 12 different skills. The instructional units of
computerized lessons teaching the same 12 skills were rearranged into the same
order as the skills in the adaptive test, so that if an examinee stopped at the
7th skill level, he/she was sent to the 7th level of the lessons. After the
student went through the 7th to 12th instructional units, a 52-item conventional

computerized posttest was administered.

Factor analysis revealed that the test scores of the posttest did not sat-
isfy the assumption of local independence, i.e., unidimensionality. A further
close investigation was performed by a cluster analysis on the 92 examinees'
response patterns on the basis of Euclidean distances between pairs of response
vectors. The result of this analysis led to finding a group of students whose
response patterns were significantly different from others. Their scores on the
items prior to the stopping level of the initial diagnostic test were higher
than most scores of other students, but their scores on the subsequent items
were as low as the poorest students' scores. It was confirmed with their teach-
ers that most of them were actually "A" students. It was also confirmed that
the members of this group were taught signed number addition operations by a
teaching method different from that of the subsequent instructional units, which
teach subtraction operations. The procedures of information processing associ-
ated with these two instructional methods of performing arithmetic upon signed~numbers are greatly different. The traditional scoring procedure of latent1 trait theory would not be capable of detecting these discrepancies associated
with different information processes for arriving at the answers to a given

Iitem.<I
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A study by Tatsuoka and Tatsuoka (1978) indicated one useful approach to-
ward the goal just mentioned. It showed that under certain general conditions,
item response time scores very closely follow Weibull distributions--a 3-parame-
ter family extensively used in system reliability theory (see, e.g., Mann,
Schafer, & Singpurwalla, 1974). The most interesting of the three parameters is
the shape parameter, whose magnitude determines the nature of the conditional
response rate, that is, the conditional probability that an examinee who has not
responded to an item up to time t will respond to it within an infinitesimally
short time interval thereafter. A brief note on the mathematical and conceptual
backgrounds of the Weibull distribution, introduced in the study of Tatsuoka and
Tatsuoka (1978), will be described in the following section.

As a follow-up to the Tatsuoka and Birenbaum (1979) study, Weibull distri-
butions were fitted to every item in the posttest. The Weibull fit of almost
all items--14 items on addition that were taught prior td the students' exposure
to the PLATO lessons--was quite poor when the fitting was done for the total
sample. However, the separate fits in two groups, which had earlier been iden-
tified as having distinctly different instructional backgrounds, were very good
for all 14 items (see Appendix Tables A-I, A-2, and A-3). Further, it was found
that the value of the shape parameter c differed considerably in the two groups
for each item, being higher in one group for some items and lower for others.
That is, there was a Task x Instructional Method interaction effect on the shape
parameter c.

The foregoing suggests that the Weibull shape parameter can assist in the
identification of items that are sensitive to particular information-processing
skills. After identifying and constructing such discriminating items, it was
anticipated that an index known as person conditional response rate, to be
developed below, could be used for postdicting the instructional background of
students and routing them accordingly.

Rationale of Weibull Distributions

Measuring the time needed to achieve a given goal (that is, response time)
is easy in computer-managed testing; but since it is imposs'ble to collect accu-
rate response time data in paper-and-pencil testing, it has not been utilized
thus far in the realm of practical application of psychometrics. Tatsuoka and
Tatsuoka (1978) have studied the statistical aspects of response time distribu-
tions and their characteristics as associated with test items.

,* There are a number of theoretical distributions by which the response time
data may seem to be fitted well, so it is necessary to follow some guidelines as
to what sort of distribution might be appropriate to represent a set of response
times for a given item. Rasch (1960) used the 2-parameter gamma distribution as
a model for the time taken to read a passage of N words and the Poisson process
as a guide to his model. The occurrence of a response is a random event, and

J all the random events were assumed to be oi the same kind. Rasch was interested K
in their total number.

sql
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Application to Ability Testing

Sato (1975) and others introduced the Weibull distribution, which has been
used extensively in the context of system reliability theory. Reliability theo-
ry is the study of the probability of failure, within a given time span, of a
mechanical or electronic system as a function of the probabilities of failure of
individual components of the system. The justification for utilizing a distri-
bution from such an alien field is that the test item is identified with the
system whose longevity is being assessed. The student-s attacks on the item
correspond to the shocks or wear and tear to which the system is subjected, and
the eventual solution of the item is the failure of the system. It is plausible
to imagine the student to be intent on cracking the system by answering the item
correctly. The time he/she takes in doing so, the response time, corresponds to
the "survival time" of the system. This rationale for the applicability of Wei-
bull distributions for item response time does not lead to a derivation of the
distribution or the density function. Mann et al. (1974) and others have said
that the distribution was empirically discovered, rather than deductively de-
rived. Later, a logical basis was postulated as an ex post facto rationaliza-
tion, and it added greatly to the credibility of the distribution in the theory
of system reliability. This is the concept of hazard rates, which is essential-
ly the conditional probability that a system that has survived through time t
will fail during an infinitesimal time interval immediately after that.

Conditional Response Rate

A similar concept, conditional response rate (CRR), was introduced in this
study as a logical basis for use of the Weibull distribution. Suppose f(t) is
the probability density that a person randomly selected from the population will
respond to a given item during the interval ft, t + dt]. Then, the proportion
of individuals who will have responded to the item by time t is the probability

distribution function F(t) = J f(u)du. The proportion of individuals who have: -- jt 0 -
not responded to the item by time t Is I - F(t). Consequently, the conditional
probability density that a person will respond to the item during the interval
[t, _ + dt], given that he or she has not responded to the item up to time t is
given by f(t)/[l - F(t)].

By assuming CRR as a function of time t to be monotonically increasing, or
decreasing, as a power function of t, the Weibull distribution and density func-
tions can be expressed as follows:

F(t) = { [11

J and

'C(Lt-~tO)C-i exp tt)c,
fUt = 

[2]

r 0
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where
cf(>0) is the shape parameter,
u(>0) is the scale parameter, and
t0(>0) is the location parameter.

Figure 1 shows several Weibull distributions.

Figure 1
Weibull Density Functions with t0 
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If c - 1, then f(t) is a negative exponential density function. If c isV less than 1, then f(T)-is a monotonically decreasing function. The Weibutl den-
sity function is symmetric when c is about 3.6. Figure 2 is a CRR function ob-
tained from live data. CRR 1 in-Figure 2 is the CRR when c was larger than 1;
the decreasing dot graph (CRR 2) was obtained from the distribution when c was
less than 1. When c = 1, CRR becomes a straight line (CRR 3) that is par7llel
to the time axis.

Goodness-of-Fit-Tests

Figures 3 and 4 show the displays of goodness-of-fit tests with the normal
and Weibull distributions. The step function represents the cumulative distri-
bution of a set of response times to a matrix multiplication. The continuous 4
line stands for the estimated theoretical distribution function. The Weibull
distribution fits the data better than does the normal distribution. About 700
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Figure 2
Three Types of Conditional Response Rate Function
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cases of the goodness-of-fit test were carried out, and most data fitted either
the Weibull or 3-parameter gamma distributions.

Theoretical distributions were fitted to the observed response time distri-

bution of each item in two ways: (1) for the subgroup of students who answered
the item correctly (OK subgroup) and (2) for the subgroup of students who an-
swered the item incorrectly (NO subgroup). The OK subgroup and the NO subgroup
had considerably different estimated Weibull parameters, but both showed very
good fits for most items. Figure 5 shows the estimated Weibull distributions of
the OK subgroup and the NO subgroup for an item in the pretest that required
matrix multiplication.

The Weibull parameter c of the OK subgroup in a 48-item matrix algebra pre-
test correlated .32 with the numbers of options in the item and .41 with the
difficulty indices. The items with more choice options tended to have large c
values. If the interpretation that the item c value reflects the degree of en-

*gagement students show when the item is correct (Tatsuoka & Tatsuoka, 1978), it
may be concluded that within the range represented, the larger the number of
options, the greater the engagement students feel. This seems reasonable, since
items with more options present more of a cognitive task and, hence, probably
induce greater involvement on the part of the students. About 10 items in the
test asking mathematical properties of orthogonal transformations, eigenvalues,

and eigenvectors, were very difficult for many students in the course. These
items tended to have the smaller Weibull shape parameters c in both OK and NO
subgroups. A similar observation was obtained from the 64-item signed number

* pretest.

The 3-parameter gamma distributions fit well the items that repeatedly re-

_j t = . ... .. ...- . . -



241

Figure 3
Goodness-of-Fit Test for the Time Data and Weibull

Distribution Function for Question 17
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quired a simple mechanical task, whereas the Weibull distributions fit well the
items that required a higher cognitive task to respond to. Since the CRR of the

gamma distributions is always nondecreasing, that is, either monotonically in-

creasing or parallel to the time axis (see Appendix B), the interpretation of
the Weibull shape parameter (see Figure 2) provides wider applicability than the
gamma shape parameter does. Moreover, the parameter estimation routine by maxi-
mum likelihood usually failed to give convergent estimated gamma parameters when
items had decreasing CRRs.

Latent Response Tima Model

Latent Response Time Variable and Item Response Time Characteristic Curve

As a first step toward developing the person conditional response rate

(PCRR), the existence of a latent response time variable, analogous to the abil-
ity variable e in latent trait theory, is postulated. Thus, given a set of n
items, the performance on which is affected by 0, it is assumed that there also
exists a variable affecting the time taken by an examinee to answer each of
these items. There will be no attempt to give any precise psychological meaning

to this construct beyond saying that it may be regarded as a pervasive trait of

individuals to be slow or quick in solving items of a certain domain.

.- ... ......
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Figure 4
Goodness-of-Fit Test for the Response Time Data and

Normal Distribution for Question 17
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The plausibility of this postulation is suggested by the following empiri-
cal findings. In the Tatsuoka and Tatsuoka (1978) study, the performance scores
on a 48-item matrix algebra test were found to have a strong tendency toward
unidimensionality. At the same time, the response times for these items showed
a suggestion of unidimensionality by the scree test. On the other hand, the
posttest for the signed number lessons mentioned earlier showed no semblance of
unidimensionality in the total sample. However, when one instructional back-
ground group identified by cluster analysis (hereafter called Group 2) was re-
moved, both performance scores and response times came somewhat closer to being
unidimensional in the remaining sample.

On the strength of these observations and of the fact, mentioned earlier,
that the Weibull distribution fits the response time data for most items, a mod-
el for item response time is developed in the following manner, roughly paral-
leling latent trait theory.

I
Let

d g t.g t. [31

be the deviation of individual i's response time t for item from his or her

"-i
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Figure 5
Weibull Distribution and Density Function for Question 16
(Vertical Scale for f(t) is Magnified by a Factor of. Po)
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mean response time over the given set of n items. Now Ti may be conceptualized

as the expectation E(tig) of that person's response times over an infinite num-
9

Ni ber of items of the same type as those in the set of n. Then, Ti + dig is ap-
proximately equal to tig' so if i varies across the population, it is reasonable

to assume that Ti + dig follows a Weibull distribution Just as t does. There-
fore, -ig

Fd (T) 1 1 - exp-[ T( dg [41

is defined as the response time characteristic function (RTCF) for item &, where
t o - 0 in the general expression Equation 2 for the Weibull distribution func-
tion to simplify the task of parameter estimation. This is interpreted to re-
present the probability that a person whose latent response time is T will ar-
rive at the answer to item at or prior to time T + d.

-.
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For estimating the two item parameters _S and 2, as well as the person

parameter ti, the density function corresponding to Equation 4 is written in

accordance with Equation 1 (with to set equal to 0), for each person i, and the
product over all items and those individuals who got the item correct is formed
to obtain the likelihood function. That is,

n Ngq 
n Ng 

C
L= I r ft + d)= H H exp [5]

g=l i=I g=l i=l

+ z

where Ng is the number of subjects in the OK subgroup for item g.

Before going to the next step of developing the PCRR function G(T), note
how T itself, once estimated, can help in the task of postdicting a student's
instructional background. Suppose there are two items that differentiate be-
tween two prior instructions--A and B--by actually showing a reversal in the
magnitude order of mean times required for their solution by examinees who were
previously taught by these two methods. Table 1 shows the mean response time
(also with the estimates of Weibull parameter c and CRR) of 14 items described
earlier for the two groups, the prior instructional methods of which were A and
B, respectively.

Table 1
Means of Response Time, Observed Conditional Response Rate
at Mean, and Weibull Shape Parameters of Addition Problems

of 64-Item Signed Number Test

Weibull
Mean Response Time CRR at Mean Shape Parameter

Item Others Group 2 Others Group 2 Others Group 2

3 9.84 13.14 0.13 0.07 1.45 .80
4 7.61 5.13 0.13 0.20 0.99 1.01

14 14.99 18.48 0.10 0.08 1.78 1.68
17 6.39 8.60 0.19 0.11 1.35 0.86
18 8.35 9.00 0.17 0.10 1.68 0.90
19 7.16 8.44 0.18 0.10 1.47 0.75
28 11.78 11.89 0.10 0.13 1.25 1.96
31 8.70 10.85 0.12 0.09 1.00 0.91

32 9.65 5.43 0.09 0.23 0.84 1.43
33 4.62 7.22 0.28 0.17 1.49 1.46
42 14.28 14.85 0.10 0.07 1.76 1.16
46 10.08 9.83 0.10 0.10 0.93 1.03
47 6.22 11.55 0.17 0.07 1.05 0.63
56 10.56 9.69 0.14 0.14 1.87 1.64

- qF " " " "
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Let the means of Items 32 and 33 be taken as an example, then

tLiA = 9.65 sec., riB = 5.43 sec.

12A - 4.62 sec., 12B - 7.22 sec.

Given these data and the observed response times tI and t2 for the two
items of a person about whom there is no other information, a natural but sim-
ple-minded decision rule for postdicting his/her instructional background would
be to choose A if t > t2, and B otherwise. The problem, of course, is that the
magnitude order of the two observed times could be reversed from the "true" or-
der by errors of measurement. Knowledge of the person's Ti may help increase

confidence in the postdiction, using the sequential decision rule shown in Fig-
ure 6, again a deliberately simple-minded one.

Figure 6

Sequential Decision for Postdicting Method A or B Based on
Knowledge of T and Response Times for Items 1 and 2.

ti - 9.65 -'- DdeA

T 6.73t 2 7.22

tj <9.65 _ '1 I eie

Give tem 2 tt,< 7.22 tt

:' m 4.tem 1 t_ t 2 - Decide B

* t 2 :5 4.62 -- D ie

Give {>5.43 -- l K>e 4.22 2 -. ]

v~t 2!< t2 -

First, only Item 1 is administered to this person. Now suppose his/her Ti

is less than 6.73 sec. (the mean of the four mean response times listed above).
Then, if t1 > 9.65, A is chosen and testing is terminated. If, on the other
hand, t Z 9.65, Item 2 is then administered, and B is chosen if t2 > 7.22; oth-
erwise, A or B is chosen accordingly as tI > _t, or t 1 < t2, respectively. When

j the person's Ti is greater than or equal to 6.73, the sequential decision will

be the dual of the above. Namely, if t1 < 5.43, B is chosen; if t1 > 5.43, Item
* 2 is further administered, and A is chosen if t2 < 4.62. If t2 > 4.62, A or B

is chosen according to the magnitude order of t i and t2.

Refinements to this simple approach would include getting CRR distributions

k4J..



-246-

for each item, given instructional background and the value of T. Further, with
a suitable assumption concerning the distribution of T, the posterior probabili-
ty for each instructional background could be derived given T and the magnitude
for each order of t1 and t. With more than two instructional backgrounds and a
larger number of discriminating items, the magnitude order of two response times
would be generalized to a vector of response times exhibiting different pat-
terns, i.e., permutation of the magnitudes of the elements.

Person Conditional Response Rate (PCRR)

Some discussion is in order to explain why the Weibull family was chosen
over the gamma, despite the latter's having a longer tradition of usage in re-
sponse time models (e.g., Rasch, 1960; Restle & Davis, 1962). First, the gamma
distributions are indicated when distinct stages are identifiable in the process
of solving the tasks, in which case c must be an integer representing the number
of stages. Second, the shape parameter c of the Weibull family has the inter-
esting feature of apparently distinguishing between different information-pro-
cessing skills associated with different instructional backgrounds. This fea-
ture is no doubt related to the fact that the magnitude of c (i.e., whether c is
greater than, equal to, or less than 1) determines the nature of the item condi-
tional response rate function (ICRR), which describes whether perseverance in-
creases the chances of an examinee's responding to an item, whether responses
occur at random times, or whether a point of diminishing returns is reached ear-
ly. In other words, it can be said, as mentioned in the first section on the
rationale of Weibull distributions, that c is sensitive to the degree of in-
volvement students show. Two different instructional methods usually require
different steps of information-processing skills; thus, each method requires a
different degree of involvement in solving a given item. For example, some
items in Table 1, such as "-11+10 - ?" in the signed number posttest, yield not
only different values of c but also significantly different mean response times,
depending on whether the sequential or number-lines method is used for answer-
ing, as dictated by the examinee's instructional background. Moreover, the con-
venient ICRR function is readily expressed in closed form for a Weibull distri-
bution but cannot be so expressed for a gamma distribution, because the incom-
plete gamma function cannot be expressed analytically.

The ICRR function is the probability that an examinee who has not responded
to an item by time t will do so within an infinitesimal time interval thereaf-
ter. When item response times follow a Weibull distribution, this function
H (t) is given by f 9(t)/[1 - F (t)], where f(t) and Fg(t) are expressions Equa-

tions 1 and 2 with the parameters subscripted with a.& for item _ and, in this
case, t, set equal to 0. Hence,

•Hg9t) = Cg9 t 91 Ug 6

From this, the transition to PCRR is made in a manner analogous to going
from an item characteristic curve (ICe) to a person characteristic curve (PCC),

first suggested by Mosier (1940,1942), recently by Weiss (1973; Vale & Weiss,
1975) and discussed in greater detail by Lumsden (1978) and Trabin and Weiss

t-CA
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(1979). In their case, for each individual a plot is made of the proportions of
items of varying difficulty (represented by the horizontal axis) that are passed
by that individual. In the present case, however, the ordinate at each point
along the horizontal axis representing the mean response time of an item would
be the value of Hg(T), where T is the latent response time for the particular

person, computed from Equation 6 with the parameter values proper to that item
substituted for 4 and g. Note that when shape parameter c equals 1.0 for all

items, the PCCR curves are identical for all persons. Thus, utilizing the nega-
tive exponential distribution (i.e., a special case of the Weibull distribution
functions) for this purpose will not work.

Equation 6 defines a function whose curve characterizes the behavior of
item g over time in terms of the probability of reaching an answer. The steeper
the slope of a curve is, the greater the chance that item g will be solved as
time elapses. The steepness of the curves is a characteristic attributed to a
given item, similar to the item discrimination index in latent trait theory. A
pseudo-CRR function on variable T can be defined as follows:

T + d 
Hd (T) = 

-  [71

Similarly, a pseudo-PCRR function is given as a function on a set of Equations
7, Hd (T), g=l,...,n. For a fixed person i,

g -

G i (Hd ) = Hd (t i)Q=l ... , [8]

9 9

It should be noted that the T in Equations 7 and 8 is merely an arbitrary time
point and bears no relation to a person's latent response time (except for coin-
ciding in numerical value). Only in the context of the random variable T + d

does x have the sense of latent response time; but to use T + d as the argument

of Hd g() would be meaningless, because T + d is approximately the person's

observed response time for item g, and it would be a contradiction in terms to
speak of the person s responding in the next moment, given that he/she has not
responded up to the actual time point at which he/she did respond.

The above remarks indicate that the particular approach attempted here for
defining PCRR was futile, but not that the concept of PCRR itself is meaning-
less. An alternative, more justifiable approach might be to transform response
time to an approximate normal variable. The transformation derived by the usual
method of obtaining variance-stabilizing transformations was unusable because it
was an arcsine transformation whose argument could exceed one.' Therefore, the
usual method was extended by taking up to the second term, instead of only the
first, in the Taylor series expansion on which the transformation is based. The

'This fact was noticed and pointed out by Jim Paulson at the 1979 Computerized
Adaptive .Testing Conference.
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result was that the transform y is the solution of the following rather formida-
ble differential equation:

h(t)(y")2 + g(m)y"y' + f(m)y' = C, [91

where

h(t) 1 0[F(l+4/c) - r2(l+2/c)]/4 - [13r(l+3/c)(t-t 0 )0 ~00

- 211r (l+2/c)(t-to)2 + (t-to) 4 ]
9 t, 3 23

= 0r(+3/c) -3Ijor'(l+2/c)(t-to) + 2(t-t 0 )

p ,= 2 r(l+2/c) - (t-t 0 ) 2
0

and c is an arbitrary positive constant. 2 If it is further assumed that T is

normally distributed (which seems reasonable by virtue of the central limit the-
orem, since Ti is a person's mean response time over an infinite set of items,

which may be regarded to exhibit local independence if unidimensionality holds),
then y and T would jointly follow a bivariate normal distribution. Hence, if
their correlation p can be estimated (roughly analogous to communality estima-
tion in factor analysis), the joint distribution would be uniquely determined.
From this and the distribution of T, the conditional distribution of y given I
can be determined. All quantities associated with persons having a particular T

value are computed from this conditional distribution.

Estimation of the Parameters

Interest is now in estimating Sg, u9, and Ti, g=l,..., n, iil,...,N simul-

taneously. The set of admissible values of these parameters must be chosen that
makes the log-likelihood function, lnL, the maximum. Unlike the case of dealing
with performance scores, response time represents two different cases--one is a
group whose members obtained the correct answer and the other is a group whose
members obtained the wrong answers. Response time in the OK subgroup means the
time needed to attain a given goal using a successful information-processing
skill (or skills); but it is not that simple with the NO subgroup. A brief in-
vestigation of error analysis for the NO subgroup indicates that various kinds

of misconceptions at different progressive stages of reaching a correct answer
for a given item might have occurred. Therefore, only the OK subgroup will be

considered in this paper.

Differentiating the logarithm of Equation 5 by parameters g and u , re-

spectively, and setting the results equal to zero gives the following simultan-

eous equations:

aZnL _r + l~(ii~~~d ig~~ [10]-
g g I

2This has not yet been solved but a mathematician colleague assures that it is

soluble.

•1 - - - -. ii --
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31nL E [11]g
au iUg
anL q 0 . [121

g r .+d.g uat.~~ g 9.d r~j~gI

The maximum likelihood method using the Newton-Raphson iteration procedure
provides estimates of the roots of Equations 10 and 11 where T, i-,...,N are
substituted by the mean response time of each person over items, gf=1,...,n.
Then, the roots of Equation 12, after the newly estimated c andau values are
substituted, are sought by the same procedure.

A sufficient, but not necessary, condition that any of these stationary
values, u, c, be local maxima is that

2 ZnL N + In

C 2 11 . 2131

D Zn -<
gg

aU2 U i U

N 0 /T .+ -d. \c g+ ZC - 0 [14]j g uq

4 g g g(r +.)2 u71 1 Ti + g )g g )I

It should be noted that Equations 13 and 15 are always negative, but Equation 15
will be negative only when the estimates of 19 are close enough to be the roots

of Equation 11. In some earlier stages of iterations, the condition for ug to

yield a local maximum might not be satisfied. Thus, it is important to select
appropriate starting values for the estimates of u

-g
1-*.

• 4,
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For estimation of T, solutions of Equation 12 are sought for which Equation

15 is satisfied. If cg I 1 for all g, g-l,...,n, then Equation 12 'ec-ns

g 91(~) = 0
Since scale parameter g equals the mean of observed response time when shape

parameter c is equal to unity, this equation becomes equivalent to

But the reciprocal of observed mean cannot be zero for any item g; therefore,
there should be some g such that cg 0 1. This implies that the maximum likeli-

hood method does not work for response time models associated with the negative
exponential distributions as long as the models are formulated assuming unidi-
mensionality. Moreover, the notion of PCRR, which is parallel to that of PCC,
will not be applicable to these models. This is because CRR functions are al-

ways parallel to the horizontal axis when the occurrence of a response is a ran-
dom event and all the random events are assumed to be of the same kind, which
is the case of negative exponential distributions.

Numerical Example

The parameters in the model were successfully estimated3 for sample data,
the pretest data of the signed number arithmetic lessons. Unfortunately, the
posttest data of signed number operations described above (see also Appendix
Tables A-1, A-2, or A-3) could not provide stable estimates with this computer
program. The sample size for Group 2 was too small and there was not a large

enough number of items--the 14 items that were of most interest. When the ob-
served response time data were fitted to the Weibull distributions before, it
was observed that the items testing the same skill in the pretest showed a sys-

tematic change with the estimates of u and to according to their order of pre-
sentation, even though the difficulti7s of these parallel items did not show any

0 noticeable change.

With this new model the changes in the slopes of the parallel items have a

strong tendency toward being monotonically increasing. For example, Items 3 and
45 ask "-3+2-?" and "-7+5=?," respectively. The dotted lines in Figure 7 are
CRR functions associated with the observed response time, and the solid lines
are the theoretically derived CRR functions. It is_interesting to note that the
random variable Ti + dig can be rewritten as (Ti - Li.) + Lig - Tig" Denoting

i - !T. - -E,, then Tig can be expressed as t ig-c-. Hence, the observed re-

sponse time tig becomes the sum of a true-score-like Tig and an "error" ci".1
3A computer program for estimating parameters g, g, and T for g-l,..., n,

i-l,...,N was written on the PLATO system by Robert Baillie.
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Therefore it might be considered that the theoretical CRR functions are defined
on a pseudo true score random variable, Tig.

Figure 7

CRR Functions Defined on the Random Variable Tig
F'(t) / [ 1 - F(t)], F(t) -Weibull Distribution Function
Item to  C 07

3 5 1.09 8.80 13.517

45 4 1.22 6.28 9.883? observed

3 0 1.95 12.35 10.951

45 0 1.68 8.36 7.465 theoretical

45

0.50 -- 3

0.5-- ---- 45

0.25
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Summary and Discussion

The customary method for assigning a score to an individual on adaptive
tests-or, for that matter, whenever a latent trait model is employed-is to use
the estimate 0 of the ability (or, achievement) parameter. This may be adequate
when the only purpose of testing is to calibrate the individual's ability or
achievement level. When the further purpose of using e as the basis for routing
the student to a suitable starting point in a lesson series is involved, howev-
er, sole reliance on 0 can create serious problems. This is because two exam-
inees may have identical response patterns (and, hence, e values) and yet differ
drastically in the manners--the cognitive processes and information-processing
skills that are brought into play--in which they arrived at their answers to the
items, correct or incorrect, as the case may be. Efficient and effective rout-

* ing of students to lessons requires this deeper diagnosis instead of mere infor-mation as to which items they get right or wrong.

1Increasing recognition is being given to this fact, as evidenced by the
number of studies either directly or indirectly germane to it that have recently
been done by cognitive psychologists (e.g., Anderson, Kline, & Beasley, 1978;
Carroll, 1978; Frederiksen, 1978; Greeno, 1977; Groen & Perkum, 1972; Heller &

ti
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Greeno, 1978; Rose, 1978; Sternberg, 1979). These studies have demonstrated the
existence of a variety of cognitive processes, which differ from individual to
individual.

One clue to the type of cognitive process employed by a student in solving
a given problem can come from knowing his/her instructional background. Fortu-
nately, a follow-up study of Tatsuoka and Birenbaum (1979) indicates that the
Weibull shape parameter c, obtained by fitting response time data, is helpful to
differentiate among various instructional methods associated with signed number
operations. The Weibull distributions can be mathematically derived from the
assumptions that the CRR-essentially, the conditional probability that a peso:
will respond to a given item during the interval [t,t + dt], given that he/she
has not responded to the item up to the time t--is monotonically increasing,
decreasing, or constant. The slope of the CRR function for a given item is de-
termined by the magnitude of the shape parameter and the mean of the item re-
sponse time. If c is larger than 1, then CRR is a monotonically increasing
function. If c I71, then CRR is constant.

Some types of information-processing skill require a greater amount of in-
volvement in a student's effort in solving a given problem, whereas others do
not require so much to obtain the answer to the same item. The magnitude of the
shape parameter c and mean response time for the former become noticeably larger
than those for the latter. Therefore, the slopes of CRR functions differ in
steepness to a greater extent. This sensitivity of the Weibull distributions to
the procedures associated with different teaching methods is an advantage in
dealing with psychological research. As Scheiblechner (1979) has stated, "the
exponential or Weibull distribution is an adequate model for more sorts of psy-
chological data than is commonly assumed if the parameteric structure of the
latencies iF properly chosen."

First, it was assumed that for a given set of items there exists a latent
variable affecting the time taken by an examinee to answer each of these items.
A model associated with response time, roughly paralleling latent trait theory,
was formulated on the strength of the observed fact that the Weibull distribu-
tion fits the response time data for most items. The main concern in the model
is to express the relationship between latent response time variable and the
information-processing skills.

An estimation routine of the parameters by the maximum likelihood method
was programmed and a numerical example was shown. The maximum likelihood method
is not applicable to estimate Weibull parameters when all shape parameters are
supposed to be 1, that is, the cases of negative exponential distributions.
Further research will be necessary in exploring a different parameter estimation

, procedure, such as the conditional maximum likelihood method.

Information function of item g, Ig(e) was integrated numerically and found
to be always constant except for cg 1 . However, its discussion will be re-
ported in another paper.

The particular approach attempted here for defining item CRR and PCRR func-

tions resulted in the loss of the attractive feature of capability to provide
mathematical meaning to the curves in terms of T i . However, this attractive

- - -. . ,u | /
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feature still holds for the variable mentioned in the numerical example, that
is, Tig. An alternative approach was outlined, but further research is neces-

sary to make this approach operational.
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LATENT TRAIT SCORING OF TIMED ABILITY TESTS

DAVID THISSEN
UNIVERSITY OF KANSAS

The advent of computerized testing has made timed testing a feasible pro-
cess. Paper-and-pencil testing technology limited the test theorist to an anal-
ysis of the responses of the examinees. Computerized testing, on the other
hand, has the potential to provide the tester with a great deal more information
than that contained in the responses alone. As adaptive tests become more effi-
cient, and as they become shorter, each item and its associated response must
provide more and more information about the ability of the examinee. But only a
limited amount of information can be obtained from binary responses, and even
the use of three or more response categories provides only limited increases in
the amount of information provided by any one item (Bock, 1972; Samejima, 1969;
Thissen, 1967b). The additional information needed must come from some other
response variable, preferably a continuous one; response latency is a likely
candidate.

Although there exist completely general latent trait test item response

models for ordered or for strictly nominal item responses in any number of re-
sponse categories (Bock, 1972; Samejima, 1969), as well as at least one rela-
tively specialized latent trait model for continuous item responses (Samejima,
1973), there has been little work on item response models for timed test data.
White (1973) proposed a model for individual differences in speed and accuracy

in a timed testing situation; but in that system the response latencies were
used as a fixed part of the model rather than as observations measured with er-
ror. It seems more in keeping with the spirit of latent trait test theory to
consider the latencies, like the item responses themselves, to be fallible data
reflecting underlying trait values.

In research predating contemporary statistical estimation schemes for the

application of latent trait item response models, Furneaux (1961) suggested that

the normal ogive model would serve quite well for item responses obtained in a
timed testing situation. He found that for timed responses to letter series

problems, the log transformed latencies were linearly related to heuristically
estimated normal ogive ability and difficulty parameters. Following lines sug-
gested by Furneaux's findings, Thissen (1976a) suggested an integrated model for

' the item responses and latencies obtained in timed testing and developed a
scheme for the joint maximum likelihood estimation of the parameters of that

" model. ,

*1

.4'
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In that earlier research, the results of the application of the timed test-
ing model to data from a test of spatial visualizing ability, as well as to data
from the Matching Familiar Figures test (Kagen, Rosman, Day, Albert, & Phillips,
1964) and to a laboratory perception task, were discussed. The present paper
concerns the application of the same timed testing model to data obtained with
three tests of classical form: a subset of the Raven (1956) Progressive Matri-
ces, a version of the Guilford-Zimmerman (1953) Aptitude Survey "Clocks" Spatial
Visualization Test, and a Verbal Analogies test drawn from the Minnesota Multi-
modal Analogy Test, consisting of items described by Tinsley (1971) and analyzed
extensively by Whitely (1977).

The Model

The item response model used here was actually developed primarily on the
basis of exploratory data analysis of timed test data; that development is de-
scribed elsewhere (Thissen, 1976a). In this section a development of this mod-
el, which is not entirely based on the form of timed test response data, will be
discussed.

The technology for latent trait item analysis of item response data is well
established when the items are scored dichotomously. The logistic model de-
scribed by Birnbaum (1968) has been useful in many situations; therefore, it
would seem appropriate to use that model, at least as a first approximation, for

the item response data obtained in the timed testing situation. If the item
responses Lij for person i responding to item iare rij = I and if the response

of person i to item £ is correct and 0 otherwise, then the logistic model is

P(rij = 1) = l/[1 + exp(-z ij)],
.[i]

where

' ..• = ae. + c.;
z sja j 0 + j

and

P(rij = 0) 1 - P(rij = 1). [2]

In the context of the timed testing situation, 6i could be called the "effective

ability" of person i (following White, 1973) to distinguish this ability esti-
mate--which is obtained under circumstances allowing the examinee any amount of
time to respond--from more conventional ability estimates obtained with speeded
tests. The parameter a is the discrimination parameter, or "slope," of item j;

it reflects the (possibly) different degrees of relationship between the items
and the trait being measured. The parameter Lj is the easiness of item

I
To follow the traditional forms of latent trait test theory, the response

time of person ion item _,.Lij, should also be a function of some parameters

describing characteristics of person i and item j. It would be interesting and
useful if those parameters were the same as the parameters that are used to de-
scribe the item responses; that would mean that the variations in item responsesI,
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and response times were attributable to the same sources and that the responses
and latencies could both be used in the measurement of the ability of each exam-
inee and the easiness of each item. Latency should clearly be a decreasing
function of the .ij; that is, increases in z.. (which imply increased person

ability or item easiness) should be related to decreases in response latency.
The form of the random error involved in the measurement of response latency
must also be specified; data analytic considerations suggest that response times
are frequently approximately log-normally distributed, so a linear model for the
logarithm of latency could be assumed to include Gaussian error. This suggests
the following model:

log(tij) - v - bzi + eij; i ~ N(O,o 2 ) [3]

in which v is the overall mean log response time and b is a regression parameter
reflecting the relationship of effective ability and easiness (in the logit zEi)

with latency, and the scale conversion of logits to log seconds. Of course, the
parameters of zj in Equation 3 are the same as the parameters of z.i in Equa-

.1-i
tion 1; they may be simultaneously estimated using current constrained maximum
likelihood estimation techniques.

However, as it stands, the model described by Equation 3 is unlikely to
provide a very good fit to observed data. There are likely to be attributes of
both the examinees and the items that contribute consistently to latency but
that are unrelated to the trait the items are intended to measure. For verbal
items either the length of the item (and the associated reading time) or the
number of attempts required to obtain the needed semantic data may contribute to
response latency; but these factors could be unrelated to the easiness of that
item (and the probability of a correct response). Some examinees may press the

4response keys more slowly than others in a pattern that is consistent but unre-
lated to their ability. The addition of person and item slowness parameters, s
and to Equation 3 results in the model

H log(t. ) = v + s i + u. - bzi + ci, [4]

where
e..- N(0, 2).

The hybrid model formed by the combination of the model in Equation 1 for
the item response data and Equation 4 for the response times will be used in the
analysis of timed test data in the sequel. This hybrid model includes a number
of assumptions about functional forms: The logistic is used as the probability
of a correct item response as a function of effective ability, and additive lin-
ear effects and Gaussian error are assumed for the log of response time. As-
sumptions such as these must be made to provide the basis for the maximum like-
lihood parameter estimation.

Two comments are in order about the functions included in the model.
First, after the parameters of the model have been estimated, the appropriate-
ness of the assumed functional forms may be evaluated to some extent by an exam-

- 4-
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ination of the goodness of fit of the various features of the model. The empir-
ical proportions of correct responses at various levels of ability may be com-
pared to the logistic predictions; the normality of the actual residuals of
log(t) from the linear model may be evaluated. To the extent that the function-
al forms included in the model follow the observed data, the parameters of the
model should provide a useful summary of the item response data.

Secondly, this model is not being proposed as *a process model for the psy-
chological description of item response behavior. Although such process models
have been developed for choice behavior (see Audley, 1960, 1973; Laming, 1968;
Luce, 1960) and are currently being developed for specific types of complex cog-
nitive abilities (see Sternberg, 1977; Whitely, 1979), they tend to be too com-
plex for current application in practical testing and measurement. The model
proposed here follows the tradition of earlier test theory in that it attempts
to generally describe responses to a variety of possible kinds of test items.
It is to be hoped that the parameters of the hybrid timed testing model may be
useful in some psychological process research, such as summaries of attributes
of test items and examinees, which may be compared to theoretical predictions.
Beyond that, the current model is meant to be a general model for the measure-
ment of examinees and the calibration of test items; such a model will likely be
superseded by accurate, complete psychological models for cognitive processes as
soon as they become available for cognitive tasks in the domain of ability mea-
surement.

Estimation of Model Parameters

The parameters of the timed testing model to be estimated form the set =

{e, s, a, c, u, v, b, a2); there are 2N + 3n independent parameters (for N per-
sons and- nitems7, -since the location and scale of 0, as well as the location of
the slowness parameters, must be set arbitrarily. With the usual assumption of
local independence extended to include the assumption that the error of observa-
tion of latency is independent of the response to the same item, conditional on
the parameters, the likelihood of the entire set of data, given the parameters
may be written

L(RTI&) = i IT. P.. Hi. [51

in which

R= [rij ,

T =[tij] ,

Pij P(rij = 1) P(rj = 0),

and

H (d. .) 1.3 1.3
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where

(d) is the standard normal density

and

dij = {log(tij) - [V + si + u. - bzi.]}/a

A two-stage procedure for locating the maximum of L(R, TIC) is described in
detail by Thissen (1976a). The first stage of the procedure makes use of the

conjugate gradient method (Fletcher & Reeves, 1964) for function minimization
(maximization, in this case) to approach the joint maximum of the log likelihood

in the 2N + 3n dimensional parameter space. This procedure requires 1.5 to 2
times as many iterations as there are parameters to be estimated; but it pro-

ceeds quickly, as the conjugate gradient technique requires computation only of
the first derivatives of the log likelihood. As the maximum is approached, and

the corrections become smaller, the conjugate gradient algorithm generally en-
counters difficulty in locating an appropriate direction in the parameter space,
which has dimensionality of several hundred. At that point the second stage of
the estimation procedure is entered. The second stage is a cyclic procedure in
which each person's parameters are estimated individually using the current val-
ues of the item and the overall test parameters; then each item's parameters are

similarly estimated, the overall test parameters are revised, and the procedure
is repeated. In the second stage, the maximizations in few dimensions for each

subject and item are performed using a conditioned Newton-Raphson algorithm pro-
grammed by Haberman (1970). By the time the Newton-Raphson corrections are of

the order 10 3 for each parameter, there is generally no appreciable change be-

tween cycles, and the procedure is stopped.

A useful feature of the second stage estimation procedure is that since the

Newton-Raphson iterations require matrices of second partial derivatives for the

person parameters (within each person) and the item parameters (within each per-
son) and the item parameters (within each item), those matrices may be treated
as information matrices and may be inverted to give estimated standard errors
for the parameters. The resulting estimates for the standard errors are, unfor-
tunately, somewhat smaller than they ought to be, as their computation ignores
the fact that all of the other person (or item) parameters have also been esti-
mated from the same set of fallible data. However, very limited monte carlo
results (Thissen, 1976a) indicate that the bias is not too large.

The Data

The data analyzed were the responses of 78 University of Kansas undergradu-

ate students to three tests of cognitive ability. The students were selected to

participate in a study of individual differences in cerebral laterality; there-
fore, left-handed individuals were substantially over-represented in the sample.
The students partially satisfied a research participation requirement in an in-

troductory psychology course by their participation in the study. The students

were largely college freshman: 36 were male and 42 were female.
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Tests

The Verbal Analogies test consisted of a 27-item subset of the 60 verbal
analogies from the Minnesota Multimodal Analogies test described by Tinsley

(1971) and Whitely (1977). These analogies are quite difficult for college stu-
dents; the raw scores ranged from 4 to 24, and the average proportion correct
was .57. No item was answered correctly by all of the students.

The Progressive Matrices Test consisted of Sets B, C and D of the Raven
Colored (Set B) and Standard (Sets C and D) Progressive Matrices (1956). There
were thus a total of 36 items, of which two (B-I and B-3) were answered correct-
ly by more than 98% of the students; those two items were omitted from further
analyses. The Progressive Matrices Test was easier for this group than the Ver-
bal Analogies test; the average proportion correct was .72. The raw scores
ranged from 12 to 34.

The Clocks spatial test consisted of 19 items drawn from a set of color
slides made to resemble items on the Guilford-Zimmerman (1953) "Clocks" test of

spatial visualizing ability. The items give pictorial instructions about the
rotation in three dimensions of a large, old-fashioned alarm clock, and the ex-

aminee is required to select from a set of alternatives a view of the clock as
it would appear in the rotations. Two of the items were too easy for this group

and were omitted from the analyses; therefore, Clocks was a 17-item test, on

which the raw scores ranged from 5 to 16.

The test items were presented by a slide projector and rear projection
screen, which was located immediately in front of the examinee. All test items
were in multiple-choice format, with from four to eight alternatives; the stu-
dents responded by pressing a numbered response key on a calculator-like key-

board. The presentation of the slide triggered a light sensor, which started
the timer; the response of the examinee stopped the timer and initiated a dis-
play of the response and latency for the examiner.

Data Preparation

Before the iterative estimation of the parameters of the latent trait model
was begun, the data were trimmed of extreme outliers, following the procedure

suggested earlier (Thissen, 1976a). Using heuristically obtained starting val-
ues for the parameters of the timed testing model, observations for which the

Aobserved latency deviated from the predicted latency of the model by more than

three standard deviations were removed from the sample. Since missing data are
tolerated by the estimation procedure, those latencies were not replaced in any
way. Most responses trimmed had very long latencies (more than a minute in many
cases). Less than .5% of the observations were trimmed in this way.

4 Results

Verbal Analogies

The Verbal Analogies included in this set were unconventional in a variety

of ways: The blank (to be filled in by the examinee's response) could be any one
*
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of the four terms of the analogy; the terms in the analogy could be permuted
(from a:b::c:d to a:c::b:d, and so on); and a number of different types of rela-
tionships could be obtained between the analogy elements. All of these factors
apparently contributed to complaints that it was a very bad test from both the
research assistants who administered the test and the students who took the
test. That it was a very difficult test also probably contributed to the nega-
tive feelings the examinees voiced. Nevertheless, the latent trait analysis
with the timed testing model revealed that the response data from this test were
fitted by the model more closely than any other test data to which the model has
been applied. And the results which were obtained in the comparisons of the
results of this analysis to previous analyses of this same pool of items indi-
cates that this was, in fact, a very good test for measuring analogical reason-
ing ability, even though the examinees did not like it.

The goodness of fit of the data to the timed testing model may be measured
in a number of ways. Since the logistic item response model gives a probability
of a correct response at any value of 0, the examinees may be ordered according
to their estimated effective ability level, divided into relatively homogeneous
ability groups, and the proportion of correct responses in each of the ability
groups may be compared to the proportion expected if all of the examinees in
each group had the same ability, namely, the mean for that ability group. This
procedure yields a contingency table (correct/incorrect responses x ability
fractile) for each item and a )(2 test of the goodness of fit of the model. In
this analysis the examinees were divided into 6 equal groups and the resulting 4
degree-of-freedom X2 tests were computed; only 1 of the 27 values was signifi-
cant at the p = .05 level. The total of the likelihood ratio X 2 values was
131.2 with 108 degrees of freedom (.10 > p > .05), which was nonsignificant and
indicates that the probabilities of correct responses are predicted fairly well
by the model.

Once the parameters of the model were estimated, the assumption of normali-
ty of the residuals of log (t) from the model were examined by computing the
actual residuals (2,098 of them, in this case), dividing them into fractiles,
and comparing their distribution to Gaussian expectation. Again, a X2 test of
the goodness of fit was used; in this example, for 10 fractiles normal error
seemed to be met in the data. The result masks a small violation of the assump-
tions of the model: Correct responses were slightly, but significantly, faster
than incorrect responses; the difference was .22 standard deviation units in log
t ime.

The goodness of fit of the model for the latencies may be strikingly por-
trayed using data from individual examinees and items. Figure 1 shows a scat-
terplot of the observed log response times, t*, and the log response times esti-
mated from the model, t*, for an individual student across the 27 items. The
correlation was .59.

Figure 2 is a similar scatterplot of the log latencies, t*, and the pre-
dicted latencies, t*, for all 78 subjects on one of the analogy items,
"cent:dime:: ....... dollar." The correlation between the observed and fitted log
latencies for this item was .65.

,~~~~~7 _..7.... . .
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Figure 1
Scatterplot of the Observed Log Response Times, t*,

and the Fitted Log Response Times, t*,
for Student 24 for the Analogies Test
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The fit to the latency data comes both from the person and item slowness
parameters, Ei and aj, and from negative effects due to effective ability and

item easiness, since the logit regression parameter, b, had a value of .20. The
quantitative meaning of the regression of latency on effective ability varies
along the time scale due to the log transformation; but for an average item (in
all respects) a person of average slowness and average effective ability (0 = 0)
should respond in about 12.5 seconds and a less able individual ( 0 = -I) should
respond in about 15.2 seconds. The timed testing model makes use of the rela-
tionships between latency and the probability of a correct response to provide
relatively precise estimates of all of the parameters involved. Some 35% to 50%
of the variance in log latency within an individual or an item is predicted by
the model.

Since some of the item parameters in the timed testing model are the same
as those used in conventional latent trait analysis, the timed testing model may
be evaluated as an item calibration scheme by comparing the item parameters es-
timated using the timed testing model with item parameters estimated using
large-sample, response-only latent trait techniques. Item easiness was estimat-
ed by Tinsley (1971) for the analogy items used here with the Rasch (1960) 1-pa-
rameter logistic model, with data from 641 subjects. In Figure 3 the resulting
item easiness parameters are plotted against cj/aj, the corresponding transforma-
tion of the easiness parameter of the 2-parameter logistic model used her. The
correlation between the two sets of easiness parameters was .80 (or .70 when the
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Figure 2
Scatterplot of the Observed Log Response Times, t*,

and the Fitted Log Response Times, t*,
for One Analogy Item
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outlier in the upper right-hand corner, which was the easiest item in the test,
was removed).

Large-sample estimates of 2-parameter logistic slopes were not available
for this group of items. However, slopes for each item estimated using the
1-parameter logistic ability were available from the same large-sample item cal-
ibration study, and in Figure 4 they are plotted against the a estimated in the

present study. The correlation was only .50, and only two-thirds of the points
were within two of their own standard errors from the regression line.

The results shown in Figure 4 do not seem very good, until it is recalled
that the large-sample slope estimates were not very precise, since they were
estimated using ability derived from a 1-parameter logistic model; and, even
with the timed testing model, the standard errors of slopes estimated with only

78 subjects were liberally estimated to be about 0.12 for this test. All things
considered, the relationship between the large-sample slopes and those estimated
by the timed testing model was about as strong as would be expected, given the

J estimation procedures and sample sizes involved.

The item parameters estimated in this analysis revealed some construct and

jt
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Figure 3
Timed Testing Easiness (c./a.)

Plotted Against Large-Sample Easiness Parameters
for the Analogies Items
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Easiness

face validity when they were related to individual item characteristics. Using
data from 107 persons (who sorted these and other analogy items into categories
based on perceived similarity) and Wiley's (1967) latent partition analysis,
Whitely placed these analogy items in 8 categories defined by the type of rela-
tionship between the elements. The average item parameters for the 8 categories

* of analogies are given in Table 1. The easiness and item slowness parameters
did not vary significantly among the categories, but the discrimination parame-
ters were significantly related to analogy type (F (7,18) = 3.16, p < 0.05).
Quantitative analogies (e.g., cent:dime:: ...... :dollar), word pattern analogies
(e.g., owl:ant:: .... :tan), and functional analogies (e.g., tree: man::sap: ....)
were strongly related to the analogy-solving ability being estimated. Class-
naming and similarity analogies (e.g., puzzle: ...... ::riddle:ocean), which are
thinly disguised vocabulary items, were not strongly discriminating as analo-

J gies.

Within analogy types and within items of the same easiness, the !jj parame-

ters described other differences among the items. Some 58% of the examinees
responded correctly to the quantitative analogy "cent:dime:: ...... :dollar" in a
median time of 9.4 seconds, with an estimated item slowness of -.13. Nearly the

ii
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Figure 4

Timed Testing Discrimination Parameters (a.)

Plotted Against Large-Sample Slope Parameters
for the Analogies Items
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same number, 59% of the students, responded correctly to another of the quanti-

tative analogies, " ...... :yesterday::tomorrow:today"; but since they expended an

i average of 15.5 seconds on it, u. was .28.

' Is it possible that students could compute money faster than time? Or is a

~rearrangement of the second analogy in order to place the stem first the time-

); consuming factor? In any event, the consequences of this are that an examinee

~who responds to the first analogy correctly in 10 seconds is average; but an
Table

i} Mean Item Parameters for Eight

Categories of Analogies

SAnalogy Category c j/aj U.

Quantitative 1.16 .46 .08

Word Pattern .91 .21 .01
Functional .90 .02 -.23

Opposites .80 .73 .14

,IConversion .77 .59 .03

Class Membership .67 1.31 .12
Class Naming .53 -.47 -.26
Similarities .42 .05 .09

L k*.. .
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examinee who responds to the second analogy correctly in 10 seconds is either
very fast or very able. This information will be required by a computerized
adaptive testing system, which attempts to use latency as part of a system to
estimate the ability of examinees. And if it can be determined why "yesterdays"
take longer than "cents," the result may contribute to the psychological under-
standing of analogy items.

Progressive Matrices

The goodness of fit of the Progressixe Matrices data to the timed testing
model was not as good as for the Verbal Analogies. When the observed propor-
tions of correct responses for a similar set of six ability groups were compared
to the estimated logistic proportions of correct responses, 4 of the 34 individ-
ual item X2 tests were significant at the p < .05 level, and the total of the

X 2s was 201.0 with 136 df (p < .01), which indicates an overall significant
lack of fit of the model. However, the problem seemed to be the test items, not
the timed testing model, as the significant x2' s were all due to items for which
the observed proportions of correct responses did not form a strictly monotonic
increasing function over estimated ability. For most of the items, the fit was
acceptable; so the significant, but small, lack of fit of the item model did not
seem to present insurmountable problems.

The X2 test of the goodness of fit of the Gaussian distribution to the log
latency residuals was highly significant: The likelihood ratio X2 was 58.5, with
7 df (p < .01). This indicated a substantial violation of the assumption of
lognormal error for the response times. The problem appeared to arise from two
sources; the major problem arose because in this test, as in the Verbal Analo-
gies, correct responses were faster than incorrect responses (even after all of

the model corrections for ability, easiness, and so on). But the Progressive
Matrices were much easier than the Verbal Analogies, so almost three-fourths of

the responses were correct, and a little too fast. The combined effects of the
75 to 25 mixture of correct and incorrect responses and their slightly different
error distributions made the total distribution of errors around the log late'ncy
model somewhat skewed, and that is what the goodness-of-fit test was detecting.
This slight skewness (magnified in the X2 statistics by the 2,646 residuals in
the distribution) was mostly in the middle of the distribution and should have

little effect on the parameter estimates. There was also a 1% surplus of laten-
cies that had long positive residuals (over 2 SD above the mean); but none of

those were such outliers that they would exert excessive influence on the param-
eters.

Oddly enough, given those results from the goodness-of-fit statistics, the

prediction of the log latencies from the timed testing model was better for the
Matrices than it was for the Verbal Analogies. Figure 5 is a scatterplot of
observed (t*) and fitted (t*) log latencies for the 34 Matrices items for the

same student whose Analogies data is in Figure 1. The correlation was .84, in-
dicating that some 70% of the variance of log response time within that individ-
ual was being captured by the model. In part, this is because there was sub- .
stantial regression of log latency on effective ability and easiness for the
Matrices data. The b parameter was estimated at .8, and the location parameter
for the log latencies was 3.10; that means that an item of easiness "0" should
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take an average examinee 22.2 seconds, and an item of easiness "1" would take
the same examinee only 10 seconds. It also means that the response times were
used very heavily in the estimation of effective ability and item easiness.

Figure 5
Scatterplot of the Observed Log Response Times, t*,

and the Fitted Log Response Times, t*,
for Student 24 for Progressive Matrices
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Some evidence that the item easiness and slope parameters were estimated
fairly well by the timed testing model with the aid of the response times comes
from a comparison of the item parameters obtained in this analysis with those of
another large-scale latent trait item calibration that included a subset of
these same Progressive Matrices items. Thissen (1976b) estimated 2-parameter
logistic item parameters for 20 items drawn from the Progressive Matrices Sets
A, B, and C administered to 570 junior high school students. Eighteen of those
items formed a subset of the 34 Matrices items included in the present analysis.

Figure 6 is a plot of the corrected easiness parameters (c/a.) from the

present data against the same parameter for the same items from the junior high
data; the correlation was .94. Figure 7 is a similar scatterplot for the slopes
(a.). The correlation in this case .',.s .61, and there was some evidence of cur-

vilinearity, due mostly to the fact that there were 4 very high slopes in the
earlier junior high calibration with only 20 items. (Frequently, one or a fewof the slopes "climb" in a 2-parameter logistic item calibration of a test with

few items. This did not occur with this relatively large set of 34 Matrices
items.) Nevertheless, these sets of discrimination parameters errelated more
highly than the unmatched slope parameters did for the Verbal , alogies. The
correlation indicates that timed testing can yield reasonably effective item
calibration with less than 100 subjects. And it indicates that there are dif-
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Figure 6
Timed Testing Easiness Parameters (ci/a.)

Plotted Against Large-Sample Easiness Parameters
for Progressive Matrices
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ferences in discrimination between items of this sort, which are reliable across
* . changing sets of items, and between tests administered to junior high and col-

lege students.

Clocks

With only 17 usable items, the Clocks spatial test was the shortest of the
three tests considered here and, probably as a result, in some ways the most
unstable. Four of the items had estimated discrimination parameters greater
than 2.0, and three other items had slopes very near 0, indicating that the es-
timation procedure took a short test and made it shorter by allowing a fraction
of the items to dominate the scoring. It seems that the 2-parameter logistic
model only remains "democratic" (uses all of the items in scoring) as long as
there is a sufficiently large "silent majority" of test items to prevent the
scoring procedure from freely reordering the examinees until a few items have
near-perfect discrimination and the rest are omitted.

To some extent, this has happened here; but the estimation procedure stop-

ped short of infinite discriminations. The high discriminations did result in
some outliers among the estimated values for e; four of the 78 estimates were
between 2.4 and 4.4. However, the high-scoring students did respond correctly

K 9
4.-.. " ". ... . i | g i w

n - .- -,- -.. ,- -- .,.,
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Figure 7
Timed Testing Discrimination Parameters (a)

Plotted Against Large-Sample Slopes
for Progressive Matrices
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to all of the items but one with near-zero discrimination, and frequently re-
sponded quite quickly, indicating that they were indeed individuals of very high
spatial ability. So the seemingly extreme values may not represent serious dif-
ficulties.

As measured by the x2 goodness-of-fit statistics on the item correct-re-
sponse x ability group contingency tables, there were certainly no difficulties.
None of the item X2 's were significant, and the total of 90.9 with 68 df was not

hihysignificant, either (p = .05). The probability of correct response as a
function of effective ability seemed to be approximated fairly well by the timed
testing model with its estimated parameters.

The distribution of residuals from the log latency model showed approxi-
mately the same degree of non-normality as was the case for the Progressive Ma-
trices; the X2 was 39.4 with 7 df (y < .01), which was highly significant. The4. pattern of non-normality was the same as it was for the Matrices data; most of
the problem was caused by the combined effects of three-fourths of the responses
being correct and the correct responses being faster. Again, the non-normality
was not due to extreme outliers; so the parameter estimation, although probably
not quite optimal, should not be seriously affected. The estimated value for

'if
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the regression parameter b for the Clocks spatial test was only .025 (estimated
SE = .003); while that implies that there was a significant relationship between
response time and the probability of a correct response on the items of this
test, the relationship was much smaller than for the other two tests. It seems
that there were individual differences in the ability to respond correctly to
these items and individual differences in speed of response; but, in striking
contrast to the Matrices test, those two variables were unrelated. Indeed, the
correlation between 0 and s for the clocks was -.03. (Estimated correlations
among all of the individuaT parameters are given in Table 2.)

Given the low correlation between 0 and s, it would seem that only one of
those variables could be the classical spatiad? trait. In this case, that was 0,
on which there was a significant sex difference of the same magnitude and form
usually found on speeded spatial tests (F(1,76) = 4.65, p > .05). Even allowing
for some moderate non-normality, the males scored substantially higher. There
was no hint of a sex difference on s with the Clocks. For this test, with
three-dimensional rotations, it seems that the classical spatial trait simply
determined whether the problem could be solved or not; using more or less time
seemed to make little or no difference. This is in marked contrast to the re-
sults obtained earlier (Thissen, 1976a) with another (simpler, two-dimensional)
spatial test in which both males and females had the same mean 0 and in which
the sex difference (and presumably the spatial trait) was in slowness control-
ling for effective ability. The Clocks may be a good paper-and-pencil spatial
test because performance on these items is essentially unrelated to slowness or
carefulness.

If effective ability and easiness are the spatial trait, what are the slow-
ness parameters doing? To answer that question, the items, whose properties are
fairly easy to define, may be examined. The easiness of an item seems inversely
related to the amount of rotation it requires, a result reminiscient of the
Shepard and Metzler (1971) result. Holding amount of rotation constant, the
item slowness parameter is, in part, an increasing function of the number of

symbolic "instructions" the item uses to achieve that rotation. The items in
the test define the rotation to be applied by arrows on the surfaces of 1, 2, 3,
or 4 spheres. A rotation of 180 degrees may be defined by any of those numbers
of spheres; and in this subset of items, it was. The more spheres the item used
to give the instruction, the longer it took to encode (presumably) and the lon-
ger it took for the examinee to respond. Regardless of the number of spheres
involved, however, the 180 degree items had about equal easiness. Again, a com-

t puterized adaptive testing system using latency to estimate ability would have
to recognize that for the Clocks spatial test, more "instruction spheres" do not
necessarily make the item harder (that depends on the amount of rotation), but
they do make the response slower.

Relationships Among the Tests

Correlations among parameters. The Progressive Matrices have been various-

ly labeled as a test of abstract reasoning ability, as l, and as a number of
other constructs. There is evidence in the present data (see Table 2) that when
given no time limit, the Matrices become a test of slowness. Effective ability
and slowness on the Matrices were correlated .94 in * data; the more slowly

, ... . ... .... .
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a subject responded, the more likely he/she was to get the item correct, and
vice versa. Effective ability and slowness were not nearly so closely related
for the Verbal Analogies (r = .67), and they were unrelated on the Clocks. One
possible explanation is that some kinds of test items are affected more by slow-
ness (and, possibly, carefulness) on the part of the examinees than are others.
This speculation has some support in these data in the form of the relation-
ships, shown in Table 2, between effective ability and slowness on the Verbal
Analogies and the parameters of the names on the Matrices.

Table 2
Estimated Correlations Among the Person Parameters

for the Three Tests

Test and Analogies Matrices Clocks
Parameter 0 s e s s

Analogies
O 1.00
s .68 1.00

Matrices

0 .54 .69 1.00
s .39 .68 .94 1.00

Clocks
o .42 .28 .39 .29 1.00
s -.09 .40 .36 .55 -.03 1.00

Both e and s for the Progressive Matrices may be predicted quite well from
effective ability and slowness on the Verbal Analogies; the multiple R's were
.70 and .69, respectively. The standardized regression coefficients are given
in Table 3. Effective ability on the Progressive Matrices was predicted by a
small positive weight for effective ability on the Analogies and a larger posi-
tive weight for slowness on the Analogies. Individuals who answered items slow-
ly on the Analogies responded correctly on the Matrices. Slowness on the Matri-
ces was similarly predicted by slowness on the Analogies, with a small negative
weight for Analogies effective ability: individuals who answered items entirely
too slowly on the Analogies, given their ability to respond correctly, answered
very slowly on the Matrices.

It could be concluded that the three tests in this particular set represent
three types of timed tests. On the Progressive Matrices, working slowly and
carefully was strongly related to the probability of responding correctly, and
what is measured is largely slowness. On the Verbal Analogies, working slowly
and carefully was related to responding correctly, but not so strongly; so two
distinct traits are measured--analogical reasoning ability and slowness. On the
Clocks slowness did not seem to affect the probability of a correct response;
therefore, spatial ability and slowness are essentially measured separately.

Information. The differences among the three types of tests are graphical-
ly portrayed in the test information functions for 0 for the three tests, shown
in Figure 8. The latency data had almost no effect on the ability estimation in
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Table 3
Standardized Regression Coefficients for
Prediction of the Matrices Scores from

the Analogies Scores

Independent Variable Matrices e Matrices s

Analogies e .13 -.13
Analogies s .60 .77

the Clocks; as a result, the test information function for the spatial test has
the classical "peaked" form of 2-parameter logistic test information functions
for tests not constructed to spread the items very well. All of the information
about ability comes from the item responses, and that information is only sub-
stantial near the difficulty level of the items, in this case between e -1 and
0.

Figure 8
Test Information Functions for the Three Tests
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The Progressive Matrices, on the other hand, have a flat, regression-like
test information curve. When b is estimated to be quite high, as it was in the
case of the Matrices data in this example, effective ability was essentially
estimated as though it were an element in a linear regression equation predict-
ing log latency. The log latencies are assumed to provide the same amount of
information about effective ability regardless of the value of e; therefore, the.1 test information curve is nearly flat.

The Verbal Analogies test information function shows a situation in which

--
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information was being obtained both from the item response data (giving the
curve its familiar peaked form) and the latencies. The information provided by
the response times serves to raise the entire curve, so that there is some in-
formation available in the system for estimating the effective abilityFo-indi-
viduals with relatively extreme trait values. The test information function for
the Verbal Analogies represents the desired outcome for the timed testing model;
the other examples make it clear that we are only beginning to learn what can
happen in a timed testing situation.

Conclusions

The latent trait model for timed ability testing described here is neither
perfect nor complete; it still requires extensive (and expensive) computation to
estimate the parameters of the model for fairly small samples, and it needs an
additional parameter to absorb the relatively consistent difference between the
residuals from the log latency model for correct and incorrect responses. Im-
proved starting values for the maximum likelihood algorithm would go a long way
toward solving the first problem. And the existence of the second problem is
interesting. It is not too surprising that averaging over people or items, cor-
rect answers take less time than incorrect ones, because correct answers come
from able people answering easy items and incorrect responses come from less
able people responding to harder items. But this timed testing model corrects
for the ability of the individuals and the easiness of the items, and it is
still true that correct answers are associated with shorter latencies. This
could be a real indication of some processing difference between correct and
incorrect responses; future research could define the difference.

However, even with these potential problems, the timed testing model is
ready for use. These data, as a matter of fact, were not collected to test the
timed testing model; they were collected in an investigation of cerebral later-
ality and its relationship to cognitive abilities. The timed testing model was
used to score the test because it used the available data most efficiently. As
computers do the testing and time the responses, that will probably be the case
with increasing frequency.

REFERENCES

Audley, R. J. A stochastic model for individual choice behavior. Psychological
Review, 1960, 67, 1-15.

Audley, R. J. Some observations of theories of choice reaction time. In S.
Kornblum (Ed.), Attention and performance IV. New York: Academic Press,
1973.

Birnbaum, A. Some latent trait models and their use in inferring an examinee's
ability. In F. Lord & M. Novick, Statistical theories of mental test
scores. Reading, MA: Addison-Wesley, 1968.

Bock, R. D. Estimating item parameters and latent ability when responses are



-276-

scored in two or more nominal categories. Psychometrika, 1972, 37, 24-51.

Fletcher, R., & Reeves, C. M. Function minimization by conjugate gradients.
Computer Journal, 1964, 7, 149-54.

Furneaux, W. D. Intellectual abilities and problem solving behavior. In H. J.
Eysenck (Ed.), The handbook of abnormal psychology. London: Pitman, 1961.

Guilford, J. P., & Zimmerman, W. F. The Guilford-Zimmerman Aptitude Survey. VI.
Spatial Visualization, Form B. Beverly Hills, CA: Sheridan Supply Co.,
1953.

Haberman, S. A conditioned Newtqn-Raphson algorithm for function minimization.
Unpublished manuscript, 1970. 4

Kagan, J., Rosman, B. I., Day, D., Albert J., & Philips, W. Information pro-

cessing in the child: Significance of analytic and reflective attitudes.
Psychological Monographs, 1964, 78 (l,Whole No. 578).

Laming, D. R. J. Information theory of choice reaction times. New York: Aca-
demic Press, 1973.

Luce, R. D. Response latencies and probabilities. In K. J. Arrow, S. Karlow, &
P. Suppes (Eds.), Mathematical methods in the social sciences, 1959. Stan-
ford, CA: Stanford University Press, 1960.

Rasch, G. Probabalistic models for some intelligence and attainment tests.
Copenhagen: Danmarks Paedagogiske Institute, 1960.

Raven, J. Progressive Matrices (Rev. ed.). London: Lewis, 1956.

Samejima, F. Estimation of latent ability using a response pattern of graded
scores. Psychogetrika onograph Supplement, 1969, 34 (4, Pt.2, Monograph
No. 17).

Samejima, F. Homogeneous case of the continuous response model. Psychometrika,
1973, 38, 203-219.

Shepard, R. N., & Metzler, J. Mental rotation of three-dimensional objects.
Science, 1971, 171, 701-703.

Sternberg, R. J. Intelligence, information processing, and analogical reason-
ing: The componential analysis of human abilities. Hillsdale, NJ: Erlbaum,

4t 1977.

Thissen, D. Incorporating item response latencies in latent trait estimation.
Unpublished doctoral dissertation, The University of Chicago, 1976. (a)

Thissen, D. Information in wrong responses to the Raven Progressive Matrices.
Journal of Educational Measurement, 1976, 13, 201-214. (b) .1



-277-

Tinsley, H. E. A. An investigation of the Rasch simple logistic model for tests
of intelligence or attainment. Unpublished doctoral dissertation, Univer-
sity of Minnesota, 1971.

White, P. 0. Individual differences in speed, accuracy, and persistence. In H.
J. Eysenck (Ed.), The measurement of intelligence. Lancaster, England:
Medical and Technical Publishing Co., Ltd., 1973.

Whitely, S. E. Relationships in analogy items: A semantic component of a
psychometric task. Educational and Psychological Measurement, 1977, 37,
725-739.

Whitely, S. E. A multi-component model for information processing abilities.
Paper presented at the 1979 annual meeting of the Psychometric Society,

Monterey, CA, April 1979.

Wiley, D. E. Latent partition analysis. Psychometrika, 1967, 32, 183-193.

ACKNOWLEDGMENTS

This research was supported in part by funds from the University of Kansas
General Research Fund. I am grateful to R. Darrell Bock for providing the

"Clocks" test items and to Susan Whitely for the Verbal Analogies, as well as
for suggestions for their analysis. Thanks to Leslie Webster and Paul Isenberg

for keeping the data collection going smoothly regardless of obstacles, and spe-
cial thanks to Laura Baker for her technical asistance in the preparation of
this paper and her comments on its contents.

S....................................



DISCUSSION: SESSION 6

JOHN B. CARROLL

UNIVERSITY OF NORTH CAROLINA

AT CHAPEL HILL

Both the Thissen and the Tatsuoka papers are excellent, presenting inter-
esting and useful approaches to a problem with which I have long been con-
cerned-the role of speed in testing ability and achievement. I can best com-
ment on them by using them as stimuli for some general remarks about speed-abil-
ity relationships.

First, however, I will consider one technical issue that is touched upon in
both papers-namely, the distribution of item response times over items and/or
over individuals. Thissen has stated that "data analytic considerations suggest
that response times are frequently approximately lognormally distributed," and
his analyses consequently utilize logarithms of these times. Tatsuoka, on the
other hand, has provided evidence that response times follow a Weibull distribu-
tion and has offered a tentative rationale for the appropriateness of such a
distribution.

Before either the lognormal or the Weibull distribution for response times
is accepted, consideration should be given to the basic metric for these times.
It has appeared more reasonable to express response latency in terms of perfor-
mance per unit of time (e.g., Landahl, 1940; Wainer, 1977). This is the conven-
tional way of measuring, ;t example, the speed of a vehicle (miles or kilome-
ters per hour), and it can also be applied to rate of work in performing test
items. This metric has a theoretical zero point expressing a state of no mo-
tion, in the case of a vehicle, or a state of no performance at all, in the case
of work on a test. When rate of performance is expressed in this way, I have
generally found that individual differences tend to be normally distributed.
For this reason, it has been my practice to take the reciprocals of response
latencies and to use these in my data analyses, rather than the raw response
times or even their logarithms. This has been done, for example, for picture-
naming latencies (Carroll & White, 1973a, 1973b), interpreting the reciprocals
as number of pictures that could be named per unit of time. In reporting cen-
tral tendencies for response times, I use the harmonic mean, which is, of
course, a back-translation from the arithmetic mean of the reciprocals of the
response times.

From those considerations, I would suggest that Thissen (or anyone follow-
ing his lead) might try to substitute the reciprocal transformation for the log-
arithmic transformation of response time. Possibly this would yield better fits
to daca, and in any case it would have a somewhat better theoretical underpin-
ning.
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On the other hand, I am much attracted to the possibilities that seem to be
offered by the Weibull distribution as investigated by Tatsuoka. She has gone
far in offering a reasonable rationale for the application of this distribution
to time score data in suggesting that the test item is seen as a "system" that
the individual tries to break down. Somehow, I have always thought of the mat-
ter in reverse--that is, the examinee is the system that the test item is trying
to break down. The Rasch model, incidentally, presents the idea that whichever
will break down first--the individual or the test item--is given by the relation
between the person parameter and the test item parameter. In dealing with re-
sponse times, however, the assumptions of the Weibull distribution make it rea-
sonable to consider the relation unidirectional, in the sense that one "waits"
for the examinee to "break" the test item. The parameter c in Weibull distribu-
tion theory appears to be of particular interest, for it specifies whether the
individual's probability of mastering the test item increases, remains constant,
or decreases with increasing time. As Tatsuoka noted, "it is intuitively plau-
sible that Items of all three kinds may exist in practice, depending on the dif-
ficulty and other properties of the item." Even mixed cases are possible, for
example, one in which the probability first increases, then decreases, or one in
which the probability has a constant low value and then increases rapidly, as
for a "sudden insight" problem solution. Possibly the Weibull distribution
could be applied to such cases by assuming a two-stage process, with different
parameters for each stage. Probably, however, the estimation of separate param-
eters for the stages would be a formidable problem.

The theme of speed-ability relationships is an old, but relatively ne-
glected, problem in psychometrics. It is not difficult to find investigations
of it in the early literature (e.g., Dubois, 1932; McFarland, 1930). Thurstone
(1937) formulated a psychometric model of ability, motivation, and speed involv-
ing a three-dimensional psychometric surface in which these variables could vary
independently. Baxter (1941) pointed out that time-limit and work-limit scores
have an artifactual part-whole relation that accounts for their high intercorre-
lation in most circumstances and discovered that sheer rate of work or perfor-
mance on the Otis group intelligence test had a correlation of essentially zero
with level of ability as determined from work-limit scores on the test.
Davidson and Carroll (1945) pursued this matter further and confirmed these re-
lations in the case of subtests of the Army Alpha. It was shown that several
different speed and level factors could be identified in the subtests of this
battery when they were administered in such a way as to obtain not only the con-
ventional time-limit scores but also scores measuring rate of work and level of
ability. The time-limit scores were shown to have factor loadings on both speed
and level factors.

Since the Davidson and Carroll study, this line of investigation has been
pursued only very infrequently in the factor analytic literature. One exception
is the study by Lord (1956), disclosing separate dimensions of ability and speed
in a number of domains of cognitive performance. One of Lord's findings, for
example, was that ability level in spatial tests is a dimension separate fromI speed in performing those tests. Recently, Egan (1976), working at the item
response level, found a similar two-dimensional structure for spatial ability
tests.

*1
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Baxter had proposed that speed, power, and level scores for ability tests
should be carefully distinguished; he defined a speed score as a sheer rate-of-

work score without regard to the correctness of response. Conventional time-

limit scores were to be designated as power scores; work-limit scores (number

correct in unlimited time) were to be regarded as level of ability scores. Un-
fortunately, Baxter's proposals were never generally accepted in the psycho-

metric literature; most often, time-limit scores are called speed scores and
work-limit scores are called power scores. The more unfortunate error, however,

is to continue to assume that conventional time-limit scores are appropriate
measures of level of ability, when actually they usually reflect rate of work to

a degree that is a function of the speededness of the test, or more properly,
the time limit.

The confusion between ability and speed has arisen primarily because of the

conventional methods of administering tests with time limits that are often set
rather arbitrarily but, in any case, as short as is deemed feasible. Computer-
ized testing, whether it is adaptive or not, offers a means of avoiding the
problem of speeded testing because it can control the test items offered to the
examinee and can measure the time taken to respond to them. What is most in-

triguing about Thissen's paper is its proposed methodology for extracting both
ability and speed information from computer-administered tests. This methodol-

ogy seems to be highly promising. I would be particularly interested if it
could be developed to permit multidimensional results in either ability or speed
domains or in both.

Although Thissen's remarks about the interpretation of the ability and

speed parameters of the three tests that he analyzed were of interest, his data

treatment might well have included a factor analysis of his table of intercorre-
lations. I have taken the liberty of performing such a factor analysis, even

though the iteration for communalities had to stop at 10 iterations to avoid
having at least one of the communalities exceed unity. A Varimax-rotated solu-

tion of the common factor matrix arrived at after 10 iterations is shown in Ta-
ble I. Obviously, the two uncorrelated factors, together accounting for about

77% of the total variance, may be interpreted as ability and speed, respective-
ly. What is of particular note is that the factors generalize over different

tasks. The best "pure" measure of ability is the parameter 6 for the Analogies
"1 test, while the purest measure of speed is the s ("slowness") parameter for the

Clocks test. Nevertheless, the factors show up in interesting ways on other
tasks.

Especially noteworthy were the results for the Raven Progressive Matrices
Test. There is probably more confusion and conflicting evidence in the litera-

ture on the Raven test than on any other commonly used test. Many authors
(e.g., Jensen, 1978) regard the Raven test as one of the best measures of g, or
general intelligence. Thissen's results, however, indicate that the test is
factorially complex, measuring ability and speed in both the 0 and s parameters.
Thissen speculated that when the Raven test is given under no time pressure, it
is primarily a measure of speed or its opposite, slowness, or perhaps careful-

ness.

Ii- - ..-
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Table 1
Varimax Rotated Principal Factor Analysis

of Thissen's Table 2 of Correlations among

Estimated Person Parameters for Three Tests

Factor Loadings
Factor 1 Factor II

Test (Ability) (Speed)

Analogies
o .97 .01
s .62 .52

Matrices
o .59 .71
s .41 .91

Clocks
6 .45 .09
s -.09 .67

Note. The preliminary principal component
analysis of the correlation matrix with
unities in the diagonal yielded eigen-
values of 3.35, 1.30, 0.70, 0.45, 0.16,
and 0.03. Iteration to two factors for
communalities stopped iteration 10 be-
fore one of the variables would have
attained a communality greater than
1.0. This matrix is presented as suf-
ficient to exhibit the overall pattern

of the results.

Horn (1978) made an extensive factor-analytic study of speed, power, and
carefulness (among other things), supported by the Army Research Institute. Two
of his conclusions are the following:

". There is considerable cohesion among indicants of average speediness
in providing response (either correct or incorrect) in tasks of non-
trivial difficulty.

"2. Intellectual speediness indicated in this manner has only a very low,
perhaps only chance, relationship to the goodness of intellectual per-
formance that is indicated by the number of correct answers provided
in a wide range of putative measures of intelligence."

Horn's study has elaborated the concept of speediness to a much greater extent

than can be reviewed here; he also considered the role of strategies that exam-
inees may adopt in attacking items and the dependence of these strategies on the
character and content of the items or tasks. Actually, his evidence suggests
the existence of two speediness factors--CDS (correct decision speed) and QDS
(quit decision speed)--the latter pertaining to situations in which the individ-
ual decides to give up in a problem-solving task.

'1
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This result gives me added confidence in suggesting that the methods devel-
oped by Tatsuoka and by Thissen might be applied in further study of ability,
speed, and carefulness factors at the item level. Using a mixed model Weibull
distribution with different c parameters, the CDS and the QDS factors might be
more reliably differentiated. One characteristic of items that might be rele-
vant here is whether the items are "self-revelatory," that is, whether they have
a solution that can be recognized as correct by examinees once they discover it,
in contrast to the usual test item for which the correct answer is not obvious
to examinees unless they have the required level of ability or knowledge. It
would be profitable to apply Thissen's methods to a wide range of ability tests
in order to determine the dimensions of ability and speed in such tests. I
would expect the structure to be much more multidimensional than Thissen's pre-
liminary results show.

Most applications of latent trait theory thus far are limited to the unidi-

mensional case, or at least to cases in which unidimensionality is assumed.
There is abundant evidence that abilities in the cognitive domain are multidi-
mensional. It is my hope that work in latent trait theory in the future can
address the multidimensional case more fully.
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USING THE RASCH MODEL TO IDENTIFY PERSON-BASED

MEASUREMENT DI STURBANCES

RONALD J. MEAD
MINNEAPOLIS

There is currently in psychometrics a controversy due to a fundamental dif-
ference of opinion about what measurement is and how it is to be used. George
Bernard Shaw (1903) addressed an important aspect of this controversy in "Maxims i
for Revolutionists" when he wrote, "The reasonable man tries to adapt himself to
the world; the unreasonable man persists in trying to adapt to the world to him-
self .... ".

In psychometrics the "reasonable" approach involves constructing a model
sufficiently complex to explain any data that might be produced by a group of
people taking a set of test items. The "unreasonable" approach fixes on a par-
ticular model and struggles to make data conform to it, the choice of the model
being determined by philosophical rather than empirical considerations. To
avoid any confusion about where Shaw stood with respect to reasonableness, he
went on to say, "...therefore, all progress depends on the unreasonable man."

The simple logistic model can be viewed from either position. For the
"treasonable" psychometrician, it is known as the 1-parameter model, which is a
special case of the 2- (or more) parameter model; and it should be considered
when it fits the data, if for no other reasons than economy and parsimony. This
viewpoint has a respectable ancestry in model building (with linear models),
where the magnitude of the unexplained error is the criterion for deciding if
parameters should be added or deleted.

For the "unreasonable" psychometrician, the simple logistic model is known
as the Rasch model. It is the very definition of measurement; hence, measure-
ment is not possible when data do not fit it. When viewed from this aspect, it
is a very special model indeed, but is not a special case of anything.

This difference in philosophy might be compared to the difference between
stepwise multiple regression and experimental design, both of which have been
very useful to the social sciences. The first is concerned with fitting data
using whatever model is necessary; the second, with organizing the situation to
obtain data that conform to a model which will make the estimation and the in-
ferences as easy and as unambiguous as possible.

In analysis of variance terms, the Rasch model is a main class model with
two fixed classes and no interactions. All the data needed to estimate the ef-

to,
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fects are contained in the marginal sums; and since all the marginal information
is needed in estimating the main class effects, any additional parameters, re-
gardless of how they are subscripted, must represent interactions between the
person and the items. This raises the old analysis-of-variance dilemma of how
to interpret main effects in the presence of an interaction.

Returning to psychometrics, if the model contains any additional parame-
ters, such as item discrimination, person sensitivity, random guessing by some
persons, or nonzero asymptotes for some item characteristic curves, then either
the item characteristic curves (ICCs) or the person characteristic curves (PCCs)
or both will not be parallel (after linearization). Hence, the comparison of
the abilities of two persons will depend on the particular items used as the
basis for the comparison. This is a statement of what is meant by failing to
achieve "specific objectivity" as defined by Rasch (1960), but it is also a
statement of an interaction as used in analysis of variance.

As with interactions, these additional parameters have meaning only when at
least one of the ways of classification (e.g., persons) can be considered a ran-
dom sampling from some relevant population. Inferences about ability are there-
fore normative in the sense that they pertain only to comparisons within that
population.

The most fundamental distinction between the Rasch model and the other
psychometric models is that the Rasch model concentrates on the person, whereas
the other approaches deal with groups of people. Rasch (1960) quoted two psy-
chologists on this topic. Citing Skinner (1956), he stated, "Any order to be
found in human and animal behavior should be extracted from investigations into
individuals, and (current) psychometric methods are inadequate for such pur-
poses, since they deal with groups of individuals." He quoted Zurbin (1956) as
saying, "Recourse must be had to individual statistics, treating each patient as
a separate universe. Unfortunately, present-day statistical methods are entire-
ly group-centered, so that there is a real need for developing individual-cen-
tered statistics." This is no less important in education. When the intent is
to describe the progress or achievement of one student, it should not matter to
what populations he/she is assigned.

In solving this problem, Rasch formulated some general principles of com-
parison, which can be rephrased as follows:

1. For any relevant item, a more able person always has a better chance of
success than a less able person, and

2. Any person has a better chance of success on an easier item than on a
more difficult one.

These statements indicate nothing about the age, sex, race, or religion of the
person, only that the items be appropriate to him/her for the variable.

Although these conditions may seem so obvious and necessary as to be almost
trivial, the family of models proposed by Rasch are the only ones that meet
them. All other models lack these properties, which Rasch has called "specific
objectivity"--objective because the comparison of any two people is independent

4 .,. 4 -...• ..
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of the items used and specific because the items must be appropriate for making
one particular comparison.

There are, 's Rasch (1960) and Fischer (1976) have shown, a large family of
exponential modc 3 that have specific objectivity with a variety of types of
observations. The only one to be discussed in this paper is the model for di-
chotomiusly scored items, which looks like the Birnbaum model and, as mentioned
previously, is c, nonly known as the Rasch model. Because it does have the po-
tential of achieving objectivity, however, it is not a special case of the Birn-
baum model, and choosing between them should be on the basis of whether or not
objectivity is of value.

Person-Based Disturbances

There are two major concerns motivating an interest in the analysis of per-
son fit. First, the simplicity of the Rasch model makes it very demanding on
the data. Although some very desirable measurement properties are associated
with the model, they are attained only if the data fit. A thorough search for
misfit is therefore essential.

Second, since measurement of the person is the objective, it is only pru-
dent that before any decisions are made about the person (based on a series of
simple responses to artificial situations), it be verified that the responses
mean what is intended. Regardless of how well or how often the items have been
used in the past, there is no guarantee that they operated as planned with a
particular person on a specific occasion.

It is preferable to use the Rasch model for this purpose precisely because
of its simplicity and because of the logical relationship between its demands
and its benefits. If the demands are met, the benefits necessarily follow.
Since it is simple, it will not appear to explain data that were generated by a
multidimensional process. When it fits, we know exactly what we have. When it
does not fit, at least we know what has been taken out; therefore, all the in-
formation about misfit should be left in the residuals from the model.

In order to use the model to understand what could have gone wrong when the
data do not fit, some consideration must be given to how various forms of misbe-
havior might appear in the data. It must be remembered that when the data do
not fit, the same logical position does not exist. Although it can be predicted
how the data will look if certain things happen, it does not follow that if the
data look that way, these things have necessarily happened.

Three much discussed disturbances will be considered in this paper: random
guessing, speededness, and bias. These are relatively general, since many other
problems can be stated analogously and all can be handled by a single strategy.
In addition, it will be suggested how the fitted ICCs might be affected if a
substantial proportion of the sample were engaging in these activities.

* 4 Random Guessing

This can only occur (1) when the person has no knowledge that would help
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him/her choose a response or (2) when he/she does not read the question before
responding. Not everyone will guess randomly, and among those who will, the
propensity to do so is not necessarily the same. One reasonable description of
this process is as follows: If the person has a reasonable amount of knowledge
about the item, he/she will respond according to the model (solid ogive in Fig-
ure la). At some level of difficulty, the person will decide that he/she knows

nothing about the item and will respond randomly, with the probability of suc-
cess (dashed line) being determined by the number of alternatives. The point
(Gv on the figure) at which this change-over occurs surely varies from person to

person according to confidence in ability and tendency toward risk-taking.

The residuals, after removing the effects of the item difficulties and the
person's ability, are as shown in Figure lb. The positi% residuals for the
difficult items imply a surprising degree of success on these items. Surprise
increases in moving toward more and more difficult items, and the rate of suc-
cess remains the same. The negative residuals correspond to responseq that
should fit the model, but the expectation was upset by the person's unwarranted
successes on the difficult items. Dropping the difficult items from consider-
ation and recomputing the person's ability should result in an acceptable mea-
surement.

If a substantial proportion of the sample were behaving in this way, it
would be expected that ICCs would be as shown in Figure 2. Estimates of item
difficulty would be biased downward (that is, the item would be considered easi-
er than it actually is). Heterogeneity in the item discriminations would also
be observed, with the more difficult items appearing to have the lower discrimi-
nations. The extent of the disturbance in both would depend on the propensity
of the sample to guess and on the proportion of the sample in a position where
guessing was a viable strategy. The methods devised by Waller (1974, 1976) to

correct for guessing should effectively eliminate both problems.

Speededness

It frequently happens with group-administered tests that not everyone has
ample time to completely answer every item. Although time limits are normally

chosen to minimize this, they invariably involve some compromise between admin-
istrative convenience and handicapping a few persons.

How a time limit affects a person undoubtedly depends on the individual.
The person might simply rush through the test without spending enough time on

any item. The residual response string would have the appearance of both random
guessing and carelessness, with some difficult items answered correctly and some

easy items answered incorrectly. The effect on the estimate of ability would be
to underestimate it. Except for a general fuzziness in the quality of the mea-
surement, this situation would be difficult to detect and diagnose psychometri-
cally.

A slow methodical person might carefully consider each item before respond-

ing and consequently could leave several unanswered at the end. Detecting this
does not require high-powered psychometrics. Skillful test-takers might compli-
cate this picture by filling in as many answers as possible between the time the

.1j
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Figure la
Person Characteristic Curve with Guessing
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Figure 2
Typical Item Characteristic Curve with Guessing
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proctor says stop and when the answer sheet is taken away. The response string
should be acceptable up to the point at which the behavior changes. From there
on it should have the appearance of random guessing.

Deciding what to do about either of these cases requires some consideration
of the nature of the variable being sought. It is sometimes argued that the
capability of performing the tasks rapidly is an important component; so all
items presented to the person should be considered in the measurement. However,
the ability to do something and the ability to do it quickly are not necessarily
the same. They may both be important and are often highly correlated; but if
they are different variables, they can not be combined into a single, valid mea-
sure and treated with a unidimensional model.

The effect of ignoring the speededness on the estimate of item statistics
would be to make the items at the end of the test appear more difficult and more

Vi discriminating than they actually are. They are too difficult because too few
people responded to them correctly, and the discriminations are too high because
the persons who did respond correctly will tend to have more correct answers on
the whole test (because they actually took a longer test).

Bias

An item is biased against a person if, for some reason, the person is at a
disadvantage on that item relative to other items and other persons. This must
involve an additional latent variable, and the effect of the person's position
on this variable is to lower his/her chances of success on the affected items.
One familiar example is a vocabulary test in which the word "sonata" is found to

............................ II-...l.II.
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be biased, since not all cultural groups would have had equal exposure to it.

Most discussions of item bias (e.g., Draba, 1978) in connection with the
Rasch model have suggested techniques such as the following:

1. Calibrate all items on each group separately;
2. Compare the resulting item difficulties;
3. Items which display significant shifts in difficulty between groups are

considered potentially biased; and
4. If content experts concur, the items are revised or dropped.

Although this approach is very useful, it is not the complete answer. It has
two obvious shortcomings. First, it depends on internal definition of the true
variable. It can only work well if most items are "fair." If the bias is pre-
sent uniformly in all items, the unfavored group will simply appear lower in
ability. Second, this analysis is, again, population-based. It requires the
definition of groups that must be arbitrary to some extent and then assumes that
any bias in the items is the same for all members of the group. It seems pref-
erable to treat every person as his/her own group and to require each item to
demonstrate its validity for every person.

This can be accomplished by rearranging the steps and bringing the content
experts in first. Their function would be to cluster the items according to
some criterion so that the subsets would be homogeneous with respect to any sus-
pected extraneous variables. This might be on the basis of vocabulary, as sug-
gested earlier; or in the case of reading comprehension, it might be on the ba-
sis of the subject matter of the passages.

To take another example, if a mathematics reasoning test were comprised of
word problems, the items might be grouped by their readability. In this case,
the person obviously has two abilities and the item two difficulties. The per-
son can be successfully measured on one of the variables only if his/her perfor-
mance is not affected by the other. If the person is sufficiently skillful at
reading, he/she will read and understand all problems, regardless of the prob-
lem's resistance to being read. Therefore, the person's performance will be
determined by his/her reasoning ability and the difficulty of the problem. It
would not matter if the items were equally difficult to read or not.

On the other hand, if the person were a very skillful problem solver and a
poor reader, it would be a test of his/her reading ability. His/her performance
would depend on whether or not he/she could read and understand the problem. If
the calibrating sample were like this, the difficulties assigned to the items
would be due to their locations on the reading variable.

The discriminations observed for the items could be influenced in either
direction. One interesting situation would arise if the calibration sample were
comprised of two groups, equally able in problem solving but substantially dif-
ferent in reading ability. Assuming that the first group had no difficulty
reading any of the items but that the second had trouble with several, those
items will have apparent discriminations. Since the groups are the same in rea-
soning, they will only be separated by the difficult reading items; and for pur-



-292 -

poses of this paper the high discriminations would be entirely spurious.

Multidimensionality

Clearly, the problem here is that the dimensionality of the latent space is
greater than the dimensionality of the model. In practical applications it is
more convenient to try to control the situation rather than to generalize the
model. This conception of bias can, however, be generalized to include any
strategy for forming subsets of the items. For example, difficult items could
be considered biased against nonguessers; easy items, against careless test
takers. Items at the end of a test are biased against slow workers; those at
the beginning, against slow starters. Items that have never been used before
are biased against examinees who belong to fraternities with good test files.
There never seems to be any problem for people who are interested in a test to
generate hypotheses about possible dimensions in it.

At this point a simple strategy can be described for checking each person's
response string for multidimensionality. This person analysis is not a replace-
ment for i thorough item analysis but, rather, is an addition to it. The hy-
potheses here about Person x Item subset interactions are distinct from the hy-
potheses in item analysis about Item x Person Group interactions. The power of

the person analysis comes from replicating items that are alike in some sense;
in item analysis it depends on replicating similar people.

The principle employed in the analysis is the objectivity of the measure.
If it is truly objective, then all subsets of items should yield statistically
equivalent estimates of the person's ability. If not, it would be concluded
that the presence of multidimensionality is related to the manner in which the
subsets were defined.

The most cbvious method of doing the arithmetic would be to actually com-
pute the ability associated with the person's score on each subtest and to per-
form an analysis of variance to test for between-subtest differences. This has
the immediate drawback of being unable to deal with 0 or perfect scores. Gus-
tafsson (1979) has recently proposed a set of procedures based on conditional
maximum likelihood estimation, which has many desirable statistical properties.
This, however, can be expensive, and it is still somewhat restrictive in the
maximum number of items it can handle.

A convenient and economical analysis can be developed from the uncondition-
al estimation equations. The basic equations needed are shown in Table 1. The
notation used follows the conventions of Rasch where possible:

v designates the person,
i designates the item,

Xvi is the score obtained by person v on

item i (equals 0 if incorrect, I if correct),
b is the ability of person v estimated from
_V all items, and

di is the estimated difficulty for item i.

. . .-. .. t,
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Table 1
Unconditional Person Analysis

Scaled Residual

- (x~ - /
Vi ffi (Vi Vi P )IVi

where

Poi = exp(b - di)/(l'O + exp(b - di))'
and

Wi i P Vi (I - PVi )

Misfit Due to Subtest J

V Y2Wvi/ 01 WVV1i V iE~j

Effect Due to Subtest J

Y .Z. Yvi Wvi / . Wvi

Between-Subtest Mean Square

2 Vj i7 i

The scaled residual is simply the difference between the person's observed
item score, Xvi, and his/her predicted item score, Pvi, predicted from his/her

performance on the total test. The difference has been rescaled by multiplying
by 1.0/(Pvix(l-Pvi)), which is the derivative of b with respect to P, so that

the residual is expressed in logits to a first-order approximation.

The misfit statistic has the form, but not the distribution, of a sum of
squared z-statistic; that is, it is the sum of X minus p 2 , divided by the sum of
PQ. It will be large when the ability does not adequately explain the person's
part in every Xvi*

The effect due to subtest j is simply the first adjustment that would be
made if estimating the person's ability for subtest i were attempted using the

total test ability as the starting value. This form is the Newton-Raphson solu-
, tion to the unconditional maximum likelihood estimation equations. Since it is

not iterated, there is no problem with zero or perfect scores. The between-sub-

test mean square asks if all these effects are null.

There are some problems with these statistics. In particular, neither the
form of their null distribution nor the appropriate degrees of freedom is known.

" I I I II I I I II I I
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Wright (1979) and Haberman (1979) have been investigating various weighting and
standardizing schemes with the hope of bringing the distribution into line with
a standard distribution. It seems important from their work that the numerators
and denominators be summed separately, as they are in Table 1.

The degrees of freedom are a problem, since the usual analysis of variance
type counting assumes every observation contains the same amount of information,
which clearly does not apply here. One promising candidate seems to be to base
a calculation of pseudo-degrees of freedom on the information function. In some
cases this may be as simple as 4.0 x PQ.

Additional work is needed in this area. Two obvious and useful activities
are the careful simulation of known situations over a broad range of conditions
and a comparison of these statisti:s with those produced by the conditional ap-
proach of Gustafsson.

In practice, however, these studies are of secondary interest. Since it is
well known that data do not fit the Rasch model anyway, it is of marginal utili-
ty to continue demonstrating this. What is useful is a general index of the
quality of measurement for each person, that is, an indication of how close the
data reflect objectivity. A weighted fit mean square based on the scaled resid-
ual in Table 1,

V 
(XVi 

- Pvi )2

z' 2 (PF (i -P.))

seems to accomplish this. Following that, some specific statistics are needed
to help diagnose the problems when they occur. The unconditional between-set
analysis shown in Table 1 has proved useful for this in a variety of applica-
tions. The additional research work needed includes the application of statis-
tics like these to real data and the interpretation of the results to knowledge-
able people to see if they make sense.

Examples of the Person Analysis

Certification Examination Data

The first example, shown in Table 2, is taken from an actual administration
of a professional certification examination. The examination included about
1,000 items, some of which were omitted in scoring. The items were arranged in
six booklets, intended to be as parallel as possible, and administered over two
days. Six test committees, operating independently and representing six differ-
ent content areas, actually wrote the items. Subject to printing consider-
ations, the six areas were distributed evenly over the six booklets. The certi-
fication decision was based on the total raw score.

The only justification for considering this test to be unidimensional is
empirical. After analyzing literally tens of thousands of examinees, less than
1% appear to be seriously flawed. This may be attributed to the homogeneity of
the training program.
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Table 2
Among and Within Item Subset Analyses For Example I

NAME COUNT SCORE ABILITY S.E WTHIN BETWN

ADMINISTRATIVE BOOK 0.15 0.02 5.8 14.0 +

BK 1 144. 29. -1.54 0.23 5.8 -- *-- +

BK 2 157. 96. 0.42 0.18 0.7 +--*--

BK 3 149. 81. 0.45 0.18 0.3 +--*--
BK 4 139. 82. 0.34 0.19 1.1 +-*--

BK 5 149. 90. 0.59 0.19 1.6 + -*--

BK 6 130. 74. 0.49 0.20 0.3 +--*--

NAME COUNT SCORE ABILITY S.E. WTHIN BETWN

0.15 0.08 5.8 -1.3 +
AAAA 150. 70. 0.09 0.18 1.0
BBBB 149. 79. 0.35 0.18 2.0
CCCC 146. 83. 0.00 0.19 1.8
DDDD 139. 77. 0.06 0.19 2.1
EEEE 144. 73. 0.25 0.19 1.6
FFFF 140. 70. 0.10 0.19 5.7

NAME COUNT SCORE ABILITY S.E. WTHIN BETWN

ITEM TYPE 0.15 0.00 5.8 2.2 +

A 239. 129. 0.18 1.14 4.9

B 229. 128. 0.24 0.15 2.9
C 140. 67. 0.01 0.19 1.3
K 174. 80. 0.06 0.17 2.3
N 30. 8. -1.04 0.45 -0.2 ---- +

G 56. 40. 0.88 0.32 -0.2 + -- *---

NAME COUNT SCORE ABILITY S.E WTHIN BETWN

NEW OR USED ITEMS 0.15 0.08 5.8 -0.1 +
NEW 481. 238. 0.08 0.10 5.9 -*+

USED 387. 214. 0.22 0.11 2.1 +*-

NAME COUNT SCORE ABILITY S.E WTHIN BETWN

DIFFICULTY 0.15 0.08 5.8 4.7 +
-2.0 48. 39. -1.14 0.39 9.4 *---- +

-1.0 106. 80. -0.27 0.22 2.0 -- *-- +

0.0 237. 149. 0.08 0.14 0.4
1.0 314. 136. 0.19 0.11 0.7
2.0 163. 48. 0.59 0.17 5.1 + -*--

. . .. .. .. . • * -f. ,
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The method that was used to decide which tests were flawed was both statis-

tical and substantive. All interesting fit statistics were computed, their dis-
tributions examined, and the suspicious cases displayed for discussion by a task
force selected for that purpose. Beginning with the largest misfit and working
down, the task force examined each case in order until it was satisfied that the
statistics were best explained as minor random fluctuations. In general, this
occurred at about three standard deviations above the mean. The statistics were
presented as pseudo-t statistics rather than mean squares, to keep the standards
as consistent as possible. In all eases the means were near 0 and the standard
deviations about 2.

Table 2 is a portion of the display for the person with the largest be-
tween-subtest statistic (14.0) of any in this administration. Each panel in
this display represents a different criterion for defining subtests (i.e., test
booklet, item type). In all cases the column labeled "ABILITY" presents, first,
the estimate of the person's ability based on the total test (.15), followed by
the ability based on each subset. The fit statistics are in the columns "WTHIN"
(within) and "BETWN" (between). The total fit statistic is the first number in
the WTHIN column and the between-subtest statistic is in the BETWN column. The
remaining numbers in the WTHIN column are the fit statistics within each subset.
They are analogous to total only if that subtest were being considered.

The explanation for the large between-booklet statistic is simple. A sepa-
rate answer sheet was used for each booklet. The first one for this person was
torn slightly, causing the scanner to misread the form identification, so the
result was an essentially random score for that booklet. Rescoring this sheet
correctly eliminated all disturbances in this record.

Table 3
Fit Statistics for Example 2

Ability -1.09
SE 0.37

Total Fit 0.0
Sequence
Between Subsets 2.4
Within Subsets 1.1

Difficulty
Between Subsets -5.9
Within Subsets 0.2

4 Mathematics Placement Test Data

For those who can not depend on having a 1,000-item test, Table 3 and Fig-
ure 3 give a different type of example. This was from a mathematics placement
test for beginning college freshman. It consisted of 40 items in two separately
timed segments. The reward for doing well was placement in a more difficult

mathematics course.

4
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Figure 3
Item Residuals in Sequence Order for Example 2
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The fit statistics were again pseudo-t's, but the standardization was done
differently so that although the observed mean was again near 0, the standard
deviation was about .6. The item subsets were defined by sequence and by diffi-
culty, with four subsets in each. The fit between subsets defined by sequence
and difficulty were both large enough to be interesting. The plot by sequence
explains the problem: The person took only the first half of each segment.
These statistics do not indicate if the problem was due to lack of ability, lack
of interest, or the inability to read English; and the decision regarding appro-
priate action on the part of the test user requires answers to these questions.

The difficulty fit statistic was large negatively because the person ap-
peared too "sensitive" to item difficulty. The items were arranged in roughly
increasing order of difficulty in each segment. Therefore, by only attempting
half the test, the person tended to answer the easier items correctly and to
answer all the more difficult ones incorrectly.

Conclusions

There is, in practice, an important distinction between what might be
called statistical dimensions and conceptual dimensions. Statistical dimensions
are any that can be found in the data; conceptual dimensions are everything that
can be thought of. Successful measurement requires the former, but safety re-

,* quires constantly checking to be sure the latter exists only in our heads.

For example, in a homogeneous situation it might be possible to mix togeth-
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er verbal items and quantitative items. If the same results are obtained re-
gardless of the proportion of each, the result could be called "verbal ability,"
"quantitative ability," or "general intelligence." With every test administra-
tion, however, it would be necessary to prove that it still does not matter--
that whatever causes these things that seem different to look the same is still
operating.

Consideration of how this can be done leads to the observation that statis-
tical unidimensionality is necessary and sufficient for fit to the Rasch model.
The necessity need not be argued here. With respect to sufficiency, however, if
the data are unidimensional, a model of the Rasch family will fit it.

To support this rather remarkable contention, two arguments can be made.
The first is that the Rasch model is the only latent trait model for which it is
possible to uniquely and unambiguously rank-order all the objects and agents
along a single continuum. With this ordering, unidimensionality is obvious.
Without it, phrases such as "more" or "less of the variable" do not make much
sense, since there will be situations in which people do better on a more diffi-
cult item than on an easier one. The ability to rank individuals and items when
a single variable is involved and the inability to generalize this concept to
more than one dimension seems a critical point in this discussion.

The second argument concerns item discrimination. The first one may have

been objected to on the grounds that variation in item discrimination does not
make the data multidimensional but does make it not fit the Rasch model.
Throughout this paper the point has been made that many extraneous variables
will cause apparent heterogeneity; but that is the reason for hesitation in us-
ing item discriminations, not why they should not be used.

Items with extreme observed discriminations can always be explained in

terms of additional variables. Usually, such items are obviously flawed: Some
irrelevant and perhaps nonreproducible aspect of the item has interacted with
special characteristics of the sample. Occasionally, these items provide a use-
ful and constructive insight into the variable. Generating new items to take

advantage of this new knowledge may very well lead to a refined (i.e., changed)
definition of the variable that serves our purposes better than the old. An
important point here is the ability to abstract whatever it is that distin-
guishes this item and to use it in the new items. It would then be expected
that the new items would have discriminations that are similar to one another.

This paper has attempted to make two statements about dimensionality and
the Rasch model. First, an explanation has been suggested of why such a simple
model has worked as well as it has in many complex situations employing suchAartificial agents as multiple-choice items. Second, the unique relationship
between the model and unidimensionality has been described. Whether or not this
represents a fundamental and universal truth, it would be extremely productive
to adopt this as the definition of unidimensionality. It would probably lead to

better tests than exist now.

In adaptive testing the theory and simulations suggest that adequate mea-

surements can be obtained with a handful of items. Attempts to do this in prac-
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tice have not worked very well. This suggests that the technical knowledge
about how to do this seems to be growing faster than the substantive wisdom
about why it is desirable to do it. The methodology is now available to con-
verge very rapidly on the person's location on a unidimensional trait; however,
there do not seem to be very many unidimensional traits.

If it is intended that measuring people and making decisions about them
based on those measurements continues, then a serious analysis of the quality of
the measure for every person should be routine. Rather than being satisfied if
the person is given a very short test, the power of adaptive testing would be
better employed to explore the dimensionality of the space for the person. Is
the first result reproducible over a useful range of the variable and for anoth-
er selection of items? For most persons, the results will simply reassure the
psychometrician that everything is in order; for other persons, something inter-
estinA may be learned about them and about the variable being pursued.
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ROBUST ESTIMATION IN THE RASCH MODEL
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Latent trait models as a class, and the Rasch model in particular, have

begun to have substantial impact on the construction and scoring of mental
tests. Through the use of latent trait models, measures of individual ability
as well as item difficulty that have important practical and statistical proper-
ties can be obtained. For example, if the Rasch model fits, the measures of
ability and difficulty obtained are interval-scaled, thus making the quantita-
tive study of change possible. The Rasch model characterization of a person's
performance on an item as a function of the difference between that person's
ability and the difficulty of the item yields the useful result that sawple-free
item calibration, as well as test-free person measurement, can be obtained.
There are many more reasons why a latent trait formulation is an important one
(see, egg., Bock & Wood, 1971; Hambleton, Swaminathan, Cook, Eignor, & Gifford,
1978; Lord & Novick, 1968; Rasch, 1960; Wainer, Morgan, & Gustafsson, 1979;
Wright, 1968, 1977; Wright & Panchapakesan, 1969).

The problem in harvesting the benefits of latent trait models is the prob-
lem of fit, since these benefits follow only when the model fits. Studies of
robustness (Lord & Novick, 1968, p. 492) indicate that certain parameters are

*robust with respect to modest deviations from the underlying assumptions; in
particular, it seems that the Rasch model yields rather good estimates of abili-

*i ty and difficulty even when its assumption of equal slopes is only roughly ap-
proximated. The models that parameterize differential slopes have difficulty

recovering the slope parameters even when the data do fit their model. Although
this is not a topic of the present paper, it is desirable to indicate that at-

tempts to expand the 1-parameter model to encompass additional possible charac-
teristics of the data through an increase in the number of item parameters do
noc appear to be completely successful yet. Slope parameters are not well esti-
mated in testing situations with only a few hundred individuals (Lord, 1979);
and lower asymptotes, introduced to deal with guessing, cannot be consistently
estimated (Ree & Jensen, 1979).

The Problem

If the Rasch model fits a given set of data, it has many practical bene-
fits. It can never fit exactly, however, because there are always disturbances.
These disturbances often take the form of (1) guessing, when a person of low
ability gets a difficult item correct, and (2) sleeping, when a person of high

A. L
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ability gets an easy item wrong (Wright & Mead, 1977). The model has a certain
amount of robustness with respect to such aberrations, but they can make the
estimation procedures both biased and inefficient. The problem, then, is how to
estimate the parameters of interest accurately and efficiently even when the
data do not fit the model.

Some Choices

As a means of dealing with this problem, five different estimation schemes

will be considered. These alternatives will be compared over a variety of simu-
lations. It will be assumed that item difficulties are available and that only
person abilities are to be estimated. This is a reasonable assumption because
the calibration sample can be greatly increased. Individuals who have unusual
patterns of response can be winnowed from it and a subset of individuals who are

not "noisy" can be obtained. These individuals can then be used to obtain good
estimates of item difficulty. However, the reverse is not true: A test of great
length cannot be given, and when reporting on real persons, individuals who do
not behave exactly as the model dictates cannot be eliminated. Abilities should

be estimated for everyone. The task is to explore various estimation methodolo-
gies that assume the availability of item difficulties and to try to estimate

ability as accurately and efficiently as possible. It may be that some of the
techniques described will be of some use in the estimation of item difficulties
as well, but this is not the primary motivation.

The Rasch Model

The Rasch model is based on the equation

P. = exp~a. - d.)/[l + exp(a. - d.)] [11

where
Pij is the probability of person i answering item j correctly;

is the ability of person i (i 1,...,N); and

d is the difficulty of item j Cj f

Scheme I: Pure Rasch

This is the standard maximum likelihood method for estimating Rasch abili-
ties, given a vector of item difficulties. It relies on the Rasch model proper-
ty that the raw score is a sufficient statistic for estimating ability. Each

a raw score has a distinct ability level associated with it. To find what it is,
Equation I is solved for aj, usually through Newton-Raphson:

r.- I [pIj] - 0, [2]

or

r. - E [exp(ai - d.)I(i + exp(a i - d.))] = 0 [3]

where 5i is the raw score for person i.

,
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Scheme 2: Traditional Correction for Guessing

The traditional guessing correction is the assumption that if a person does
not know the answer to a question and guesses, then the probability of guessing
correctly is 1/M, where M is the number of choices. Thus, if there is an M-
choice test and an individual has C wrong, it is assumed that he/she has an ad-
ditional C/(M - 1) correct as a result of guessing. This is a crude attempt to
put a lower asymptote on the item characteristic curve.

Scheme 3: Standard Jackknife

The Jackknife is an estimation scheme that was developed to reduce bias and
has been shown (Tukey, 1958) to be useful for hypothesis testing as well. The
way that it works in the application in this study is to construct a matrix of
abilities, A, which has L - I raw scores labeling the rows and L + I columns.
The first column, with elements A(r, I) are the abilities associated with raw
score r, calculated through the method described in Scheme 1. The second column
includes the ability levels based upon a test with the first item omitted. This
test has only L - 1 items. Each succeeding column represents ability estimated

through Scheme 1 but with that item omitted. Thus the kth column is a test of
length L - I containing all items except item k - I.

The Jackknifed pseudovalues of ability are

a .* = LA(r,1) - (L-1) [xjAr- 1,j + 1) 14]

+ (1 - x.)A(r,j + 1)]

where
!= 0 if item j is answered incorrectly

I if item j is answered correctly; and

the Jackknifed estimate of ability, a*, is just the mean of these a.*'s:

a* = Y [a.*/L] = LA(r,l) - [(L - 1)/L] [5]a a

F [xA(r- 1,j + 1) + (1 - x.)A(r,j + 1)]

for j 1, L.

For reasons that will become clear when the results of the simulations are

discussed, it is important to note that the Jackknifed ability estimates are

easy to compute. For any test all that has to be done is to compute the matrix
A and then, for each person, to run across the matrix at that person's raw
score, adding up the entries in that row for each item that is incorrect and
jumping up one row for each item that is correct. Jumping occurs when an item
is correct, because the raw score for that person excluding that item is then

one less.

1'!
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Next, there are two aspects of an estimator that are of concern. First, it
reduces bias, i.e., the effects of odd response patterns. The Jackknife was
developed as a method to reduce bias (Quenouille, 1956), so it is hoped that it
will serve this purpose. Secondly, it is desirable that the estimator does not
fluctuate too much with minor disturbances in the response vector. This quality
has been termed "resistance" (Tukey, 1977) and corresponds to an estimator hav-
ing a sampling distribution with a small variance. The Jackknife is known to be
modestly "resistant"; so this quality is likely to be met in practice as well.

To see how estimation with the Jackknife works, consider a test with 10
items whose difficulties are uniformly distributed, spanning a range of four
logits. These difficulties are shown below:

-2.00 -1.56 -1.11 -0.67 -0.22
0.22 0.67 1.11 1.56 2.00

This yields the raw score-to-ability transformation matrix A, shown in Table 1.

Table 1
The Raw Score to Ability Conversion Matrix

Ability Ability Estimate Omitting Item i
Raw Estimate

Score All Items 1 2 3 4 5 6 7 8 9 10

1 -2.78 2.32 -2.45 -2.56 -2.63 -2.68 -2.72 -2.74 -2.75 -2.76 -2.77
2 -1.83 1.37 -1.45 -1.54 -1.63 -1.69 -1.74 -1.77 -1.79 -1.80 -1.81
3 -1.15 0.68 -0.73 -0.80 -0.88 -0.95 -1.01 -1.05 -1.09 -1.11 -1.12
4 -0.56 0.07 -0.10 -0.15 -0.21 -0.29 -0.35 -0.41 -0.46 -0.49 -0.51
5 0.00 0.51 0.49 0.46 0.41 0.35 0.29 0.21 0.15 0.10 0.07

6 0.56 1.12 1.11 1.09 1.05 1.01 0.95 0.88 0.80 0.73 0.68
7 1.15 1.81 1.80 1.79 1.77 1.74 1.69 1.63 1.54 1.45 1.37
8 1.83 2.77 2.76 2.75 2.74 2.72 2.68 2.63 2.56 2.45 2.32
9 2.78

Consider how ability for a response vector of (1111110001) would be esti-
mated. The raw score is 7, so the first 6 values associated with a raw score of
6 are summed (since the first 6 items were correct). Next, the three values
(associated with Items 7, 8, and 9) associated with a raw score of 7 are added
on, since these items were incorrect; so omitting them still yields a raw score
of 7. Last, .68, the ability pseudovalue associated with a raw score of 6 for
Item 10 omitted is added on. Summing these gives a total of 11.63. Next, this
is multiplied by 9/10 [(L - 1)/L] and subtracted from 11.50 [L x 1.15], yielding

a Jackknifed estimate for this person's ability of 1.03. Referring back to Ta-
ble 1, it can be seen that a raw score of 6 yields an ability estimate of .56,

4which would have been the result if this person's answering the last item cor-

rectly had been treated as a wild guess and changed to incorrect. On the other
hand, if this response were fully believed, his/her raw score would have been 7

and his/her ability estimate 1.15. The Jackknife weighs these two extremes and
places the estimate between them.

*!
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Next, suppose that the response vector was (1111110010). Then, it is found
that the pseudovalue of .68 associated with getting Item 10 correct is replaced
with .73 (for Item 9) and 1.45 is replaced by 1.37. The net result of this
changes the Jackknifed estimate from 1.03 to 1.06. This is just what a sensible
person would do, since the second response pattern is more likely to have arisen
through "proper" test taking and indicates a somewhat higher ability.

It appears that the Jackknife does what is desired, although how well is
yet to be determined. It seems, however, from this demonstration that the vari-
ance of the sampling distribution of the Jackknifed ability is apt to be small,
since large disturbances in response pattern do not cause large variations in
the ability estimates. To see this, note that the ability estimate associated
with the pattern (1111111001) is 1.09. (Other patterns can be attempted in or-
der to observe how this estimation scheme behaves.) The Jackknife is not insen-
sitive to response pattern, as Rasch estimates are, but it does not fluctuate
much. This will be demonstrated in the results section.

Scheme 4: AMT-Robustified Jackknife

The pseudovalues obtained from standard Jackknifing suggest an additional
estimation methodology. Consider the response pattern (1111110001) again. If
the pseudovalue associated with each item is calculated using Equation 2, this
gives

Item Pseudovalue

1 1.42
2 1.51
3 1.69
4 2.05
5 2.41
6 2.95
7 -3.17
8 -2.36
9 -1.55

10 5.38

The mean of these pseudovalues yields the Jackknifed estimate of ability.
Now consider these pseudovalues and how they are combined in the Jackknife.
There are two kinds of pseudovalues--negative ones associated with incorrect
responses and positive ones associated with correct responses. The Jackknife
could be understood as first averaging the negative ones, thus coming out with
an average ability estimate based upon items missed; then, averaging the posi-
tive ones for an ability estimate from the items answered correctly; and final-
ly, combining these two averages, weighted by their sample sizes to yield the
final Jackknifed estimate. It is known that the mean can be a poor way to esti-
mate location. In some situations (Andrews, Bickel, Hampel, Huber, Rogers, &
Tukey, 1972) it is the worst of all choices. Since concern is with unusual sit-
uations, perhaps the performance of the Jackknife can be improved through the
choice of an estimator of location more robust than the mean.

0)
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Suppose the median of the positive pseudovalues is calculated. This is
2.05. The median of the negative pseudovalues is -2.36. Weighting these by 7
and 3, respectively, and summing and dividing by 10 yields an estimated ability

of .73. Whether or not this is better than the Jackknifed value of 1.03 is dif-
ficult to determine, but it is certainly not too deviant.

One of the winners of the Princeton Robustness Study (Andrews et al., 1972)
was the sine M estimator (the AMT). This estimator has an influence function
nearly like that of the mean for observations in close but going to zero at the
extremes. This implies that it will be efficient for nearly Gaussian distribu-
tions and robust against fat tails and outliers.

To understand how the AMT is calculated, consider that in regular cases,
likelihood estimation of the location and scales parameters 0 and a of a sample
from a population with known shape leads to equations of the form

E [-f'(z.) f(z.)] = 0 , [6]

and

Zj [zjf(z.) / f(a.) - 1] = 0 , [71

where f is the density function and jj = (xj - 0)/O.

M estimates of location are solutions, T, of an equation of the form

Z j '[(x. - T)IsJ = 0 [8)

where T is an odd function and s is estimated either independently or simulta-
neously.

The sine M estimate (AMT) is an M estimate in which the function I is

( Sin(x/2.1) IxI < 2.1[9
',T W(x ff91

0 otherwise.

The fourth scheme, then, is to use the AMT estimator on the positive and
negative pseudovalues separately, obtaining two estimates of ability. These two
estimates are then weighted by the number of observations that went into them
and summed. The resulting value is then divided by the total number of items
and the result is the AMT Jackknife estimate.

It is expected that when the test response pattern is reasonable (i.e., no
responses are obtained that are unlikely, based upon the Rasch model), the AMT-
Jackknife will look like the standard Jackknife. But when there are some odd
responses, they will not be counted as heavily and thus will produce an estimate

'i. --- -
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that is less affected by guessing and sleeping, while retaining the standard
Jackknife's narrow sampling distribution.

Scheme 5: WIM

Wright and Mead (1976) developed a method for estimating ability in the
Rasch model based upon an analysis of the residuals. Their method obtains an
initial estimate of ability from raw score and its associated standard error,
then calculates the residual of each item's response for that person by sub-
tracting from the response the probability of its being correct. These residu-
als are standardized and a t statistic is calculated for the fit of this per-
son's response pattern. If-this t is greater than some chosen value (say, t -

2), then all items more than two logits above the person's initial ability esti-
mate are omitted from that perbon's test and a new ability estimate is obtained
based upon the shortened test. This process is repeated until an acceptable t
is achieved or until the test becomes too short to work with.

This estimation scheme (WIM) was also included in the tests reported in

this paper.' The results with this method reflect only on the method as it was
received; there was no attempt to tune it by varying the critical t value. It

could be that its performance would improve with fine tuning.

Method

The Guessing Model

How the individual responses in a simulation are characterized is critical-
ly important to its outcome. Certainly, if an estimator that matched the re-
sponse generator was built, that estimator should emerge as superior in any com-
petition. The validity of such investigations depends upon how the response
model matches reality. It was decided that a reasonable model for responding
has the following characteristics:

1. Need. A person guesses if he/she has a need to guess. This is a func-
tion of the extent to which the item is more difficult than the person
is able. If people think they know the answer, they will not guess; if
they do not, they might.

2. Invitation. This is a function of the item, unrelated to its diffi-
culty (usually a function of the distractors). Some items invite
guessing; others discourage it.

3. Inclination. This is a function of people unrelated to ability. Some

people like to guess (risk takers?) and others do not (risk avoiders?).

4. Glitch. This represents something unexpected, which may be an item-

person interaction unrelated to ability, difficulty, inclination, or|
incvi tat ion.

Ifw
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The guessing model is

I.. = P.. + (1 - Pij)(V. + C. - VjCi)Iu. [10]

where
7T rj is the probability of person i getting item j correct;
Pij is the probability of person i getting item j correct based

upon the Rasch model given earlier (the need to guess arises
when Pij is small because d is larger than 2a);

V. is the invitation to guess associated with item j (0 < V. < 1);

C. is the inclination to guess associated with person i
(0 < C i 1 1); and

u. is the number of alternatives for item j.

The actual response that was generated by this model was determined. It
was allowed to remain with probability 1 - G (where G is the glitch factor) and
was changed with probability G, the generating parameter included to stir up
trouble and add noise.

The Simulation

Independent variables. There are a large number of factors to be varied in
a simulation in order to obtain a complete picture of what is happening. This
simulation had eight factors that were systematically varied and on which all
five estimation schemes were tried out. These were:

1. Difficulty distribution (3 levels). There were three distributions of
difficulties that were used: uniform, Gaussian, and bimodal. The bi-
modal distribution was generated by constructing a uniform distribution
and leaving out the middle half.

2. Test length (3 levels). Tests of three lengths were simulated: short
(10 items), medium (20 items), and long (40 items). Longer tests were
not used because the generalizability of results would increase only
slightly but computer costs would multiply.

3. Test width (2 levels). Two test widths were simulated--narrow (2 log-
its) and medium (4 logits).

4. Number of alternatives (2 levels). Tests with five choices were simu-

lated, since that reflect3 a common test format, as were tests with two

alternatives (true-false format), which represents an extreme case.

5. Ability (4 levels). Four levels of ability were used: Very Low, Low,

Medium, and High. Typically, Very Low was chosen as an ability that
was the same as the easiest item on the test. Medium was typically

* chosen as zero, with Low halfway between them. High was usually sym-
metric with Low. Therefore, with the difficulties shown previously,
the four abilities chosen would be -2, -1, 0, and +1. There was some
variation in this choice, which will be explained below.

10
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6. Invitation to guess (3 levels). This ranged from Low (6.0), to Medium
(.5), to High (.9).

7. Inclination to guess (3 levels). The same as Invitation. As is evi-
dent from the response model, these two parameters are symmetric in
their effect; so only the six interesting combinations were used.

8. Glitch (3 levels). Glitch is meant to convey rare, or at most seldom,
trouble. Thus, three levels of glitch were used: none (.0), a little
(.1), and a lot (.4). Note that a glitch of .5 is maximum, in that it
will make the expected score for any response pattern the same (L/2).

Dependent variables. Two aspects of estimator performance were of inter-
est. The first is accuracy: How different is the estimate of ability obtained
from each estimator from the ability parameter that generated the response vec-

tor? This has been summarized by the mean difference between estimated ability
for each estimator and the generating parameter. In the course of the simula-
tion this was sometimes violated, because as a response vector was generated, it
was checked to see if it was estimable. In particular, if a response vector had
a raw score of I or lower or L - 1 or higher, it was not used, and another was
generated. This resulted in a truncation of the ability distribution. This
truncation caused the low-ability groups to have somewhat higher ability than
the generating parameter would indicate and the high-ability group to have
slightly lower ability than the generating parameter. To correct for this, the
Rasch ability was estimated without any noise for a particular simulation situa-
tion (a specific length, width, distribution, and glitch) and the pure Rasch
ability estimates were used as the basis of comparison for that simulation.
Hence, when there was no noise, the Rasch estimates had zero bias by construc-
tion.

The second aspect of estimator performance that was of interest was the
variance of the sampling distribution of that estimator around its own mean. Of

course, the smaller this was, the better the estimator.

These two measures of estimator performance were combined into a total
variance figure by adding together the weighted squared bias (analogous to the
between-sum-of-squares) to the sampling variance (the within-sum-of-squares),
using the usual synthesis of variance weightings. This represented the overall
efficiency of each estimator. That estimator having the smallest efficiency for
that sample was then found and each estimator's efficiency was divided into it
to obtain relative efficiency. It is this figure that will be reported.

Results and Discussion

Obviously, with a design consisting of almost 4,000 cells and 5 estimators
per cell, it would be impractical to attempt to present all the results. In-
stead, selected findings representative of the main effects will be presented,
and some important interactions and trends will be discussed. The principle
result was that one method was superior--the AMT-Jackknife. The AMT-Jackknife
was superior, not because it was the most bias-free (although it did reasonably
well in that regard), but rather because of its extremely small sampling vari-
ance.

. .. . . ... . . . . . .. , ,,, ,n ,n In I I I I I l



-310-

No Noise

Before discussing the noisy simulations, the uncontaminated situation will
be considered. It would seem that any estimation scheme proposed must do rea-
sonably well in this situation before it an be considered a viable alternative
to ordinary methods.

Table 2
Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation = 0, Guessing Inclination = 0, Glitch - 0,

for Five-Choice Items with a Uniform Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .7 .7 .7 .7 .8 .8 .9 .8 .9 .9 .9 .9
Traditional .2 .1 .2 .2 .1 .1 .2 .4 .0 .1 .2 .3
Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM .7 .7 .7 .7 .8 .9 .9 .8 .9 .9 .9 .9

4 Loglts
Rasch .8 .7 .7 .8 .8 .8 .8 .8 .9 .9 .9 .9
Traditional .2 .2 .2 .3 .1 .1 .2 .4 .0 .0 .2 .3

Jackknife 1.0 .9 .9 1.0 1.0 .9 .9 .9 1.0 1.0 .9 .9
AMT-Jackknife .9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM .7 .7 .6 .7 .7 .7 .8 .7 .7 .9 .9 .9

Table 2 shows the relative efficiencies (to 1 decimal place) of the 5 esti-
mators for 3 test lengths, 2 different widths, and 4 abilities. The results for
a uniform distribution of difficulties were striking for two reasons. First,

Y! they demonstrate the superiority of the AMT-Jackknife (followed closely by the
standard Jackknife), assuring that the Jackknife is a viable scheme. Secondly,
the Rasch maximum likelihood estimator was not the most efficient. This coun-
ters expectation, since maximum likelihood is supposed to yield estimates with
minimum variance. Why did that fail to happen in this case? The answer is that
the properties of maximum likelihood estimators are asymptotic. As test length
increased, the relative efficiency of the Rasch estimator increased from 70% to
90%. The WIM estimator behaved in the same way. It would seem that 40 items is
not enough for asymptotic properties to perform better than Jackknife properties.
This finding leads to the reconsideration of the use of maximum likelihood esti-
mators with short tests without further thought. Replacing maximum likelihood
with AMT-Jackknife may benefit short test applications. The authors are not the
first to observe that maximum likelihood does not accomplish everything desired
from efficient estimation. Lewis (1970), in studying methods for the estimation
of thresholds of sensitivity curves (a problem similar to the one being exam-
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ined), found that maximum likelihood was unsatisfactory and used instead a
scheme based on order statistics.

Table 3
Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation - 0, Guessing Inclination = 0, Glitch - 0,

for Five-Choice Items with a Gaussian Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .7 .7 .7 .7 .8 .9 .8 .8 .9 .9 .9 .9
Traditional .2 .1 .2 .2 .1 .1 .2 .3 .0 .1 .2 .3
Jackknife 1.0 1.0 .9 .9 1.0 1.0 .9 1.0 1.0 1.0 1.0 1.0
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM .7 .7 .7 .7 .8 .8 .8 .8 .9 .9 .9 .9

4 Logits
Rasch .8 .7 .7 .7 .8 .8 .8 .8 .8 .9 .8 .8
Traditional .1 .2 .2 .3 .1 .1 .2 .4 .0 .0 .2 .3
Jackknife 1.0 1.0 .8 .9 1.0 .9 .9 .9 1.0 1.0 .9 .9
AMT-Jackknife .8 1.0 1.0 1.0 .9 1.0 l.( 1.0 1.0 1.0 1.0 1.0
WIM .7 .7 .6 .6 .8 .6 .8 .7 .9 .8 .9 .8

Table 3 shows that the same structure observed for a uniform distribution
held for a Gaussian distribution. Once again, the AMT-Jackknife was superior,
followed closely by the standard Jackknife, and then by Rasch and WIM. In all
situations the Traditional guessing correction performed poorly. This was not
unanticipated, since corrections are being made for a disturbance that is total-
ly absent. As will be seen later, the performance of the Traditional estimator
improved when guessing did occur (not surprisingly). Incidentally, WIM, which
is the most computationally expensive procedure, is especially expensive for
Gaussian and bimodal distributions of difficulty. More iterations are required
for convergence in these situations than when the difficulties are uniform.

Table 4 shows the efficiencies for a bimodal distribution evidencing essen-
tially the same structure that appeared with the other two distributions. WIM
estimates were not obtained for a 4 0-item test (Width 2) when the procedure had
not converged after 100 seconds (on an Amdahl/V6). It was felt that any infor-
mation obtained from such a result would not be worth the cost or effort.

One conclusion is clear: When there is no guessing, the maximum likelihood
estimator of ability in the Rasch model can be improved for tests of modest
length (less than 40 items or so). In this noiseless situation there is little
to choose from between the robust AMT-Jackknife and the standard Jackknife. The
AMT was somewhat better but used a little more effort in its computation. It
was also found that the Traditional correction for guessing, if applied when

1i
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Table 4

Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths
for Four Ability Levels (Very Low, Low, Medium, High), with

Guessing Invitation = 0, Guessing Inclination - 0, Glitch - 0,
for Five-Choice Items with a Bimodal Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High
2 Logits
Rasch .6 .6 .5 .6 .8 .7 .6 .6 .9 .9 .6 .9
Traditional .1 .1 .1 .2 .1 .1 .1 .2 .0 .1 .1 .2
Jackknife .8 .7 .6 .8 1.0 .7 .6 .7 1.0 1.0 .6 1.0
AMT-Jackknife 1.0 1.0 1.0 1.0 .8 1.0 1.0 1.0 .8 1.0 1.0 1.0
WIM .6 .6 .5 .6 .8 .6 .6 .6 .9 .9 .6 .9

4 Logits
Rasch .8 .6 .2 .8 .8 .9 .2 .9 .9 1.0 .2 .9
Traditional .2 .1 .0 .2 .1 .1 .0 .3 .0 .1 .0 .2
Jackknife 1.0 .7 .2 .9 1.0 1.0 .2 1.0 1.0 1.0 .2 1.0
AMT-Jackknife .6 1.0 1.0 1.0 .3 .7 1.0 .9 .2 .4 1.0 .5
WIM .7 .6 .2 .7 .8 .8 .2 .8 * * * *

guessing is absent, can have disastrous effects upon the efficiency of estima-

tion. WIM worked as well as straight Rasch estimation when there was no guess-
ing, although it did lead to some shrinkage due to the shortening of tests when
unusual residuals occurred by chance.

Some Guessing

The next step in the exploration of estimators of ability was to study
their behavior with a small amount of noise. Tables 5, 6, and 7 show the rela-
tive efficiencies for the three distributions with guessing invitations and
guessing inclinations set at .5. Even a cursory examination shows that the
structure observed in the no noise situation still obtained. The AMT-Jackknife

V and the standard Jackknife were still superior, but the WIM and the Traditional
corrections improved. The bimodal distribution seemed to trouble the Jackknife
more than its robustified version; however, both seemed to do satisfactorily.
As would be suspected, at lower ability levels, schemes designed to deal with
guessing (WIM and Traditional) worked to their best advantage. At higher abili-
ty levels, this was not the case. Jackknifing schemes did better on narrow
tests than on wide ones, an observation that has been confirmed by examining
their behavior on very wide tests of six to eight logits and noting a deteriora-
tion of performance; this was especially marked on eight logit-wide tests for

' the AMT.
the AThe conclusions reached for noiseless data still hold, but less strongly.

The two Jackknife methods remain the methods of choice, especially for individu-
als above mean ability. But as the data become increasingly noisy, each esti-
mator reacted in its own way. The Rasch estimator yielded the same score for

...
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Table 5
Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation = .5, Guessing Inclination = .5, Glitch = 0,

for Five-Choice Items with a Uniform Distribution of Item Difficulties

Test Length

10 Items 20 Items 40 Items
Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .8 .8 .7 .6 1.0 .9 .9 .8 1.0 1.0 .9 .8
Traditional .2 .3 .3 .4 .4 .5 .5 .5 .5 1.O .7 1.0
Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .9
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM .8 .8 .7 .6 1.0 .9 .9 .8 1.0 1.0 .9 .8

4 Logits
Rasch .9 .8 .7 .6 .9 1.0 .8 .8 .8 1.0 .9 .7
Traditional .4 .5 .3 .4 .6 .6 .7 .5 .4 1.0 .7 .8
Jackknife 1.0 .9 .8 .9 .9 1.0 .9 .8 .8 1.0 .9 .8
AMT-Jackknife 1.0 1.0 1.0 1.0 .9 1.0 1.0 1.0 .8 .9 1.0 1.0
WIM .8 .8 .6 .5 1.0 1.0 .8 .6 1.0 1.0 .9 .7

Table 6
Relative Etticiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation = .5, Guessing Inclination = .5, Glitch = 0,

for Five-Choice Items with a Gaussian Distribution of Item Difficulties

Test Length

10 Items 20 Items 40 Items

Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .8 .8 .7 .6 1.0 .9 .8 .7 1.0 .9 .8 .8
Traditional .3 .3 .4 .4 .4 .4 .6 .5 .5 1.0 .7 1.0
Jackknife 1.0 1.0 1.0 .9 1.0 1.0 .9 .9 1.0 .9 .9 .8
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM .8 .8 .7 .6 1.0 .9 .8 .7 1.0 .9 .9 .8

4 Logits
Rasch 1.0 .9 .7 .5 1.0 1.0 .7 .6 1.0 .8 .8 .8
Traditional .4 .5 .4 .3 .6 .7 .6 .4 .5 1.0 .7 .8
Jackknife 1.0 1.0 .9 .8 .9 1.0 .8 .8 1.0 .8 .8 .8
AMT-Jackknife .9 1.0 1.0 1.0 .9 1.0 1.0 1.0 .9 .8 1.0 1.0
WIM .8 .8 .7 .5 1.0 1.0 .7 .6 1.0 .9 .9 .8
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Table 7
Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation = .5, Guessing Inclination - .5, Glitch - 0,

for Five-Choice Items with a Bimodal Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

Width and Very Very Very
Estmator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .8 .6 .5 .5 1.0 .8 .6 .5 1.0 .8 .6 .4
Traditional .3 .3 .3 .2 .6 .6 .4 .3 .4 1.0 .4 .6
Jackknife 1.0 .7 .7 .7 1.0 .8 .6 .5 1.0 .8 .6 .5
AMT-Jackknife 1.0 1.0 1.0 1.0 .9 1.0 1.0 1.0 .8 .8 1.0 1.0
WIM .8 .6 .5 .5 .9 .8 .6 .5 1.0 .8 .6 .4

4 Logits
Rasch .9 .6 .2 .7 .7 1.0 .2 .8 1.0 .8 .2 .5
Traditional .4 .4 .1 .4 .4 .8 .2 .5 .6 1.0 .1 .6
Jackknife 1.0 .6 .2 .9 .7 1.0 .2 1.0 1.0 .8 .2 .5
AMT-Jackknife .6 1.0 1.0 1.0 .4 .9 1.0 1.0 .4 .6 1.0 1.0
WIM .8 .4 .2 .5 1.0 1.0 .2 .7 * * * *

all raw scores of the same value, regardless of how that raw score was obtained,
but yielded a poor goodness-of-fit statistic for misfitting persons. WIM reac-
ted by shortening the test, indicating in essence that only a small portion of
the test response vector obeys the Rasch model. The Jackknife methods reacted
by regressing the scores toward zero (increasing bias but reducing variance of
the sampling distribution) while increasing the standard error, thus signifiying
that the information on the individual was small.

More Guessing

Next, the same three distibutions of item difficulty were considered, but
this time with a great deal of guessing. Tables 8, 9, and 10 show the results
when guessing invitation and inclination were both set to .9. This yielded a
situation in which a person guessed whenever he/she did not know the answer and
was identical to the situation posited in the derivation of the Traditional
guessing correction. In this-situation it would be expected that the Tradition-
al method would excell; and it did perform well, but only when the test length
was great enough to overcome its small sample inefficiency.A Once again, the same pattern of results emerged. For short tests the Jack-
knifing schemes worked best, with the edge always in the direction of the AMT.
As tests got longer (40 items), the Traditional guessing correction began to work
quite well. WIM, on the other hand, was disappointing, doing scarcely better

* than just a straight Rasch estimate. This must be interpreted, however. WIM
reduces measurement bias quite well; but in doing so, it also decreases test
length substantially. It could be argued that the length of the test evaluated

1, ,, , , , , , .., .. ... .
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Table 8
Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation = .9, Guessing Inclination - .9, Glitch - 0,

for Five-Choice Items with a Uniform Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

Width and Very 
Very 

Very

Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .8 .8 .7 .6 1.0 .9 .8 .8 .7 .5 .8 .6
Traditional .4 .4 .4 .5 .7 .9 1.0 .8 1.0 1.0 1.0 1.0
Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 .9 1.0 .7 .5 .8 .7
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 .9 1.0 .7 .5 .8 .7
WIM .8 .8 .7 .6 1.0 .9 .8 .8 .7 .5 .8 .6

4 Logits
Rasch 1.0 .9 .7 .6 .9 1.0 .6 .6 .6 .5 .7 .7
Traditional .6 .8 .5 .4 .9 .9 1.0 .6 1.0 1.0 1.0 1.0
Jackknife 1.0 1.0 .8 .9 .8 1.0 .7 .7 .6 .5 .7 .8
AMT-Jackknife 1.0 1.0 1.0 1.0 .8 1.0 .8 1.0 .5 .5 .8 1.0
WIM .8 .8 .6 .5 1.0 .9 .6 .5 .7 .6 .7 .6

Table 9
Relative Etficiencies of Five Estimators on Tests of Various Lengths and Widths

for Four Ability Levels (Very Low, Low, Medium, High), with
Guessing Invitation = .9, Guessing Inclination - .9, Glitch - 0,

for Five-Choice Items with a Gaussian Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

* Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .9 .8 .7 .5 1.0 .9 .8 .7 .7 .5 .7 .6
Traditional .5 .4 .4 .4 .6 .8 .9 .7 1.0 1.0 1.0 1.0
Jackknife 1.0 1.0 .9 .9 1.0 1.0 .9 .9 .7 .5 .8 .7
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .7 .6 .8 .8
WIM .9 .8 .7 .5 1.0 .9 .8 .7 .7 .5 .7 .6

4 Logits
Rasch 1.0 .9 .6 .4 1.0 1.0 .6 .5 .6 .5 .6 .6
Traditional .6 .9 .5 .4 1.0 .8 1.0 .5 1.0 1.0 1.0 .8
Jackknife 1.0 1.0 .8 .8 .9 1.0 .7 .7 .6 .5 .7 .6
AMT-Jackknife 1.0 1.0 1.0 1.0 .9 1.0 .8 1.0 .6 .5 .8 1.0
WIM 1.0 .8 .5 .4 1.0 .9 .6 .4 1.0 .9 .7 .5 ?)

I,



-316-

by WIM, after eliminating items with large residuals, corresponds to the test
that the testeee actually took. However, the reduced test length has the con-
comitant effect of increasing the standard error of measurement, and this causes
its disappointing showing in the efficiency statistic.

Table 10

Relative Efficiencies of Five Estimators on Tests of Various Lengths and Widths
for Four Ability Levels (Very Low, Low, Medium, High), with

Guessing Invitation = .9, Guessing Inclination = .9, Glitch = 0,
for Five-Choice Items with a Bimodal Distribution of Item Difficulties

Test Length
10 Items 20 Items 40 Items

Width and Very Very Very
Estimator Low Low Med. High Low Low Med. High Low Low Med. High

2 Logits
Rasch .7 .6 .5 .4 1.0 .9 .6 .5 .6 .5 .6 .5
Traditional .4 .4 .2 .4 .8 .8 .8 .4 1.0 1.0 1.0 .9
Jackknife .9 .7 .6 .6 1.0 .9 .7 .6 .6 .5 .7 .6
AMT-Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .6 .6 1.0 1.0
WIM .7 .6 .5 .4 .9 .9 .6 .5 .6 .5 .6 .5

4 Logits
Rasch 1.0 .6 .2 .4 .6 .9 .2 .5 .5 .4 .2 .3
Traditional .9 .5 .2 .4 .7 1.0 .4 .6 1.0 1.0 .4 .5
Jackknife 1.0 .6 .3 .6 .6 .9 .2 .6 .5 .4 .2 .3
AMT-Jackknife .9 1.0 1.0 1.0 .4 1.0 1.0 1.0 .2 .4 1.0 1.0
WIM 1.0 .5 .2 .4 1.0 .9 .2 .5 * * * *

Guessing plus Glitching

Since the distribution of difficulties did not appear to have much effect
on the behavior of the various estimators, the remainder of the iesults reported
will be confined to one or the other of the distributions, with only side com-
ments if the results differ substantially when another distribution was used.
(Incidentally, for an extremely bimodal distribution in which all items are
piled up at the extremes, the AMT will not work at all).

Table 11 shows the reaction of the various estimators to glitch of .1 over
several test widths and for different amounts of guessing. There were no sur-
prises. The deterioration of performance of the Jackknifing estimators with
increased test width is visible but not severe. The AMT-Jackknife was always
superior to the standard Jackknife. Under all conditions, Jackknifing seemed to
be the best choice for higher ability individuals. Jackknifing also works rath-
er well for correcting guessers, but the other methods may be better. In this
table there are only reported results for test lengths of 20, but this is repre-
sentative of the general findings. The Jackknifing methods did relatively less
well with a test length of 40 and relatively better with a test length of 10.

1€
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Table 11
Relative Efficiencies of Various Estimators of Ability for a Test with 20 Items

Whose Difficulties are Uniformly Distributed
for Four Ability Levels (Very Low, Low, Medium, High),
with a Random Noise Component of 10% (Glitch - .1)

(100 Entries Sampled Per Cell in Design)

Amount of Test Width

Guessing 2 Logits 4 Logits 6 Logits

(VC) Very Very Very

and Estimator Low Low Med. High Low Low Med. High Low Low Med. High

(0,0)
Rasch 1.0 .9 .9 .8 1.0 .8 .8 .9 .7 .9 .5 .9
Traditional .2 .1 .2 .3 .4 .1 .2 .3 .8 .2 .1 .3

Jackknife 1.0 1.0 1.0 1.0 .9 .9 .9 1.0 .6 1.0 .6 1.0
AT-Jackknife 1.0 1.0 1.0 1.0 .9 1.0 1.0 1.0 .4 .9 1.0 .9
WIM 1.0 .9 .9 .8 1.0 .6 .8 .8 1.0 .7 .3 .7

(.5,.5)
Rasch 1.0 .9 .9 .8 .6 1.0 .8 .8 .4 .9 .6 .8
Traditional .9 .5 .6 .4 1.0 .6 .6 .3 1.0 .7 .4 .4

Jackknife 1.0 1.0 1.0 1.0 .6 1.0 .9 .9 .4 .9 .6 1.0
AMT-Jackknife 1.0 1.0 1.0 1.0 .6 1.0 1.0 1.0 .3 .8 1.0 1.0
WIM 1.0 .9 .9 .8 .7 1.0 .8 .6 .8 1.0 .5 .6

(.9,.9)
Rasch 1.0 .9 .9 .5 .7 .9 .8 .7 .3 .7 .6 .9

Traditional .8 1.0 . .9 5 1.0 1.0 .8 4 1.0 1.0 .5 .3

Jackknife 1.0 1.0 1.0 1.0 .7 .9 .9 .9 .3 .7 .6 1.0
AMT-Jackknife 1.0 1.0 1.0 1.0 .6 1.0 1.0 1.0 .3 .7 1.0 .8
WIM 1.0 .9 .9 .7 .8 1.0 .8 .8 .7 .9 .4 .6

True/False Tests

When the number of alternatives was reduced from five to two, much the same
results were found. With no guessing the Jackknifing methods did best, with an

edge to the AMT. As guessing became increasingly prevalent, the Traditional
correction scheme worked better. It was still found, however, that for high

abilities the AMT method was superior in efficiency to all others.

, Standard Errors

The Rasch model standard error is

Rasch (SE) = I/{E2[P. (1 - P. )]} [11]

"A for each ability level i. This accurately reflects what was observed empirical-

ly for the Rasch ability estimates in the simulations. When there was no guess-

S ing, the standard deviations of the sampling distributions was about what this

3 equation would predict. It underpredicted the variability observed when there

1*1
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was noise. The WIM standard error is calculated in the same way as the Rasch
except for a test of reduced length. This seems to accurately reflect reality
for the situations tested.

The Jackknife standard error is calculated directly from the pseudovalues
by

Jackknife (SE) = [E < a.* - a* > 2 / [121

< (L - 1)L >

and is known to be a conservative estimator. This is certainly true in this
case. It tended to overestimate the actual standard error by about 50% for test
lengths of 10, by 25% for test lengths of 20, but was just about right for test
lengths of 40.

Although there are several candidates for estimating the standard error of
the AMT, the investigations of the authors are insufficient to be able to recom-
mend one at this time. It seems reasonable to use the corrected Jackknife stan-
dard error until a better choice is found. The Jackknife standard error will
almost certainly be conservatively large.

Conclusions

This investigation sought to find and test alternative methods for e-timat-
ing ability under the Rasch model in the face of plausible noise. This was done
by using some recent developments in robust estimation without adding parameters
to the model, thus retaining the Rasch model's attractive attributes. It was
found that gains in recovering abilities in the presence of guessing and unto-
ward responses of other kinds can be obtained through the use of a robustified
Jackknife. But it was also found that specially developed models aimed at the
lower end of the ability continuum may be able to accomplish this better than
these general tools. WIM worked when there was guessing and aided in increasing
the accuracy of estimation for low-ability testees. The Traditional method
worked when there was much guessing, the test was long, and the ability of the
testees was low.

A surprising finding was that for short tests of 10 or 20 items, the Jack-
knife estimators, with a significant edge to the AMT version, yielded better
estimates of ability than the maximum likelihood estimator, even when precondi-
tions for the Rasch model held. This increase in efficiency of estimation is
especially important for those applications of latent trait models that use a

limited number of measures obtained about a person as a de facto test (see,
e.g., the analysis of parole data in Perline, Wright, & Wainer, 1979). In these
circumstances the number of items cannot be easily increased, and the only al-
ternative is to improve the estimate of ability through other means. Thissen
(1976) attempted to do this by using a method Bock (1972) developed for wrong
answers, but this is very expensive computationally and only applicable to mul-
tiple-choice items. Super-efficient estimators may also be useful in such ap-
plications as adaptive testing.

. . . . . . ,=-, -- -.
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The simulations performed were very extensive; nevertheless, considerably
more research is necessary. A careful study of estimators of standard error is
critical, as are the distributional properties of the Jackknifed estimators.
Robust estimators have not been used in conjunction with the Jackknife before,
so nothing is known about that distribution. The authors believe that Jackknife
estimates are t-distributed (although there is difficulty in determining the
effective degrees of freedom). It seems reasonable, therefore, to suppose that
the robust Jackknife will have a similar symmetric (albeit tighter) distribu-
tion. This suggests that the Jackknife estimates of standard error for the AMT
estimator are conservative. Just how conservative these actually are, however,
awaits further investigation.

A second area of investigation that is still incomplete is goodness-of-fit
tests. Substituting robust estimates of ability into the usual goodness-of-fit
equations should yield a conservative estimate more realistic than those usually
obtained (which benefit from capitalization on chance). But it is not known to
what extent the asymptotic properties of such fit statistics derived and/or de-
scribed by Anderson (1973), Fischer (1974), Martin-Lf (1974), and Wright and
Stone (1979) apply.

The finding of improved estimation efficiency is an intriguing one. Lewis
(1970) pointed out that although maximum likelihood estimates of location param-
eters of ogive functions are asymptotically identical to minimum chi-square es-
timates, they can be quite different for small samples. Neither makes any
claims for small sample efficacy, but what is surprising is how large "small"
can be and how much of an improvement can be made using an alternative proce-
dure. Lewis found that asymptotically optimal procedures did especially poorly
in estimating accurate confidence intervals around the location parameter. Per-
haps this, too, is an area in which the AMT-Jackknife will prove useful. The
questions are clear and important, and the methodology for answering them is
straightforward.

There are a number of other estimators that may improve performance still
more. For example, Ramsay (1977) found that the Ea estimator has some advan-

tages over the AMT. Novick (1979) has suggested several Bayesian estimators
that may have promise.

The main finding of this study is that for short tests the asymptotic prop-
erties of maximum likelihood estimators are not fully realized. Other methods
increase efficiency. In addition, these other estimators can correct for noise
in the data, such as guessing, and thus can increase validity. The AMT-Jack-
knife may not be the best estimator of its type that can be derived. Perhaps
other variations on this theme can go even further in the direction of super-ef-

ficiency. Nevertheless, the AMT-Jackknife does seem to deal well with the prob-
lem of guessing, which is so poorly handled by estimation of a lower asymptote
of the item characteristic curve.

4Ai'
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APPROPRIATENESS MEASUREMENT: BASIC PRINCIPLES AND

VALIDATING STUDIES
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In a large test administration a few examinees may be so unlike other exam-
inees that their multiple-choice aptitude test scores have limited value as
ability measures. A particularly transparent example is provided by a hypothet-
ical low-ability copier who copies half of his/her answers from a much more able
neighbor. Other test anomalies include:

1. Improperly coached examinees who are shown the answers to some items
before the exam begins,

2. Examinees with high ability but atypical schooling or low English flu-
ency,

3. Exceptionally creative exanjinees who discover novel interpretations for
some items,

4. Examinees who are very conservative in their use of partial informa-
tion, and

5. Examinees who make alignment errors on their answer sheet over a block
of items, answering the 9th item in the 10th place, the 10th item in
the 11th place, and so forth.

In each of these cases it can be argued that (1) the test score is not an appro-
priate measure of ability and (2) the item-by-item pattern of answers may be
recognizably unusual. For example, the hypothetical low-ability copier seems
likely to have many easy items incorrect and many difficult items correct, rela-
tive to typical examinees. A second example of an inappropriate test score and
an unusual answer pattern occurring together is provided by the hypothetical
examinee with an alignment error. He or she will most likely have a block of
consecutive items incorrect and an unusual answer pattern within the block.

Thus, a multiple-choice aptitude test may be a dubious measure of ability
due to any one of many (although possibly rare) causes. In at least some cases,
the item-by-item response pattern may contain evidence of this fact. This paper
considers the problem of using answer patterns to recognize inappropriate test
scores.

- -- ,,- , - -- . , . . . . . . . ... . . . . . . . . .
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Appropriateness Measurement: Its Objectives and Limitations

Appropriateness measurement is a general approach to the problem caused by
inappropriate test scores. Its purpose is simply to identify inappropriate test
scores. It is limited to cases, such as those noted above, in which inappropri-
ate test scores and unusual answer patterns tend to co-occur. Appropriateness
measurement is implemented by statistics, called appropriateness indices, that
measure the degree to which an examinee's answer pattern is "unusual," i.e.,
unlike the pattern expected from typical examinees.

In appropriateness measurement studies, examinees are sorted into two
groups: (1) examinees with very unusual answer patterns, as indicated by very
extreme index values and (2) other examinees, i.e., examinees with typical index
values. Appropriateness measurement is successful to the extent that the group
of examinees with extreme index values has a larger proportion of examinees with
inappropriate scores than the group with typical index values.

Background

The first large-scale appropriateness measurement study was reported by
Levine and Rubin (in press). This study, reviewed below, provides the back-
ground nnd context for the theoretical developments and empirical results re-
ported in this paper.

1

Levine and Rubin (in press) identified three types of appropriateness in-
dices and reported positive empirical findings with these indices. However, the
generality of their findings is limited by properties of their data set. In
particular, their data were simulated, the simulation parameters were available
for use in defining appropriateness indices, and aberrant examinees were un-
equivocally identified.

In this paper actual and simulated data are used to attack three problems
raised by the Levine and Rubin study, namely:

1. Estimated versus known item parameters. With simulated data, item pa-
rameters (e.g., item difficulties) are known and need not be estimated
prior to computing appropriateness indices. With actual data, parame-
ters must be estimated. How seriously will appropriateness measurement
be affected by estimation errors?

2. Unidentified aberrants. In a simulation study, atypical examinees arE
unequivocally identified and a sample of truly normal examinees is

available for item parameter estimation. With actual data an unknown
proportion of unidentified aberrants will be included in each large
sample of nominally normal examinees. How will the presence of these
aberrants affect parameter estimation and, consequently, appropriate-

ness measurement?

iFor independent contemporary work that appears similar in conception, see Flier
(1977). For possibly related research based on classical test theory, see
Ghiselli (1956; 1960a; 1960b) and Donlon and Fischer (1968). )

,= ,, m ! I |1 II 4
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3. Model validity. Simulated data conform precisely to the psychometric
model used to generate data and to formulate appropriateness indices.
There will be reliable contradictions, however, to the assumptions of
any tractable, nontrivial psychometric model in a large sample of actu-
al data. Are currently available psychometric models sufficiently val-
id to support appropriateness measurement with actual data?

The results presented will show (1) that appropriateness indices are not
seriously degraded by the use of estimated parameters; (2) that appropriateness
indices are not seriously degraded even when a relatively large proportion of

aberrant examinees is initially (and improperly) treated as normal; and (3) that
detection rates with actual test data are comparable to detection rates with
simulated data.

Review of Test Theories
and Basic Appropriateness Measurement

Appropriateness measurement involves a two-stage process: a test norming
or item parameter estimation stage, followed by a person measurement or index
computation stage. This distinction parallels the separation of parameters in
latent trait models into (1) item or test characterizing parameters, such as
item difficulties; and (2) individual difference or person characterizing param-
eters, such as abilities.

The Standard Model

In the studies to be reported here, the test norming stage is developed
around what will be called the standard model. This test model is a version of

the 3-parameter logistic model of item response theory (Birnbaum, 1968). Ac-
cording to the standard model, an answer sheet is generated by a two-stage ex-
periment. In the first stage an ability, e, is sampled. The second stage is a
sequence of independent binary random variables. These are the item scores,
coded from the observed answer sheet with "1" denoting a correct response and
"0" an incorrect response. (The ability 8 is not observed and the distribution
of abilities is neither specified nor estimated in these studies.)

After some notation is introduced, the essential features of the standard

model can be summarized with two equations. Let uQi) denote the jth examinee's

answer pattern. Thus, u(j), = 1, 2, ... , N, is the vector of item scores,

\I ~j (.1))(j

, u ,..., UU) >,
1 2 n

for a test composed of n items. Let Pi(O) denote the regression of the ith item

score on ability, i.e., Pi(O) = (jilo). For a given 0, Pi(e) can be interpreted

as the conditional probability of an examinee, randomly selected from all exam-

inees with ability e, correctly answering the ith item. With this notation, the
conceptualization of the second stage of the answer sheet generation process can
be expressed by the following equation, which is known as the "local indepen-
dence" assumption of latent trait theory:

1: .,



-325-

n U. U

Prob {U(j = 0} - H P.(e) l (1 - P(0)1 [1]~ i-1

In words, Equation 1 states that item responses are conditionally independent.
The independence of different examinees implicit in the first stage of the an-
swer sheet generation process is expressed in Equation 2:

Prob {0 1), U ( 2 )  
U (N) e l (2) N) }2]

N1 ProbjU(j)je(J)}'.ffl P ~bU 1
j.1

To facilitate the test norming stage, each Pi is assumed to have the func-
tional form

C. + (1 - c i) {1 + exp[-ai(O - 1i)]}-1  [3]

for some positive i, real b, and i with 0 < I. This asserts that Pi is

S-shaped with a lower asymptote ofc i and an upper asymptote of unity. The lo-

cation and scale parameters bi and ai express differences between items in dif-

ficulty (b) and ability to discriminate between low- and high-ability examinees

(2i). This particular functional form is conventional, is widely used, and has

been supported in nonparametric studies (Levine & Saxe, 1976).

"Test norming" consists of estimating the numerical values for ai, b., and

This is done by selecting a large sample of N presumably normal examinees;

observing their answer patterns U(M), U(2) ,...,u(N); and finding a set of a's,
b's, c's, and U's that maximizes the likelihood function in Equation 2. The
interest in the test norming stage is in the item parameters a, b, and c; howev-
er, the 6's, must also be estimated in the current procedurE.

Lord's LOGIST algorithm (Wood & Lord, 1976; Wood, Wingersky, & Lord, 1976)
can be used to maximize Equation 2. This program has been vigorously criticized
by Wright and his associates (e.g., Wright, 1977). In fact, Wright has ques-
tioned whether any algorithm can be designed to estimate the parameters of the
standard model; the relevance of the results of the present studies to these
criticisms is summarized in the last section of this paper.

The test norming stage can be thought of as specifying a continuum of mod-
els or statistical characterizations of typical examinees by using test re-
sponses of the first N nominally normal examinees in the first stage to estimate
a set of item parameters. These parameter estimates can be substituted in Equa-
tion 1 to obtain an explicit formula for the likelihood of a new pattern of an-

* swers, say u(N+1). An intuition that had guided much of the authors' current
research, and which will now be used to introduce the person measurement stage

is this: Suppose for all values of 0, u(N+I) appears improbable in the sense

i-
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that Prob(U(Nl)I0) is very small. Then, u(N+) is badly fit by all models for
individual data developed in the test norming stage.

In the person measurement stage the item parameters are treated as known
and an index of goodness of fit is computed for each person's answer pattern.
The simplest index, L0 , is

Lo = log max Prob (U(N+1)I) •41
e

This index will be small if Prob(U(N+fle0) is small for values of 0. A small
value of L0 could result if many incorrectly answered easy items rule out high
values of 0 and many correctly answered difficult items rule out low values of
e. L0 detects aberrance surprisingly well. To improve upon it, a model for
aberrant data and two measures for the degree of aberrance will be specified in
the next section.

Variable Ability Models and Appropriateness Indices

2L0 , like X , is sensitive to any type of poorness of fit for the standard
model. A generalization of the standard model is needed to detect aberrations
of the specific kind that is of interest.

In many of the most important types of test inappropriateness, the aberrant
examinee behaves as if his or her ability were fluctuating from item to item.
Thus, the low-ability cheater appears to have a much higher ability for those
items on which he or she has been coached. The high-ability, low-English-
fluency candidate behaves as if he or she had low ability on linguistically de-
manding items.

In the standard model the examinee's ability, 0, is constant across items.
In variable abilit models, introduced by Levine and Rubin (1979), the exam-
inee's ability is conceptualized as varying from item to item. For example, in
the Gaussian model, each examinee is characterized by a pair of parameters:
central ability, e0, and ability variance, o2. (Note that the standard model
utilizes a single individual difference parameter, e.) According to the Gaussian
model, the examinee has ability O1 on Item 1, 02 on Item 2, .. , and en on Item
n. The model asserts that for given e0 and o2, the ei are independent identi-

cally distributed normal or Gaussian random variables with mean = Oo and vari-
ance . To specify the model more precisely the likelihood function
Prob(UI00, o2, which gives the conditional probability of a vector U of item
responses, is written and simplified as follows:

C On U.Prob (UI0 0 , 02) = f...f II {P.(0) [51

-I -- -=l
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n 0 u .- ui 2
= I P i(t) -[1 - Pi(t)] 4(t;0o )dt , [5]

i=1 - .1

where 4(t; 0o, 02) is the Gaussian density

1
2) 1 t _680 2

(t; 00,
2 ) = exp - [ f [6]

Equation 5 is analogous to Equation I for the standard model.

To obtain a second appropriateness index testing for a specific departure
from the standard model, the maximum likelihood ratio test statistic is comput-

ed:

LR= L - L0  [7]
n 0

where

L = log max Prob(UIO0 o 2 )

and

and L0 = log max Prob(Uj8),
0

as before. LR measures the degree to which a variable ability model provides a
better fit to the observed pattern of responses than the standard model.

The final appropriateness index or measure of goodness of fit is a, the

maximum likelihood estimate of the ability standard deviation. This index is
obtained by maximizing Prob(UIOo, 02) with respect to both 0o and a. The stan-
dard model is a special case of the Gaussian model in the sense that Prob(U 10)
is the limit of Prob(U100, 02) as 0 decreases to zero. Consequently, a small 0

can be interpreted as indicating a small degree of aberrance.

Index Evaluation and Receiver Operator Curves

Each application of appropriateness measurement will have different rewards
for correctly identifying an inappropriate score and different enalties for
oincorrectly classifying a nonaberrant examinee as aberrant. Te receiver opera-

tor curve (ROC) of statistical decision theory provides a graphic way to compare
indices prior to the specification of rewards and penalties.

In applying an appropriateness index to classify examinees, a cutoff or
criterion value of the index is specified. For the present exposition, assume
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that small index values indicate aberrance. At each criterion value, t, the
proportion of aberrant examinees correctly identified as aberrant and the pro-
portion of r.rmal examinees improperly identified as aberrant can be denoted as

x(t) = proportion of normal examinees with index values < t
y(t) = proportion of abberrant examinees with index values-< t.

An ROC results from plotting the < x(t), y(t) > pairs obtained for various val-
ues of t. A desirable ROC is one that rises sharply from the origin toward the
upper left-hand corner of the plot. In contrast, an ROC that lies along the
diagonal of the plot indicates a random classification rule. That is, classify-
ing examinees on the basis of flipping a coin yields a diagonal ROC. Clearly,
an ROC that indicates an effective detection procedure is one that lies well
above the diagonal.

Simulation Procedures and Results

Levine and Rubin's (in press) simulation methods and results are reviewed
here, as some of their data is reanalyzed, and their methods are applied to new

data. To simulate a normal vector of item scores, they first sampled an ability
0 from a normally distributed population with zero mean and unit variance. The
examinee's first item score was generated by sampling a number uniformly dis-
tributed in the unit interval. If the sampled number was less than or equal to
Pi(e) from Equation 3, then the first item was scored as correct; otherwise, the

item was scored as incorrect. The remaining item scores were obtained by inde-
pendently drawing new uniformly distributed numbers and comparing them with
Pi(e) for ! = 2, 3,...,n.

The parameters -i bi, and S utilized in Equation 3 were those obtained by

Lord's fitting of a 3-parameter logistic model to a large sample of Scholastic
Aptitude Test, Verbal Section data (SAT-V; Lord, 1968). The actual simulation
was implemented with Hambleton and Rovenelli's (1973) program. (For technical
details concerning the random number generators used, see Levine & Rubin, in
press, Appendix).

Aberrant examinees were simulated by modifying simulated normal answer
sheets in various ways. In this paper concern is primarily with the "20% spuri-
ously low" modification, but other modifications will also be reviewed briefly.

To create a spuriously high answer sheet, 20% of a normal simulated exam-
inee's item responses were randomly sampled without replacement. If the sampled
item was originally scored as correct, it is left unchanged. If the sampled
item was not correct, it is rescored as correct.

To create a spuriously low answer sheet, 20% of a normal answer sheet's
4responses were sampled as before. Then, a random number generator was used to
"3 simulate random guessing over the five multiple-choie alternatives. No matter

what the original sampled item score was, the sampled item was scored correct
with probability .20 and scored as incorrect with probability .80.

j

1.
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Levine and Rubin observed that the modification of a normal answer pattern
to create a spuriously low answer pattern frequently resulted in little or no
change in the actual response vector. Clearly, if an aberrance-producing pro-
cess does not alter the objective response pattern, it is futile to attempt to
detect the presence of the process with an appropriateness index. Furthermore,
if there is no effect on the objective response pattern and test score, there is
little motivation for detecting aberrance. Consequently, Levine and Rubin sepa-
rately analyzed the data from spuriously low examinees who had at least 10% of
their scores changed. Both correct responses changed to incorrect and incorrect
responses changed to correct were counted toward the 10% figure.

Levine and Rubin observed good aberrance detection with the total sample of

spuriously low examinees and excellent detection for both the spuriously high
examinees and the selected large-score-change sample of spuriously low exam-
inees. These generalizations held for all three indices.

There are two additional results obtained by Levine and Rubin that merit
attention. First, Levine and Rubin systematically varied the percentage of
items modified, utilizing 4%, 10%, 20%, and 40% treatments. As expected, they
found increasing detectability as the percentage of modified items was in-
creased. A second finding by Levine and Rubin was that the three appropriate-
ness indices--Lo, LR, and 3--yield quite similar patterns of detectability.
Interestingly, no one index was substantially better or worse than the other
two. Consequently, Levine and Rubin did not recommend using any one particular
index in future research.

For the present study Levine and Rubin's data were reanalyzed using esti-

mated item parameters instead of simulation parameters, and appropriateness mea-
surement techniques were applied to actual test data. Levine and Rubin data
files relevant to the present research were as follows:

1. NORMAL 3200: 3,200 simulated answer sheets with normally distributed

abilities; item parameters from Lord's (1968) fitting of the SAT-V;
items scored either as correct or incorrect.

2. NORMAL 2800: The first 2,800 records from NORMAL 3200.

3. LOW 200: Records 3,001, 3,002,...,3,200 from NORMAL 3200 modified to
,j simulated ability-unrelated responding on 20% of the test according to

the 20% spuriously low modification.

4. LOW 102: 102 records selected from LOW 200, having at least 10% of
the simulated examinee's original responses changed in the spuriously
low modification.

5. HIGH 200: Records 2,801, 2,802,...,3,000 from NORMAL 3200 modified to
simulate cheating on 20% of the items according to the 20% spuriously
high modification.

4)
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Study 1: Estimated Parameters

Problem

Levine and Rubin bypassed the first (test norming) stage of appropriateness
measurement. Instead of estimating item parameters from a large sample of nor-
mal examinees, they used the exact (simulation) parameters to compute appropri-
ateness indices. Clearly, in an application with actual data, item parameters
must be estimated. How sensitive are indices to item parameter estimation er-
ror? Can high detection rates be achieved with estimated parameters?

Method

Item parameters were estimated by applying Lord's maximum likelihood algo-
rithm LOGIST to NORMAL 2800 data. L0 was computed for each NORMAL 2800 examinee
by evaluating the likelihood function at the LOGIST maximum likelihood estimate
of ability. The LOGIST-estimated item parameters were then used to compute L0
for the LOW 102 response vectors by rerunning LOGIST for the LOW 102 data with
all item parameters fixed at the values obtained from NORMAL 2800. In this way
an estimated parameter L0 appropriateness index value was obtained for each NOR-
MAL 2800 and LOW 102 response vector.

Results

A close agreement between values of L0 computed from exact parameter and
estimated parameter index values was observed. In Figure 1 a bivariate scatter-
plot demonstrates this agreement for the critical LOW 102 sample. Each of the
102 simulated examinees contributes a point to the scatterplot. The x-coordi-
nate of the point is L0 computed with exact item parameters; the X-coordinate,
with estimated item parameters. If there were perfect agreement between the two
measures, the points would fall on the diagonal line, which has been drawn on
the figure. A very slight tendency is observed for estimated index values to be
smaller than exact index values for the most aberrant examinees in LOW 102 (L0
less than -60).

The same close agreement was observed for the NORMAL 2800 sample. This is
shown in Figure 2 for the first 100 simulated examinees in NORMAL 2800.

A more significant result is shown in the estimated parameter L0 ROC presen-
ted in Figure 3. Note that detection rates were high, even for low false alarm
rates. For example, 12.7% of the aberrant examinees could be correctly classi-
fied with an L0 cutoff score that did not misclassify a single NORMAL 2800 exam-
inee. Further, 21.6% of the aberrant examinees were detected at a false alarm
rate of .9% and 47.1% of the aberrants were detected at a 4.4% false alarm rate.
Figure 3 is in close agreement with Levine and Rubin's exact parameter LR ROC
computed from the same data (Levine & Rubin, in press, Figure 8). In fact,
there is a very small superiority for the estimated parameter ROC; using esti-

'A mated parameters there were 0%, .9%, and 4.4% false alarms at hit rates of
11.8%, 21.6%, and 47.1% in comparison to .1%, .9%, and 4.8% false alarms at the

S corresponding points in the exact parameter ROC.

,I
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Figure 1
Bivariate Scatterplot of L0 Computed from Exact and
Estimated (from NORMAL 2800 Data) Item Parameters

for LOW 102 Response Vectors
-36

0 -46

E

-54

2 6

0

-66

-72 -66 -60 -54 -48 -42 -36

L, Computed from Exact Item Parameters

Discussion

The results may initially seem surprising in view of Lord's (1975a) study of
the disparity between LOGIST-estimated item parameters and simulation parame-

ters.2  Lord found much more variation around the diagonal in his bivariate
plots of simulation item parameters versus estimated item parameters than ap-
pears in the plots of estimated parameter L0 versus simulation parameter L0 .

The discrepancy becomes less surprising when it is recalled that L0  is the max-
imum value of a likelihood function, whereas a LOGIST parameter estimate gives
the location of a point at which the maximum is obtained. If the likelihood

function is relatively flat, then the maximizing values of the arguments of the
function will be difficult to determine precisely because a small parameter
change results in a very small likelihood change. Somewhat paradoxically, flat-
ness of the likelihood function can simplify the problem of calculating L0 , the
value of the function near its maximum. The value of the likelihood function
will be almost constant for parameter values in the neighborhood of the maximiz-

ing value.

2 LOGIST version 2.B was used in the research. LOGIST has since been r.

modified.

t - .- .' . .- -v . .. . "
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Figure 2
Bivariate Scatterplot of L0 Computed from Exact and
Estimated (from NORMAL 2800 Data) Item Parameters

for the First 100 Simulated Examinees in NORMAL 2800 Data

-13

-21

- -29

-37

0 -45

-53

-53 -45 -37 -29 -21 -13
I. 0 ((omphttl} Iro- Exact It en Paramtters

A possible artifact complicating the interpretation of these results is
'Il evidenced by consideration of an analogy from multiple regression. The ROC will

be high to the degree that the estimated parameters fit NORMAL 2800 better than
LOW 102. NORMAL 2800 can be considered analogous to a multiple regression de-
rivation sample and LOW 102 to a cross-validation sample. At least with small
samples, overfitting is expected in the derivation sample; and shrinkage, in the
cross-validation sample. It may be for this reason that L0 , as a measure of
goodness of fit, tends to be smaller in LOW 102. That estimated parameter aber-
rance scores for the most aberrant LOW 102 examinees are lower than exact param-
eter aberrance scores supports the suspicion of overfitting. However, any over-
fitting should result in relatively high NORMAL 2800 scores (i.e., many points
above the diagonal in Figure 2) and this was not found. Furthermore, the dis-
crepancy between estimated and exact parameter index values is so small that
abcissa values on the ROC would be changed less than .0004 if the lowest LOW 102
index values fell exactly on the diagonal in Figure 1.

If overfitting were a significant artifact, then poor detection would be

r ;
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Figure 3
ROC Describing Detection of LOW 102 Response Vectors

by L0 Index Computed from Item Parameters Estimated in NORMAL 2800 Data
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expected (1) if the normal group used to evaluate an index was distinct from the
norming group utilized for item parameter estimation or (2) if the aberrant and
normal groups were pooled to form the norming sample. In Stidy 4 and in Drasgow
(1978) the norming and normal groups were distinct. In the next study the aber-
rant and normal groups were combined to form a single group used to estimate
item parameters.

Study 2: Heterogeneous Norming Sample--
Classification and Norming Sample Equal

Problem

In a simulation study all aberrant answer sheets are clearly identified,
since they are generated by the experimenter. In an actual study some unde-

J tected aberrants are likely to be included in the test norming sample. Willunsuspected aberrants in the norming sample seriously degrade item parameter

estimates and undermine the person measurement stage of appropriateness measure-

imert?
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A secondary problem is related to the possible overfitting and shrinkage
noted in Study I. Individual simulation examinees are expendable. They can be
used for test norming and ignored thereafter because new statistically equiva-
lent answer sheets can easily be generated for use in the person measurement
stage. However, in actual studies sample sizes are fixed, and it generally will
be important to evaluate appropriateness for the examinees in the norming sam-
ple. Will current estimation procedures overfit aberrant examinees in the norm-
ing sample, or will it be possible to use an appropriateness index to identify
norming sample aberrants?

Method

NORMAL 2800 and LOW 200 were merged to form a data file with a large pro-
portion of aberrant examinees. Item parameters were estimated using all 3,000
simulated examinees. As before, L0 was computed for all examinees by evaluating
the likelihood function at the LOGIST maximum likelihood estimate of ability.
New index values for LOW 102 were compared with exact parameter index values,
and the Lo ROC was computed to evaluate detectability.

Results and Discussion

Figure 4 shows that estimating item parameters in a large sample with a
large proportion of spuriously low examinees need not noticeably degrade appro-
priateness measurement. The simulation parameter L0 ROC had hit rates of 11.7%,
21.6%, and 47.1% at false alarm rates of .1%, .9%, and 4.8%. The corresponding
heterogeneous norming sample false alarm rates were .1%, 1.2%, and 4.9%. Clear-
ly, the net effect on appropriateness measurement of estimating item parameters
from this heterogeneous sample is negligible.

Figure 5 contains the bivariate scatterplot of exact parameter L0 values
plotted against L0 values computed from item parameters estimated in the hetero-
geneous sample. The relatively high frequency of points above the diagonal in
Figure 5 indicates an overfitting effect for aberrant examinees; however, both
Figures 4 and 5 support the conclusion that the effect is small. Figure 5 does
so because all points are tightly clustered about the diagonal, i.e., there is

'1] little difference between exact parameter Lo values and heterogeneous sample
estimated parameter L0 values. The high detectability exhibited in the ROC sup-
ports the contention that overfitting is small, because a large overfitting ef-
fect would have reduced normal-aberrant group differences and therefore reduced
detectability of aberrance.

These results on overfitting should be interpreted cautiously. Parameters

were estimated in a very large sample (N - 3,000). Further, the nature of spu-
riously low aberrance may be essential to the small effect. The distinction
between bias and sampling error is useful in understanding this point. The pro-
cess hypothesized to underlie spuriously low aberrance is essentially unsystem-
atic; that is, atypical schooling, alignment errors, and exceptional creativity
lead to incorrect responses on different examination items. Thus, the different
examinees will tend to have competing effects on item parameter estimates. Con-
sequently, the presence of aberrance in the norming group should affect the sam-
pling error of item parameter estimates to some extent but should have a rela-

4, _
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Figure 4
ROC Describing Detection of LOW 102 Response Vectors

by the L0 Index Computed from Item Parameters Estimated in
NORMAL 2800 and LOW 200 Data

1.O

tl1.0

*tively small effect on the bias of the estimates. In addition, the effect on
the sampling error is tolerable due to the large sample size.

Study 3: Actual SAT-V Data--
Overlapping Norming and Classification Sample

Problem

J The one-dimensional 3-parameter logistic model is the most general model
for which there is a well-developed parameter estimation literature. It is easy
to formulate more plausible refinements and generalizations of this model. How-
ever, their use would require a long and costly research program to develop and
validate parameter estimation methods. Is the logistic model sufficiently de-

A scriptive to detect spuriously low examinees in actual test data?

Method

Three thousand "low omitting rate"~ examinees were sampled from an admin-
istration of the SAT-V. All 3,000 examinees responded to at least 90% of the

o2
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Figure 5
Bivariate Scatterplot of L0 computed from Exact and

Estimated (from NORMAL 2800 and LOW 200 Data) Item Parameters
for LOW 102 Response Vectors
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test items. LOGIST was used to estimate item parameters from these 3,000 nomi-
nally normal examinees. A file of 200 aberrant examinees was then created by
applying the 20% spuriously low modification to answer sheets from examinees
2,801, 2,802,..., 3,000.

L0 was computed by maximizing the individual likelihood functions for the
3-parameter logistic model. In this calculation the LOGIST-estimated item pa-
rameters were held constant and the like'ihood of the individual's response vec-
tor was maximized by selecting an optimal ability estimate. The ability esti-
mates are slightly different from the LOGIST ability estimates because the pro-
grams used in this study ignored both omitted and not reached items. (The LO-
GIST procedure ignores not reached items but attempts to use the omitted items
by a technique that can be thought of as giving partial credit for omitted

.items.)

* The person parameters of the Gaussian model were estimated by a version of
the Fletcher-Powell algorithm (Gruvaeus & Joreskog, 1970). In this calculation
each examinee's response vector is considered in isolation; and the likelihood

.
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function is maximized to estimate central ability, 6o, and ability variance, 02.
As before, omitted and not reached items are ignored.

Results

Figures 6 and 7 present the ROCs for the Lo and LR appropriateness indices,

respectively. It is apparent that high detection rates are obtained at low

false alarm rates. In particular, there are .2, .8, and 3.3% false alarms at
hit rates of 10%, 20%, and 40% for the L0 index; and the LR index yields .04%,

.8%, and 4.3% false alarms at the same hit rates. These results are even more
impressive when it is noted that the aberrant group consists of all 200 spuri-

ously low examinees; no spuriously low examinee was deleted from the analysis
due to an insufficient change in item scoring. In fact, 42 examinees had seven

or fewer item responses changed (from correct to incorrect and from incorrect to

correct) when subjected to the spuriously low modification.

Figure 6

ROC Describing Detection of Spuriously Low Response

Vectors by L0 Index for Actual SAT-V Data
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Discussion

It might be argued th1at the ROC in Figures 6 and 7 capitalize on statisti-
cally overfitted data from the normal examinees. This argument rests on the
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fact that the 2,800 examinees constituting the normal sample were included in

the norming sample, whereas item responses from the aberrant examinees were in-
cluded in the norming sample prior to the spuriously low modification. That is,

the post-tampering response vectors were not included in the norming sample for
the spuriously low group. It is suspected that the overfitting problem is not
serious for two reasons. First, as seen in Studies 1 and 2, overfitting did not
create serious difficulties for appropriateness measurement with spurious low-
ness and for item parameters that are estimated in a large sample. Second, the
majority of the item responses made by spuriously low examinees did in fact con-
tribute to item parameter estimation: No more than 20 of the 85 items were mod-
ified. Consequently, overfitting had very little, if any, effect on the detec-
tion of aberrance in the actual data. However, it seemed wise to attack the
3verfitting problem directly in Study 4 by separating the test norming and
index-evaluation classification samples.

Figure 7
ROC Describing Detection of Spuriously Low Response

Vectors by LR Index for Actual SAT-V Data
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It is interesting to compare the effectiveness of the L0 and LR indices in
* detecting aberrance. Clearly, in Figures 6 and 7 the L0 index is superior to

the LR index at high false alarm rates; but it is expected that there are many
more normal examinees than aberrant examinees. Hence, the base rate difference
causes the discrepancy to be unimportant between the L0 and LR ROCs at moderate

1. , . .,-
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to high false alarm rates; index performance is crucial only at very low false
alarm rates. The LR index detected 19 aberrant examinees (out of 200) without
misclassifying a single normal examinee, whereas L0 detected only 6 without mis-
classification. At a false alarm rate of .5%, LR detected 37 aberrant examinees
and L0 detected 32. Thus, at very low false alarm rates the LR index seems
somewhat more powerful.

Study 4: Actual GRE-V Data--
Distinct Norming and Classification Samples

Problem

The positive results in Study 3 may be attributable in large part to over-
fitting made possible by overlapping norming and classification samples. In
this study the samples were independent. In addition, Study 4 investigated the
generality of the appropriateness indices. The indices used in Studies 1
through 3 were selected by Levine and Rubin (in press) from a larger collection
of indices because of their superior performance in experimental studies with
actual and simulated SAT-V data. The question is, are these methods applicable
to other tests?

Method

The responses to the Verbal Section of the Graduate Record Examination
(GRE-V) by 10,000 examinees were utilized in the following manner. First, a
file of 3,000 examinees (FILE1) with a wide range of ability and unrestricted
omitting was created by selecting Examinees 1, 2, 3, 11, 12, 13, ..., 9991,
9992, 9993. This data set was then analyzed by LOGIST to obtain item parameter
estimates. A second file was created by examining the item responses of the
remaining 7,000 examinees and selecting examinees with a low omitting rate. A
total of 2,470 examinees who had answered at least 86 of the 95 GRE-V items was
obtained. Two hundred of these examinees were subjected to the 20% spuriously
low modification. These modified response vectors formed the aberrant group for
Study 4, and the remaining 2,270 response vectors formed the normal group.

L0 was computed for the 200 aberrant and 2,270 normal response vectors as
in Study 3 using the FILEI item parameter estimates. Notice that here the test
norming sample was distinct from the normal and aberrant samples.

Results

Figure 8 presents the ROC for the L0 index. Clearly, detection rates are
quite high. At hit rates of 10%, 20%, and 40% there are .3%, 1.4%, and 3.7%
false alarms. These detection rates were not substantially different from those
obtained in Study 3.

Discussion

The results of Study 4 are important for two reasons. First, the criticism
of overfitting the normal sample, which could be made for Studies 1 and 3, is
not relevant for Study 4. Because the test norming sample (FILEl) was composed
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Figure 8
ROC Describing Dete=tion of Spuriously Low Response

Vectors by L0 Index for Actual GRE-V Data
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of examinees not included in the normal and aberrant groups, no differential
statistical overfitting of the data for the normal and aberrant groups was pos-
sible. Consequently, the results of Study 4 can be interpreted unambiguously.

The finding that appropriateness measurement is effective for GRE-V data is
important for a second reason. Levine and Rubin (in press) originally consid-
ered a variety of appropriateness indices. After examining the effectiveness of
each index using simulated SAT-V data, Levine and Rubin selected the most effec-

Vl tive indices for further study. The extent to which the most effective indices
were capitalizing on test characteristics unique to the SAT-V was unknown.
Study 4 shows that the methods developed using SAT-V data were sufficiently gen-
eral to be implemented for GRE-V data.

Summary and Conclusion

These studies have shown that some appropriateness measurement techniques
jare robust to errors in estimation of item parameters, to the inclusion of un-

identified aberrants in the test norming sample, and to vaiolations of the 3-pa-
rameter logistic model, which surely must exist in actual data. The detection
rate of spuriously low examinees was high in all the analyses undertaken.

. . .. .
n m n i . . . . . . . .. .. , , II . . .
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Model Validity and Variable Ability Models

The 3-parameter logistic model, with its local independence and unidimen-
sionality assumptions, is admittedly simplistic. Lord (1975b) has brought to
the attention of the authors a very likely violation of local independence on
the SAT-V and GRE-V. Some paragraphs associated with several items on the read-
ing comprehension part of the examinations may be misunderstood or, alternative-
ly, may be relevant to an area in which the examinee has an unusually strong
background. Thus, it seems virtually certain that responses to items referring
to the same passage will be more highly interrelated than the local independence
assumption (Equation l).predicts. However, in spite of its shortcomings, the
standard model has been able to describe regularities in data well enough to
support appropriateness measurement. A more valid model, presumably, could sup-
port even more powerful appropriateness indices.

Parenthetically, it is noted that violations of local independence can be
accommodated by variable ability generalizations of the standard latent trait
model. A variable ability model is now being considered for dealing with co-
varying blocks of items (such as those called to the authors' attention by Lord,
1975b), the blocks model, in which a test is analyzed into interrelated blocks
of items. The examinee's ability on an item in a particular block is his or her
central ability, 6o, plus a (normally) distributed correction. This correction
is constant throughout the block of items. The Gaussian model is a limiting
special case in which each item forms a one-item block. The standard model is
another limiting case in which the entire test forms one block. If an adequate
item parameter estimation procedure were developed for the blocks model, a sub-
stantial improvement in appropriateness measurement could be achieved.

The variable ability models are related to the independent work of Lumsden
(1978). Lumsden used "person characteristic curves" (PCCs) to describe fluctua-
tions in ability. The authors' work with the Gaussian model appears to be a
quantitative step in the direction Lumsden recommends for his purposes.

Item Parameters versus Conditional Probabilities

In appropriateness measurement and in many other applications of latent
trait models, even very large standard errors of item estimates can sometimes be
tolerated. This is true because the probability measure determined by a latent
trait model depends directly on the conditional probability functions or item
characteristic curves (ICCs), Pi, and only indirectly on the item parameters.
The item parameters are simply a convenient way to encode the shape of ICCs. In
fact, some curves are adequatey described by a broad range of parameters.

This point is developed in a recent study of item bias (Linn, Levine, Has-
tings, & Wardrop, 1979). In that study, item parameters were estimated for a
reading achievement test from two groups with widely different distributions of
achievement scores. A remarkable degree of invariance was observed when the

* estimated curves from the two groups were compared. The two sets of estimated
curves were generally very nearly the same, although a superficial comparison of
parameters often showed large differences in the estimated item parameters.

1t
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Estimation of ICCs Having More Than One Parameter

In spite of several monte carlo studies and numerous successful applica-
tions of the 3-parameter logistic model, there seems to be some doubt about
whether the 3-parameter ICCs can be estimated by currently used programs or by
any method whatsoever. Some psychometricians evidently believe that adequate
parameter estimates can be obtained only with the 1-parameter, or Rasch, model
(i.e.., the specialization of the 3-parameter model obtained by setting .i = I
and c*i - 0 in Equation 3).

In fact, parameter estimation techniques are available for models with much
more complex ICC shapes than that of the 3-parameter logistic model. Lord
(1970) and Samejima (1977) have formulated, programmed, and applied nonparamet-
ric curve estimation techniques suitable for estimating curves of arbitrary
shape. Furthermore, Levine (1976) has proved a consistency result for an esti-
mation technique for estimating points on curves of arbitrary shape. It seems
that the estimation difficulties ensuing from the departure from very simple
curve shapes have been exaggerated.

Work in Progress

The next step in the development of appropriateness measurement will be to
develop techniques for conventional tests in which there is substantial omit-
ting. The research in this paper with actual data has been restricted to answer
sheets with 90% or higher response rates. However, a substantial proportion of
the examinees have omitting rates greater than 10% on the SAT-V and GRE-V.

It has been found that there is an orderly relationship between omitting
and ability on many items (Levine, Drasgow, & Rubin, in prep.) on conventional
tests; and latent trait models for polychotomously scored items are being devel-
oped to exploit this relationship. By treating "omitted" and "not reached" as
option choices, each answer sheet can be analyzed as if every item were an-

~ bwered. The preliminary investigations indicate that in this way both the range
of applicability and the statistical power of appropriateness measurement can be
significantly increased.
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The three papers-by Mead, by Wainer and Wright, and by Levine and
Drasgow-agree that the task of estimating ability is a matter of estimating a
parameter of the person characteristic curve (PCC), which was first suggested by
Mosier (1940, 1941). It was rediscovered independently by Weiss (1973) and by
me (Lumsden, 1976), but not independently because I had read the Mosier paper
and had "forgotten" about it. The PCC is the plot of proportion passed against
item difficulty for a single individual.

Each of the papers assumes--but Levine and Drasgow's not quite so complete-
ly-that all we need do (in a proper world) is to estimate the location parame-
ters. All the PCCs "ought" to have the same slope; and departures from the
ideal represent aberrances, perturbations, warts on the face of the estimate of a
person's ability.

Mead has proposed to apply vanishing cream to the warts, at least to the
warts he sees. He has eliminated responses considered aberrant and has estimat-
ed ability from those remaining. Wainer and Wright have made some comments on
the inefficiency of this pruning procedure and have suggested a rather more
suitable one. What I am concerned about is the suggestion that if the Mead pro-
cedure (or the similar dropping of aberrant subjects) is carried out, the Rasch
model has been fitted. In no sense has this been done.

* What about the possibility of a Type 2 error? Consider the following sim-
4ple, but quite plausible, example. Two people each know the answer to only one

item of a seven-item test. They are each somewhat lucky and guess the answer to
three others. They produce the following response vectors, with items ordered
in difficulty from left to right:

A 10 00 11 1
B 11 11 00 0

The Head procedure would eliminate for Subject A the final three correct
answers and score only the first correct. For Subject B the score would be es-
timated as if B knew the answer to four items. I submit that each of these sub-
jects equally fits or does not fit the Rasch model.

The suggestion that a model can be fitted by removing the data that do not
fit it is nonsense, dangerous nonsense. Brown and Stephenson (1932) did this
when they claimed a fit for the Spearman two-factor theory. Wolfle (1940) com-
mented, "if you remove all the variables that do not meet the tetrad-difference

I.

criterion, those that are left do meet it."
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Wainer and Wright have proposed to shave their subjects with a jackknife
and thus clip the warts. The general proposal I find attractive. It gives less
weight to outliers but does not eliminate them: All the subjects and all the
results are considered. In this it is rather like the work of the psychophysi-
cists who use the Mueller-Urban weights.

Wainer and Wright's results should be taken with a square root of salt.
When someone talks of estimating a point value such as a person's ability, I
think of confidence limits and standard errors rather than variances. If the
square root of all of Wainer and Wright's results are taken, the differences
between methods are seen as very much less; and in some cases, they can be de-
scribed as negligible. It should be noted, too, that the method of reporting
only efficiency ratios suppresses the main effect of test length. What is the
value of all this arithmetic? One item, or two or three?

I would also like to see the bias and precision estimates reported sepa-
rately. It should be noted that the efficiency comparisons are critically de-
pendent on the selection of the a value for the items. If the a value is in-
creased, the efficiency differences will be less.

Wainer and Wright's treatment of omitted responses is distressingly fool-
ish. They permitted subjects to omit items and did not punish them in any way
but simply scored the other items as if they comprised the entire test. Now, if
there are any person-item interactions, the person smart enough (or lazy enough)
to omit those items whose answer does not come to him/her immediately will be
given a higher score than the person who attempts all questions. This is a se-
riously biasing part of Wainer and Wright's procedure. One can usually be cer-
tain that a person who omits does not know the correct answer. He/she should
either be counted as wrong or should be given the chance expectation of being
correct.

Both the Mead paper and the Wainer and Wright paper approach the problem of
fitting the Rasch model with what I term the psychoarithmetician's fallacy:
that arithmetic can be substituted for experimental control. Why not attempt to
meet the strict requirements of the Rasch model? One could begin by eliminating

*the problem of guessing by using only completion-type items. If this means that
some tests have to be hand-scored, so much the better. One should then attempt
to construct a strictly unidimensional test, keeping the test construction com-
pletely independent of the test scoring and application phases.

Levine and Drasgow used the 3-parameter model, also seeming to believe that

arithmetic is preferable to the "restrictions" of experimental control and
agreeing that perturbations of the PCC are aberrances, warts. Shuddering, they
dismissed the warty ones from consideration. Some of the things they chose to
call aberrant seem strange to me: If a test requires a subject to be able to
read and to understand English, in what way is it aberrant when it gives a low
score to someone who cannot read and understand English? The positive fea-
ture of Levine and Drasgow's paper is that they do consider Type 2 errors and
that their ROC curve procedure is ingenious and generalizable to a variety of
other situations.

I .- .--- .



-347-

The assumption underlying all three papers-that the slopes of the PCC
"ought" to be the same--is simply that: an assumption. If it is agreed that it
is plausible that people do have fluctuations in their ability, then it seems
not implausible to assume that people may differ reliably and significantly in
the extent of this fluctuation. There is evidence, admittedly not overwhelming,
from Mosier (1'40, 1941) and Weiss (1973) that they do. Further evidence should
be sought. If there are reliable differences in the slopes, it is difficult to
see how these differences can be distinguished from the aberrances that have so
distressed our participants.
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THE ROBUSTNESS OF LATENT TRAIT MODELS AND

EFFECTS OF TEST LENGTH AND SAMPLE SIZE

ON THE PRECISION OF ABILITY ESTIMATES

RONALD K. HAMBLETON AND LINDA L. COOK
UNIVERSITY OF MASSACHUSETTS

Although latent trait models are potentially very useful, there remain many
practical problems at the application stage. For example, how should a latent
trait model be selected? It is tempting to use the more general models, since
these models will provide the "best" fits to the available test data. Unfortu-
nately, the more general latent trait models (for example, the 3-parameter lo-
gistic test model) require more computer time to obtain satisfactory solutions,
larger samples of examinees, and longer tests and are more difficult for practi-
tioners to work with. Clearly, more needs to be known about the goodness of fit
and robustness of latent trait models. Such information would aid practitioners
in the important step of selecting a test model.

There has been some research on the goodness of fit of different latent
trait models to a variety of test data sets (e.g., Lord, 1975; Tinsely & Dawis,
1977; Wright, 1968), and generally the results have been good (Hambleton,
Swaminathan, Cook, Eignor, & Gifford, 1978). However, only one study compared
the fit of more than one latent trait model to the same data sets (Hambleton &
Traub, 1973). In that study, improvements were obtained in predicting test
score distributions (for three tests) from the 2-parameter model as compared to
the 1-parameter model.

On the question of model robustness (i.e., the extent to which the assump-
tions underlying the test model can be violated to a greater or lesser extent by
the test data and be fitted by the model), the results of several studies have
been reported (Dinero & Haertel, 1977; Hambleton, 1969; Hambleton & Traub, 1976;
Panchapakesan, 1969). These results have been mixed, perhaps because of the

Vi confounding of results with sample sizes.

The problem with most of the goodness-of-fit studies and the robustness
studies reported to date is that they provide no indication of the practicalvi consequences of fitting a less than perfect model to a data set. It really is
of little interest to the practitioner to know that 15 out of 20 items failed to
be fitted by a test model when the range of discrimination parameters reached a

value of .80. If the size of the examinee sample is large enough, probably all
items could be identified by a chi-square statistic of goodness of fit as not
fitting the model. On the other hand, if the size of the examinee sample is
small enough, perhaps none of the items would be misfit by the model. Study 1
addressed this question.

A ;
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One of the features of using any latent trait model is the possibility of
specifying a "target information curve" and then selecting test items from an
item pool to produce a test with the features characterized by that curve. A
target information curve describes the desired level of information at each
point on the ability scale underlying examinee test performance. Information,
in turn, is directly related to the degree of precision of ability estimates at
different points on the ability continuum. In fact, as long as a test is not
too short, the standard error of estimate at a particular ability level is equal
to 1 divided by the square root of information provided by the test at the abil-
ity level in question. In practice, since the contribution of each test item to
the test information curve (referred to as a "score information curve" when item
parameter estimates are used instead of the item parameter values) is known--
that is, once the item parameter values or the item parameter estimates are
specified--it is possible to select test items from a pool of calibrated test
items (i.e., a pool of test items with associated parameter estimates) to pro-
duce a score information curve that approximates a desired target information
curve.

One of the problems with the paradigm offered above for test development is
the imprecision associated with the item parameter estimates. Score information
curves--and therefore the associated standard errors of ability estimates--will
depend on the precision of item parameter estimates. In turn, precision of item
parameter estimates is influenced by the examinee sample size used to estimate
the item parameters, and in the case of the item discrimination parameter, esti-
mates are influenced by the length of the test. Study 2 was designed to address
this issue.

STUDY 1

The purpose of Study I was to study systematically the goodness of fit Q-f

the 1-, 2-, and 3-parameter logistic models. Using computer-simulated test
data, the effects of four variables were studied: (1) variation in item dis-
crimination parameters, (2) the average value of the pseudo-chance-level parame-
ters, (3) test length, and (4) the shape of the ability distribution. Artifi-
cial or simulated data representing departures of varying degrees from the as-
sumptions of the 3-parameter logistic test model were generated and the goodness
of fit of the three test models to the data were studied.

Method

Simulating the Test Data

The simulation of item response data for examinees was accomplished using
the 3-parameter logistic model. First, the number of examinees (N), shape of
the ability distribution, and values of the ability parameters (0 - 1, 2,...,N)

were specified. Next, the number of items in the test (n) and values of the
three item parameters (±g, b, , I, 2,...,n) were specified. Then, the

examinee and item parameters were substituted in the equation of the 3-parameter

logistic model to obtain (0 < ), representing the probability that

'ii ' ~~~-.- . . ... ..
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examinee i correctly answered item J. The probabilities were arranged in a ma-

trix P of order N x n whose (I, j)th element was Pij. P was then converted into

a matrix of the item scores for examinees (I = correct answer, 0 - incorrect
answer) by comparing each pij with a random number obtained from a uniform dis-

tribution in the interval 0 to I. If the random number was less than or equal
to 2pj (which would happen on the average pij of the time), pij was set equal to

1; otherwise, pij was set to 0. The matrix P of O's and l's was the simulated

test data. Three statistics used in estimating examinee ability were calculat-
ed:

n
1-parameter score, E u , the number-correct score;

g=l

n
2-parameter score, E a u , and

g=l g g

n

3-parameter score, w (0) u
g=l g g

corresponding to statistics that are used in the estimation of examinee ability
with the 1-, 2-, and 3-parameter models, respectively. For the 3-parameter mod-
el statistic, since the item weights [4(0)] depend on examinee ability, 3-pa-

rameter model estimates of ability were estimated for each examinee from LOGIST

(Wood, Wingersky, & Lord, 1976).

The values of item parameters used are summarized in Table I.

Item parameters. Two test lengths (20 and 40 items) were used in the simu-
lations. Item difficulty parameters, b, were selected at random from a uniform
distribution in the interval [-2,2]. An analysis of the difficulty parameters
reported by Lord (1968) suggested that this decision was reasonable.

The discrimination parameters, a, were selected at rendom from a uniform
distribution with mean = 1.12. The range of the discrimination parameters was a
variable under investigation. The range was varied from 0.0 to a maximum of
1.24 [.50 to 1.74], and an intermediate value of .62 [.81 to 1.43] was also
studied. The maximum value of discrimination was similar to the range and dis-
tribution of the discrimination parameters reported for the Verbal Sec-ion of
the Scholastic Aptitude Test (SAT-V; Lord, 1968).

The extent of guessing in the simulated test data was another variable un-
der study. Two values of the average guessing parameter were considered: c
0.0 and c = .25. All pseudo-chance-level parameters were set equal to the mean
value of the c parameter under investigation.

Examinee parameters. The number of examinees was set to 500. This number
was sufficient to produce stable goodness-of-fit results. Two distributions of
ability were considered: Uniform [-2.5, 2.5] and Normal [0, 1].



-352-

Table 1
Test Lengths, Range of Discrimination
Parameters, and Pseudo-Chance Level

Parameters for Each Data Set

Variation in Pseudo-Chance

Data Test Discrimination Level
Set Length Parameters Parameters

A 20 0.00 .00

B 20 0.00 .25
C 20 .81 to 1.43 .00
D 20 .81 to 1.43 .25
E 20 .50 to 1.74 .00
F 20 .50 to 1.74 .25
G 40 0.00 .00
H 40 0.00 .25
I 40 .81 to 1.43 .00
J 40 .81 to 1.43 .25

K 40 .50 to 1.74 .00
L 40 .50 to 1.74 .25

Goodness of Fit

For each data set A through L-2 test lengths x 2 levels of pseudo-chance
parameters x 3 levels of variation in discrimination parameters-and for each of
the two ability distributions--Uniform and Normal--three scoring methods were
used to estimate ability based on the 1-, 2-, and 3-parameter models. Since
simulated data were used, it was possible to "know" examinee ability scores,
which served as the criterion against which to judge the statistics derived from
the three test models for ranking examinees. The rankings of examinees derived
from each model (for each set of test data) were then compared to examinee
true" abilities using Spearman rank-difference correlations and the average

discrepancy in ranks. Because of the arbitrariness of the scale on which 6 is
N

measured, summary statistics such as E I81 - 6I1/N were not studied. To fur-

ther facilitate the interpretation of results, they are reported separately for
each half of the ability distribution as well as for the total ability distribu-
tion.

Results

Results are summarized in Tables 2 through 5.

Level of Variation in Discrimination Parameters

For the values studied in the paper, using discrimination parameters as
item weights contributed very little to the proper ranking of examinees.,i1'
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Table 2
Spearman Rank-Order Correlations (r) and

Average Absolute Difference in Rank Orders (AAD) for
the Two Halves of the Uniform Ability Distribution

Data True vs. 1-P Model True vs. 2-P Model True vs. 3-P Model
Set r AAD r D r AAD

Lower Half (0 = -2.5 to 0.0)
A .88 54.24 .88 54.24 .88 54.24
B .77 76.61 .77 76.61 .83 64.98
C .88 56.07 .88 56.41 .88 56.40
D .76 77.14 .76 76.90 .83 64.28
E .87 56.50 .87 56.56 .87 56.56
F .75 80.08 .75 79.92 .83 65.77
G .94 36.48 .94 36.48 .94 36.48
H .87 58.58 .87 58.58 .91 48.70
I .95 36.50 .95 36.47 .95 36.47
J .87 57.66 .88 56.86 .91 48.01
K .94 37.86 .95 36.96 .95 36.74
L .87 57.82 .88 56.87 .91 48.22

Upper Half (0 = 0.0 to +2.5)
A .88 54.45 .88 55.62 .88 55.62
B .84 63.68 .83 65.35 .83 65.73
C .89 52.23 .88 55.38 .88 55.38
D .88 63.80 .83 65.02 .84 63.19
E .87 56.99 .88 55.38 .88 55.47
F .80 71.57 .80 70.72 .80 69.16
G .94 39.03 .94 40.50 .94 40.50
H .90 50.19 .90 51.05 .90 50.85
1 .94 40.65 .93 41.83 .93 41.85
J .91 49.14 .90 50.55 .91 50.27
K .93 40.79 .94 38.93 .94 38.94
L .89 52.88 .89 52.90 .89 52.68

Level of Pseudo-Chance-Level Parameters

With the 20-item tests the 3-parameter model was considerably more effec-
, tive at ranking examinees correctly in the lower half of the ability distribu-

tion. Correlations were about .08 higher (about .75 to .83) in the uniform dis-
tribution of ability and about .08 higher in the normal distribution (about .65
to .73). The improvement in the average absolute difference in rank order was
about 13.

With the 40-item tests, the 3-parameter model was also somewhat more effec-
tive at ranking examinees correctly in the lower half of the ability distribu-
tion. Correlations were about .04 higher in both ability distributions. The
improvement in the average absolute difference in rank order was about 8. The
reduction in effectiveness of the 3-parameter model weights was to be expected
with the longer tests. Gulliksen (1950) noted the insignificance of scoring
weights when the test gets longer and test items are positively correlated.

Ao
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Table 3
Spearman Rank-Order Correlations (r) and

Average Absolute Difference in Rank Order (AAD) for
the Full Uniform Ability Distribution (0 = -2.5 to +2.5)

Data True vs. I-P Model True vs. 2-P Model True vs. 3-P Model
Set r AAD r AAD r AAD

A .97 28.26 .97 28.37 .97 28.37
B .93 41.85 .93 41.97 .95 36.97
C .97 28.81 .97 29.14 .97 29.14
D .93 42.40 .93 43.93 .94 38.59
E .97 30.83 .97 30.14 .97 30.14
F .93 42.20 .93 42.73 .94 39.02
G .98 20.44 .98 20.61 .98 20.61
H .96 30.13 .96 30.26 .97 27.02
I .98 21.09 .98 21.25 .98 21.25
J .96 30.69 .96 30.75 .97 27.74
K .98 22.48 .98 21.81 .98 21.81
L .96 31.49 .96 30.50 .97 27.30

For examinees in the upper half of the ability distribution, and for the
data sets studied, the number-correct score was about as effective as the more
complicated scoring weights used in the 2- and 3-parameter models.

Shape of the Ability Distribution

As expected, correlations tended to be higher for the uniformly distributed
ability scores.

Test Length

Increases in correlations were observed due to doubling the length of the
*test. Again, as expected, they tended to be rather small.

Conclusions

From the data in this study, it is clear that there are some sizable gains
to be expected in the correct ordering of examinees at the lower end of the
ability continuum with modest length tests (n - 20) when 3-parameter model esti-
mates are used (as opposed to the number-correct score). The gains were cut
roughly in half when the tests were doubled (n - 40) in length. It was also
surprising that item discrimination parameters as weights had so little effect
on the results. However, Gulliksen (1950) summarized the research on item
weights nearly 30 years ago and came to essentially the same conclusion. Conse-
quently, to the extent that these simulated data sets are typical of real data,
it would appear that the application of latent trait models to the problem of
ranking examinees is probably not worth the trouble except in those situations
where gains of the size noted for lower ability examinees are important. The
number correct score ranks examinees nearly as well as the most complicated

scoring methods.
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Table 4
Spearman Rank-Order Correlations (r) and

Average Absolute Difference in Rank Order (AAD) for
for the Two Halves of the Normal Ability Distribution

Data True vs. 1-P Model True vs. 2-P Model True vs. 3-P Model
Set r AAD r AAD r AD

Lower Half ( e = 0.0, SDe = 1.0)

A .82 65.58 .82 65.58 .82 65.58
B .65 94.93 .65 94.93 .74 82.54
C .84 62.72 .83 63.26 .83 63.31
D .65 95.18 .65 95.77 .73 83.49
E .80 70.65 .80 69.43 .80 69.41
F .66 94.63 .64 95.80 .73 83.38
G .91 46.03 .91 46.03 .91 46.03
H .81 68.70 .81 68.70 .85 61.63
I .90 48.23 .91 47.28 .91 47.28
J .81 68.08 .82 67.05 .85 60.09
K .90 48.22 .91 46.58 .91 46.58
L .81 69.01 .81 68.66 .85 61.58

Upper Half ( 0 = 0.0, SD0 = 1.0)

A .84 60.51 .84 60.81 .84 60.81
B .76 75.75 .76 76.16 .77 75.08
C .85 61.09 .85 61.60 .85 61.61
D .76 76.41 .76 78.02 .77 75.63
E .83 64.79 .85 63.08 .85 63.08
F .75 78.69 .75 79.92 .77 77.01
G .90 50.71 .90 50.75 .90 50.75
H .82 65.18 .82 65.45 .83 64.24
I .89 51.25 .90 50.21 .90 50.23
J .82 65.92 .83 64.84 .84 63.16
K .89 51.01 .90 49.95 .90 49.95
L .81 67.60 .82 64.51 .83 63.96

The results of this single study should be generalized with caution, since
the values of the item parameters used may not be typical of real data sets.
Secondly, the criterion measure of goodness of fit seems suitable for the situa-
tion in which a user desires to make norm-referenced interpretations of test
scores. There are many other test situations (for example, those involving
adaptive tests, test score equating, and criterion-referenced tests) where a
different criterion to judge the quality of a solution would be more suitable.
Thirdly, these results provide a somewhat unfair comparison of the 2-parameter
model with the other two models because the item discrimination parameters used
in the weighting process to derive statistics for ability estimation would have
been somewhat different had the "best-fitting" 2-parameter curves to the 3-pa-
rameter item characteristic curves been used. The item discrimination parame-
ters in the best fitting 2-parameter curves would have differed somewhat from
those defined in the 3-parameter curves to which they were fitted. Finally, the

I
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Table 5
Spearman Rank-Order Correlations (r) and

Average Absolute Difference in Rank Order (AAD) for
the Full Normal Ability Distribution (X - 0.0, SD0 - 1.0)

Data True vs. 1-P Model True vs. 2-P Model True vs. 3-P Model
Set r AAD r AAD r AAD

A .94 36.84 .94 36.91 .94 36.91
B .88 53.94 .88 53.90 .91 47.55
C .94 35.87 .94 35.99 .94 35.98
D .88 54.31 .88 54.34 .91 48.61
E .93 41.11 .93 40.96 .93 40.96
F .87 55.73 .87 57.94 .88 53.13
G .97 26.60 .97 26.62 .97 26.62
H .95 36.44 .95 36.46 .96 33.03
I .97 25.20 .97 25.54 .97 25.53
J .94 38.86 .94 37.65 .95 34.15
K .97 27.04 .97 25.88 .97 25.87
L .94 38.79 .94 37.33 .95 34.68

correlation results of the 1-parameter model and, to a much lesser extent, the
2-parameter model are inflated (to an unknown extent) because of tied scores.
Therefore, the true differences in the reported correlations are somewhat larger
than those reported in Tables I to 5.

STUDY 2

This study was designed to investigate two practical questions that are of
some importance and interest to test developers:

1. What are the effects of examinee sample size and test length on the
standard errors of ability estimation curves?

2. What effects do the statistical characteristics of an item pool have on
the precision of standard errors of ability estimation curves?

Method

Variables

Tests of three lengths were considered: 10, 20, and 80 items. Since a test
with 10 items is about as short a test as is used in practice, the 10-test item
length was selected to be studied; and the 80-item test was selected because the
length represents about as long a test as is used in practice.

Ability scores were simulated to be normally distributed (mean - 0, SD =

1). This assumption was made to conform with an assumption made in Urry's
(1974) item parameter estimation method, which was used (with slight modifica-ftions) in this study.

K 1 i
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Three examinee sample sizes were used: 50, 200, and 1,000. The smallest
sample size (N - 50) is considerably smaller than should be used in practice.
It was chosen to identify the worst possible results that could be expected.
The other two sample sizes define minimum and maximum sample sizes typically
used in test development work with latent trait models. Ranges of parameter
values for items in the two pools are shown in Table 6. As Table 6 shows, items
in Item Pool 1 had a wider range of difficulty and discrimination values than
those in Item Pool 2.

Table 6
Range of Item Parameter Values for the

Two Simulated Item Pools

Item Range of Values
Parameter Item Pool 1 Item Pool 2

Difficulty (b) -2.00 to 2.00 -1.00 to 1.00
Discrimination (a) .60 to 2.00 .60 to 1.50
Pseudo-Chance (c) .25 to .25 .25 to .25

Data Simulation

The eight steps in the data simulation were as follows:

1. Item Pool 1 was selected for study.

2. A test length (10, 20, or 80 items) and a sample size (50, 200, or
1,000 examinees) were selected. A sample of examinee ability scores
were drawn from a normal distribution (mean - 0, SD = 1).

*3. Computer program DATAGEN (Hambleton & Rovinelli, 1973), produced (1)
item parameters, given the constraints of the item pool under investi-
gation, and (2) examinee item scores. The computer program used the
3-parameter logistic model, the ability scores from Step 2, and item
parameters generated at this step to produce probabilities of correct
answers for examinees to the test items. These probabilities, in turn,
were converted to examinee item scores (0 or 1) by a random number gen-
erator.

4. The examinee item scores from Step 3 were used in Urry's computer pro-
gram to estimate item and ability parameters. However, only the item
parameter estimates were used further in this particular study.

5. The item parameter estimates were used to obtain the standard errors of
estimate for estimating 0 [SEE (8)]. The values of SEE(O) at seven
ability levels (6 = -3.00, -2.00, -1.00, 0.00, 1.00, 2.00, 3.00) were

calculated.

6. Steps 3 to 5 were repeated three times to obtain three estimates of
SEE(O). All item and ability parameter values for the three runs were
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identical. The particular examinee item scores varied from one run to
the next because of the probabilistic nature of the score outcomes.

7. Steps 3 to 6 were repeated for each combination of test length and sam-
ple size (3 x 3 - 9).

8. Steps 2 to 7 were repeated with Item Pool 2. In all, 54 sets of test
data were considered in the study.

Results

Tables 7 to 9 contain the SEE curves from Item Pool 1 obtained for three
replications of three examinee sample sizes (N - 50, 200, and 1,000) and three
test lengths (n - 10, 20, and 80) and for seven ability levels. Test lengths
and sample sizes given under the column headed "Actual" are the number of items
and examinees remaining after a satisfactory set of item and ability parameter
estimates were obtained from Urry's computer program.

Effect of Sample Size

The data for a test length of 10 items, shown in Table 7, clearly show the
lack of stability of the SEE curves for all sample sizes. There was little im-
provement, if any, due to increasing sample size. This result, however, may be
due to the limited amount of data considered, since improvements were obtained
in Item Pool 2 and at other test lengths.

Table 7
Standard Error Estimates (SEE) Adjusted to Correspond

to 10-Item Tests for Various Sample Sizes and
Ability Levels with a Heterogeneous Item Pool

Sample Size Actual

and Test Sample Ability Level
Replication Length Size -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

50
1 10 34 .66 .33 .67 .22 .75 1.60 2.19
2 10 34 2.40 1.88 .56 1.04 .20 1.34 1.37
3 9 34 .73 .57 1.03 .22 .58 .43 2.19

200
1 10 172 .64 .21 .52 2.15 1.60 1.50 1.48
2 10 137 .22 .51 .36 1.30 .37 .96 2.45
3 10 174 2.63 2.14 .27 2.75 .92 .76 1.91

1000
1 10 841 .98 .26 .58 1.43 3.33 .57 1.18
2 10 833 1.03 1.03 .67 1.05 .45 1.01 1.06
3 10 892 2.44 .49 .67 .30 .29 .89 1.33

Table 8 contains the results for 20 item test lengths and shows that the
SEE curves were beginning to stabilize. Except at extreme values of the ability

?4
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continuum, the results for the smaller sample sizes were nearly as good as those
obtained with the larger sample size (N - 1,000).

Table 8
Standard Error Estimates (SEE) for Various Sample Sizes

and Ability Levels with a Heterogeneous Item Pool

Sample Size Actual
and Test Sample Ability Level

Replication Length Size -3.0 -2.0 1.0 0.0 1.0 2.0 3.0

50
1 20 50 2.84 .70 .35 .30 .31 .44 1.23
2 20 50 1.93 1.53 .39 .32 .24 .45 1.19
3 20 46 2.07 .83 .58 .31 .36 .68 1.48

200
1 20 193 - .57 .26 .39 .33 .50 .77
2 20 196 - 1.51 .37 .34 .25 .53 .86
3 20 196 - 1.03 .22 .49 .34 .40 1.15

1000
1 20 955 -- 1.05 .48 .33 .33 .45 .82
2 20 969 - 1.18 .37 .33 .37 .40 .99
3 20 968 - 1.56 .40 .42 .32 .43 1.07

At a test length of 80 items, the SEE curves were highly stable, as clearly
shown in Table 9. Similar to the effect noted with test lengths of 20, the ex-
pected decrease in variation of the SEE with increase in sample size was appar-
ent only at ability levels of -1, +1, and +2.

Effect of Test Length

Examination of the results reported in Tables 7 through 9 indicate that for
* samples of size 50, as test length increased, variation in the SEE curves de-

creased at all ability levels. Results of the simulations for sample sizes of
200 and 1,000 clearly show the following trends:

1. The most stable SEE curves were obtained for the longest test length;
and

2. For all ability levels, variation in the SEE curves decreased as test
length increased.

Summary

Figure 1 illustrates the effect of test length and sample size on the sta-
bility of the SEE curves at five ability levels for Item Pool 1. Each graph
represents a plot of the values of the SEE curves obtained when sample size was
held constant and test length was varied. It is clear, from examination of
these graphs, that sample size has little effect on the stability of SEE curves
of the 10-item tests. The effect of sample size on the stability of the SEEs

L - ,~~i n______
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Table 9
Standard Error Estimates (SEE) Adjusted to Correspond

to 80-Item Tests for Various Sample Sizes
and Ability Levels with a Heterogeneous Item Pool

Sample Size Actual
and Test Sample Ability Level

Replication Length Size -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

50
1 74 50 1.10 .35 .14 .14 .24 .24 .45
2 79 50 1.06 .48 .25 .17 .13 .32 .49
3 77 50 .93 .20 .19 .15 .17 .29 .48

200
1 80 200 .89 .26 .22 .24 .19 .25 .44
2 80 200 .62 .29 .25 .19 .21 .25 .46
3 80 200 1.06 .35 .21 .19 .20 .25 .48
1000
1 80 999 1.00 .35 .23 .21 .21 .24 .40
2 80 1000 .98 .32 .23 .22 .21 .23 .43
3 80 1000 1.08 .34 .20 .21 .20 .24 .46

was most apparent for the 20-item tests. For the 80-item tests sample size
showed the most pronounced effect when there was an increase from 50 examinees
(Figure la) to 200 examinees (Figure Ic). An effect was also noticed when sam-
ple size was increased from 200 examinees (Figure Ia) to 1,000 examinees (Figure
Ic); however, the improvements in precision were more modest in size.

Table 10 summarizes the data reported in Tables 7 through 9 and includes
summary data for Item Pool 2. Entries in this table are the standard deviations
of the SEEs obtained across the three replications of the various studies.

4 Standard deviations are reported for each test length-sample size combination
across five ability levels. Also included in Table 10 is the average of the
standard deviations across ability levels for each combination of test length
and sample size.

Several trends are apparent from examination of the average variation of
the SEEs for Item Pool 1: (1) the variation decreased as test length increased
for all sample sizes; (2) when test length was fixed at 10 items, sample size

,I) had little or no effect on the stability of the SEE curves; and (3) sample size,
generally, had a noticeable effect on the stability of the SEE curves.

Examination of the average variation across ability levels for Item Pool 2
indicated that for all test lengths, sample size has a noticeable effect on the
stability of SEE curves. In comparison to the results reported for Item Pool 1,
the effect of test length on the average variation across ability levels was not
so apparent. The reason for this is the smaller variation observed for short
tests with this particular item pool.

The results in Table 10 indicate that for tests of 20 and 80 items, the

..'.. .... . -" .
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Figure 1
Standard Errors of Estimate (SEE) for Three Test Lengths (10, 20,

and 80 Test Items), Five Ability Levels and
Three Sample Sizes (50, 200, and 1000 Examinees)

(Each Combination of Conditions Was Replicated Three Times)
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variation in the SEE curves, averaged across ability levels, was very similar
for both item pools. For test lengths of 10, the situation was quite different.

In order to make the average variation across ability levels at this test length
comparable for both item pools, these values were recomputed for Item Pool 2
excluding the values obtained for ability level of -2. The recomputed average
variation values were .33, .38, and .52 for sample sizes of 50, 200, and 1,000,
respectively. It is clear that for short tests, the homogeneous item pool (Item
Pool 1) resulted in smaller average variations than did the heterogeneous item

pool. A second point worth noting, is that the heterogeneous item pool (Item
Pool 2) provided more stable SEEs at an ability of -2 for test lengths of 10 or
20 items than did the homogeneous item pool. For test lengths of 80, the re-
sults appear to be about the same for both item pools.

Conclusions

This study has provided data concerning the size of improvements in SEE

curves relative to the three factors under investigation: (1) sample size, (2)
test length, and (3) item pool characteristics. Several conclusions appear to
be warranted:
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Table 10
Standard Deviations of Standard Errors of Estimates
Across Three Replications at Several Ability Levels
for Different Test Lengths and Examinee Sample Sizes,

and for the Heterogeneous Item Pool (Pool 1)
and the Homogeneous Item Pool (Pool 2)

Sample Average
Size Variation
and Across

Test Item Ability Level Ability
Length pool -2.0 -1.0 0.0 1.0 2.0 Levels

10 50
Pool 1 .68 .20 .39 .23 .50 .40
Pool 2 .17 .11 .41 .28 .24

200
Pool 1 .85 .10 .60 .50 .31 .47
Pool 2 .03 .07 .03 .22 .09

1000
Pool 1 .32 .04 .47 1.40 .19 .60
Pool 2 .07 .03 .04 .03 .04

20 50
Pool 1 .36 .10 .01 .05 .11 .16
Pool 2 .78 .07 .10 .05 .08 .22

200
Pool 1 .38 .06 .06 .04 .06 .12
Pool 2 .37 .00 .02 .04 .00 .09

1000
Pool 1 .22 .05 .04 .02 .02 .09
Pool 2 .50 .03 .01 .00 .02 .11

80 50

Pool 1 .11 .04 .01 .05 .03 .06
Pool 2 .16 .04 .01 .02 .04 .05

200
Pool 1 .04 .02 .02 .01 .00 .02
Pool 2 .03 .01 .01 .01 .01 .01

1000
Pool 1 .01 .01 .00 .00 .00 .00
Pool 2 .02 .00 .00 .00 .01 .01

I. Both test length and sample size are extremely important factors in the

precision of SEE curves. The small number of reversals in the results
was no doubt due to sampling fluctuations.

2. At the extremes of an ability continuum precision of SEE curves is very
poor, even with large examinee sample sizes. The results are substan-

tially better when tests are lengthened, even if the sample size is
small (N - 50).t3. The precision of SEE curves would be acceptable in most instances if
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the curves are based on 200 or more examinees with test lengths of at

least 20 items. This recommendation holds if primary concern is with

values of the curves in middle regions of the ability continuum [-1 to
+11].

4. Increases in examinee sample sizes from 50 to 200 produce sizeable im-

provements in the precision of SEE curves; however, gains in precision

due to increasing a sample size from 200 to 1,000 produce only modest
gains in precision of the SEE curves.

5. Similarly for test lengths, improvements in precision were substantial-
ly better when the change was from 10 to 20 items than from 20 to 80

items.

The results of this study suggest that if an item pool is typical, the sta-

bility of SEE curves across readministrations of the test to similar groups of

examinees will be quite good if the test includes at least 20 items and if 200

or more examinees are used in deriving the item statistics.

REFERENCES

Dinero, T. E., & Haertel, E. Applicability of the Rasch model with varying item

dlscriminations. Applied Psychological Measurement, 1977, 1, 581-592.

Gulliksen, H. Theory of mental tests. New York: John Wiley & Sons, 1950.

Hambleton, R. K. An empirical investigation of the Rasch test theory model.

Unpublished doctoral dissertation, University of Toronto, 1969.

Hambleton, R. K., & Rovinelli, R. A FORTRAN IV program for generating examinee
response data from logistic test models. Behavioral Science, 1973, 18, 74.

Hambleton, R. K., Swaminathan, H., Cook, L. L., Eignor, D., & Gifford, J. A.
Developments in latent trait theory: Models, technical issues, and appli-
cations. Review of Educational Research, 1978, 48, 467-510.

Hambleton, R. K., & Traub, R. E.. The robustness of the Rasch test model (Re-

port No. 42). Amherst: University of Massachusetts, School of Education,
Laboratory of Psychometric and Evaluative Research, 1976.

Hambleton, R. K., & Traub, R. E. Analysis of empirical data using two logistic
latent trait models. British Journal of Mathematical and Statistical Psy-

, chology, 1973, 26, 195-211.

Lord, F.lo: 1973 26auaio with5-211. data of a procedure for estimating abili-
ty and item characteristic curve parameters (Research Bulletin 75-33).

Princeton, NJ: Educational Testing Service, 1975.

Lord, F. M. An analysis of the Verbal Scholastic Aptitude Test using Birnbaum's



-364-

three-parameter model. Educational and Psychological Measurement, 1968,
28, 989-1020.

Panchapakesan, N. The simple logistic model and mental measurement. Unpub-
lished doctoral dissertation, University of Chicago, 1969.

Tinsley, H. E. A., & Dawis, R. Test-free person measurement with the Rasch sim-
ple logistic model. Applied Psycholbgical Measurement, 1977, 1, 483-487.

Urry, V. W. Approximations to item parameters of mental test models and their
uses. Educational and Psychological Measurement, 1974, 34, 253-269.

Wood, R. L., Wingersky, M. S., & Lord, F. M. LOGIST: A computer program for
estimating examinee ability and item characteristic curve parameters (Re-
search Memorandum 76-6). Princeton, NJ: Educational Testing Service,
1976.

Wright, B. D. Sample-free test calibration and person measurement. In Proceed-
ings of the 1967 Invitational Conference on Testing Problems. Princeton,
NJ: Educational Testing Service, 1968.

ACKNOWLEDGMENTS

This research was performed pursuant to a contract from the United States
Air Force Office of Scientific Research. However, the opinions expressed here

do not necessarily reflect their position or policy, and no official endorsement
by the Air Force should be inferred. A complete report of Study 2 is contained
in L. L. Cook & R. K. Hambleton, Effects of test length and sample size on the
estimates of precision of latent ability scores (Report No. 87). Amherst: Uni-
versity of Massachusetts, School of Education, Laboratory of Psychometric and

* Evaluative Research, 1979. The authors are indebted to Janice Gifford for her

extensive help in the collection and analysis of data reported in Study 2.

3

1)

-'ti-'



ESTIMATING ABILITIES WITHIN THE Two-PARAMETER LOGISTIC

LATENT TRAIT MODEL IN THE PRESENCE OF A NON-SYMMETRIC

DISTRIBUTION OF ABILITY

MICHAEL WALLER

UNIVERSITY OF WISCONSIN--MILWAUKEE

Estimation of the parameters in the 2-parameter logistic latent trait model
will be discussed within the framework of the estimation procedure developed by
Bock and employed in the LOGOG computer program (Kolakowski & Bock, 1973). This

method of estimation requires the assumption of some prior distribution of abil-

ities during estimation of the item parameters (although no distributional as-
sumption is required during estimation of the ability parameters). Typically, a
normal prior is assumed during item parameter estimation. The questions to be

explored in this monte carlo study are (1) What effect does this method of esti-
mation have on the estimated abilities when the true distribution of abilities
is nonsymmetric? and (2) Since the entire procedure is defined only to within a
linear transformation, does there exist a linear function of the data that will
improve the accuracy of the estimated abilities in this situation? The monte
carlo simulation presented here reveals a plausible and simple candidate: a lin-
ear transformation using the means of the item difficulties and item discrimina-
tions. However, theoretical support in closed form for this solution is still
forthcoming.

The motivation for seeking some function of the estimated item parameters
to adjust the estimated abilities stems from the following well-known fact re-
garding the value of the discrimination parameter in the l-pqrameter logistic
model, commonly known as the Rasch model. The Rasch model is typically written
as in Equation 1.

(g. - ei)
P.. = e 01]

(B. -8i1 +e 0

Alternatively, it may be written as in Equations 2 and 3.

(Bj - ~

e (6 _ a. i) = a for all j; [2]

l+e

V' I I I ] ] '
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(8. - 4.)
e _~ i) ctO. 1e 3]

1e
1 + eT

Examination of Equations 2 and 3 makes it explicit that the 1-parameter Rasch
model may in fact have item discrimination parameters that are all equal to some
constant value, say a. The value of the constant will in most cases be unknown,
as it will be considered in the variance of the distribution of the estimated
abilities. Since this unknown item parameter may affect the distribution of the
abilities, it is possible that unknown parameters of the distribution of abili-
ties may affect the item parameters in a discernible way.

The Estimation Procedure

The entire estimation procedure is performed in two-step cycles. Estima-
tion of abilities using the current item parameter estimates is the first step,
and estimation of the item parameters using the current ability estimates is the
second. In each cycle the mean and variance of the ability continuum are stan-
dardized to 0 and 1, respectively. The cycling continues until stable item pa-
rameters are reached.

Estimation of Ability

Estimation of abilities by maximum likelihood in this procedure, when spe-
cialized to binary choice data, is accomplished by the standard method as fol-
lows:

Let j = 1,..., n items;

fl if person i is correct on item
Kji'Jo if person T is incorrect on item
ei = the latent ability of person i;

aj = the item difficulty parameters; and

aj = the item discrimination parameters.

Then, for a given person i the likelihood function is

n r..L.(I -r..

LlP O( - P..) [41

where Pij = Pr(r-iJ 110); here

(e - aj e.)
p. e: [51

Therefore, the log likelihood is given by*
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= log L (Oiri = E r.. log P.

[61
+ (1 - r.i.) log (1 - P..).

Given the first and second derivatives of the log likelihood, Newton-Raph-

son iteration may be applied to the kth stage estimate of the parameter to yield

the (k + i)st stage estimate:

22.. ,£

0k+l = 0 k - -
[7]

Estimation of Item Parameters

Estimation of the item parameters--difficulty, Oj, and discrimination,

aj--is not accomplished in the standard procedure (as described, for example, in

Lord, 1963). Instead, the item parameters are estimated under the assumption
that the abilities follow a previously specified distribution; here the normal
distribution is used, with a mean and variance of 0 and 1, respectively. This
is accomplished at each cycle by taking the current estimates of abilities,
ranking them, and distributing them into 10 groups or fractiles in such a way
that the number of subjects, N., across the i = 1,... 10 fractiles reflect the
normal distribution. Then, it is assumed that within each fractile the subjects
are sufficiently homogeneous to permit proceeding as though there are Ni inde-

pendent observations all at the same ability level, e1, some middle value in
fractile i. Formally, the procedure is as follows:

Let i = 1, 2,..., t groups or fractiles whose subjects are
sufficiently homogeneous as to be characterized by 8i;

N i = number of subjects in fractile i (determined by
the assumed distribution);

r = number of subjects in group i who respond to
item j correctly;

_Ej = {r-jl} = vector of item responses to item
J across the t fractiles;

- the required difficulty parameter; and
a = the required slope parameter.

Then, for a given item j the likelihood function is

t N.!IT L1- ((N 7= -r .. ( [8]
-3J' = r..! (Ni- ri) p' 1-ij

J
J)

- -..... , ,..,-... .. _ _ __.
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where

Bj= a .6.

P.. = Pr (r.. correct INiOj,aj,6i) = e s

l+e '

Therefore,

91 . = log Li(a aiLj

C + E rij log P.. + (Ni - rij) log (I - P[9
i *

Given the matrices of first and second derivatives, Newton-Raphson iteration

may be applied to the kth stage estimate of the parameters to yield the (k +
i)st stage estimates:

0. 0. 2.d d~ -1l

- + [10]

a k+lct k j. . .

Example

The Data

The choice of the distribution of abilities for the monte carlo data was

made to approximate an available set of data. The following distribution
function was used:

=---- + e +

with corresponding density function

-20 + 1 [121

25 5 *

The theoretical median, mean, variance, and coefficient of skewness were, re-

'I spectively,

Md = Median = -1.03555 [13]
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= E(0) = -. 8333... [14]

2 = E[(e_J) 2] 1.3888... [15]

e
3

- i +4.4921. [16]
3

2

and the density is approximated by Figure 1.

Figure 1
The Distribution of 6

P

-3 -2 -1 0 1 2 3 0

The abilities ranged from -2.5 to +2.5, with 75% of the population lying between

-2.5 and 0.

A sample of N = 480 abilities was generated by obtaining a random number in
the unit interval for the value of the probability F and applying the inverse of

the distribution function:

1 1' 1 + 4(3/4 - F) [17]8 2/5 [7

For each simulated subject, responses to n = 45 items were generated. The dif-

ficulties of these items were set at values between -2.2 and +2.2 in steps of
.1; the discriminations were all set equal to 1. Each subject's responses to
these 45 items were generated by calculating the probability of a correct re-
sponse, Pij, using these item parameters and the subject's e, and then comparing
Pii to a random number p in the unit interval. For each item

I P..> p
r. . [181

0 PJ 7 <

The criterion used to determine successful estimation of the sample's abil-
ity parameters was as follows: Construct approximate 95% confidence intervals



-370-

around each subject's estimated ability using the estimate of the asymptotic
variance of 61 given by the negative of the inverse of the second derivative of

the log likelihood function. Then, simply count the number of subjects whose
95% confidence interval failed to cover the true ability and compare this number
to the expected number from a binomial distribution with . = .05.

Results

The results of the monte carlo study are as follows:

I. Estimating the abilities using the above procedure and placing a 95%

confidence interval around each estimated ability yielded 353 out of
the 480 simulated subjects for which the 95% confidence interval
failed to cover the true ability.

2. The mean of the estimated item difficulties was b = 0.898; the mean of

the estimated item discriminations was a = 1.274.

3. Applying the linear transformation

+a [19]e.= + ao

and the appropriate adjustments to the variance of the O's, yielding a
standard error of oGi a a 8 and then placing 95% confidence intervals

around the transformed ability estimates, ei, yielded 31 out of 480
subjects for which the 95% confidence interval around the transformed
ability estimate failed to cover the true ability--a result which did
not differ significantly (y > .09) from the expected number of 24 out
of 480 subjects. In other words, with this transformation procedure,
successful recovery of abilities was obtained.

Discussion

The results of this study should be neither over-interpreted nor under-
interpreted. Although the study was based on only one sample of monte carlo
data, the random number sequence utilized to generate these data was thoroughly
checked for serial correlation and uniform distribution, utilizing the proce-
dures presented in Hammersley and Handscomb (1964, chap. 3). Since the latent

Ucontinuum was standardized to a mean of 0 and variance of 1 at each cycle, the
shift in the mean of the difficulties as well as the shift in the mean of the
discriminations cannot be interpreted simply as resulting from a failure to

standardize the latent continuum.

Nevertheless, these are monte carlo results which are only at best loosely

supported by theory. In addition, the behavior of this procedure in other cir-
cumstances in unknown, i.e., change the distribution of abilities or the distri-
bution of either of the item parameters, and the adequacy of the procedure for
recovering ability is undemonstrated. Consequently, extreme caution is recom-
mended before utilizing the correction presented here.
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The study does support the contention that there is an intimate connection
between item parameter and ability parameter estimation. Although almost all
estimation procedures in latent trait theory utilize the conditional two-step
procedure-estimation of ability parameters followed by estimation of item pa-
rameters--estimation of the two sets of parameters is not independent. Conse-
quently, latent trait methods that attempt to use a particular procedure in es-
timation but that begin by assuming, for example, that the item parameters are
known and then present a "solution" to a particular problem for ability estima-
tion, given known item parameters, are likely to be of limited practical utili-
ty.
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ESTIMATION OF PARAMETERS IN THE
3-PARAMETER LATENT TRAIT MODEL

HARIHARAN SWAMINATHAN AND JANICE GIFFORD
UNIVERSITY OF MASSACHUSETTS

The successful application of latent trait theory to practical measurement
problems hinges upon the availability of procedures for the estimation of the
parameters. Hence, investigations of the adequacy of the available procedures
for estimating parameters in latent trait models are necessary and, indeed, play
a crucial role when assessing the usefulness of latent trait theory.

Although the problem of estimating parameters in the 1-parameter latent
trait model appears to be solved, some degree of controversy seems to surround
the estimation of parameters in the 2- and 3-parameter models (Andersen, 1973;
Wright, 1977). Lord (1975) has empirically evaluated the maximum likelihood
procedure for estimating the parameters in the 3-parameter model and has pro-
vided answers to some of the questions that arise with respect to estimation of
parameters. Jensema (1976) has compared the efficiency of a heuristic procedure
suggested by Urry (1974) for estimating the parameters in the 3-parameter model
with the maximum likelihood procedure. Ree (1979) has compared the properties
of the Urry estimators and the maximum likelihood estimators and has investi-
gated the effect of violating the underlying assumptions on the estimates, fix-
ing the test length (80 items) and the number of examinees, however. Despite
these efforts, little is known regarding the statistical properties of the esti-
mators in the 3-parameter model and the effect of test length and examinee popu-
lation size on the estimates.

Purpose

The purpose of this study was to investigate the efficiency of the Urry
(1976) procedure and the maximum likelihood procedure for estimating parameters
in the 3-parameter model, to study the properties of the estimators, and to pro-
vide some guidelines regarding the conditions under which they should be em-
ployed. In particular, the issues investigated were (1) the "accuracy" of the
two estimation procedures, (2) the relationship between the number of items,
examinees, and the accuracy of estimation, (3) the effect of the distribution of
ability on the estimates of item and ability parameters, and (4) the statistical
properties, such as bias and consistency, of the estimators.

Design of the Study

In order to investigate the issues mentioned above, artificial data were

4I
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generated according to the 3-parameter logistic model

P. () = c. + (l - c.) {i + exp[-l. 7 ai(e. - bi)]} [1]

using the DATGEN program of Hambleton and Rovinelli (1973). Data were generated
to simulate various testing situations by varying the test length, the number of
examinees, and the ability distribution of the examinees. Test lengths were
fixed at 10 items, 15 items, 20 items, and 80 items. Since the accuracy of max-
imum likelihood estimation with large numbers of items has been sufficiently
documented by Lord (1975), tests with small numbers of items--lO, 15, and 20--
were chosen so that the accuracy of the estimation procedure could be ascer-
tained for short tests. This is particularly important if latent trait theory
is to be applied to criterion-referenced measurement. Similarly, the sizes of
examinee population were set at 50, 200, and 1,000 in order to study the effect
of small sample size on the accuracy of estimation.

In the Urry (1976) estimation procedure, the relationships that exist for
item discrimination and item difficulty between the latent trait theory parame-
ters and the classical item parameters are exploited (Lord & Novick, 1968, pp.
376-378). These relationships are derived under the assumption that ability is
normally distributed and that the item characteristic curve (ICC) is the normal
ogive. In order to study how the departures from the assumption of normally
distributed abilities affect the Urry procedure, three ability distributions
were considered: normal, uniform, and a negatively skewed distribution. The
normal and uniform distributions were generated with mean 0.0 and variance of
1.0. (The uniform distribution was generated on the interval -1.73 to 1.73 to
ensure unit variance.) A beta distribution with parameters 5 and 1.5 was gener-
ated to simulate a negatively skewed distribution, and then rescaled so that the
mean was 0.0 and the variance 1.0. The distributions were standardized to re-
move the effect of scaling on the estimates of the parameters.

The three factors--test length (4 levels), examinee population size (3 lev-

els), and ability distribution (3 levels)--were completely crossed to simulate

36 testing situations. Test data arising from these situations were subjected
to the Urry estimation procedure using the computer program ANCILLES and to the
maximum likelihood estimation procedure using the computer program LOGIST (Wood,
Wingersky, & Lord, 1978).

Lord (1975) has emphasized the fact that simulated data should in some way
resemble real data; otherwise, results obtained through simulation studies will
not generalize to real situations. An attempt was therefore made to generate
test data as realistically as possible. In order to accomplish this, item dif-
ficulty parameters were sampled from a uniform distribution defined in the in-
terval b - -2.0 to 2.0, and item discrimination parameters were sampled from a
uniform distribution in the interval a - .6 to 2.0. Since data were generated
to simulate item responses to multiple-choice items with four choices, the
pseudo-chance level parameters were set at c - .25. It should be noted, howev-
er, that this does not ensure close approximation of the generated data to real

j data. Combinations of item difficulty and discrimination that may not occur in
constructed tests may occur with simulated tests and, hence, may affect the es-

9 .. , -- . .. .. , , , . . .
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timation procedures, limiting the generalizability of the findings in simulated
studies to real situations. On the other hand, since the purpose of this study
was to compare two estimation procedures and to study the statistical properties
of estimators, the possible lack of correspondence between simulated and real
data may not be a serious problem.

Results

Accuracy of Estimation

Comparisons between ANCILLES and LOGIST across various test lengths, exam-
inee population sizes, and ability distributions are indicated in Tables 1, 2,
and 3. The statistics reported are (1) the mean, , of the population item pa-
rameters for each population size; (2) the mean, X, of the estimated item param-
eters; and (3) the correlation, P, between the true parameters and their esti-
mates. These statistics are reported for the estimates obtained by employing
both ANCILLES and LOGIST.

A comparison of the mean of the generated item parameters, P, and the mean
of the estimates, X, for each of the item parameters-discrimination (a), diffi-
culty (b), pseudo-chance level (c), and the ability (0) parameters--provides
some indication of the accuracy of estimation. However, this comparison is
rather weak when carried out alone, since the means do not contain all the es-
sential information. Simultaneous comparisons of the means and examination of
the correlations between the parameters and estimates, on the other hand, pro-
vide more complete information regarding the accuracy of estimation. If the
correlation is high, and the means differ, then it can be concluded that the
estimation was not sufficiently accurate.

Lord (1975) has implied that if heteroscedasticity exists, it may not be
meaningful to compute correlations betwn-r true and estimated values, and, in
general, the authors of this paper agree. However, since in the strict sense
heteroscedasticity will invalidate the computation of a least squares regression
line--the more appropriate criterion to employ is the generalized least squares
criterion--and hence will rule out the use of simple, interpretable statistics
for the evaluation of the accuracy of estimation, heteroscedasticity (when it
occurred) was ignored; and correlations and least squares regression equations

I were computed.

Estimation of the discrimination parameter. Examination of the results in
Tables 1, 2, and 3 indicates that the a parameter was poorly estimated for short
tests. The highest correlation between true values and estimates for a test
with 10 items and normally distributed ability was .36, with the mean of the
estimates exceeding the mean of the true values. The correlations improved with
increasing sample size and test length, with the mean of the estimated values
approaching the mean of the true values from above. The highest correlation
between the estimated and true values was .88 for an 80-item test with 1,000
examinees. This trend was also evident for the uniform and negatively skewed
distributions of ability. In general, the a parameter was poorly estimated by V
ANCILLES, with the estimation improving more rapidly with increasing test length
than with increasing examinee population size.
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The least squares regression lines (for normally distributed ability) for
predicting the estimates from true values, given in Table 4, were plotted (not
shown) and compared with the line y = x in order to determine the extent of the
bias in estimation. The regression lines for all the test-length and sample-
size combinations fell above the line y = x, indicating that ANCILLES systemati-
cally overestimated the a parameter, with the regression lines approaching the
line y = x with increasing test length. Again, the convergence to the line y =
x was more rapid with increasing test length than with increasing sample size.

Trends similar to that observed with ANCILLES were also observed with LO-
GIST. Although the estimation of a was poor, the LOGIST estimates were consist-
ently better than those from ANCILLES in that the correlations between true val-
ues and estimates were higher and the means of the estimates were m"'ch closer to
the means of the true values. Comparison of the plots of the regression lines,
given in Table 4, with the line y = x showed that although there was a general
tendency for the parameters to be overestimated, this tendency was not as marked
as with ANCILLES; the convergence of the regression lines to the line y = x was
more rapid. These trends--the higher correlations between true and estimated
values than for ANCILLES estimates, the tendency for the means of the estimates
to be closer to the means of the true values, and the rapidity of convergence of
the regression line to the line y = x--were also observed with the uniform and
negatively skewed distribution of ability.

Estimation of the difficulty parameter. ANCILLES was very successful in
providing accurate estimates of the b parameter. The correlations between esti-
mates and true values ranged from .85 to .99. Comparison of the regression
lines for normally distributed ability, given in Table 4, with the line y = x
indicated that with the exception of tests with 10 items, the b parameter was
generally overestimated for tests with 15 and 20 items. With larger numbers of
items, there was a tendency for difficult items to be overestimated and for easy
items to be underestimated. However, the bias was slight in that the conver-
gence of the regression line to the line y = x was rapid with increasing items
and sample size.

In general, the LOGIST estimates of the b porameters were better than the
estimates produced by ANCILLES. The correlatjons between true and estimated
values ranged from .88 to 1.00, whereas ANCILLES yielded correlations ranging
from .85 to .99. The means of the estimates were, in general, closer to the
means of the true values than they were with ANCILLES. Comparisons of the re-
gression lines, given in Table 4, with the line y = x revealed that with in-
creasing test length and sample size, the regression line approached the line y
x rather rapidly, demonstrating that there was no bias in the estimation. No

clear trends were visible with 10, 15, and 20 items, although the test with 10
items and 50 examinees produced overestimates of the b parameter. These results
appeared to hold for both the uniform and negatively skewed distributions of
ability, although with the skewed distribution there were two instances when the
estimates of difficulty went out of bounds. These cases are indicated with an
asterisk in Table 2. However, with 80 items and 1,000 examinees, the agreement
between estimated values and true values was comparable to that obtained with
normally distributed ability.

I,
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In general, the b parameter was estimated rather well by both LOGIST and
ANCILLES. LOGIST fared surprisingly well with small numbers of items and exam-
inees in comparison with ANCILLES, and in general produced better estimates (as
determined by the correlations) than did ANCILLES.

Chance-level parameter. The true value of the chance-level parameter was
set at c-.25 for all the items. Given this lack of variation among the true
values, correlations between estimates and true values were not computed.
Hence, only the mean of the true values, the mean of the estimates, and the
standard deviation of the estimates are reported in Tables 1, 2, and 3.

ANCILLES clearly produced very poor estimates of the c parameter. The
means of the estimates were consistently higher than the mean of the true val-
ues, with relatively large standard deviations. LOGIST estimates, on the other
hand, were close to the true values, with small standard deviations. The mean

LOGIST estimates ranged from .12 to .25 for normally distributed ability, from
.19 to .25 for skewee. distribution of ability, and from .18 to .25 for uniformly
distributed ability. In comparison, ANCILLES yielded estimates that ranged from
.20 to .36, .20 to .56, and .22 to .46, respectively, for the three distribu-

tions of ability.

Estimation of ability. An examination of Tables 1, 2, and 3 indicates a
consistent pattern in the estimation of ability (6) for both LOGIST and ANCIL-
LES. The correlations between true values and estimates did not seem to be af-
fected by increasing sample sizes for fixed test lengths. On the other hand,
increasing the lengths of the test greatly affected the magnitude of the agree-
ment between true values and estimates. This not surprising trend held for the
three distributions of 0.

In general, it appears that although no differences existed between the
ANCILLES and LOGIST estimates of 0 for tests with 15 items or more, the LOGIST

estimates fared better than the ANCILLES estimates for short tests with 10
*items. This effect was more pronounced with the skewed ability distribution.

* A closer expmfnation of the two estimates by comparing the regression lines
(obtained by regressing the estimates on the true values with the line y = x)

* indicated that, in general, ANCILLES underestimated 0 for examinees with high
true abilities and overestimated 6 for examinees with low true abilities. This
may partly be attributed to the fact that the c parameters were overestimated.
No such trends were evident with the LOGIST estimates. These regression lines
rapidly converged to the line y -x with increasing test length.

Effect of Ability Distribution

A X2 test was used to determine if the uniform and the beta distribuSions
deviated sufficiently from the normal. The beta distribution yielded a X value
of 63.5 when the tails of the normal distribution were excluded and a valle of
193.1 when the tails were included. The uniform distribution yielded a X value
of 69.6 when tails were excluded and 307.7 when the tails were included. This
indicates that both distributions deviated sufficiently from the normal, with
the uniform distribution deviating even more than the beta distribution.

it
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Comparisons of the results in Tables 1, 2, and 3 reveal that, in general,
the beta distribution affected both estimation procedures, while the uniform
distribution produced results similar to those obtained using a normal ability
distribution. Although the beta distribution affected the estimation of a for
both procedures and c and 6 for ANCILLES, the estimation of b did not seem to be
affected in either case. ANCILLES fared poorly with the skewed distribution in
comparison to LOGIST in the estimation of the a, c, and 6 parameters.

The estimates for the a parameter, resulting from both procedures, were
negatively correlated with The true values for short tests. For longer tests,
although estimates from both procedures improved, ANCILLES produced poor esti-
mates in comparison to LOGIST. For an 80-item test with 1,000 examinees, a cor-
relation of .68 was obtained using ANCILLES, as compared to a correlation of .82
obtained from LOGIST.

The estimates of the c parameters resulting from ANCILLES were extremely
high for all tests except those of 80 items. The mean values ranged from .20 to
.56 with the beta distribution, as compared to a range of .20 to .36 for the
normal distribution of ability. The LOGIST estimates, on the other hand, were
underestimated but comparable to those obtained using a normal distribution of
ability.

The LOGIST estimates of ability resulting from using a skewed distribution
of ability were as good as, and in some cases better than, the estimates ob-
tained with a normal distribution. In contrast, ANCILLES with a skewed distri-
bution resulted in poorer estimates. This effect held true even as sample size
and test length increased.

Thus, ANCILLES estimates of 0, a, and c parameters seemed to be affected
more dramatically than the LOGIST estimates when ability had a skewed distribu- 2
tion. It should be noted that although the uniform distribution had a larger X
value than the beta distribution, the results obtained with the uniform distri-
bution of ability were similar to those obtained with the normal distribution.
It is, then, not departures from normality but departures from symmetry and the
unavailability of examinees in the lower tail of the ability distribution that
affected the estimation procedure.

Statistical Properties of Estimation

Bias. If g is an estimator of y, then.& is an unbiased estimator of Y if

E(y) = y, [2]

where E(.) is the expectation operator. This is a desirable property of estima-
tors.

Schmidt (1977) has pointed out that the Urry procedure, developed by Urry
in 1974, systematically overestimated the a parameter and underestimated the b
parameter. Urry (1976) suggested a correction for this and incorporated this-
into the ANCILLES program, employed to estimate parameters in this study. Since
it appears-that for large numbers of items and examinees the estimates are un-

--.- a
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biased (Lord, 1975), in order to study the effect of this correction on the es-
timates and to examine if the LOGIST estimates were unbiased a relatively short
test of 20 items with 200 examinees was selected, response data were generated,
and item parameters were estimated; this was replicated 20 times. Since the
replications were obtained by generating sets of random examinees, the bias in
the estimator of ability was not investigated.

The results of the replications are presented in Table 5, in which the true
value, 1, of the 20 item parameters is given together with the mean estimate, X,
of the item parameters over 20 replications. The standard error and the t value
obtained as

t = (X - 3)ISE [31

are also given to indicate the degree of departure of the mean estimate from the
true value.

ANCILLES clearly overestimated the a parameter, as d14 LOGIST. However,
the bias in the LOGIST estimates did not appear to be as severe as the bias in
the ANCILLES estimates. This finding is borne out in Figure 1, where the re-
gression line for predicting X from ji is plotted for both ANCILLES and LOGIST
and compared with the line y = x. The LOGIST regression line is closer to the
line y = x and shows that small values of a were overestimated, while very large
values tended to be estimated accurately, partly due to the fact that an upper
limit was imposed on the estimates. On the other hand, ANCILLES tended to over-
estimate large values, even more than small values, of a.

With item difficulty, LOGIST tended to underestimate easy items, while pro-
ducing relatively accurate estimates of very difficult items (Figure 2). ANCIL-
LES, on the other hand, tended to overestimate items with high b levels and to
underestimate items with negative b levels. In general, ANCILLES seemed to pro-
duce biased estimates of b throughout the entire range.

Consistency. If - n is an estimator of y, -n is a consistent estimator of y

if for any positive s and T) there is some N such that

Prob {Ig n - Y1 < 0 > 1 - n, n > N. [41

Consistency is a desirable property in that it ensures that an estimator tends
to a definite quantity, which is the true value to be estimated.

The problem of consistency has raised several questions concerning the es-
timation of parameters in the latent trait models. Andersen (1972) has argued
that a consistent estimator of the discrimination parameter does not exist and,
hence, has questioned the meaningfulness of the 2- and 3-parameter models.

In order to investigate whether or not the LOGIST and ANCILLES estimators
were consistent, the regression equation for predicting the estimates from the
true values of the various parameters were examined. The definition for a con-
sistent estimator given earlier implies that an estimator is consistent if it is
asymptotically unbiased and its variance tends to 0.0 with increasing sample

'4.
. .... . ... - . \

- - - - - - - - - - - - --- ..- ,-



381-

4 4 1N~ 4 UC' .ov$%~f 4

9 c! 1 11 1 1 I 'I e

.- u

IX

A. .W

0 N- 0 m l r, N 10 r m a, m~ w% &. w N 10 0
0 !L D4 oo Ai 0 '

4)1-NO N N4clN ~ 4 0

c4

4)

* Ix a, q I N N I4 enN c1 aco

OX 4

w m a) N o m-. qs* O( 4 v,4 m.0 w 4.()-

mL - c4 .4 4I

r, 00 lo NNN m N - iNx o9 I l 1 r ( O -

4) ~ ~ ~ : 0 n vl m) m~ m ~I) 4 "' . 1% N - 4 o .0I

i. L I 'D O Ut N )a) r,- oD 'n m C0% 0, r O 'D
w) 10 -* -nI ! : m

I9 9 Il . . I

0-. l o oC o ,w ,o
x .4)i 1 1 c!c 99 !99c

c" '0c44) . r" - ' 0 NU .

ON I I I II

0 ~ r Pii cin ar~'0% O~toi4% c'04

-4) - - - - - -

0y



7I
-382-

Figure 1
Bias in the Estimation of the Discrimination Parameter

of the 3-Parameter Logistic Model
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size. Consequently, in order for the estimators of the latent trait parameters
to be consistent (1) the slope of the regression equation must approach 1.0 and
the intercept must approach 0.0; and (2) the variance, and hence the standard
errors of the estimate of the slope and intercept, must approach 0.0. If these
conditions are met, then the estimator is consistent.

The regression coefficients and the standard errors are reported in Table
4. The results indicate that when both the number of items and the number of
examinees increase, the slope and intercept coefficients approach 1.0 and 0.0,
respectively, with the standard errors approaching 0.0. This tendency is evi-
dent for both ANCILLES and LOGIST estimators for the a, b, and c parameters, and
for e. In all these cases, the LOGIST estimator converged in probability to the
true value more rapidly than the ANCILLES estimator. It should be pointed out,
however, that the results reported here do not conclusively support this. It is
clearly necessary to examine the standard errors and the regression coefficients
with a greater number of items and examinees.

Discussion

The purpose of this study was to compare two methods for estimation of pa-

- .I I I IIIIII I I |
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Figure 2
Bias in the Estimation of the Difficulty
Parameter of the 3-Parameter Logistic Model
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rameters in the 3-parameter logistic model, the Urry method of estimation, and
the maximum likelihood procedure. The computer programs that were used were the
ANCILLES program and the LOGIST program (Wood, Wingersky, & Lord, 1978). The
efficiency of the procedures were compared with respect to the accuracy of esti-
mation, the effect of violating underlying assumptions (for ANCILLES), and the
statistical properties of the estimators. The factors that were controlled were
test length (4 levels), examinee population size (3 levels), and ability distri-
bution (3 levels).

The results indicate that, in general, the maximum likelihood procedure was
superior to the Urry procedure with respect to the estimation of all item and
ability parameters. The differences were pronounced in the estimation of the
discrimination and chance-level parameters, but with respect to the estimation
of ability and difficulty parameters, the differences were less remarkable.
Differing e distributions had little effect on the estimation of b and 0. How-

* ever, with a skewed distribution of e, ANCILLES produced poorer estimates of a
and c parameters than with normal or uniform 0 distributions. LOGIST, although
faring better than ANCILLES (with the exception of the 10-item test), produced
slightly poorer results with the skewed distribution than with the normal or
uniform distribution.
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The number of examinees had a slight effect in improving the accuracy of

estimation of the b and c parameters and e. However, increasing the number of
items and the number of examinees considerably improved the accuracy of the a
estimates with both procedures. Surprisingly enough, a 20-item test with 1,000
examinees produced excellent estimates of the b and c parameters and reasonably
good estimates of a and 9. Tests with 80 items and f,000 people fared consider-
ably better, providing good estimates of all parameters. Tests with 15 items or
less, while yielding good estimates of b and c parameters and reasonable esti-
mates of e, yielded poor estimates of the a parameter. This severely limits the

application of the 3-parameter latent trait model to criterion-referenced mea-
surement situations, since criterion-referenced tests typically have fewer than
10 items. However, it should be pointed out that this limitation exists only if
the item parameters and ability parameters are estimated simultaneously. If
item banks with known item characteristics are employed to estimate ability, or
if the 1-parameter model is employed, this limitation may not ..'st.

Although the LOGIST estimates were superior to the ANCILLES estimates, es-
pecially in the case of short tests, the difference between them was negli6ible
when the number of items and the number of examinees increased. This is of par-
ticular importance, since ANCILLES requires considerably less computer time than
LOGIST. The computer time taken by LOGIST, especially with large numbers of
items and examinees, may become forbidding enough to warrant the use of ANCILLES

in this situation. It should be noted that, in fairness to the maximum likeli-
hood procedure, the Urry procedure, in general, deletes more items and examinees

during estimation than does the maximum likelihood procedure. This may explain
the rapidity of convergence and indicate a weakness in ANCILLES.

The bias and consistency results indicate that for small numbers of items,
the estimates of the item and ability parameters are biased, with the ANCILLES
more biased than the LOGIST estimates. As the number of examinees and the num-
ber of items increase, it appears that the estimators are unbiased and, in fact,
are consistent. This, in a sense, supports a conjecture of Lord (1968) and
shows that the 3-parameter model may be statistically viable.
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SMALL N JUSTIFIES RASCH METHODS

FREDERIC M. LORD

EDUCATIONAL TESTING SERVICE

The usual Birnbaum item response function requires determining three param-
eters for each item; the Rasch model requires only one. If there is only a
small group of examinees, the a parameter (the discriminating power) cannot be
determined accurately for some of the items. The c parameters are even more of
a problem. For small samples, is it perhaps better to use the Rasch model, es-
timating only one parameter per item, even though the Rasch model is incorrect?

For a better perception of the problem, consider a common prediction prob-
lem not related to item response theory: Suppose it is desired to predict vari-
able y from measurements on five predictors. An available sample has been used
to estimate the linear regression of y on the predictors. This regression equa-
tion may now be applied to estimate y for new individuals drawn from the same
population. If the sample used to estimate the regression equation was large,
the procedure is a good one; but if this sample was small, the procedure may be
worse than simply using the sample mean of y as the predicted value of y for
each new individual. Suppose, for example, that the true multiple correlation
for predicting y was .40. If the sample had only 60 cases, the predictions from
the sample regression equation would typically be no more accurate than a pre-
diction that each new value of y will fall at the sample mean of

It would be useful to know how large the sample of examinees must be before
it is worthwhile to use a 2- or 3-parameter item response model in preference to
the Rasch model. The answer to this question will, of course, depend on the
purpose to be served. The present paper is a modest beginning: it only answers
this question for the 2-parameter logistic model and only for one very limited
situation. The purpose of this paper, then, is to point out the problem, to
indicate a method of solution, and to provide some numerical results, indicating
the sample size required when there is no guessing.

Method

Under the Rasch model, ability must be estimated by some function of the
number-correct score x, since this is a sufficient statistic under this model.
Under the 2-parameter logistic model, ability must be estimated by a function of

n'1the weighted sum 1 aiu. of item responses (uj), the weight for each item being

i~1

1*



-387-

the item discriminating power (ai); under this model, this weighted sum is a

sufficient statistic for estimating ability.

Given the .1, the information function for number-correct score x and the

information function for the weighted sum Eai can be readily calculated and

compared. The weighted sum always provides more information than the number-
correct score except in the limiting case where the two scores are identical or
proportional. In practice, the number-correct score perhaps provides up to 95%
as much information as the weighted sum.

But now suppose that the .i are not known but are only estimated. If the

estimates !i. are sufficiently inaccurate, the weighted sum Eiu will be less

informative than the number-correct score x. The problem is to make a precise
statement showing how the usefulness of the weighted sum Eii1 depends on the
number of cases used to determine the estimated weights i.

It is desired to compare x = Eua and Eijui as estimators of ability.

Note, however, that expectations over the aj for fixed a1 gives

&X = EiPi(O) , [1]

and

&Ti~u i = E Pi(e) , [2]

where Pi(e) is the 2-parameter logistic item response function, the probability

of answering the item correctly. This result shows that each scoring method
provides an unbiased estimator of a function of ability, but the functions esti-
mated are not the same.

A comparison must be made between a function of x and a function of Eiia

that estimate the same ability parameter. Moreover, the function of x should be
independent of the i, since the estimation of.a i is not a part of any Rasch

procedure. This will be done as follows:

The ability parameter to be estimated will be considered to be the individ-
ual's true number-correct score:

E i Pi(e) . [3]

Note that this is simply a specified monotonic transformation of ability 6.
Since x is an unbiased estimator of , x is clearly the ideal statistic under
the Rasch model for this purpose.

The optimal estimator of under the 2-parameter model is not x. If there
is no prior distribution for , an optimal estimator is the functio- of the suf-
ficient statistic Ei~iu i that is unbiased for . This function is uniquely de-
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termined by the Rao-Blackwell theorem (Kendall & Stuart, 1973, sec. 17.35), but
it is too complicated for practical use here.

If the.i and the item difficulties b are known, an asymptotically optimal

estimator of F under the 2-parameter model is the maximum likelihood estimator
(MLE),

E iPi() ,[4]

where 0 is the MLE of 0 when the ai and b are known. This follows from the

fact that the MLE of a given function of a parameter is, under regularity condi-
tions, the same function of the MLE of the parameter. Moreover, this estimator

EiPi(O) is actually a function of the weighted sum Ei~i_!i, since the MLE is al-

ways a function of the sufficient statistic if such exists. In fact, 0 is the
solution of the likelihood equation

EiaiPi(6) = Eiaiui [5]

Since the_1 and bi are not known, let A i and b i, estimated from some pre-

viously available sample of examinees, be substituted. Thus, the 2-parameter

estimator to be compared with x is

F Pi(O) [6]

where Pi(0) is the item response function, withAi and bi substituted for the

unknown true item parameters and 0 is the solution of

EiPi(6) - Eiaiui = 0 [7]

If N is large enough, , will necessarily show the same advantage over x as

* does the weighted sum Eii when the 2i are known. But what if N is small, so

that the i and are erroneous estimates?

Since x and are both consistent estimators of the same ability parameter

(i), they are properly compared by their mean squared errors (MSE). The exact
sampling variance of x is

n
Var(x) = Z P.(e)Q.(O) [8]

i=i

Since x is unbiased for , this is also the exact MSE.

The sampling variance of depends on , the true score of the examinee

whose true score is to be estimated. Given , the variance of arises from two
sources:

1 -*_ _ 2. .. ...." ' .... "
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1. Sampling fluctuations in the data on N examinees used to estimate the
a. and the b

2. Sampling fluctuations in the responses (uia) of examinees at the given
true-score level F.

The examinee whose truL score is to be estimated is not included in the sample
of N examinees; thus, the second source of error is independent of the first.

It does not seem feasible to obtain the exact MSE of F when N < -; conse-
quently, the present study deals only with its asymptotic variance, which is
equal to its asymptotic MSE. Formulas for calculating the asymptotic sampling
variance are given in the Appendix.

Table I
Item Serial Numbers and Item

Parameters for All Tests Studied

Item Item Parameters
Serial No. a b

3 1.6 -1.9
4 1.7 -1.5
5 0.8 -1.7
8 1.3 -1.7
9 0.4 0.5
10 1.1 -1.3
13 1.4 -1.2
14 0.9 -1.1
15 0.6 -1.9
18 1.2 -1.0
19 1.6 -0.9
20 0.6 -0.4
23 0.6 -1.3
24 0.5 -1.4
25 0.9 -0.9
28 1.8 -0.9
29 0.9 -0.8
30 0.5 0.3

33 0.7 -0.8
34 0.7 -0.4
35 1.0 -0.2
38 0.8 0.0
39 1.1 -0.4
40 0.8 0.1
43 0.5 0.8

44 1.1 -0.3
45 0.7 0.3
48 0.6 0.8

49 0.4 0.3
50 0.7 0.9

4.

V ro .. ., a
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Test Studied

Numerical results can only be obtained for particular numerical values of
the item parameters ai and bi. The following procedure was used in the hope of

obtaining realistic numerical values.

The responses of 3,000 6th-grade students to a 50-item Metropolitan (MAT)
vocabulary test were analyzed by LOGIST. Since (for simplicity) the present
study was limited to the 2-parameter model, all c parameters were held at 0.
The ;i and 8i obtained were used as true item parameters for the tests to be

studied here. These item parameters are listed in Table 1.

Table 2 shows how 4 different 10-item tests are defined in terms of the
items listed in Table I. Tests 3, 4, and 5 are nonoverlapping spaced samples of
items. Since the items in Table 1 are arranged roughly in order of difficulty,
in Table 2 test difficulty tends to increase from top to bottom. Table 2 also
shows for each test the true test score that corresponds to specified values
of 0. Remember that for any given test, and 0 are equivalent measures of the
same ability, differing only in scale.

Table 2
True Score (W) Equivalent to Specified Ability Levels (e)

for Four 10-Item Tests

Specified Values of 8
Test Items in Test -2 -1 0 1 2

3 3, 8, 13, 18,..., 48 1.8 4.8 7.4 8.7 9.4
4 4, 9, 14, 19,..., 49 1.5 4.1 7.1 8.7 9.3
5 5, 10, 15, 20,..., 50 1.7 3.8 6.3 8.2 9.3
IB 10, 10, 20, 20,..., 50, 50 1.2 3.1 5.4 7.4 8.8 /

Results

Number-correct score x is an unbiased estimator of U. i, the other hand,
is only asymptotically unbTased. The exact small-sample bias of was calculat-
ed for 10-item Test lB and for 5-item Test 1A, parallel to Test lB except for
length. (The method used for computing 8(Q - Ej ) is entirely parallel to the
method for computing Var( I ) described in the Appendix.) Test lB consisted of
2 items exactly like Item 10, 2 like Item 20, and so forth, for a total of 10
items. Test 1A consisted simply of Items 10, 20, 30, 40, and 50.

Table 3 compares the bias of these two tests that differed only in length.
The bias was small, even for five-item tests. The true score of Test IB was
exactly double the true score of Test IA, but the bias in increased more mod-
estly, if at all, as the test length was doubled.

Table 4 shows the exact small-sample variance of when the item parameters
werp known, determined from an infinitely large sample of examinees. In this

I
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Table 3
Bias ( - ) in True Score

Estimate E for Tests LA and 1B,
Which Were Parallel Except for
Length, When Item Parameters

Were Known (N = -)

Test
1A IB

6 (n=5) (n=10)

-2 -.028 -.035
-1 .029 .037
0 .045 .047
1 .029 n26
2 .020 ;20

table Tests 1A, IB, and IC, which were parallel except for length, are compared.
Test IC contained 3 items like Item 10, 3 like Item 20, and so forth, for a
total of 15 items. As might be expected, the sampling variance increased almost
exactly as test length increased.

Table 4
Variance (Equation A2) of True Score

Estimate When Item Parameters Were
Known (N = -') for Tests 1A, IB, IC,

Which Were Parallel Except for Length

Test

LA 1B IC
(n=5) (n=10) (n=15)

-2 .52 1.01 1.50
-1 .92 1.75 2.58
0 .93 1.87 2.82
1 .79 1.60 2.40
2 .47 .95 1.44

As noted previously, the optimal estimator of is the function of liai

that is unbiased for E. Since the desired function (which can be found by the
Rao-Blackwell theorem) is impractical to use, the consistent estimator was
used. The MSE is equal to the variance plus the square of the bias. For Tests
1A and 1B, it can be seen from Tables 3 and 4 that the MSE differed from the
variatice of only in the third decimal place. Table 5 compares the variance of
x with the variance of . Replacing variance by MSE would not change the pic-

ture. The relative efficiency of two consistent estimators is asymptotically
proportional to the ratio of their sampling variances. A comparison of the last
2 columns of Table 5 shows that the efficiency of x ranged from .85 at 0 -' 0 and
O = -1 to .93 at 0 = -2.

II I . . . .. |-, ,
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Table 5
Variance (Equation A2) of True Score Estimate for Test 3,
as a Function of the Sample Size (N) Used to Estimate the

Item Parameters; Also Variance (Equation 8)

of Number-Correct Score x

Var( JI) when
e N=100 N=300 N=1,000 N= - Var (x1)

-2 1.8 1.32 1.23 1.20 1.19 1.28
-1 4.8 1.84 1.76 1.73 1.72 1.90
0 7.4 1.18 1.13 1.12 1.11 1.30
1 8.7 .78 .74 .73 .72 .85
2 9.4 .47 .45 .44 .44 .50

Interpolating in Table 5, it can be seen that for = -2, x was better than
when the item parameters were estimated from a sample with N - 200, to a rough

approximation; was better than x when N > 200. It can be said, therefore,
that N=200 is the critical sample size. For the other tabled 0 values, the
critical sample size is in each case less than 100.

The critical N's for Test 3 are listed in Table 6 along with similar values
for Tests 4, 5, IA, IB, and IC. Because of the heavy cost in computer time, no
runs were made for 15-item tests other than Test IC. It appears that for the
10- and 15-item tests, the Rasch estimator x may be slightly superior to the
2-parameter estimator Z when the number of cases available for estimating the
item parameters is less than 100 or 200. This is the main conclusion of the
study.

* Table 6
Approximate Number of Cases (N) Required for

To Have a Smaller Sampling Variance
Than Number-Correct Score x

i Test

o 1A 3 4 5 IB IC

-2 700 200 <100 300 250 200
-1 3000 <100 <100 250 200 100
0 <100 <100 <100 200 <100 <100
1 100 <100 <100 150 150 200
2 100 <100 <100 100 250 250

Conclusions

.? This study has been limited to a comparison of 1-parameter (Rasch) and
2-parameter estimators of the examinee's true score. Similar studies should be

<1*
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made for the 3-parameter model. Estimators of other quantities, such as item
difficulty, should also be compared. The same approach can, in principle, be
applied to determine the relative effectiveness of the Rasch and other models
for test equating and other practical purposes; however, the computational bur-
den of doing this may prove to be excessive.
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tPPENDIX 4
Asymptotic Sampling Variance of

By a standard formula from analysis of variance, the error variance of
for fixed C can be written

Var(EI ) U ~[Var(ZCz4)IA + Var[U I '(E I ,U)I [All

where Fu and Varu are taken across all possible response vectors u - To

understand the terms in brackets, note that when u is fixed, the only other
source of variability is sampling error in the estimation of the a i and the ')-

Remember that the ai and b i are obtained from a sample of N examinees and that u

belongs to an examinee who is not part of that sample.

For large N the last term in Equation Al is adequately approximated by re-
placing the estimates ji and bi by their true values ai and b i; in other words,

can be replaced by &( 1&,u). By Equations 4 and 5, fixing u also fixes
i , so now C( E,u) E. Thus, the-last term in Equation Al becomes Varu( J&).

By Equation 3 whenever E is fixed, 8 is fixed also; so Equation Al can be writ-
ten approximately

Var( l ) = [Var(Ele,u)JO] + varU( IO) [A21

The first variance on the right arises from sampling fluctuations in the a.
and the bi; the second variance is independent of these fluctuations. The sec-
ond variance can be evaluated as follows:

J

1. For each possible item response pattern u, determine 8 by solving Equa-
tion 5 numerically.

2. For each 6 from Step 1, compute Z Pi(b).
3. For each u, compute

1** .. '
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n U. 1-U. [Prob(ujO) fl Pi(O) t Qi(e) I [A31
~ i=1 2

for the given values of 0 (not 0). This gives the frequency distribu-
tion of u.

4. Compute the variance for given 0 of the Z obtained in Step 2, taken
over the frequency distribution of u found in Step 3. The result is
Varu(zIe), as required.

5. Repeat the foregoing for different given values of 0, as desired.

Although the notation does not make it explicit, the results obtained de-
pend, of course, on the ji and bi of the items in the test being studied. A
separate study must be carried out for each different test. Because of the num-
ber of calculations required, practical considerations limit investigation to
tests not much longer than 15 items.

It remains to evaluate the first term on the right of Equation A2. The
quantity Var(fje,u) will be evaluated by the delta method. Let &i denote the

partial derivative of k with respect to 1j, and similarly for Ii and 6. The
total derivative of is

dZ = E:A + EE ' i da + EE db i . [A41

but now, however, by Equation 7, 0 is itself a function of the arl the b,.
Denoting the left side of Equation 7 by £, the total derivative of Equation 7 is

CA + E-Z da. + EZ' db. 0 [A5
e 2-azj 2

where Li is the partial derivative of k with respect to ai, and similarly for
bi and 0. Eliminating d from Equations A4 and A5 gives

Zi~ WE,7~ - 9 )da. + E -, E% z'^ )dbi [A61
ai bi 0 bi

When the delta method is applied to Equation 6, it is found that

Var(IJe,u) z [i{(9; i - V'ai)  var(aile,u)}

+ E I E 0 b,'i2 Var (bijO,u)iiti

+ 2 E {( ia

o i~ eU)}] [A71
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For given e and u, the variance needed for the first term on the right of

Equation A2 can be computed from Equation A7. The necessary derivatives are

= .aTr [A8]

a . [A9]

k -Za r ,[All]

-. a w [All]

' ui - P. _ ai( _ bi) , 1Al2].
a 1 - 1 1 1

22a~r [A131

where vi = DPiQi denotes the derivative of Pi with respect to Li  (-bi), and

D = 1.7. The variance-covariance matrix of aE and b,, needed in Equation A7, is

found by inverting the Fisher information matrix:

N N
2 z (ea- bi)PiaQia -2a.i E (a- bi)PiaQiaall Za=l

N N
-D2 ai E (0 -bi)Pi Qa D2 a E P.Q [A4]

1a a ia ia 1- ia ia

where a P(6a

To evaluate Equation A2 for fixed 0, compute Var(eje,u) by Equation A7 sep-

arately for each u. Then, take the average of these values across u (weighting
each value by Prob(uJ6) given by Equation A3) to find the first term on the
right. Add on the second term Varu(ZI0), computed as described earlier. The

resulting Var(Q(E) must be computed separately for each C or 0 of interest.
(Note again that fixing E is equivalent to fixing e, because of Equation 3.)

Ii Z , , .... . - " . ..... " . . ....



DISCUSSION: SESSION 8

BERT F. GREEN, JR.

JOHNS HOPKINS UNIVERSITY

The papers presented in this session seem to have been done competently and
to have given reasonable results. I should like, however, to put their results
in some perspective.

Why is latent trait theory attractive? It promises to deliver a scale that
is essentially invariant over different item selections; therefore, the measure-
ment scale provided, the 0 scale, is paramount. One feature of that scale is,
of course, that its zero point and unit are arbitrary. In isolated experiments
there must be some way of specifying the location and unit for 0. The usual
procedure is to fix the mean at 0 and the standard deviation at 1. Waller ap-

pears to claim that this is not enough: When the original 0 distribution is
badly skewed, there appears to be severe bias in the estimation of the item pa-
rameters.

Part of the problem is readily solved with a scale adjustment. Waller's
original distribution of 0 had a mean of -.83 and a standard deviation of 1.18.
The original values of the item parameters had average difficulty of 0 and aver-
age discriminability of 1.0 on this scale. Yet, the LOGOG computer program sets
the mean of the ability distribution to 0 and the standard deviation to I and
reports estimates of the item parameters on that scale. If Waller had trans-
formed the original item parameters to correspond with a standardized 0 scale,
they would have had an average difficulty of .83 and an average discriminability
of 1.18 (assuming arithmetic averages). In fact, Waller observed an average
difficulty of .90 and an average discriminability of 1.27. Thus, most of the
difference seems to be artificial and to be due to a scale shift.

How much of the remaining difference is bias and how much is sampling er-
ror? Since only one sample of 480 pseudo-cases and 45 pseudo-items were tried,
there is no way to tell: One sample does not make a monte carlo study. Swami-
nathan and Gifford did a similar study vith a negatively skewed distribution
(Waller's was positively skewed) and obtained difficulties and discriminabili-
ties that were too high. This would seem to be consistent for the discrimina-
bilities and to be inconsistent for the difficulties.

If the 0 scale is important, then its metric is important, in which case
why did Hambloton and Cook use rank-order correlations to evaluate correspond-

ence of 0 and §? Product-moment correlation would seem to be the obvious
choice. They claimed that the scale of 6 is arbitrary. The origin and unit are
arbitrary, but the metric is not. If the metric were arbitrary, of what value
is latent trait theory?

.1. .. . ... . . . ... . . i
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Some investigators believe that the 6 scale, at least the maximum likeli-
hood 0 scale, is unfit for linear statistical methods. If so, then latent trait
theorists have an inferior product. The problem is at the extremes, where abil-
ity estimates can have huge standard errors. Lord advocates transforming back
to the true score scale, which I thought was what we were escaping, whereas No-
vick advocates (I suppose) Bayesian estimation. Bayesian estimates have no
problem, because an infinite value of 9 has an infinitesimal a priori probabili-
ty, so that only an infinitely perverse examinee will give any trouble. There
are other possibilities. Why not refuse to give a score to an extreme person?
Of course, an adaptive test with an adequate supply of items would, at least in
principle, be in a much better position. Since in such a test the item diffi-
culties match the person's ability, this "end effect" should be a much smaller
problem. One way or another, though, this end problem needs to be resolved.
There is no future for test scores that are unsuited to linear statistical meth-
ods.

Hambleton and Cook and Swaminathan and Gifford have studied the properties
of estimates of ability and the item parameters as functions of the number of
examinees, the number of items, and Lhe true distribution of ability. They used
"constructed" data and the monte carlo approach. Note carefully that each tabu-
lar entry is based on only one sample data matrix. Although the entries are
averages over items and persons, in a real sense, each of the entries represents
one sample point. Thus, indvidual entries are not to be relied upon; only gen-
eral trends should be interpreted.

Hambleton and Cook evaluated the fit of the 1-, 2-, and 3-parameter models
to data from each of these three models with a uniform distribution of ability.
They also compared the lower and upper halves of the ability distributions.
With only 20 items, the 1- and 2-parameter models were poorer in the lower half
than in the upper half of the ability distribution. When the entire ability
distribution was analyzed, 40 items were slightly better than 20, and ability
was better estimated when there was no guessing. All three models fit a given
data matrix almost equally well, but apparently this is a very good set of
"items." (Roughly the same pattern of results was found for a normal distribu-
tion of ability, but all values were smaller.)

Much more interesting are their results concerning the standard errors of
estimate as a function of ability. Clearly, a 10-item test gives unsatisfactory
standard errors; a 20-item test is not very good for low abilities; but an 80-
item test gives nearly constant standard errors for abilities in the range -2.0
to +2.0. The typical great increase of standard error occurs for more extreme
scores. (This is the unfortunate problem with the ability metric that was men-
tioned above.)4I would like to know not only how well each method did relative to the true
values but also how the methods compared with each other. What are the correla-
tions of 8 with e for the 1-, 2-, and 3-parameter models? Almost certainly,
they were extremely high.

Swaminathan and Gifford compared two estimation procedures and found LOGIST
to be superior. They also showed that as both the number of items and the num-
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ber of persons increased jointly, the LOGIST parameter estimates approached the
true values without bias, indicating empirical consistency. This demonstration
is heartening but would be more convincing with more data sets, i.e., more rep-
lications.

Swaminathan and Gifford showed that Urry's method had trouble estimating
the guessing parameter. It would be interesting to know if the other problems
with the method were related to this flaw. Why not estimate a single guessing
parameter for all items, or at least for all items of a given type? Or, if
there are few enough items, why not set c - .20 or .25, or whatever seems empir-
ically reasonable, and only estimate the other two parameters for each Item?

Note that Hambleton and Cook and Swaminathan and Gifford asked how large N
and n should be. By contrast, Lord asked which procedure should be used if N is
small. He reasoned, and found, that for an N small enough (roughly 100) the
1-parameter model was actually superior. Given the recent work on equal weights
in regression, that result must inevitably be so. Empirically determined
weights are uncertain with small N.

Hambleton and Cook claimed that samples of 200 persons and 20 items are
satisfactory for some applications of latent trait theory. It is very important
that their conclusions be noted carefully and that that claim not be over-gener-
alized. Certainly, when the model fits the data, the item parameters c in be
adequately estimated. The ability parameters can also be estimated, but the
standard errors are large, and the extreme cases are still a problem. A stan-
dard 20-item test will not give very reliable results, no matter what theory is
used. And 80 items and a great many examinees would be very much better than 20
items and only 200 examinees.

How realistic are these studies? First, all of them used data constructed
by monte carlo methods. Lord based his theoretical item parameters on those
from an actual data set--a 30-item subset from a 50-item vocabulary test. The
range of item discrimination indices was .4 to 1.8, with quartiles of .55, .83,
and 1.35. Swaminathan and Gifford used a uniform distribution in the range .6
to 2.0, a distinctly better set of items. Hambleton and Cook used two ranges--
.5 to 1.74 and .81 to 1.43-much like Lord's set. All of these are good items,
with excellent discrimination. Also, the items were constructed to be unidimen-
sional. What happens with items of more ordinary discriminability and with some
secondary group factors?

Secondly, how often will the model be applied when item parameters are un-
known? Is it not at least as likely that calibrated items will be available
from which only ability needs to be estimated? Suppose a few uncalibrated items
are being pretested; item parameters are to be estimated in the context of the
calibrated items and the estimated ability scores. Most especially, how does
this kind of conditional estimation proceed in a computerized adaptive testing

* environment. This seems a good place to apply sequential Bayesian procedures.
Finally, what happens with real data? Simulation studies have their place, but
much more is to be learned with real data.

I .., "
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SOME LATENT TRAIT MODELS FOR MEASURING CHANGE

IN QUALITATIVE OBSERVATIONS

GERHARD FISCHER

UNIVERSITY OF VIENNA

All too often, thinking and formation of concepts in behavioral science
have been misled by readily available statistical methods, especially of the
multivariate variety. A typical example of how theorizing in psychology can be
led astray by statistical methods is the obsolete dispute on the percentage of

genetically versus environmentally determined intelligence. In this field there
has been an unwavering attempt to apply models of variance decomposition, which

had been developed for breeding experiments in stock-farming and which are ap-
propriate for that purpose; however, these methods are not suited for yielding
scientific insights into the genetic and environmental factors of human intelli-
gence. On the other hand, there has been a failure to develop adequate methods
for answering the question, What is the effect of specified types of socioeco-

nomic environment on the development of human intelligence?

However, it is methodology that must be adjusted to the theoretical con-

cepts and problems in applied behavioral science, rather than the reverse. This
is illustrated by an example from communication research: In 1971 a basic prob-

lem of market and opinion research was posed, namely, What is the effect of an
insertion in different media, such as television, radio, or newspapers? For the
practical purpose of optimizing a campaign with a limited budget, a simple an-
swer to the question was needed, e.g., "An insertion in television is three
times as effective as a comparable insertion in a local radio program." In addi-
tion, it seemed that it was chiefly the methods currently used in communication
research that were responsible for the lack of generalizable results on communi-
cation effects. The problem was as follows: Suppose it were possible to de-
scribe the effectiveness of each medium by just one quantitative parameter; sup-
pose further that each interviewed person could be characterized by certain at-
titude parameters pertaining to the topic of the campaign and by the subject's
individual amount of consumption of each medium. What kind of probabilistic
model would then give a straightforward answer to the simple question, What is
the effect of medium i relative to the effect of medium k?

At the same time, for theoretical as well as for practical reasons, there

was an attempt to comply with the principle of specific objectivity, as intro-
duced by Rasch (1967, 1972): The comparison of the effect parameters of two
media should depend on these two parameters only and should be independent of
any irrelevant factors, such as the parameters characterizing the initial atti-

tudes of the respondents. In other words, the result should be independent of
the sample.of respondents.

2 - , -. m c
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These considerations resulted in a family of logistic models that are

closely related to the well-known Rasch (1960, 1966) models but also show some

marked distinctions. Unfortunately, the models have been applied to assessing
effects of mass communication only once; but many problems in clinical and edu-

cational psychology are of similar structure, the media being replaced by thera-
peutic or educational treatments. A considerable number of applications in

these fields have been undertaken in the last five years, and the theoretical

and methodological bases of the models have been further strengthened.

As can easily be seen, the question regarding the effects of mass communi-

cation is nothing but a special case of the question of change under the influ-

ence of some sort of treatment. Therefore, the models referred to are of con-
siderably broad interest. Their distinction from more conventional approaches

to measurement of change is that the data are regarded as what the observations,
in fact, mostly are: qualitative variables. In this paper it will by no means

be attempted to scale or to quantify the data in order to make the classical
statistical methods applicable. Quite the contrary, the observations will be

explained as realizations of qualitative random variables, which are, however,

governed by quantitative latent parameters. Change is defined as a change in

these latent parameters.

Models for Qualitative Data

There are a variety of such models, differing as to the restrictiveness of

their assumptions, the kind of results deducible, and the required types of

data. The most important models are:

1. The dichotomous linear logistic test model (LLTM), which was originally

devised for analyzing the complexity of intelligence test items in
terms of cognitive operations involved, but is also useful for measur-

ing change in unidimensional latent variables or for certain experimen-
tal designs with more than two points of time. Since the formalism of

this model is rather complicated, it will not be dealt with here (see

Fischer, 1973, 1974a, 1974b, 1977a).

2. The dichotomous linear loZistic model with relaxed assumptions (LLRA),

which emphasizes the relaxatiun of assumptions as compared with tie

usual latent trait models, since no unidimensionality of the criterion
variables or items is assumed. It has proven a very useful tool for

assessing change in a variety of different situations and will be de-

scribed in this paper.

3. The polychotomods extension of the LLTM, for which applications are
lacking. Since this paper will not dwell on purely theoretical devel-
opments that have not as yet stood the test of practical application,

this model will merely be mentioned (see Fischer, 1974a, 1974b, 1977c).

4. The polychotomous generalization of the LLRA, offering quite interest-

ing possibilities of application and empirical hypotheses testing, A.

wbn
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The Dichotomous LLRA

The Model

"Dichotomous" means that the observed criterion variables, which may be

test items or clinical symptoms or any other kind of behavior, are binary vari-

ables. It is assumed that before and after treatment a number of k such crite-

rion variables are observed on each subject. Then, the model is defined by the

following equations:

ex p( Vi)
P(+IV'i',t ) = 1 + exp( ,) [I]

v = 1,...,n (subjects)

i= 1,...,k (criteria, items),

exp( Vi + ) [2

2)= 1 + exp(Ei + 6V)

6V = Eq i. qvjqvloj + 13]

Thereby, P(+Iv,'it. ) denotes the probability that subject v gives response "+"
in criterion i at time t, (before treatment) and that P(+_.,i,t ) is the analo-

gous probability for time t, (after treatment). The probabllity P(+vit )
depends solely on one parameter, 4vi" For example, let criterion i be a certain

symptom of fear in clinical patients, then &vi is the latent anxiety of subject

v behind that symptom. Thus, the state of subject v at time t, is characterized

by a vectorial parameter Ev 
= (Evl .... 'vk ) , in other words, by a set of k

traits associated with the k criterion variables.

Note that the model makes no assumptions whatsoever about interdependencies

or dimensionality of these traits; in particular, unidimensionality of the cri-
teria or items is not assumed, as would be the case with the Rasch (1960, 1966)
or Birnbaum (1968) models. Hence, the LLRA is maximally flexible regarding the
characterization of the subjects. For example, it may well be that Evi < Evj'
but that Ewi > Ewj"

The characterization of the subjects at time L2 is, in principle, analo-

gous; it is, however, restricted by the assumption that change in each subject
can be described by a single parameter 6v' which according to Equation 3 is a

linear function of the effects rj of the given treatments (main effects), of

their interactions pij, and of a trend-parameter t comprising all the causes of

change that qre unrelated to the treatments. The constants 4 j are measures of
the dose of treatment j as applied to subject v.

U -
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The most important properties of the model are:

1. Given appropriate data, the effect parameters nj, the interactions pi,
and T can be estimated independently of the true values of the parame-
ters vi; the latter need not be known and are not estimated from the

data, either. This means that any proposition referring to the compar-
ison of two treatments i and j is completely independent from the sam-
ple of subjects (specific objectivity).

2. The parameter estimates are a ratio scale, so that it is possible to
arrive at statements such as "treatment i is twice as effective as
treatment

3. It is possible to test the significance of single parameters and to
test almost any conceivable meaningful composite hypothesis on the pa-
rameters by means of likelihood-ratio tests.

The formal properties of the model have been studied by Fischer (1972, 1974a,
1974b, 1976, 1977a, 1977c; see also Fischer & Rop, in prep.).

The sheer enumeration of the model properties does not sufficiently reveal
the full scope of the possibilities implied by these properties. An illustra-
tive example will therefore be in order.

Sample Application

R~search questions. Rop (1977) investigated the effects of three preschool
educational programs (Early Reading, Logical Thinking, and Verbal Enrichment) on
the cognitive development of kindergarten children. To assess change, a battery
of 64 items was given before and after the treatment period; a control group
attended kindergarten but did not participate in the programs. Three primary
questions were to be answered:

1. Is it possible to furnish proof that the programs accelerate cognitive
development?

2. What is the generality of the effect of each of the programs, e.g., is
there an effect of verbal training also in the nonverbal area?

3. What do the socially and educationally disadvantaged children gain in
comparison to middle-class children, i.e., is early intervention a
means of overcoming the deficiencies resulting from less privileged
environments?

The first question, which is the easiest one, was answered in the affirma-
tive by testing the null hypothesis that the effect parameters are zero.

I The second question is far more complex: Equation 3 asserts that the ef-

fect of each treatment can be measured by just one parameter 6 per person, ir-
Vrespective of the item i. Hence, if it were true that verbal enrichment had)

4:
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little or no effect on the nonverbal abilities (which were tested by one set of
nonverbal items in the test), the model could not have been true for all 64
items. Hence, the model plays the role of a H0 against the H, of differential
effects of the treatments in certain subgroups of items, i.e., the criterion
variables. (There is a far-reaching analogy between this model and the well-
known analysis of variance for quantitative data: In analysis of variance as
well, one begins with the global H0 that all means are equal.)

Results. In Rop's study the H0 of uniform effects of the treatments on all
the ability domains represented by the items had to be rejected. As Table I
shows, the 64 items had to be broken down into three subsets (naming of objects,
actions, and attributes; verbal abilities, such as verbal fluency, enunciation,
and appropriate usage of language; and nonverbal abilities). Each of the three
programs had a differential effect within each of the three domains. However,
the results in Table I show the findings of the study in a maximally generalized
form: It is an essential feature of the model that it identifies the maximal

subsets of criterion variables with uniform treatment effects. This is a conse-
quence of the principle of specific objectivity, viz., that the estimates of
effect parameters do not depend on any irrelevant factors, such as subjects or

items, as long as the model holds. In other words, only the minimum number of
moderator variables that are absolutely necessary to explain the data are con-
sidered.

Table 1
Effects of the Training Programs per Time Unit

(1,000 minutes) and the Trend for Naming,
Verbal Intelligence, and Nonverbal Item Groups

Item Group

Verbal

Treatment Naming Intelligence Nonverbal

Reading .37* .15 -.04
Thinking .51* .16* .25*
Verbal .49* .37* .31*

Trend .84* .88* .32*

*Statistically significant at p (.01 (Adapted from Rop,

1977).

Rop's third question is the most intriguing one. If conventional methods
of data analysis had been applied, it would have been expected that environmen-

tally privileged children with a higher level of cognitive development, and
hence with better performance at t,, would not have increased their level of
performance as much as the children with poor achievement. Such methodological
artifacts are known under the names "phyzicalism-subjectivism-dilemma," "base-

rate problem," or the like (see Bereiter, 1967; Lord, 1967). The LLTM, on the
contrary, asserts that the effect parameters do not depend on the subject param-
eters cvi; in other words, if the effect of treatments were really the same for

all children, the effect parameters estimated from groups of children with dif-
ferent ability levels should also be equal except for random error. This is

*jf:
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again a direct consequence of the principle of specific objectivity. In Rop's

study it was found, in fact, that treatment effects were independent of the ini-

tial level of cognitive development and therefore that the preschool programs
were not appropriate for bridging the gap between privileged and underprivileged
children.

Measuring Change with the LLRA Model

It is obvious that the properties of the LLRA model are quite advantageous,
having encouraged a variety of applications. However, a better theoretical and
epistemological foundation of this methodological approach seems called for, and
an answer was sought to the following question: If assessment of change is to
be specifically objective, what is implied with respect to the formal structure
of the model? A prerequisite for dealing with this question is to formalize the
problem of measurement of change in a sufficiently general way.

The Model

Change is detected by exposing subjects to a set of observational condi-
tions such as the test items, observation of symptoms, or registration of any
other kind of criterion variables. Let the behavioral disposition or state of
the subject at time t i be described by a set of k parameters p v ( ),...,

Pvk,I(Cvk), so that Pvi,l is associated with the criterion variable i and de-

scribes fully the latent behavioral disposition of subject v with respect to
this variable. In the same way, let the state of subject v at time t, be de-
scrib2d by the set of parameters Pvi,2(CVi, 6v),...,Pvk,2(Cvk, 60, whereby 6v

is a scalar parameter representing change. Nothing is assumed concerning the
functional concatenation between Cvi and 6v; it is only assumed that the reac-

tion tendency Pvi,2 at time t is a function of the latent trait vi at time t,

and the change parameter 6v . Since the objective is to assess change, the ex-

istp.-e of a function U(Pvi,1,...,Pvk,I;Pvl,2,...,Pvk,2), which can be solved

for 6 v3 will further be assumed. In other words, U should be a function of 6v

alone: U = V(6v). It is a consequence of the principle of specific objectivity

that U must be independent of the latent trait parameters vi and of the sample

of observational situations chosen for assessing change.

On the basis of this formalization of measurement of change, the following
theorem can be proven:

Theorem 1. Let 3Pvi l/avi > 0 everywhere; let U be differentiable with

respect to Pvi,1 and Pvi,2; Pvi,1 with respect to vi; and Pvi,2 with respect to

Cvi and 6v for i = l,...,k. Further, let U be a function U(pvl,1,...,Pvk,1;

PvI,2',.Pvk,2) = V(6v), which is independent of vi, i = 1,...,k. Then, there

exist monotone transformations of all the parameters, so that after transforma-
tion, Pvi,2 = Pvi,i + 6v. If, in addition, the observations are assumed to be

realizations of Bernoulli variables, then, except for scale transformations,
Equations I and 2 must hold. (The proof of this theorem is rather complicated;
see Fischer, 1977b; Fischer & Rop, in prep.; Rasch, 1972). The meaning of the
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theorem is this: If there are dichotomous observations at two points of time

and if it is desired to assess change in a specifically objective manner (i.e.,
if the result should not depend on the sample of person-parameters Evi

) , then

the model must be essentially of the LLRA type. Of course, some scale transfor-
mations may be applied on the parameter dimensions, entailing formal changes of
the model, but any model and empirical result obtained in this manner would be

completely equivalent to what is obtained by means of the LLRA. Hence, there is

no point in transforming the parameters and thereby departing from the specifi-
cally simple structure of the LLRA.

Estimating Model Parameters

Since this theorem legitimates the LLRA as theoretically well founded, a

short discourse on the technical problems of parameter estimation and hypotheses
testing is called for. To simplify matters, Equation 3 can be rewritten as

6V = qvjnj [4)

This can be done because Equation 3 is linear in all the parameters; hence, pa-
rameters iJ and matrix Q [(Lvj ) ] need to be redefined appropriately.

Theorem 2. Let A, ((.1vi,1)] be the item-score matrix (with elements 1 if

the response was "+" and 0 if "-" ) for time ti and A2 = [(Vi, 2 )1 for time t?,

v = I,...,n and i 1,...,k. The conditional maximum likelihood estimates iJ of
the effect parameters rj are given by the equations

W
Eexp(tEq .~)t

E E f t=u d = 0 [51
qV j aVi , 2 W

v z F exp(tEqv T1 )

t=u V~

vp=1,. .. ,n; i=1,...,k; j-l,...,m;

u(v,i) = w(v,i) = 0 if av,1 +avi 2 = 0;

u(v,i) = w(v,i) - I if avi ,+avi = 2; and

u(v,i) = 0, w(v,i) = I if avi,+avi,2

The estimation Equations 5 have a finite solution ri > 0 if for 1 - I,...,m holds

E Zq a (I - a .) > 0 [61

V i V,77iav,1 V1i,2

and

SEq( - a Vil )a vi > 0

V-<1"
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for j =

the solution is unique if the rank of Q = [(vj)J equals m, and it is at a maxi-
mum of the likelihood function. ,

The estimation Equations 5, and the corresponding second-order partial de-
rivatives that are needed for applying the Newton-Raphson procedure, were given
by Fischer (1972, 1974a, 1974b, 1977a, 1977c; for the complete proof of Theorem
2, see Fischer and Rop, in prep.)

This theorem is not only useful for determining the existence and unique-
ness of the solution but it also implies that the parameter estimates lie on a
ratio scale with a unit determined by the time interval (t, t 2) together with
the chosen unit of measurement of dosage vj"

Hypothesis Testing

In practical applications, the estimation of the parameters is only a first
step. More important is the test of hypotheses on the parameters. Such tests
can be carried out by means of the likelihood ratio principle.

A A A

Let i = (f 1,...,n m ) be the estimates of effect parameters under hypothesis

H1 (alternative hypothesis) and let L(H ) be the maximized conditional likeli-
hood of the data under H1,

L(H1 ) = n n Lvi, with [7]

exp(a i jq jnj )

$ -if a.i +a.i, =1 ,
1 + exp(Eq Vjifa V,' Vt,2

LV

VI

1 if a + a i2 = 0 or = 2

Further, let H0 be a null hypothesis consisting of the restrictions rj=

with m' < m, whereby the matrix of partial derivatives ai/Di8 1

has rank i'. Finally, let L(H0 ) be the likelihood of the data under H0, whereby
the maximum^likelihood estimates r1* = P (^I . are inserted in Equation 6
instead of n . Then, under H0 , m ij

-21nX = -21n{L(H o ) - L(HI)} [81

is asymptotically chi-square-distributed with df = m - m'. it can easily be
shown that most hypotheses relevant in practical applications L n be formulated
as restrictions ij = Pj(6j,..., ) and hence can be tested by means of this

likelihood ratio test. As long as the restrictions are linear contrasts, esti-
mation Equations 5 can be used for estimating the parameters under H, as well;

f t f_ _ _ _ _ _ _ _ _ _ _
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otherwise, the estimation equations require a minor adaptation, which need not
be discussed here.

It is a basic feature of the model that, in a formal respect, it makes no
difference whether a new set of subjects or additional criteria are added to the
given observations. Therefore, differences of treatment effects between subsets
of subjects and between subsets of criteria lend themselves to exactly the same
kind of test. Some examples of hypotheses typically tested in the applications
are the following:

1. All interactions are zero (pij = 0,_i =l .

2. Some treatments are equally effective (e.g., nj = q1).

3. Some treatments are ineffective (e.g., r = 0).
4. The trend effect is zero (T = 0).
5. The effect of treatments and/or the trend effect is equal for different

subgroups of subjects or in different subgroups of criteria (Mj(1) =
S(II) for Groups I and II).

In principle, the tests are logically analogous to hypothesis testing in
linear analysis of variance and to testing linear contrasts between groups of
mean values.

An interesting special case arises when testing the dose-response relation-
ship: Leaving aside the question of interactions, the model Equation 3 presup-
poses that the effect of treatment is proportional to the dose. However, gener-
al experience indicates that in some cases a treatment is completely ineffective
below a certain minimal dose and that above a certain amount of treatment satia-
tion occurs. It is therefore important that the hypothesis of linearity, Equa-
tion 3, is tested against an unspecified nonlinear dose-response curve. This
can be done by means of the following parameterization: Suppose that dose is no
continuous variable but assumes certain discrete values ul,'...',U. Then, it is

possible to assign one parameter njl,...,qjs to each of these doses. To embody

this set of new parameters into the model, let b = (b-v ....b ) be a se-
lection vector with elements i jo J's

1 if subject v has obtained dose ut in treat-

b Vj t ment i, and [91

0 otherwise.

The selection vector for each combination of subject v x treatment j consists of
O's except for one element, which is equal to I and i-dicates the dose obtainedin the respective treatment. The model Equation 4 then becomes

6 F b tqjt .  [10]

"j t

Now, consider Equation 4 as H0 and Equation 10 as H1 , allowing a likelihood ra-

tio test of the linearity hypothesis.

1*

- t . . .. . . ""
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Applications of the LLRA in Measuring Change

Rop's study on the effects of preschool education has already been men-
tioned above: The programs (e.g., logical training) did not just affect the
narrow domain of the functions trained but also influnced the other intellectual
factors, if less markedly. This problem of transfer of cognitive operations has
been discussed by Zeman (1976), who investigated the effects of early training
in elementary set theory; she proved a substantial transfer of the operations
acquired from material used in the learning phase to other materials. This
finding implies that, as was hoped, this specific preschool education is in fact
a rather general vehicle for promoting cognitive development.

An interesting application of the LLRA to clinical psychology stems from
Heckl (1976), who investigated the effects of three forms of speech therapy in
children with speech disorders. Contrary to expectation, all three therapies
proved to be equally effective. The interpretation was that the effect appar-
ently was brought about by the intensive devotion of the therapist to the handi-
capped children and by the reinforcement given to their verbal productions--rel-
atively independent of the content of the prescribed exercises. Heckl's study
is one of the few where the linearity of the dose-response curve was empirically
tested: A substantial difference in effect between children with fortnightly
therapeutic sessions and children with one session per week was observed; the
further benefit of two sessions per week, however, was comparatively small.
Apparently, satiation occurred in the latter case. As in Rop's study, the ef-
fect parameters were (at least approximately) constant over different groups of
children, i.e., independent of age, sex, and only partially dependent on the
degree of initial speech impediment.

Another study in the domain of clinical psychology is that of Glatz (1977),
who investigated the effects of behavior therapy on the eating performance of
mentally retarded children. A special feature of this study is that observa-
tions were made at eight points in time, yielding a behavioral sequence for each
child. Glatz used the LLRA for comparing two successive points of time each;
strictly speaking, however, another type of linear logistic model, the LLTM,
would have been more appropriate. A reanalysis of the data is underway (Fischer
& Rop, in prep.).

V.i There have been several additional applications of the model. Vodopiutz
(1977) studied the effects of certain training units on complex movements in
gymnastic educat:on; Pendl (1976), the effects of a language laboratory on
teaching a foreign language (English) in high school; Rella (1976), the results
of driver improvement training in anticipating dangerous traffic situations;
Platzer (1978), the effects of technical playing materials on the development of
mechanical-technical understanding; Witek (1979), the effects of a group-dynamic
sensitivity training for business executives; and Zimprich (1979), the effects
of psychotherapy, given in addition to chemotherapy, to patients of an internal
department of a children's hospital.

All,
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The Polychotomous LLRA

The Model

Although quite often the data are readily reducible to dichotomous vari-
ables, in many cases such a reduction either is not possible or makes little
sense. In spite of this, designs with polychotomous data have not received
enough attention in the literature owing to the lack of suitable methodology.
Already in the early papers on linear logistic models for measuring change
(Fischer, 1972, 1974a, 1974b, 1977c), the possibility of generalizing the LLRA
to polychotomous data has been recognized and the necessary estimation equations
have been derived. Without going into technical details, the essentials of the
parameterization will be presented here.

Suppose that k polychotomous variables, each of which may assume one of r
qualitative or quantitative realizations, are the basis for assessment of
change. A generalization of the model Equations 1 to 3 is then

(h) ~xp(E hi))P(A h) = lv,i,t, V [11]

Fexp (&V)
t

( ) =xp( + (h))[
PA(h) = lvi t,) (Es v [12]
P Vi M M () ()

exp i + 6
t Vi V

! ()( h) h (h)
6 V = qvjnh) + T , [131

V

v = 1,...,n; i =

j =1,...,m; t,h=l,...,r.

Thereby, Avi (A1), A (r)) is an indicator vector-variable with realizations
vi vi vi(h)

I1 if subjects v's reaction on criterion i was in category h, and a( = 0

otherwise. The state of each subject at t1 . is characterized by a matrix of pa-

rameters C and "change" is described by a vectorial parameter 6v =
(r) paamte 6(h) ~ ) ~ t lmns en soatdwt helement measures the effect of the treatments with respect to reac-

tion category h. Analogously, the effect of each treatment is described by a

vectorial parameter n its elements being assocated with the

specific effect of treatment _ with respect to response category h. To be more
concrete, the behavior categories of a depressive patient could be, for example,

4agitated, withdrawn, and normal; a certain psychiatric treatment could then have
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a very strong effect of reducing agitation and increasing withdrawal without,
however, necessarily increasing the rate of normal behavior.

Several such qualitative categories may as well express different levels of
an underlying latent dimension, i.e., different degrees of one behavioral ten-
dency. A typical example would be the categories very content, rather content,
rather not content, not at all content, reflecting degrees of satisfaction
(e.g., with a job). The case of unidimensionality of the response catgories
with respect to the treatments is then formalized as follows:

l(h) = ¢(h) T (j = 1,...,k; h = 1,...,r) [141
j .7

Equation 14 has been called the reduction conditions; of course, it is a purely
empirical matter whether they hold or not. If they hold, the matrix of parame-

ters q)h) is of rank 1. The parameters ,(h) are called the category weights.

As in the dichotomous LLRA, the effect parameters and the trend effects can

be estimated empirically, independent of the person parameters E(h) which char-

acterize the state of the sample at t,. Furthermore, hypotheses are testable by
means of likelihood ratio tests. One reservation, however, must be made regard-
ing the reduction conditions: When the parameters are estimated under assump-
tion of Equation 14, the solutions of the estimation equations are not necessar-
ily unique.

Applications of the Polychotomous LLRA

The numerical computations for estimating parameters in the polychotomous
case are much more complex than in the dichotomous case, and some theoretical
questions need further investigation (as, for example, uniqueness of the solu-
tion in case of the reduction conditions). In addition, the amount of data re-
quired is much larger than in the dichotomous LLRA. For these reasons, only a
few empirical applications have been realized so far. Nevertheless, the poly-
chotomous LLRA is a potentially powerful instrument for assessing change, as
will be illustrated by the following two empirical studies.

Hammer (1978) investigated the cognitive and attitudinal effects of a mul-
ti-media presentation dealing with forms of human settlement, problems of biA
cities, and ecology. The presentation was viewed by one sample of high-school
children, whereas another sample received instruction on the same topics from a
teacher. The cognitive effects of both methods of instruction were measured by
a questionnaire with the three response categories correct, partially correct,
and incorrect; the attitudinal/emotional effects were evaluated by another ques-
tionnaire with categories positive, neutral, negative, and don't know. As ex-

pected, the multi-media presentation proved to be generally more effective than
the teacher, especially so with respect to the domain of attitudinal and emo-
tional change; the teacher was able to impart knowledge rather than to influence
attitudes or to appeal to emotions.
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The second example of an application of the polychotomous LLRA returns to
the problem of measuring effects of mass communication mentioned earlier:
Kropiunigg (1979) carried out a field study on a topical problem of social and
political interest in Austria on the reform of penal law in 1975. In Styria,
one of the nine provinces of Austria, an informational campaign on this topic
was promoted by the Regionalprogramm Studio Steiermark (radio) and by the Kleine
Zeitung Graz (newspaper), whereby problems of probation and resocialization of
convicts were dealt with.

Before and after the campaign, representative samples of the population
were interviewed (tl: n = 550; t2 : n = 640). The questionnaire comprised items
referring to three attTtudinal domains and one set of items for assessing famil-
iarity with relevant facts. Since the subjects interviewed at t, and t2 (unlike
the case of the standard LLRA) were not the same, a modified version of the mod-
el for independent samples had to be used (see Fischer, 1972, 1974a, 1974b,
1977c).

This study differed from those of the other above-mentioned investigations
in one essential respect: It was not possible to obtain generalizable proposi-
tions with respect to the effects of the media. The results rather supported
the standard conjecture of communication theory: that effects of communications
are strongly determined by a number of moderator variables (e.g., socioeconomic
factors). Only the result that the radio programs were more effective than the
respective articles of the daily newspaper was of some generality. Those seg-
ments of the population characterized by high contact frequency with the radio
programs in question showed satiation regarding the information on the issue; an
increase of density of the pertinent information in the newspaper, on the other
hand, would still have increased the effects of the campaign. A somewhat unex-
pected finding was the relatively limited acceptance of the promoted ideas by
women and by religious people, whereas supporters of the (governing) socialist
party showed significantly above-average understanding.

The principal goal of giving a simple characterization of each medium by a

few effect parameters -h)--which had originally led to the development of the

LLRA and other linear logistic models--was not reached in this empirical study.
Perhaps the epistemological basis of these considerations is not appropriate for
the complex problem of social science. But the theoretical developments and the
applications in other fields, as mentioned above, indicate that it was worth-
while to venture models that derive very simplified and generalized results from
complex bodies of qualitative data.
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THE MENTAL GROWTH CURVE RE-EXAMINED

R. DARRELL BOCK
UNIVERSITY OF CHICAGO

A study purporting to show the growth of mental ability, as measured by the

Binet test, as a function of chronological age was published in 1929 by Thur-
stone and Ackerson. The curve was published on a rescaling of Binet mental ages
(MA) of a cross-sectional sample of 4,208 children from ages 3 through 17, seen
at the Institute for Juvenile Research in Chicago. The shape of that curve,
which is reproduced in Figure 1, is surprising in one respect: It shows an in-
flection point at about 10 years of age, where an initial positive acceleration

Figure 1
Thurstone's Curve for Binet Mental Growth

(from Thurstone & Ackerson, 1929)
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switches to negative. There is no precedent for this type of growth curve in

any other aspect of human growth. All other such curves--in particular, those
for growth in stature (see Bock & Thissen, 1980)--show a rapid deceleration from
birth through adolescence, followed by a brief period of acceleration during the
adolescent growth spurt. (In longitudinal growth records of individual chil-
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dren, a slight middle-childhood spurt can sometimes also be seen between 6 and 7
years, but this is not evident in cross-sectional data.)

Any discussion of the shape of such curves requires that the unit of scale
be equal at all points throughout the range of measurement. Because there is no
reason to suppose that MA scores for the Binet have this property, some method
of scaling the test responses that will yield a uniform unit must be adopted.
Thurstone (1925,1927,1928) formulated such a method. It rests on two very gen-
eral assumptions: (1) that the distributions of mental age (or attainment) con-
ditional upon chronological age have the same (continuous) functional form at
all age levels but may differ in mean and dispersion (standard deviation); (2)
that the origin of measurement can be assigned so that the dispersion of the,
conditional distributions is directly proportional to the mean, that is, so that
the coefficient of variation is constant.

Thurstone pointed out that if the functional form of the common distribu-
tion is known, these assumptions may be checked (1) by converting the observed
proportions of people at each age level who respond correctly to each test item
to the corresponding percentage point of distribution and (2) by plotting the
resulting transformed proportions as a function of age. If the points tend to
lie on straight lines and the slopes of the lines decrease with increasing age,
the assumptions are justified. Thurstone (1925,1927,1928) exhibited numerous
examples of data in which these assumptions seem reasonable when the conditional
distributions are assumed normal. He also developed simple numerical methods
for estimating the item means (thresholds) and the constants of proportionality
for the item standard deviations. He called this procedure the "method of abso-
lute scaling." Although the method is no longer used, it is important as a fore-
runner of modern item characteristic curve (ICC) scaling procedures.

However, this method was not used directly on the item data by Thurstone

and Ackerson (1929); rather, they obtained the means and constants of propor-
tionality indirectly from the MA distributions of yearly age groups. (In sup-
plementary tables, the actual data distributions are given in 3-month intervals
for boys and girls separately, with boys substantially outnumbering girls in the
sample.) This labor-saving compromise of the absolute scaling method can be jus-
tified on grounds that the mean and dispersion obtained from the average percent
correct for items represented in the MA score will be a good approximation to
the average of the means and dispersions of the separate items. There is no
reason to believe that the unusual characteristics of the Thurstone-Ackerson
curve for mental growth curve are due to their scaling the Binet data at the
score level rather than at the item level.

A more plausible explanation is that the shape of the curve is influenced
by Thurstone's use of the observed ratios of MA dispersions in successive chro-
nological age groups to determine the factor of proportionality (coefficient of
variation) rtlative to the mean scaled mental age. The growth curve thus ob-

Atained, although independent of the arbitrary Binet MA scale in the conditional

means, is not independent of the scale in the calculation of the conditional
dispersions. A solution independent of arbitrary scale artifacts in both item
thresholds and dispersions was not practical with the hand methods of computa-
tion then available to Thurstone.

. . . ii i l ii l I
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A Scaling Procedure Fully Independent of Chronological Age Units

With the aid of modern computers, however, the Binet test, or similar tests
referenced to chronological age or to other external criterion, can be scaled on
the single assumption that the underlying distributions for item attainments
conditional on age have a known common functional form indexed by a threshold
and a dispersion parameter. If this assumption is satisfied, scale values may
be assigned to the chronological age groups so that with respect to growth con-
tinuum, all the ICCs simultaneously fit the observed percent-correct data for
each item in each age group. On the further assumption that item responses
within the age groups are independent (locally independent), the goodness of fit
of the solution can be tested by a large-sample statistical test.

A Biological Example

A maximum likelihood procedure for scaling by this method, when a normal
ogive ICC is assumed, is presented in the appendix to Bock (1976). This proce-
dure has been applied by Kolakowski and Bock (in press) to biological data con-
sisting of counts of emerged permanent dentition in a large cross-sectional sam-
ple of Pima Indian children (Dahlberg & Menegaz-Bock, 1958). Reproduced in Fig-
ure 2 are the scale values obtained by Kolakowski and Bock (in press), plotted

Figure 2
Bevelopmental Age Curves Inferred from Emergence
of Permanent Dentition in Pima Indian Children

(from Kolakowski & Bock, 1980)

as a function of chronological age. As can be seen, the curves based on inci- )

dence of emerged permanent teeth initially decelerate and show some suggestion
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of an adolescent growth spurt in both sexes. There is no evidence of the ini-
tial positive acceleration that was found in the mental growth curve by Thur-
stone and Ackerson (1929).

An unavoidable limitation of all such scaling methods is that the origin
and unit of measurement of the scale is arbitrary in each sample analyzed. In
the case of the tooth emergence data, Kolakowski and Bock (in press) adjusted
the origin and unit so that the threshold and dispersion of one of the teeth
that is known to show no sex difference in emergence time, an upper central in-
cisor, had the same values as those in the literature based on probit analyses
of tooth frequencies as a function of chronological age (Dahlberg & Menegaz-
Bock, 1958). The curves for the two sexes in Figure 2 are based on this choice
of origin and unit. Thurstone and Ackerson (1929) based the origin of their
scale at an inferred point of zero variability (Thurstone's, 1928,"absolute
zero" of intelligence) and set the unit so that the MA of the year group equaled
chronological age (CA).

Scaling the Binet Test

Data and Method

Using data supplied by Reckase (1979), the Bock (1976) procedure was ap-
plied to 96 items of the current version of the Stanford-Binet. These data,
which are reproduced in Appendix Tables A and B, are drawn from the full comple-
ment of 122 Binet tasks, with the first 13 omitted because all subjects respon-
ded correctly and the last 13 omitted because all subjects responded incorrect-

ly.

The numbers and mean age of boys and girls in each CA group are shown in
Table 1. In some instances, alternative forms of an item were treated in the
scaling as if they were the same item. The data are strictly cross-sectional
and, like all such data, are not constrained to be increasing with chronological
age (see Bock, 1979).

The scaling solutions based on Bock (1976) converged in 13 Newton-Raphson
iterations. The computations required 63 seconds of IBM 370/168 cpu time and
465K bytes of core storage. Scale values for successive 10-month chronological
age groups were calculated. The origin and unit of the scale for boys were
fixed so that the values for the 40-month and 160-month groups were 40 and 160,
respectively. The unit of the girls' scale was then set so that the averages of
the item dispersions for boys and girls were equal (to 19.55); and the origin of
the girls' scale was set so that the scale value of the 160-month group was 160.

Results: The Revised Mental Growth Curve

The growth curves from this scaling solution are shown in Figure 3. The
curve for boys i, entirely plausible as a representation of growth. Unlike the
Thurstone-Ackerson curve, it decelerates from the earliest age until adoles-
cence. The final two points suggest the possible upward inflection of a slight
adolescent growth spurt in mental attainment. At age 14 the curve is still ris-
ing, and presumably would go higher if older age groups were included.

....



- 419 -

Table 1
Mean Chronological Age (CA) and Sample Size

for Each Age Group

Boys Girls
Age CA Interval (N=342) (N=81)
Group in Months Mean N Mean N

1 24-36 30.9 17 31.8 10
2 37-46 42.6 26 40.7 30
3 47-56 50.5 29 51.4 25
4 57-66 61.3 32 60.9 28
5 67-76 71.4 35 72.2 22
6 77-86 81.7 22 81.4 21
7 87-96 91.5 29 91.6 18
8 97-106 102.1 25 101.3 18
9 107-116 111.6 24 111.5 23

10 117-126 121.3 25 121.7 15
11 127-136 132.1 19 130.6 16
12 137-146 141.3 12 141.6 20
13 147-156 151.3 15 151.3 8
14 157-166 162.0 16 160.5 13
15 167-178 170.9 16 173.1 14

The curve for girls is less satisfactory. Initially, it resembles the
curve for boys; but from years 6 through 11, the scale values for girls are ir-
regular and considerably below those for boys of the same age. It is possible,
of course, that the equating of boys and girls at 160 months is unfair to the
girls. Perhaps they are actually 10 or 20 points higher at that age. If so,
the points in the range 70 to 130 months would be more comparable in boys and
girls.

Such an adjustment, however, would make the girls' scores in the range 30
to 60 high relative to those of the boys. Inasmuch as the percents correct for
girls on items in this range, or indeed in the upper range of 140 to 170 months,
were about the same as those for the boys, this interpretation does not seem
Dlausible (compare Tables A and B). The assumption that boys and girls have the
same average Binet attainment at 160 months seems reasonable for these data.

The only explanation for the anomalous result for girls would seem to be
that the samples for the two sexes were not comparable in some age groups. Some
bias in selection of subjects or in administration of the tests must have oper-
ated against girls in the 70- to 130-month range. The irregularity of the
girls' scale values in this range, especially the discrepant value at 100
months, suggests that the sample of girls may have been defective. Regrettably,
no information is available on how the subjects were selected or how the tests
were administered.
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Figure 3

Proposed Mental Growth Curve Based on Binet
Item Data Collated by Reckase (1979)
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Advantages of the Present Scaling Procedure

Because the present scaling method does not force the dispersions of the
conditional distributions to increase with age, the scale is not stretched to
the left in order to make the conditional standard deviations small. It is this

stretching of the scale that induces the initial positive acceleration in the
Thurstone-Ackerson curve. When the dispersions were estimated without con-
straint, the more plausible initial negative acceleration seen in Figure 3 is
obtained.

As discussed in Bock (1976) and Kolakowski and Bock (in press), the item

parameters estimated in the scaling solutions can also be used to assign devel-
opmental age scores to individual subjects by the method of maximum likelihood
(see also Birnbaum, 1968; Samejima, 1969). In this role the present scaling
solution has important methodological advantages. On the developmental-age

scale, the item dispersions, rather than increasing as Thurstone had assumed,

are relatively homogenous. A solution with all item standard deviations set to
their average value fit almost as well as the unconstrained solution. This im-
plies that the maximum likelihood estimates of developmental age of individual
subjects can be expressed with good accuracy as a function of the subject's num-
ber-c.irect score. This is implied by the close similarity of a I-parameter
t,.:mal ogivb model with the 1-parameter logistic model in which number correct

L. -. . - .
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is the sufficient statistic for the maximum likelihood estimate (Andersen,
1980.)

Moreover, when the within-age group standard deviations of the estimated
developmental age scores were calculated (Table 2), they were also relatively
homogeneous. This means that analysis of variance can be employed to investi-
gate relationships between developmental age and other age-structured data with-
out violating the assumption of homoscedasticity. The conventional MA scores
for the Binet do not have this property.

Table 2

Developmental Age Means and
Standard Deviations for Children

in Successive Chronological Age (CA) Groups

Age Nominal Boys Girls
Group CA Mean SD Mean SD

1 30 15.4 16.6 16.9 18.1
2 40 40.0 19.2 46.0 12.6
3 50 61.0 18.0 62.4 14.1
4 60 76.2 17.3 76.9 22.1
5 70 96.6 13.5 84.1 10.0
6 80 110.9 10.1 92.1 10.2
7 90 120.6 13.7 101.5 10.1
8 100 125.8 13.2 105.0 11.5
9 110 134.0 13.4 121.1 12.3

10 120 143.3 10.7 134.0 16.7
11 130 144.3 15.6 134.7 16.4
12 140 148.3 9.7 143.9 14.9
13 150 152.1 17.4 153.0 19.9
14 160 160.0 8.2 160.0 19.1
15 170 162.0 16.3 175.1 38.0

The developmental age scale may also have certain interpretational advan-
tages whenever changes within subjects rather than normative comparisons with
age-mates is at issue. Because the developmental age units are greater than
chronological units at young ages, the changes in scale values are more in ac-
cord with the rate of behavioral change (i.e., the surpassing of successive de-
velopmental tasks) than with changes in MA scores. Moreover, the growth of men-
tal attainment in terms of scaled scores will parallel closely other quantita-
tive indices of development, such as stature. Thus, the developmental age
scores will tend to show simple linear relationships with direct measures of
development.

The present scale, however, does not exhibit increasing standard deviation
with age and thus does not support Thurstone's definition of the absolute zero
of intelligence. Provisionally, at least, it will be necessary to set the ori-
gin of the scale on some more arbitrary basis.

. . . ....j. . ..
"
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LATENT STRUCTURE ESTIMATION FOR

ASSESSING GAIN IN ABILITY

LALITHA SANATHANAN

ARGONNE NATIONAL LABORATORY

This paper deals with methods for assessing the progress of an individual
or group through time. The methods involve (I) measuring the gain in ability
over a given period of time using a latent ability model, such as the Rasch mod-
el and (2) relating this gain to the average gain for similar individuals or
groups over the same length of time. The changes in ability parameters for in-
dividuals and for groups can be estimated through existing methods based on la-
tent trait models. However, in order to judge whether a specific individual or
group has progressed satisfactorily, it is necessary to compare the given gain
in ability with gains for similar individuals or groups.

It is common practice to report test scores based on a hierarchical test
system such as the Iowa Tests of Basic Skills (ITBS) in the form of grade equiv-
alent scores. The grade equivalent of any given test score is approximately the
grade whose mean is the given score. Its principal use is to measure the prog-
ress of an individual or group over a given period of time. The increase in
grade equivalent scores, referred to as the gain score, is considered a measure
of this type of longitudinal progress. In spite of numerous problems in the
interpretation of grade equivalent scores, the gain score has a certain appeal
in that it tries to express progress in terms of gain in years. This paper pro-
vides a measure of longitudinal progress that is interpretable in terms of gain
in years but overcomes the objections to the use of grade equivalent scores.
The measure proposed here is obtained by first using the Rasch model of latent
ability to measure gain in ability on a non-normative scale, and then providing
a normative interpretation for this gain.

Let 0 and 02 be the values of the ability parametcr for an individual at
times t and t . Given an initial ability level of 01, and a gain of 02o - 010

over the periT t - t_ asstssment of this gain can be made on the basis of the
conditional distribution of '., given 0 , = ,1 for a norm group, such as a na-

tional sample. In parti .uar, the mean and standard deviation of this condi-
tional distribution enable the expression of an absolute gain as a percentile
gain, which in turn has the usual interpretation.

This paper provides an empirical Bayes procedure for computing the parame-
ters of the above conditional distribution needed for this type of judgment. On
the basis of the estimated parameters, the time it takes, on the average, for an
individual with initial ability 0 to achieve a gain of 620 - 0 can also be

jn 1alwih i i i l b l t 0 o 10 .,

1?
" . 2 2 . . - .. . . . ... .. .. . . . .. .. ....",, , ,, , p. . .. .
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computed, thus making possible the expression of progress on a chronological
scale. Two other related applications of the empirical Bayes procedure are also
discussed.

The Rasch Model

The Rasch model can be described as follows: Let 6 denote a real-valued
parameter representing the ability of an individual, and let E(e) be the proba-
bility that an individual with parameter 0 will correctly solve item j from a
given pool of items. The Rasch model specifies that

pj(6) = exp{6 + 4j} / (I + exp{6 + *.}), j = 1,...,m [i)

or, equivalently,

logit 2j(O) = 0 + *j, j = l....m, where j is a real-valued parameter charac-

terizing the difficulty of the th item and m is the number of items.

Consider a group of individuals with ability parameters ei whose responses
to . items are observed. Under the assumption that individuals respond indepen-
dently of one another and that for the same individual, responses to different
items are mirually independent, maximum likelihood or other estimates of the
6i's and j's acn be obtained (for details see Anderson, 1970; Wright & Pancha-

pakesan, 1969). Assume that the raw scores for an individual at two points in
time--t, and t --are based on two different tests, such as those corresponding
to different hierarchical levels of a test system. Assuming that the items on
the two tests are calibrated and that estimates of the item parameters are
available, the raw scores X, and X2 would be used separately on the two tests to
estimate the abilities 61 and 62 for the individual at t, and t , respectively.
There would thus be an estimate of the gain in ability W2 - 06 for the individu-
al over the period , to t.2. This measure, however, has very little meaning,
unless it is given a normative interpretation. It does not, for instance, de-
note whether a specific individual has progressed satisfactorily.

In order to make a judgment of this nature, it is necessary to compare 02 -

0 for the given indiiidual with gains for similar individuals. The conditional
distribution of 02 , Fiven 0, for a norm group provides a useful basis for the
above comparison. The mean and standard deviation of this conditional distribu-
tion are relevant measures by which the gain 62 - 61 in an individual's ability
can be judged. This type of comparison involving conditional averages is more
appropriate than the one based on grade equivalent scores, since the former
takes into account the fact that gain in ability itself is dependent on initial
ability level, whereas for the latter, comparison averaging is done over all
individuals in certain norm groups without regard to their abilities. For this
reason gain expressed in terms of grade equivalent scores is likely to be in-
flated if an individual with a high initial ability is being considered, the
opposite being true in the case of low-ability individua1. Such distortions

are avoided by the proposed method based on conditional averages.

k 41
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An Empirical Bayes Model for Assessing Gain in Ability

The need for estimating the mean and standard deviation of the conditional

distribution of 82 (ability at time _t,), given e, (ability at time t for a
specified group has been established in the previous section. In this section a
suitable model and a method for obtaining these estimates is outlined for the
estimation process.

The Model

Consider, for instance, a group of individuals whose raw scores, based on
different levels of a test, are available at two different times, t and t
Let the raw scores for individual i at times t and t be denoted by Eil and ri2,
respectively. It is assumed that at each time point the raw scores are ade-
quately described by a Rasch model and that estimates of all the item parameters
are available. For the present purpose the item parameters will be treated as
if they are known. The tests are not required to be the same for all individu-
als or to be the same at times t1 and t2 for the same individual.

Each individual i can be characterized by 8 i , .il, Sil and 8 i2, .-i±, Si2,
where Oil and Bi2 are the individual's latent abilities at times t, and t2, re-
spectively; S1 and S2 are the sets of item parameters relevant to the two tests
taken by the individual; and ri, and 112 are the raw scores defined earlier. It
can be further assumed that the sample under consideration is drawn from a popu-
lation of individuals whose abilities at times t, and t2 follow a bivariate nor-
mal distribution with means ji and P2, variances 02 and a1, and correlation co-

efficient P. This type of longitudinal model has been used by Andersen (1979)
in another context.

Representing the latent abilities in this population at times t and t 2 by
the generic variables 08 and 82, the joint distribution of e and e may then be
specified to be bivariate normal with density denoted by 0819 2). The density
*(8z, e2 ) resembles a Bayesian prior density. However, an empirical Bayes ap-
proach is followed here in that the parameters of the prior density are estimat-
ed from the sample. The conditional distribution of 82, given 81, is univariate
normal with mean and variance

t O~ e l - ) 0 2
EC8(2181 ) - 2 +

Var(O 2 18) = 022 (1 - p2 ) [2]A In order to estimate E(82 181) and Var(8 2 181), it is thus sufficient to es-
timate the parameters pl, P2, 0i, a2, and p of the bivariate density (e, 82).4. In this problem 81 and 82 are latent, or unobservable, variables whose charac-
teristics--namely, ill, P2, 0l, 02, and p--are to be estimated. The estimation
of this latent structure must be done on the basis of indirect observations rep-
resented by the responses of the individuals in the given sample to items on
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different tests at t and t . A method for estimating latent structure in a
similar situation involving a univariate latent ability distribution has been
provided by Sanathanan and Blumenthal (1978). An extension of this method,
which is discussed in the following section, gives the required estimates for

the problem considered here.

Once estimates of pl, P1 al, 2 , and p are obtained, a specific individu-
al's progress over the period from ti to t2 can be judged as follows: Let 010

and 020 be the 0i and 02 values, respectively, for a given individual. Compute
E(62 1e0 0) and Var(e 2 010), use them to express the absolute gain in ability for
the individual as a percentile gain, which in turn has the usual interpretation.

The gain 020 - 0e0 can also be interpreted in terms of gain in years as
follows: Given an individual with ability 01a, the expected gain for this indi-
vidual over the period t 1 to t 2 is E((210 1 0) - 6I0- Let 03 be the ability of an

individual at time t3 where 3 - = - ti" The expected gain for an indi-
vidual with ability e,0 over the period t, to t3 can be computed as follows:

E(03J010 ) =E 0  [E(0 3 10 1 0  02)]32

20 11 0  0 1(e3 102 )]

= 2 + P

e [2(a 2  0 E( 32
- E[02 I 1 = E(0 2l0 1 0 )] [31

Thus, for an individual with initial ability 61, EC0210)--and hence ex-
pected gain for the period t2 - t, or any multiple thereof--can be computed.
The expected gains can then be plotted against the corresponding time periods.
Given that an individual with ability 010 has gained 020 - Olo in ability, ini-

9 tial ability el can be looked up in the expected gain chart and the time period
corresponding to an expected gain of 020 - 0o can be determined by interpola-
tion. This time period can be inte-preted as the gain in time for the individu-
al. Depending on whether this gain is less or greater than t2 - t 1 , the indi-
vidual can be considered as below or above average in performance.

Latent Structure Estimation

This section focuses on the estimation of the parameters Pl, J21 a., 120

and 0 of the bivariate density W1, 02). As pointed out above, these estimates
provide the necessary information for assessing the gain 020 - 010 in an indi-
vidual's ability. (This gain itself is estimated on the basis of the individu-
al's responses to items on two different tests and an assumption of the Rasch
model.)

*Let the test responses for an individual be represented by vectors V1 and

V2 corresponding to the tests at t, and t2, respectively. Let the 'th component

.................. y.
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of be I if the th item on the k h test is solved correctly, and 0 otherwise.

The response vectors can be thought of as being generated by a sequence of inde-
pendent, identically distributed latent random vectors (6i,, Oi2), each with a

bivariate normal distribution with density 4(Ok, 62). Since estimating the pa-
rameters of 0(8,, 8 ) is of interest, the estimation would ideally be based on
the pairs (eil, 2. In that case, the maximum likelihood method would yield

the following estimates:

. = - l

^ 6.

"2 "2 I
01 n

2 + 2
2 2 n

re6. e.
F - 1 1 2

P 1 =2 [43

However, since the (ell , oi2)'s are not directly observable, the indirect

observations must be relied upon, namely, the response vectors to make the ap-
propriate inferences; and it is plausible to substitute E(OikIVli,V 2i) for Oik,
E(8~kIViI, V i) for 0ik, and E(6i, ei2zVi, V2 i) for Oil Oi2 in Equation 4.

This is the approach followed here in estimating it1, lJ, 0 , 02, and p. The

approach is based on the missing information principle (MIP) formulated by Or-
chard and Woodbury (1972) and yields the maximum likelihood estimates of the
parameters in question. The rationale for the MIP approach is provided here in
an intuitive sense. A rigorous explanation is provided by Sanathanan and Blu-
menthal (1978), on the basis of which it is evident that an application of MIP
in this situation does lead to maximum likelihood estimates.

The conditional expectations, such as E(OiklV 1i, V2 ), which are to be sub-

stituted for the corresponding latent variables in Equation 4 depend on the val-
ues of the parameters pl' 2' al' a2 , and p, which are themselves unknown and
are to be estimated. The MIP approach requires that the values of these parame-
ters and those satisfying Equation 4 be the same. This equality can be achieved

•1 through the following iterative procedure, referred to as the EM algorithm by
Dempster, Laird, and Rubin (1977), who also show the convergence of this type of
algorithm in a much more general setting.

*1A,
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Starting with trial values for ui, V'2, 01, 02, and P, cycle through the E-
and M-steps given below, until convergence is attained.

E-step: Compute the conditional expectations such as E(OiklVil, V2i),

using the current values of the parameters u,' V2'Cjl' 02, and p.

M-step: Revise the parameter values by using Equation 4 and the condi-
tional expectations from the E-step in place of the latent vari-
ables appearing in Equation 4.

Let gi(61, 62) be the density of Oil, Oi2), conditional on the response
vector (Vil, V2i). Then &i(ol, 02) is given by

2 mk2 M kXijk

T(1 ,0) (l(k))2k=1 jk=1 j

gi(0 1 , 02) =k[2 mk

( i j k

-00 k=1 jk=1

1 - xj

( 1 - P j k ( O k) )

[5]
1 Xik d

(1 - Pk(ek)) 2

where

W0082) is the bivariate normal density,
k is the test number,

F is the number of items on the kth test,

tjk(e) is given by Equation 1, and

.I jk is 1 if the jth item on the kth test is answered correctly

by the ith individual, and is 0 otherwise.

In addition,

E(eikfil' Vi2) " fek i(Oil e2) d0l do 2  , k 1,2

E(e 2 2V ) -fo. .wi(e,, 02) dO I de 2  k = 1,2ikl' Vi d f k.

* and

E(O ,e ii V f] i e i2 i E 1  02) d 6 dO2  . 61

i i - 2 2 1
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If each of the two tests at times t, and t2 are the same for all individu-
als, then j.i(e 1 , 02) is the same for all individuals with the same raw scores

(li i2 " It is then enough to consider the conditional expectations in Equa-

tion 6 for all possible pairs of raw scores. On the other hand, if the individ-
uals are administered different tests at any particular time, then the condi-
tional expectations in Equation 6 must be evaluated separately for each individ-
ual. Here again the individual's raw scores on the two tests are sufficient for
evaluating the conditional expectations in Equation 6. Basically, the expres-
sions in Equation 6 can be rewritten by noting that

0(al, e2) exp {er1 + 0 rI

gi(i, 02) = 2 mk [7]

Tr Tr (1 + exp {Oek + jk } )

k=1 jk=i

where *jk is the item parameter for the th item on the kth test taken by the
.th . ..-
i individual and is assumed to be known (or estimated separately).

Computing the expectations in Equation 6 calls for numerical integration,
which is done by using the FORTRAN version of CACM Algorithm 145 called ASIMPS.
This is the same program that was used for the computations described by Sana-
thanan and Blumenthal (1978).

A remark concerning the accuracy of estimation is in order. As in regres-
sion analysis, for the estimation of E(C2 161 0) the best accuracy is obtained
when 010 is the same as or close to the mean ability p, of the group used for
estimating the parameters of *(80, 82). For adequate estimation, there must
therefore be several samples of which the mean abilities are spread over the
range of interest. For a given initial ability 610 , E(0,16 10 ) would then be
computed using estimates of parameters based on the sample whose mean ability is
closest to 010.

* Numerical Illustration

The procedure which has been described for estimating the parameters P1.,

112 , al, 12, and p, of the bivariate density 4(61, 02) is illustrated using the
following synthetic data. Table I represents the responses of 1,000 individuals
to tests at two different times. Each test consists of four items whose es-

timates are given in Table 2.

The maximum likelihood solution is obtained by an iterative procedure in-
volving all five parameters simultaneously. A computational shortcut is
achieved here by obtaining estimaLes for P, and a1, and p 2 and 02 separately,J based on the respective marginal distributions. Although this procedure is not
strictly valid by the maximum likelihood criterion, it is an acceptable compro-

mise between computational efficiency and theoretical rigor. The computational
procedures used in obtaining these estimates are as follows: Trial values for
o 01 and U 2, G2 were chosen as .1 and 1.0, respectively. In each case, the

initial values for p and 0 and the relevant Oj values, and the relevant marginal

I

* -~ a ~
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Table 1
Bivariate Frequency Distribution of Raw Scores

Time tj Time t2

Raw Raw Score Row
Score 0 1 2 3 4 Margin

0 32 25 22 18 2 99
1 53 69 42 40 8 212
2 33 75 104 95 7 314

3 25 29 139 146 9 348
4 1 3 7 5 11 27

Column

Margin 144 201 314 304 37

raw score frequencies were entered into a computer program for carrying out the
E- and M-steps outlined above. This part of the computation involves only the

respective conditional means and variances (and not covariances) and marginal
distributions of 81 and 62 separately. After five iterations the final esti-

mates of pl and o obtained were -.32 and .839, respectively. The estimates for

12 and 02 were obtained after two iterations as .14 and 1.007, respectively.

Table 2
j Estimates of Test Items

Test

Item 1 2

1 -.4033 -1.5921
2 .4476 .3064
3 .4791 -1.0051

4 .6743 1.0932

For estimating p the values of pl, a, and 2, 02 were treated as if known,

and their estimates were inserted into the expression for g(el, 62), the generic
density of (61, 62) conditional on a given pair of raw scores. A trial value of

.8 was used for evaluating the expectation of (61, 62) conditional on vari-
ous combinations of raw scores, constituting the E-step. The average of these

conditional expectations was, in turn, used to revise the value of p, as re-
quired by the M-step. After two iterations, the p estimate obtained was .6.

Related Applications

The empirical Bayes procedure used in assessing longitudinal progress can
also be applied to the following related problems:

Consider the problem of evaluating the effectiveness of a new program or a
new instructional method. There are usually an experimental group and a control
group that are to be compared on the basis of "before" and "after" test scores.
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Since gain in ability is, to some extent, dependent on initial ability level,
for a meaningful comparison differences in the initial ability levels of the
groups must be considered. This can be accomplished as follows: Estimate
E(()I31-) for the groups separately and average the resulting functions over ,
using a common marginal distribution for a, (this could, for instance, be the
ability distribution of some specified norm group). The averages thus obtained
would be free of biases resulting from differences in initial ability levels and
hence are comparable.

Another problem to which the empirical Bayes procedure presented in this
paper is applicable is that of estimating the correlation coefficient between
two tests intended to measure the same or possibly different latent traits. To
do this, let the latent traits to be measured by the two tests correspond to 0 1

and e2 in the empirical Bayes model and follow the procedure described for com-
puting the required correlation coefficient. This approach circumvents the dif-
ficulties encountered in the usual approach, where e, and 62 are first estimated
for each individual in a given sample and the resulting estimates are used for

computing the correlation coefficient.
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GERHARD FISCHER
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When I first became acquainted with computerized adaptive testing, I con-
sidered it to be of little practical Importance, for which psychologist is
equipped with a sufficient number of computer terminals and has access to a
time-sharing computer system? Therefore, I predicted only a few applications of
adaptive testing in the near future. The actual development has proved me
wrong. The advent of microprocessor techniques in particular is making adaptive
testing practical, and adaptive testing procedures are being rapidly developed
along with the spread of their applications in large-scale testing projects.
Moreover, there have been advances in the theory underlying adaptive testing,

e.g., the Bayesian approach. An effort to catch up with this progress will have
to be made in the European countries, where, however, the number of testees is
usually much smaller than in the U.S., rendering the economic aspects of adap-
tive testing somewhat different.

Although the theoretical advantages of adaptive testing cannot be disputed
in principle, caution should be exercised against being over-enthusiastic about
adaptive testing, since results from empirical applications might turn out some-
what less favorably than in theory.

Adaptive testing has become possible only through the various strong true-
score theories, which--in contrast to the tautological asumptions of classical
test theory--attempt to force the responses of subjects into the corset of re-
strictive model assumptions; the bonus from these assumptions, however, is that
there is a basis for explaining observed behavior in terms of certain item and
person parameters, so that the chances of a subject to solve any additional item
can be predicted from previous responses, and thus an appropriate item can be
chosen. The validity of this procedure, as well as that of the test results,
rests wholly on the validity of the model used, and it must be required to hold
for each and every subject. No non-fitting subjects, such as Lumsden's (1980)
"lazy subject" who responds inadvertently to an item, are allowed; no systematic

differences between subjects or groups of subjects with respect to the ROC
curves are allowed, either. Hence, the ROC curves must be the same for all sub-
jects or, more practically, for all relevant groups of subjects within the popu-
lation of interest. There will have to be a comparison of the results of item
calibratics in subsets of subjects who differ as much as possible in some rele-
vant variables, such as age, sex, socioeconomic status, education, and ability.

*Only if the KOC parameters come out the same in all such subgroups will the mod-
el hold with sufficient accuracy to allow adaptive testing.

5j4  The question arises, If such studies are undertaken, is there much hope for
attaining stable results? To be more concrete, are the same item parameters

.1I
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really obtained, e.g., in groups of very bright and groups of rather dull exam-
inees? In view of the generally acknowledged difficulties of estimating the
guessing and discrimination parameters at all, it is doubtful that the estimates
of these parameters would show only sampling errors when estimated from, say,
groups differing radically in average latent ability. If I am correct, however,
the consequence is that the validity of adaptive testing procedures based on the
ROC parameters must be doubted.

Where does that leave us? Should we not resort to a model that is based on
the principle that item parameter estimates must be independent of the sample of
subjects, i.e., where the parameter estimates are "sample-free?" Of course, no
model can guarantee what the data will be like, but the model should have a for-
mal structure, which in principle enables the estimation of the item parameters
independently of the ability distribution in the sample of subjects. In other
words, this leads directly to the Rasch model.

There are some important advantages of the Rasch model with respect to
adaptive testing that have not been discussed at this conference so far: By
putting a linear structure into the item parameters, yielding the so-called lin-
ear logistic test model (LLTM), one can--at least in certain domains of ability
testing--explain the ikew difficulty in terms of more elementary cognitive oper-
ations. This entails the possibility of defining large unidimensional universes
of test items where each item has a difficulty parameter predicted from the log-
ical structure of the item. The LLTM has been applied, for example, to materi-
als similar to the Raven Progressive Matrices, however with items constructed
systematically on the basis of a defined set of cognitive operations. The uni-
verse of these items is, in principle, unlimited; but in practice, of course,
just a fairly large set of items is obtained. Such items have been used by
Fischer and Pendl (1977) for the purpose of a simple adaptive testing strategy
that can be applied without using a computer.

Besides the theoretical nicety of the LLTM, which explains item difficulty
on the basis of a psychological microtheory, and besides its applicability to
adaptive testing strategies, the LLTM permits an investigation of other types of
problems, which could be considered as further advances in latent trait theory.
It lends itself to analyzing the effects of context, item position, and learning

that occurs during test-taking; to predicting the asymptotic difficulty of cog-
nitive operations and/or of items after infinitely long practice; and, generally
speaking, to analyzing the effects of any kind of experimental condition on the
probability of a correct response. Furthermore, these linear logistic models
have been developed and tentatively applied to polychotomous items, which yield
more detailed information than the dichotomously scored items. Also, the appli-
cation of the polychotomous Rasch model to projective test data, for example,
has been seen to be quite successful. Going beyond the LLTM- and LLRA-type mod-
els, a dynamic extension of the Rasch model has been developed by Kempf (e.g.,

1977; Kempf & Mach, 1975), viewing test-taking behavior of the subject as a sto-
chastic process; it takes response contingent "transfer effects" on the sub-
ject's ability into account.

.In conclusion, I would like to briefly discuss the progress of latent trait
theory beyond the traditional domain of test theory. As was pointed out in Fi-
sher (1980), there is an attempt to apply latent trait theory to other fields

t 4., ,. •
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than traditional ability testing, e.g., to problems in applied and clinical psy-
chology. One major problem type is the detection and assessment of change; that
latent trait theory has been extended to multidimensional item sets is an impor-
tant step. Anyone dealing with measurement of change under the influence of
educational programs or therapeutical treatments will find that using unidimen-
sional tests for measuring change means leaving out many criteria (items) that,
according to the applied or clinical psychologist, are often the most relevant
ones. A homogeneous test is something beautiful for the psychometrician, but it
may be rather useless from the point of view of the applied psychologist.
Therefore, it is a major advance that latent trait models can be adapted to mul-
tidimensional item sets, i.e., to such item sets as are approved by our col-
leagues from the applied departments.

Latent trait models have also been devised for analyzing types of observa-
tions that are quite different from those discussed at this conference, e.g.,
for describing social interaction in groups. Scheiblechner (e.g., 1977) has
developed such models for qualitative observations and for frequency data.
These new approaches to certain problems in social psychology seem to be quite
promising. I believe, therefore, that we are at the beginning of an era of psy-
chometrics where latent trait theory will be greatly generalized so as to become
applicable to very different problems in experimental, social, and applied psy-
chology.
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I am concerned that much of the data that is gathered may be seriously im-
paired by students who do not cooperate, which was not a problem 20 or 30 years
ago but is a serious problem in many cases today. If a student answers half the
items in a normal fashion and then answers the rest of the items at random, this
will create problems in the statistical analysis. If some of the students in
one group in an equating study respond in this manner and those in the other
group do not, the value of the study could be destroyed.

An important paint is sometimes ignored in the consideration of adaptive
testing: Adaptive testing is most useful when it is necessary to measure well
at both extremes of the ability range. It is not at all useful if all that is
needed is to divide a group of people into those who will be accepted and those
who will be rejected.

I would like to endorse Lumsden's suggestion that item parameters can be
estimated much better if an extra group of low ability, and perhaps an extra
group of high ability, is added to the group of subjects. If this is to be
done, however, it would be very difficult to use a Bayesian approach, since it
can be no longer be assumed that ability is normally distributed.

I was interested in some of Yen's results. She studied the difference be-
tweei estimated 0 (ability) on two parallel tests as a function of ability lev-
el, comparing the Rasch estimates of ability with the estimates from the 3-pa-
rameter model. On the surface, the results were rather startling. The 3-param-
eter model yields smaller differences than the Rasch model at high ability lev-
els; but the Rasch model yields smaller differences at low ability levels. This
gives the (mistaken) impression that if estimation of the ability of high-abili-
ty level people is desired, the 3-parameter model should be used; but if estima-
tion of the ability Gf low-ability level people is desired, the Rasch model
should be used.

I would like to explain what I think is occurring here. The Rasch esti-
, mates of ability are based on number-correct score. A person who answers 20% of

the items correctly has a standard error of measurement that is about the same
A as if he/she had answered 80% correctly. In the case of the 3-parameter model,

where there is guessing, it is obvious that low-ability people guess frequently,
which introduces random error into their scores; so it is expected that the

standard error of measurement will be higher at low ability levels than at high
ability levels.

. . .. . . . .. . . . . ,...-4
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Since the Rasch estimator is based on number-correct score, there is no
reason for the score of a low-ability person to fluctuate wildly; thus, there is
a relatively small standard error under the Rasch model. Under the 3-parameter
model, if it is desired to estimate the ability of low-level people, the diffi-
cult items should not be scored but thrown away, since they just add noise to
the score. To go to an extreme, the 3-parameter ability estimate for a low-
ability person may be based on the person's responses to just two or three items
out of the entire test. Clearly, in this extreme case, such an estimate is go-
ing to have a large standard error. Nevertheless, this is the correct way to
estimate ability if there is guessing. The 3-parameter model should be used in
spite of the fact that it gives this large standard error.

There is a problem correlating estimates of 0. At least in conventional
testing, it is quite likely that some people will be found whose maximum likeli-
hood estimate of ability is at -- (In tailored testing this will be avoided if
there are enough easy items in the pool). If there are a finite proportion of
people with e of --,,it is obviously impossible to compute means and variances
and correlations of 0. I do not think excluding these people is a solution; the
results would depend on the vagaries of the situation--on how many people are at
-50, how many at -40, and so on.

For most purposes, it really does not matter very much whether a person's
ability is estimated to be -6 or -20. If it did matter, clearly we should not
have given the person the test we did, we should have given him/her an easier
test that would allow the accurate determination of whether he/she is at -6 or
-20. That we did not give him/her such an easy test suggests that we do not
care whether he/she is at -6 or -20. If this is true, then it is clearly wrong
to use a numerical scale that attaches much importance to such a difference.

If a Bayesian estimation procedure is used, estimates of -- will not be
obtained. This really does not get at the basic problem, however, which is that
differences at the extremes of the scale are not very important. The only way
to eliminate this difficulty is to transform the scale and to use numbers that
represent faithfully whatever importance is attached to the differences.

One way to do this is to transform each 0 into an estimated number-correct
true score, which is a monotonic transformation. The number-correct score scale
is the kind of scale that we are accustomed to using. The fact that we often
work with number-correct scores suggests that this scale reflects the kinds of
differences considered important.

A 6 of -6 and a 0 of -20 will both transform to a true score very close to
zero. That takes care of "ie problem. Means and standard deviations can then
be computed; and different testing procedures or different teaching procedures
or different estimation procedures, or whatever it is we need to compare, can be

*compared on this scale.
j

3 The last point is a problem on which I am currently working, which I think
is rather important: ways to correct for the bias in various quantities that are
estimated by LOGIST. Bias is of particular concern when doing repeated equat-
ings. At Educational Testing Service, Form H is equated to Form G, Form I to

1?4 j
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Form H, Form J to Form I, Form K to Form J, and so on. Sometimes there are 12

new forms a year. If there is a small bias in each of these equatings, due to

the fact that the parameter estimates are biased, the bias will accumulate over

a period of time and become rather serious.
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JAMES LUMSDEN

UNIVERSITY OF WESTERN AUSTRALIA

"Trotsky no doubt said many foolish things. But one wise thing he said

was, 'Belief without action is deathl' What do test theorists believe? How do
they act? Belief without action is death. Are we all, then, test theorists,
dead? Yes. And not even decent corpses enriching the earth in which we decom-
pose. We must learn to live."

My confidence in the truth of the statement above (taken from a sermon in
honor of Oscar Buros) has been shaken by events of the past few months, and par-

ticularly of the past few days. The younger test theorists seem more sensitive
to problems and more willing to act than I had expected.

There are problems. The papers of this conference have consistently re-
vealed a crisis in adaptive testing. The expensive apparatus constructed by the

psychoarithmeticians has not delivered as promised. It has given, at best, me-
diocre results and on too many occasions results that are odd-indeed, incon-
ceivable if the model even remotely holds.

Most of the difficulties are with the 3-parameter model, and perhaps the
great arithmeticians will solve them. However, this is unlikely. There are

strong theoretical grounds for the belief that there can be no satisfactory so-
lution. What can be done about it?

The multiple-choice item can be abandoned wherever possible and completion-

' type items can be used. There is already available a useful range of tests that
can be given in that form, for example, standard well-tested items from intelli-
gence tests: number span (forward, back, simultaneous, successive), number se-
ries, letter series, mathematical problems, and code substitution. If a program
can be found to "normalize" spelling (or if we are prepared to include spelling
as part of the systematic variance), then synonyms, antonyms, and verbal analo-
gies can be added. This is no trivial list. And it would seem highly likely
that imaginative use of the flexible delivery made possible by computers will
greatly enlarge the possibilities for completion items.

Abandonment of adaptive testing with multiple-choice items would thus avoid
the necessity for precise estimation of item parameters. Efficient adaptive
testing is only possible when discrimination over a relatively wide range of
ability is required and when the discriminatory power of the items is relatively
high. For all other cases conventional testing is indicated. How should the
conventional test be scored? If the item characteristic curve (ICC) procedures

are preferred and the uncertainties of estimation in the 3-parameter model can
be tolerated, they may be used.
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Lord has pointed out some troublesome end effects with the e metric and has
suggested the "true" score, given by

1 n
T. E (6) IlT n g=l g

I cannot bring myself to call anything a true score, and I suggest that a better
name for Ti is the "estimated raw score." The raw score is a good estimator of

the estimated raw score, typically accounting for over 95% of the variance. For
most purposes, the raw score will do everything that is needed without any need
to consider very seriously the item parameters.

A more powerful alternative to adaptive testing is sequential testing,
which does not seem to have been seriously treated. On the basis of a short
routing test, subjects can be rejected, selected, or given further testing.
With appropriate tests it should be possible to better the performance of the
best conventional tests and to match that of good adaptive tests.

No one has spoken at this conference about test construction--about proce-
dures for forming and improving item banks. This should be a matter of prime
concern, for obviously no amount of arithmetic is going to overcome the problems
of a badly constructed test. My preference is for factor analytic procedures.
These may be used in some cases to construct a strictly unidimensional test. In
others, factor analysis may be deliberately used to construct a heterogeneous
test. The classical item analysis procedures may operate to exclude a precious
group of items measuring an important criterion-relevant ability that is not
measured by the great majority of the other items. Factor analysis gives the
choice of making two tests or a single heterogeneous test.

Careful test construction with completion type items is the only way to
*i achieve a fit to the 1-parameter Rasch model. When items are constructed ac-

cording to a strict specification and tested by factor analysis, then it can be
guaranteed that the slopes of the ICCs will be, at least, highly similar.

Finally, let me suggest that the proper attitude for a test theorist, in-
deed any theorist, is lighthearted, even playful. I notice that most test theo-
rists are solemn. Recall the Yerkes-Dodson Law. When problems are difficult,
grim determination is a disadvantage rather than a help. All theoretical ad-
vances come from analogical thinking. One should try to develop a set of analo-
gies crammed with surplus meanings that free one from the empty mathematical
formulations.

I recommend that you all start, and some finish, an elementary textbook
that sets out to explain ICC theory to the most mathematically inept group, say,
clinical psychologists or educators. You will find that you will be searching
for clarifying examples and simple analogies to make the message comprehensible.
The most important spin-off of this exercise is that you will also come to a
deeper understanding and intuitive grasp of your trade.
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One of the concerns that I have heard expressed during this conference has

been the problem, "Do responses of real people fit the ICC model?" I began to
be concerned about this problem some time ago (Weiss, 1973), resulting in my
independent discovery of Mosier's (1940, 1941) Person Characteristic Curve
(PCC). To investigate the idea of the PCC and to see whether it could be used
to test the fit of people to the 3-parameter item characteristic curve (ICC)
model, 151 students in an introductory psychology course at the University of
Minnesota were administered 216 five-option multiple-choice vocabulary test
items. The items were then split into subgroups by their difficulty (b) parame-
ters, and 9 strata were constructed in terms of difficulty with 24 items in each
stratum. Each stratum was split into two parallel substrata. As a result, for
each individual there were 18 peaked tests. Within each of those strata and
substrata the proportion correct for each individual was determined. The plot
of these data for one individual Is an observed PCC. Several observed PCCs are
shown as solid lines in Figure I. These curves show how people differ in terms
of how they obtain different proportions correct on easy items, on items of av-
erage difficulty, and on difficult items.

Given this observed data, some index was needed of whether or not the data

from these students fit the model. Using the equation for the 3-parameter lo-
gistic model, the ICC parameter estimates for the items, and a maximum likeli-
hood ability estimate for each student based on all 216 items, the estimated

probability of a correct response was computed for each item. To obtain a mod-
el-predicted proportion correct for each stratum (and substraLum), these esti-
mated probabilities were summed for each stratum (and substratum) and divided by
the number of items in the stratum (or substratum). Thepe model-predicted val-
ues are shown in Figure I as dashed lines for each indi' idual. Their location
along the ability continuum is a function of the b values of the items and the
ability estimate for the individual; the slope of the model-predicted PCC is a
function of the item discriminations and guessing parameter values.

The fit of each person's observed PCC data to the model-predicted data was
determined by a chi-square test. Results showed that about 90% of the students
did not deviate significantly from the model at the 5% level. It was thus en-

•1 couraging to see that the responses of most of the students fit the model; Fig-
ures la and lb illustrate PCC data for two students whose responses did fit the

* model. To determine if any of that 10% group reliably did not fit the model,
PCCs for each person were determined separately for each of the parallel sub-
strata, and for each person two indices of fit were computed. Chi-square values
for the first set of substrata were plotted against those for the second set,
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Figure 1
,served and Expected Person Response Curves (PRCs) f or Two

Persons Whose Responses Reliably Fit and Two Persons Whose Responses
Did Not Reliably Fit the Three-Parameter ICC Model
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and individuals whose data were significant at the 5% level for both chi-squares
were identified. This analysis identified a small group of students who reli-
ably did not fit the model. The observed and expected PCCs for two members of
this group are shown in Figures ic and Id. These figures show two different
patterns of non-fit to the 3-parameter model. But the major conclusion was that
the vast majority of the students did perform in accordance with the 3-parameter
model (a complete report of this study is in Trabin & Weiss, 1979).

Another theme that was prevalent at this conference was the question of
whether adaptive testing should be used at all. Lumsden said it should not;
Lord said it should not; Fischer said it should not; I say it should. However,
we should carefully evaluate the question of fixed length versus variable length
adaptive tests. Although several psychometricians supported fixed length adap-
tive tests, I believe that variable length tests are more appropriate than fixed
length tests. This belief is based on data from the Bayesian posterior vari-
ances or the estimated standard errors of measurement for individuals taking an
adaptive test; at any given item length there are individual differences in
those error estimates. Some individuals are more precisely measured at a given
number of items than others; and this is a function of the individuals taking
tests, not a function of the item parameters themselves. It is also a function
of the specific items that those individuals took. Not all items in any real
item pool, regardless of how ideal it is, will be equally distant from the abil-
ity level of every person. Consequently, as long as item parameters differ in
the pool, if items are selected to maximize some function for an individual, any
two individuals will obtain different errors of estimate/measurement. When that
happens, variable length adaptive tests are more appropriate than fixed length
adaptive tests. Testing should therefore continue until the level of precision
desired is obtained. Test length will then vary based on how each particular
individual happens to interact with that particular subset of items; that inter-
action may include personality characteristics, such as risk-taking, that affect
test scores but are not on the same dimension that is being measured with a par-
ticular subset of items.

A third problem that I have observed throughout this conference, mentioned
earlier by Lord, which has still not been solved, is the scoring problem for
latent-trait-based procedures. The Bayesian scoring procedure that is now popu-
lar has the problem of regressing ability estimates toward the mean. This means
that there are some individuals whose true ability levels are two or three stan-
dard deviations away from the mean but whose ability estimates will be less ex-
treme. The result is less discrimination among those whose ability is very high
or very low using the Bayesian procedure. This problem needs to be resolved.

One solution would be a distribution-free Bayesian scoring procedure that
is not a maximum likelihood procedure, since the maximum likelihood procedure

.4 has the problem of an inability to provide ability estimates for individuals
with unusual response patterns (and real people do get unusual response pat-
terns) or for individuals who answer all the items correctly or incorrectly.
One ad hoc solution to the problem with the maximum likelihood estimates of
ability is simply to look at the data by plotting the likelihood function for a
response pattern that does not converge. This may help in uncovering the cause
&frr Lhe lack of convergence and will show where the likelihood function begins

I- III -- '..
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to flatten. This value may then be utilized as a provisional estimate of abili-
ty. This may be better for selecting subsequent test items than assigning an
arbitrary -10, -40, or -5 as an ability estimate.

The c parameter in ICC theory is a problem in estimation, since it creates
problems in the estimation of the a parameter and lowers estimated item discrim-
inations. Guessing also introduces into test scores many variables that are
inappropriate. Thus, I can only support Lumsden's suggestion, that the multi-
ple-choice item be retired and that new item types be developed that are free of
the technology under which testing developed 70 years ago. The new test item
need not necessarily be completely free response. There are other kinds of
items that will do a good job of measuring that are not necessarily free re-
sponse items. Although free-response (or completion) items are obviously the
ideal toward which we should strive, we should carefully examine our test items
to determine whether a non-multiple-choice format can be used so as to eliminate
the guessing problem and thereby do a better job in item parameter estimation
and individual measurement.

At the same time we need new kinds of tests. Given the capabilities of the
computer, now that we have it, we need to develop new kinds of tests that may
not be based on latent trait theory but that more fully utilize the capability
of the computer to interact with an individual in order to measure abilities
that we are not now measuring. I hope that when we do develop these kinds of
tests that we avoid the multiple-choice item and that we try to be more creative
and develop testing situations that will more truly reflect the potential actual
performance of pepple in the real world and the criteria that we are attempting
to predict.

Now that we are using computers for test administration, I see a danger in
the use of response latency information without carefully examining its charac-
teristics. It is very easy now to collect response latency data on an individu-
al taking a test item and to use those data in ways that experimental psycholo-
gists have done for many years. But there is a critical difference between what
the experimental psychologist does and what the psychometrician does. The dif-
ference is that when experimental psychologists use response latency data, they
typically take numerous observations and then compute mean response latencies
for individuals--their means are computed either across individuals and/or over
replications of stimuli--and those means average out many random fluctuations
that occur in real data.

When psychometricians look at latencies for individual test items and build
models about response latency for people taking individual ability test items,
they might build those models on much irrelevant data. Before such models are
built, the psychometrician should observe people taking an ability test. What
will be observed as components of response latencies are people scratching their
heads, fixing their contact lenses, observing others walking to and from their
testing terminals, or just plain inattention and daydreaming, rather than re-
sponding instantaneously as soon as they have arrived at the correct answer, as

* !the models will posit. As a result, latencies measured at the individual item
level will include many random components. Elimination of these kinds of dis-
turbances will require many replications of items with similar difficulties;
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then we might obtain a valid estimate of the response latency for a person on an
item subset of a given difficulty. Thus, before we attempt to use response la-
tency data in the measurement process, the reliability and validity of reponse
latency data derived from ability testing situations need to be examined.

An additional problem in adaptive testing that needs further research is
the dimensionality problem. All of latent trait theory that has been studied
and applied to date is based on the unidimensional case; we still have not ade-
quately solved the multidimensional case. If latent trait theory is to be ade-
quately used in many practical testing situations, the multidimensional case
will need to be operationalized, since tests cannot always be made as unidimen-
sional as we would like to have them.

Finally, we should not rely totally on ICC theory for adaptive testing.
There are ways to implement adaptive testing that do not require ICC theory
(e.g., Weiss, 1975). ICC theory will be useful if there are 1,000 subjects and
80 items (or whatever future research discovers to be adequate) on which to pa-
rameterize test items. But there are many environments where such item pools
and sample sizes are not available. In these cases other ways of doing adaptive
testing, which might operate more effectively than ICC methods (e.g.. Thompson &
Weiss, 1980), should be considered.
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JOHN B. CARROLL

UNIVERSITY OF NORTH CAROLINA

AT CHAPEL HILL

I should like to make some comments about the person characteristic curve
(PCC), which has just been discussed by Weiss (1980). Before moving into the
field of cognitive psychology, I was a test theorist; and one of my concerns,
although not under that name, was actually the PCC. My original interest stem-
med from a paper by Guilford (1941) in which he claimed that a factor analysis
of the 10 subtests of the Seashore Test of Pitch Discrimination revealed that
more than one ability would be involved in performance on this test. Indeed, he
believed that three factors were involved--one for easy items, one for items of
medium difficulty, and one for difficult items.

This conclusion made absolutely no sense: I found it difficult to believe
that an individual who could not make an easy pitch dicrimination could never-
theless detect a very small pitch difference. I developed the statistical ra-
tionale (Carroll, 1945) whereby I was able to convince myself that Guilford's
findings were an artifact resulting from the use of tetrachoric correlations
with the scores affected by chance success-a conclusion that Gourlay (1951)
confirmed and that I have discussed (see Carroll, 1961).

Underlying this rationale was the notion that the response curve of an in-
dividuel to items of varying difficulty measuring a single trait was a psycho-
metric function, for example, a normal ogive starting at probability asymptotic
to unity for easy items and descending to near zero, or at least to a chance
level c, for more difficult items. Actually, this is simply a version of a

4standard psychophysical function. It is well illustrated with data from the
Seashore Test of Pitch Discrimination, which contains 10 subtests, each with 10
two-choice items at a particular level of difficulty in terms of the difference
(in Hertz) between the two pitches presented for a judgment as to whether the
second pitch is higher or lower than the first. Because of unreliabiliLy and
chance success factors, the response curve for any single individual will be
rather irregular; but mean response curves for individuals at different total
test score intervals will exhibit the form illustrated in Figure 1. In effect,
these are mean PCCs and they are similar to Weiss's (1980) illustration for a
vocabulary test.

I, too, have plotted such curves for vocabulary tests, as well as for
,3 achievement test items, as in a study of Navy officer candidate examinations

(Carroll & Schohan, 1953), where they were called individual operating charac-
teristic curves. I have tended to think of the slopes of these curves as indi-
cating something about the trait being mebsured, rather than the individual.
With a psychophysical function such as that of pitch discrimination, the slopes

-Mimi
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Figure I

Expected Mean Person Response Characteristic Curves
for (A) Low-Ability Examinees and (B) High-Ability Examinees

on a Test of a Trait such as Pitch Discrimination Ability
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will be relatively steep;'but with achievement tests, the slopes will be rela-

tively less steep. In fact, in the case of the Navy officer candidate examina-
tions (Carroll & Schohan, 1953), the slopes were so low as to indicate that the

tests were "perfectly heterogeneous tests"; that is, they were the slopes that
would be expected for tests composed of items differing in difficulty but with

population intercorrelations (corrected for chance success effects) equal to
zero. Even though my other interests and commitments have never permitted me to

develop this kind of test theory as much as I would have wished, I recommend

that this line of thinking be further explored, particularly in the light of

latent trait theory. (An exposition and application of my theory, as far as I
carried it, is to be found in a doctoral thesis by Dry, 1959.)

One interesting point emerges. Contrary to some opinions that have been

expressed here-opinions that can be respected in view of the reasons given for
them--I am going to be very heretical and suggest that rather than "getting rid

of" multiple-choice items, we feature them in our work but make them two-choice

instead of "multiple" choice. This is essentially what many experimental cogni-

tive psychologists have been doing: converting multiple-choice tests to a two-

choice format in order to capitalize on certain advantages of this format. For

example, Egan (1976) converted several of Guilford's spatial ability tests to a

4
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two-choice format, primarily in order to obtain more valid and reliable response
latency measurements. Giving the respondent a two-choice option (a true-false
or a yes-no option) obviates the problem of time wasted in scanning, comparing,
and evaluating a large number of choices. This is one advantage of the two-
choice format. Another advantage, from the standpoint of latent trait theory,
is that the c parameter can be determined, in many circumstances, by a priori
considerations as equal to .5, provided that the examinee is led to believe that
the probability of a particular response being correct is .5. This can be done,
of course, by insuring that equal numbers of true-false (or yes-no) items are
present in the test or the experimental series.

Note that experimental psychologists are not usually interested in the sub-
ject's latency or correctness on a single item; they take measurements over
groups of similar items or replicate the data o--er multiple trials or trial
blocks. A similar approach can be taken in tb case of ability or achievement
testing without increasing testing time much, "f at all. Actually, constructing
large numbers of two-choice items is easier t:,an constructing large numbers of
five-choice items. However, one should avoid making items that deliberately
mislead low-ability examinees into making incorrect responses, for in this case
the c parameter can easily drop well below .5.

It has been my intention in this discussion to mention some possibilities
that might well be followed up in future work on the applications of latent
trait theory to computerized testing; I will be interested in watching any such
developments.
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