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SECTION I

INTRODUCTION

Electrode boundary regions play an important role in
high energy density discharges presently used for electrical
lasers. Discharge media of particular interest are molecular
gases in glow-discharge generated plasmas as exemplified by
the C02 laser. A quantitative description of the electrode
regions is required in order to establish energy loadings and

geometric scaling in such discharges for various practical

devices presently under development.

The electrode regions correspond to those portions of the

plasma that are affected by the presence of the electrodes.!
Under certain conditions, the relevant characteristic lengths
of the problem are independent of and smaller than typical
interelectrode dimensions. The variables, therefore, display
a "boundary layer" behavior. This behavior is already well
understood for any fluid dynamic lengths that may be of
importance.2 In both stationary and moving plasmas of moder-
ately high density, the electrode regions are of the boundary
layer type and the electrode contributions may be described
with the continuum or classical fluid dynamical equations.

In addition to diffusion?®, these equations must describe the
electrical conduction term, Poisson's equation, and suitable
energy relations. To the extent that the presence of non-
equilibrium effects may be well represented, the continuum

approach may be both simpler than present kinetic theory
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approexches“’S and accurate. Any classical approach brings
together a vast body of literature unmatched by kinetic
theory, even if the latter is more appropriate for non-
equilibrium situations. The method in our work corresponds
| to a hybrid approach to the problem.
| Electrode voltage drops are significant in glow dis-
charges because in addition to the necessary allowance
. required in the external power source, ''one can never impose
a uniform electric field on a plasma by means of collecting
electrodes".® Thus, in the ionizer/sustainer7discharge mode
of pumping a laser, the proper E/N value is obtained after
the electrode regions have been accounted for. Moreover, the
values of E/N are higher in the electrode regions than in the
plasma core (i.e., in the positive column or undisturbed
plasma), and the discharge stability to glow collapse may be
governed by what E/N values can be tolerated in the electrode
regions without exceeding some iconization rate critical value
which will lead to instabilities and arcing.® Another phe-
nomenon that affects both plasma homogeneity and stability is
the presence of constriction or spots at the electrodes’®
surfaces. In the so-called vacuum arc,'®,!'! anode spots
appear under certain operating conditions and are of some
practical importance; anode spots have also been observed!?
in high density plasmas. Since intense vacuum arcs produce a
dense metal vapor at the surface, they too are described by
the continuum eqguations and ultimately it should be possible

to reconcile results from the arc literature to our work.
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The intense cathode spot is the conventional mode of operation

of many arcs; however, we shall be only concerned with describ-
ing the "cold cathode'" because of its relative simplicity and
its closer kinship with anode behavior.

Thus, the imposition of a homogeneous, precisely defined
value of E/N in an E~beam generated plasma is not without

challenge. The E-beam generated ionization'"*

is usually less
homogeneous than the sustainer field distribution so that E/N
and n, may vary in space and time throughout the discharge.
For CW devices, we must add fluctuations in density due to
turbulence and to heating, and in pulsed devices fluctuations
in density due to shock waves. Fortunately, in the He—Nz-CO2

laser, the optimum E/N for laser efficiency is rather broad.

1. Approach

Our description of the anode and the (cold) cathode is based
on the existence of both a continuum and local thermodynamic
equilibrium (LTE)!®. As such, except for photons, particles are
locally at equilibrium and the Boltzmann relation between energy
states may be used. Moreover, we sometimes assume that both

electrons and heavy particles have Maxwellian velocity distri-

butions but at different temperatures. Whenever electron colli-
sions are the primary source of transitions, then the electron
temperature appears in the corresponding Boltzmann relation.

Thus, the non-equilibrium situation represented is one where

the electrons have a Maxwellian distribution at a corresponding
temperature greater than the translational or vibrational temper-
atures of the lasing molecules. The term "two-temperature plasma"

is often used to describe the above situation!?®.

3
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At this stage, there are a number of simplifications incor-
porated in our description. First, the effects of a magnetic
field are neglected since no external magnetic fields are
present and since in the unconstricted mode the internal or
self-generated magnetic fields is expected to have no effect on
the discharge. Second, we consider the overall gas temperaturec
to remain constant; this is an adequate assumption for convec~
tively cooled, high-volume discharges. 1In such a thermally
stable system, however, transitions from a glow to arc filaments
cannot be renresented. Third and last, the molecular gas
described is pure nitrogen rather than the regquired laser mixture,
and the source of ionization through an E-beam or other source'®
is external to the sustainer power; the only function of the elec-
trodes is that the imposing an E/N to pump the laser medium.

The equations that describe the electrode voltage drops
comprise species continuity, the electron energy equation, and

15,18 The small electron mass yvields important

Poisson's equation
consequences, two of which are the ability to neglect convection
in the électron continuity equation and the strong dependence of
the electron temperature on E/N. 1In this report, we de-
couple the presence of the E-beam by assuming that the sustainer
operates only during the afterglow region.

In glow discharges, the electron energy distribution is known

1% and suitable account must be made of this

to be non-Maxwelliar'’~
important fact. In order to allow for non-Maxwellian distribu-

tions and still retain the use of the concept of temperature,

4




empirical information is used in the representation of *he coeffi-

cients®®; thus, the electron temperature, the ionization and
recombination coefficients, the diffusion coefficients, etc.,
are given as parametrized functions of E/N from experimental
measurements.,

In the usual Dboundary layer problem in fluid mechanics a
two-dimensional flat plate is assumed®’. It is shown herein
that similarly a two-dimensional Cartesian description is the
minimum suitable description for our equations in the limit of
low currents. We further argue that convection can only be

significant in the plasma portion of the ambipolar regions.

Note that compared to the sheath, the ambipolar regions contribute

only a minor fraction of the voltage drop. The sheath and ambi-
polar regions, however, are important in questions of stability
of the discharge and must be included in the nroblem formation.
We model a quiescent plasma in the immediate neighbourhood
of the electrode surfaces. 1In an attempt to describe CW devices,
we have included in this report a discussion of pnossibhble effects
of convection. In actuality no calculations of such effects are
performed. Now in pulsed lasers, where pulse lengths of the
order of 50 usec are of interest, convection will play no direct
role. Of considerable importance, however, is the fact that
both the sheath and ambipolar regions can establish themselves
within such short times; this possibility is a direct result of

the boundary layer nature of the problem.




2. Parameters of Discharge Gas

Throughout this work we deal exclusively with nitrogen dis-
charges under the following coefficients:

Gas Density: 1 Amagat or 3x10%5 p=3 %

Cas Type: molecular (nitrogen)

Gas Temperature: 2730K

Electric Field: 1.5 to 15x10° V/m (E/N = 0.5 to 5x1072°

Vm?) 5

Electron Density: 10'7 to 10!° p~?°

Electrode Voltag Drop: 35V 1

Since cross-section data for electron in nitrogen discharges
arc readily available'!®, the electron temperature and diffusion
coefficient are calculable. Also, n*/N where n* is a stationary

state (see Section II-2) and M the gas number density can be

computed. These parameters are shown in Tigure 1 as a function
of E/N. The ions are assumed to follow the gas temperature. An
electrode voltage drop of abhout 35 volts may be assumed since it
represents the effective ionization energy8 for N2 and, therefore,
the anode fall. Yowever, results shown in Sec. IV are presently
restricted to 10 volts because of computational difficulties at
the higher voltages.

The cathode 1s more complicated to describe because of the
requirement of electron emission from the surface. The cathode

fall in cold cathodes is of the order of 250 volts and in thermionic

cathodes considerably less. A proner representation of the cathode

will require a more efficient comnutational scheme with suitable

boundary conditions.
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of the discharge and must be included in the nroblem formation.
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! 1. Equations

The species

SECTION 11

PROBLEM FORMULATION

equations for singly ionized atoms without

any magnetic fields may be written as are commonly in mass

transfer analysis!®

18,21

eCiE Cy
. a-5C.-=-9- - — = ¥
Ions: pu Ci v pDi KT t 5 Vpi W (1)
o i
m,, eC F Cq
Llectrons: - - a - v pDe KT + P Vp() = Wy (2)
e e
where ~ = overall gas density
u = overall gas velocity field
C. = species mass fraction X.C, = 1 C.=m.n,
i,e ™ °P 373 (pCy=myny)
W = net source term X &, = 0
Lo J J
Dj o = diffusion coefficient
T, = clectron temperature
TO = overall gas temperature
. = species partial pressure .=n_.KT,
Pj o = spec p P re (p;=nykT)
e = charge of the electron
m, = mass of the electron
- k = Boltzmann's constant
' = electric field

q

= rate of thormylization of fast electrons
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Futhermore,

=
1

We for single ionization in the gas (3)

and E

-Vé where ¢ is the electric potential (4)

In our notation, n represents species number density
and N the overall number density. Also, since Te is a
given function of E/N, there is no further need for an
electron energy equation. The species mass fraction, C,
is in itself dimensionless but it will prove useful to detfine
a new ratio for this variable (see Section III). Equations 1
and 2 are written for steady flow.

The only equation needed to complete the set now is

Poisson's equation,

e m, 1 e

vl = --2L_ (¢, - m—lc ) (5)
O 1 e

where € permittivity of free space.

From this set of equations, the sheath and ambipolar
regions evolve in a self-consistent way, obviating the
requirement to match boundary conditions between the regions.
2. Characteristic Lengths

It turns out that all the dependent variables in this

C and V¢, can be of the boundary-

problem, namely, Ci’ o

layer type. As such, there is an individual characteristic
length over which the magnitude of these variables changes
from their value at the electrode to their value in the

undisturbed plasma. Of course, the fluid dynamic boundary
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layer is established by non-electrical considerations and we
shall assume that it ranges from one or a few millimeters to
a few centimeters depending on the Peynolds number of the flow.

The concentration boundary layers are not easily surmised
because of inflections at the sheath and because, as will be
pointed out, their boundary layer nature depends strongly on
the degree of reaction in the plasma, i.e., on We

The extent of the sheath is one of the most important
characteristic lengths in this work because it is within the
sheath that most of the voltage drop is exnected to occur (for
a short discharge). Fortunately, the sheath length can be
estimated rather easily from Poisson's or in this case Gauss'
equation,

e
V-E = -E;(ni—ne) (6)

where €5 is the permittivity of free space.

~ (E-E )~ ~ n.
_ s S _ 1,e
Let ;= m[— and ni e = -Tw-— (7)

where AS = sheath characteristic length; the subscript "s"
indicates the value at the electrode (anode or cathode) and

"o'" the value at the undisturbed plasma. Fquation 7 then
becomes
en_X\g’ A

—————— | (n;-n
€oldg=0s]

(8)

1>
=1>
I

1 e)
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In the equation above, Xs is used to non-dimensionalize
the del operator in all directions. That is, independent of
the dimensionality of the problem, the sheath is effective
over the characteristic dimension of AS . Now we can esti-
mate the size of the sheath by setting the square brackets in

Equation 8 to be of order one’? since all other terms have

been made of order one,

lo_-o_ % lo-o.1\2

€ -0 | elo_- 2

[ o' TsT=l} s "™

As B en_ - KDm kTe (9)

where Anw= the Debye length in the undisturbed plasma.

We now establish the specific values anticipated for

AS . Take for example
n, = 10'7 to 10°m~?
t¢s-¢m\ = 25 volts
Then, Ag =1.4x 107" toy 4x 10" °m

It is interesting to note that a change of [¢s_¢w' by
a factor of 10 would change AS by a factor of 3 so that
we may consider the estimate reasonable for the above-quoted
electron number densities in the undisturbed plasma. Now, if
the fluid dynamic boundary layer for a density of one Amagat

is at least an order of magnitude greater than the sheath,

then we may conclude that convection will have a small if not

11




negligible effect in the sheath. Note that the sheath, being
always adjacent to the surface, resides in the region where
the velocity drops to zero; therefore, it is entirely
appropriate to assume that convection plays no significant
role in the sheath.

Next in importance is the length of the ambipolar region,
i.e., the transition region between the sheath and the
undisturbed plasma. This region is neutral and can perhaps
span the boundary layer so that, in CW devices, convection
would likely be present. We do, however, expect that convec-
tion may be neglected without affecting the resulting voltages
appreciably. In Equation 1, for example, we know’® that in
the ambipolar region the last term of the left hand side is
small compared to electric conduction; therefore, we need only
compare convection with conduction, or the fluid velocity with
the drift velocity. The transverse velocity component in the
boundary layer problem is?

1

voo- Uoo RC‘--:. o O.l—]m/S
assuming the Reynolds number to be Re 2 10* - 10®* and the
free stream velocity to be U_ < 10 - 100 m/s . Now the

drift velocity may be approximated by

Vvn ~ U;E T 10 - 100 m/s

for E, 2 10° - 10° V/m and u; - 107" m"/s'volt. Clearly,

in the presence of a sufficiently strong interelectrode field,

12
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the contribution of ion convection due to a cross flow should

be negligible. The geometrical orientation of the discharge
with respect to the flow is an important factor here.’®
The concentration profiles behave in a more complicated

! manner than either the voltage or the electric field. While

the magnitude of ry and ng will change appreciably within

the sheath, fractional analysis is risky because inflcctions

are present in the profiles. 1In this section and in Appendix

e e

A, we give a discussion pertaining to the stability of the
ambipolar region and its boundary layer nature. Since Ln E
(see Equation A6 and Figure 1), the characteristic length

for ambipolar diffusion, turns out to be comparable to the

sheath length, ambipolar diffusion to the walls can establish

itself during periods of the order of 50 1 sec. p
In general, the ambhipolar diffusion equation can be

written as
2 =
=t - D, V'n n (10)

where Da = ambipolar diffusion coefficient

If we may assume a form for the net production rate,
ﬁe , some important conclusions may be drawn about the sta-
bility of the ambipolar region. Let

2
n_ = v.n - gn° + v 11
e i (11)
where vy o= ionization rate coefficient, sustainer
o = three-body neutral recombina-
tion rate coefficient
Y = ionizatior rate coefficient ¥ beam

R R Y
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In a nitrogen discharge, no electron-neutral attachment is

present. (Presumably, °* attachment instabilities can be
significant in lasers, but are not described here.)

If we look now at the steady form of the equation we have

2 =_9L£ *_ -
Vn Da(n n) ‘V/Da (12)
vi/N
where n* = vi/a or n*/M = 3

The parameter n* above 1s governed solely by the sustainer
discharge, i.e., by E/N as shown in Figure 1. It is reasonable
to assume that E/N is designed to be fairly homogeneous in the
interelectrode space but that the F-beam produced charge con-
centration is not'“. Now at the outer edge of the ambipolar
region (at the undisturbed plasma), n(x,y) = n_ , where n_ is
assumed to be governed exclusively by the E-beam conditions.

If we now assume that we operate in the afterglow region,
(n*-n_) (13)

From the properties of the Laplacian operator, we can infer

the following:
i) for n* > n_, V’n_ < 0 and a steady solution is
possible: n can reach a maximum.

ii) for n* < n_ , V’n > 0 and the steady solution is

not possible; n cannot be a maximum.

14
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iii) for n* = n_ , n cen neither be a maximum nor a
minimum inside the domain and, indeed, it must be
a constant.
The reason that the second case is impossible is that in
the ambipolar region V’n < 0 and N seeks a maximum toward
the centerline. 1If, however, n* < n_ then this trend must

reverse itself somewhere and a niinimum must exist within the

domain. Such a situation corresponds to a physically unsteady

condition and the full form of Equation 10 must be investigated.

The criterion for stability appears to be n* > n_ with

the equal sign as the marginally stable case. nis
considered to be a steady distribution attributed solely to
the E-beam; this simplification of the physics models the
ionizer/sustainer as if the plasma is externally generated
and a steady distribution (1n ) 1is independent of E/N and
reasonably constant for the pulse duration.

In pulsed lasers, diffusion may only be established
within the boundary layers. This, however, is in itself
significant because the electric field reaches a maximum
within the electrode regions. But the problem cannot be
simplified here and one must work with the entire set of
equations.

The use of the ambipolar diffusion equation, i.e.,
Equation 10, is the traditional approach to the problem-”®.
This, however, rather complicates the calculation of the

electric field as it does in the Zchottky solution. ®

This complication does not seem to appear when the full

15
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formulation of the problem including the sheath, is utilized.
In order to get some intuition into the nature of the
solutions, it is worthwhile to attempt some sort of simpli-
fication. In Appendix A, the ion flux equation in the
ambipolar region is investigated; it is assumed that this
equation is sufficient to describe the concentration profile
given an electric field and the form of ﬁe. We further
assume that a one-dimensional description is possible and,
indeed, desirable since it yields a constant electric field
in this region. Results indicate that for E/N values of
interest the ambipolar charge concentration is indeed of
the boundary laver type.
3. Dimensionality of the Problem

In the 1imit of low currents, the elevation of electron
temperature may be neglected together with ionization from
the sustainer discharge, and the quiescent plasma governing
equations may be written in a simpler, equivalent form. We
shall further examine the one dimensional form because, at
first glance, the smallness of the sheath compared to a
typical electrode ‘dimension suggests that the one-dimensional
Cartesian description might indeed be adequate. As before,

v is the interclectrode coordinate.

02Di dni
i T wT, Mt eb; 4y (16)
ezDO dnO
Jo T KT nOF' *+ eDg dy (17)
O
18
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Now in one-dimensional flow with no ionization or recombina-
tion, ji and je are individually constant throughout the
interelectrode space.
Subtracting Equation 17 from 16 we obtain
- i Je eE d

K =35, - eb, ~ kT, (n; - ng) - gy (7 + ) (19)

Now let us look at the sign of the terms in the above
equation for three regions, namely, (a) in the anode sheath,

(b) in the undisturbed plasma, and (c) in the cathode sheath.

. (=3D) d -

Region ET;(ni_ne) "ay(“i + ne) K
(a) negative negative negative

(b) 0 0 0
(c) positive positive positive

Clearly, if j D. , and De are constants,

i Je i
then Fquation 19 is invalid. What is needed is for ji and
je to decrease from the anode to the plasma and to increase
from the plasma to the cathode thereby producing current

concentrations at the electrodes'?. It is therefore obvious

that for the frozen-property flow of current a one-~-dimensional

formulation 1is inadequate.
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In order to see if ionization is a requisite for a one-

dimensional solution we use the conservation cquations in

the form of Equation 19 and we cet

J J :
d i e l_ 1 1
ay leDi eb_ T e (57 * ) (20)
i e
Butl since De >> Di we may simplify,
dk~. e
e (21)
i
Figure 2 shows the behavior of K~ as defined in

Equation 19. As can be seen from the sketch, the term has

either a positive or zero slope, so we may conclude that

w, or n_ > 0 (a) anode region

0 (b) undisturbed plasma

> 0 (c) cathode region

Of course, this means that ionization must exceed

recombination by an appropriate amount in order to satisfy

Equations 16-18 and 10, 11. As mentioned previously, we
shall assume that ionization is due to electron impact and
that recombination is of the two or three-bhody type as
anpropriate for moderately high pressure discharges.

The material presented in this section points out some
interesting facts. These may be summarized by stating that
the geometry of the current flow is not nezessarily imposed

by the electrode geometry. Depending on the level of the

18
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current, the plasma constituents, etc., we may have a spot
mode or a glow mode (one-dimensional disregarding end effects)
at one or both of the electrodes’?. Moreover, the sheath
and ambipolar regions may grow with increasing current
making the solution of the problem a challenging one. It is
clear that one does not a priori specify the dimensionality
and size of the domain for calculation but that one has to
make certain that the description will be sufficiently un-
restricted to permit a solution of the problem.

There are other instances where a given formulation is
tractable only for certain geometries or shapes such as the
flow of a uniform, incompressible viscous fluid due to a

moving body at small Reynolds numbers (Stoke's flow)27.
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SECTION III

PROBLEM SOLUTION

1. Working Equations

It has been shown above that the depending on the level
of the current and associated voltage, the electrode regions
represent a multidimensional problem. We are, therefore,
modeling non-emitting electrodes as depicted in Figure 3.
Nere a periodic, 2-dimensional, flat plate region is seen.
We assume the coefficients to be either constant as in the
case of the ions and neutrals, or dependant on E/N. Tor the
range of E/N considered, it is adequate to take the electron

diffusion coefficient and the electron temperature as'®,®®

D, = 5.5 x 1077 (m?/s) (22)
+20
p % 12.10n(E/Nx1077°) + 38.5. oyy (53
e 38.5 Ceo

Note that E/N is in Volts-m’ in the above.
Since we are neglecting convection and assuming that
the sustainer operates in the afterglow of the E-beam current,

the governing equations in our model are written as follows

~ A AA AN D ~
_ e 7

-V [Rniv¢ + Vni] = 5 0, (24)
~{n v ~n n_ ~

e e _
V{—g— - Un, - 5 vg] = fg (25)
/\2/\ _ ~ A
Ve = Yp<ne - n;) (26)
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Now, we specialize our formulation to the flate plate
depicted in Figure 3. We drop the carets (") for simplicity,
but it is to be understood that all variables have been

suitably non-dimensionalized. In particular,

2 2
Y8n,(n,-n_) - B &a_¢+3_rila_9 - Bni+a ") _ (D N
it7i Ve dX 33X 3Jy 3y axz ayz D, e
3 (27)
an
_ -1 e 3¢ e 3¢ -1 -2 3436
Yhe(ng-n;) 6 +(ax 5x Ty ay] P % relimax t
2 2
20 26) -1{208°% 96’"e| [?7Me ?7n
y 3y xIE YV [T\ T (28)
\ o2 s ) ? , [ae)?_ -1 (2%, 3%).
At 3y elyx2 5y e
2 2
39 .9
“"~+——%= (n_-n.) (29)
axz 3y ¥)e 1
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The associated boundary conditions are shown in Figure
4. Each node is in a periodic field whose side or x-dimension
is given by a few sheath lengths. This 'packing" is arbitrary
but yields a maximum total current at the electrode for a given
electrode voltage drop. The latter is governed by the individual
node current. Thus, we model a maximum 'crowding'" condition.
Any further crowding would precipitate the same situation that
negates the one-dimensional solution. The top or y-dimension
is unbounded, as required by the boundary-layer type of behavior.
Note, furthermore, from Figure 4 that the electron density at
the anode is not zero as is often done in conventional probe
analysis. Such a change is needed because a finite node current
requires a finite node charge density. The node density is
found by trying various values until a match of the current at
the node and the current at the undisturted plasma is obtained.
The continuous domain around one node is modeled with
equidistant grid points on a square mesh as shown in Figure 4.
The finite difference equations approximating the two species
equations and Poisson's equation are solved simultaneously in a

line-iterative fashion.
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2. Program

The electron and ion species equations (Equation 27 and
28) contain non-linear terms which present problems in their
) computer analsyis. The Jacobi method includes all non-linear
terms on the '"right hand side", i.e., external to the coeffi- .i
cient matrix. Convergence to a solution is possible if these ‘
non-linear terms change slowly enough over each iteration. It
was found by Dolson in Reference 29 that the Jacobi method was
in fact unstable for the present set of equations and conditions. {
As a consequence of the failure of the Jacobi method, a quasi-

Jacobi method was used, in which an estimate was computed for i

each total variable (9, ng, ni) at each grid point during each
iteration. When the product of two variables was encountered,
one variable was treated as a constant coefficient for each

iteration. This means that the non-linear terms are retained

in the coefficient matrix. The ''constant' coefficients are
updated after every iteration, thus changing the coefficient

matrix. The conventional Jacobi method was found to converge

only for very low values of ¢ at the electrode, whereas the

quasi-Jacobi procedure provided converged solutions for values

of ¢ < 2 volts . Thus, the Newton-Raphson method was chosen.

The Newton-Raphson method, Reference 30, is presented by

way of illustration. Equations 27, 28 and 29 are the three
non-dimensional equations for ¢ , n, , and n; . The Poisson

Equation can be written at grid node 1i,j as:

32 32
_% + _‘f +y(ng-ng) = Fp 4 (30)
9x ay p ’
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The solution in this case is said to have converged ideally if

Fi45°°

< €

series expansion,

where
and
or
2,k 2,k
870 L 3Ty, vy(n,
2 Byz 1

and dropping

F

k+1

1

AF

k+1

k+1

or practically if the

th

k

i,

iteration value

F

Writing this equation in a linear truncated Taylor

k
1

3

ij

subscripts for simplicity:

k+1

This equation must hold at each of the

finite difference mesh.

A typical non-linear term:

ixj

a¢

The expanded iteration form would look like,

k+1 k+1
0 e
9X X

94
X

k

k k+1 k
Ane . 30 Bne
0X 9X 3X

k+1
. 506 BAne
9X X

27

+

k+1

2

w
ko

(31)

grid points of the

an

20

g €
3y 3y

{(x-terms onlv):

k

aAn
e

3

X

k+1

(32)




AF is considered linear in A, Ane and Ani and so the last

term in equation 34, is neglected, and the products of the kth
solutions are known, as are the kth coefficients of the
unknowns, A¢k+1 and Anek+1

Thus the final matrix has the form:

kth Coefficients
Matrix

T k

¢k, A¢k+1 Fl

k k+1|_
n, Ane = - F2 (35)
k k+1

L ny Ani F3

-

where the Fi's correspond in form to Equation 30, for each of
Tquations 27, 28 and 29.

Thus the solution procedure consists of evaluating the

th

right hand side based upon the k solution and solving the

+ + .
system of equations for A¢k+1, Anek 1 and Anik 1 which

are used to update their respective grid point values.

Appendix C shows the program listing with additional detail.




SECTION IV

RESULTS

Computer solutions were obtained for the set of conditions
presented in Table I. The anode voltage is 10 volts in all

cases,
TASBLFE 1: COMPUTTR SCLUTIONS CONDITIONS

CASE 0 2 H

I not couplecd not coupled 2.0
II coupled not coupled
111 coupled not coupled

IV coupled coupled 0.5

The results are shown in Figures 5-8 as three-dimensional views
of the potential field, temperature field, space charge density,
electron and ion densities. Also included are graphs of poten-
tial, species and space charge densities along a cut from the
anode to the free stream for each case.

Table I gives the five case conditions, where ﬁe repre-
sents the "right hand side" of Equations (28) and (29), ©
represents the temperature equation which is a function of the
solution set (E/N, properly) and H is equal to the size of
the computational node spacing, i.e., HAS is physical space.

Initial solutions were obtained with ﬁe = 0 with the
sheath size smaller than the grid spacing. These coarse solu-
tions were illustrative of the ambipolar solution in which
Vi¢ 2 0 except at the anode where the space charge is forced

as a "boundary condition'". The effect of "turning-on" the

29
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nroduction term (he) is to bring about the boundary layer
behavior of the solution (Case II) The boundary layer behavior
of the species densities is easily illustrated in the compari-
son of Figure 5(g) (Case I) to Tigure 6(g) (Case II). Case I
and II conditions produced an insufficient electric field to
enable the electron temperature & to be greater than 1.
Thus (Case I and II conditions were identical with the tempera-
ture routine coupled or uncoupled.

A solution would always be obtained as long as the sheath
is not larger than the grid size spacing, for ﬁe =0
Towever reasonable solutions could be obtained for grid size
spacing smaller than the sheath size only for ﬁe # 0
Cases III and IV each represent the sheath as 2 grid spacing
(" = 0.35). Case IV is identical to Case III with the addition
of the electron temnerature effects. The temperature effect
in Cose IV produced only a slight increase of space charge
density and a very small increase of the electron field near
the anode.

In all cases the current into the inactive wall was 3 or
4 orders of magnitude 1less than the current at the anode node.
The current at the anode node was approximately 3 times the
total current at the free stream. The anode current could be
better matched to the free stream current by picking a suitable
n, (anode), but this was not pursued because previous results
of a preliminary nature indicate only minor changes over the

results shown. In fact in cases I and II with n_= 0

e , at the

anode, the anode current still excecds the current at the
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free stream boundary. The electric field at the free stream
boundary is insufficient to offer a current matching condition.
A more proper free stream boundary condition would be E = E_
rather than ¢ = 0 . The electron field boundary condition

created numerical instabilities and is recommended as a subject

for later analysis. Our approach thus far was to increase ¢

(o}

large enough to produce the proper E

o]
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SECTION V

SUMMARY AND CONCLUSIONS

The results presented in this report are based on a two-
dimensional description of the current flow at the anode.
Diffusion is properly accounted for as is ionization/recombi-
nation. No convection or magnetic field effects are included.
We assume operation in the after-glow of the E-beam ionization
so that ¢ and q are essentially uncoupled from the solu-
tions. Current constricts at active nodes along the surface,
and the sheath and ambipolar region are self-generating in the
solution of Equations 27-29.

The boundary layer nature of the sheath is clearly evident
in the results shown; the boundary layer nature of the ambi-
polar region only shows up when We or n are coupled into

e

the calculations. The magnitude of ﬁe is highest within the
sheath and along the walls, dropping off towards the undis-
turbed plasma. The space charge density (ne—ni) peaks at
0.5x10'®m™® near the active node.

About 90% of the voltage drop takes place within one or
two sheath lengths, this produces a maximum electric field of
0.8x10° V/m (for the 10 volts drop) at the electrode node. The undis-
turbed region electric field is about 0.5x10% V/m which is
considerably below the value of 0.27x10° V/m required for
pumping the laser medium. But then again, ¢ 1is 10 V and it

should be 35 V. That is, roughly, an increase by a factor is

54 required for E . The temperature field, being a direct

52
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function of E/N, does not affect our results simply because

E/N is yet too low. There are, however, subtle changes which

we feel are going to become important at the higher voltages.
It is anticipated that H can be decreased further (up

to 1/6 of a sheath length), with the coupling of 1n and

e L
that this will allow smoother changes within the sheath and
more numerical stability at higher voltages. Also, it should

be possible to consider jointly the E-beam ionization in our

solutions to produce more realistic effects.
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APPENDIY. A

AVMRIPOLAP. REGIOIl —- ONE DIMENSIONAL DESCRIPTION

We have seen that within the sheath, the solution to the
conservation equations cannot be one dimensional. While there
may be some particular range of ionization/recombination which
permits one-dimensional solutions, most often we must allow
for current concentrations at the electrodes. PFowever, away
from the electrodes - the problem may become one dimensional
in the ambipolar region (see Figures 3, Section III.1).

Since the extent of the sheath is quite small when compared to
typical interelectrode dimensions, it is interesting to examine
one-dimensional solutions within and beyond the ambipolar
region. Here we assume that an initial concentration, ng ,

is known at the wall-end of the ambipolar region and that a
symmetry plane exists for the charge concentration (usually

the mid-plate region), see Figure Al.

Equations Al, A2, and A5 are shown below for the one-
dimensional, ambipolar region. We use number density instead
of mass fraction and take S to represent the E-beam production
rate of secondary electrons. Convection is neglected and the
resulting electric field in this region is constant. Also,

all the coefficients turn out to be constant.
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’ »‘i-~’ip—i- g -p 48 B+ S Al
! dele - ay| = e (A1)
| o)
| oD
d [T Ve dn .
+ |-+=1nEk - De =— =n_+ S + a (A2)
| dy {kTe dy ] e
t
’ dF/dy = 0 or E = constant (A3)
Xl
. We now study %®quation Al in the afterglow region. Ilet
Af S and q be zero so that
. 2
n, = vyn - an (AS)
and combine with Equation Al.
n
°F an  a%n) _ 2
R ay T oE| Troon/m
vi o dy

In order to nondimentionalize the above relation we in-.
troduce the ambipolar diffusion characteristic length along

with suitable ratios of the variables,

D.~
i
L - 4/D:/V. or L. N =14/- (AG)
n J 1 1 n \)17N
Zf yo= Y/Ih ]
| :
y :
. n = n/n*

eFL  e(R/M)L Y

kTO kTO




e e -

The resulting differential equation becomes

on .
Arzl - E Z—r} + (n-n%) = 0 (A7)
y y

d

[=}

(dn/dy)y=0 0 and S(O) = n

n(+e)

1
=]

~

It is obvious from equation A7 that if n'(0)=0 and
£(0)=1 we have truly boundary-layer behavior since both
;' and ﬁ” become zero at the midplane. This represents a
mathematical limit but note that because Ln is very small
in relation to the interelectrode distance, 5(0) will be
for all practical purposes equal to one, i.e., n=z1.0
Figure 1 in the text shows calculated values of LnN , as
a function of E/N. These compare reasonably well with values
quoted in the litera.ture.z5

Equation A7 is written below without the carets and with

primes instead of derivatives.

n" - En' + (n-n2) = 0 (AR)
n'(0) =0 '
n(*) = ng é

¥e have considered the above equation for E x 51 (or

G

E/N 3 10_1 V—cmz). The solution of Equation A8 was obtained
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numerically and is shown in Figure A2. We note that this solu-

tion can be, within a very close approximation, easily obtained

by neglecting n"”. We have
n' o* %(n—nz) (A9)
and n' * 0 when n =1
The important result is that n' = O(1/E) and n" = O(1/E?) so

that only for E sufficiently large may we neglect diffusion in
the ambipolar region.

Solving Equation A9 we obtain:

- 11
n* |1 + (1/n_-1) exp (yg‘i (A10)
Now, since v > I due to the smallness of Ln relative to
To(i.e. . Ln = 10—2cm whereas 2 * 10cm), n(0) ~ 1 ; furthermore
n(:) = n_ . For values ng > 0.5 , it is easy to see that the
above approximation is valid. Results shown in a previous

section indicate that this is reasonably truc. Thus, diffusion

is unimportant here.

In dimensional form, Equation Al0 becomes

n n* y-2 -1
- = 1 - (n—‘—-l) exp (_—_2 ) (Al1l)
s eELrl /kTO

=

n* = v./a
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If we now proceed to re-examine Equations Al and A2, assuming
that the magnitude of n" and q are insignificant but that the E-

beam is operating, we have

eD.E

i” dn _ .
KT, dy ~Pe * S (A12)

eD E
e dn =
KT, dy et S (A13)

Clearly, the above set of equations has only a trivial, non-
physical solution. We see again that a one dimensional forulation
is not feasible.

It was mentioned in Section II-1 that ﬁe > 0 was a require-
ment for stability in the electrode regions. We now briefly dis-

cuss what this implies in the presence of the E-beam. Recall

ﬁe = v; - an® + S (A14)
2 _
Let n- o= S/o
So that ﬁe = g(n*n + n - nz) > 0 (Al15)
Solving for n, o # O ,
2
1 n* 2
n* 2
n < 51 + A + n, (A16)

Now n* is a function of E/N as seen from Figure 1 and

typically n* is much less than n_ away from the electrode




regions. According to Equation Al6, potential difficulties can
be encountered in regions where S 1is sufficiently small so
that as E/N and n* decrease away from the clectrode (i.e., as

the discharge becomes  non-self-sustaining), he < 0 . This is

because n can cxceed no locally at the fringes of the L-beam

Whether or not such a thing can trigger arcing remains to be

established.
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APPENDIX B

MORE ON PROBLEM DIMENSIONALITY

The arguments introduced in Section II.3 relating to the
dimensionality Equations 11-13 are based on physical grounds.
Here, we present two more mathematical proofs which, while not
sufficicnt, show clearly the inappropriateness of the resulting
solutions. It is possible to combine Equations 16-18 into the

single equation for the electric field seen below

kT kT

z c 2 e
0o 0 d’E oo d dE o+ ,dEy, ‘o d ,_2
T T wE @y Lay - e FGGy) mmn ()
+ K =0 (B1)
Jy J
o . N S

where K = Ji/eDi + Je/eDe and X eDi eDe
33 3 2 N = - = :’_O 4
From Reference 12 3 n ng 5 dE/dy

and
0 =n. + n = }:_T_O_(g.é + K+)
i e eE “dy

Equation Bl 1is a third order, ordinary non-linear

differential equation. We may nondimensionalize it with

kTO
Bo = on B <> E/E,
(B2)
ez
= >
L = %5 y «»y/L
o o
From a dimensional analysis of Equation D1 | it is

found that the above substitutions will result in a form of

the equation free of coefficients. Equation Bl thus becomes,
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substituting primes for the derivatives

+
_— 1 ...2 K ., E,.2., _
E - ﬁ(h )' % E' - Q(E ) + EK =0 (B3)

Where, in the above, E, K, and y are nondimensional. We can
look for solutions to this equation which monotonically
decrease from the electrode to a small value at the undisturbed
plasma.

A solution which is both very simple and reasonable for

the anode is

2(y + a)~! (B4)

E(y)

a = 2/Ea

This solution satisfies Equation »3 for the special case

K = -2K~ (B5)
or D,
.o _ 1 71
Ji =371 Je (B6)
e
Moreover, E' = ¢ = n, - ng
= —2(y + a)7? (B7)

is also reasonable for the anode since the space charge is
negative and rapidly vanishes as y grows. Now the sum of

the charge densities is found from

~ C1po+.d8

o = n.+n, = E[K Iy (B8)

- o [kt +a(y+a) ™2 (B9)
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But this result is unreasonable since ¢ must be zero (or
near zero) at the electrode and increase monotonically to an
asymptotic value at the undisturbed plasma. The result shown
in Equation B9 is clearly not a physically acceptable one.

The solution for the rcathode is similarly obtained with

2(a-yy1, y<a (B10)

and K = 2k~ (B11)

Please note that the cathode is to the right of the anode, as
indicated in Figure ? of the text. In the above solution,
both E and ¢ appear to be reasonable (the space charge
being positive at the cathode). But, again, ¢ does not
follow the physically acceptable pattern.

A more complete solution to Equation B3 may be obtained
if we note that since K  is zero in the undisturbed plasma,
it follows that it must be zero everywhere as long as we insist
on a one-dimensional, constant property solution to Equations

16-18. We have, multiplying R3 by E,

2
toro 1 ,72 ' -+ ' E ,2 L. + = s
EE - 5(E'7)" - WE' - §_(E )' =0 K 2Je/eDO (B12)
with E~»-E_, E' -0, E'' ~ 0 asy ~» the undisturbed plasma.
Now EElvv - (EEII)I - %(F'z)'
2
E 2., _ 1,4,
and E_(E ) o= Z(F )
substituting into D12
!
[EE'' - (E'2 - K'E - %F”] -0
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Integrating

1.4

E'' - (E)2 - X'E - £ = ¢ (B13)

1

We evaluate C1 at y + the undisturbed plasma

thus

2

EE'' - (E')° - K'(E-E,) - z(E°-E,") = 0 (B14)

After some algebraic manipulation we find expressions for

E' and E'',
+ E2 1,4 4 2.2, .3
E' = [K (-2E + E_ + F) + g(E° + E° - 2B )]? (B15)
(o]
"_.1 + E 3 2
E'' = gl2K (-1 + 5 )+ (B - E E)] (B16)
Elll_l 2K+E + 32 2 Y '0
=3[ /E, + (3E° - E “)] E', as E+E_, E'»0 and
E''" - 0 as well.

It is possible to solve for ¢ at this point

_ K 1
=5 + 5 (E® - E.7) (B17)

Furthermore, K+ = 0 E, so that
o = 0, + 2(E° - Ex?) (B18)

Clearly, since E > E_, o > o, which is an improper be-
havior for the sum of the charge densities. Again, while §

and E seem to behave reasonably, the one-dimensional solu-

tion is incorrect for o
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APPENDIY C

COMPUTEP. PROGRAM

This appendix includes the program listing with some pre-

liminary comments.

As previously discussed the matrix form of the iteration

th
N

scheme is: ! Coefficivnts

- Matrix
B k
. K , rA: k+1 Fl
. el | (c1)
n, n, | Fo
k k+1
n tng J [FB
- J
There are three equations to be solved at each (1i,j)

grid point corresponding to Fl’ F2 and F.3 (equations 27, 28 and 29).

The solution vector is interlaced as:

[ oty (i.3-1)86(3,3), dng(1,3),8n;(4,5), Bo(1,3+1)... |

This method was chosen to keep the values of neighboring points
in the two dimensional grid mesh near each other in the solution
vector. Since a grid point value %j can be expressed as a
linear combination of nearest neighbor ¢(i+1,j+1), n (i+l,3+1),
orni(itl),jjl) this would produce a banded coefficient matrix
A. of width 46 and length 273 (for a 7x13 grid mesh) when eco-
nomically stored. The International Mathematics and Statistics
Library (IMSL) subroutine. LEQT1B, is suited for solving equa-
tions of this form.
The Sheath program calculates the coefficienis of the

matrix A and vector F (refered to as vector C in the computer

program). Thus C(3n-2) is the F? value at grid mesh (i,j),

G6
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C(3n~1) 1is the value of the Fg value at grid mesh 1i,j etc.,

(where n=i+j-1). The solution to the matrix equation (i
[A¢(i,j), etc.] is assigned to vector C wupon return from b
! LEQT1IB subroutine.

The solution set ¢i’ne’ and n, are updated per
Equation 31. The electron energy term 6.. is programmed as an

1)
empirical function of E/N at grid point (i,j) and is cal-

ko

culated at the completion of each iteration. The iteration

) sequence is repeated as many times as required to converge ]

to a solution. :

The program listing follows.
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