

NAVAL POSTGRADUATE Monterey, California

TACTICAL MISSILE CONCEPTUAL DESIGN
by
Danny Ray Redmon

September 1980

Thesis Advisor: G.H. Lindsey
Approved for public release; distribution unlimited.
$81 \% 1304$
sECumity Classificatiom of twis parte (mman Dene Eniogeas)

REPORT DOCUMENTATION PAGE	READ INSTRUCTINNS BEPORE COMPLETXNC FORM
	3. MECIDIENT'S Catalog mumben
TACTICAL MISSILE CONCEPTUAL DESIGN,	8. Trae of nepont a meniod covenco Engineer's Thesis September 1980 6. pentommina onc. ritoont mumben
7. AuTroños Danny Ray Redmon	7. CONTGACT ODGEAMT MUMEEM(A)
5. Demponmino onganization name ano adoness Naval Postgraduate School Monterey, California 93940	16. PROGAAM ELEMEMT PROJECT. TASK
" contmolling offiezname ano adoness Naval Postgraduate School Monterey, California 93940	
 Naval Postgraduate School Monterey, California 93940	
$\begin{aligned} & \text { 16. OIstmidutiom statiment (at the Repert) } \\ & \text { Approved for public release; distribution } \end{aligned}$	unlimited.
	men Raporl)
18. SUPPLEMENTAMY MOTES	
Missile design, Conceptual design, Missile a	rodynamics
8	
This thesis presents the theory necessary of a tactical missile. The design process be linear aerodynamic theory for initial sizing linear effects to determine the final design theory does not apply, empirical methods are known to give accurate results. An air-to-a for a specific threat as an example which im development of the theory for each section.	for the conceptual design begins with the well known and later includes nonof the missile. Where presented which are ir missile is designed mediately follows the Several small digital
	JNCLASSIFIED

INCTASSIFTED

computer programs are presented and used for analysis of specific areas of the design. One large program (AEROI) is used for
1 determining the aerodynamic coefficients of the final design.

AERONAUTICAL ENGINEER

from the
NAVAL POSTGRADUATE SCHOOL
September 1980

This thesis presents the theory necessary for the conceptual design of a tactical missile. The design process begins with the well known linear aerodynamic theory for initial sizing and later includes nonlinear effects to determine the final design of the missile. Where theory does not apply, empirical methods are presented which are known to give accurate results. An air-to-air missile is designed for a specific threat as an example which immediately follows the development of the theory for each section. Several small digital computer programs are presented and used for analysis of specific areas of the design. One large program (AEROL) is used for determining the aerodynamic coefficients of the final design.

TABLE OF CONTENTS

Page
I. INTRODUCTION 18
II. PROBLEM DEFINITION 19
A. THREAT ANALYSIS 19

1. Operational Requirements 19
2. Design Example (Operational
Requirements) 20
3. Scenario 20
4. Design Example (Scenario) 22
B. HISTORICAL SURVEY 22
C. LAUNCH PLATFORMS AND PHYSICAL CONSTRAINTS 25
D. MISSION PROFILES AND PERFORMANCE
OBJECTIVES 27
5. Design Example (Mission Profile) 28
a. Semi-Active Homing Missile 29
b. Active Homing Missile 31
III. GUIDANCE LAW SELECTION 35
A. PURSUIT GUIDANCE 35
B. LINE-OF-SIGHT GUIDANCE 37
C. PROPORTIONAL GUIDANCE 37
D. COMPARISON OF GUIDANCE LAWS 38
E. PURSUIT GUIDANCE (DETAILED ANALYSIS) 48
F. LINE-OF-SIGHT GUIDANCE (DETAILED
ANALYSIS) 51
Page
6. Example I (Non-maneuvering Crossing Target) 58
7. Example II (Effect of V_{M}) 61
8. Example III (Manuevering Target) 65
G. PROPORTIONAL GUIDANCE (DETAILED ANALYSIS) 68
9. Example IV (Non-maneuvering
Crossing Target) 72
10. Example V (Crossing Maneuvering Target) 77
11. Example VI (Effect of k) 81
H. DESIGN EXAMPLE (GUIDANCE LAW SELECTION) 85
IV. SIZING THE DIAMETER 92
A. THE RADAR RANGE EQUATION 93
B. ACTIVE RADAR HOMING 95
12. Example 97
C. SEMI-ACTIVE HOMING 101
D. DESIGN EXAMPLE (ANTENNA SIZING) 102
E. INFRARED SEEKERS 102
13. Planck's Law 103
14. Emissivity 104
15. Energy into a Hemisphere 108
16. Targets 109
a. Self-Emission 110
b. Reflection 110
17. Target Temperature 110
a. Example I 111

Page

b. Example II 112
6. Simple IR System 113
7. Detectors 114
8. Idealized Range 117
a. Example (Idealized Range) 118
F. WARHEAD SIZING 119

1. Target Vulnerability 120
2. Conditional Kill Probability 121
3. Sizing the Warhead Radius 124
V. BASELINE DEFINITION 134
A. CONTROL CONCEPTS 134
4. Wing Control 135
5. Canard Control 136
6. Tail Control 136
B. GROSS WEIGHT AND CENTER OF GRAVITY 137
C. DESIGN EXAMPLE (BASELINE DEFINITION) 143
VI. LINEAR AERODYNAMICS 147
A. MISSILE DRAG 147
7. Supersonic Skin Friction 148
8. Supersonic Wave Drag 149
9. Base Pressure Drag 153
10. Induced Drag 154
B. DESIGN EXAMPLE (ZERO LIFT DRAG CALCULATION) 154
C. MISSILE LIFT CURVE SLOPE 156
D. MISSILE PITCHING MOMENT 161
E. WEIGHT AND CENTER OF GRAVITY VARIATIONS 163

Page

VII. LIFTING SURFACE DESIGN 164
A. WING PLACEMENT 164
B. MANEUVER LOAD FACTOR 165

1. Design Example (Maneuver Load
Factor) 168
C. TAIL SIZING 169
D. WING PLANFORM 170
2. Effect of Taper Ratio and Leading
Edge Sweep 170
3. Example 174
4. Effect of Varying Aspect Ratio 174
5. Design Example (Wing Planform) 179
6. Design Example (Canard Planform) . . . 181
E. DESIGN EXAMPLE (REVISION OF ZERO LIFT DRAG
AND LIFT CURVE SLOPE 185
VIII. PROPULSION REQUIREMENTS 187
A. BOOSTER INITIAL SIZING 187
B. SUSTAINER INITIAL SIZING 191
C. ROCKET MOTOR CHAMBER PRESSURE 193
D. TYPICAL PROPELLANTS 196
E. DESIGN EXAMPLE (BOOSTER) 199
F. DESIGN EXAMPLE (SUSTAINER) 201
G. REDUCING ROCKET MOTOR LENGTH 203
7. Design Example (Resizing for
Propulsion) 205
H. DESIGN EXAMPLE (CHAMBER PRESSURE) 205
I. DESIGN EXAMPLE (SIZING THE NOZZLE) 207
J. TAIL SIZING 208
IX. NONLINEAR AERODYNAMICS AND AEROI 212
A. VISCOUS CROSS-FLOW 212
B. TOTAL MISSILE LIFT 218
C. DRAG CHARACTERISTICS OF A MISSILE 220
8. Zero Lift Drag 221
a. Subsonic 221
(1) Body Drag 221
(2) Wing Drag 222
(3) Tail Drag 222
b. Transonic 222
c. Supersonic 224
9. Induced Drag 229
10. Total Drag 229
D. PITCHING MOMENT CHARACTERISTICS 231
11. Body 231
12. Wing (Fixed Surface) 231
13. Tail (Control Surface) 239
E. AERO1 DESCRIPTION 240
14. Verification of AEROI 242
a. NASA TN D-6996 242
b. NASA TM X-2367 247
c. NASA TM X-2780 and NASA TM X-2289 247
F. COMPONENT WEIGHTS 258
Page
G. DESIGN EXAMPLE (FINAL ANALYSIS) 262
X. CONCLUSIONS AND RECOMMENDATIONS 283
AEROl COMPUTER PROGRAM LISTING. 285
LIST OF REFERENCES 314
INITIAL DISTRIBUTION LIST 316
Page
(2-I) Historiscal Data 24
(3-I) Guidance Law Trends for Air Targets 46
(3-II) Line-of-Sight Computer Program 56
(3-III) Example I Output 59
(3-IV) Example II Output 62
(3-V) Example III Output 66
(3-VI) Proportional Guidance Computer Program 75
(3-VII) Example V Output 78
(3-VIII) Example VI Output 82
(3-IX) Design Example Output 89
(8-I) Typical Propellant Properties 198
(9-I) Input Data 244
(9-II) Output Data 246
(9-III) AERO1 Input 263
(9-IV) AEROI Oütput 264
(9-V) AERO1 Output 268

LIST OF FIGURES

Page
(2-1) RAM-K Fighter 21
(2-2) Weight Limitations 26
(3-la) Pursuit Guidance 36
(3-lb) Beam Rider Guidance 36
(3-1c) Proportional Guidance 36
(3-2) Target Heading Sensitivity 40
(3-3) Target Speed Sensitivity 41
(3-4) Target Acceleration Sensitivity 42
(3-5) Angle Bias Sensitivity 43
(3-6) Noise Sensitivity 44
(3-7) Wind Gust Sensitivity 45
(3-8) Miss Distance Sensitivity to Missile Acceleration Limit 47
(3-9) Pursuit Geometry 48
(3-10) Line-of-Sight Geometry 51
(3-11) Non-maneuvering Crossing Geometry 58
(3-12) Non-maneuvering Crossing Target 60
(3-13) Crossing Target Geometry 61
(3-14) Effect of V_{M} on the Encounter 64
(3-15) Maneuvering Target 65
(3-16) Effect of a 7 g Maneuver Upon the Encounter 67
(3-17) Proportional Guidance Geometry 68
(3-18) Non-maneuvering Target 72
(3-19) Crossing Maneuvering Target 77
(3-20) Trajectories of Crossing, Maneuvering Intercept 80
(3-21) Initial Geometry 81
(3-22) Effect of Varying k 84
(3-23) Head-On Scenario 86
(3-24) Crossing Scenario 87
(3-25) Obilique Scenario 88
(3-26) Selection of Navigation Constant 90
(4-1) Required Antenna Size 98
(4-2) Atmospheric Absorption 100
(4-3) Black-Body Spectral Radiant Emittance 105
(4-4) Actual Spectral Radiant Emittance 106
(4-5) Radiant Emittance of a Body 107
(4-6) Energy Emitted into a Hemisphere 108
(4-7) Simple IR System 113
(4-8) Simple Chopper 116
(4-9) Preamp Input 116
(4-10) Encounter Geometry 119
(4-11) Static Encounter 122
(4-12) Warhead 125
(4-13) P_{D} versus r_{W} 129
(4-14) Effect of Initial Velocity on Warhead Radius 132
(4-15) Hollow Warhead 133
1 (5-1) Control Configurations 134
(5-2) Generic SRAAM Configuration 139
(5-3) Generic MRAAM Configuration 140
(5-4) Generic LRAAM Configuration 141
(5-5) Generic SAM Configuration. 142
(5-6) Lifting Surface 144
(5-7) Baseline Missile 146
(6-1) Hemispherical Nose Wave Drag 151
(6-2) Double-Wedge Wing 152
(6-3) Base Pressure Areas 153
(6-4) Wing-Body-Tail Lift 156
(6-5) Linear Lift Interference Factors 158
(6-6) Wing Leading Edge 159
(6-7) Forces Acting on the Missile 162
(7-1) Sustained Maneuver of a Missile 165
(7-2) Planform Geometry 170
(7-3) Theoretical Lift Curve Slope 171
(7-4) Theoretical Lift Curve Slope 172
(7-5) Effect of λ on Drag 175
(7-6) Effect of λ on Lift Curve Slope 176
(7-7) Lift Drag Function 178
(7-8) Wing Lift Drag Function 182
(7-9) Canard Lift Drag Function 184
(7-10) Design with "Optimum" Wings 186
(8-1) Forces Acting on the Missile 188
(8-2) Nozzle Geometry 209

Page

(8-3) Missile Design 210
(9-1) Relative Contributions of Linear and Nonlinear Terms 213
(9-2) Cross-flow Drag Coefficient 214
(9-3) Cross-flow Drag Proportionality Constant 216
(9-4) Drag Coefficient for a Flat Plate
Normal to the Flow 219
(9-5) Transonic Wave Drag for Ogival and
Blunted Conical Forebodies 225
(9-6) Transonic $C_{D_{0}}$ for Unswept Wings 226
(9-7) Ratio of $C_{D_{W}}$ for Various L / D to $C_{D_{W}}$ for
Hemisphere 227
(9-8) Wave Drag of Pcinted Conical Nose 230
(9-9) Mean Base Pressure Curve 233
(9-10) Wing Center of Pressure (Subsonic) 234
(9-11) Wing Center of Pressure (Supersonic) 235
(9-12) Body Center of Pressure 236
(9-13) Body Center of Pressure 237
(9-14) Body Center of Pressure 238
(9-15) AEROI Input Data 243
(9-16) Body Alone Normal Force 248
(9-17) Body Alone Moment 249
(9-18) Body Alone Axial Force 250
(9-19) Tail Body Lift Force 251
(9-20) Tail Body Drag Force 252

Page

(9-21) Tail Body Moment 253
(9-22) Wing Body Normal Force 254
(9-23) Wing Body Moment 255
(9-24) Complete Missile Lift Force 256
(9-25) Complete Missile Drag 257
(9-26) Aero Surface Weight 259
(9-27) Final Design 260
(9-28) Static Stability 266

The author wishes to express his sincere appreciation to the faculty of the Aeronautical Engineering Department of the Naval Postgraduate School. The broad subject area of this thesis required the help of experts in several areas for which the help of all concerned is appreciated.

The author is particularly indebted and grateful to his thesis advisor, Professor G.H. Lindsey, whose counsel and assistance enabled him to express the concepts in this thesis in a meaningful manner.

Finally I would like to thank my wife, Peggy, for her help, patience, and love, without which, this thesis would not have been possible.

I. INTRODUCTION

This study was made to present a method for the conceptual design of tactical missiles. The starting point for the design was a recently completed report by General Dynamics, Convair Division entitled Rapid Approach to Missile Synthesis (RAMS). A procedure was then developed more akin to aircraft design and which bears little resemblance to RAMS and which uses basic equations to size components rather than nomograms and table look-up. The procedure starts with a threat description and proceeds with the formulation of performance objectives and a conceptual design of a tactical missile to counter the threat. The design is not unique, but as will be shown, is a compromise of parameters to give one possible solution to the design problem; therefore, the point design arrived at is not necessarily the optimum design for the presented threat. An attempt is made to find the optimum performance within specific areas of the design process.

Throughout this study the theory involved is explained and specific examples are worked. A complete design example is worked out in detail. It is an air-to-air missile designed to counter the new Soviet RAM-K fighter aircraft. This example is worked in each section immediately following the development of the theory for that specific area.

II. PROBLEM DEFINITION

A. THREAT ANALYSIS

1. Operational Requirements

The design of a new missile is usually in response to an operational requirement which arises as the result of one of the following: (1) A new technology provides the means to design a more effective missile to meet a current threat. An example of this might be an advance in material science, which allows higher inlet turbine temperatures for a turbojet engine; therefore, allowing higher missile flight speeds. (2) Intelligence indicates a new threat for which existing missiles are not effective. (3) Operational reports indicate a current missile is inadequate against a current threat.

Regardless of how the operational requirement is derived, a statement of the threat is required before the design process can proceed. Experience has proven that one missile cannot be designed to meet all types of threats without seriously compromising performance or effectiveness. This can be illustrated with the design of the warhead. A contact fuze, shaped charge warhead designed to penetrate and kill hard targets such as tanks, would not be effective against a highly maneuverable aircraft for which the expected miss distance is several feet. For this reason the design of a missile must start with a detailed analysis of the threat. The more detailed this analysis is, the more effective the final design can be.
2. Design Example (Operational Requirement)

A design example will be used as a continuous thread throughout this thesis to demonstrate applications of the theory. An air-to-air missile will be designed to counter the new class of Soviet fighter, which is in the advanced development stage at the Ramenskoye Experimentation Center. The fighter, as described in Aviation Week [1,2]has been designated the RAM-K. The RAM-K is a twin engine fighter with variable geometry inlets and swing wings. The aircraft bears a resemblance to both the F-14 and $\mathrm{F}-15$. It is expected to be the recipient of a new look down, shoot down radar and the 40 km range $A A-X-9$ missile. The following unclassified dimensions and performance data are available on the RAM-K:

Wing span	40 ft
Overall length	64 ft
Gross weight	69000 lbs
Maximum speed	$M=2.5$
Service ceiling	$60,000 \mathrm{ft}$

Figure (2-1) is a drawing of the RAM-K.
3. Scenario

The scenario within which the missile is expected to operate should also be described. If the normal mode of operation of the threat is not known, an attempt should be made to define the most demanding scenario that can be expected. For a defensive weapon the most challenging incoming threat will normally be a head-on encounter. The threat profile may vary from a high level attack with a terminal dive to a low level attack with a

RAM-K

Figure (2-1). RAM-K Fighter.
terminal pop-up maneuver. In the case of the AS-6 (Kingfish) two modes of attack can be expected. In such a case both profiles must be evaluated to determine the most demanding in terms of missile performance objectives. For an offensive system, such as an air-to-air missile designed to intercept and destroy an enemy fighter before it launches its weapons, the scenarios analyzed should include all possible encounter geometries.
4. Design Example (Scenario)

The scenario for the above threat would likely be an intercept situation in defense of the fleet high value unit. The scenario is taken to be a head-on encounter with the missile and the target at the same altitude. Since the combat specifications of an aircraft are normally given at 10,000 ft., this is taken as the scenario altitude.

B. HISTORICAL SURVEY

Missile design is an iterative process, and the first time through the design loop many assumptions have to be made concerning component sizes and weights. One method of approach at the early stage is to employ historical data of existing missile sizes and weights; since justifications for these parameters were made duirng their design processes. An example of the use of historical data in determining the initial missile length can be made with the length to diameter ratio. The length to diameter ratios of existing missiles of the same class as that
being designed are collected, and an average is computed. The diameter of the design is fixed by one of three driving factors (propulsion, warhead, or guidance). From the average length to diameter ratio the initial missile length is then estimated. From this historical data, initial choices based on the experience of others can be made for many of the missile parameters. These parameters define a baseline missile, which is the initial configuration from which design iterations and refinements can be made.

Since missiles are designed for specific missions, specific parameters such as length and diameter are of little value in comparing missiles. Dimensionless ratios such as length to diameter, I/D, ratio and aspect ratio, $A R$, are more meaningful when relating missiles. Some parameters which are useful in defining the baseline missile are listed below:
$L / D=$ Length to diameter ratio
$L_{n} / D=$ Nose length to diameter ratio
$A R_{W}=$ Aspect ratio of the wing
$A R_{t}=$ Aspect ratio of the tail
W/S = Weight to lifting surface area ratio
$V_{t}=S_{t} l_{t} /\left(S_{r e f} d_{r e f}\right)$ Tail volume coefficient
$W_{G} / W_{\text {wh }}=$ Gross weight to warhead weight ratio
The tail volume coefficient, V_{t}, is a dimensionless parameter used to initially size the tail. For a tail control missile, it is a measure of the relative control effectiveness when comparing missiles. For a wing control missile it is a relative measure of stability.

A complete historical survey should not be limited to the parameters listed here. Any dimensionless parameter which will add information about the proposed design should be included for completeness.

Table 2-I is an example of a collection of such parameters for existing air-to-air missiles [1, 3]. In this table the subscript, $c, i s u s e d$ to indicate a canard control surface.
C. LAUNCH PLATFORMS AND PHYSICAL CONSTRAINTS

The problem definition must also include a description of the intended launch platform for the missile. The aircraft or shipboard launcher from which the missile will be launched will fix many design features of the missile. For instance the most important consideration in the problem definition phase is any physical constraints imposed by the launcher. Since it is not normally feasible, economically to design a launcher to fit the missile, most new missiles must fit existing launchers. In the case of shipboard launchers there will be a maximum length and diameter and a maximum launch weight which can be accomodated.

For the case of an air launched missile, there will be a maximam weight, and the dimensions may also be limited due to the performance requirements of the aircraft.

For the air-to-air missile design example of this study, the launch platforms will be the $\mathrm{F}-16$ and $\mathrm{F}=18 \mathrm{~A}$. Figure (2-2), which is from Interavia [4,5]shows the pylon weight limitations for these aircraft. From these figures it can be seen that the maximum launch weight for this design is limited to 2500 pounds by the pylon limitations of the F-18A.

Load Carrying Capability of F-16

Figure (2-2). Weight Limitations.
D. MISSION PROFILES AND PERFORMANCE OBJECTIVES

The mission profile of a missile consists of dividing the flight into fundamental segments which consist of a single function, such as boost to cruise speed and altitude, cruise to the target, and terminal homing phases. The mission profile will vary from missile to missile. For a cruise missile it may consist of a series of pop-up maneuvers and low level cruises. For a short range missile, the profile may be entirely terminal homing. The Mach number and altitude are specified at the beginning and end of each mission segment, as well as the range covered by each segment. The range covered by a segment can be considered in one of two ways. If the segment is short, such as the terminal phase, the distance along the intended flight path is considered. For longer range missiles, the distance over the grourd is of importance. The mission profile must be defined during the problem definition phase in order to specify missile performance objectives.

The mission profile of a missile normally consists of a boost, cruise (mid-course) and terminal phase. The boost phase accelerates the missile to its flight speed. This acceleration may be large for a surface-to-air missile which must be accelerated from rest to a high supersonic speed or it may be small for an air launched missile which has the speed advantage of the aircraft from which it is launched.

The cruise segment, or mid-course phase, primarily is used to deliver the missile to a point in space where the seeker can
acquire the target. The range and speed of the cruise segment is then a function of the required stand-off distance for the target.

The terminal phase is somewhat more difficult to analyze. If the target maintains constant heading and velocity the flight path of the missile may be modeled by circular arc segments. This method will give approximate values of range. If the target maneuvers, the missile must follow and the range and speed requirements become more complicated.

In determining the range and speed requirements, all expected encounter geometries should be analyzed. The most demanding encounter will then fix the performance objectives. The most demanding speed requirement, in terms of maintaining a minimum stand-off distance, will normally be a head-on encounter. Although the required missile speed and range are determined in this section, the missile velocity may be varied later in the design process due to guidance considerations.

1. Design Example (Mission Profile)

From the threat defined above, the ideal situation would be to obtain a fire control solution and launch such that the minimum separation distance between the launch aircraft and the target is 40 km . This can be accomplished in one of two ways. The launch aircraft can fire a semi-active homing missile at such a range and speed that intercept occurs before the minimum range is reached, or an active homing missile can be fired, and once missile lock-on is achieved, the launch aircraft can maneuver to maintain the minimum separation distance.

The active radar homing missile would decrease the launch range and the range required of the missile, which will lessen the constants on the launch aircraft. The terminal jordion of the engagement is a function of the guidance law and will be determined in Chapter 3.

Two cases are investigated to determine the effect on the range requirement of the missile when a minimum separation distance from the target to the missile of 40 km is maintained. The first case is a semi-active homing missile, for which the launch aircraft must maintain a closing course until intercept. The second case is an active homing missile which has a lock-on =ange of 10 km . The launch aircraft may then maneuver to maintain a separation distance.
a. Case 1: Semi-active homing missile

$R_{0}=$ Range at which the missile is launched
$M_{L}=1.5=$ Launch Mach number
${ }^{M} M_{M}=2.5=$ Missile Cruise Mach number
a $=$ Speed of sound
$V_{L}=M_{L} a=1.5 a=$ Launch speed
$V_{T}=M_{T} a=2.5 a=$ Target speed
$V_{M}=M_{M}=2.5 a=$ Missile speed

The instantaneous range from the missile to the target is given by, R_{MT}

$$
\begin{equation*}
R_{M T}=R_{0}=\left(V_{M}+V_{T}\right) t \tag{1}
\end{equation*}
$$

The instantaneous range from launch aircraft to the target is given by, $R_{\text {IT }}$

$$
\begin{equation*}
R_{L T}=R_{0}-\left(V_{L}+V_{T}\right) t \tag{2}
\end{equation*}
$$

If the target does not maneuver, intercept will occur at t_{f}, when $R_{M T}=0$

$$
\begin{aligned}
0 & =R_{0}-\left(V_{M}+V_{T}\right) t_{f} \\
t_{f} & =\frac{R_{0}}{\left(V_{M}+V_{T}\right)}=\frac{R_{0}}{5 a}
\end{aligned}
$$

If the launch aircraft is at the minimum separation distance, $R_{L T}=40 \mathrm{~km}$, when intercept occurs.

$$
40 \mathrm{~km}=R_{0}-\left(V_{L}+V_{T}\right) t_{f}
$$

substituting for V_{L}, V_{T} and t_{f}

$$
40 \mathrm{~km}=\mathrm{R}_{0}-(1.5+2.5) \mathrm{a}\left(\frac{\mathrm{R}}{5 \mathrm{a}}\right)
$$

Solving for R_{0}

$$
R_{0}=200 \mathrm{~km}=\text { Launch range }
$$

The range required of the missile is then, R_{M}.

$$
R_{M}=V_{M} t_{f}=100 \mathrm{~km}=53.96 \mathrm{nmiles}
$$

If the missile speed is increased to $M_{M}=3.0$, then $R_{0}=148.15 \mathrm{k}$ and,
$R_{M}=80.81 \mathrm{~km}=43.61 \mathrm{nmiles}$.
b. Case 2: Active Homing Missile

The lock-on range is a function of the seeker in the missile and will be covered later in this thesis. If it is assumed that the launch aircraft must maintain its course until lock-on occurs at a range of $R_{\text {LO }}$ ' the problem can still be solved. The geometry is the same as in Case 1 . Instead of following a constant course until intercept, the launch aircraft must now only maintain a closing course until $R_{M T}=R_{L O}$. Then from equation (1)

$$
R_{M T}=R_{L O}=R_{0}-\left(v_{M}+v_{T}\right) t_{f 1}
$$

Solving for $t_{f l}$

$$
t_{f 1}=\frac{R_{0}-R_{L O}}{\left(V_{M}+V_{T}\right)}
$$

If at the time of target lock-on, $t_{f 1}$, the target and launch aircraft are at the minimum separation distance, $R_{L T}=R_{\text {min }}$ from equation (2),

$$
R_{L T}=R_{\min }=R_{0}-\left(v_{L}+V_{T}\right) t_{f I}
$$

Inserting for $t_{f l}$,

$$
R_{\text {min }}=R_{0}-\left(V_{L}+V_{T}\right)\left(R_{0}-R_{L O}\right) /\left(V_{M}+V_{T}\right)
$$

Solving for R_{0},

$$
\begin{equation*}
R_{0}=\frac{R_{\min }}{\left[1-\left(\frac{V_{L}+V_{T}}{V_{M}+V_{T}}\right)\right]}-\frac{\left(\frac{V_{L}+V_{T}}{V_{M}+V_{T}}\right) R_{L O}}{\left[1-\left(\frac{V_{L}+V_{T}}{V_{M}+V_{T}}\right)\right]} \tag{3}
\end{equation*}
$$

For the same geometry and relative speeds of the first case, with $M_{M}=3.0$,

$$
t_{f 1}=\frac{R_{0}-R_{L O}}{5.5 a}
$$

A reasonable value of lock-on range is 10 km . This will be shown later in the guidance section of the study. The time to lock-on then becomes,

$$
t_{f 1}=\frac{R_{0}-10}{5.5 a}
$$

From equation (3), R_{0} then becomes, $R_{0}=118.52 \mathrm{~km}$. The missile range to lock-on is then, R_{M1},

$$
R_{M 1}=V_{M} t_{f 1}=59.19 \mathrm{~km}
$$

If the target does not maneuver the time from lockon to intercept becomes, $t_{f 2}$.

$$
t_{f 2}=\frac{R_{L O}}{\left(V_{M}+V_{T}\right)}
$$

and the missile range from lock-on to intercept becomes,

$$
R_{M 2}=V_{M} t_{f 2}=5.45 \mathrm{~km}
$$

The total missile range is then the sum of the two,

$$
R_{M}=R_{M 1}+R_{M 2}=64.64 \mathrm{~km}=34.88 \mathrm{nmiles}
$$

As can be seen from the above analysis, both the detection range of the target and the required missile range are decreased significantly when an active homing missile is used. On the other hand, it must also be remembered that the complexity and cost of the missile will be increased as a result of choosing an active radar seeker. For the design example in this study, an active radar seeker is chosen; therefore, the maximum range requirement will be 35 nmiles at a speed of $M_{M}=3.0$, however, this missile velocity is tentative until a guidance analysis is complete.

From the preceding analysis the mission profile is determined. It must be kept in mind that the mission profile may be changed during the design process to meet other design objectives. The following profile assumes both the target and launch aircraft at the same altitude.

	BOOST		CRUISE		TERMINAL HOMING			
	SEGMENT	$M_{\text {begin }}$	$\mathrm{h}_{\text {begin }}$	Mend	h end		RANGE	
(1)	Boost	1.5	10,000 ft	3.0	10,000			
(2)	Cruise	3.0	10,000 ft	3.0	10,000		29.6	nmiles
(3)	Terminal	3.0	10,000 ft	3.0	10,000		5.4	nmiles

III. GUIDANCE LAW SELECTION

Although the specifics of the guidance system is beyond the scope of conceptual design, the selection of a guidance law is necessary for initial calculations. The warhead design depends on the expected miss distance between the missile and the target and the lifting surface area depends on the maneuvering requirements of the missile. Both the miss distance and maximum acceleration required are functions of the missile guidance law.

The guidance law for a missile is the analytical formulation used by the guidance system to convert sensed target information into missile steering commands. Three general guidance laws are used. Most others can be forced to fit into one of these categories. These are:

1) Pursuit Guidance
2) Line-of-Sight Guidance
3) Proportional Guidance
A. PURSUIT GUIDANCE

A pursuit guidance law is illustrated in Figure (3-la) and is one in which the missile velocity vector is always directed toward the target. The target and the missile velocity vectors must therefore be sensed; so this type of guidance normally assumes an on-board tracker. The missile may have a separate mid-course guidance package to increase range, but target lockon initiates the pursuit guidance for the terminal homing phase.

Figure (3-la). Pursuit guidance. X

Figure (3-lb). Beam rider guidance.

Figure (3-1c). Proportional guidance.

For this reason it has the advantage of launch-and-forget at lock-on. Since the signal processing is limited to looking and pointing, the avionics are relatively simple and usually onboard the missile. An option for this type of guidance would be to include a lead angle to accomodate faster moving targets.

B. LINE-OF-SIGHT GUIDANCE

Line-of-sight guidance is used in a beam rider missile. This guidance scheme is illustrated in Figure (3-1b) and requires that the missile remain on a line (beam) joining the target and a control point. The target tracker is located at the control point; therefore, avoiding the necessity of an on-board tracker. Because of this, a dedicated fire control system is needed from launch to intercept. The range of this type of guidance is normally less than with the other types. A speed advantage is required for line-of-sight guidance since no lead angle is incorporated. The main advantage of this type of guidance is the simple avionics required to maintain the missile in the beam.

C. PROPORTIONAL GUIDANCE

A proportional guidance law is one in which the rate of change of the missile heading is made proportional to the rate of change of the line-of-sight between the missile and the target. This is illustrated in Figure (3-1c). Since the guidance law anticipates the target's future position, it can attain a higher degree of responsiveness than other guidance laws. In proportional guidance the rate of change of the line-of-sight must be sensed
on-board the missile. Because of this requirement, and the need to provide anticipated steering commands, the avionics required are the most complex of the three guidance systems.
D. COMPARISON OF GUIDANCE LAWS

In early design considerations two parameters of interest are acceleration required of the missile and the miss distance attainable. Of the three guidance laws only the proportional law can respond to fast maneuvering targets. Since the missile must stay in the line-of-sight for a beam rider system, any target maneuver will cause large excursions in the missile flight path, resulting in large normal accelerations. The pursuit guidance law causes similar large excursions near intercept due to the velocity vector always pointing at the target.

Several system parameters affect the miss distance attainable with a particular guidance law. An excellent source on the effects of these parameters is an article written by Dr . Robert Goodstein [6]. The parameters studied for their effect on miss distance were:

1) Sensor Bias Angle
2) Noise
3) Target Heading
4) Target Acceleration
5) Target Speed
6) Wind Gusts

The results have been reproduced and are included in Figures (3-2) through (3-7). Table 3-I provides overall guidance in the selection
of a guidance law and is also reproduced from the above reference. A first glance would indicate that proportional guidance is a proper choice for all cases. It must be kept in mind, though, that cost and simplicity are also driving factors in the design process. Furthermore, it can be seen that, while proportional guidance with a high gain has good performance against maneuvering targets, any noise in the system will highly degrade this performance. For this reason another guidance law may be desired, or a compromise in the gain selection may have to be made in which some performance is given up in order to deal with a noisy system. A reasonable range of proportionality constants that gives good performance against both maneuvering targets and noisy systems is $k=2$ to $k=6$.

Once a guidance law is selected, a more detailed analysis has to be performed to determine if the maximum acceleration required of that particular guidance system is within the attainable maneuverability limits for the missile. The maximum acceleration required, in turn, determines the lifting surface area needed. A good estimate of maximum acceleration, which keeps the miss distance less than 50 feet, is to set it equal to three times the target acceleration plus ten.

$$
a_{m}=3 a_{t}+10
$$

Figure (3-8) shows the miss distance sensitivity to target acceleration.

人 1 INILISNJS GヨヨdS $1 \exists 584 \perp$
（1－1）JJNHISIU SSIW

Pursuit
Line-of-sight
Nominal
Constant
Proportional Higher

Proportional
Constant
7

Figure (3-4)
ANGLE BIRS SENSITIVITY

Figure (3-5)
NOISE SENSITIVITY

WIND GUST SENSITIVITY

E. PURSUIT GUIDANCE (DETAILED ANALYSIS)

As stated previously, a pursuit guidance law requires the missile velocity vector to always point at the target. For this reason the missile always ends up in a tail chase situation, with the maximum acceleration occurring at the end of the encounter. From this description the maximum acceleration of the missile can be determined.

Figure (3-9). Pursuit geometry.

From Figure (3-9) the time rate of change of the range, R , is

$$
\dot{R}=V_{T} \cos \beta-V_{M}
$$

also

$$
\dot{\beta}=-V_{T} \sin \beta / R
$$

or

$$
R \frac{d B}{d t}=V_{T} \sin B
$$

$$
\begin{align*}
\frac{d B}{\sin \beta} & =-\frac{V_{T}}{R} d t \tag{1}\\
d t & =\frac{d R}{V_{T} \cos \beta-V_{M}} \tag{2}
\end{align*}
$$

Substituting equation (2) into equation (1) gives,

$$
\begin{align*}
& \frac{d B}{\sin \beta}=-\frac{V_{T}}{R} \frac{d R}{\left(V_{T} \cos \beta-V_{M}\right)} ; \text { Letting } k=\frac{V_{M}}{V_{T}} \\
& \frac{(\cos \beta-k)}{\sin \beta} d B=-\frac{d R}{R} \tag{3}
\end{align*}
$$

Integrating equation (3) yields,

$$
\begin{aligned}
& \operatorname{lnR}=k \ln \left(\tan \frac{\beta}{2}\right)-\ln (\sin \beta)+\ell n c_{1} \\
& \operatorname{lnR}=\ln \left[\frac{c_{1} \tan ^{k} \beta / 2}{\sin \beta}\right]
\end{aligned}
$$

By trigonometric identity,

$$
(\tan \beta / 2)^{k}=\frac{(\sin \beta)^{k}}{(1+\cos \beta)^{k}}
$$

Therefore,

$$
\ln R=\ln \left[\frac{c_{1}(\sin \beta)^{k-1}}{(1+\cos \beta)^{k}}\right]
$$

and

$$
R=\frac{c_{1}(\sin \beta)^{k-1}}{(1+\cos \beta)^{k}}
$$

From the initial condition $\beta=\beta_{0}$ when $R=R_{0}$,

$$
\begin{aligned}
& c_{1}=\frac{R_{0}\left(1+\cos \beta_{0}\right)^{k}}{\left(\sin \beta_{0}\right)^{k-1}} \\
& R=R_{0}\left(\frac{1+\cos \beta_{0}}{1+\cos \beta}\right)^{k} \quad\left(\frac{\sin \beta}{\sin \beta_{0}}\right)^{k-1}
\end{aligned}
$$

Substituting the above equation for R into the equation for $\dot{\beta}$

$$
\begin{aligned}
& \dot{B}=-v_{t} \sin \beta / R \\
& \dot{B}=-\frac{v_{t}}{R_{0}}\left(\frac{1+\cos \beta}{1+\cos \beta_{0}}\right)^{k} \quad \frac{(\sin \beta)^{2-k}}{\left(\sin \beta_{0}\right)^{1-k}}
\end{aligned}
$$

The missile acceleration can be expressed as a normal and a tangential component,

$$
\overline{\mathrm{a}}=\mathrm{V}_{\mathrm{M}} \dot{\beta} \hat{\mathrm{n}}+\dot{\mathrm{v}}_{\mathrm{M}} \hat{\mathrm{t}}
$$

The normal component is a_{m}, where,

$$
\begin{aligned}
& a_{m}=V_{M} \dot{\beta} \\
& a_{m}=-\frac{V_{M} V_{T}}{R_{0}}\left(\frac{1+\cos \beta}{1+\cos \beta}\right)^{k} \frac{\sin \beta}{\sin \beta_{0}} 1-k
\end{aligned}
$$

The terminal acceleration for a pursuit guidance law will occur at the end of the encounter $(\beta \rightarrow 0)$. From the above expression
the terminal acceleration can be evaluated

$$
\begin{aligned}
& a_{m}=0, \quad \text { for } \quad 1<k<2 \\
& a_{m}=-\frac{V_{M} V_{T}}{R_{0}}\left(\frac{2}{1+\cos \beta_{0}}\right)^{2} \sin \beta_{0} \text { for } k=2 \\
& a_{m}=\infty \text { for } k>2
\end{aligned}
$$

Since pursuit guidance always ends up in a tail chase situation, the missile will never intercept if $k<1$. Thus, for pursuit guidance operating againsta non-maneuvering target, the velocity ratio should be between one and two. These results indicate this guidance system would not be effective against air targets; therefore, results for a maneuvering target were not pursued. F. LINE-OF-SIGHT GUIDANCE (DETAILED ANALYSIS)

Figure (3-10) illustrates the geometry used to derive the beam rider equations of motion. The basic concept of beam rider guidance is that the missile is maintained in the line-ofsight of the target and a control point. This can be expressed in an equation as follows:

$$
\begin{equation*}
\dot{\phi}=\frac{V_{T} \sin \alpha_{t}}{r_{t}}=\frac{V_{M} \sin \alpha_{m}}{r_{m}} \tag{1}
\end{equation*}
$$

where, $r_{t}=$ range from point 0 to the target

$$
r_{m}=\text { range from point } 0 \text { to the missile }
$$

From equation (1)

$$
\begin{equation*}
r_{t} V_{M} \sin \alpha_{m}=r_{m} V_{T} \sin \alpha_{t} \tag{2}
\end{equation*}
$$

As in the case of pursuit guidance, the missile and target accelerations can be divided into normal and tangential components. If the target is limited to contant g turns, and the normal component of missile acceleration is of interest; then,

$$
\dot{\mathrm{V}}_{\mathrm{T}}=\dot{\mathrm{V}}_{\mathrm{M}}=0
$$

Differentiating equation (2) with respect to time yields,

$$
\dot{r}_{t} v_{M} \sin \alpha_{m}+r_{t} V_{M} \dot{\alpha}_{m} \cos \alpha_{m}=\dot{r}_{m} V_{T} \sin \alpha_{t}+v_{T} \dot{\alpha}_{t} \cos \alpha_{t}
$$

Solving for $\dot{\alpha}_{m}$,

$$
\dot{\alpha}_{m}=\frac{1}{r_{t} V_{M} \cos \alpha_{m}}\left[\dot{r}_{m} V_{T} \sin \alpha_{t}+r_{m} V_{T} \dot{\alpha}_{t} \cos \alpha_{t}-\dot{r}_{t} V_{M} \sin \alpha_{m}\right]
$$

From the original figure,

$$
\begin{aligned}
& \dot{r}_{\mathrm{t}}=\mathrm{V}_{\mathrm{T}} \cos \alpha_{\mathrm{t}} \\
& \dot{\mathrm{r}}_{\mathrm{m}}=\mathrm{V}_{\mathrm{M}} \cos \alpha_{\mathrm{m}}
\end{aligned}
$$

Also

$$
\begin{aligned}
& \theta_{t}=\alpha_{t}+\phi \longrightarrow \dot{\theta}_{t}=\dot{\alpha}_{t}+\dot{\phi} \\
& \theta_{m}=\alpha_{m}+\phi \longrightarrow \dot{\theta}_{m}=\dot{\alpha}_{m}+\dot{\phi}
\end{aligned}
$$

The target and missile accelerations (normal components) become,

$$
\begin{aligned}
& a_{t}=v_{T} \dot{\theta}_{t} \\
& a_{m}=v_{M} \dot{\theta}_{m}
\end{aligned}
$$

Collecting equations;

$$
\begin{aligned}
& \dot{\theta}_{t}=a_{t} / V_{t} \\
& \dot{\phi}_{t}=V_{T} \sin \alpha_{t} / r_{t} \\
& \dot{\alpha}_{t}=\dot{\theta}_{t}-\dot{\phi} \\
& \dot{r}_{t}=V_{T} \cos \alpha_{t} \\
& \dot{r}_{m}=V_{M} \cos \alpha_{m} \\
& \dot{\alpha}_{m}=\frac{1}{r_{t} V_{M} \cos \alpha_{m}}\left[\dot{r}_{m} v_{T} \sin \alpha_{t}+r_{m} V_{T} \dot{\alpha}_{t} \cos \alpha_{t}\right. \\
& \dot{\theta}_{m}=\dot{\alpha}_{m}+\dot{\phi} \\
& a_{m}=v_{M} \dot{\theta}_{m}
\end{aligned}
$$

The above equations are the equations of motion which describe the target and missile trajectories. These equations cannot be solved analytically except for highly specialized cases. The complete set of equations can be solved using a numerical integration technique. If Euler's one step method is used, the algorithm is as follows;

$$
\begin{aligned}
& \theta_{t}(i+1)=\theta_{t}(i)+\Delta t \dot{\theta}_{t}(i) \\
& \phi(i+1)=\phi(i)+\Delta t \dot{\phi}(i) \\
& \alpha_{t}(i+1)=\alpha_{t}(i)+\Delta t \dot{\alpha}_{t}(i) \\
& r_{t}(i+1)=r_{t}(i)+\Delta t \dot{r}_{t}(i) \\
& r_{m}(i+1)=r_{m}(i)+\Delta t \dot{r}_{m}(i) \\
& \alpha_{m}(i+1)=\alpha_{m}(i)+\Delta t \dot{\alpha}_{m}(i) \\
& \theta_{m}(i+1)=\theta_{m}(i)+\Delta t \dot{\theta}_{m}(t)
\end{aligned}
$$

With initial conditions;

$$
\begin{aligned}
& r_{t}(0)=r_{0} \\
& r_{m}(0)=0 \\
& \phi(0)=\phi_{0} \\
& a_{m}(0)=0 \\
& \theta_{t}(0)=\theta_{t_{0}} \\
& \theta_{m}(0)=\theta_{m_{0}} \\
& \alpha_{t}(0)=\alpha_{t}
\end{aligned}
$$

The target and missile positions can be expressed as follows;

$$
\begin{aligned}
& x_{m}(i+1)=x_{m}(i)+\Delta t V_{M} \cos \theta_{m}(i) \\
& y_{m}(i+1)=y_{m}(i)+\Delta t V_{M} \sin \theta_{m}(i) \\
& x_{t}(i+1)=x_{t}(i)+\Delta t V_{T} \cos \theta_{t}(i) \\
& y_{t}(i+1)=y_{t}(i)+\Delta t V_{T} \sin \theta_{t}(i)
\end{aligned}
$$

Where

$$
\begin{aligned}
& x_{m}(0)=y_{m}(0)=0 \\
& y_{t}(0)=r_{0} \cos \phi_{0} \\
& y_{t}(0)=r_{0} \sin \phi_{0}
\end{aligned}
$$

The above equations have been programmed on the HP 9830 computer. Table 3-II is a listing of this program. The program asks the user for the initial conditions and the target acceleration. It also asks for the integration step increment, Δt. It should be kept in mind when using the program that the error involved in integrating is of order Δt. The output is a plot of missile and target trajectories as well as the missile maximum acceleration and time of flight. Three examples follow which demonstrate possible uses of the program. (Note: All angles are input in radians.)


```
eg frint "f eefor rider migeile fhit flite the tragedgey"
30 FRINT
46 FRIHT "IHFIT Tine IhGeEment for integeation"
56 IHFUT II
```



```
TG FRIHT "IHFUT InITIAL TARGET RHiNE"
E0 INFUT R:
9日 FRIHT "IHFIIT TAEGET gFEEI"
106 IHFITT U1
110 FRIHT "IHFIT MIESILE EfEED"
120 IAFUT 42
13日 FFIHT "INFIT IHITIAL LIHE OF GIGHT FHGLE"
140 INFIUT FI
1506 FRint "Ihfut miserle hlfha"
16日 IHFIIT AE
17G frint "Ihfit thriet hlfha"
180 IHFIIT A1
190 FRIHT "IHFUT idISGILE ThETA"
200 I HFIUT T2
216 FFIHT "Ihfut thridet theta"
220 IHFIIT T1
```



```
240 IHFUT GI
\(250 \mathrm{I}=1\)
\(260 \mathrm{FE}=0\)
265 F[1]=F1
ETG \(\mathrm{H}[1]=0\)
280 \(\mathrm{x}[\mathrm{I}]=0\)
290 Y[I]=6
300 U[I] \(\mathrm{F} 1 * 00 \mathrm{CO}(\mathrm{F})\)
```



```
\(329 \mathrm{H}[\mathrm{I}]=0\)
33 FFIHT " XH YM
395 FRIHT "IO YOU WHAT A FEIHT IF THE OUTFUT: G='ES, \(1=H 0\) "
396 INFIUT T9
397 IF TG=1 THEH 416
460 FRINT X[I], H[I],U[I], V[I]
\(410 \mathrm{I}=\mathrm{I}+1\)
\(420 \mathrm{~T} 3=1 \mathrm{~F} 1 \mathrm{M}\)
```



```
\(440 \mathrm{AB}=\mathrm{TS}-\mathrm{FB}\)
```



```
\(460 \mathrm{R} 4=\mathrm{V} 2 \mathrm{OLS}(\mathrm{R} 2)\)
```



```
463 IG=-6З\#पZ*SINGAZ
\(464 \mathrm{D}=\mathrm{R} 1 * 42 \times \mathrm{Ca}(\mathrm{AZ})\)
```


TABLE 3－II（cont）

```
4EG F4=CDE+DF+DE% IG
4EE T4=H4+FS
4%目 T1=T1+I1*TS
486 F1=F1+D1\divF3
490 H1=F1+D1*F3
4%EF1=F1+I1*FO
49E FO=FZ+H1+F4
506 HE=FE+D1*H4
510 Te=TE+I1*T4
5%日 H[ I ]=v2%T4
S0 IF HESGH[I]YGESCH[I-1]) THEH EOE
540 代=A[I]
606 T2=HE+FI
E10 F[I]=FI-FZ
EG%[I]=%[I-1]+11+42+10G<T2
EG Y[[] ]=T[I-1]+D1*42*SIHUTE
E4E U[[I]=U[I-1]+D1*41*COS(T1)
E50
E0 IF FE[I]Q THEH 397
6.5 TS=I1%<I-1)
GTG FFIHT "IHFUT MIHINUH * UFLUE"
EG INFUT \E
```



```
FEO INFUT %?
TIE FEIHT "IHFUT MIHINUN '% UHLUE"
FEG INFUT YE
36 FEIHT "IHFUT MFMIM|M 'Y UHLDE"
740 INFUT YT
BGE SCHLE RE,MT, YE,Y
E1Q FEIHT "HAS HOIS EEEN JFHWN. G=YES, 1=HO"
8こg IHFUT F1
E3g IF F1=0 THEN EE0
840 XH%IS 0,%7,10
```



```
860 FEH
870 FOR }|=1 TG I
BSG FLOT X[W],Y[M]
890 HENT H
906 FEH
910 FGR S=1 TD I
920 FLOT U[S],V[S]
930 HERT S
940 FEN
95 FRIHT
951 FFIHT
95 IF A[I ]>F[I-1] THEH 954
95 M=F[I-1]
954 FEIHT "THE MH%IMLH HLEELEFHTIOH IS "M" METEFGSEGGEE"
GEQ FFIHT "THE TIHE TD IHTEFCEPT IS "TS" SEG"
1006 STDF
```

1. Example I (Non-maneuvering Crossing Target)

Figure (3-11). Non-maneuvering crossing geometry.

$$
\begin{aligned}
r_{0} & =359 \mathrm{~meters} \\
\phi_{0} & =109.57^{\circ}=1.9124 \mathrm{rad} \\
\theta_{t_{0}} & =17.57^{\circ}=.3067 \mathrm{rad} \\
\theta_{m_{0}} & =109.57^{\circ}=1.9124 \mathrm{rad} \\
\alpha_{t_{0}} & =-91.0^{\circ}=01.5882 \mathrm{rad} \\
a_{t} & =0 \\
v_{M} & =373 \mathrm{~m} / \mathrm{sec} \\
v_{T} & =221 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Table 3-III is the computer output. As indicated the missile maximum acceleration is,

$$
a_{\mathrm{m}}=-459.25 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}=-46.86 \mathrm{~g} \cdot \mathrm{~s}
$$

TABLE 3-III

THE MFKIMUM FCDELEEATIOH IS
THE TIME TO IHTEFCEFT IS
-459.2526072
1.3 SEO
y (meters)

Figure (3-12). Target and missile positions for a non-maneuvering crossing target.

The large acceleration is typical of line-of-sight due to the missile requirement to stay in the beam. The trajectories are plotted in Figure (3-12).
2. Example II (Effect of V_{M})

This example is presented to study the effect of missile velocity on a crossing target (non-maneuvering).

Figure (3-13). Crossing target geometry.

The initial conditions are as follows;

$$
\begin{aligned}
r_{0} & =4000 \mathrm{~m} \\
\phi_{0} & =45^{\circ}=.7854 \mathrm{rad} \\
\theta_{\mathrm{m}_{0}} & =45^{\circ}=.7854 \mathrm{rad} \\
\alpha_{t_{0}} & =135^{\circ}=2.3562 \mathrm{rad} \\
\theta_{t_{0}} & =180^{\circ}=3.1416 \mathrm{rad} \\
v_{T} & =200 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

THIS FFOGFAM IETERMIHES THE HECELAEATIOH DF H EEBM FIMEF HISEILE HHII FLITG THE TFFAEGTOFY'

```
IHFUTT TIME IHIFEMEHT FOR INTEGFATIDH
IHFUT INITIAL TARGET FAH&GE
IHFUTT TARIGET EFEEI
IHFIIT MISSILE EFEEI = 400 m/5EC
IHFUT IHITIHL LIHE DF GIGHT FHGLE
IHFIIT MISSILE GLFHH
IHPUT THFGET HLFHH
IHFIIT MISEILE THETH
IHPIIT THFGET THETH
IHFIIT THFGET HGLELEEHTIOH
    \M Y'M YT
IO YDU WHHT A FEIHT OF THE DUTFUT, GOGES, 1=HIT
IHFUT MIHIN|N \therefore&HLUE
IHFIIT MAKImLIN % UHLIE
IHFUT MIHIMLP % %FLUE
INFIIT MFMIMUP 'O UHLUE
HAS ACIS EEEH IRHWH, G=9ES, 1=HO
In YOU WHHT \(A\) FEIHT GF THE DIITFUT, GEGES•1=HD
IHFIIT MIHIMDM \(\because\) URLUE
IHFIIT MAKIMIN \(\because\) YRLIE
IHFUT MIHIMUH i \(\because\) GLIE
IHFIIT MHKIMUN ' \(\because\) ULIUE
HAS FKIS EEEH IRFHA, \(G=9 E S, \quad 1=H 0\)
```

THIS FEGGFH IETEFMIHES THE HCLELHFATIOH DF
A EEFM EIDER HISEILE FHI FLGTS THE TFAGETGF'

THIS FEDGEAM IETEFMIHES THE HCLELAEATIOH OF H EEHM EIDEF HISEILE HHD FLGTS THE TFAGEGTOG

```
IHFUT TIME IHERENEHT FDFR INTEGERTIOH
IHFUUT IHITIHL THFLEET FGHGE
IHFIIT THFGET GFEEII
IHFUIT MISEILE SFEEI = 600 m/SEC
INFUT MISEILE SFEEI = 600 m/SEC
IHFUT MISEILE FLFHG
IHFUTT THFIGET ALFHF
INFUT MISSILE THETH
IHFUUT THFILET THETH
INFUT THFIGET HELELERATIDH
```



```
IIG YOU MAHT A FEIHT OF THE DUTFUT: Q='ES, 1=HG
INFUT MIHINUM % WHLUE
INFIUT MHNIHUM X YALIE
IHFUT MINIMLDM YGLDE
IHFIJT MH:IMUM % UHLIE
HAS H%IS EEER INANN: G='GES, 1=HO
THE MH\&IMIM AELELEFATIDH IS THE TIME TO IHTEFGEFT IS 5.E SEE:
```

THIS FROGRHM IETERMIHES THE ACGELARATIDH DF f EEAM Rider migeile fhit flote the trituegory
infit time indrement fof integration
IHFUT IHITIAL TARGET RAHGE
IHFUTT TARGET EFEEI
IHFUT MISEILE SFEEI $=800 \mathrm{~m} / \mathrm{sEC}$
IHFIIT INITIAL LINE OF SIGHT fHisLE
IHFUT MIESILE aLFHA
INFIUT TARGET FLFHA
INFIT MISEILE THETA
INFIIT TARIGET THETA
IHFIT TARGET ACDELERFTIOH
XM NT MT
DIO YOU WAHT A FRIHT gF THE GUTFUT, G='GES, $1=H 0$
INFIT MIHIMUM \therefore valie
INFIJT MAKIMUM $\%$ UFLDE
IHFIT MIHIMDA Y YALUE
IHFUT MEKIMDM Y UALIE

THE TIME TG IHTEREEFT IS 4.4 EEC

(sхэาәแ) x
n the encounter.

The program was run three times for a missile velocities of 400, 600 , and $800 \mathrm{~m} / \mathrm{sec}$. Table $3-I V$ contains the program outputs and Figure (3-14) is the plot of the trajectories. As can be seen from the output, the missile maximum acceleration increases with increasing missile speed. For example, $\mathrm{V}_{\mathrm{M}} / \mathrm{V}_{\mathrm{T}}=2$ gives the smallest acceleration, although the maximum acceleration for $V_{M} / V_{T}=4$ is not exceedingly large for this scenario.
3. Example III (Maneuvering target)

In this example the effect of a target maneuver is investigated. If at the time of launch the target initiates a 7 $(68.6 \mathrm{~m} / \mathrm{sec} / \mathrm{sec})$ turn, the following encounter would result:

Figure (3-15). Maneuvering target.

THIS FEDGEAM IETEFMIHES THE GEDELAEATIOH OF H EEAM RIIEF MISSILE HHI FLOTS THE TEA, IEITGR

```
IHFUT TIME IHLEENEHT FGE IHTEGFHTIDH
IHFUT IHITIAL THEGET FHHGE
IHFUT THEGET SFEED
INFUT MISGILE SFEED
INFUIT IHITIHL LIHE DF SIGHT HHGLE
IHFIIT MISSILE FLFHA
IHFUT THRILET HLFHH
IHFUT MISGILE THETA
IHF|IT THFGET THETH
IHFUT THFGET BCLELEFHTIDH
```



```
DG %GU WHAT F FRIHT OF THE DUTFUTT G=TESy I FHO
IHFUT MIHIMUM \becauseGHLDE
IHFIIT MH%IMIM & YHLBE
IHFUT MIHIMUN Y WHLUE
IHFUT MH&IMDH Y QHLUE
HAS F%IS EEEN IREMAN, Q=YES, 1=HM
```


THE TIHE TO IHTEFCEFT IS 5.8 SEE

The initial conditions are;

$$
\begin{array}{rlr}
r_{0} & =10000 \mathrm{~m} & \mathrm{v}_{\mathrm{T}}=821.436 \mathrm{~m} / \mathrm{sec} \\
\phi_{0} & =90^{\circ}=1.5708 \mathrm{rad} & \mathrm{~V}_{\mathrm{M}}=985.723 \mathrm{~m} / \mathrm{sec} \\
\theta_{\mathrm{m}_{0}} & =90^{\circ}=1.5708 \mathrm{rad} & \\
\alpha_{t_{0}} & =-180^{\circ} & \\
\theta_{t_{0}} & =-90^{\circ} & \\
a_{t} & =68.60 \mathrm{~m} / \mathrm{sec} / \mathrm{sec} &
\end{array}
$$

From the output (Table $3-V$), notice the large missile acceleration required ($211.55 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$) to intercept a maneuvering target. The trajectories are plotted in Figure (3-16).
G. PROPORTIONAL GUIDANCE (DETAILED ANALYSIS)

Figure (3-17). Proportional guidance geometry.

Proportional guiđance automatically establishes a lead angle and reacts to a changing line-of-sight. The basic guidance law used equates the rate of change of the missile heading to a constant times the rate of change of the line-of-sight. From the above figure this law can be expressed as,

$$
\dot{\theta}_{\mathrm{m}}=k \dot{\sigma}
$$

From the figure, the rate of change of the line-of-sight, $\dot{\sigma}$, is given by,

$$
\dot{\sigma}=\frac{V_{T} \sin \beta_{t}-V_{M} \sin \beta_{m}}{r}
$$

As in the case of pursuit and line-of-sight guidance, the parameter of interest here is the normal acceleration; therefore, the missile and target tangential accelerations are assumed to be zero. In this case,

$$
\begin{aligned}
& a_{m}=v_{M} \dot{\theta}_{m} \\
& a_{t}=v_{T} \dot{\theta}_{t}
\end{aligned}
$$

From the guidance law,

$$
a_{m}=v_{M} k \dot{\sigma}
$$

and

$$
a_{m} r=V_{M} k\left(V_{T} \sin \beta_{t}-V_{M} \sin \beta_{m}\right)
$$

Since $\dot{\mathrm{v}}_{\mathrm{m}}=\dot{\mathrm{V}}_{\mathrm{t}}=0$, the time derivative of this equation is,

$$
\begin{equation*}
\dot{r} a_{m}+r \dot{a}_{m}=k v_{m}\left[\left(v_{t} \dot{\beta}_{t} \cos \beta_{t}-v_{m} \dot{\beta}_{m} \cos \beta_{m}\right)\right] \tag{1}
\end{equation*}
$$

From the original figure,

$$
\begin{aligned}
& \theta_{m}=\beta_{m}+\sigma \\
& \dot{\beta}_{m}=\dot{\theta}_{m}-\dot{\sigma}=\dot{\theta}_{m}-\frac{\dot{\theta}_{m}}{k} \\
& \dot{\beta}_{m}=\dot{\theta}_{m}\left(1-\frac{1}{k}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \dot{\beta}_{t}=\dot{\theta}_{t}-\dot{\sigma} \\
& \dot{\beta}_{t}=\dot{\theta}_{t}-\frac{\dot{\theta}_{m}}{k}
\end{aligned}
$$

Making these substitutions, equation (1) becomes,

$$
r \dot{a}_{m}=-a_{m} \dot{r}+k V_{M}\left[V_{T}\left(\dot{\theta}_{t}-\frac{\dot{\theta}_{m}}{k}\right) \cos \beta_{t}-V_{M} \dot{\theta}_{m}\left(1-\frac{1}{k}\right) \cos \beta_{m}\right]
$$

Since,

$$
\begin{aligned}
& a_{m}= v_{M} \dot{\theta}_{m} \\
& a_{t}= v_{T} \dot{\theta}_{t} \\
& r \dot{a}_{m}=-a_{m} \dot{r}+k v_{M} a_{t} \cos \beta_{t}-k v_{M} a_{m} \cos \beta_{m} \\
&-a_{m}\left(v_{T} \cos \beta_{t}-v_{M} \cos \beta_{m}\right)
\end{aligned}
$$

From Figure (3-17),

$$
\begin{aligned}
\dot{r} & =V_{T} \cos \beta_{t}-v_{M} \cos \beta_{m} \\
r \dot{a}_{m} & =-2 a_{m} \dot{r}+k V_{M} a_{t} \cos \beta_{t}-k v_{M} a_{m} \cos \beta_{m} \\
\dot{a}_{m} & =\frac{k v_{M} a_{t} \cos \beta_{t}}{r}-\frac{a_{m}}{r}\left[2 \dot{r}+k V_{M} \cos \beta_{m}\right]
\end{aligned}
$$

Collecting equations;

$$
\begin{aligned}
& \dot{r}=V_{T} \cos \beta_{t}-v_{M} \cos \beta_{m} \\
& \dot{\beta}_{t}=\dot{\theta}_{t}-\dot{\sigma} \\
& \dot{\beta}_{m}=\dot{\theta}_{m}-\dot{\sigma} \\
& \dot{\sigma}=\frac{v_{T} \sin \beta_{t}-v_{M} \sin \beta_{m}}{r} \\
& \dot{\theta}_{t}=\frac{a_{t}}{V_{T}} \\
& \dot{\theta}_{m}=k \dot{\sigma}
\end{aligned}
$$

The above equations are the equations of motion for a missile using proportional navigation assuming constant missile and target speeds. As with the line-of-sight equations, the motion is quite complex. The equations cannot be solved analytically except for special cases. One such case will be investigated here. That is for a non-maneuvering crossing target.

1. Example IV (Non-Maneuvering Crossing Target)

Figure (3-18). Non-maneuvering target.

For this case, $\dot{r}=-V_{M} \cos \beta_{m}$ from equation (1)

$$
\begin{aligned}
& \dot{a}_{m}=-\frac{a_{m}}{r}[2 \dot{r}-k \dot{r}] \\
& \frac{\dot{a}_{m}}{a_{m}}=\frac{\dot{r}}{r}(k-2) \\
& \ln a_{m}=(k-2) \ln r+\ln c_{1}
\end{aligned}
$$

If

$$
\begin{aligned}
& a_{m}=a_{0} \text { at } r=r_{0} \\
& a_{m}=a_{0}\left(\frac{r}{r_{0}}\right)
\end{aligned}
$$

From this equation,

$$
\text { if } k>2 \quad a_{m} \rightarrow 0 \text { as } r \rightarrow 0
$$

$$
\begin{aligned}
& \text { if } k=2 \quad a_{m}=a_{0}=\text { constant } \\
& \text { if } k<2 \quad a_{m} \rightarrow \infty \text { as } r \rightarrow 0
\end{aligned}
$$

From the above example it can be realized that the proportionality constant, k, must be greater than two. A more general analysis of the equations of motion can be obtained by solving the equations numerically. The same Euler's one step method is used here with initial conditions, at $t=0$,

$$
\begin{aligned}
a_{m}(0) & =a_{m_{0}} \\
r(0) & =r_{0} \\
\beta_{t}(0) & =\beta_{t_{0}} \\
\beta_{m}(0) & =\beta_{m_{0}} \\
\sigma(0) & =\sigma_{0} \\
\theta_{t}(0) & =\theta_{t_{0}} \\
\theta_{m}(0) & =\theta_{m_{0}}
\end{aligned}
$$

The algorithm used is as follows:

$$
\begin{aligned}
r(i+1) & =r(i)+\Delta t \dot{r}(i) \\
a_{m}(i+1) & =a_{m}(i)+\Delta t \dot{a}_{m}(i) \\
\sigma(i+1) & =\sigma(i)+\Delta t \dot{\sigma}^{(i)} \\
\theta_{m}(i+1) & =\theta_{m}(i)+\Delta t \dot{\theta}_{m}(i)
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{t}(i+1)=\theta_{t}(i)+\Delta t \dot{\theta}_{t}(i) \\
& \beta_{m}(i+1)=\beta_{m}(i)+\Delta t \dot{\beta}_{m}(i) \\
& \beta_{t}(i+1)=\beta_{t}(i)+\Delta t \dot{\beta}_{t}(i)
\end{aligned}
$$

The trajectory of the missile and target can be determined assuming the missile is at the origin at $t=0$. From the original figure the missile and target positions are given by,

$$
\begin{aligned}
& x_{m}(i+1)=x_{m}(i)+\Delta t v_{M} \cos \theta_{m}(i) \\
& y_{m}(i+1)=y_{m}(i)+\Delta t V_{M} \sin \theta_{m}(i) \\
& x_{t}(i+1)=y_{t}(i)+\Delta t v_{T} \cos \theta_{t}(i) \\
& y_{t}(i+1)=y_{t}(i)+\Delta t V_{T} \sin \theta_{t}(i)
\end{aligned}
$$

With initial conditions,

$$
\begin{aligned}
& x_{m}(0)=y_{m}(0)=0 \\
& x_{t}(0)=r_{0} \cos \sigma_{0} \\
& y_{t}(0)=r_{0} \sin \sigma_{0}
\end{aligned}
$$

Evaluating the missile initial acceleration can be more complicated. One procedure which is both realistic and of interest is to have the missile and target on a constant bearing - decreasing range course $\left(a_{t}=0\right)$ when the target initiates a constant g turn at $t=0$. In this case $a_{m}(0)=0$ and the subsequent motion can be found.

```
10 FRIHT "THIS FFOLFAM FIHIG THE MFKTMUM"
zg FFINT "MISEILE ALIELEFHTIOH FOF A"
80 FFIHT "FFOFOETIOHFL HFYIGATIDH SYETEU"
35 FFIHT
```



```
40 PFIHT "IHFUT TIME IHEEEMEHT"
50 IHFUT II
G6 FFIHT "IHFUT HAYTGATIDH EDHETAHT"
7 CH IRFUT K
B0 FFIHT "IHFUT MISETLE YELDIGTY"
90 INFUT U1
1 ED FRIHT "IHFUT THFIET UELUIITY"
110 IHFUT V2
120 FRIHT "IHFUT TAFGET HGEELERGTIUH"
130 IHFUT H 1
146 FFIHT "IHFUT IHITIHL MIEGILE HTLELEEFTIH"
150 IHFUT \(H[1]\)
16G FRIHT "IHFUT IHITIFL EHHEE"
179 IHFUT F[1]
18G FEIHT "IHFUT EETH TAFIGET"
200 IHFUT EI
210 FRIHT "IHFUT EETH MISGILE"
220 IHFUT EC
ZSE FFIHT "IHFUTT THETH THFGET"
240 I \(A F F^{\prime} \| T\) T 1
250. FFIHT "IHFUT THETH MISEILE"
EGO IHFUT TE
2TG FRINT "IHFUT EIGMF
28G IHFUT SI
\(2901=1\)
295 FFIHT " MISSILE FDSIT TGFGET FGSIT"
2gE FFINT
```



```
\(30 \mathrm{~K}[\mathrm{I}]=0\)
310 i[ I \(]=6\)
320 U[I] \(]=F[1] \div 0651)\)
30 U[I]=R[1]*SIH(S1)
```



```
345 IAFIUT O1
35 IF DI=1 THEH 36
366 FFIHT X[I], Y[II.U[I], U[I]
\(365 \mathrm{I}=\mathrm{I}+1\)
\(370 \mathrm{~K}[\mathrm{I}]=\mathrm{M}[\mathrm{I}-1]+41 \div \cos \mathrm{T} 2 \div \mathrm{O}+1\)
```



```
\(3501 \cup[[]=1[[-1]+42+[1+5 S(T)\)
```



```
\(410 \mathrm{RZ}=\mathrm{V} 2 \mathrm{COE} \mathrm{E} 1\) )-41*CDEE2)
```



```
440 BE=AB-AG
445 T[I]=(I-1)*I1
456 S2=(4z-EIH(E1)-4I-EIHCEz), R[I-1]
4E6 TB=H1,4Z
470 TG=&゙世Sこ
486 EO=TS-SZ
490 E4=T9-5E
500 R[I] ] F[I-1]+DI%FZ
510 F[[I] =A[I-1]+II1*HS
520 SI=S1+[1%52
5% T1=T1+511:TE
540 T2=Tこ+I1%T9
550 E1=E1+I11*ES
560 EZ=EC+I1%E4
5%G IF F[I]CH[I-1] THEH EOG
500 21=A[I]
G00 IF F[I]%G THEN SEG
G01 IF HEG(A[T])SRESCF[I-t]) THEN EGS
602 こ1=A[I-1]
E0% Z2=T[I]
GIS FEIHT
E19 FFIHT
```



```
E40 FFINT "HISEILE TIHE IF FLIGHT IS "ここ" GEE"
PGG FEIHT "IHFUT MINIMOM UFLUE IF N"
F10 INFUT NG
720 FFIHT "IHFUT MHNIMNM YHLUE DF S"
700 IFF|T K
740 FEIHT "IHFUT MIHINUM UFLUE DF Y"
7SW IHFUT YE
TEG FFINT "INFUT MFNIMUM YRLUE DF Y"
7TG IHFUT YT
TBS ELHLE KE,NT,YE,YT
790 FFINT "HAWE THE HNTS EEEH DRFGH, E=YES, 1=HO"
791 IHFUT FI
7Q2 IF FI=0 THEN SS0
800 XROIS 0, MTH10
810 %H%IS D:%゙F10
830 PEH
840% FDR I=1 TO I
86 FLOT &[.]:'[.1]
BEG HERT .J
8%G PEN
8BU FOR W=1 TG I
B90 FLDT U[M]:V[H]
G00 NEXT W
910 FEH
1000 STOF
```

The above algorithm was programmed on the HP 9830 computer. The listing is included in Table $3-V I$. The inputs and output of the program are the same as the line-of-sight guidance program. Several examples follow which demonstrates the use of the program.
2. Example V (Crossing Maneuvering Target)

Figure (3-19). Crossing maneuvering target.

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{M}}=373 \mathrm{~m} / \mathrm{sec} & \theta_{t_{0}}=17.57^{\circ}=0.3067 \mathrm{rad} \\
\mathrm{~V}_{\mathrm{T}}=221 \mathrm{~m} / \mathrm{sec} & \beta_{\mathrm{t}_{0}}=-91.0^{\circ}=-1.5882 \mathrm{rad} \\
\mathrm{a}_{\mathrm{t}}=156.8 \mathrm{~m} / \mathrm{sec} / \mathrm{sec} & \beta_{\mathrm{m}_{0}}=-38.0^{\circ}=-0.6632 \mathrm{rad} \\
r_{0}=359 \mathrm{~m} & \sigma_{0}=109.57^{\circ}=1.9124 \mathrm{rad} \\
\theta_{m_{0}}=71.57^{\circ}=1.2491 \mathrm{rad} &
\end{array}
$$

The output is listed in Table 3-VII. An important aspect of this problem is the maximum acceleration required ($202.92 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$).

TABLE 3-VII

THIS FFOGFAM FIHIS THE MHNIMD Migsile mocelerstion for a FFOPGRTIGNFL HAUIGATIGH SYGTEM

INFUT	TIME IPHEREMEHT
INFIIT	HAWIGHTIOH EOHETHHT
IHFUIT	MISEILE YELDEITY
IHFIUT	THFGET YELDEIT''
IHFUIT	THFGET HCLELEFHTIOH
IHPUT	INITIAL MISEILE ALCELEFATIOH,
INFIIT	INITIHL F:AHILE
INFIUT	EETA THEGET
IHFIIT	EETA MISSILE
IHFUT	THETA THELET
IHFUT	THETA MISEILE
IHFIIT	SIGA
	SSILE FOSIT

THFLET FGEIT

TABLE 3-VII (cont)


```
MISSILE TIME OF FLIGHT IS 1.7 SEC
INFUIT MIHIMUM YGLUE OF
IHFUT MARIMUM WFLUE OF
IHFUTT MINIMUM vFLIE DF
IHFIIT M&%IMUM VHLDE OF Y
```


x (meters)

Figure (3-20). Trajectories of crossing, maneuvering intercept.

The same problem was run for line-of-sight guidance with no target acceleration in Example I. The maximum acceleration was $459.25 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$. This points out the advantage of proportional navigation over line-of-sight guidance. Figure (3-20) is a plot of the trajectories.

3. Example VI (Effect of k)

This example demonstrates the effect of varying the proportionality constant, k. The scenario is as follows.

Figure (3-21). Initial geometry.

$$
\begin{aligned}
v_{t} & =208 \mathrm{~m} / \mathrm{sec} \\
v_{m} & =413 \mathrm{~m} / \mathrm{sec} \\
a_{t} & =68.60 \mathrm{~m} / \mathrm{sec} / \mathrm{sec} \\
\beta_{t_{0}} & =-106^{\circ}=-1.85 \mathrm{rad} \\
\beta_{m_{0}} & =-29^{\circ}=-.5061 \mathrm{rad}
\end{aligned}
$$

```
INFUT TIME INGREMENT
IHFUT HAUIGHTIOHADOHETHNT = 3
infuT migeile velogit'%
IHFIT TAF:GET vELDEITY
INFUT TAFGET FGCELEFATIDH
IMFUT IHITIHL mIGSILE GICELERETIOH
INFIT IHITIAL EAHGE
INFUT EETA THFGET
INFIJT EETF HIGGILE
IHFIIT THETA TAFIGET
INFOUT THETA MIGEILE
IHFITT SIGMA
    misgile fogit theget fugit
    X1 Y1 Ye Ye
IN YOU WANT A FRIHT OF THE GUTFUT: G=YES,I=HO
MAKIMLM MISSILE FOG IS ES, TGSE1471 METERG SEGGEE
MISSILE TIME OF FLIGHT IS a.ق EEC
INFUT MINIMLP YFLUE OF
IHFUT MAKINIMM UFLIE OF
INFUT MININIM WFLUE OF "
IHFUT MAKIMUM UFLDE OF Y
HANE THE GMIS EEEN DRAOH, G='GES:1=HO
```

THIG FRODGRM FIHIS THE MFRIMUM
Missile modelefation for a
FROFORTIOHAL HAVIGATIDH ETSTEM
IHFIIT TIME IHCEEMEHT
IHFIIT HAMIGATION CONGTHHT $=4$
IHFUT MIEEILE vELOGIT'
IAFUT TARGET yELDEITY
IHFIUT TARGET GCOELERHTIOHA
IHFUT IHITIFL MISEILE HEGELERHTIOH
IHFUT INITIAL RAHGE
infut eeta tariget
INFIUT EETA MISEILE
IHFIUT THETA TARGET
Ihfilt theta misgile
INFIIT SIEMA
MIESILE FOSIT TAEGET FOSIT

MIESILE TIME OF FLIGHT IS 3,2 EE:

THIS FFDGFAM FINIS THE MHMIMUM
MISSILE BEGELERHTIGH FOF H FFGFOETIGHEL HFWIGFTIGH G'STEM

```
IHFUT TIME IHEREMEHT
IHFUIT WHUIGATIOH EOHETHHT = 5
IHFIIT MISEILE VELDIIT''
IHFUT THFUET UELOLITY
INFIUT THFIGET HCLELEEATIOH
IHFUIT IHITIHL MISEILE HCLELEEATIOH
INFUT IHITIFL FHHGE
IHFUT EETA THRGET
IHFIIT BETH MISSILE
IHFUT THETH THFGET
IHFIIT THETH pISSILE
IHFUT SIGMA
    MISSILE FDGIT
```

 THFGET FGEIT

MISGILE TIHE OF FLIGHT IS $3 . z$ SEL
IHFUT MIHIMUM UHLUE DF
IHFUT MFXINIM WHLUE OF
IHFUT MIHIMUM URLUE OF
INFIIT MHNIMUM URLIE DF

Figure (3-22). Effect of varying k.

$\left.\begin{array}{r}Y \text { (meters) } 1200 \\ 1080 \\ 960 \\ 840 \\ 720 \\ 600 \\ 480 \\ 360 \\ 240 \\ 120\end{array}\right\}$

120	240	360	480°	600	720	840	960	1080	1200

120

$$
\begin{aligned}
& \theta_{\mathrm{m}_{0}}=48.6^{0}=.84834 \mathrm{ad} \\
& \theta_{t_{0}}=-28.4^{0}=-.4956 \mathrm{rad} \\
& \sigma_{0}=77.6^{0}=1.3544 \mathrm{rad}
\end{aligned}
$$

The problem was run for $k=3,4$, and 5 .
Table 3-VIII is the output. It can be seen that the effect of increasing the proportionality constant is to decrease the maximum acceleration required. Figure (3-22) is a plot of the trajectories.

H. DESIGN EXAMPLE (GUIDANCE LAW SELECTION)

From the examples given in this chapter, it can be seen that a missile designed to encounter a highly maneuverable target, such as a fighter, requires a proportional guidance law to limit the maximum acceleration required of the missile. To select the proportionality constant, it was assumed that the threat could maintain a constant 7 g turn at $\mathrm{M}_{\mathrm{t}}=1.5$ and an altitude of 10,000 feet.

Three cases were investigated, (1) A head-on encounter with the target initiating a turn at 10,000 meters range, (2) A crossing encounter in which the target turns into the missile at 10,000 meters range, and (3) An oblique, closing encounter in which the target turns into the missile. The scenario and computer outputs are shown in Figures (3-23), (3-24), and (3-25). From this analysis the crossing encounter requires the largest acceleration ($263.2 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$).

For the crossing scenario then, the missile speed was varied and the results indicated that as the speed increased the maximum

$$
\begin{aligned}
v_{m} & =821 \mathrm{~m} / \mathrm{sec} \quad(M=2.5) \\
v_{t} & =492 \mathrm{~m} / \mathrm{sec}(M=1.5) \\
r_{0} & =10,000 \mathrm{~m} \\
\theta_{m_{0}} & =0 \\
\theta_{t_{0}} & =180^{\circ}
\end{aligned}
$$

$$
\beta_{m_{0}}=0
$$

$$
\beta_{t_{0}}=180^{\circ}
$$

$$
\sigma_{0}=0
$$

$$
k=4
$$

THIE FROLRAM FIHIS THE MAKIMUM
MSGILE AGCELEFATIOH FOR F
FRGPDETIGUL HAWIGATIUN STGTEM
IHFUT TIME INCREMEHT
IHFUT HAWIGATIOH COHETAHT
IHFIUT MISEILE YELOCITY
IHFIT TAREET YELOEIT'
IHFUT TARIGET FGCELERATIOH
infolt initifl miseile figeleration
INFIUT INITIAL RGHEE
infut eeth thriaet
IHFIUT EETA MISEILE
INFIIT THETA TARGET
IhFIUT THETA MISEILE
IHFUT SIDNA
MISSILE FOSIT TARGET FOSIT

MFOIMUM MISEILE ACO IS 126.1911994 METERGEELGEC MISSILE TIME OF FLIGHT IS 9 EEG INFIT MIHIMIM UFLIIE OF \boldsymbol{x}

Figure (3-23). Head-on scenario.

$$
\begin{array}{ll}
r_{0}=10,000 \mathrm{~m} & \theta_{t_{0}}=0 \\
v_{t}=492 \mathrm{~m} / \mathrm{sec} & \theta_{m_{0}}=73.8^{\circ} \\
v_{m}=821 \mathrm{~m} / \mathrm{sec} & \sigma_{0}=120^{\circ} \\
\beta_{t_{0}}=-120^{\circ} & k=4 \\
B_{m_{0}}=-46.2^{\circ} &
\end{array}
$$

THIS FROLEAM FIHDS THE MARIMUM MISSILE ACCELEFATION FOE A FROFORTIOHAL HAWIGATIDH SUSTEM

IHFUT TIME IHCREMEHT
IHFUT HEVIGATION EONSTFHT
IMFIJT MISSILE velogity
IHFIT TAFGET UELDEITY
IhFIT TARGET GDCELERATIOH
infidt initial migsile fictelefation
IHFITT INITIAL RAHGE
INFIIT EETA TARGET
infilt geta misgile
Infut theta thriget
INFIUT THETA MISEILE
IHFIT SIEMA
missile fogit
theget fgeit

MISSILE TIME OF FLIGHT IS 8.8 SEC
INFUT MIHIMUM VFLUE OF
Figure (3-24). Crossing scenario.

$$
\begin{aligned}
& -\infty-\infty \\
& v_{t}=492 \mathrm{~m} / \mathrm{sec} \\
& \theta_{t_{0}}=135^{\circ} \\
& \mathrm{V}_{\mathrm{m}}=821 \mathrm{~m} / \mathrm{sec} \\
& \beta_{t_{0}}=135^{\circ} \\
& \theta_{m_{0}}=53.9^{\circ} \\
& \sigma_{0}=0 \\
& \beta_{m_{0}}=53.9^{\circ} \\
& r_{0}=10,000 \mathrm{~m} \\
& k=4
\end{aligned}
$$

THIS FROGRAM FINDS THE MARIMM miseile hoceleration for a PROFDETIOHFL HFVIGATION SUSTEM

INFUT TimE inCREMEHT
IHFUT HAWIGATION EOHETANT
INFIT MIEEILE VELOCITY
INFUT TAFIGET vELDCIT'
INFUT TARGET FCLELERATIDN
IHFIT IHITIAL MISGILE BGCELERATIOH
IHFIT INITIAL RAHEGE
IHFIUT EETA TAFGET
INPIJT EETA MISEILE
INFUT THETA TARGET
INFIT THETA MISEILE
INFUT SIGMA
MISSILE FOSIT
TARGET FOSIT

Figure (3-25). Ob1ique scenario.

```
IHFUT TIME IHCREMEMT
INFUT HAVIGATION EOHETAHT
INFUT MISSILE YELGEITY }\longrightarrow\mp@subsup{M}{M}{=2.0
INFIT TAFIGET vELOGIT'Y
INFUT TARGET ACLELERHTIDH
IHFUT INITIAL mISEILE AOCELEEATION
IHFUT IHITIAL RANGE
infut beta thfget
IHFIIT EETA MISGILE
Infut theta TARgET
infut theth miggile
IHFUT EIGMA
    MISSILE FOSIT THRGET FISIT
IN YOU &1FHT A FRIHT OF THE DUTFUT: KE GES, 1=NO
MA%IMOM MISSILE FCO IS 275.5734145 METERGSEGGEE
MISSILE TIME OF FLIGHT IS 10.3 EEG
IHFUT HIHIMUM QGLUE DF %
THIS FROGREM FINDS THE THFIMDM
MIESILE FGCELERATIOH FOF A
FROFDRTIONAL HAVIGATION STSTEM
IHFUT TIME INOREMENT
MHFUT HAVIGATIOH COHSTANHT
INFIT TARGET vELDEIT''
IHFUT TARGET AGCELERATIOH
INFITT IHITIAL mISSILE FIDELEEATIOH
IHFUT INITIAL RAHGE
INFILT EETA TARISET
INFIUT EETA MISEILE
INFIJT THETA TARGET
IWFIJT THETA MISEILE
IHFITT SIGMA
        MISSILE FOSIT TARIGET FOSIT
IO YOU WANT A FRINT OF THE OUTFUT, XE Q=YES,1=HO
MARIMUM MISSILE FCG IS 24E.2gSEBS
                                    METERSGECGEE
MISSILE TIME OF FLIGHT IS F.B EEC
IHPIT MIHIMIMM YGLUE OF &
```


acceleration decreased. The results for $M_{M}=2.0$ and $M_{M}=3.0$ are shown in Table $3-I X$. This result indicates the desirablity of retaining the missile Mach number originally selected.

For the crossing case and a missile speed of $M_{M}=3.0$, the proportionality constant was then varied from $k=2$ to $k=6$. The results are plotted in Figure (3-26). If the maximum acceleration is limited to 31 g 's $\left(3 \mathrm{a}_{\mathrm{t}}+10\right)$, the required proportionality constant is $k=3.75$. This is well within the desirable range of 2-6 indicated earlier.

From this analysis the required performance objectives are:

$$
\begin{aligned}
& M_{m}=3.0 \\
& k=3.75 \\
& \left(a_{m}\right)_{\text {max }}=31 \mathrm{~g}^{\prime \mathrm{s}}
\end{aligned}
$$

IV. SIZING THE DIAMETER

The missile diameter is determined by one of three driving factors. For relatively short range missiles the diameter will be fixed by either the warhead or the seeker requirements. As might be expected, for longer range missiles the diameter will more likely be fixed by either the warhead or the seeker requirements. As might be expected, for longer range missiles the diameter will more likely be fixed by the propulsion requirements in order to prevent excessive propulsion system lengths. An initial estimate of the missile diameter must be made at this point in order to proceed with the design. The initial seeker requirement can be determined from a knowledge of the lock-on range requirement found in Chapter 2. The warhead necessary to inflict a "kill" can also be estimated from information about the target and characteristic explosives. The propulsion requirement cannot be determined because of the lack of any aerodynamic drag or weight information at this point. For this reason the missile diameter will be now sized for seeker or warhead requirements. The missile propulsion requirements will be determined later in the design process, and it may be necessary at that time to resize the missile to meet these propulsion requirements.

Selection of the type of seeker depends upon the operational arena of the missile. The seeker of a shoulder fired, battlefield missile would not be the optimum seeker of a shipboard
missile where antenna and component sizes are not limiting factors. All types of guidance use some portion of the electromagnetic spectrum. The three primary areas of use are the electro-optical, infrared, and radio frequencies. The millimeter wave section of the spectrum is also of current interest in the design of missiles due to small component size and will also be discussed. The following table lists some of the major advantages and disadvantages of the three.

Advantages

Optical

Infrared

RF

Target resolution (detail) Real time information Three dimension effect

Improved resolution over RF

Longest range Least absorption and attenuation

Disadvantages
Bad weather degrades Night use degrades

Attenuation due to aerosols and atmosphere

Larger components
A. THE RADAR RANGE EQUATION

An omnidirectional antenna is one that radiates power in all directions equally. If the power radiated by an antenna is P_{t}, the power density at a distance R_{t} from the source is given by,

$$
\begin{aligned}
& \text { Power density }=P_{t} /\left(4 \pi R_{t}^{2}\right) \\
& 4 \pi R_{t}^{2}=\text { area of a sphere of radius } R_{t}
\end{aligned}
$$

Since antennas are normally directive instead of omnidirectional, most of the power is radiated in a particular direction. The
gain, G_{t} is a measure of the increased power from a directive antenna as compared to an omnidirectional antenna. Therefore the power density from a directive antenna can be expressed as,

$$
\text { Power density }=\frac{P_{t} G_{t}}{4 \pi R_{t}^{2}}
$$

This is the power density which arrives at the target. The target intercepts a portion of this energy and reradiates it in the opposite direction. The radar cross section, σ, is a measure of the effective area of the target. The power radiated by the target is $P_{\text {echo' }}$

$$
P_{\text {echo }}=\frac{P_{t} G_{t} \sigma}{4 \pi R_{t}^{2}}
$$

This energy propagates as if it were radiated by an omnidirectional antenna. Therefore if the receiving antenna is a distance, R_{r}, away the power density at the receiver is

$$
\text { (Power density) }{ }_{r}=\frac{P_{t} G_{t} \sigma}{\left(4 \pi R_{t}{ }^{2}\right)\left(4 \pi R_{r}^{2}\right)}
$$

If the energy is intercepted by the receiving antenna, which has an effective area as seen by the returned energy of A_{r}; then the power received by the radar , P_{r}, is

$$
\begin{equation*}
P_{r}=\frac{P_{t} G_{t}{ }^{\sigma} A_{r}}{\left(4 \pi R_{t}^{2}\right)\left(4 \pi R_{r}^{2}\right)} \tag{1}
\end{equation*}
$$

This is the simplest form of the raiar equation and can be used to determine the size of anterna required.
B. ACTIVE RADAR HOMING

Active homing is the method of missile guidance in which the radar transmitter and receiver are located on-board the missile. In this case the same antenna is used for both transmitting and receiving. The radar equation then becomes,

$$
P_{r}=\frac{P_{t} G_{t} \sigma A_{t}}{\left(4 \pi R^{2}\right)^{2}}
$$

where, $R_{t}=R_{r}=R$ and $A_{r}=A_{t}$.
The minimum power for which the target can be detected, $P_{\text {min }}$ is a function of many variables. A full development of this term can be found in reference (8).

$$
P_{\min }=k T_{0} \quad B_{n} F_{n}\left(\frac{S_{0}}{\bar{N}_{0}}\right) \text { min }
$$

Boltzmans constant is $k=1.38 \times 10^{-23}$ joule/ ${ }^{\circ} k$. The value of kT_{0} at room temperature is 4×10^{-21} watt/cps of bandwidth. The bandwidth, B_{n}, noise figure, F_{n}, and minimum signal to noise ratio, $\left(S_{0} / N_{0}\right)_{\min }$ are all functions of the receiver. Typical

values are listed below.

$$
\begin{aligned}
\mathrm{B}_{\mathrm{n}}= & 1 \mathrm{MHz} \\
\mathrm{~F}_{\mathrm{n}}= & 7.5 \mathrm{db}=2.37 \text { (for crystal mixer) } \\
\left(\mathrm{S}_{0} / \mathrm{N}_{0}\right)_{\min }= & 14.7 \mathrm{db}=5.43 \text { (for probability of detection, } \\
& P_{\mathrm{D}}=0.9 \text { and probability of false alarm, } \\
& P_{f a}=1 / 15 \text { minutes) }
\end{aligned}
$$

The above values give $P_{\text {min }}=5.15 \times 10^{-14}$ watts. This is the value which will be used throughout this section.

From antenna theory the gain is related to the effective antenna area by,

$$
G=\frac{4 \pi A}{\lambda^{2}}
$$

The maximum radar range can then be shown to be

$$
\begin{equation*}
R_{\max }=\left[\frac{P_{t} \sigma A_{t}^{2}}{4 \pi \lambda^{2} P_{\min }}\right]^{1 / 4} \tag{1}
\end{equation*}
$$

Equation (1) for radar range does not include any system losses. It also does not include the statistical nature of several of the parameters. Because of these assumptions the actual range of a radar may be as small as onehalf of what the radar range equation predicts for laboratory conditions. For this reason, twice the required range should be used when using the above equation.

1. Example

The AN/APQ-153 is the airborne attack radar system used on the F-5E aircraft. The following parameters apply to this radar.

$$
\begin{aligned}
\mathrm{f}_{0} & =8-10 \mathrm{GHz} \\
\lambda & =\mathrm{c} / \mathrm{f}_{0}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{sec}}{9 \times 10^{9} / \mathrm{sec}}=.0333 \mathrm{~m} \\
c & =\text { speed of electromagnetic propagation } \\
& =3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
P_{t} & =80 \mathrm{~kW} \\
\text { Antenna } & =\text { Parabolic dish } 30.5 \times 40.6 \mathrm{~cm} \\
A_{t} & =0.12383 \mathrm{~m}^{2}
\end{aligned}
$$

for a target of 1 square meter of radar cross-section,

$$
R_{\max }=36.16 \mathrm{~km}=19.5 \mathrm{nmiles}
$$

For the case of an active homing radar, the size of the transmitting and receiving antenna is the parameter of interest. The antenna size may very well drive the design diameter of the missile. The antenna diameter can be expressed as follows.

Let

$$
A_{t}=\left[\frac{4 \pi \lambda^{2} P_{\min } R_{\max }^{4}}{P_{t} \sigma}\right]^{1 / 2}
$$

$$
\begin{equation*}
C=\left[\frac{4 \pi \lambda^{2} P_{\min }}{P_{t} \sigma}\right] \tag{2}
\end{equation*}
$$

then

$$
\begin{aligned}
A_{t} & =\frac{\pi_{t}^{2}}{4}=c R_{\max }^{2} \\
d_{t}^{2} & =\frac{4 C R_{\max }^{2}}{\pi} \quad \text { therefore, } d_{t}=2 R_{\max } \sqrt{\frac{c}{\pi}}
\end{aligned}
$$

Figure (4-1). Required antenna size.

Equation (2) has been plotted in Figure (4-1) for various values of the transmitter frequency. From this plot and a knowledge of the maximum lock-on range required, the antenna size can be determined.

From equation (2) and Figure (4-1) there are two obvious ways to decrease the antenna size required. (1) Increasing frequency is the best way to reduce antenna and electronic component sizes. The current trend is toward higher frequencies. (Millimeter waves.) One problem is that the equations developed in this section do not include atmospheric attenuation. For frequencies above about 30 GHz the absoprtion due to atmospheric gases increases. This is shown on Figure (4-2). As indicated on this figure there are "windows" where the attenuation is less. These "windows" occur at frequencies of $34 \mathrm{GHz}, 94 \mathrm{GHz}, 140 \mathrm{GHz}$, and 220 GHz . These are the frequencies where most of the current research and development is going on. As the frequency increases, the wavelength approaches the size of rain droplets. For this reason, radar performance is greatly reduced in inclement weather. (2) Increasing transmitter power will also decrease the size of antenna necessary. The limiting factor in this area is the lack of high power sources. In the millimeter range the available power from current traveling wave tubes is 50-100 watts. Increasing power is obviously confined to size and weight limitations of missile components.

Figure (4-2). Atmospheric Absorption [8].
C. SEMI-ACTIVE HOMING

The advantage of semi-active homing is obvious when the radar range equation is investigated. From equation (1),

$$
R_{t}^{2} R_{r}^{2}=\frac{P_{t} G_{t} \sigma A_{r}}{(4 \pi)^{2} P_{\min }}
$$

In the above equation the missile range from the target is R_{r}. The transmitting and receiving antennas are at different ranges and have different characteristics in this case. As before,

$$
G_{t}=\frac{4 \pi A_{t}}{\lambda^{2}}
$$

therefore,

$$
R_{t}{ }^{2} R_{r}^{2}=\frac{P_{t} A_{t} A_{r} \sigma}{4 \pi \lambda^{2} P_{\min }}
$$

The main advantage is in the transmitter characteristics. Since the transmitter is not located in the missile, it is not normally limited in size and weight requirements. In the above equation if a transmitter power and standoff range, R_{t}, is chosen the receiving antenna can be sized for a maximum homing range, $R_{\max }$ ' of the missile.

1. Example

$$
\begin{aligned}
P_{t} & =100 \mathrm{~km} \\
R_{t} & =100 \mathrm{nmiles} \\
f_{0} & =10 \mathrm{GHz} \\
A_{t} & =4 \mathrm{~m}^{2} \\
P_{\min } & =5.15 \times 10^{-14} \mathrm{~W}
\end{aligned}
$$

$\underline{R}_{\text {max }}$ (nmiles)

10
20
50

$d_{r}(i n)$

5.8
11.6
29.1

It can be seen from comparing these numbers to those of Figure (4-1) that the required antenna size is less than one half of that required for an active homing radar of the same frequency. D. DESIGN EXAMPLE (ANTENNA SIZING)

An active radar was assumed in Chapter 2 to decrease the required missile range. The lock-on range was $10,000 \mathrm{~m}$ or 5.4 nmiles. As stated earlier, twice this number should be used for determining antenna size. From Figure (l) for a range of 10.8 nmiles , and a transmitter power of 10 kW at $\mathrm{f}_{0}=20 \mathrm{GHz}$, the required antenna size is $d=10$ inches.

E. INFRARED SEEKERS

In the design of missile seekers two parameters of primary importance are range and size. The idealized range for an infrared tracker relates these two factors. The idealized range is the range at which the signal-to-noise ratio is unity and is given by,

$$
\begin{equation*}
R_{0}=\left[\frac{D^{*} T_{a} T_{R} \quad D_{a}^{2} J}{4 \sqrt{\Delta f A_{d}}}\right]^{1 / 2} \tag{I}
\end{equation*}
$$

Transmission through atmosphere

Transmission through IR optics

Aperture diameter
Radiant intensity
Receiver bandwidth
Sensitive area of detector

D* 10^{10}
T_{a} $0-1.0$

$$
\mathrm{T}_{I R}
$$ Ta

$$
0-1.0
$$ 0-1.0 D_{a} J

$\Delta £$ 10^{3}
10^{3}

$$
A_{\mathrm{d}} \quad 10^{-6}-10^{-1} \mathrm{~cm}^{2}
$$

The derivation of equation (1) and its use are the subjects of this section. Some references (9) may give the above equation in terms of the Noise Equivalent Intensity, NEI.

$$
\mathrm{R}_{0}=\left[\frac{\mathrm{J}}{\mathrm{NEI}}\right]^{1 / 2}
$$

where

$$
N E I=\frac{\sqrt{\Delta f A_{d}}}{D^{\star} A_{a} T_{a} T I R}
$$

1. Planck's Law

The radiant emittance of a body is a measure of the radiant power per unit area emitted from the surface.

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{P}}{\mathrm{~A}} \text { watt } / \mathrm{cm}^{2} \tag{2}
\end{equation*}
$$

The spectral radiant emittance is the radiant emittance per unit wavelength interval,

$$
\begin{aligned}
W_{\lambda} & =\frac{\partial W}{\partial \lambda} \text { watt } / \mathrm{cm}^{2} \mu \\
\mu & =\text { micron }=10^{-6} \text { meters. }
\end{aligned}
$$

Planck's law gives the blackbody spectral radiant emittance as a function of wavelength and temperature,

$$
\begin{align*}
\left(W_{\lambda}\right)_{\mathrm{BB}} & =\frac{2 \pi \mathrm{~h} \mathrm{c}^{2}}{\lambda^{5}} \frac{1}{\exp (\mathrm{hc} / \lambda \mathrm{kT})-1} \tag{3}\\
\mathrm{~h} & =\text { Planck's constant }=6.6238 \times 10^{-34} \text { Joule-sec } \\
\mathrm{c} & =\text { speed of light }=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
\lambda & =\text { wavelength } \\
\mathrm{k} & =\text { Boltzmann's constant }=1.38 \times 10^{-23} \text { Joule/ }{ }^{\circ} \mathrm{K} \\
\mathrm{~T} & =\text { Absulute temperature, } \mathrm{O}_{\mathrm{K}}
\end{align*}
$$

Figure (4-3) shows equation (3) for various absolute temperatures. As can be seen the wavelength at which maximum radiant emittance occurs varies with temperature. This maximum occurs at a wavelength given by Wien's displacement law, $\lambda_{\text {max }}$

$$
\lambda_{\max } T=2897.8 \mu O_{K}
$$

2. Emissivity

Actual bodies do not emit radiation according to planck's law. A more typical plot of radiant emittance is shown in Figure (4-4). Spectral emissivity, $\varepsilon_{\lambda^{\prime}}$, is defined as the ratio of the actual spectral radiant emittance to the blackbody spectral radiant emittance,

$$
\varepsilon_{\lambda}=\frac{W_{\lambda}}{\left(W_{\lambda}\right)_{B B}}
$$

Figure (4-3). Spectral radiant emittance.

Figure (4-4). Actual spectral radiant emittance.

As shown in the above figure, ε_{λ}, may vary with wavelength. A grey body is defined as one which has constant spectral emissivity,

$$
\varepsilon=\varepsilon_{\lambda}=\text { constant }
$$

IR systems normally use filters to limit the accepted radiation to a specific wavelength band. The radiant emittance of a body between wavelengths λ_{1} and λ_{2} becomes,

$$
\mathrm{W}=\int_{\lambda_{1}}^{\lambda_{2}} \varepsilon\left(W_{\lambda}\right)_{\mathrm{BB}} \mathrm{~d} \lambda
$$

In Figure (4-5) the surface at the orgin emits a total energy WA into a hemisphere normal to A.

The radiance is defined as the radiant power per unit solid angle per unit projected area,

$$
\text { Radiance }=N=\frac{\partial^{2} p}{\cos \theta \partial A \partial \Omega}=\frac{1}{\cos \theta} \frac{\partial}{\partial \Omega} \frac{\partial p}{\partial A}
$$

Figure (4-5). Radiant emittance of a body.

From equation (2)

$$
N=\frac{1}{\cos \theta} \frac{\partial W}{\partial \Omega} \text { watts/steradian } \mathrm{cm}^{2}
$$

The radiant intensity is defined as the radiant power per unit solid angle from a point source.

$$
\text { Radiant intensity }=J=\frac{\partial P}{\partial \Omega} \text { watt/steradian }
$$

The following is a summary of the definitions of radiant energy quantities,

$$
\begin{aligned}
& \mathrm{W}=\text { radiant emittance, watts } / \mathrm{cm}^{2} \\
& \mathrm{~J}=\text { radiant intensity, watts } / \text { steradian } \\
& \mathrm{N}=\text { radiance, watts } / \text { steradian }-\mathrm{cm}^{2}
\end{aligned}
$$

From the definitions the relationship between W, J and N are,

$$
W=\pi N=\pi J / A
$$

From the above definitions and Figure (4-5) the energy into solid angle, Ω_{1} is,

$$
N A \Omega_{1} \cos \theta=\frac{W}{\pi} \Omega_{1} A \cos \theta
$$

The energy into solid angle Ω_{2} is given by,

$$
\mathrm{NA} \Omega_{2}=\frac{\mathrm{W}}{\pi} \Omega_{2} \mathrm{~A}
$$

3. Energy into a Hemisphere

From the definition of radiance and the radiant emittance, the radiance in terms of the radiant emittance can be found,
$N=\frac{\partial^{2} \mathrm{P}}{\cos \theta \partial A \partial \Omega}$
$W=\frac{\partial P}{\partial A}$
$N=\frac{1}{\cos \theta} \frac{\partial W}{\partial \Omega}$

Figure (4-6). Energy emitted into a hemisphere. 108

From Figure (4-6) the incremental solid angle is

$$
d \Omega=\frac{r \sin \theta d \phi r d \theta}{r^{2}}=\sin \theta d \theta d \phi
$$

If the above surface, A_{t} ' is considered a Lambertian surface, the radiance, N, is independent of the direction of radiation.

$$
\begin{aligned}
& \mathrm{dW}=\cos \theta \mathrm{N} \mathrm{~d} \Omega \\
& \mathrm{dw}=\cos \theta \mathrm{N} \dot{\sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}
\end{aligned}
$$

The total radiant emittance into a hemisphere above the surface is then,

$$
\begin{aligned}
& \mathrm{W}=\int_{0}^{2 \pi} \int_{0}^{-\pi / 2} \mathrm{~N} \cos \theta \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& \mathrm{~W}=2 \pi \mathrm{~N}\left[\frac{1}{2} \sin ^{2} \theta\right]_{0}^{\pi / 2} \\
& \mathrm{~W}=\pi \mathrm{N}
\end{aligned}
$$

4. Targets

Infrared targets include a wide variety of radiation sources. The radiance of most bodies can be divided into that due to self-emission and that due to reflection of incident radiation,

$$
N=N_{e}+N_{r}
$$

The relative magnitude of these contributions depends on a number of factors and varies from target to target and operating environment.
a. Self-emission.

Self-emission, also referred to as thermal emission, depends primarily on the temperature of the body and the emissivity. The most often used appraoch is to consider the body as a grey body which emits radiation according to the stefanBoltzmann Iaw.
where

$$
\begin{aligned}
\mathrm{N}_{\mathrm{e}} & =\frac{\varepsilon \sigma \mathrm{T}^{4}}{\pi} \text { watts/steradian-} \mathrm{cm}^{2} \\
\sigma & =5.67 \times 10^{-12} \text { watts } / \mathrm{cm}^{2}\left({ }^{O_{K}}\right)^{4}
\end{aligned}
$$

This term is the total radiance (over all wavelengths) and is not the same as used previously.
b. Reflection.

Radiance due to reflectance depends on the illuminating source. This source may be the sun, active, or semiactive sources. It is obvious that at night for a passive infrared system, the radiance due to reflection is not a contributing factor. For this reason only the radiance due to selfemission is considered in this section.

5. Target Temperature

Since the self-emittance of a target depends on the temperature of the target, a method for determining this temperature is needed. The temperature of an aerial target varies depending on the aspect of the target. The propulsion system has hot surfaces such as the nozzle and exhaust plumes. There may also be hot surfaces due to aerodynamic heating and/or solar radiation.

Air breathing engines normally have exhaust plumes ranging from 600 to $1000^{\circ} \mathrm{K}$. Rockets typically have much hotter plumes. The flame temperatures for liquid propellants range from 2500 to $7500^{\circ} \mathrm{K}$. Solid propellants flame temperatures range from 1700 to $3500^{\circ} \mathrm{K}$. The plume temperature can be estimated from the relation.

$$
\frac{T_{\text {flame }}}{T_{\text {plume }}}=\frac{T_{0}}{T_{e}}=1+\frac{\gamma-1}{2} \mathrm{Me}^{2}
$$

where

$$
\begin{aligned}
& T_{0}=\text { stagnation temperature } \\
& T_{e}=\text { static temperature } \\
& M_{e}=\text { Mach number at the nozzle exit }
\end{aligned}
$$

a. Example I

For a flame temperature of $2700^{\circ} \mathrm{K}$ and an exit Mach number of 3.0 the plume temperature can be found,

$$
T_{\text {plume }}=\frac{T_{\text {flame }}}{1+\frac{Y-1}{2} M_{e}^{2}}=1270.6^{\circ} \mathrm{K}
$$

For many missile encounters the exhaust plume may be shielded from the infrared sensor. For a head-on encounter the temperature of interest is the skin temperature of the target. This temperature is due to aerodynamic heating and is a function of the target speed and the target material. One approach to finding this temperature is through the use of the recovery
factor, which requires some knowledge of the material of the target. The recovery factor, r, of a material is defined as follows:

$$
r=\frac{T_{\text {surface }}-T_{\text {ambient }}}{T_{\text {stagnation }}-T_{\text {ambient }}}
$$

The skin temperature of the target then becomes,

$$
T_{\text {surface }}=T_{\text {ambient }}+r\left(T_{\text {stag }}-T_{\text {amb }}\right)
$$

The stagnation temperature is found from the relation,

$$
T_{\text {stag }}=T_{a m b}\left(1+\frac{\gamma-1}{2} M^{2}\right)
$$

The Mach number, M, is that of the target and the specific heat ratio, γ, is for air.
b. Example II

A target flying at $M=2.5$ where the ambient temperature is $300^{\circ} \mathrm{K}$ has a recovery factor of 0.75 .

$$
\begin{aligned}
& T_{\text {stag }}=575^{\circ} \mathrm{K} \\
& T_{\text {surface }}=581^{\circ}{ }_{\mathrm{K}}
\end{aligned}
$$

This is the temperature used, along with the emissivity of the target, to find the radiant emittance of the target from equation (4).

6. Simple IR System

Figure (4-7). Simple IR system.

Figure (4-7), above, shows a simple IR system and a target at a range R. If the system is sensitive to radiation in the 3 to 5 micron region the radiant emittance becomes,

$$
\begin{gather*}
\mathrm{W}=\int_{\lambda_{1}=3}^{\lambda_{2}=5} \varepsilon\left(W_{\lambda}\right)_{B B} d \lambda \\
W=\varepsilon \int_{3}^{5}\left[\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{\exp (h c / k T)-1}\right]
\end{gather*}
$$

The above integral is best evaluated on the computer. If the ambient temperature and target speed is known, the skin temperature of the target can be determined.

The radiance from the target then becomes,

$$
N=\frac{W}{\pi}
$$

If Figure (4-7), the solid angle of the aperture as seen from the target is, $\quad \Omega=\frac{A_{a}}{R^{2}}$

The power seen at the detector surface is then,

$$
\text { IR Power }=N \Omega A_{t}
$$

The above formula assumes no attenuation by the atmosphere or the IR system optics. This attenuation is significant in actual IR systems. These factors are normally accounted for through the use of atmospheric and IR optics transmission coefficients.

$$
\begin{aligned}
T_{a} & =\text { transmission of the atmosphere } \\
T_{I R} & =\text { transmission of the } I R \text { optics }
\end{aligned}
$$

The total power at the detector then becomes,

$$
\begin{equation*}
P=\frac{T_{a} T_{I R} A_{t} A_{a} W}{\pi R^{2}} \tag{5}
\end{equation*}
$$

7. Detectors

Detectors are devices which are radiation transducers. It's purpose is to change the incoming radiant power to an electrical signal, which can then be amplified. Detectors can be divided into two main categories. (1) Thermal detectors The responsive element of a thermal detector is sensitive to
temperature changes brought about by the incident radiation. (2) Photodectectors - Responsive elements of photodetctors are sensitive to the number of incident photons.

Detectors also are made up of windows, apertures and Dewar flasks. The window restricts the bandwidth to which the detector is sensitive. The aperture may limit the field of viein order to limit photon noise. The Dewar flask cools the detector which improves the detectivity.

Detectivity of a detector is defined as,

$$
\begin{equation*}
D=\frac{\text { signal/noise }}{\text { input power }}=\frac{S / N}{P} \tag{6}
\end{equation*}
$$

The specific detectivity is

$$
\begin{align*}
& D^{*}=D\left[\Delta f A_{d}\right]^{1 / 2} \tag{7}\\
& \Delta f=\text { Bandwidth } \\
& A_{d}=\text { Sensitive area of detector }
\end{align*}
$$

For a tracking system the bandwidth is that of the preamplifier in Figure (4-7). The input to the preamplifier is proportional to the incoming IR energy, which has been modulated to give target resolution from the background and provide line-of-sight information.

A simple chopper is shown in Figure (4-8). It consists of an opaque material which has a wedge cut-out of angle α. The rotation causes the input from a point source to be modulated,

Figure (4-8). Simple Chopper.
while that of the background is not. The input signal to the preamplifier would look like Figure (4-9). The frequency content of the signal in Figure (4-9) can be found from a Fourier Analysis. If the pulses are assumed to be sinusoidal of period T, the optimum bandwidth is,

$$
\begin{aligned}
\Delta f & =\frac{3}{T} \\
T & =\frac{W}{\pi \alpha W_{S}}
\end{aligned}
$$

Figure (4-9). Preamp input.

The specific detectivity is characteristic of the detector used. Reference [9] is an excellent source of information on operational detectors.
8. Idealized Range

Equation (5) is,

$$
P=\frac{T_{a} T_{I R} A_{t} A_{a} W}{\pi R^{2}}
$$

From equations (6) and (7) this becomes,

$$
\frac{D^{*}}{\left[\Delta f A_{d}\right]^{1 / 2}}=\frac{S / N \pi R^{2}}{T_{a} T_{I R} A_{t}{ }^{A_{a}} W}
$$

The idealized range, where the signal to noise ratio is unity, is

$$
R_{0}^{2}=\frac{D^{*} T_{a} T_{I R} A_{t} A_{a} W}{\left[\Delta f A_{d}\right]^{1 / 2} \pi}
$$

To simplify this equation the radiant intensity is given by,

$$
J=\frac{A_{t} W}{\pi}
$$

Since the parameter of interest in missile design is the aperture diameters A_{a}, it is replaced with $\frac{\pi D_{a}^{2}}{4}$ so that,

$$
\begin{aligned}
& R_{0}=\left[\frac{D^{\star} T_{a} T_{I R} \pi D_{a}^{2} J}{4 \sqrt{\Delta f A_{d}}}\right]^{1 / 2} \\
& D_{a}=\left[\frac{R_{0}^{2} 4 \sqrt{\Delta f A_{d}}}{D^{*} T_{a} T_{I R}{ }^{\pi} J}\right]^{1 / 2}
\end{aligned}
$$

a. Example (Idealized Range)

From example II a target flying at $M=2.5$ has a skin temperature of $581^{\circ} \mathrm{K}$. If this target has a presented area of $1 \mathrm{~m}^{2}$, the detector size needed to detect the target at a range of $10,000 \mathrm{~m}$ can be determined. From Wien's displacement law the maximum radiation occurs at,

$$
\lambda_{\max }=4.99 \mu
$$

If the system is designed to accept radiation from 3 to 5 microns, and the emissivity of the target is 0.7 .

$$
\mathrm{W}=\varepsilon_{3}^{5} \frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{\exp (h c / \lambda k T)-1} \mathrm{~d} \lambda
$$

If this equation is integrated on the computer, the radiant emittance becomes,

$$
\mathrm{w}=1410 \text { watts } / \mathrm{m}
$$

The radiant intensity becomes,

$$
J=\frac{A_{t}^{W}}{\pi}=448.82 \text { watts }
$$

Typical values of the parameters in the idealized range equation are (9)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{a}}=0.75 \\
& \mathrm{~T}_{\mathrm{IR}}=0.95 \\
& \Delta \mathrm{f}=1000 \mathrm{cps} \\
& \mathrm{~A}_{\mathrm{d}}=1 \mathrm{~cm}^{2} \\
& \mathrm{D}^{*}=1 \times 10^{10}(\mathrm{cps})^{1 / 2} \mathrm{~cm} / \text { watt }
\end{aligned}
$$

Substituting these values into the idealized range equation gives,

$$
\mathrm{D}_{\mathrm{a}}=0.0355 \mathrm{~m}=1.4 \mathrm{in} .
$$

As can be seen the size of the IR seeker is relatively small compared to other seekers. The above analysis is for the "idealized" range. Attenuation of IR radiation can be quite high thereby increasing the seeker size required.

F. WARHEAD SIZING

The conditional kill probability of a missile is the probability that the target is destroyed given that the warhead is delivered to a point in space and the fuze detonates the warhead at a miss distance r.

Figure (4-10). Encounter geometry.

The fragment distribution, $D(\phi)$, is the number of fragments per unit solid angle, Ω. The total number of fragments within the cone is,

$$
N=D(\phi) \Omega
$$

The fragment density, ρ, is the number of fragments per unit of area normal to the path.

$$
\rho=\frac{N}{A}=\frac{D(\phi) \Omega}{A}
$$

however,

$$
\Omega=\frac{A}{r^{2}}
$$

and

$$
\begin{equation*}
\rho=\frac{D(\phi)}{r^{2}}=\frac{D(\phi) \sin ^{2} \phi}{r_{m}^{2}} \tag{8}
\end{equation*}
$$

1. Target Vulnerability

The vulnerability of aircraft or missile components is normally determined experimentally. Fragments of a specified size are fired at the component, and the damage is assessed to determine if the fragment would cause a kill. If a large number of fragments are fired, the ratio of killing fragments to hits can be determined. This ratio is defined as the probability that given a hit a kill will result, $P_{K / H}=\frac{N_{K}}{\bar{N}_{H}}$. Assuming the distribution of hits is uniform over the target,

$$
\begin{equation*}
P_{K / H} \equiv \frac{A_{V}}{A_{p}} \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& A_{p}=\text { presented area of target } \\
& A_{v}=\text { vulnerable area of target }
\end{aligned}
$$

As would be expected, $\mathrm{P}_{\mathrm{K} / \mathrm{H}}$, depends greatly upon the encounter geometry. It will be dependent upon the aspect of the aircraft, and also depends upon the type of kill specified. If the target is assumed to be a spherical target, the probability of kill given a hit can be assumed constant.
2. Conditional Kill Probability

The fragment density is given by equation (8). From this density expression, the average number of hits, a, on the vulnerable area of the target is,

$$
a=\frac{D(\phi) \sin ^{2} \phi}{r_{m}^{2}} A_{v}
$$

It is customary to assume that the distribution of hits on the presented area follows a Poisson distribution. The conditional kill probability then becomes,

$$
\begin{align*}
& P_{D}=1-e^{-a} \tag{10}\\
& P_{D}=1-\exp \left[\frac{-D(\phi) \sin ^{2} \phi A_{V}}{r_{m}^{2}}\right]
\end{align*}
$$

The above expression depends upon the fragment distribution, $D(\phi)$. If the warhead casing is scored such that it produces N fragments of uniform size and mass, m, the problem is simplified by formulating an alternate expression for a.

Figure (4-11). Static encounter.

The warhead-target encoun ter geometry is shown in Figure (4-11). As shown the area of the fragment ring depends on the miss distance, r_{m}. The area of the ring is given by, A_{f}.

$$
A_{f}=2 \pi \quad r_{m}\left(\ell_{w}+2 r_{m} \tan \beta\right)
$$

If the N fragments are distributed evenly in A_{f}, the number of fragments per unit area is

$$
\rho=\frac{N}{A_{f}}=\frac{N}{2 \pi r_{m}\left(l_{w}+2 r_{m} \tan B\right)}
$$

The average number of hits on a vulnerable component is then,

$$
a=\rho A_{v} \quad 122
$$

From equation (9), $A_{v}=P_{K / H} A_{p}$

Therefore, $\quad a=\rho P_{K / H} A_{p}$

$$
a=\frac{N P_{K / H}{ }^{A} p_{p}}{2 \pi r_{m}\left(\ell_{w}+2 r_{m} \tan \beta\right)}
$$

If in Figure (4-11), the average target width into the paper is given by \bar{W}, the presented area is,

$$
A_{p}=\bar{W}\left(\ell_{w}+2 r_{m} \tan \beta\right)
$$

The average number of hits is then,

$$
\begin{equation*}
a_{I}=\frac{N P_{K / H} \bar{W}}{2 \pi r_{m}} \tag{11}
\end{equation*}
$$

The distance at which the target just fills the fragment ring is the critical miss distance, and the maximum distance for which a_{I} applies. This is found by setting

$$
L=\ell_{W}+2 r_{c} \tan \beta
$$

From which

$$
r_{c}=\frac{L-\ell_{w}}{2 \tan \beta}
$$

If the miss distance in Figure (4-11) is such that the entire target is always presented to the fragment ring; i.e., $r_{m}>r_{c}$ the presented area becomes,

$$
A_{p}=\bar{W} L
$$

The average number of hits then becomes, $a_{I I}$

$$
\begin{equation*}
a_{I I}=\frac{N P_{K / H} \bar{W} L}{2 \pi r_{m}\left(l_{W}+2 r_{m} \tan B\right)} \tag{12}
\end{equation*}
$$

3. Sizing the Warhead Radius

The parameter of interest in this chapter is the diameter of the warhead required to achieve a specified kill probability. The development thus far is the conditional probability of kill, P_{D}. It has been assumed that the guidance system delivers the warhead to the point of interest, and the fuze detonates the warhead at this point. Since only the conditional probability of kill is determined, the purpose of this section will be to maximize P_{D} or to find the warhead diameter which sets $P_{D}=1$.

From the threat to be encountered, the target presented area, A_{p}, and the vulnerability, $P_{K / H}$, can be determined. Also from an alaysis of the threat, the size and impact velocity of the fragments necessary to kill the target can be determined. The initial velocity required to obtain the impact velocity is a function of the explosive used and the charge to mass ratio, C/M.

$$
\frac{C}{M}=\frac{\text { Mass of explosive/unit length }}{\text { Mass of warhead casing/unit length }}
$$

The initial velocity is given by Gurney's equation,

$$
\begin{equation*}
v_{i}=\sqrt{2 E}\left[\frac{C / M}{1+C / 2 M}\right]^{1 / 2} \tag{13}
\end{equation*}
$$

Gurney's constant, $\sqrt{2 E}$, for various explosives are given below [11].

Explosive	Density, $\mathrm{kg} / \mathrm{m}^{3}$	$\sqrt{2 \mathrm{E},} \mathrm{m} / \mathrm{sec}$
TNT	1590	2316.5
RDX	1650	2834.6
HMX	1840	3118.1
PETN	1730	2834.6
Tetryl	1620	2500.0
Composition B	1680	2682.2
Octol	1800	2895.6

From equation (13), the charge to mass ratio necessary to attain the specified initial velocity can be determined.

$$
\frac{C}{M}=\frac{v_{i}^{2} / 2 E}{1-V_{i}^{2 / 2(2 E)}}
$$

Figure (4-12). Warhead.

From Figure (4-12), C / M can be expressed as,

$$
\frac{C}{M}=\frac{\pi r_{e}^{2} \rho_{e}}{\left(\pi r_{w}^{2}-\pi r e^{2}\right) \rho_{c}}
$$

where

$$
\begin{aligned}
& \rho_{e}=\text { explosive density } \\
& \rho_{c}=\text { casing density } \\
& \frac{C}{M}=\frac{r_{e}^{2}}{\left(r_{e}+t\right)^{2}-r_{e}^{2}} \frac{\rho_{e}}{\rho_{c}} \\
& \frac{C}{M}=\frac{r_{e}^{2}}{2 r_{e} t+t^{2}} \frac{\rho_{e}}{\rho_{c}}
\end{aligned}
$$

If $t \ll r_{e}$

$$
\begin{align*}
& \frac{C}{M}=\frac{r_{e}^{2}}{2 r_{e}}{ }^{2} \frac{\rho_{e}}{\rho_{c}}=\frac{\rho_{e}}{\rho_{c}} \frac{r_{e}}{2 t} \\
& \frac{C}{M}=\frac{\rho_{e}}{\rho_{c}} \frac{\left(r_{w}-t\right)}{2 t} \tag{14}
\end{align*}
$$

From equation (14) the casing thickness in terms of the warhead radius can be determined.

$$
t=\frac{r_{w}}{2 \frac{C}{M} \frac{\rho_{C}}{\rho_{e}}+1}
$$

With the casing thickness fixed as a function of warhead radius the number of fragments, N, can be determined. In order to achieve the desired velocities of fragments, it is essential to have enough length for the diameter. An acceptable length to diameter ratio for a cylindrical warhead is from two to three. Most air-to-air missiles have a length to diameter ratio of 2.5. For this analysis a value of 2.5 is used.

The warhead casing volume is then given by, V_{c},

$$
\begin{aligned}
& V_{c}=2 \pi r_{w} t \ell_{w} \\
& v_{c}=10 \pi t r_{w}^{2}
\end{aligned}
$$

The mass of the casing is, m_{c},

$$
m_{c}=10 \pi t r_{w}{ }^{2} \rho_{c}
$$

The total number of fragments, N, is obtained by dividing the case mass by the individual fragment mass.

$$
\mathrm{N}=\frac{\mathrm{m}_{\mathrm{c}}}{\mathrm{~m}}=\frac{10 \pi t r_{\mathrm{w}}{ }^{2} \rho_{\mathrm{c}}}{\mathrm{~m}}
$$

From the equation (11) or (12) the average number of hits can be determined as a function of warhead radius

$$
\begin{aligned}
& a_{I}=\frac{5 t r_{w}{ }^{2} \rho_{c} P_{K / H} \bar{W}}{m r_{m}} \\
& a_{I I}=\frac{5 t r_{w}{ }^{2} \rho_{c} P_{K / H} \bar{W} L}{m r_{m}\left(\ell_{w}+2 r_{m} \tan B\right)}
\end{aligned}
$$

The conditional probability of kill can be determined now for a given warhead radius using equation (10).
a. Design Example (Effect of radius on P_{D})

If the above equations are programmed for the conditions listed below, a plot of the conditional probability of kill versus warhead radius can be obtained.

Threat: RAM-K

$$
\begin{aligned}
\mathrm{L} & =19.51 \mathrm{~m} \\
\overline{\mathrm{w}} & =6.10 \mathrm{~m} \\
\mathrm{P}_{\mathrm{K} / \mathrm{H}} & =.10
\end{aligned}
$$

Fragments:

$$
\begin{aligned}
\mathrm{m} & =105 \text { grains }=0.0068 \mathrm{~kg} \\
\mathrm{v}_{\mathrm{i}} & =2133.6 \mathrm{~m} / \mathrm{sec} \\
\rho_{\mathrm{C}} & =7000 \mathrm{~kg} / \mathrm{m} \\
B & =20 \text { degrees }
\end{aligned}
$$

Explosive: Composition B

$$
\rho_{e}=1680 \mathrm{~kg} / \mathrm{m}
$$

Miss distance: $r_{m}=50 \mathrm{ft}=15.24 \mathrm{~m}$

Figure (4-13) is a plot of the output. From this figure it can be seen that a warhead radius of $r_{w}=.06 \mathrm{~m}$ is required to achieve a conditional kill probability, $P_{D}=1.0$. Therefore the missile diameter required for warhead considerations is, $d=4.72$ inches.

The warhead radius also varies with the required initial velocity. From the equations for charge to mass ratio

and casing thickness the radius required to achieve a specified kill probability can be determined.

Since,

$$
t=\frac{r_{w}}{2 \frac{c}{M} \frac{\rho_{c}}{\rho_{e}}+1}
$$

and

$$
\frac{C}{M}=\frac{V_{i}^{2} / 2 E}{1-V_{i}^{2} / 2(2 E)}
$$

the average number of hits becomes,

$$
a_{I}=\frac{5 \rho_{c}{ }^{P_{K / H}} \bar{W} r_{W}^{3}}{\left[2\left(\frac{V_{i}^{2} / 2 E}{1-v_{i}^{2} / 2(2 E)}\right) \frac{\rho_{c}}{\rho_{e}}+1\right] \mathrm{mr}_{m}}
$$

The above equation assumes $r_{m}<r_{c}$

Letting

$$
b=\frac{5 c^{P_{K / H}} \bar{W}}{\left[2\left(\frac{v_{i}^{2} / 2 E}{1-v_{i}^{2} / 2(2 E)}\right) \frac{\rho_{c}}{\rho_{e}}+1\right]^{m r} m}
$$

the probability of kill becomes,

$$
\begin{equation*}
P_{D}=1-e^{-b r_{w}^{2}} \tag{15}
\end{equation*}
$$

If the conditional probability of kill is selected as $P_{D}=0.999$, equation (15) can be solved for the warhead radius.

$$
\begin{equation*}
r_{w}=\left(\frac{6.9078}{b}\right)^{1 / 3} \tag{16}
\end{equation*}
$$

The initial velocity, V_{i}, required to achieve a target kill is a function of the miss distance, fragment size, expected encounter altitude and target characteristics. For this simple analysis the effect of initial velocity on warhead radius will be studied. The effect of varying the initial velocity in equation (16) is plotted in Figure (4-14). The results were determined for various explosives to show their effect on the warhead radius. If an initial velocity of $7000 \mathrm{ft} / \mathrm{sec}$ is chosen with Composition B as the explosive the required warhead radius is 2.6 inches.

From this analysis the warhead weight can be found. The casing thickness is given by,

$$
\begin{aligned}
t & \left.=.115 r_{w} \quad \text { (from required } C / M\right) \\
l_{w} & =5 r_{w}
\end{aligned}
$$

Therefore, the explosive weight is

$$
\begin{aligned}
& w_{e}=\pi\left(r_{w}-t\right)^{2} \ell_{w} \rho_{e} \\
& w_{e}=5.9530 \mathrm{~kg}
\end{aligned}
$$

The casing weight becomes,

$$
\begin{aligned}
& W_{c}=\left(\pi r_{w}^{2}-\pi r_{e}^{2}\right) l_{w} \rho_{c} \\
& W_{c}=6.8651 \mathrm{~kg}
\end{aligned}
$$

The total warhead weight becomes,

$$
\mathrm{W}_{\mathrm{WH}}=12.8181 \mathrm{~kg}=28.26 \mathrm{lb}
$$

The required diameter for the radar antenna was 10 inches and exceeds that required for the warhead. If the warhead is made hollow and kept at the same weight, equation (14) can be reformulated to give

$$
\frac{C}{M}=\frac{\left[\left(r_{w}-t\right)^{2}-r_{i}^{2}\right] \rho_{e}}{\left[2 r_{w} t-t^{2}\right] \rho_{c}}
$$

The hollow portion of the warhead is then found from

$$
\frac{w_{e}}{\rho_{e}}=\pi\left(r_{w}^{2}-r_{i}^{2}\right) \ell w
$$

Figure (4-15) is the resulting warhead.

Figure (4-15). Hollow warhead.

V. BASELINE DEFINITION

A. CONTROL CONCEPTS

The lifting and control surfaces of a missile may be of monowing, triwing or cruciform configuration. Figure (5-l) shows these three arrangements.

Figure (5-1). Control configurations.

The monowing arrangement is typical of most cruise missiles, which require long range and low drag. For this type of arrangement the missile must bank to orient the lift vector for a maneuver. Because of this, the monowing missile is not as rapid in maneuvering as the cruciform configuration, which can produce lift in any direction instantaneously. The cruciform control also has identical pitch and yaw characteristics which results in a simpler control system. The triwing configuration is used very seldom for conventional missiles. It can be shown that
the triwing missile requires larger wing size; therefore, there is little drag savings even though there is one less wing than with the cruciform missile [10]. From this discussion it can be seen why the cruciform configuration is the most commonly used for tactical missiles of short or medium range.

The positions of the lifting surfaces, on the missile body depends on the method of control used for the missile. There are three conventional methods of control for tactical missiles. These are; 1) Wing control; 2) Tail control; 3) Canard control.

1. Wing Control

Wing control missiles normally have large movable wings located slightly behind the missile center of gravity. Because of the small moment arm the wing surface must be relatively large to provide control effectiveness. As would be expected, larger activators are required for moving the wings. A positive deflection of the wings causes a positive normal force; therefore, the missile reacts almost instantaneously; thus making wing control the fastest reacting method of control. Because of the smaller moment arm, the resulting smaller pitching moment and instantaneous lift result in smaller angles of attack. This feature makes wing control missiles attractive for applications where theincidence angle must be kept small. Air breathing applications often use wing control because of inlet performance degradation at higher angles of attack. This type of control is also good for fixed seekers.

2. Canard Control

Canard control is normally the method of control where the movable surfaces are placed as far forward as possible. Because of the resulting larger moment arm, smaller surfaces are required to provide control effectiveness. Lift on the missile is still developed primarily by the aft (wing) lifting surface. Response is slower than wing control because of the need to pitch the missile to an angle of attack before lift is developed. Higher angles of attack are needed to generate the required lift. One advantage of this type of control is convenience of packaging. Since the controls and avionics are forward of the propulsion system, the need for connectors is elminated. For stability reasons the wing of a canard control missile must be located farther aft than a conventional wing-tail configuration. The zero lift drag is normally lower than wing control missiles due to smaller surfaces.
3. Tail Control

Like the case of canard control, a tail control missile has the movable surface as far from the center of gravity as possible. This also results in a larger moment arm and therefore smaller surface required. Control deflection is the opposite of that for canard or wing control since a negative control deflection results in a pitching moment that pitches the nose up and therefore a positive lift on the main lifting surface (wing). Tail control is normally the slowest method of control. One advantage is that the flight controls are at the end of the
missile requiring the propulsion system to be located forward of other types of control. This results in less center of gravity movement as the propellant grain burns. This becomes a definite advantage for longer range missiles.
B. GROSS WEIGHT AND CENTER OF GRAVITY

Since the component weights and their precise locations cannot be determined at this point in the design process, some method of estimating the total weight and center of gravity is needed. There are two approaches commonly used to find the gross weight of missiles in the conceptual design phase. One is through the use of the historical data discussed in Chapter 2. Since the warhead weight is known, an estimate of the gross weight is now,

$$
W_{G}=\left(\frac{W_{G}}{W_{W H}}\right)_{A V G} W_{W H}
$$

Another method, which is used extensively in the design of aircraft, is the use of regression formulas to find gross weight or component weights in terms of parameters that are known early in the design. Reference (7) has derived such a formula for the gross weight of a missile. It is,

$$
\begin{equation*}
W_{G}=K_{G}(L)^{2.13}(D)^{1.14} \tag{1}
\end{equation*}
$$

$K_{G}=$ Constant to be determined
$L=$ Total missile length (inches)
D = Missile diameter (inches)

The constant K_{G} in equation (1) is derived from a baseline (generic) missile. In this case

$$
\mathrm{K}_{\mathrm{G}}=\frac{\left(\mathrm{W}_{\mathrm{G}}\right)_{\text {baseline }}}{\text { (L) }_{\text {baseline }}^{2.13 \quad \text { (D) }{ }_{\text {baseline }}^{1.14}}}
$$

The accuracy of a regression formula such as equation (1) depends upon how close the synthesized missile is to the baseline for which K_{G} was determined. If the parameters used vary more than 20 percent, the accuracy of the regression equation decreases rapidly; therefore, if the parameters length and diameter vary significantly from those of the baseline, equation (1) may give an erroneous estimate of the gross weight. As an aid in determining the gross weight, the following values of K_{G} were derived from data given in reference [7].

Missile	Figure	
SRAAM		K_{G}
MRAAM	$(5-2)$.00128
LRAAM	$(5-3)$.00118
SAM	$(5-4)$.00093
	$(5-5)$.00108

Figures (5-2), (5-3), (5-4), and (5-5) show the generic missiles from which these values were derived.

The center of gravity of the baseline missile for this section is taken to be 60 percent of the total length. At this point sufficient information has been developed to define the baseline missile from which design iterations will be made. The lifting

Figure (5-2). Generic SRAAM configuration [7].

Figure (5-4). Generic LRAAM configuration [7].

Figure (5-5). Generic SAM configuration [7].
surface planform for the baseline is taken as a delta planform. As will be shown later, this wing planform will be very close to an optimum wing.
C. DESIGN EXAMPLE (BASELINE DEFINITION)

The threat for which this missile is designed is a highly maneuverable fighter. For this threat a canard control, cruciform configuration is chosen. The rationale is that this configuration will provide the fast response necessary at minimum drag. The diameter was fixed at 10 inches due to antenna considerations in Chapter 3. From historical data in Chapter 2,

$$
\begin{aligned}
L & =\left(\frac{L}{D}\right) D=(15.89) \quad 10=158.9 \text { inches } \\
L_{N} & =\left(\frac{L_{N}}{D}\right) D=22.3 \text { inches }
\end{aligned}
$$

The MRAAM of Figure (5-3) is used as a generic missile for selecting K_{G}. Inserting length and diameter into equation (1), the first estimate of gross weight becomes,

$$
W_{G}=.00118(158.9)^{2.13}(10)^{1.14}=794.83 \mathrm{lb}
$$

The total lifting surface required is then, from historical average,

$$
\begin{aligned}
& S=\left(\frac{S}{W}\right)_{A V G}\left(W_{G}\right)=\left(\frac{1}{88.09}\right)(794.83) \\
& S=9.02 \mathrm{ft}^{2}
\end{aligned}
$$

Since the canard to wing area ratio is known from historical data,

$$
\begin{aligned}
s_{c} / s_{W} & =0.20 \\
s_{W} & =7.52 \mathrm{ft}^{2} \\
s_{c} & =s-s_{W}=1.50 \mathrm{ft}^{2}
\end{aligned}
$$

Lifting surfaces (delta planform). From historical data,

$$
\begin{aligned}
& A R_{W}=1.61 \\
& A R_{C}=3.74
\end{aligned}
$$

Figure (5-6). Lifting surface.

Wing:

$$
\begin{aligned}
& (\mathrm{b})_{\mathrm{W}}=\sqrt{A R_{W} S_{W}}=3.48 \mathrm{ft} \\
& \left(C_{r^{\prime}}\right)_{W}=2 \mathrm{~S}_{\mathrm{W}} / \mathrm{b}=4.32 \mathrm{ft}
\end{aligned}
$$

Canard:

$$
\begin{aligned}
& (b)_{c}=\sqrt{A R_{c} S_{c}}=2.37 \mathrm{ft} . \\
& \left(C_{r}\right)_{c}=1.27 \mathrm{ft} .
\end{aligned}
$$

The baseline missile is now defined. The canards are placed as far forward as possible. The wings are placed as far aft as possible to ensure the center of pressure is behind the center of gravity. The exact location of the wings will be modified in the next chapter. Figure (5-7) is a drawing of the baseline missile.

Figure (5-7). Baseline missile.

VI. LINEAR AERODYNAMICS

The total drag on the missile is used to size the propulsion needed for the cruise segment of flight. The wing size depends upon the maximum lift required by the missile. The wing and tail are normally placed to provide minimum drag during cruise or a certain stability margin at launch. To make any of the above calculations, values of the aerodynamic coefficients are needed. This chapter presents the background aerodynamic theory necessary for these initial calculations. The theory used is linear aerodynamic theory and slender body theory, from which simple calculations can be made. Where linear theory did not apply, an attempt was made to find existing empirical expresions, which yield results accurate enough for initial calculations. The full nonlinear theory will be presented in Chapter 9. The reference area for all coefficients in this report is the missile maximum cross sectional area. The reference length is the maximum missile diameter.
A. MISSILE DRAG

The total drag of a missile consists of zero lift drag, $C_{D_{0}}$, and induced drag, $C_{D_{i}}$.

$$
\begin{equation*}
C_{D}=C_{D_{0}}+C_{D_{i}} \tag{1}
\end{equation*}
$$

The zero lift drag can be found from a component build up method in which the contributions due to the nose, body and lifting surfaces are added together to obtain the total zero lift drag.

Care must be taken to reference the appropriate areas when using this method. The total is then multiplied by 1.25 to account for interference effects and variations in skin roughness [12].

$$
\begin{equation*}
C_{D_{0}}=1.25\left[\left(C_{D_{0}}\right)+\left(C_{D_{0}}\right)+\left(C_{D_{D}}\right)+\left(C_{D_{0}}\right){ }_{T}\right] \tag{2}
\end{equation*}
$$

The method used to find the components drag depends upon the speed regime in which the missile is operating. Since this report is concerned primarily with supersonic tactical missiles, supersonic zero lift drag will be discussed here. The component supersonic zero lift drag can be divided into skin friction, $C_{D_{f}}$, and wave drag, $C_{D_{W}}$.

$$
\left(C_{D_{0}}\right)=\left(C_{D_{f}}\right)+\left(C_{D_{W}}\right)
$$

1. Supersonic Skin Friction

The flow over a body traveling at supersonic speeds is likely to be turbulent; so the incompressible skin friction coefficient is given by,

$$
\begin{equation*}
C_{f_{i}}=\frac{.455}{\left(\log _{10} R_{e}\right)^{2.58}} \tag{3}
\end{equation*}
$$

The Reynolds number in equation (3) is based upon the cruise altitude and speed and upon the characteristic length for the
component being determined. The Reynolds number is given by,

$$
R_{e}=\frac{\rho v_{M} x}{\mu}
$$

where

$$
\begin{aligned}
x= & L_{N} \text {, the length of the nose } \\
& L_{C B} \text {, the length of the body without the nose } \\
& (\bar{c}) \text {, the mean aerodynamic chord }
\end{aligned}
$$

The compressibility correction to equation (3) is,

$$
\begin{equation*}
c_{f}=c_{f_{i}}\left(1+0.15 M_{M}^{2}\right)^{-0.58} \tag{4}
\end{equation*}
$$

From equation (4) the skin friction drag coefficient for each component can be found when referenced to the appropriate area.

$$
\begin{aligned}
& \left(C_{D_{f}}\right)_{N}=\left(C_{f}\right)_{N} \frac{\left(S_{\text {wetted }}\right)_{N}}{S_{\text {ref }}} \\
& \left(C_{D_{f}}\right)_{B}=\left(C_{f}\right)_{B} \frac{\left(S_{\text {wetted }}\right)_{B}}{S_{\text {ref }}}
\end{aligned}
$$

The lifting surface skin friction drag is determined in a similar manner. Care must be taken to include all surfaces in the wetted area calculation for the lifting surfaces.

2. Supersonic Wave Drag

The supersonic wave drag consists of components contributed by the nose and lifting surface. Nose wave drag depends on the shape of the nose, and the most common nose shapes are
conical, ogival and hemispherical. Reference [10] lists empirical formulas for finding the form(wave) drag of various nose shapes at zero angle of attack.
(1) Conical; $C_{D_{W}}=\left(0.083+0.097 / M_{M}{ }^{2}\right)(0 / 10)^{1.69}$

$$
\sigma=\tan \frac{D}{2 L_{N}}=\text { Nose semi-vertex angle (Degs) }
$$

The center of pressure for a conical nose is at the centroid of the nose planform or two thirds the length of the nose.
(2) Ogival; $C_{D_{W}}=P\left\{1-\frac{2\left[196\left(L_{N} / D\right)^{2}-16\right]}{28(M+18)\left(L_{N} / D\right)^{2}}\right\}$

$$
P=\left(C_{D_{W}}\right) \text { for conical nose }
$$

The center of pressure for an ogive noise is,

$$
\frac{C_{p}}{L_{N}}=\frac{1}{2}\left[\frac{50(M+18)+7 M^{2} p(5 M-18)}{40(M+18)+7 M^{2} p(4 M-3)}\right]
$$

The semi-vertix angle for an ogive is twice the equivalent cone angle.
(3) Hemispherical; The drag on a hemispherical nose is extremely high compared to other nose shapes, and is difficult to estimate. An initial estimate of the wave drag can be found from Figure (6-1).
,

The wave drag due to the lifting surfaces can be found using the methods of reference [12]. For a double wedge airfoil with sharp leading edges as shown in Figure (6-2), the wave drag is given by the following formulas:
(1) Supersonic leading edge,

$$
C_{D_{W}}=\frac{B}{B}\left(\frac{t}{C}\right)^{2} \frac{S_{W}}{S_{r e f}}
$$

(2) Subsonic leading edge,

$$
C_{D_{W}}=B \cot \Delta_{L E}\left(\frac{t}{C}\right)^{2} \frac{S_{W}}{s_{r e f}}
$$

Figure (6-2). Double wedge wing [12].

$$
\text { where } \begin{array}{rlrl}
B & =\frac{c / x_{t}}{1-x_{t} / C} & \Delta_{L E} & =\text { leading edge sweep } \\
B & =\sqrt{M^{2}-1} & S_{W}=\text { planform area }
\end{array}
$$

3. Base Pressure Drag

The drag contribution of the blunt base for non-boattailed bodies is given in reference [4] as,

$$
C_{A B}^{\prime}=-C_{P_{B}}=-\frac{2}{\gamma_{M_{M}}{ }^{2}}\left\{\left.\left(\frac{2}{\gamma+1}\right)^{1.14}\left(\frac{1}{M_{M}}\right)^{2.8}\left[\frac{2 \gamma M_{M}-(-1)}{\gamma+1}\right]-1 \right\rvert\,\right.
$$

This term assumes no jet thrust from the base of the missile, or that the missile is operating in the power off condition. This term is not included in equation (2), which is not a bad assumption for powered flight where the nozzle exit area is approximately equal to the base area of the missile. For the case where the nozzle exit area is much less than the base area as in Figure (3), the base pressure contribution should be included.

Figure (6-3). Base pressure areas [10].

In this case the base drag is,

$$
\begin{aligned}
c_{A B} & =c_{A B} \cdot \frac{s_{b}}{S_{\text {ref }}} \\
S_{b} & =\text { shaded area of Figure }(6-3)
\end{aligned}
$$

4. Induced Drag

The induced drag on a missile is the drag due to lift. This drag is caused by the component of the lift vector in the drag direction. For supersonic flow the induced drag is given by,

$$
C_{D_{i}}=\frac{1}{C_{N \alpha}} c_{L}^{2}
$$

where;

$$
c_{L}=\frac{W}{q s_{r e f}}
$$

The lift curve slope, $C_{N \alpha}$, will be developed later in this chapter.
B. DESIGN EXAMPLE (ZERO-LIFT DRAG CALCULATION)

The thickness to chord ratio of the wing and tail have not yet been determined; however, it is desirable to construct the lifting surface as thin as structurally possible to minimize the wave drag. Since structures have not been covered the minimum thickness to chord ratio is estimated at 3 percent. The flight andgeometric conditions determined thus far are;

$$
\begin{aligned}
\mathrm{h} & =10.000 \mathrm{ft} & L_{\mathrm{N}}=1.8583 \\
\mathrm{M}_{\mathrm{M}} & =3.0 & L_{C B}=11.3833 \\
\mathrm{~S}_{\text {ref }} & =0.5454 & (\bar{c})_{W}=2.8816 \\
\left(t / \mathrm{C}_{\mathrm{W}}\right. & =(t / \mathrm{C})_{C}=0.03 & (\bar{c})_{C}=0.8467 \\
S_{W} & =7.52 \mathrm{ft} &
\end{aligned}
$$

From these conditions the following table can be constructed.

	Nose	Afterbody	Wings	Canards
\mathbf{x}	1.8583	11.3833	2.8816	0.8467
$S_{\text {wetted }}$	3.3394	29.8014	15.0400	3.0000
R_{e}	2.984	18.282	4.6280	1.360
$C_{f i}$	0.0025	0.0020	0.0024	0.0029
C_{f}	0.0015	0.0012	0.0015	0.0017
${ }^{C_{D_{f}}}$	0.0095	0.0652	0.0827	0.0187
${ }^{C_{D}}{ }_{W}$	0.1545	----	0.0400	0.0050
${ }^{C} D_{0}$	0.1640	0.0652	0.1227	0.0237

The zero lift drag for the wings and canards in the above table take into account that there are two sets of wings (4 panels). The total missile zero lift drag then becomes,

$$
C_{D_{0}}=1.25\left[\left(C_{D_{0}}\right)+\left(C_{D_{0}}\right)+\left(C_{D_{0}}\right)+\left(C_{D_{0}}\right)_{\mathrm{C}}\right]
$$

$$
C_{D_{0}}=0.4695
$$

C. MISSILE LIFT CURVE SLOPE

Figure (6-4). Wing-body-tail lift [13].

For the purposes of this section lift on a wing-body-tail combination can be taken as the sum of the components in Figure (6-4). These consist of,

$$
I_{N}=\text { lift on the nose }
$$

$L_{W_{(B)}}=$ lift on the wing in the presence of the body
$L_{B}(W)=$ additional lift on the body due to the presence
of the wing
$L_{T(B)}=$ lift on the tail in the presence of the body
$I_{B_{(T)}}=$ additional lift on the body due to the presence

The lift of only the wing-body combination can be defined as, I_{C}, where,

$$
\begin{equation*}
L_{C}=K_{C} L_{W} \tag{5}
\end{equation*}
$$

The lift of the wing alone, L_{W}, is that obtained from thin airfoil theory or experiment considering the exposed area only. The constant K_{C} in equation (5) is defined as

$$
K_{C} \equiv K_{B(W)}+K_{W}(B)
$$

From this equation, $K_{B}(W)$ is the ratio of the additional body lift in the presence of the wing to the wing alone lift for zero control deflection, $\delta=0$.

$$
\begin{aligned}
& K_{B_{(W)}}=\frac{L_{B}(W)}{L_{W}}=\frac{\left(C_{L \alpha}\right)_{B}}{\left(C_{L \alpha}\right)_{W}}, \quad \delta=0 \\
& K_{W(B)}=\frac{L_{W}}{L_{W}}=\frac{\left(C_{L \alpha}\right)_{W}}{\left(C_{L \alpha}\right)_{W}} \quad \delta=0
\end{aligned}
$$

The interference factors, $K_{B_{(}}$, and $K_{W_{(}}$have been determined from slender body theory for wing-body combinations. Figure (6-5) is a plot of these values. The wing alone lift curve slope, ($\left.C_{L_{\alpha}}\right)_{W}$ is determined from thin airfoil theory or experiment. The lift curve slope of delta wings with supersonic leading edges is given by,

$$
C_{L \alpha}=\frac{4}{\beta} \quad \text { where } \quad \beta=\sqrt{M_{M}^{2}-1} \quad k<\varepsilon
$$

For subsonic leading edges this becomes.

$$
C_{L \alpha}=\frac{2 \pi \tan \varepsilon / \tan \mu}{E \beta} \quad k>\varepsilon
$$

Figure (6-5). Interference factors [12].

Where E is the elliptic integral of the second kind for

$$
\sqrt{1-(\tan \varepsilon / \tan \mu)}
$$

Figure (6) shows the Mach angle μ and sweep angle, ε.

Figure (6-6). Wing leading edge.

The lift of the nose is that obtained from slender body theory. For small angles of attack

$$
\left(C_{N \alpha}\right)_{N}=2 / \mathrm{rad} .
$$

The tail-body combination lift is determined in the same manner as the wing. The above equations are defined for the case where the incidence angle is zero and the angle of attack, (α),
is varied. Analogous terms can be defined for the case where the angle of attack is zero and the incidence angle (δ) is varied,

$$
\begin{aligned}
& k_{B_{(T)}}=\frac{L_{B}(T)}{L_{T}}=\frac{\left(C_{L \delta}\right)_{B}{ }_{(T)}}{\left(C_{L \alpha}{ }_{T}\right.} ; \quad \alpha=0 \\
& k_{T_{(B)}}=\frac{{ }^{L_{T}}{ }_{(B)}}{\bar{L}_{T}}=\frac{{ }^{\left(C_{L \delta}\right)_{T}}{ }_{(B)}}{\left(C_{L \alpha}{ }^{\prime}{ }_{T}\right.} ; \quad \alpha=0
\end{aligned}
$$

The interference factors $\mathrm{k}_{\mathrm{B}_{(T)}}$ and k_{T} (B) were also found from siender body theory and are plotted in Figure (6.5).

From the above defnitions the total missile lift curve slope can be found. If the analysis is for small angles of attack so that $\mathrm{L} \sim \mathrm{N}$.
in coefficient form,

$$
\begin{aligned}
C_{N} q S_{r e g}=\left(C_{N}\right)_{N} q S_{r e f} & +\left(C_{N}\right)_{W(B)} q S_{W}+\left(C_{N}\right)_{B(W)} q s_{W} \\
& +\left(C_{N}\right)_{T(B)} q_{T} S_{T}+\left(C_{N}\right)_{B(T)} q_{T} s_{T}
\end{aligned}
$$

If the downwash is neglected so that $q_{T}=q$, and the above equation is differentiated with respect to angle of attack,

$$
\begin{aligned}
\left(C_{N \alpha}\right)_{C M}=\left(C_{N \alpha}\right)_{N} & +\left(C_{N \alpha}\right)_{W} \frac{s_{W}}{S_{\text {ref }}}+\left(C_{N \alpha}\right)_{B} \frac{s_{W}}{S_{\text {ref }}} \\
& +\left(C_{N \alpha}\right)_{T(B)} \frac{S_{T}}{S_{r e f}}+\left(C_{N d_{B}}\right)_{(T)} \frac{S_{T}}{S_{r e f}}
\end{aligned}
$$

From the definition of the interference factors.

$$
\begin{align*}
\left(C_{N \alpha}\right)_{C M}=\left(C_{N \alpha}\right)_{N} & +\left(C_{N \alpha)_{W}}\left(K_{W_{(B)}}+K_{B(W)}\right) \frac{S_{W}}{S_{r e f}}\right. \\
& \left.+\left(C_{N \alpha}\right)_{T}{ }^{\left(K_{T}\right.}{ }_{(B)}+K_{B}\right) \frac{S_{T}}{S_{r e f}} \tag{6}
\end{align*}
$$

If the tail is the control surface, a similar development for the control effectiveness, $\mathrm{C}_{\mathrm{N} \delta}$ Yields.

$$
\left(C_{N \delta}\right)_{C M}=\left(C_{N \alpha}\right)_{T}\left(k_{T}(B)+k_{B(T)}\right) \frac{S_{T}}{S_{r e f}}
$$

D. MISSILE PITCHING MOMENT

From Figure (6-7) the moment about the center of gravity can be found. The centroid of the wing is the location of the center of pressure of a wing alone in supersonic flow. The effect of the wing-body combination is to move the center of pressure aft and as can be seen in Figure (6-7) the center of pressure for the additional lift on the body due to the presence of the wing is aft of this location. Reference [13] has an

Figure (6-7). Forces Acting on the Missile.
excellent discussion on how to find these centers of pressure. For the purpose of this chapter, which is initial sizing and placement of the lifting surfaces, the center of pressure for both of these forces, $N_{W_{(B)}}$ and N_{B} (W) is taken as the centroid of the wing planform. With this assumption, the moment about the center of gravity is,

$$
{ }^{(M)}{ }_{C M}=N_{N} x_{N}+\left(N_{W_{(B)}}+N_{B(W)}\right) x_{W}+\left(N_{T}(B)+N_{B(T)}\right) x_{T}
$$

Following the same development as for C_{N}

$$
\begin{align*}
C_{M \alpha}=\left(C_{N \alpha}\right) & \frac{x_{N}}{D}
\end{align*}+\left(C_{N \alpha}\right)_{W}\left(K_{W(B)}+K_{B(W)}\right)\left(\frac{x_{N}}{D}\right)\left(\frac{S_{W}}{s_{r e f}}\right)
$$

Also if the tail is the control surface.

$$
\left.C_{M \delta}=\left(C_{N \alpha}\right){ }_{T}{ }^{\left(k_{T}\right.}(B)+k_{B}\right)\left(\frac{x_{T}}{D}\right)\left(\frac{S_{T}}{S_{T e f}}\right)
$$

Ome must be careful in defining the moment arms in the above equations. If a nose up pitching moment is developed in Figure (6-7), the moment arm is positive. Conversely, a negative moment arm means a nose down pitching moment is developed.

E. WEIGHT AND CENTER OF GRAVITY VARIATIONS

From the preceding sections of this chapter, it can be seen that the analysis is normally for one point in the flight profile. Since the launch condition has been defined, the tail sizing can be accomplished for this initial condition. The variation of missile weight and center of gravity is due to propellant burning. For a solid propellant this variation can be quite large. Since no information is available on the propellant at this point in the design, the following guidelines will serve for initial calculations. For air-to-air missiles the propellant is approximately 35 percent of the launch weight. The center of gravity travel is 5 percent of the length. For surface-to-air missiles which must be boosted to flight speed, the propellant weight can be taken to be 48 percent of the launch weight with a corresponding center of gravity travel of approximately 8 percent of the length. These are initial approximations taken from historical data and can be refined later in the design process.

VII. IIFTING SURFACE DESIGN

From the analysis of wing lift and drag in Chapter 6, it can be seen that the performance of a wing will vary with planform. Up to this point the lifting surfaces have been considered delta planforms with zero taper ratio. This is not necessarily the optimum planform since it was taken from a historical average and does not apply to a specific missile. This chapter deals with the sizing, placement and planform definition of the missile.

A. WING PLACEMENT

The wing placement on the missile depends upon the type of control used. For canard control the wing (aft surface) is normally fixed as far aft as possible for stability purposes. For a wing control or tail control missile, where the wing is near the center of gravity, the wing placement becomes more critical and depends upon the stability margin required. Since the drag during the cruise segment includes the drag due to lift, one method to minimize drag would be to place the wing such that zero lift is produced on the tail during cruise. The moment about the center of gravity is zero for trimmed flight, thus equation (7) yields, for $\left(C_{N}\right)_{T}=0$.

$$
x_{W}=-\frac{\left(C_{N \alpha}\right)_{N} x_{N} S_{r e f}}{\left.\left(C_{N \alpha}\right)_{W} S_{W}{ }^{\left(K_{W}\right.}{ }_{(B)}+K_{B_{(H)}}\right)}
$$

B. MANEUVER LOAD FACTOR

Regardless of the type of missile being designed, it will be required to maneuver in order to intercept its intended target. For an air-to-air or surface-to-air missile the level of this maneuver may be quite large. The maneuver load factor required was found in Chapter 3. The maximum maneuver the missile can sustain depends upon the maximum trimmed normal force the missile can develop.

Figure (7-1). Sustained maneuver of a missile.

From Figure (7-1) the force developed by a missile in a constant acceleration turn is

$$
\begin{align*}
& L=n W \tag{I}\\
& \mathrm{n}=\text { maneuver load factor }
\end{align*}
$$

Small angles of attack are assumed for which the lift and normal force are approximately equal. This approximation is good for angles of attack of up to 10 degrees, and above this value of maximum trimmed angle of attack the linear theory becomes inaccurate. With this assumption for now, equation (1) becomes,

$$
\begin{align*}
L= & N=n W \\
& \left(C_{N \alpha}\right) \alpha q S_{\text {ref }}=n W \tag{2}\\
& \left(C_{N \alpha}\right)_{\text {required }}=\frac{n W}{(\alpha)_{\max } q S_{\text {ref }}}
\end{align*}
$$

Equation (2) gives the lift-curve slope required to develop the required normal force at a trimmed angle of attack, ${ }^{(\alpha)_{\max } \text {. }}$ The lift curve slope developed is given by equation (6) in Chapter 6.

$$
\begin{equation*}
\left(C_{N \alpha}\right)_{C M}=\left(C_{N \alpha}\right)_{N}+\left(C_{N \alpha}\right)_{W}\left(K_{W}{ }_{(B)}+K_{B(W)}\right) \frac{s_{W}}{s_{r e f}} \tag{3}
\end{equation*}
$$

$$
\left.+\left(c_{N \alpha_{T}}\right)_{T(B)}+K_{B_{(T)}}\right) \frac{s_{W}}{s_{r e f}}
$$

As discussed earlier the values of the interference factors depend upon the wing planform. Typical values of ($K_{W_{(B)}}+K_{B(W)}$) and $\left(K_{(B)}+K_{B_{(T)}}\right)$ are from 1.5 to 2.0. As a conservative estimate a value of 1.5 is assumed. Equation (3) then becomes,

$$
\begin{equation*}
\left(c_{N \alpha}\right)_{C M}=\left(c_{N \alpha}\right)_{N}+1.5\left(c_{N \alpha}\right)_{W} \frac{S_{W}}{S_{r e f}}+1.5\left(C_{N \alpha}\right)_{T} \frac{S_{T}}{S_{r e f}} \tag{4}
\end{equation*}
$$

Selecting supersonic leading edges,

$$
\left(C_{N \alpha}\right)_{W}=\left(C_{N \alpha}\right)_{T}=4 / B
$$

Therefore

$$
\left(C_{N \alpha}\right)_{C M}=\left(C_{N \alpha}\right)_{N}+\frac{6}{B S_{r e f}}\left(S_{W}+S_{T}\right)
$$

If the complete missile lift-curve slope is set equal to the required lift-curve slope, the lifting surface area required to maintain the maneuver load factor can be found, using equation (4).

$$
\left(S_{W}+S_{T}\right)_{r e q}=\left[\left(C_{N \alpha}\right)_{r e q}-\left(C_{N \alpha}\right)_{N}\right] \frac{\beta s_{\text {ref }}}{6}
$$

Let

$$
K=\frac{\left(S_{W}+S_{T}\right)_{\text {req }}}{\left(S_{W}+S_{T}\right)_{\text {baseline }}}
$$

If the same ratio of wing to control surface area is kept to minimize stability perturbations, the new wing and tail area are,

$$
\begin{aligned}
& S_{W}=K\left(S_{W}\right)_{\text {baseline }} \\
& S_{T}=K\left(S_{T}\right)_{\text {baseline }}
\end{aligned}
$$

The above analysis assumes a linear variation of $C_{N \alpha}$ which is good for small angles of attack. A more precise analysis will be performed in Chapter 9. The above analysis should be performed at the expected encounter conditions.

1. Design Example (Maneuver Load Factor)

Since a canard control was chosen for the design example the canard and wing position are fixed as for forward and aft as possible. The analysis is done for a conservative Mach number of 2.5 after the missile has slowed from its cruise velocity due to the maneuver. From previous results,

$$
\begin{aligned}
\mathrm{n}= & 31 \mathrm{~g} \mathrm{~s} \\
& \left(S_{\mathrm{W}}+S_{C}\right)_{\text {baseline }}=9.02 \mathrm{ft}^{2} \\
\mathrm{~W}_{\mathrm{G}}= & 794.83 \mathrm{lbs}
\end{aligned}
$$

If the missile is required to maneuver at one-half its powered range, and the propellant weight is 35 percent of the launch weight, the maneuver weight becomes

$$
\mathrm{W}=655.73 \mathrm{lbs}
$$

The dynamic pressure for $M_{M}=2.5$ and at 10,000 feet altitude is

$$
\begin{aligned}
& q=\frac{1}{2} \triangleright{v_{M}}^{2} \\
& q=6369.84 \text { lbs } \mathrm{ft}^{2}
\end{aligned}
$$

The required lift-curve slope becomes for $\left(\alpha_{\text {max }}\right)=10$ degrees $=.1745 \mathrm{rad}$.

$$
\left(C_{N \alpha}\right)_{\text {req }}=33.5311 \text { per rad. }
$$

The required lifting surface area is;

$$
\left(s_{W}+S_{C}\right)_{r e q}=[33.5311-2] \frac{\beta S_{\text {ref }}}{6}=6.57 \mathrm{ft}^{2}
$$

Therefore

$$
K=0.7284
$$

The required wing and canard sizes to achieve the maneuver are;

$$
\begin{aligned}
& s_{W}=(7.52)(.7284)=5.48 \mathrm{ft}^{2} \\
& \mathrm{~s}_{\mathrm{C}}=(1.50)(.7284)=1.09 \mathrm{ft}^{2}
\end{aligned}
$$

C. TAIL SIZING

For a wing-tail combination, the primary concern in the sizing of the tail is the static stability of the missile. The missile becomes more stable as the mission proceeds, since the center of gravity moves forward as the propellant burns. As the missile becomes more stable, control of the missile becomes sensitive. If the tail is sized for zero static stability at launch, the missile control will remain more effective during flight. This is the best condition possible without the use of some form of stability augmentation system at launch. Therefore, at launch $C_{N \alpha}=0$.

$$
\begin{align*}
0=\left(C_{N \alpha}\right)_{N} x_{N} & +\left(C_{N \alpha}\right)_{W} x_{W} \frac{s_{W}}{s_{r e f}}\left(K_{W}(B)\right. \\
& \left.+K_{B(W)}\right) \tag{5}\\
& +\left(C_{N \alpha}\right)_{T} x_{T} \frac{s_{T}}{S_{r e f}}\left(K_{T(B)}+K_{B(T)}\right)
\end{align*}
$$

With the lifting surface area fixed due to the maneuver load factor, the tail can be sized to satisfy equation (5). As can be seen the position depends highly on the moment arms that the lift forces act through. Since the missile length has not been fixed at this point in the design and may vary due to propulsion requirements, this analysis will be completed later.
D. WING PLANFORM

The wing planform is specified by the leading edge sweep, $\Delta_{\text {LE }}$, taper ratio, λ, aspect ratio, $A R$ and planform area S_{W}. The planform area was fixed due to maneuvering requirements in a previous section. This section is concerned with defining the remaining planform parameters. Figure (7-2) is the wing planform and the equations used to define these parameters.

Figure (7-2). Planform geometry.

The value of the lift-curve slope used previously was derived from linear theory and is applicable only to simple planforms. For the purpose of this section, which will include low aspect ratio wings with supersonic and subsonic leading edges, Figures (7-3) and (7-4) are used. These figures have been corrected for 3-D effects.

1. Effect of Taper Ratio and Leading Edge Sweep

The lift and drag characteristics of the wing are the primary parameters of interest. The objective inwing design is

Figure (7-3). Theoretical wing lift curve slope [12].

is to obtain maximum lift with minimum drag. It will be shown that these objectives are usually conflicting; therefore, some compromise, or optimum, planform must be found. From Chapter 6 the equations for the drag of a wing in supersonic flow are found. The skin friction drag depends upon the mean geometric chord. Equation (3) in Chapter 6 indicates a larger mean geometric chord would result in less skin friction drag for a fixed area. The mean geometric chord can be expressed in terms of taper ratio as follows,

$$
\begin{aligned}
& \bar{c}=\frac{2}{3} \frac{2 s}{b(1+\lambda)}\left(\frac{1+\lambda+\lambda^{2}}{1+\lambda}\right) \\
& \bar{c}=\frac{4}{3} \sqrt{\frac{s}{A R}}\left[\frac{1+\lambda+\lambda^{2}}{(1+\lambda)^{2}}\right]
\end{aligned}
$$

This equation leads to a zero taper ratio to maximize \bar{c} and reduce skin friction if the surface area and aspect ratio were fixed. The wave drag is constant for supersonic leading edges, and decreases when the leading edge goes subsonic or the leading edge is behind the mach line. The lift capabilities also decrease as the leading edge goes subsonic.

As stated earlier this leads to conflicting performance since the objective is to minimize drag while maximizing lift. At this point an example best illustrates the results of varying taper ratio and leading edge sweep. The lift-curve slope is derived using the methods of reference (1). Figures (7-3) and (7-4) are from reference [12] and are used to find the supersonic linear lift corrected for $3-D$ flow effects. The drag methods of Chapter 5 are used to determine the drag characteristics.

2. Example

For a fixed wing area of $4 \mathrm{ft}^{2}$ and an aspect ratio of 2 the lift curve slope and drag were determined for a flight Mach number of $M=2$. This Mach number corresponds to a sonic leading edge sweep of 60°. The wing leading edge sweep was varied from zero to 75° for taper ratios of $0,1 / 2$ and 1. The results are plotted in Figures (7-5) and (7-6).

From this example certain generalizations can be made. From Figure (7-5) it can be seen that the drag is relatively insensitive to taper ratio. There is a reduction in drag for increased leading edge sweep. For this example there is approximately a 6 percent drag reduction for every five degree increase beyond the sonic value. Figure (7-6) indicates that the effect of decreasing the taper ratio is to delay the drop in the lift curve slope of the wing. From this example a general guideline would be to fix the leading edge sweep 5 degrees beyond the sonic value and the taper ratio at zero. This would provide a 6 percent reduction of wave drag while maintaining the maximum lifting capabilities of the wing.

3. Effect of Varying Aspect Ratio

The result of increasing aspect ratio is an increase in the lift-curve slope of the wing [12]. The aspect ratio is given by,

$$
A R=b^{2} / s
$$

For a zero taper ratio wing this becomes;

$$
\begin{equation*}
A R=2 b / c_{r} \tag{6}
\end{equation*}
$$

From equation (6) it can be seen that increasing aspect ratio results in a corresponding increase in wing span for a given root chord. Missiles are normally span limited, due to launcher constraints; therefore, there is a maximum span which can be accomodated. The drag of the wing again is in conflict with the lift since increasing aspect ratio decreases the mean geometric chord for a given spanand therefore increases skin friction drag. A compromise wing AR must be found which considers both the lift and the drag characteristics. For a discussion of optimum aspect ratio, the following functions are defined for convenience:

$$
\begin{equation*}
F=F_{1}+F_{2}=\text { Lift-drag function } \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1} \equiv \frac{C_{D_{0}}}{\left(C_{D_{0}}\right)_{\max }}=\text { Normalized drag function } \\
& F_{2} \equiv \frac{1 / C_{N \alpha}}{1 /\left(C_{N \alpha}\right)_{\min }}=\text { Normalized lift function }
\end{aligned}
$$

From equation (7) if F is plotted over the allowable range of aspect ratio, a minimum value of the lift-drag function fixes the desired aspect ratio. This aspect ratio corresponds to minimizing the drag function, F_{1}, while maximizing the lift function, F_{2}. For convenience the abscissa is plotted as \bar{c} / \bar{c} (max) $_{\text {(}}$ as shown in Figure (7-7).

From Figure (7-7) the optimum mean geometric chord corresponds to point A.

Figure (7-7). Lift-drag function.

$$
\overline{\mathrm{c}}=\left(\overline{\bar{c}}_{\overline{\mathrm{c}}_{\max }}\right)_{\mathrm{A}} \quad \overline{\mathrm{c}}_{\max }
$$

The aspect ratio is then given by

$$
\begin{aligned}
c_{r} & =\frac{3}{2} \bar{c} \\
b & =2 s / c_{r} \\
A R & =b^{2} / s
\end{aligned}
$$

As mentioned earlier a missile is normally span limited. The plot of the lift-drag function F is normally fairly flat on the left, or for \bar{c} / \bar{c} (max) approaching zero. For this reason point B may be chosen as the optimum since F varies very little up
to this region. Point B corresponds to increased chord and decreased span.

4. Design Example (Wing Planform)

From the previous analysis the following parameters were defined.

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{M}}=3.0 \\
& \mathrm{~S}_{\mathrm{W}}=5.48 \mathrm{ft}^{2}
\end{aligned}
$$

If the leading edge sweep is fixed 5 degrees behind the mach line.

$$
\begin{aligned}
\mu & =\sin ^{-1} \frac{1}{\bar{M}}=19.5^{\circ} \\
\Delta_{L E} & =95-\mu=75.5^{\circ} \\
\lambda & =0
\end{aligned}
$$

The planform table becomes

AR	b	c_{r}	\bar{c}	$\mathrm{K}_{\mathrm{W}(\mathrm{B})}$	$\mathrm{K}_{\mathrm{B}(\mathrm{W})}$
2.0	3.31	3.31	2.21	1.17	. 26
1.5	2.87	3.82	2.55	1.19	. 30
1.0	2.34	4.68	3.12	1.22	. 35
. 75	2.03	5.40	3.60	1.24	. 40
. 50	1.66	6.62	4.41	1.29	. 48
. 25	1.17	9.36	6.24	1.36	. 62

The wave drag is constant and is given by,

$$
\begin{aligned}
& C_{D_{W}}=4 \cot \Delta_{L E}\left(\frac{t}{c}\right)^{2} \frac{s_{W}}{s_{r e f}} \\
& C_{D_{W}}=.0094
\end{aligned}
$$

AR	$c_{D_{f}}$	$C_{D_{0}}$	$A R \tan \triangle$	$\frac{\beta}{\tan \Delta_{L E}}$		
2.0	. 0303	. 0397	7.73	. 73		2.1137
1.5	. 0296	. 0390	5.80	. 73		1.9845
1.0	. 0288	. 0382	3.87	. 53		1.8271
. 75	. 0282	. 0376	2.90	. 73		1.7813
. 50	. 0274	. 0368	1.93	. 73		1.4809
. 25	. 0260	. 0354	. 97	. 73		. 7937
	AR	$\bar{c} / \bar{c}_{\text {max }}$	F_{1}	F_{2}	F	
	2.0	. 35	1.0000	. 3755	1.3755	
	1.5	. 41	. 9824	. 3999	1.3823	
	1.0	. 50	. 9622	. 4344	1.3966	
	. 75	. 58	. 9471	. 4456	1.3927	
	. 50	. 70	. 9270	. 5360	1.4630	
	. 25	1.00	. 8917	1.0000	1.8917	

From Figure (7-8) it can be seen that the lift-drag function remains relatively constant up to $\bar{c} / \bar{c}_{\text {max }}=.58$. Since the object is to make the span as small as possible this point is taken. The wing planform becomes,

$$
\begin{aligned}
\bar{c} & =.58 \bar{c}_{\max }=3.62 \mathrm{ft}=43.44 \mathrm{in} \\
\mathrm{c}_{\mathrm{r}} & =5.43 \mathrm{ft}=65.16 \mathrm{in} \\
\mathrm{~b} & =2.02 \mathrm{ft}=24.24 \mathrm{in} \\
\mathrm{c} & =3.90 \mathrm{ft}=46.80 \mathrm{in} \\
\mathrm{AR} & =0.74
\end{aligned}
$$

5. Design Example (For Canard Planform)

From previous analysis and development, the following parameters have been defined:

$$
\begin{aligned}
\mathrm{M} & =3.0 \\
\mathrm{~S}_{\mathrm{C}} & =1.09 \mathrm{ft}^{2} \\
(\mathrm{t} / \mathrm{c})_{\mathrm{c}} & =0.03
\end{aligned}
$$

If the leading edge sweep is set 5 degrees behind the sonic value and the taper ratio is set to zero, the following planform table results.

$$
\begin{aligned}
\Delta_{L E} & =75.5^{\circ} \\
\lambda & =0
\end{aligned}
$$

AR	b	C_{r}	c	$\mathrm{K}_{\mathrm{W}(\mathrm{B})}$	$\mathrm{K}_{\mathrm{B}(\mathrm{W})}$
2.5	1.63	1.34	.89	1.29	.52
2.0	1.48	1.47	.98	1.31	.55
1.5	1.28	1.70	1.14	1.35	.59
1.0	1.04	2.10	1.40	1.47	.76
.5	.74	2.94	1.96	1.51	.90
.25	.52	4.19	2.79	1.59	1.02

AR	$C_{D_{f}}$	$C_{D_{0}}$	$A R \tan 4 E$	$\frac{B}{\tan \Delta_{L E}}$	$C_{\text {N } \alpha}(\mathrm{k})$
2.5	. 0069	. 0087	9.67	. 73	
2.0	. 0067	. 0085	7.73	. 73	2.7900
1.5	. 0067	. 0085	5.80	. 73	3.6339
1.0	. 0064	. 0082	3.87	. 73	2.5952
. 5	. 0061	. 0079	1.93	. 73	2.0880
. 25	. 0058	. 0076	. 97	. 73	1.0124

AR	$\bar{c} / \bar{c}_{\max }$	F_{1}	F_{2}	F
2.0	. 35	1.0000	. 3628	1.3628
1.5	. 41	1.000	. 3844	1.3844
1.0	. 50	. 9647	. 3901	1.3557
. 5	. 70	. 9294	. 4849	1.4143
. 25	1.00	. 8941	1.0000	1.8941

From Figure (7-9) it is seen that there is a minimum of the lift-drag function at $c / \bar{C}_{\max }=0.5$. The optimum canard is then,

$$
\begin{aligned}
\overline{\mathrm{c}} & =0.5 \overline{\mathrm{c}}_{\max }=1.40 \mathrm{ft}=16.80 \mathrm{in} \\
\mathrm{c}_{\mathrm{r}} & =2.09 \mathrm{ft}=25.08 \mathrm{in} \\
\mathrm{~b} & =1.04 \mathrm{ft}=12.48 \mathrm{in} \\
\mathrm{AR} & =0.99 \\
\mathrm{c} & =2.01 \mathrm{ft}=24.12 \mathrm{in}
\end{aligned}
$$

E. DESIGN EXAMPLE (REVISION OF ZERO LIFT-DRAG AND LIFT-CURVE SLOPE)

Wing:

$$
c=3.62 \mathrm{ft}
$$

$$
c_{f}=.0014
$$

$$
\left(C_{D_{0}}\right)_{W}=.0750
$$

Canard:

$$
\bar{c}=1.40 \mathrm{ft}
$$

$$
c_{f}=.0016
$$

$$
\left(C_{D_{0}}\right)_{c}=.0166
$$

Body: $\quad\left(C_{D_{0}}\right)_{B}=.2292$
The complete missile $C_{D_{0}}$ including the interference factor of 1.25 , is now 0.4010. From the previous calculation of the baseline zero lift-drag coefficient, the drag has been reduced by 14.6 percent.

From equation (6) in Chapter 6 the lift-curve slope is now

$$
C_{N \alpha}=25.17 / \mathrm{rad}
$$

Figure (7-10) is the missile design to this point.
$\mathrm{L}=158.9 \mathrm{in}$

Figure (7-10). Design with "optimum" wings.

VIII. PROPULSION REQUIREMENTS

The following discussion presents a method for preliminary sizing of a solid rocket motor for a boost-sustain trajectory of an air launched or a surface launched tactical missile. The analysis consists of sizing the booster from incremental velocity considerations and sizing, the sustainer for the maximum range required at the operational altitude. The method assumes a constant acceleration boost and a constant altitude cruise.
A. BOOSTER INITIAL SIZING

Since the control system cannot respond properly while in the boost phase of flight, it becomes important to make the boost time as short as possible. The limiting factor for boost time is the maximum axial acceleration the airframe and components can withstand. This maximum acceleration is normally around 30 gs. The boost time then becomes,

$$
t_{b}=\int_{V_{1}}^{V_{2}} \frac{d V}{a}
$$

For constant acceleration,

$$
\begin{equation*}
t_{b}=\frac{v_{2}-v_{1}}{a}=\frac{\Delta v_{B}}{a} \tag{I}
\end{equation*}
$$

The incremental velocity during boost, ΔV_{B}, can be derived from the equations of motion.

Figure (8-1). Forces acting on the missile.

If during the boost phase the thrust, drag and launch angle are considered constant, the axial acceleration of the missile is constant and may be written as:

$$
\begin{aligned}
m \frac{d V}{d t} & =T-D-W \sin \gamma_{L} \\
d V & =g\left(\frac{T-D}{W}\right) d t-g \sin \gamma_{L} d t
\end{aligned}
$$

If the launch velocity is V_{1} and the velocity at the end of boost is V_{2},

$$
\begin{equation*}
\int_{V_{1}}^{V_{2}} d V=\int_{0}^{t_{b}} g\left(\frac{T-D}{W}\right) d t-\int_{0}^{t_{b}} g \sin \gamma_{L} d t \tag{2}
\end{equation*}
$$

The vehicle weight in equation (2) is a function of time. If the propellant weight is given by W_{p}, and the propellant grain burn is linear with time, the missile weight can be expressed as,

$$
W=W_{L}-W_{p}\left(\frac{t}{t_{b}}\right)
$$

where $W_{L}=$ Launch weight.
Equation (2) then becomes,

$$
\Delta V_{B}=V_{2}-V_{1}=g(T-D) \int_{0}^{t_{b}} \frac{t_{b} d t}{\left(W_{L} t_{b}-W_{D} t\right)}-g \sin \gamma_{L} t_{b}
$$

Integrating the first term yields,

$$
\Delta V_{B}=\frac{g(T-D) t_{b}}{W_{p}} \ell n\left[\frac{\left(W_{L}-W_{p}\right) t_{b}}{W_{L} t_{b}}\right]-g \sin \gamma_{L} t_{b}
$$

Since the empty weight is given by

$$
W_{E}=W_{L}-W_{P}
$$

The incremental velocity can be written as

$$
\begin{equation*}
\Delta V_{B}=\frac{g(T-D) t_{b}}{W_{p}} \ln \frac{W_{L_{i}}}{W_{E}}-g \sin \gamma_{L} t_{b} \tag{3}
\end{equation*}
$$

A first estimate of propellant weight can be made if the drag is assumed zero in equation (3), and $I_{s p}=T t_{b / W_{p}}$

$$
\begin{equation*}
\Delta V_{B}=g I_{s p} \ln \frac{W_{L}}{W_{E}}-g \sin \gamma_{L} t_{b} \tag{4}
\end{equation*}
$$

In the above expression the specific impulse, $I_{s p}$, is characteristic of the propellant chosen and can be found from historical data, or a specific propellant value may be used.

Equation (4) can then be solved for $\frac{W_{L}}{W_{E}}$ and the first estimate of propellant weight, W_{p}, can be found as follows,

$$
w_{p}=W_{L}\left(1-\frac{W_{E}}{W_{L}}\right)
$$

With the propellant weight and specific impulse known, the total impulse and average thrust required for boost can be found.

$$
\begin{aligned}
I_{T} & =I_{S p} W_{P} \\
T & =\frac{I_{T}}{t_{b}}
\end{aligned}
$$

With the thrust known and an average value of drag assumed, equation (3) can be iterated for an improved estimate of the propellant weight needed.

The final result is used to calculate the booster combustor volume and length.

$$
v_{B}=w_{p / \rho_{p} n_{p}}
$$

where $n_{p}=$ volumetric packing factor

$$
\mathrm{L}_{\mathrm{B}}=4 \mathrm{~V}_{\mathrm{B} / \pi \mathrm{D}_{\mathrm{C}}}{ }^{2}
$$

The combustor diameter is limited by the missile maximum diameter and is a design choice. The propellant density, ρ_{p}, and volumetric packing factor, n_{p}, are determined from historical data or given for a specific propellant.
B. SUSTAINER INITIAL SIZING

The sustainer thrust required to maintain cruise is the driving factor in the sustainer motor sizing. For initial sizing purposes, a level, constant velocity cruise segment is assumed. In this analysis the thrust required is equal to the aerodynamic drag developed by the missile. The performance requirements determine the maximum range, operating altitude, and velocity of the missile. From these requirements the sustainer burn time, t_{s}, can be determined.

$$
t_{s}=\frac{R_{\max }-S_{B}}{V_{M}}
$$

where $S_{B}=$ distance traveled during boost.
Since sustainer thrust is equal to drag, $T_{S}=D$, the total impulse required becomes,

$$
\left(I_{T}\right)_{S}=D t_{S}
$$

The sustainer nozzle is sized for the operational altitude of the missile. The thrust coefficient, $C_{F d}$, can be expressed as;

$$
C_{F d}=C_{d} \lambda \sqrt{\frac{2 \gamma^{2}}{\gamma-1}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}\left[1-\left(\frac{p_{0}}{p_{c}}\right)^{\frac{\gamma-1}{\gamma}}\right]}
$$

The constant, $C d$, is the nozzle efficiency and has been determined from historical data to be 0.96 . The nozzle half angle correction, λ, is given by;

$$
\lambda=(1+\cos a) / 2
$$

where α is the nozzle half angle. A nominal value used in many designs is 15°. Larger values of a give significant non-axial flow components in the nozzle. Values less than 15° give large nozzle lengths and therefore contribute to excessive missile weights. The combustion chamber pressure is also a design choice. A lower usable value of P_{C} is 200 psia for sustainers and 500 psi for boosters. The chamber pressure cannot exceed the maximum expected operating pressure of the missile (MEOP).

The thrust of the sustainer can be expressed as a function of the thrust coefficient, chamber pressure, P_{c}, and throat area, A_{t}. The throat area required to deliver the required sustainer thrust can be determined from

$$
T_{s}=C_{F d} P_{C} A_{t}
$$

The nozzle area ratio is a function of the pressure ratio P_{0} / P_{C}, where P_{0} is the ambient pressure if the nozzle expands the flow fully.

$$
\frac{A_{e}}{A_{t}}=\frac{1}{M_{e}}\left\{\frac{2}{\gamma+1}\left[1+\left(\frac{+1}{2}\right) M_{e}^{2}\right]\right\}^{\frac{\gamma+1}{(\gamma-1)}}
$$

where

$$
\frac{P_{0}}{P_{c}}=\left[1+\left(\frac{\gamma-1}{2}\right) M_{e}^{2}\right]^{-\frac{\gamma}{\gamma-1}}
$$

From the previous equation the exit area can be determined. From the throat and exit diameters, the nozzle length is found by

$$
L_{n}=\frac{D_{e}-D_{t}}{2 \tan \alpha}
$$

At this point in the design the nozzle exit area and length should be checked to see if they exceed any specifications on the missile; i.e., the nozzle exit area must be less than the base area of the missile.

Finally, the delivered specific impulse is typical of the propellant chosen for the sustainer. The propellant weight is then,

$$
w_{p}=\frac{\left(I_{T}\right)_{s}}{I_{s p}}
$$

The sustainer combustor volume and length are then determined in the same manner as the booster. The equations concerning the sustainer nozzle also apply to the booster nozzle with the appropriate booster areas, pressures and thrust substituted.
C. ROCKET MOTOR CHAMBER PRESSURE

As indicated earlier the delivered thrust increases with increasing chamber pressure, P_{c}; however, the wall thickness in the rocket motor depends upon the expected operating pressure within the chamber. If the wall thickness is t inches, and the yield stress of the casing material is σ_{Y}, it can be shown that the thickness required of the motor casing is given by,

$$
\begin{equation*}
t=\frac{P_{\max } r}{\sigma_{y}} \tag{5}
\end{equation*}
$$

where r is the chamber radius, and $P_{\text {max }}$ is the maximum chamber pressure, which is taken to be $1.2 \mathrm{P}_{\mathrm{c}}$ to allow for variations within the propellant. From equation (5) the weight of the motor casing can be determined if the casing is cylindrical and $t \ll r$

$$
w_{c}=\rho_{c} v_{c}=2 \pi r \ell_{c} t \rho_{c}
$$

Substituting for t

$$
\begin{equation*}
W_{c}=\frac{2,4 \pi r^{2} \ell_{c}{ }^{\rho}{ }_{c}{ }^{P_{c}}{ }_{c}}{\sigma_{y}} \tag{6}
\end{equation*}
$$

The specific impulse of the rocket motor is given by.

$$
\begin{equation*}
I_{s p}=\frac{v_{i}}{g_{c}}=\frac{1}{g_{c}}\left\{2 g_{c}\left(\frac{\gamma}{\gamma-1}\right) R T_{0}\left[1-\left(\frac{p_{0}}{p_{c}}\right)^{\frac{\gamma-1}{\gamma}}\right]\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

From equations (6) and (7), it can be seen that a compromise must be made in selecting the chamber pressure; since increasing P_{c} increases the specific impulse but also increases the casing weight. An attempt must be made to find an optimum operating pressure.

If the rocket motor weight consists of the nozzle, propellant and casing,

$$
\begin{equation*}
\dot{w}_{M}=W_{N}+w_{p}+w_{C} \tag{8}
\end{equation*}
$$

and the total impulse, which is constant is given by,

$$
I=T t_{b}=I_{s p} W_{p}
$$

The optimum chamber pressure can be found by minimizing the weight and maximizing the impulse.

$$
\frac{d}{d p_{C}}\left(\frac{W_{M}}{I}\right)=\frac{d}{d p_{C}}\left(\frac{W_{M}}{I_{S p} W_{p}}\right)=0
$$

differentiating yields,

$$
\begin{align*}
& \frac{1}{I_{s p}} \frac{d}{d p_{c}}\left(\frac{W_{M}}{W_{p}}\right)-\frac{W_{M}}{W_{p}} \frac{d\left(1 / I_{s p}\right)}{d p_{c}}=0 \tag{9}\\
& \frac{1}{I_{s p}} \frac{d}{d p_{c}}\left(\frac{W_{M}}{W_{p}}\right)-\frac{W_{M}}{W_{p} I_{s p}} \frac{d I_{s p}}{d p_{c}}=0
\end{align*}
$$

From equation (8)

$$
\begin{equation*}
\frac{W_{M}}{W_{p}}=\frac{W_{C}}{W_{P}}+\frac{W_{N}}{W_{p}}+1 \tag{10}
\end{equation*}
$$

Substituting equation (10) into equation (9),

$$
\frac{1}{W_{p}} \frac{d W_{c}}{d p_{c}}-\frac{W_{c}}{W_{p}^{2}} \frac{d W_{p}}{d p_{c}}-\frac{W_{N}}{W_{p}^{2}} \frac{d W_{p}}{d p_{c}}-\frac{W_{M}}{W_{p} I_{s p}} \frac{d I_{s p}}{d p_{c}}=0
$$

Substituting equations (12) and (13) into equation (11)

$$
\frac{2.4 \rho_{c} W_{p}}{\rho_{p} \sigma_{y}}-\frac{W_{p} R T_{Q}}{g_{c} I_{s p}^{2} p_{c}}\left(\frac{p_{o}}{p_{c}}\right)^{\frac{\gamma-1}{\gamma}}
$$

Substituting for $g_{C} I_{s p}{ }^{2}$ in the above equationyields,

$$
\begin{equation*}
\frac{\gamma-1}{2 \gamma} \frac{1}{\left.\left[\frac{p_{0}}{p_{c}}\right)^{(1-\gamma) / \gamma}-1\right] p_{c}}-\frac{2.4}{\rho_{p}}\left(\frac{\rho c}{\sigma_{y}}\right)=0 \tag{14}
\end{equation*}
$$

If a propellant and casing material are chosen, equation (14) can be solved for the chamber pressures, p_{c}, which minimizes W_{M} / I. One interesting feature of equation (14) is that there is a minimum yield strength to density ration $\frac{\sigma_{y}}{\rho_{c}}$ that will yield a usable chamber pressure, furthermore this optimization yields a very shallow minimum. Therefore, if the thrust or exit diameter requires an increase in p_{c} the penalty paid in additional casing weight will be small.

D. TYPICAL PROPELLANTS

From the preceding discussion it can be seen that some knowledge of propellants to be used in the rocket motor is needed. The thrust developed by a rocket motor depends directly upon the pressure in the chamber.

$$
T=C_{F} A_{T}{ }^{P} C
$$

Since

$$
\begin{gathered}
W_{p}=\frac{I}{I_{s p}}=\frac{T t_{p}}{I_{s p}} \\
\frac{d W_{c}}{d p_{c}}+\left(W_{c}+W_{N}\right) \frac{I_{s p}}{I_{s p}} \frac{d I_{s p}}{d p_{C}}-\frac{W_{M}}{I_{s p}} \frac{d I_{s p}}{d p_{c}}=0
\end{gathered}
$$

From equation (8)

$$
W_{C}+W_{N}=W_{M}-W_{p}
$$

Substituting for $W_{C}+W_{N}$

$$
\frac{d W_{c}}{d p_{c}}-\frac{W_{p}}{I_{s p}} \frac{d I_{s p}}{d p_{c}}=0
$$

From equation

$$
\begin{equation*}
\frac{d W_{c}}{d p_{c}}=\frac{2.4 \pi r^{2} \ell_{c} \rho_{c}}{\sigma_{y}} \tag{11}
\end{equation*}
$$

Since

$$
\begin{align*}
& W_{p}=\pi r^{2} \ell_{c} \rho_{p} \\
& \frac{d W_{c}}{d p_{c}}=\frac{2.4 \pi \rho_{c} W_{p}}{\rho_{p} \sigma_{y}} \tag{12}
\end{align*}
$$

from equation (3)

$$
\begin{equation*}
\frac{d I_{s p}}{d p_{c}}=\frac{R T_{o}}{g_{c} P_{c} I_{s p}}\left(\frac{p_{o}}{p_{c}}\right)^{\frac{\gamma-1}{\gamma}} \tag{13}
\end{equation*}
$$

Because of this relationship, high pressures are needed for the boost phase, and relatively low pressure are needed for the sustain phase of flight. The pressure developed in a rocket motor chamber is a function of the burn rate and burn surface area of the propellant. In order to provide more burn area for the boost phase, the grain normally has an internal star perforation; while a sustain motor is normally an end burning grain of solid crosssection. The volumetric loading of a rocket motor is defined as the ratio of the propellant volume to the rocket motor chamber volume.

$$
n_{p}=\frac{\text { Grain volume }}{\text { Chamber volume }}
$$

Due to erosive burning effects the volumetric loading of a booster is normally limited to less than 0.9. For efficient packing the ratio varies from 0.7 to 0.9 . The volumetric loading of an end burning sustainer engine is normally l.0. The range of propellant characteristics is shown in Table ($8-I$).

TABLE (8-I). Typical Propellant Properties [14,15].

	Sustainer	Booster
$I_{\text {Sp }}(\mathrm{sec})$	$180-210$	$210-260$
$\rho_{p}\left(1 \mathrm{bm} / \mathrm{in}^{3}\right)$	$.059-.062$	$.062-.065$
γ	$1.24-1.27$	$1.22-1.26$
n_{p}	1.00	0.85

E. DESIGN EXAMPLE (BOOSTER)

From the previous analysis the launch speed is $M=1.5$, and the cruise speed is $M=3.0$ at an altitude of 10,000 feet. The boost incremental velocity is then,

$$
\Delta V_{B}=1616.10 \mathrm{ft} / \mathrm{sec}
$$

If the maximum acceleration during boost is a constant 30 g's (assume sea level g_{c}), the time of burn is,

$$
\begin{aligned}
& t_{b}=\Delta v_{B} / a_{\max }=\frac{1616.10 \mathrm{ft} / \mathrm{sec}^{2}}{30\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)} \\
& t_{b}=1.67 \mathrm{sec}
\end{aligned}
$$

From equation (4) with $\gamma_{L}=0$

$$
\ell_{\mathrm{n}} \frac{\mathrm{~W}_{L}}{W_{E}}=\frac{\Delta V_{B}}{g I_{S p}}
$$

Assume $I_{\text {sp }}=250$ sec from Table (I)

$$
\begin{aligned}
& \ell_{n} \frac{W_{L}}{W_{E}}=0.2008 \\
& W_{p}=W_{L}\left(1-\frac{W_{E}}{W_{L}}\right)
\end{aligned}
$$

For

$$
\begin{aligned}
& W_{L}=794.83 \\
& W_{p}=144.57 \mathrm{lbm}
\end{aligned}
$$

The thrust provided is

$$
(T)_{b}=\frac{I_{s p}{ }^{W} p}{t_{b}}=21,642 \ell b_{f}
$$

Since the missile flies essentially at zero angle of attack during boost, the drag at the end of boost is,

$$
\begin{aligned}
& D=\left(C_{D_{0}}\right) q S_{\text {ref }} \\
& D=2006 \mathrm{lb}_{f}
\end{aligned}
$$

Therefore if an average drag of 1000 lbs is assumed, equation (3) can be used to find a new W_{L} / W_{E}

$$
\begin{aligned}
\ell_{\mathrm{n}} \frac{W_{L}}{W_{E}} & =\frac{\Delta V_{B} W_{p}}{g(T-D) t_{b}} \\
\frac{W_{L}}{W_{E}} & =.2270 \\
W_{p} & =161.40 \mathrm{lb} b_{m}
\end{aligned}
$$

This gives a thrust of 24,162 lbs. One more iteration of equation (4) gives,

$$
\begin{aligned}
W_{p} & =159.46 \ell \mathrm{~b}_{\mathrm{m}} \\
(\mathrm{~T})_{\mathrm{s}} & =23,872 \ell \mathrm{~b}_{\mathrm{f}}
\end{aligned}
$$

Continued iteration of equation (4) does not change the propellant weight.

From Table (I); $\rho_{p}=.062 \mathrm{lb}_{\mathrm{m}} / \mathrm{in}^{3}$

$$
n_{p}=.85
$$

The booster volume then becomes

$$
V_{B}=3025.81 \mathrm{in}^{3}
$$

Allowing one-half inch for structure, the booster length becomes.

$$
L_{B}=\frac{4 V_{B}}{\pi D_{C}^{2}}=42.69 \text { inches }
$$

F. DESIGN EXAMPLE (SUSTAINER)

The maximum range of the missile was determined to be 35 nmiles.

$$
R_{\max }=212,800 \mathrm{ft}
$$

The distance traveled during boost is

$$
\begin{aligned}
S_{B} & =\bar{v}_{M} t_{b} \\
\bar{v} & =\frac{v_{1}+v_{2}}{2}=2424.15 \mathrm{ft} / \mathrm{sec} \\
S_{B} & =4048.33 \mathrm{ft}
\end{aligned}
$$

Therefore, at a cruise Mach number of 3.0 , the sustainer time of burn is

$$
t_{s}=64.59 \mathrm{sec}
$$

The cruise drag consists of zero-lift drag and induced drag. The lift coefficient of the missile minus the booster is:

$$
\begin{aligned}
& C_{L}=\frac{W}{q S_{r e f}} \\
& C_{L}=0.1270
\end{aligned}
$$

From Chapter 6

$$
\begin{aligned}
& C_{D}=C_{D_{0}}+C_{I}^{2} / C_{N \alpha} \\
& C_{D}=.4016
\end{aligned}
$$

The cruise drag then becomes

$$
D=2003 \mathrm{lb}_{\mathrm{f}}
$$

The total impulse required is then;

$$
\left(I_{T}\right)_{S}=D t_{S}=129,761 \ell b_{f}-\sec
$$

From Table (I) the specific impulse is 210 sec ; therefore, the weight of propellant needed for cruise is

$$
\left(W_{p}\right)_{s}=\frac{\left(I_{T}\right)_{s}}{I_{s p}}=618 \ell b_{m}
$$

The volume required is

$$
v_{s}=9967.7 \mathrm{in}^{3}
$$

The sustainer length becomes,

$$
L_{s}=\frac{4 V_{s}}{\pi D_{c}^{2}}=140.62 \text { inches }
$$

The total rocket motor length is, L_{RM};

$$
\begin{aligned}
& L_{R M}=L_{B}+L_{S} \\
& L_{R M}=183.31 \mathrm{in}
\end{aligned}
$$

The rocket motor alone exeeds the total length of the baseline missile. This will lead to large length to diameter ratios for the entire missile; therefore, the rocket motor length must be decreased. That is the subject of the next section.

G. REDUCING ROCKET MOTOR LENGTH

If the rocket motor length of the last section leads to excessive length to diameter ratios for the missile, the motor length must be decreased. This may be accomplished in one of two ways: (1) If the mission profile has a long cruise segment, the cruise altitude may be increased thereby decreasing the drag and the total impulse required.
(2) If the cruise altitude cannot be varied, the missile diameter must be resized for propulsion considerations. In this design example option (2) will be selected.

The missile length can be expressed as

$$
\begin{equation*}
L=L_{n}+L_{G}+L_{C}+L_{W H}+L_{R M} \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
L_{n} & =\text { Nose length } \\
L_{G} & =\text { Guidance section length } \\
L_{C} & =\text { Control section length } \\
L_{W H} & =\text { Warhead section length } \\
L_{R M} & =\text { Rocret motor length }
\end{aligned}
$$

The nose and warhead sections have been previously defined. Since the propellant weight for the range requirement is known, the diameter necessary can be determined if a maximum missile length is specified. The drag will increase slightly due to the increased diameter but the total impulse, and therefore the propellant weight, will change only slightly.

The rocket motor length can be expressed in terms of the diameter by

$$
L_{R M}=\frac{4 w_{p}}{\rho_{p} \pi D^{2}}
$$

Equation (15) then becomes

$$
(L)=L_{n}+L_{G}+L_{c}+L_{W H}+\frac{4 N p_{c}}{\rho_{p} \pi D^{2}}
$$

The guidance and the control sections are each normally about 10 percent of the missile length.

$$
\begin{align*}
& (L)=\left(\frac{L_{n}}{D}\right) D+. I L+.1 L+\left(\frac{L_{W H}}{D}\right) D+\frac{4 W_{p}}{\rho_{p} \pi D^{2}} \\
& {\left[\frac{L_{n}}{D}+\frac{L_{W H}}{D}\right] D^{3}-.8 L D^{2}+\frac{4 W_{p}}{\rho_{P} \pi}=0} \tag{16}
\end{align*}
$$

As mentioned in Chapter 2 the missile is normally designed for an existing launcher. This launcher will have a maximum length that it can accomodate, $I_{\text {max }}$. If this value is substituted into equation (16), the required diameter can be found.

1. Design Example (Resizing for Propulsion)

From previous analysis; $L_{n} / D=2.23$

$$
L_{W H} / D=2.50
$$

The propellant weight from before was, $W_{p}=777.46 \mathrm{lbs}$. If the maximum length of the missile is taken as 210 inches, equation (16) becomes,

$$
4.73 D^{3}-168 D^{2}+15,467.08=0.0
$$

The required diameter is then,

$$
\text { (D) } r \text { req }=11.75 \text { inches }
$$

Allowing 0.25 in for structure, the missile diameter becomes 12 inches. From the equations for the rocket motor lengths,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{b}} & =26.62 \mathrm{in} \\
\mathrm{I}_{\mathrm{s}} & =90.47 \mathrm{in} \\
\mathrm{~L}_{\mathrm{RM}} & =117.09 \mathrm{in}
\end{aligned}
$$

H. DESIGN EXAMPLE (CHAMBER PRESSURE)

From equation (14), the strength to density ratio can be solved for in terms of P_{C}.

$$
\left(\frac{\sigma_{y}}{\rho_{c}}\right)_{\min }=\frac{2 \gamma}{(\gamma-1)}\left[\left(\frac{p_{o}}{p_{c}}\right)^{\frac{1-\gamma}{\gamma}}-1\right] p_{c}\left(\frac{2.4}{\rho_{p}}\right)
$$

If the minimum usable chamber pressure is $P_{c}=500 \mathrm{psi}$, and using the propellant previously selected.

$$
\begin{aligned}
\gamma & =1.24 \\
\rho_{p} & =.062 \\
p_{0} & =10.11
\end{aligned}
$$

the minimum strength to density required can be found.

$$
\left(\frac{\sigma_{y}}{\rho_{c_{\text {min }}}}=225,542.87\right. \text { in }
$$

Inconnel 718 is a common metal used in combustion chambers and has the following properties [4]:

$$
\begin{aligned}
& \sigma_{y}=180,000 \mathrm{psi} \\
& \rho_{c}=.2662 \mathrm{~b}_{\mathrm{m}} / \mathrm{in}^{3} \\
& \frac{\sigma_{y}}{\rho_{c}}=676,183>\left(\frac{\sigma_{y}}{\rho_{c}}\right. \text { min }
\end{aligned}
$$

The qtimum chamber pressure is then fron equation (14)

$$
p_{c}=1132.55 \mathrm{psi}
$$

The rocket motor chamber wall thickness is given by equation (5) as

$$
\begin{aligned}
& t=\frac{p_{\max }}{\sigma_{y}} \\
& t=0.05 \text { inches }
\end{aligned}
$$

The wall weight is given by equation (2)

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{c}}=2 \pi \mathrm{r} \ell_{\mathrm{RM}} \mathrm{t} \rho_{\mathrm{c}} \\
& \mathrm{w}_{\mathrm{c}}=59.5 \ell \mathrm{~b}_{\mathrm{m}}
\end{aligned}
$$

I. DESIGN EXAMPLE (SIZING THE NOZZLE)

For initial analysis it is assumed that the flow is fully expanded, in a nozzle with a half angle of 15 degrees. With the chamber pressure of 1132.55 psi the thrust coefficient at altitude is

$$
\begin{aligned}
& C_{F_{d}}=C_{d} \lambda \sqrt{\frac{2 \gamma^{2}}{\gamma-1}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}\left[1-\left(\frac{p_{0}}{p_{c}}\right)^{\frac{\gamma-1}{\gamma}}\right]} \\
& C_{F_{d}}=2.3023
\end{aligned}
$$

The throat area and diameter then become

$$
\begin{aligned}
& A_{t}=\frac{T}{C_{F_{d}}} p_{c}=9.1552 \mathrm{in}^{2} \\
& d_{t}=3.4142 \mathrm{in}
\end{aligned}
$$

From isentropic tables for $p_{0} / p_{c}=.0089$

$$
\frac{d_{t}}{d_{e}}=\left(\frac{A^{\prime}}{A}\right)^{1 / 2}=.3342
$$

The exit diameter becomes,

$$
d_{e}=10.22 \mathrm{in}
$$

The nozzle length for a 15 degree half angle is,

$$
\ell_{\mathrm{n}}=12.70 \mathrm{in}
$$

The nozzle is shown in Figure (8-2). Figure (8-3) is the design with resized diameter and length for propulsion and the optimum wings determined in Chapter 7.

J. TAIL SIZING

As mentioned in Chapter 7 the tail (canard) sizing is accomplished for zero static stability at launch. Now that the missile length has been fixed, the canard can be sized. Figure (8-3) is a drawing of the design to this point. The total lifting surface required is

$$
S_{W}+s_{c}=6.57 \mathrm{ft}^{2}
$$

if

$$
\begin{equation*}
k=s_{c} / s_{W} \tag{16}
\end{equation*}
$$

From equation (5) in Chapter 7 , for $C_{M \alpha}=0$

Figure (8-2). Nozzle geometry.
Station
Figure (8-3). Missile design.

$$
\begin{align*}
0=\left(C_{N \alpha}\right){ }_{N} & +\left(C_{N \alpha}\right)_{W} x_{W} \frac{S_{W}}{S_{r e f}}\left(K_{W(B)}+k_{B(W)}\right) \tag{17}\\
& +\left(C_{N \alpha}\right)_{C} x_{C} \frac{S_{W}}{S_{r e f}}\left(K_{C(B)}+k_{B(C)}\right)
\end{align*}
$$

Equations (16) and (17) above can be solved for S_{W} and k.

$$
\begin{aligned}
\mathrm{S}_{\mathrm{W}} & =4.70 \mathrm{ft}^{2} \\
\mathrm{k} & =0.40
\end{aligned}
$$

Therefore, $\quad S_{c}=1.87$

If the same aspect ratio as found in Chapter 7 is used, the wing and canard planforms become,

$$
\text { Wing: } \begin{array}{rlrl}
\mathrm{b}_{\mathrm{w}} & =1.86 \mathrm{ft} & \text { Canard: } \begin{array}{rlr}
\mathrm{b}_{\mathrm{c}} & =1.36 \mathrm{ft} \\
\left(\mathrm{c}_{\mathrm{r}}\right)_{w} & =5.05 \mathrm{ft} & \left(\mathrm{c}_{\mathrm{r}}\right)_{c}
\end{array}=2.75 \mathrm{ft} \\
(\mathrm{c})_{W} & =3.60 \mathrm{ft} & \left(c_{c}\right. & =2.63 \mathrm{ft}
\end{array}
$$

IX. NONLINEAR AERODYNAMICS AND AEROI

As mentioned in Chpater 5 the analysis thus far has been for one speed and small angles of attack. The aerodynamics change dramatically from subsonic to supersonic flow and with increasing angle of attack. This chapter presents the methods used primarily by USAF Stability and Control DATCOM and covers all configurations and flight speeds. As will be shown, the method becomes very involved and therefore lends itself to programming on a digital computer.

The lifting characteristics of both wings and bodies become nonlinear as the missile angle of attack increases above 10°. Op to this point in the thesis development only the linear contribution has been considered. For large angles of attack, the nonlinear term, which is due to flow separation, must be considered. The relative effect of these terms on the normal force and pitching moment coefficients is shown in Figure (9-1).

A. VISCOUS CROSS-FLOW

As can be seen in Figure (9-1), at large angles of attack the forces acting are primarily nonlinear. The nonlinear term is normally described through the use of the viscous cross-flow coefficient, $C_{d_{c}}$.

$$
c_{d_{c}}=\frac{f_{v}}{q_{n} S_{p}} \quad s_{p}=\text { planform area }
$$

Figure (9-1). Relative contributions of linear and nonlinear terms [19].

For an infinitely long circular cylinder, the viscous crossflow force per unit length is

$$
\begin{equation*}
f_{v}=2 r c_{d_{c}} q_{n} \tag{1}
\end{equation*}
$$

The viscous cross-flow coefficient is determined experimentally and is a function of normal Mach number and Reynolds number. Figure (9-2) gives the cross-flow drag coefficient as a function of cross-flow Mach number.

Figure (9-2). Cross-flow drag coefficient [18].

$$
\begin{aligned}
M_{n} & =M_{M} \sin \alpha \\
R_{e_{n}} & =R_{e} \sin \alpha \\
v_{n} & =v_{M} \sin \alpha
\end{aligned}
$$

Since in real flow there is spillage around the ends of a finite length cylinder, the drag is less than that for an infinite, 2-D cylinder. The cross-flow drag proportionality constant, n, is the ratio of the drag coefficient of a finite cylinder to the drag coefficient of an infinite cylinder.

$$
\mathrm{n}=\frac{\mathrm{c}_{\mathrm{d}_{\mathrm{c}}}}{\left(\mathrm{c}_{\mathrm{d}_{\mathrm{c}}}\right)_{2-D}}
$$

The proportionality constant is also determined experimentally and is given in Figure (9-3). Notice that the cross-flow drag proportionality constant approaches one as the length to diameter ratio becomes large, or the $2-D$ situation is approached.

The viscous cross-flow force per unit length for a finite cylinder then becomes

$$
\begin{equation*}
f_{v}=2 r n C_{d_{c}} \frac{\rho v_{n}^{2}}{2} \tag{2}
\end{equation*}
$$

Since

$$
\frac{\rho v_{n}^{2}}{2}=\frac{\rho V_{M}^{2}}{2} \sin ^{2} \alpha=q \sin ^{2} \alpha
$$

equation (2) becomes,

$$
f_{v}=2 n c_{d_{c}} q r \sin ^{2} \alpha
$$

Figure (9-3). Cross-flow drag proportionality constant.

The viscous contribution to the normal force acting on the cylinder then becomes

$$
\left(C_{N}\right)_{V} \equiv \frac{F_{v}}{q S_{r e f}}=\frac{2 n c_{d_{c}} \sin ^{2} \alpha}{S_{r e f}} \int_{0}^{\ell} r d x
$$

For a uniform cylinder,

$$
\left(C_{N}\right)_{V}=n C_{d_{c}} \frac{S_{p}}{S_{r e f}} \sin ^{2} \alpha^{2}
$$

If this force is added to the term predicted by slender body potential theory, the total normal force acting on the body can be found. Reference [19] gives this total force as;

$$
\left(C_{N}\right)_{B}=\frac{s_{b}}{S_{r e f}} \sin ^{2} \alpha \cos \frac{\alpha}{2}+n C_{d_{C}} \frac{s_{p}}{s_{r e f}} \sin ^{2} \alpha
$$

Similar terms can be developed for the wing and tail since they also exhibit nonlinear behavior at high angles of attack. Care must be taken to separate the lift of Chapter 5 into the lift acting on the wing panel and the additional lift on the body before the cross-flow term is applied. The nonlinear cross-flow component of wing lift is caused by flow separation and the formation of vortices on the upper surface of the wing. This viscous term is given by, $\mathrm{c}_{\mathrm{N}_{\mathrm{W}(\mathrm{V})}}$

$$
c_{N_{W(V)}}=c_{d_{n}} \sin ^{2} \alpha \frac{s_{W}}{s_{r e f}}
$$

Where $C_{d_{n}}$ is the cross-flow drag coefficient for a flat plate and is given in Figure (9-4).
B. TOTAL MISSILE LIFT

The remainder of this chapter is a summary of references [17] and [18]. With the addition of the force due to viscous crossflow, the total lift on the body besomes

$$
c_{N_{B}}=\left(C_{N}\right)_{B}+c_{N_{B}(W)}+c_{N_{B(T)-\alpha}}+c_{N_{B(T)-\delta}}
$$

where,

$$
\begin{aligned}
&{\left(C_{N}\right)}^{\prime}= \text { linear and nonlinear lift force on the body } \\
& C_{N_{B}(W)}= \text { additional lift on the body due to the wing } \\
&= \text { additional lift on the body due to the tail } \\
& C_{N_{B}(T)-\alpha} \quad \text { (due to angle of attack) } \\
& C_{N_{B}}= \text { additional lift on the body due to the tail } \\
& \text { (due to control deflection) }
\end{aligned}
$$

The additional lift on the body in the presence of the wing and tail can be found as described in Chapter 6.

The wing lift is now composed of a linear and a nonlinear component and becomes

$$
\begin{aligned}
& C_{N_{W}}=c_{N_{W}(B)}+c_{N_{W}(V)} \\
& C_{N_{W}}=K_{W(B)} \quad\left(C_{\text {Nar }_{W}}\right) \frac{S_{W}}{S_{r e f}} \sin \alpha+c_{d_{n}} \sin ^{2} \alpha \frac{S_{W}}{S_{r e f}}
\end{aligned}
$$

The tail lift is found in a similar manner only with the additional term for any control surface deflection, δ.

$$
C_{N_{T}}=C_{N_{T(B)-\alpha}}+C_{N_{T}(B)-\delta}+C_{N_{T}(V)}
$$

1

Figure (9-4). Drag coefficient for a flat plate normal to flow [18].

Notice that the linear terms in the above equations are multiplied by sin α instead of α as in Chapter 6. The linear theory from which the Chapter 6 equations were derived assumes small angles of attack and therefore $\sin \alpha \approx \alpha$. This is not true at higher angles of attack and is therefore included here.

The total normal force then becomes, C_{N}

$$
C_{N}=c_{N_{B}}+C_{N_{W}}+c_{N_{T}}+c_{L_{i}}
$$

The last term, $C_{L_{i}}$, is the lift-loss due to downwash and is given by

$$
=\frac{\left(C_{L x}\right)_{W}{ }^{\left(C_{L \alpha}\right)_{T}\left[K_{W(B)} \sin \alpha+k_{W}{ }_{(B)} \sin \delta\right] i(b-r)_{T} S_{W}}}{2 \pi A R_{T}\left(f_{W}-r_{W}\right) S_{r e f}}
$$

where,

$$
\begin{aligned}
i & =\text { interference factor } \\
f_{w} & =\text { votex location }
\end{aligned}
$$

the above terms are found by the methods of reference [13].

C. DRAG CHAPACTERISTICS OF A MISSILE

The total drag acting on a missile is the sum of the zerolift drag and the induced drag (due to angle of attack and/or control surface deflection). The zero lift drag of bodies and wings is highly dependent on the missile speed. Three speed regimes are normally considered.

$$
\begin{aligned}
& \text { Subsonic } \longrightarrow 0 \leq M_{M}<.8 \\
& \text { Transonic } \longrightarrow 8 \leq M_{M} \leq 1.2 \\
& \text { Supersonic } \longrightarrow M>1.2
\end{aligned}
$$

Because of the empirical nature of the formulas for zero-lift drag, the procedures followed are essentially those of DATCOM [16].

1. Zero Lift Drag

a. Subsonic

At subsonic speeds the zero-lift drag consists of skin friction (incompressible) and pressure drag. The pressure drag at subsonic speeds is usually small compared to the drag due to skin friction. The entire zero-lift drag of a missile at subsonic speeds is given by;

$$
C_{D_{0}}=C_{D_{O B}}+C_{D_{O W}}+C_{D_{O T}}
$$

Where the components are the body, wing and tail contributions.
(1) Body drag, $C_{D_{O B}}$. The body zero-lift drag is
given by;

$$
C_{D_{O B}}=1.02 C_{f_{B}}\left[1+\frac{1.5}{f^{3 / 2}}+\frac{7}{f^{3}}\right] \frac{\left(S_{\text {Wet }}\right)_{B}}{S_{r e f}}+C_{A_{B}}
$$

where $C_{A_{B}}$ is found by the methods of Chapter 5 .
The first term is the skin friction contribution and the next two terms are the pressure contributions. f is the body fineness ratio and is given by;

$$
\mathbf{E}=\frac{L}{D}
$$

(2) Wing drag, $C_{D_{0 W}}$. The wing zero-lift drag is given by,

$$
C_{D_{O W}}=C_{f_{W}}\left[1+2\left(\frac{t}{c}\right)+100\left(\frac{t}{c}\right)^{4}\right] \frac{\left(S_{\text {Wet }}\right)_{W}}{S_{\text {ref }}}
$$

(Wet $_{W}$) is the entire wetted area of the wings. The thickness to chord ratio is given by (t / c).
(3) Tail drag, $C_{D_{0 T}}$. The tail zero-lift drag is
given by,

$$
C_{D_{0 T}}=C_{E_{T}}\left[1+2\left(\frac{t}{C}\right)+100\left(\frac{t}{c}\right)^{4}\right] \frac{\left(S_{\text {Wet }}^{\prime} T\right.}{S_{\text {ref }}}
$$

The above analysis assumes fully turbulent flow along all surfaces. $C_{f_{B}}, C_{f_{I V}}$ and $C_{f_{T}}$ are the local average skin friction coefficients based on the local Reynolds number, R_{e}. The reference lengths are the body length and wing/tail mean aerodynamic chords. The skin friction coefficient is then given by

$$
c_{f}=\frac{4.55}{\left(\log _{10} R_{e}\right)^{2.58}}
$$

b. Transonic

The total transonic zero-lift drag is composed of skin-friction drag, transonic wave drag, pressure drag and base pressure drag. The compressible skin friction drag is found by using a correction factor on the incompressible coefficient, $C_{f_{B}}$, found for subsonic flow. The compressibility
correction is found by the methods of Chapter 6 . The skin friction drag then becomes

$$
C_{D_{f B}}=1.02 C_{f_{C}} \frac{\left(S_{\text {Wet }}\right)_{B}}{S_{\mathrm{ref}}}
$$

The subsonic pressure drag is the same as before

$$
C_{D_{p B}}=1.02 C_{f_{B}}\left[\frac{1.5}{f^{3 / 2}}+\frac{7}{f^{3}}\right] \frac{\left(s_{\text {Wet }}\right)_{B}}{s_{r e f}}
$$

The above equation applies for Mach numbers in the range of .8 to 1.0. The pressure drag then decreases linearly to zero at a Mach number of 1.2. The transonic wave drag $C_{D_{r B}}$ is determined using Figure (9-5), which is a function of nose fineness ratio $L_{N / D}$.

The total transonic zero-lift drag of the body then becomes

$$
C_{D_{O B}}=c_{D_{f}}+c_{D p B}+c_{D_{V B}} \frac{s_{N}}{S_{r e f}}+c_{A_{B}}
$$

where S_{N} is the cross sectional area at the nose-body junction.
The total transonic zero-lift drag of the aerodynamic surfaces is composed of the skin friction drag and a drag increment, $\Delta C_{D_{0}}$, which is the transonic wave drag.

Experimental results show little increase in the viscous drag of aerodynamic surfaces from the subsonic to the transonic regimes; therefore the skin friction and pressure drag is the same as for subsonic flow and is given by

$$
C_{D_{O W}}=C_{f_{W}}\left[1+2\left(\frac{t}{c}\right)+100\left(\frac{t}{c}\right)^{4}\right] \frac{S_{\text {Wet }}}{S_{\text {ref }}}
$$

The wave drag of the aerodynamic surfaces if found from Figure (9-6) and is a function of $\frac{t}{c}, A R$ and M. For swept wings the Mach number used in Figure (9-6) is given by,

$$
M^{\prime}=M[\cos \Delta c / 4]^{1 / 2}
$$

The transonic wave drag increment is then given by

$$
\Delta C_{D_{O W}}=\Delta C_{D_{O W}^{\prime}}^{\prime} \quad[\cos \Delta C / 4]^{2.5} \frac{S_{W}}{S_{r e f}}
$$

where $\Delta C_{D_{0 W}}^{\prime}$ is obtained from Figure (9-6). The tail zero-lift drag is found in the same manner as the wing. The total zero-lift drag (transonic) is then given by;

$$
C_{D_{0}}=C_{D_{O B}}+C_{D_{O W}}+\Delta C_{D_{O W}}+C_{D_{O T}}+\Delta C_{D_{O T}}
$$

c. Supersonic

The supersonic zero-lift drag of a missile is determined empirically by assuming a parabolic variation of $C_{D_{0}}$ with Mach number between 1.2 and 3.0 . The resulting equation is for the entire missile and is given by

$$
C_{D_{0}}=C_{D_{0}^{\prime}}^{\prime}-1.7209\left(C_{D_{0}^{\prime \prime}}-C_{D_{0}^{\prime}}^{\prime}\right)+1.5708\left(C_{D_{0}^{\prime \prime}}^{\prime \prime}-C_{D_{0}^{\prime}}^{\prime}\right) \sqrt{M}
$$

Figure (9-5). Transonic wave drag for ogival and blunted conical forebodies [18].

Figure (9-6). Transonic $C_{D_{0}}$ for unswept wings [18].

[^0]where
\[

$$
\begin{aligned}
& C_{D_{0}^{\prime}}^{\prime}=\left(C_{D_{0}}^{\prime}\right) \\
& C_{D_{0}^{\prime}}^{\prime \prime}=\left(C_{D_{0}}\right)_{M=3}=3.2
\end{aligned}
$$
\]

$C_{D_{0}}^{\prime}$ is determined by using the methods for transonic flow.
The magnitude of the supersonic wave drag is highly dependent upon the nose shape. For this reason two methods are used to determine $C_{D_{0}}{ }_{0}$.
Method I: This method is for blunted ogives, pointed ogives and blunted cones. In this method

$$
\begin{aligned}
\text { For } L_{N / D} \leq .5 & C_{D_{0}^{\prime \prime}} & =C_{D_{0}^{\prime}}^{\prime} \\
\text { For } L_{N / D}>8.0 & C_{D_{0}^{\prime \prime}} & =\left(C_{D_{0}}^{\prime}\right) \\
& & +\Delta C_{D_{O T}}+C_{A_{B}}
\end{aligned}
$$

The above values are determined from the methods of transonic flow.

$$
\text { For } \begin{aligned}
L_{N / D} & =.5 \text { to } 8.0 \\
C_{D_{0}^{\prime \prime}}^{\prime \prime} & =K_{1} C_{D_{0}^{\prime}}^{\prime}
\end{aligned}
$$

K_{1} in the above equation is derived empirically and is given in Figure (9-7).

Method II: This method is for pointed conical noses. In this
method $C_{D_{0}}$ " is determined by

$$
C_{D_{0}^{\prime \prime}}^{\prime \prime}=\left(C_{D_{0}}^{\prime}\right)+\Delta C_{D_{O W}}+\Delta C_{D_{O T}}+\left(C_{D_{V N}}\right)_{M=3}+C_{A_{B}}
$$

The first three terms in the above equation are found by transonic flow methods. The forebody wave drag, $C_{D_{V N}}$, for $M=3.0$ is found using Figure (9-8). The nose semi-vertex angle, θ_{N}, is the same as σ in Chapter 6. In all flow regimes the base pressure drag is found as in Chapter 6.
2. Induced Drag

The induced drag due to angle of attack depends upon the flight regime the missile is in. For $M<.85$ and $A R>3.0$ the induced drag is,

$$
c_{D_{i}}=\frac{\left(C_{L}\right)^{2}}{\pi A R e}
$$

where e is the Oswald efficiency factor $=0.7$. The tactical missile normally has an aspect ratio of less than 3.0. For all flight speeds with $A R<3.0$ the induced drag is

$$
C_{D_{i}}=C_{L} \tan \alpha
$$

The component induced drag coefficients are found in the same manner as above using component lift coefficients.

3. Total Drag

From the zero-lift drag and induced drag the missile total drag becomes,

$$
C_{D}=C_{D_{0}}+C_{D_{i}}
$$

Figure (9-8). Wave drag of pointed conical nose [18].

D. PITCHING MOMENT CHARACTERISTICS

The pitching moment of a missile is equal to the sum of the pitching moments due to lift and drag forces acting on the body, wings and tails. If only small angles of attack are of interest, the pitching moment is due primarily to the lift forces. The methods presented here are for all angles of attack.

1. Body

The body alone pitching moment about its center of gravity is given from slender body theory and viscous cross-flow theory as

$$
\begin{aligned}
& C_{M_{B}}=\left[\frac{V_{B}-S_{B}\left(L-x_{C G}\right)}{S_{r e f} L_{r e f}}\right] \sin ^{2} \alpha \cos \frac{\alpha}{2}+n C_{d}\left(\frac{S_{P}}{S_{r e f}}\right)\left(\frac{x_{C G}}{L_{r e f}}{ }^{-\sim_{p}}\right) \sin ^{2}{ }_{\alpha} \\
& S_{p}=\text { Planform area } \\
& x_{p}=\text { Centroid of planform area } \\
& V_{B}=\text { Body volume } \\
& S_{B}=\text { Base area }
\end{aligned}
$$

With $C_{M_{B}}$ given the center of pressure of the body becomes

$$
\left(x_{C_{p}}\right)=\left(\frac{x_{c G}}{L_{r e f}}-\frac{C_{M_{B}}}{C_{N_{B}}}\right) L_{r e f}
$$

2. Wing (Fixed Surface)

The center of pressure location for the wing must be found before the pitching moment can be specified. The center of pressure of the various lift components are found by the method of Pitts, Nielsen and Katari [13]. The lift
components are the same as in the lift section. The center of pressure of the lift on the wing in the presence of the body, ${ }^{(\bar{x})_{W}}{ }_{(B)}$, is found from Figure $(9-10)$ if the flow is subsonic and Figure (9-11) if the flow is supersonic.

The center of pressure of the additional lift on the body in the presence of the wing, ${ }^{(\bar{x})_{B}}{ }_{(W)}$, is found using Figure (9-12) if the flow is subsonic. If the flow is supersonic the center of pressure is found from Figure (9-13) or Figure (9-14) depending on the parameters;

$$
\begin{aligned}
& \operatorname{BAR}(1+\lambda)\left(1+\frac{1}{m \beta}\right) \\
& \lambda=\text { taper ratio } \\
& m=c o+A_{\dot{L} E}
\end{aligned}
$$

If the center of pressure reference is moved to the nose, the following expressions result.

$$
\begin{aligned}
& \left(x_{C P}\right)_{W_{(B)}}=\left(\frac{\bar{x}}{\left.C_{r}\right)_{W}} \quad\left(C_{r)}\right)_{W}+x_{W}\right. \\
& \left(x_{C P}\right)_{B(W)}=\left(\frac{\bar{x}}{C_{r}}\right)_{B(W)} \quad\left(C_{r}\right)_{W}+x_{W}
\end{aligned}
$$

Figure (9-10). Wing center of pressure
(subsonic) [18].
\dagger

Figure (9-11). Wing center of pressure (supersonic) [18].

Figure (9-12). Body center of pressure [18].

Figure (9-13). Body center of pressure [18].

Figure (9-14). Body center of pressure [18].

From the above figure the entire pitching moment about the nose of the missile due to the forces acting on the wing is,

$$
\begin{aligned}
C_{M_{W}}=\left[\left(C_{L_{W(B)}}+C_{L_{W(V)}}\right.\right. & \left.\left.+C_{L_{i}}\right) \cos \alpha+\Delta C_{D_{W-\alpha}} \sin \alpha\right]\left(\frac{\left(x_{C D_{W(B)}}\right)}{L_{r e f}}\right) \\
& +\left[C_{L_{B(W)}} \cos \alpha\right]\left(\frac{\left(x_{C P}\right)}{L_{B(W)}}\right)
\end{aligned}
$$

The viscous lift, $C_{L_{W(V)}}$ and lift-loss due to downwash, $C_{L_{i}}$, are not shown in the figure but are the same forces as found in the lift section. These forces are assumed to be acting through the center of pressure, $\left(^{\left(x_{C p}\right)}{ }_{W(B)}\right.$

An average center of pressure of the wing due to all forces acting on it can now be found as

$$
\left(x_{c p}\right)_{W}=\frac{C_{M_{W}} L_{\text {ref }}}{\left(C_{L_{W}}+C_{L_{i}}\right) \cos \alpha+\Delta C_{D_{W-\alpha}} \sin \alpha}
$$

where

$$
C_{L_{W}}=c_{L_{W(B)}}+c_{L_{B(W)}}+c_{L_{W(V)}}
$$

3. Tail (Control Surface)

The tail pitching moment about the nose of the missile is found in the same way except now a control surface deflection must be included. The equations now become

$$
\begin{aligned}
& C_{M_{T}}=\left[\left(C_{L_{T(B)}}+C_{L_{(V)}}+C_{L_{i}}\right) \cos \alpha+C_{L_{T(B)-\delta}}+\right. \\
& \left.\left(\Delta C_{D_{T-\alpha}}+\Delta C_{D_{T-\delta}}\right) \sin \alpha\right]\left(\frac{\left(x_{C p}\right)_{T(B)}}{L_{r e f}}\right) \\
& +\left[C_{L_{B(T)}} \cos \alpha+C_{L_{B(T)-\delta}}\right]\left(\frac{\left(x_{C p}\right)}{L_{B(T)}}\right) \\
& \left(x_{C p}\right)_{T}=\frac{C_{M_{T}} L_{\text {ref }}}{\left(C_{L_{T-\alpha}}+C_{L_{i}}\right) \cos \alpha+C_{L_{T-\delta}}+\left(\Delta C_{D_{T-\alpha}}+\Delta C_{D_{T-\delta}}\right) \sin \alpha}
\end{aligned}
$$

where,

$$
\begin{aligned}
& C_{L_{T-\alpha}}=C_{L_{T(B)}}+C_{L_{B(T)}}+C_{L_{T(V)}} \\
& C_{L_{T-\delta}}=C_{L_{T(B)-\delta}}+C_{L_{B(T)-\delta}}
\end{aligned}
$$

The wing and tail pitching moments above were found about the nose of the missile. Transferring the pitching moments about the center of gravity the complete missile pitching moment becomes

$$
c_{M}=c_{M_{B}}+c_{M_{W}}\left[\frac{x_{C G}-\left(x_{C P}\right)_{W}}{\left(x_{C P}\right)_{W}}\right]+c_{M_{T}}\left[\frac{x_{C G}-\left(x_{C P}\right)_{T}}{\left(x_{C P}\right)_{T}}\right]
$$

E. AERO DESCRIPTION

It can be seen from the preceding description of the aerodynamics of a missile, that the process of obtaining a complete
description of the aerodynamic coefficients becomes an involved task. This was the justification for initially using linear aerodynamics. To complete an analysis a fast method of predicting the static aerodynamic characteristics is needed. The method needs to include both linear and nonlinear contributions as well as interference factors and must be applicable to all speed regimes. This analysis lends itself to programming on a digital computer. AEROl is a modification of the program AEROCF which was developed at the Naval Air Development Center by Mr. F.A. Kuster, Jr. [17]. The program is essentially as written except for calculation of planform areas and centroids. The program was also modified for use on the Naval Postgraduate School CP/CMS system.

AEROL consists of a main program and three subroutines. The inputs to the program are the geometric characteristics of the missile, the flight conditions, engine and inlet type and the protuberance drag. The output consists of the aerodynamic coefficients for lift, drag and moment. The component contribution to these coefficients are also given. The component and overall center of pressure are also determined.

Subroutine GEOSUB; This subroutine calculates the missile wetted area and the Reynolds number per foot based on the flight altitude.

Subroutine CLASUB; This subroutine calculates the aerodynamic surface lift-curve slopes.

Subroutine CATSUB; This subroutine calculates center of pressure locations, cross-flow drag coefficients, and interference factors.

Main Program; The main program assumes the control surface is the tail. This is regardless of the method of control (Wing, Tail, Canard). Because of this, care must be taken to input the right data for the tail. For instance, if the missile is a wing control missile, the wing data is input as the tail and the tail data as the wing. Figure (9-15) and Table (9-I) give a complete listing of the input data. Table (9-II) is a list of the output data. Appendix A is a listing of the program as modified for use on the Naval Postgraduate School IBM 360 computer.

1. Verification of AERO1

Before using the program an attempt was made to verify its prediction techniques and find any pitfalls in its use. To accomplish this the program was run for various configurations for which experimental data were available, and the results were compared. The comparisons are shown in Figures (9-16) to (9-25) from references [19] - [22] which are NASA technical notes and memoranda which report results of wind tunnel tests for various body-wing-tail combinations. In Figures (9-16) to (9-25) the solid lines are AEROl predictions.
a. NASA TN D-6996

This technical note presents a method of predicting aerodynamic characteristics for bodies alone at angles of attack from 0 to 180 degrees. Several nose-body canbinations are given.

Figure (9-15). AERO1 input data.

Input Data

Variable	Name	Format	Meaning
1	ICSC	12	Type of control (wing, tail, canard)
2	INOSE	12	```Nose shape (ellipsoidal, cone, ogive)```
3	IDT	12	Number of control surface deflections
4	IM	12	Numer of Mach numbers
5	IAL	12	Number of angles of attack
6	NBODY	12	Number of configurations
7	ISWPW	12	Wing shape (delta, nondelta)
8	IAFBW	12	Missile body after wing
9	IWEPW	12	Leading edge sweep indicator
10	NWING	12	Number of wings
11	ISWPT	12	Tail shape (delta, nondelta)
12	IAFBT	12	Missile body after tail
13	ISWEPT	12	Leading edge sweep indicator
14	NTAIL	12	Number of tails
15	XLAMW	F10.5	Wing taper ratio
16	CLAMW	F10. 5	Wing leading edge sweep
17	BW	F10.5	Wing span
18	CROOTW	F10.5	Wing root chard
19	SW	F10.5	Wing exposed area
20	XMACW	F10.5	Wing mean geometric chord
21	XWING	F10.5	Distance to wing leading edge

Variable	Name	Format	Meaning
22	TOVCW	F10.5	Wing thickness to chord ratio
23	XIAAMT	Fl0. 5	Tail taper ratio
24	CLAMT	F10.5	Tail leading edge sweep
25	BT	F10.5	Tail span
26	CROOTT	F10.5	Tail root chord
27	ST	F10.5	Tail exposed area
28	XMACT	F10.5	Tail mean geometric chord
29	XTAIL	F10.5	Distance to tail leading edge
30	TOVCT	F10.5	Tail thickness to chord ratio
31	HT	F10.5	Altitude
32	D	F10.5	body diameter
33	XL	F10.5	Body length
34	XINOSE	F10.5	Nose length
35	XCG	Fl0. 5	Center of gravity location
36	AREA	F10.5	Reference area
37	XREF	F10.5	Reference length
38	ENGINE	F10.5	Engine code
39	INLET	F10.5	Inlet code
40	BETA	F10.5	Boattail angle
41	DBASE	F10.5	Base diameter
42	DJET	F10.5	Nozzle exit diameter
43	XLABOD	F10.5	Boattail length
44	CDPROT	F10. 5	Proturberance drag coefficient

TABLE (9-II)

Output Data

Variable Name	Meaning
AL	Angle of attack
CLTOT	Total coefficient of lift
CDTOT	Total coefficient of drag
CLWP	Wing panel coefficient of lift
CLBW	Additional lift on body due to wing coefficient
CLTP	Tail panel coefficient of lift
CLBT	Additional lift on body due to tail coefficient
CLB	Body alone lift coefficient
CDI	Induced drag coefficient
CNWP	Wing panel normal force coefficient
CNTP	Tail panel normal force coefficient
CLTD	Coefficient of lift due to tail deflection
CDTD	Coefficient of drag due to tail deflection
CN	Total normal force coefficient
CA	Total axial force coefficient
XCPW	Wing center of pressure
XCPT	Tail center of pressure
XCP	Total missile center of pressure
CM	Total pitching moment about center of gravity

Figures (9-16) to (9-18) compare the coefficients predicted by AEROI with those obtained for body number 9 in the NASA report. The normal force coefficient is predicted well throughout the range. The moment and axial force trends are predicted by the program but large errors exist throughout the range of angles of attack.
b. NASA TM X-2367

This technical memorandum investigates the aerodynamic characteristics of various cruciform body-wing combinations. The coefficients for this configuration agree very well with experimental values up to 10 degrees angle of attack. Beyond this value the lift and moment coefficients predicted by AEROI exceed the experimental values by as much as 10 percent. Although the exact cause of this error was not investigated, it may be partially explained by the nose shape of the body. The nose is a combination ogive and cone. For purposes of AEROI it was assumed an ogive. The greater presented area of the ogive would contribute to a higher C_{I} and C_{m} through the cross-flow terms in these coefficients. Figures (9-19) through (9-21) compare the predicted with the experimentally determined coefficients for the wing-tail configuration of this reference at $M=.9$.
c. NASA TM X-2780 and NASA TM X-2289

These technical memoranda investigate the aerodynamics of a delta wing missile using tail control and a tail-less cruciform missile. As shown in Figures (9-22) to (9-25) there is excellent agreement between the experimental values of the aerodynamic coefficients and those predicted by AEROL.

Figure (9-16). Body alone normal force.

Figure (9-19). Tail-body lift force.
NA5A TM X-2367

Figure (9-20). Tail-body drag force.

253

Figure (9-23). Wing-body moment.

\dagger

NASA TM X-2780

Figure (9-24). Complete missile lift force.

F. COMPONENT WEIGHTS

As with the gross weight, the component weights can be determined through the use of parametric regression equations. If the dimensions of the components are known, the following formulas can be used to determine the component weights [7].

Aero Surface Weight
The weight of one wing panel is given by,

$$
\begin{equation*}
\left.W_{A S}=6.77483\left(\mathrm{E}_{\mathrm{AS}}\right)^{1.02\left(\mathrm{AR}_{\mathrm{AS}}\right)}\right)^{.56} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& E_{A S} \text { Exposed are of one panel, } f t^{2} \\
& A R_{A S} \text { Aspect ratio of one panel }
\end{aligned}
$$

Body Structure Weight

$$
\begin{equation*}
W_{B S}=.0604\left(L_{B S}\right) .64\left(\mathrm{D}_{\mathrm{BS}}\right)^{1.77} \tag{2}
\end{equation*}
$$

$L_{B S}$ Length of body to be covered by structure. This does not include the rocket motor unless a separate structure surrounds the motor casing. (inches) Diameter of body structure $D_{B S}$ (inches)

Internal Systems Weight

$$
W_{I S}=.00485\left(W_{G}\right)^{.74}\left(\mathrm{~L}_{I S}\right)^{1.00}\left(\mathrm{D}_{I S}\right)^{.42}
$$

W_{G} Gross weight of the missile
$L_{\text {IS }}$ Length of subsystem (inches)
$D_{\text {IS }}$ Diameter of missile (inches)

In the above equation, the internal system includes guidance, avionics and control.

1. Design Example (Component Sizing)

If the quidance and the control sections are kept at 10 percent of the total length, and the remaining components are as sized previously, the design is as shown in figure (9-27). Since these components are considered internal systems, their weights can be determined from equation (3).

$$
\begin{aligned}
& W_{\text {cont }}=.00485(1809)^{.79}(.1 L)(12.5) .42 \\
& W_{\text {cont }}=W_{\text {guid }}=83.64 \mathrm{lb}
\end{aligned}
$$

The wing and canard weights are found using equation (1) and Figure (9-26).

Figure (9-26). Aero surface weight.

Figure (9-27). Final design.

The wing weight is four times the weight of one panel.

$$
\mathrm{W}_{\mathrm{W}}=43.42 \mathrm{lb}
$$

Similarly the canard weight is

$$
\mathrm{w}_{\mathrm{c}}=9.88 \mathrm{lb}
$$

If the entire body is covered by structure, the body structure weight becomes

$$
\begin{aligned}
& W_{s t}=.0604(232)^{.64}(12.5)^{1.77} \\
& W_{s t}=172.38 \mathrm{lb}
\end{aligned}
$$

The following component table can now be constructed.

Component	Length (in)	Weight (lbs)	Center of Gravity (in)
Control	23.2	83.64	39.48
Guidance	23.2	83.64	62.68
Warhead	31.25	28.26	89.91
Sustainer	87.51	618.92	149.29
Booster	26.31	159.46	206.20
Motor Casing	113.82	59.50	162.44
Wings		43.42	211.40
Canards		9.88	44.08
Structure	232.00	172.38	116.00

The complete missile weight is then 1264.62 lbs.
The center of gravity from the above table is

$$
x_{C G}=139.44 \mathrm{in}
$$

The center of gravity at the end of boost is

$$
\left(x_{C G}\right)=129.85 \mathrm{in}
$$

G. DESIGN EXAMPLE (FINAL ANALYSIS)

From the design parameters so far, a complete description of the missile can be determined. Figure (9-27) is a drawing of the missile. The launch conditions for the missile were specified as,

$$
\begin{aligned}
M_{M} & =1.5 \\
\mathrm{~h} & =10.000 \mathrm{ft} \\
\mathrm{~W}_{\mathrm{G}} & =1264.62 \\
\mathrm{x}_{\mathrm{CG}} & =139.44 \mathrm{in}
\end{aligned}
$$

From these conditions the input data for AEROl is shown in Table (9-III). The format is the same as that of the output of AEROI and is printed as a check to ensure that the input data was entered properly. The output is shown in Table (9-IV). Figure (9-28) is a plot of the coefficient of moment versus angle of attack for the launch condition and for the beginning of cruise. The center of gravity has moved forward approximately 10 inches for the beginning of cruise so that the stability has

$$
\begin{aligned}
& \text { AEROI Input } \\
& \text { - (III-6) } \\
& \text { TABLE }
\end{aligned}
$$

 $\overline{\mathrm{U}} \dot{0} 0^{\circ 0000000}$

 mónino or

S óo 0000000 -
 1
 -000000000
 $00^{\circ} 0^{\circ 0} 0^{\circ}=0$

 OOODOMNNN

$\overline{\mathrm{E}} 0000$ oncinim

[^1] ○00000~ーiv
ヶ $00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$

U ○000000-ini
 $00^{\circ 0} 0^{\circ} 0^{\circ} 0^{\circ}$
 00000~inivis

 AL C

 I ióoóiciMin
－육NㅇㅇNNungm

 x miómino oririos

든 88ㅇㅇㅇ8ㅇ8응 －0000000000
은 으용ㅇㅇㅇㅇㅇ응 $00^{\circ} 0^{\circ} 0^{\circ 0} 0^{\circ}$
＇2
2
2

 ？OOOOMANTN
 S ©000000れが
gogninaminNが ióóónins
 －000000000\％ i

COPROT＝0．D

 pócoóo ó
0
VXM $=3.00$ nELTA

CDAFT＝0．0

CDI：IL $=0.0$

CDO3＝0． 2688

1

increased as indicated in this figure. The performance objective from the beginning of the design was to provide a 31 g maneuver capability. Table (9- V) shows the output of AEROI for Mach numbers of 1.5 to 3.0 and control deflections of 0.0 to 30 degrees. From this output the trimmed normal force can be found and the corresponding load factor is then,

$$
\mathrm{n}=\frac{\mathrm{C}_{\mathrm{N}_{\mathrm{TR}}} \mathrm{q} \mathrm{~S}_{\text {ref }}}{\mathrm{W}}
$$

The following values of maneuver load factor were found using AEROI.

M	$\mathrm{C}_{\mathrm{N}_{\text {TR }}}$	$q\left(1 b / f t^{2}\right)$	$\mathrm{n}(\mathrm{g} ' \mathrm{~s})$	δ req
2.5	18.80	6369	85.00	10 deg .
2.0	24.50	4076	70.99	10 deg .
1.5	12.00	2293	19.56	10 deg .

As indicated in the above table, the missile meets the maneuvering specifications of the operational requirements.

 \times miominioñiか - NTNTNTNTNTNTN

 $\stackrel{\stackrel{\rightharpoonup}{x}}{\underset{x}{2}}$

§ 0000000000~~

든 응ㅇㅇㅇㅇㅇㅇㅇ -0000000000
 -00000000000

E finooinigininini
效
药 mioninioionirio

 Niririririvirin

S ojocoojorini
 －©்inimisisios
 0000000000
気 $0^{\circ 0000000000}$
 ċö́nimininiv
 coóoctininin

ᄃ $=000000$ ivins
 ¢000000～Tinin
 $00^{\circ 00000000}$
 oocrinininis

 －0000000000
ッロ～デロッグロッペ ioöodiniviv
 －00000Ninimin

[^2] E ペジmiñinionior

 móminioiotivio

る ヘヘペースヘペー

< oiojocininini

-0000000000
E

- $0^{\circ 00} 0^{\circ 0} 0^{\circ} 0^{\circ}$

iociocninini
Moncoixioiog
-0்coóninisú

iócocóninin
べべ心べががのガo
©0்000000~~~

órinininivinio
NONシャロ日ーMm
 －0．00000000
 iocicinininio
ơo－Orivisiniorióo

$\mathrm{CDOB}=0.3036$ \sum

 \times móminiontio

 צ óóonininim

 $00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$

 －－iñinimim
 ○́sóóónनini

 ○000000～～riñ
 －00000்～iniri
 －नiviñNimim
$v \times 14=1.50$ UELTA 30.00
音

 00000 OHNN

 ヘがローム～～～～～～

> ¢ooorininisu

ㅍ

 móminionicios

天incinixinis
 －0்000000～－

：888888：88 $\dot{0} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ 0} 0^{\circ}$	

용ㅇ요용ㅇ요응 $00^{\circ 0} 0^{\circ 0} 0^{\circ 0} 0^{\circ} 0^{\circ}$
 －0்0000 inni 1

三 ©oóooninim
 jo்0000ーinivi ＝气 E 0osmonioñ E oonmonisin
 $00^{\circ 000000000^{\circ} 0}$
 iococonininin
 $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \boldsymbol{0} \mathrm{Nivi}$

CDPROT $=0.0$
 CDOT $=0.0307$

シ

む minicivisimioi

	هٌ تـ
X	－ 0 cioigoos
¢	mosm N－Fnmmincm
\times	micimut ${ }^{\text {cos }}$
a	$\stackrel{N}{3}$
¢	jajusisis

S $00000000 \pi i n$

 $\therefore 0^{\circ} 0^{\circ 00} 0^{\circ} 0^{\circ}$
 $\therefore 0^{\circ} 0^{\circ 00000} 0^{\circ}$

c mom
 －○் óacinims
 ©000000゚ーiniv

g Nócoiminioi

シヘペへべゥべゥ～

 $0^{\circ 0} 0^{\circ 000000}$
 $0^{\circ \circ} 0^{\circ \circ} 0^{\circ \circ} 0^{\circ}$
 ©～NiNinNiNin

〕
CDOWBT $=0.3924$

 $00^{\circ \circ} 0^{\circ 0} 0^{\circ}$

－

[^3]تOFNNMMMMN $00^{\circ 0} 0^{\circ 0} 0^{\circ} 0^{\circ}$
 －0000～ininio

momionnmminn

 jigisigisi

 § óojórininim
〕

은 엉ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ $00^{\circ 0000000000}$
득 Monn～onmon －iлininifinimio

空
 íóóonninin

$\vdash \operatorname{minnnNonnn}^{-\infty}$ －000000～へi

$C D P R O T=0.0$
 －iniNiNvimim n
吴
0
\dot{B}
\vdots
\vdots
든
 ○○OÓNininN

 912 COINL＝0．0

 ióóo̊～～Mini

 mónincósinos

 S ©000000000゚ー～

 $0^{\circ} 0^{\circ 0} 0^{\circ 0} 0^{\circ 0} 0^{\circ}$
态 8888888888 －000000000
 $00^{\circ 000000 \% ~}$
かonへonnon

 ロํN․․․․ －0000000～in
 －00000்～～NM 000 r－N N mmm OOOHAN～M～N゙ $00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
 －00M

 POOO～ーNN

[^4] －000000～inis
 ○○்～iminió

COIVL＝0．0
 CROR＝ 0.2796

ㄴ

X mioninionicim
－MNNNNNNNNN

のーのーのーのーのー

ऽ oiocooinin

E E030．500500 －000000000
 00.500000
 －ćóon－rininin

 \bar{E} ©oióónimj
 －0000000～inim
上 －00000000000

a ćócóo～inininin

 $00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
 ©00000～～Nin
上

CDINL＝0． 0

 $\underset{4}{4}$
 ∞
2
2
0

 - NNNNNNNN~NT jigijijojig $\stackrel{\infty}{\infty} \times \infty \times \infty \times \infty \times \infty$

 $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
E
 $00^{\circ} 0^{\circ 00} 0^{\circ \circ} 0^{\circ}$
$\stackrel{\text { a }}{2}$ -

 ©000~ウinio

 COOOORNNMin

 -0000000000

$7890^{\circ} 0=\mathrm{MONO}$

 cocićninin
 -ćcínimin
5

CDIHL $=0.0$

 a Minnomannnon

 \times míminionninco

 －へimimivíricis
 $0^{\circ} 0^{\circ} 0^{\circ \circ} 0^{\circ} 0^{\circ}$
 －inininioióo
 －nininvinimin

NN以 NOCONOMC
दे óóocrimisu
 000000்ーiNM

$00^{\circ \circ} 0^{\circ \circ} 0^{\circ \circ} 0^{\circ}$

$\dot{8}$

CDAFT＝0．0

N
0
0
0
0
0
0
0
0

CDINL＝0．0
 CDOS＝0．2796

 I misuingiminim
－ロommñoñベ x－iosoioio ónco

－NTNNTNNNMNTM ays．jigigis

 $\therefore 0^{\circ} 0^{\circ 0} 00^{\circ} 00^{\circ}$
 $00^{\circ 0} 0^{\circ 0} 0^{\circ 0} 0^{\circ}$

 icocóninini

 000000～inj
－onning anmn？水 0000000000

三 ロONNNTNMON $000 \rightarrow N \operatorname{nosinn}$ 1

$\stackrel{0}{5}$	
＊	
응	
－	mu
8 ¢	
－	córincuisioris
$\stackrel{1}{2}$	$\dot{\sim} \dot{\sim}$

[^5] 츤

－NNNNNNNNNT

$\propto \infty \infty \infty \infty \infty \infty \infty \infty \infty$

 －नiñmsinisio．
 $\therefore 0^{\circ 0} 0^{\circ} 0^{\circ 0} 0^{\circ}$
 －000000000
 －Mininiñペ
 －© © © ininiñ 9

E ERHMcouscm －0cecéninió
ococoninn

 $\therefore 0^{\circ} 0^{\circ} 0^{\circ 0} 0^{\circ}$
E mmNinconcinman cininininvi
u © iniviনiNivin
EON゙NNMMON cocciconcon
 －©́cicinin 1
CDAFT＝0．0
COOV $=0.0664$
 －ćcininmio

CDIISL＝0．0

m momonNommo
 に \because NONNNNNNN

 №m和以NNinN

S oicécininim

으́ Nósoctinninn $0^{\circ} 0^{\circ} 0^{\circ} \propto^{\circ} 0^{\circ}$
 －Hiniocooc
 がーシヘヘッペッ
～～OMOMMONMN
 1
NNM伿

$$
-\infty=-\operatorname{coc}+=
$$

三 oonnwommen

CD1：！ $1=0$ ． 0

X. CONCLUSIONS AND RECOMMENDATIONS

This thesis has presented the methods and general procedures for the conceptual design of tactical missiles. As mentioned, this is not necessarily the best design. Now that the design procedure has been attempted once, the reason for this is readily seen. The process is one of continuous compromise. As was shown in Chapter 7, the optimum wing for lift is not the best wing for minimizing drag. We also saw in Chapter 8 that increasing chamber pressure increases thrust at the expense of increased weight. This thesis has tried to point out some of these areas of compromise and present methods to deal with them.

Areas which were not covered which need to be investigated in conceptual design are structures, radar cross-section and cost. With the increased emphasis on survivability and the decreasing budget, it becomes increasingly important to define the effects of these areas on design early in the process.

The complexity of the design process and the need to obtain timely and accurate information have made it ideally suited for the digital computer. The AEROCF program used in this thesis is part of a large scale computer program (MISSYN) which consists of modules for each section of the design analysis.

With a good understanding of the theory and methods used in missile design, the computer aided design program with graphics capability gives the designer the capacity to make intelligent
design interations and almost instantaneously see the effect of the change on all areas of design. A limited example of this can be seen in the use of AEROI. A change in the performance requirements for maneuver capability would require a redesign of the lifting surfaces. A change in the lifting surface design would change the drag characteristics of the missile and therefore,the propulsion requirements. The AEROI program coupled with a similar propulsion module would allow the designer to make the changes and instantly see the penalty or savings in propellant weight.

One pass at the design has been accomplished in this thesis. As was seen throughout the process, decisions in one area affect the design in others. For this reason the design process becomes an iterative one. The final design of the first iteration is the baseline missile for the second iteration and the design is started again. By making several passes through the loop, the solution converges on the final design.

00

 000

rier OROGP+we APARING

$$
5) /((T+198 \cdot 6) *(10 . * * 8))
$$

क्ष

1597
8
8
8
8
∞
-
0
8
∞
211T
00108
mo
-10
-10
-0

$\rightarrow \infty$

000

 00

AD-A095 118 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TACTICAL MISSILE CONCEPTUAL DESIGN, (U) SEP 80 D R REDMON

UNCLASSIFIED
NL

 000

290 CLAR $\quad 002119027$ *BAR**5 003283282 *BAR**4+•20366375*BAR**3

 "opx\|O, 0

00.

 -1]-1]-GNN 000

0

00

 NN 00

《

00

2160 XBCRWB $=-(9 ; 235+25 . *(1 .-X L A M L))+S Q R T(19.71+25 . *(1 .-X L A M L)) * * 2-$

$\cdots 8$
 $05 * B A R+0.46$

-0

$$
\begin{aligned}
& \text { (XBMIDI**2)-(i0.5+0.5139*(D/B1)*(1.17+XLAM1)*(1./(0.331 }
\end{aligned}
$$

$$
00<10
$$

0212

2170 $08 T 2$

 N•N ${ }^{\circ} \cdot 00$

NNN
NNN

U

00

00
 ゅwゅ． 00
 «くれ

INPUT WING SWEEP CONSTANT＇I

DELTA PLANFORM ENTER O，OTHERWISE＊

$1.71 \forall 1 \forall 1730=2$

> BODY AFTER TAIL． $1=80 D Y$ AFTER TAIL＇

＝NO EDGE 1 LEADING EDGE•）

55000

NUMB ER

OTO 55000
NPUT NUMBER OF WINGS＊）
G TO 55000
 2 ロースロ GO TO 55000
（NPUT TAIL SWEEP CONSTANT＇）
（：（S9JO）＇9NIM $=0$
1.

00

 inininininininininininininininininininuminuminninumininininiminininiminininniniain

00

 inininininininininininininininuinininnuniningo000000000000000000000000 00

00

 00 ocopoogoro ¢

00

 00000000000090000000000000000000000000000000000

000

 «८
DELTA=DELTA1 $57.29578+.000000001$

00
 OTHNMNNNTMF
 000

 O000 Mo

00

 00

00

 000

min

 Qer \&osh

OO

 -1a-1
 щ

00
 にNに 0001 dind

00

000

 щи

00
 4 NNNNNHNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNHNNNNNNNNNTN ひ $\underset{\alpha}{ }$

 ono0000000000

 $\propto \propto \alpha \propto \alpha \propto \propto \propto \propto \propto \alpha \propto \propto \propto \propto \propto \propto \alpha \propto$

REFERENCES

1. Specifications, Soviet Aircraft, Aviation Week and Space Technology, V. 112, No. 9, p. 116, 3 March 1980.
2. New Soviet Fighters Detailed, Military Electronics and Countermeasures, V. 6, No. 5, p. 67-69, May 1980.
3. All the Worlds Missiles, General Dynamics, Pamona Division.
4. Michael Brown, F-16 Programme Heads for December First Flight, Interavia, V. XXXI, P. 104-106, February 1976.
5. Philip Geddes, Two Versions of the $\mathrm{F}-18$ in Hot Competition, Interavia, V. XXXIV, p. 351-356, April 1979.
6. Advisory Group for Aerospace Research and Development Lecture Series No. 52, Guidance Law Applicability for Missile Closing, by Dr. Robert Goodstein, May 1972.
7. Rapid Approach for Missile Synthesis, Rochet Synthesis Handbook, General Dynamics, Convair Division, November 1979.
8. Merril I. Skolnik, Introduction to Radar Systems, McGrawHill Book Company, 1962.
9. William L. Wolfe, Handbook of Military Infrared Technology, Office of Naval Research, Department of the Navy, Washington, D.C., 1965.
10. S.S. Chin, Missile Configuration Design, McGraw-Hill Book Company, 1961.
11. Marvin E. Bachman, Terminal Ballistics, Naval Weapons Center, Research Department, February 1976.
12. Leland M. Nicolai, Fundamentals of Aircraft Design, Domicone Printing Services, 1975.
13. NACA Report 1307, Lift and Center of Pressure of Wing-BodyTail Combinations at Subsonic, Transonic, and Supersonic Speeds, by William C. Pitts, Jack N. Nielsen, and George E. Kaattari, 1959.
14. Unpublished Notes on Rocket Propulsion, by Professor D. Netzer, September, 1980.
15. Naval Weapons Center Technical Memorandum 2953, Preliminary Solid Rocket Motor Design Techniques, by H. Platzek, p. 15, December 1975.
16. D.E. Hoak, U.S. Air Force Stability and Control Handbook (DATCOM), AF Flight Dynamics Laboratory, April 1976.
17. Naval Air Development Center Report No. 74023-30, A Digital Computer Method for Predicting Static Aerodynamic Characteristics of Typical Missile Configurations, by F.A. Kuster, Jr., 29 January 1974.
18. Naval Ship Research and Development Center Report 3645, A Method for Predicting the Static Aerodynamic Characteristics of Typical Missile Configurations for Angles of Attack to 180 Degrees, by Bernard F. Saffell, Jr., Millard L. Howard, and Eugene N. Brook, Jr., March 1971.
19. NASA Technical Note D-6996, Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like and Other Bodies at Angles of Attack From 0 to 180 Degrees, by Leland H . Jorgensen, January 1973.
20. NASA Technical Memorandum X-3309, Experimental Aerodynamic Characteristics for Slender Bodies with Thin Wings at Angles of Attack from 0 to 58 Degrees and Mach numbers from 0.6 to 2.0., by Leland H. Jorgensen and Michael H. Howell, January 1976.
21. NASA Technical Memorandum X-2780, Aerodynamic Characteristics at Mach 0.60 to 4.63 of Two Cruciform Missile Models, One Having Trapezoidal Wings with Canard Controls and the Other Having Delta Wings with Tail Controls, by William A. Corlett and Dorothy T. Howell, July 1973.
22. NASA Technical Memorandum X-2367, Longitudinal Aerodynamic Characteristics at Mach 1.50 to $4 . \overline{63}$ of a Missile Model Employing Various Canards and A Trailing-Edge Flap Control, by Charles D. Trescot, Jr., October 1971.
23. Unpublished Notes on Weapons System Design, by Professor \bar{A}. Fuhs, September 1980 .
No. Of Copies
24. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314
25. Library, Code 0142
Naval Postgraduate School Monterey, California 93940
26. Department Chairman, Code 67 1
Department of Aeronautical Engineering Naval Postgraduate School Monterey, California 93940
27. Professor G.H. Lindsey, Code 67Li 1
Department of Aeronautical Engineering Naval Postgraduate School Monterey, California 93940
28. Captain K. Hatjianastasiou, 1
Salonas 147
Kauithea
Athens, GREECE
29. Lieutenant Danny R. Redmon 1 925 Skylark Ontario, California 91761

[^0]: hemispherical [18].
 ${ }^{M}{ }_{\mathrm{O}}$ O7 a / t snoṭien tof
 Figure (9-7). Ratio of $C_{D_{w}}$

[^1]: ## CRPROT=0. 0

 P: T=2.14/5.7115.44.25

[^2]: CDINL＝0．0
 $C D O B=0.3036$

[^3]: CDB：IL＝0．0
 CDOH $=0.2912$

[^4]: cDAFT＝0．0

[^5]: CIIAFT＝0．0
 CDINL $=0.0$ CDOB＝0． 2688

