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ABSTRACT

This report represents the second chapter of a book in preparation on
inference and data analysis in reliability and life testing. The point
of view adopted differs from that of most books on the subject in the
following basic respect: Prior information avaiZable to the reliability
analyst is utilized fully in a formal statistical fashion. Experience
accumulated in helping engineers, quality assurance managers, scientists,
biostatisticians, and others who must make estimates and reach decisions
from either planned experiments or retrospective data has shown us that
the point of view adopted throughout the book has resulted in useful
solutions to real-life problems. By contrast, more classical statistical
methods have often proven inadequate in many practical problems simply
because the data available are insufficient to reach conclusions with a
desired degree of assurance.

The book is intended primarily for actual use by the engineering and
scientific practitioner, rather than for theoretical study and philo-
sophical analysis by the statistician. Thus we omit a philosophical
justification of the methods presented; rather, we rely on the fact that
they have led to useful answers to problems that have arisen in practice.

One final point: Many of the methods and results are original and have
not appeared in the literature. This fact has led us to issue the
chapters as reports under our research grants.
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LIFE DISTRIBUTION MODELS AND INCOMPLETE DATA

by

Richard E. Barlow and Frank Proschan

In this chapter our objective is to introduce additional life dis-

tribution models and to discuss methods useful for analyzing failure

data, especially incomnplte data. We show how to express the like-

lihood functions for general distributions and incomplete data. The

likelihood function tends to be fairly flat for incomplete data. For

this reason the maximum likelihood estimator may be of limited value.

It is therefore especially important in this situation to assess a

prior distribution for parameters and plot the posterior distribution

or its contours.

Inference based on the exponential model is discussed for general

sampling plans. Parameter estimators and credibility intervals are

derived for special cases. The Weibull distribution is a very useful

model for life distribution studies and also for the analysis of

strength data. For these reasons we describe failure mechanisms

leading to a Weibull life distribution model. Contour plotting methods

for analyzing life data based on a Weibull distribution are also given.

1. LIKELIHOOD

In Chapter 1, we calculated the likelihood for the exponential

model under several different sampling plans. In this section we

present a unified way of analyzing incomplete data for a large

number of failure distribution models. In much of this chapter we

assume that the failure distribution F is absolutely continuous

with density f and failure rate
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(1.1) r(x) = fCx)_
r (x)

where F(x) = 1 - F(x) We call

x

(1.2) R(x) =f r(u)du

0

the hazard function associated with F . For general F , define

(1.3) R(x) = -ln F(x)

so that F(x) - exp [-R(x)] . Note that when F has a density f

d [in F(x)] = f(x) = r(x)

F(x)

so that (1.2) and (1.3) agree in this case.

From (1.1) and (1.3) we see that

(1.4) f(x) - r(x)e-R (x )

For a discussion of these fundamental concepts, their inter-relation-

ships and illustrations in the case of well known distributions, see

Barlow and Proschan, Chapter 3, (1975).

Suppose now we observe n independent lifetimes x1 ,.2, ... , xn

corresponding to a given failure rate function, r . The joint density

is

n

(1.5) n f(xi) - H r(xi e
i-iii
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The likelihood as a function of the failure rate function for data

D = (X1,X2 , ... , xn) is then

(1.6) L(r(u) , u > 0 1 D) --[l r(xi)]e
limi

1.1 Example: The Time-Transformed Exponential Model

Suppose the survival function is of the form:

-XRo (x)

(1.7) 
F(x j ) = e

where it is assumed that R is known and differentiable but X is
0

unknown. By (1.2) we may write:

x

AR(x) J XrO (u)du

0

It follows that the hazard function and the failure rate function are

assumed known up to the parameter A Another way to view the model is

to consider time x to be transformed by the function R (-) . Thus in

terms of transformed time, the present model coincides with the exponen-

tial model of Chapter 1. For this reason (1.7) is called the time-

transformed exponentiaL model.

Let xlx 2, ...9 xn  be n independent observations given A

from this model. The likelihood is

n

[in ~ 
R (x )

(1.8) L(X I D) = n fr 0 (x)j i
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n
By Le-ma 1.5 of Chapter 1, we conclude that j Ro(xi) and n isi-i

a sufficient statistics for X If we use the gamma prior for X

ba a-le-b'

r(a)

we obtain as the posterior density for X

a+n exp X + R(Xi)

(1.9) i(X I D) b + n R (x ) Xa+n-I i 1-

i 1 1 o r(a + n)

(See (1.6) of Chapter 1.) Inference proceeds exactly as for the

exponential model, except that observation xi of the exponential

model is replaced by its time-transformed value R0 (xi) This is

valid assuming only that R (.) is continuous.
0

1.2 The General Sampling Plan

In many practical life testing situations, the lifetime data

collected are incomplete. This may be due to the sampling plan itself

(recall the sampling plans (a), (b) and (c) of Chapter 1), or due to

the unplanned withdrawal of test units during the test. (For example,

in a medical experiment, one or more of the subjects may leave town,

or suffer an accident, etc.)

We now describe one type of sampling plan. Suppose unit i

having lifetime distribution F is observed over an interval of time

starting at age 0 and ending at a random or nonrandom age. Termina-

tion of observation occurs in either one of the following two ways:
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(1) The ith unit is withdrawn or lost from observation at age

t > 0 ;Y may be random or nonrandom.

(2) The ith unit fails at age Xi , where X i is a random

variable.

In addition, we require a technical assumption regarding the

"1stopping rule"; i.e., a prescription for determining when to stop

observation:

(3) Suppose unit lifetime, X , depends on an unknown parameter

(or parameters) e . Observation on a unit may stop before

unit lifetime is observed. Let S be a rule or set of

instructions which determines when obserlyation of a unit stops.

S may be random and depend on an unknown parameter (or para-

meters) .Let (6,0) have a joint prior distribution.

Suppose that the rule S and e , given ,are judged in-

dependent. Also suppose that e and are judged indepen-

dent.

It is important to remark that the "stopping rule" is not necessarily

the same as the "stopping time."

To understand assumption (3), consider sampling plan (a) of

Chapter 1, namely: put n items on life test and stop testing at the

kth observed failure. In this case, the stopping rule depends only on

k and is clearly independent of life distribution parameters since k

is fixed in advance of testing.

Sampling plan (b) of Chapter I has stopping rule: stop testing at

time t 0. Since t 0is fixed in advance of testing, the stopping

rule is again independent of life distribution parameters. Likewise,
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the stopping rule for sampling plan (c) depends only on k and to0

and is clearly also independent of life distribution parameters.

For all three sampling plans, the likelihood, up to a constant of

proportionality, depends only on the life distribution model and the

observed data. This proportionality constant depends on the stopping

rule and is for sampling plans (a) and (b) while for sampling

plan ~ ~ ( (c k)is !n-

pnan (c) (k is1(n Such stopping rules are said to be

noninfcnnative since the posterior distribution in each case depends

only on the life distribution model, the observed data, the prior, and

in these examples, on the independence of unit lifetimes given distri-

bution parameters.

1.3 Examples of Informative Stopping Rules

Records are routinely kept on failures (partial or otherwise) and

maintenance actions on critical units such as airplane engines. Should

a relatively new type of unit start exhibiting problems earlier than anti-

cipated, this may trigger early withdrawal of units. If this happens

the stopping rule, which is contingent on performance, may also be

informative relative to life distribution parameters. This fact needs

to be considered when calculating the likelihood and analyzing the data.

The second example illustrates another case where assumption (3)

is violated. Suppose lifetime X is exponential with failure rate X

and the random withdrawal time, W , is also exponential with parameter

* We observe the minimum of X and W . Furthermore, suppose that X

given X and W given p are judged independent. Then the likelihood

given an observed failure at x is Xx -

L(X ~x) . e e
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If X and are judged a priori independent then the posterior density

of X is

(X I x) Xe-X 7(X)

where n is the prior density for X . However, if X and 4 are

judged dependent with joint prior i(A,4) , then the posterior density is

r(X I x) - Xe-XXfe- XT(X,)d#

0

The factor f e-OX (,0)d0 , contributed by the stopping rule, depends
0

on X .

There is an important case not covered by the General Sampling Plan--

namely when it is known that a unit has failed within some time interval

but the exact time of failure is unknown. This case will be covered when

we discuss life tables.

The following simple example illustrates the way in which incomplete

data can arise.

1.4 Example

Operating data are collected on an airplane part for a fleet of air-

planes. A typical age history for several engines is shown in Figure 1.1.

The crosses indicate the observed ages at failure. Ordered withdrawal

times (nonfailure times) are indicated by short vertical lines. In our

example, units 2 and 4 fail at respective times x(l) and x(2) while

observation on units 1 and 3 is terminated without failure at times 1(2)

and Z(,) respectively.



Unit
Number

x

0 Age u

x(1) t(1) x(2) t(2)

FIGURE 1.1

AGE OF AIRPLANE PART AT FAILURE OR WITHDRAWAL
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It is important to note that all data are plotted against the age axis.

Figure 1.2 illustrates how events may have occurred in calendar time. For

example, units 1 and 3 had not failed at the end of the calendar record.

Total Time on Test

As we saw in Chapter 1, the total time on test is an important statis-

tic for the exponential model.

1.5 Definition

The totaZ time on test T is the total of the periods of observation

of all the units undergoing test. Excluded from this statistic are any

periods following death or withdrawal or preceding observation. Specifi-

cally, the periods being totalled include only those in which a death or a

withdrawal of a unit under observation can be observed.

Let n(u) be the number of units observed to be operating at age u

The observed function n(u) , u > 0, for Example 1.4 is displayed in

Figure 1.3. From Figure 1.3 we may readily calculate the total time on

test T(t) corresponding to any age t , 0 < t < (2)

t

(1.10) T(t) =fn(u)du

0

For example, for t such that x (2) < t (2) , we obtain from Figure 1.3:

t

T(t) f n(u)du - 4x(l) + 3(t(1) - X(l)) + 2(x(2) - Z(1 )) + (t - x(2))

0

After simplifying algebraically, we obtain:

M6I I
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Unit
Number

'4

0

Start of End of

Calendar Record Calendar Record

FIGURE 1.2

CALENDAR RECORD FOR AIRPLANE PARTS
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"4-, 4

3

Age u

(1) (2) (2)

FIGURE 1.3

NUMBER OF UNITS IN OPERATION AS A FUNCTION OF AGE
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(1. 11) T (t) -x ()+Z(1 +X(2 + t

Note that the resulting expression, given in (1.11), can be obtained

directly, since x (1) and x ()represent the observed lifetimes of

the 2 units that are observed to fail, tZ1 represents the observed

age of withdrawal of the unit first withdrawn from observation, and

finally t represents the age of the second unit at the instant t

specified.

Although in this small example, the directly calculated expression

(1.11) for total time on test is simpler, Equation (1.10) is an important

identity, since it yields the total time on test accumulated by age t

in terms of the (varying) number of units on test at each instant during

the interval [0,tI for any data set in which the ages at death or with-

drzaa are observed. Thus it is a general formula applicable in a great

variety of problems in which data may be incomplete.

Although n(u) is a step function, the integral representation in

(1.10) is advantageous, since it is compact, mathematically tractable,

and applicable in a great variety of incomplete data situations. Of

course, f n(u)du < -in practical problems since observation ultimately
0

ceases in order to analyze the data in hand.

The Likelihood Function for Incomplete Data

All recorded data are necessarily discrete. Likewise real world life

distribution models should also be discrete. Continuous life distribution

models are convenient approximations to real world life distributions. How-

ever, it is most convenient to define initially the likelihood concept in

the context of discrete models.
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For our purposes, we find it preferable to define the likelihood

concept for the General Sampling Plan in the context of a discrete

model. Computation of the likelihood function is an intermediate step

between specification of the prior distribution on the space a and

computation of the posterior distribution on 0 given observed data D

Suppose temporarily that the life distribution is discrete, i.e.,

failures can occur only at times 1,2, ... ; similarly, withdrawals can

occur only at these time points. Suppose that the probability of failure

of a given unit at x is p(x 1 8) . Suppose k failures are observed

at times x , s = 1, ..., k , and m withdrawals are observed at times

t t I t - 1, ..., m . Failure and withdrawal times need not be distinct.

All observations are assumed statistically independent, given parameters.

Withdrawal times are produced by a stopping rule which is noninformative

concerning 8

For example, the stopping rule might specify that we observe a unit

until failure or until withdrawal, whichever comes first, where withdrawal

time is specified in advance. For this model, the probability of the

observed outcome is:

k m

(1.12) p(DI ) - H p(xes  ) P(t 1J ),
s=l t'l

where P(uj d f P(Uj+i 1 8) represents the probability that a
i=l1

specified unit fails at age u j+ or later, given the parameter is

6 . Note that the first product corresponds to the k failures at

respective ages xI , ..., Xk , while the second product corresponds

to the m withdrawals at respective ages ti, ... IM

Another way to model withdrawal is to suppose there exists a
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random withdrawal age W such that P[W t] q(t) , t - 1,2,

with W independent of unit lifetimes and of 8 . Under this model,

we suppose that we observe

(X if X < W
minimum (XW) 1 if X > W

Now for observed data D = {xl, ..., xk , t1 , ... , tm } , the probability

of the observed outcome given parameter 0 is:

m k k m
(1.13) p(D 6) RI q(Z) Q(xs ) n p(x s J 6) n )t  )

t-i sMl s=l t~l

where Q(u = q(uj+ i) represents the probability that W > u.
i-i 3

Note that (1.12) and (1.13) differ only by a factor that does not depend

on e . Thus, relative to calculating the MLE of 8 , the two models

for withdrawals (withdrawal deterministic or withdrawal random) do not

differ essentially.

There are many practical testing situations in which withdrawals

occur as a result of chance mechanisms unrelated to the parameter 8

of the lifetime distribution. For example, concluding the collection

of data at a specified chronological time has the effect of withdrawing

from observation those units still alive at that point in time. In

Figure 1.2, this phenomenon is illustrated by units 1 and 3. Other chance

mechanisms causing withdrawal at a random age result from human errors

and accidents. The net effect of the various stopping rules that are

unrelated to the value of the parameter 8 is summarized in the factor

g(x,t) in the expression for the probability of the observed outcome:

[k m
(1.14) p(D 0)- g(xZ) H P(xs  n P t I e)

s-i t~il
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1.6 Definition

The Likelihood, L(O I D) , is the probability of the observed

outcome, p(D 1 6) , considered as a function of the parameter e

given the data, D . In the case of a continuous model, the correspond-

ing likelihood will have this interpretation relative to a discrete

probability approximation.

It follows from (1.14) that

k m
(1.15) L(e I D) - a p(x s 1 ) f P( t 1 e)

s-l t-l

From Bayes' Theorem (Chapter 1, Theorem 1.2.), it is clear that we need

not know g(x,i) in order to compute the posterior density of .

In this subsection, we have thus far confined our discussion to

the case of discrete time life distributions since the basic concepts

are easier to grasp in this case. However, in the case of continuous

time life distributions, the likelihood concept is equally relevant,

and in fact the expression for the likelihood L(0 I D) assumes a

rather elegant form if we use n(u) , the number on test function.

In the continuous case, p(x 9 6) is replaced by the probability

density element f(x I 6)

1.7 Theorem

Given the failure rate, independent observations are made under the

General Sampling Plan. Let x,,x 2, ..., xk denote the k observed

failure ages. Let n(u) denote the number of units under observation at

age u , u > 0 , and r(u) denote the failure rate function of the unit

at age u . Then the likelihood of the failure rate function r(u)



16

having observed the data D described above, is given by:

L(r(u) , u > 0 1 D)

[s21 r(x s)] exp Lf n(u)r(u)dul k > 1

(1.16)

exp f n(u)r(u)dul k -0

Proof:

To justify (1.16), we first note that the underlying random events

are the ages at failure or withdrawal. Thus the likelihood of the

observed outcome is specified by the likelihood of the failure ages

and survivals until withdrawal. By Assumption (3) of the General

Sampling Model, we need not include any factor contributed by the stop-

ping rule, since the stopping rule does not depend on the failure rate

function r(.)

To calculate the likelihood, we use the fact that given r(')

x
-fr(u)du

f(x) - r(x)e 0

(See (1.4).) Specifically, if a unit is observed from age 0 until

it is withdrawn at age Yt without having failed during the interval-e t

[0,t I , a factor exp f r(u)d is contributed to the like-
0

lihood. Thus, if no units fail during the test (i.e., k - 0) , the

likelihood of the observed outcome is proportional to the expression
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given in (1.16) for k - 0

On the other hand, if a unit is observed from age 0 until it fails

at age xs , a factor,

r(x s ) exp f r(u)du]

0

is contributed to the likelihood. The exponential factor corresponds to

the survival of the unit during [O,x s) , while r(x s ) represents the

rate of failure at age xs . (Note that if we had retained the differ-

ential element "dx" , the corresponding expression r(x s)dx would

approximate an actual probability: the conditional probability of a

failure during the interval (x s , x s + dx) given survival to age x s

The likelihood expression in (1.16) corresponding to the outcome

k > 1 now is clear. The exponential factor corresponds to the survival

intervals of both units that failed under observation and units that

were withdrawn before failing:

x Z

f n(u)r(u)du -- f r(u)du + f r(u)du

0 0 0

where the first sum is taken over units that failed while the second sum

is taken over units that were withdrawn. The upper limit "-" is for

simplicity and introduces no technical difficulty, since n(u) - 0

after observation ends. E
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The likelihood (1.16) applies for any absolutely continuous life

distribution. In the important special case of an exponential life

AXx
distribution model, f(x A) = Xe-  , the likelihood of the observed

outcome takes the simpler form:

k -J n(u)du , k >1

(1.17) L(A D) 0

0exp -XJ n(u)du] k - 0

The following theorem is obvious from (1.17).

1.8 Theorem

Assume that the test plan satisfies Assumptions (1), (2) and (3) of

the General Sampling Plan. Assume that k failures and the number of

units operating at age u , n(u) , u > 0 , are observed and that the

-Axmodel is the exponential density f(x I X) - Xe- x  Then

(a) k and T f f n(u)du together is a sufficient statistic for X

0
k

(b) k is the MLE for X
T

k

Note that the MLE, , for A represents the number of observed

failures divided by the totaZ time on test. This conforms with the

results obtained for the MLE under all the test plans consi>- red in

Chapter 1.
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The maximum likelihood estimator is the mode of the posterior

density corresponding to a uniform prior (over an interval containing

the MLE). A uniform prior is often a convenient reference prior.

Under suitable circumstances, the analyst's actual posterior distri-

bution will be approximately what it would have been had the analyst's

prior been uniform. To ignore the departure from uniformity, it is

sufficient that the analyst's actual prior density changes gently in

the region favored by the data and also that the prior density not

too strongly favors some other region. This result is rigorously ex-

pressed in the Principle of Stable Estimation (see Edwar ls, Lindman

and Savage (1963)). DeGroot (1970), pages 198-201, refers to this

result under the name of precise measurement.

1.9 Example

The exact likelihood can be calculated explicitly for specified

stopping rules. Suppose that withdrawal times are determined in

advance. Then the likelihood is

(1.18) L(r(u) , u > 0 I D) [ n(xs)r(x s ) e 0
s l

where n(xS) is the number surviving just prior to the observed failure

at age xs  To see this consider the airplane engine data in Example 1.4.

Using Figure 1.3 as a guide, the likelihood will have the following factors:

1. For the interval [0,x( 1)] we have the contribution
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4r(x(1)) exp 4r(u)du
0

corresponding to the probability that all 4 units survive to

x(1) and the first failure occurs at X( 1 )

2. For the interval (x we have the contribution

exp f~l 3r(u)du]

x]

corresponding to the conditional probability that the remaining

3 survive this interval;

3. For the interval (Z(1 )'x( 2)] we have the contribution

2r(x(2)) exp 2r(u)du

£(1)

corresponding to the conditional probability that the remaining

2 units survive to x and a failure occurs at x( 2 )

4. For the interval (x(2 ),I( 2)j we have the contribution

exp rud

L_(2) A

corresponding to the conditional probability that the remaining

unit survives to age Z (2) Multiplying together these condi-

tional probabilities, we obtain a likelihood having the form

shown in (1.18).
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2. PARAMETER ESTIMATORS AND CREDIBLE INTERVALS

In the previous section we saw how to calculate the likelihood

function for general life distributions. This is required in order

to calculate the posterior distribution. Calculation and possibly

graphical display of the posterior density would conceivably com-

plete our data analysis.

If we assume a life density p(x I 6) and n(6) is the prior,

then p(x,6) - p(x I e)7r(e) is the joint density and p(x) =

f p(x I 6)i(e)de is the marginal or predictive density. Given data

D and the posterior density r(8 I D) , the predictive density is

p(x I D) -fp(x I6)7(6 I D)de

If asked to give the probability of survival until time t , we would

calculate

P(X > t I D) f p(x I D)dx
t

2.1 Example

For the exponential density Xe- x , k observed failures, T

total time on test, and the General Sampling Plan, the likelihood is

k -XTproportional to X e -  For the natural conjugate prior,

ba a-ie-bX

Tr(X) - baX e '

r(a)
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the posterior density is

l(X I k , T) - (b + T) a+ka+k-l e-(b+T)X/r(a + k)

In this case the probability of survival until time t is

P(X > t I k ,T)= f e-Xt(x I k ,T)dX

0

=b + t + T

Bayes Estimators

We will need the following notation:

E[8] - fer(e)de
0

and

E[6 ID] =f 7(e I D)d6

Of course, E[6] is the mean of the prior distribution while E[6 I D]
is the mean of the posterior distribution.

We wish to select a single value as representing our "best"

estimator of the unknown parameter 6 . To define the best estimator

we must specify a criterion of goodness (or equivalently, of poorness).
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Statisticians, being pessimistic by nature, measure the poorness of

an estimator e by the expected "loss" resulting from their estimator

e . One very popular loss function is squared error loss: specifically,

having observed data D and determined the posterior density 7r(e I D)

the expected squared error loss is given by:

(2.2) E[(e - e) 1 D]

the expectation is calculated with respect to the posterior density

n(6 I D) . We choose a point estimator e so as to minimize the ex-

pectcd squared error loss in (2.2); i.e., we choose e to satisfy:

(2.3) minimum E[(6 - a) 2 D] - E[(e - a)2 1 D]
a

To find the minimizing value e , we add and subtract E(6 I D)

in the loss function to obtain:

E[(e - a) 2 I DI - E[(e - E(e D)) 2 I DI + [E(0 I D) - a] 2

Since we wish to minimize the right hand side, we set a - E(6 I D)

which then represents the solution to (2.3). The resulting estimator,

E(6 I D) , the mean of the posterior, is called the Bayes estimator

with respect to squared error loss.

2.2 Theorem

The Bayes estimator of a parameter e with respect to squared
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loss is the mean E(6 D) of the posterior density.

Another loss function in popular use is the absolute value loss

function:

(2.4) E[I6 - el I D]

To find the minimizing estimator using this criterion, we choose 8

to satisfy:

(2.5) minimum E[16 - al I D] = E[je - el I D]
a

It is easy to show:

2.3 Theorem

The Bayes estimator of a parameter e with respect to the absolute

value loss function is the median of the posterior density, Specifically,

the estimator ; satisfies:

(2.6) Tr (6 1 D)d8 jir(6 I D)d8= 2

The proof is left to the Exercises.

Of course, the prior density and the loss function enter crucially

in determining a "best" estimator. However, no matter what criterion

is used, all the information concerning the unknown parameter 6 is

contained in the posterior density. Thus, a graph of r(8 I D) is more

informative than any single parameter of the posterior density, whether

it be the mean, the median, the mode, a quartile, etc.
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2.4 Example

x

Assume that lifetime is governed by the exponential model, Ie

Suppose we conjecture that E[6 k , T] , for sampling plan with

k , T sufficient, is linear in T for fixed k . It turns out that

such a linear relationship holds if and only if we use as our prior the

natural conjugate prior:

b

b a a (a+l) e 6
r~a)

(See Section 3 of Chapter 1 for a discussion of this natural conjugate

prior and Diaconis and Ylvisaker (1979) for a proof of this result and

for more general results of this kind.) The corresponding Bayes

estimator with respect to squared error loss is:

(27-[ IkT (b +T)
(2.7 E~e k , I -(a + k - 1)

However, the natural conjugate prior would not be appropriate if we

believedI, for example, that e could assume values only in two disjoint

intervals. Under this belief, a bimodal prior density would be more

natural, and the corresponding estimator E[6 I DI would very likely

be difficult to obtain in closed form such as in (2.7). However

E[6 I D1 could be computed by numerical integration.

There are many other functions of unknown parameters for which we may

want the Bayes estimator with respect to squared error loss. For example,

we may wish to estimate the probability of survival until age t for the

exponential model; i.e., estimate
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(2.8) g(e) - exp - - .

It is easy to show in this case that

(2.9) g ,E [exp[-] D]

is the Bayes estimator. If 7(e) is the natural conjugate prior, then

it is easy to verify that

~[ b +T Ja+kg b + t + T

i.e., this is the Bayes estimator of the probability of survival to age t

given total time on test T and k observed failures. Note that

b + T Ja+k

g - b + t + T is precisely the marginal probability of survival

until time t .

Credible Intervals

As we have seen, Bayes estimators correspond to certain functions

of the posterior distribution such as the mean, the mode, etc. A

credible set or interval is another way of presenting a partial des-

cription of the posterior distribution.

Specifically, we choose a set C on the positive axis (since we

are dealing with lifetime) such that

(2.10) f r(6 1 D)d0 - 1 - a

C



27

Such a set C is called a Bayesian (1 - a)100 percent credible set

(or credible interval if C is an interval) for 6

Obviously, the set C is not uniquely determined. It would seem

desirable to choose the set C to be as small (e.g., least length,

area, volume) as possible. To achieve this, we seek a constant

cl_ and a corresponding set C such that:

(2.11) C - { I n( I D) > c1

and

(2.12) f Ir(O I D)dO 1 - a

A set C satisfying (2.11) and (2.12) is called a highest posterior

density credibZe set [Box and Tiao (1973)). In general, C would

have to be determined numerically with the aid of a computer.

For the exponential model Xe , we have seen that the natural

conjugate prior (Table 3.1, Chapter 1) is the gamma density. Since

the 6amma density is a generalization of the chi-square density, we

recall the definition of the latter so that we can make use of it to

determine credible intervals for the failure rate of the exponential.

2.5 Definition

9
A random variable .(n) having density:

n

x exp
(2.13) f 2 (r) - n 1,2,

2xn)
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is called a chi-square random variable with n degrees of freedom (d.f.).

A table of percentage points of the chi-square distribution may be

found in Pearson and Hartley (1958). In addition, chi-square programs

are available for more extensive calculations using electronic computers

and programmable calculators.
2

It is easy to verify that the X random variable with 2n d.f.

is distributed as 2(YI + Y2 + ... + Yn) , where YIY 2 9 "'' Y n are

independent, exponentially distributed random variables with mean one.

Thus, we obtain the following result useful in computing credibility

intervals for the failure rate of the exponential model with corresponding

natural conjugate prior.

2.6 Theorem

Let k failures and total time on test T be observed under

sampling assur,.)tions (1), (2) and (3), (Section 1) for the exponential

model Ae . Let X have posterior density corresponding to the

natural conjugate prior

ba Xa-l e-b9
1T(X) = bX a '

r(a)

with a an integer. Then

X[2(a+) 2  [2(a + k)I

(2.14) P - X 2(b + T) J - 1 -a

2
where X (n) is the 100a percentage point of a chi-square distribution

with n d.f.; i.e., f f 2 (x)dx - •
0 x (n)
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Remark:

2
Because of the lack of symmetry of the X density, the interval

in (2.14) is not the highest posterior dens-ity credible interval.

Proof:

It is easy to verify that (b + T)X given the data has a gamma density,

Xa+k-e -X

r(a + k)

corresponding to the density of Y + ... + Ya+k ' where the Y's

are independent unit exponential random variables. Hence

2X(b + T) ;- 2(YI + ... + Y )

t ~a+k)

where s denotes stochastic equality; i.e., 2X(b + T) has a chi-

square density with 2(a + k) d.f.E

2.7 Corollary

For 2(a + k) large (say 2(a + k) > 30) , the normal approximation

provides the approximate credibility statement

(a + k) + k) z (a + k) + (a + k) z

P1 2 1 2 ~ 1(2.15) P_L b + T b + T

2
z u

1 2-7.
where z satisfies f *(u)du = a and O(u) - - e is the normal

density with mean 0 and variance 1.
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Proof:

Since the X 2(2n) random variable can be written as

X2(2n) - 2(Y1 + Y 2 + ... 
+ Yn)

where Y1,Y2 P ... Yn are independent unit exponentials, the Central

Limit Theorem [e.g., Hoel, Port and Stone (1971)] applies. Note that

EX 2(2n) - 2n and Var [X 2(2n)] 4n . Thus,

X 2(2n) - 2n

is approximately normal with mean 0 and variance 1 by the Central Limit

Theorem. U

2.8 Corollary

Let k failures and T total time on test be observed under the

General Sampling Plan assumptions (1), (2) and (3) (see Section 1),

x
1 e

for the exponential model - e Let e have the natural conjugate

prior with integer a , then

(2.16) P 2(b + T) < 6 < 2(b + T) D] 1 - a
( a [2 (a + k)] X a [2(a + k)]

Proof:

Since e has the natural conjugate prior distribution for the model

x

91
9-e , then X = has the natural conjugate prior for the model

e
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Xe-X A (2.16) follows from (2.14).E

2.9 Example

We use the data in Exercise 7, Chapter 1, to illustrate the

calculation of the credibility limits of (2.16). In this case, n =13

k - 10, and T -275 weeks. Figure 2.1 displays prior and posterior 95%

credibility limits for selected values of the natural conjugate prior

_x

parameters for the exponential model -e For the improper prior

Tr(8M corresponding to a - b - 0 we cannot calculate a 95% interval.

However, the posterior is proper in this case and we can calculate a 95%

credible interval. This is the same as the usual sample theory 95% con-

fidence interval. It is, however, wider than posterior credible intervals

corresponding to proper priors. The credible inter-val corresponding to

the prior with a - 8 , b - 120 was computed using Corollary 2.7. For

this relatively small number of failures (k - 10) , the choice of a

prior is crucial and should be considered rather carefully.

2.10 Example: Credible Limits on the Failure Rate Average

In many life test data collections only the numbers of failures in

specified time intervals are recorded, and not the more informative times

of failure. For example, as part of its quality assurance program, a

company producing semiconductors, routinely selects components from a

product batch and subjects them to an accelerated life test. Speci-

fically, early failure is induced by operating the components in a high

temperature environment. At the end of each week, components are examined

and those which do not meet specifications are designated as failed.
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In Table 2.1, the results of testing n = 840 semiconductors are recorded

for a 3 week period.

TABLE 2.1

SEMICONDUCTOR LIFE TEST DATA

Time Interval, hours Observed Number of Failures

0 - 168 9

168 - 336 6

336 - 504 13

def
Let N(t) be the number of failures in [O,t] and p = F(t)

the probability of failure, in the interval. Then

(2.17) P[N(t) = k I p] = nlk 
p k( 1 _ p)n-k

From Table 2.1 it is evident that failures are, relatively speaking,

rare events. Thus, a Poisson distribution approximation to the binomial

may be justified; i.e., P[N(t) - k I pi  k! e- n  Note also that

the MLE for p in the first interval [0,1681 is p = 0.01 . This

suggests the approximation

p = 1 - exp f r(u)d =f r(u)du

0 0

lt
Let A1 - t r(u)du , the faiZure rate average in the first time interval.

0

(If the failure rate is constant, then of course so also is the failure
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rate average.) Using these approximations we obtain for the interval

(Ot]

k

L(X I k, t) k! e-nt

The natural conjugate prior is easily seen to be:

baAa - 1 -bA
7(X) - r(a) e

It follows that the posterior is given by:

(b + nt)a+k' a+ k - 1 -(b+nt)Xr(X I k , t) r(a + k) e

For example, suppose we choose as our hyper-parameters for the prior

a -3 3distribution a - 4 , and = or b - 4 x 10 . Using Theorem 2.6,

we can compute 95% credible limits on the failure rate average. For the

first time interval of 168 hours, we have

P8 70 2 0252(a + k)] X.9 751
2 (a + W

P " = 2(nt + b) - -- <  2(nt + b)

1.44 x 10- 4 1 n , k , a , J = 0.95

If we judge failure rate parameters for distinct time intervals to be

independent, then it follows that they are also independent with respect

to the joint posterior distribution. Using this fact a joint posterior

distribution for failure rates for all three time intervals can be easily

calculated.
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3. THE WEIBULL DISTRIBUTION

Whenever possible, the choice of a life distribution model should

be based on the underlying failure mechanisms. Simple structures com-

posed of statistically independent componts have been used to derive

life distribution models valid when the number of structural components

is very large.

Suppose a structure of n components fails as soon as k com-

ponents fail. For example, each of the ,-trands whose lifetimes under

stress are recorded in Table 1.1, Chapter 1, is composed of approximately

270 filaments bound together by an epoxy. If strand failure coincides

with the kth failure of filaments, then structure lifetime Ck,n is the

kth smallest of n lifetimes. If also component lifetimes are judged

identically distributed and independent, then there are only two possible

limiting structure life distributions in the sense that there exist

sequences of normalizing constants {a } , {Xnn, such that for all
nsnl nnl

real x :

lim P{An( k,n - an) < x}
n--

exists. The limit is either

X (x-a) Ic
(3.1) (k- )! f e uukd , a , a > 0 , x > a > 0

0

or

exp [A (x-a) ]
1 C -Uk-ldu

(k - 1)! e uu < x <

(3.2) 0

-< a < c X > 0
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[Smirnov (1952)]. In both cases a is a location parameter and X is

a scale parameter while a and k are shape parameters.

If k - I , then (3.1) becomes

(3.1') W(x I a , X , a) - 1 - exp {-[X(x - a)] I , x > a > 0

the Weibull distribution, and (3.2) becomes

(3.2') A(x I a , X) - 1 - exp t-e ( x - a), < x <

Thus, if X is the structure lifetime, then either X or exp (X) has

a Weibull distribution. The failure rate for the Weibull distribution

of (3.1') is

rW(x) - aa(x - a)a - I for x > a

and 0 elsewhere. In the second case it is

(3.4) r A(x) X exp [X(x - a)j

For all parameter values, (3.4) is increasing in x . Hence, if we wish

to allow the possibility that the failure rate may be decreasing we must

choose the Weibull model, (3.1'), with a < I

The Waibull model appears to furnish an adequate fit for some strand

lifetime data with estimated values of a less than 4. On the other

hand, it has been empirically observed that for strength data, estimates

for a using the Weibull model are often large (> 27 in some cases).

This suggests that (3.2') may provide a better model for strand strength

data.
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Inference for the Weibull Distribution

The Weibull life distribution model has three parameters: a , ,

and a . The parameter a > 0 is a threshold value for lifetime; before

time a we expect to see no failures. If there is no physical reason

to justify a positive threshold value, the analyst should use the two

parameter Weibull model. The most simple model compatible with prior

knowledge concerning physical processes will often provide the most in-

sight. The Weibull density is

(3.5) f(x a , , A) - aX(x - a)a- e-

for x > a and 0 elsewhere.

Usually we wish to quantify our uncertainty about a particular

aspect of the life distribution, such as the probability of surviving

x hours. For the three parameter Weibull model, this is given by:

(3.6) F(x I a , X , a) - exp {-[X(x - a)]' }

It is clearly sufficient to assess our uncertainty concerning a , X

and a .

Suppose data are obtained undee the General Sampling Plan (Section 1).

Let x,,x 2 ' ... , k denote the unordered observed failure ages and n(u)

the number surviving until age u . Then by Theorem 1.6 in Section 1,

the likelihood is given by:

L(a , a , X I D)

C a(k a)] 1 in(u)(u - dici A [f x x p ( /
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for a < x. and a , X > 0 . Suppose there are m withdrawals and we

pool observed failure and loss times and relabel them as:

(0) . .. (l) < t(2)- < t(k+m) < t

Then, for a < xi , i = 1,2, ..., k , we have

f n(u)(u - a)-idu

a

t (i) t

(n +J)f ( ) d n-k-m u a du.
i-1 t (i-) t (k+m)

Observation is confined to the age interval [0,t]

Two important deductions can be made from (3.7):

1. The only sufficient statistic for all three parameters (or

for a and A alone when a - 0) is the entire data set.

2. No natural conjugate family of priors is available for all

three parameters (or for a and X alone when a - 0).

Consequently, the posterior distribution must be computed

using numerical integration. [see Diaconis and Ylvisaker

(1979)].

For most statistical investigations, a and perhaps also a

would be considered nuisance parameters. By matching our joint prior

density on a , X and a with the likelihood (3.7), we can calculate

the posterior density, 1T(a , X , a I D) . For example, if a is

considered a nuisance parameter, then we would calculate the marginal
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density on A and a as:

X( , I D) r (a , a X I D)da

0

Credibility Regions for Two Parameter Models

Let (a , A I D) be the posterior density for a two parameter

model such as the Weibull model above with scale parameter X and

shape parameter a . To find the so-called "highest posterior density"

credibility region for a and A simultaneously (Section 2), we find

a constant c(s) by sequential search such that:

(3.8) R- [(a , A) I ( , A I D) >c(B)]

and

ff (a , A D)dadX •

R

The region R defined above is a (l00) percent credibility region

for a and A . For unimodal densities such regions are bounded by

a single closed curve C which does not intersect itself (i.e., a

"simply connected region").

To illustrate the use of Weibull credibility regions we have computed

credibility regions corresponding to the data in Tables 3.1 and 3.2.

Twenty-one pressure vessels were put on life test at 68% of their ultimate

mean burst stress. A pressure vessel is filled with a gas or liquid and

provides a source of mechanical energy. They are used on space satellites

and other space vehicles. After 13,488 hours of testing, 5 failures were
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TABLE 3.1

ORDERED FAILURE AGES OF PRESSURE
VESSELS LIFE TESTED AT 68% OF MEAN RUPTURE

STRENGTH (n -21 , OBSERVATION TO 13,488 HOURS).

Number of Age at Failure
Failure (hours)

1 4000

2 5376

3 7320

4 8616

5 9120

TABLE 3.2

ORDERED FAILURE AGES OF PRESSURE VESSELS
LIFE TESTED AT 68% OF MEAN RUPTURE STRENGTH

(FAILURES BETWEEN 13,488 HOURS AND 20,568 HOURS)

Number of Age at Failure
Failure (hours)

1 14400

2 16104

3 20231

4 20233
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recorded. After an additional 7080 hours of testing, an additional 4

failures were recorded.

Figure 3.1 displays credibility contours for a and X after

13,488 hours of testing and again after 20,568 hours of testing. The

posterior densities were computed relative to uniform priors. The

posterior density computed after 20,568 hours could also be inter-

preted as the result of using the posterior (calculated on the basis of

Table 3.1 and a flat prior) as the new prior for the data in Table 3.2.

A qualitative measure of the information gained by an additional year

of testing can be deduced by comparing the initial (dark) contours

and the tighter (light) contours in Figure 3.1.

To predict pressure vessel life at the 68% stress level, we can

nurnirically compute

P[X > t I D] f ff e(t.rc I I D)dcidX

0 0

where Ir(c , X D) must be numerically computed using the given data,

D .

If the mean life

e-r(l +)

or the standard deviation of life are of interest, their posterior

densities can be computed by making a change of variable and integrating

out the nuisance parameter. For example, if a -0 in the Weibull

model and we are interested in the mean life, 6,we can use the

Weibull density in terms of a and 6
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FIGURE 3.1

HIGHEST PROBABILITY DENSITY CONTOURS FOR a AND ) FOR
KEVLAR/EPOXY PRESSURE VESSEL LIFE TEST DATA. THE PRESSURE
VESSELS WERE TESTED AT 68% STRESS LEVEL.
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f(x a , e) - x exp

to compute the joint posterior density n(a , 8 D) The prior for

a and X must be replaced by the induced prior for a and 6 .

This may be accomplished by a change of variable and by computing the

appropriate Jacobian. The marginal posterior density of 8 is then

vT(6 I D) mf "(a , 6 1D)da

0

This can then be used to obtain credibility intervals on .
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4. EXERCISES

1. Twenty-one pressure vessels are subjected to a static stress

equivalent to 68% of the mean rupture stress. Testing begins

June 22, 1977. Failures as of November 1, 1979 are recorded

in Table 4.1 in hours.

TABLE 4.1

PRESSURE VESSEL FAILURE TIMES IN HOURS

4000

5376

7320

8616

9120

14400

16104

Use a time transformed exponential model with a 1.3 (see

Example 1.1). Plot the posterior density of Xarelative

to a uniform prior. Let R 0Cx) - x , what is the MLE?

The mean life for this model is

e - r(l + l/a)Il/

What is the mode for the corresponding posterior density for e ?

2. The probability densities (1.12) and (1.13) were calculated

for the case where unit i is observed until either it fails

at age x i or is withdrawn from observation at age Zt ' Suppose

we have only ordered observations xCl .. x
(1 (2) - ( k)

and -i2 i) .e., we no longer know which

unit fails at age x ()or was withdrawn from observation at
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age M ) . Recalculate the likelihood (1.12) ana (1.13) for

this case. (Hint: see Example 1.9.1

3. Suppose only the ordered failure ages x(l) ! (2)<**"' X (k)

and the ordered ages at withdrawal Z(1) -e(2)  . (m)

are given. Furthermore, suppose withdrawal age W is random

with withdrawal rate p(.) , the analogue of failure rate.

Show that the exact expression for the likelihood (1.16) is

now

L(r(u) , p(u) , u > 0 1 D)

t: nz W p~t~)) ep fn(u)p(u)du]

t=l0

s:l 0~

where n(u-) is the number surviving just prior to age u

4. Let the failure rate function be

Xl 0 < x < t1

r(x) -
X 2 ' > t 1I

Given n(u) , the number surviving until time u > 0 and

observed failure times

x <x <.<(1) < x(2)- x (k)

use (1.16) to compute the likelihood up to a constant factor

independent of AI and X 2 * Assume noninformative stopping
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rules are in effect and that t is known.

5. Define the pth percentile, x , as the solution to
p

x

f f(x e)dx p

0

1

For the exponential model f(x 1 6) =--1 exp --jand the

natural conjugate prior on 6 , find the Bayes estimator

for x corresponding to squared error loss. Assume thatP

k failures and T total time on test have been observed.

If, for example, p - 0.01 then x might qualify as theP

warranty period. The warranty would then be valid for

Xo hours (months, years, etc.)

6. Let x p(e) be the pth percentile for the exponential model

f(x 1 6) exp as described in Exercise 5. For the

data in Exercise 7, Chapter 1, compute an upper 99% credible

interval on x . Use the same natural conjugate priorP

specified in Exercise 7, Chapter 1.

7. Show that minimum E [16 - al] is attained when a satisfies
a iT

a

S7 (6)de I
f 2

i.e., a is the median for n . [The same result holds for

the posterior density. See (2.6)1.

8. Using the data in Table 2.1, calculate 95% credibility intervals

on
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168

I - f r(u)du

0

336

2 f r(u)du

168

and

504

X =1 f r (u) du

336

Use natural conjugate priors with a = 4 and b 4 x 103

for both X1 ) X2 and X3 " Suppose we judge them indepen-

dent. Initially, 840 semiconductors were put on life test.

10. Let F(x I a , X) - 1 - exp [-(Xx)a ] . Assume a is known

and let yX . Let

ba a-i -by

( -= (a)

Calculate the Bayes estimator with respect to squared error loss

of the probability of survival until age x given k failures

and n(u) , n > 0 where n(u) is the number of units surviving

until age u

11. Assume the exponential model Xe-Xx and suppose k failures

and T total time on test have been observed. Using the

ba a-l -bX

natural conjugate prior n(X) - T(a) , compute the posterior.

Now suppose that the resulting posterior is used as a prior with
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the sone data, i.e., no additional data are collected to compute

a new posterior. Furthermore, suppose that this process is

repeated infinitely often with the same data.

(a) What wi.Ll be our final conclusion?

(b) What is the fallacy in this inference procedure?

12. Suppose n units are put on life test. The stopping rule is

as follows. If the first failure occurs before timeti

stop at the time of first failure. Otherwise continue testing

until time t 2 > t 1 . Compute the likelihood for the exponen-

tial model. is the stopping rule noninformative? Why?

13. Consider the following life test for n + 1 units, each with

life distribution F(- 6) . A unit is selected at random

and life tested to failure, say at time x . This failure

time is then used to provide the stopping rule: test n units

to time x . Is this stopping rule informative relative to e
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5. NOTES AND REFERENCES

Section 1

In the General Sampling Plan we needed to assume that any stopping

rules used were noninformative concerning the failure distribution. The

need for this assumption was pointed out by Raiffa and Schlaiffer (1961).

Examples of informative stopping rules were given by Roberts (1967) in

the context of two stage sampling of biological populations to estimate

population size (so-called capture-recapture sampling).

Section 2: Unbiasedness

The posterior mean is a Bayes estimator of a parameter, say e

with respect to squared error loss. It is also a function of the data.

An estimator, 0(D) , is called unbiased in the sample theory sense if

EFI1(D) 1 8] = e

for each 0 E 0 . No Bayes estimator (based on a corresponding proper

prior) can be unbiased in the sample theory sense [Bickel and Blackwell

(1967)].

Most unbiased estimators are in fact inadmissible in the sample

^ T
theory sense with respect to squared error loss. For example, 8(D) =

is a sample theory unbiased estimator for the mean of the density

x
1 6e under sample plan (a) of Chapter 1. However it is inadmissible

in the sense that there exists another cO(D) with c # 1 such that,

for all 8

Er8D~-82 2EFc[[c(D)-] I 6] < EF[[6(D) - 8] 8]
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To find this c , consider Y - e(D) and note EY I Then we

need only find c such that

EF[(CY- 2 61

is minimum. This occurs for cO =_M which is clearly not 1. Hence

EY2

6(D) is sample theory inadmissible. Sample theory unbiasedness is

not a viable criterion.
T

For large k , 6(D) - - will be approximately the same as our Bayes
k

T
estimator. However, is not recommended for small k

Since tables of the chi-square distribution have in the past been

more accessible than tables of the gamma distribution, we have given

the chi-square special treatment. However with modern computing facili-

ties, we really only need to use the more general gamma distribution.

Confidence Intervals

A (1 - a)100Z confidence interval in the sample theory sense is one

such that if the experiment is repeated infinitely often (and the interval

recomputed each time) then (1 - a)100% of the time the interval will

cover the fixed unknown true parameter 6 . Since confidence intervals

do not produce a probability distribution on the parameter space for 6

they cannot provide the basis for action in the decision theory sense;

i.e., a decision maker cannot use a sample theory confidence interval to

compute an expected utility function which can then be maximized over his

set of possible decisions.
-Xx i

If for Xe we choose the improper prior, ir(N) , then the

chi-square (I - a)100% credible intervals and the sample theory
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(1 - a)100% confidence intervals agree. Unfortunately, such improper

credible intervals can be shown to violate certain rules of logical

behavior. Lindley (personal communication) provides the following

simple illustration of this fact for the exponential model Xe-Xx

Suppose n units are put on test and we stop at the first failure, so

that T - nX(l ) . Now T given X also has density Ne- Ax  so that

(ln 2) is a 50% improper upper credible limit on X ; i.e.,
T

(51 [ (n2 T ( = 0.5

Suppose now that T is observed and we accept the probability

statement (5.1). Consider the following hypothetical bet.

f (1n2) -T(i) if X< T we lose the amount e

(ii I X (ln 2 ) . -T(ii) if X > T we win e

We can then pretend that the true A is somehow revealed and

bets are paid off. If we believe statement (5.1), then given T

such a bet is certainly fair.

Now let us compute our expected gain before T is observed

(preposterior analysis). This is easily seen to be (conditional on X)

ln 2

_ Ae-Xte-tdt + e- Xte-tdt 1 X 

0 1n 2

which is negative for all X > 0 . Note that this is what we subjectiveZy
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expect, since as (improper) Bayesians, every probability (and presum-

ably even an improper prior) is subjective.

The contradiction lies in the observation that

1. Conditional on X and prior to observing T , our expected

winnings are negative for all A;

2. Conditional on T , our expected loss is zero (using the

improper prior i (X)

The source of the contradiction is that we have not measured our

uncertainty for all events by probability. For example, we have

assigned the value -to the event A < A 0for all A 0 > 0;ie.

0 0

f 7r(X)dX f . dX - See Appendix B for a proof that for any set
o 0

of uncertainty statements that are not probabilistically based (relative

to proper distributions), a system of bets can be constructed which will

result in the certain loss of money. A bet consists of paying pz < z

dollars to participate with the understanding that if an event E occurs

you win z dollars and otherwise you win nothing.

Section 3

The Weibull distribution is one of several extreme value distri-

butions. See Barlow and Proschan (1975), Chapter 8, for a more advanced

discussion of extreme value distributions.
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