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The research reported in the paper reprinted within was started by the two

authors at the U.S. Naval Research Laboratory, Washington, D.C. Soon

after, one of the authors (W.A. Kuperman) transferred to SACLANTCEN where

he performed most of his work. In addition, a complete computer model for

performing the calculations has been developed at SACLANTCEN.
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Spatial correlation of surface.generated noise in a stratified
~ocean

oceW. A. Kuperman

SACLANT ASW Research Centre, La Spezia, Italy

and Naval Research Laboratory, Washington, D.C 20375

F. Ingenito

= Naval Researdz.L apry. Washington. D.C. 20375
=- (Receive8 May 19; ccepted for publication 3 March 1980)

A model is developed for the calculation of the spatial properties of the noise field produced in a
stratified ocean by the action of wind at the surface. The random noise sources are represented by
correlated monopoles distributed over an infinite plane located an arbitraiy depth below the surface.
Wave-theoretical methods are applied to derive expressions for the intensity and spatial correlation of the
noise field. A normal-mode representation of the noise field is used to reduce these expressions to forms
which allow physical interr,-eiation and are suitable for numerical computation. Examples are given of
intensity profiles and spatial correlation in the vertical for three generic sound-speed profiles. The results
show that the sound-speed profile and the presence of the bottom can be important in determining the
spatial -properties of the noise field. An example is given of a calculation of the horizontal spatial
correlation using the fast field program (FFP).

PACS numbers: 43.30.Nb, 43.30.Cq

INTRODUCTION In this paper, using wave theory, we develop a model
of surface generated noise in which the ocean is strati-

Detection of acoustic signals In the ocean is always fied in depth. The acoustic properties of the ocean bot-
performed against a noise background. Arrays of sen- tom are included, as are the statistical properties of
sors may provide some discrimination against noise, the surface. In Sec. I we derive a general expression
the degree of discrimination being expressed by the ar- based on wave theory for the cross-spectral density of
ray gain. The array gain, defined as the ratio of the surface generated noise. in Sec. 11 we apply this form-
signal to noise of the array output to the signal to noise alism using a normal-mode representation of the
of the output of a sio.gle element, can be shown to de- Green's function for the problem. This allows us to
pend on the spatial correlation of the noise field.' in ad- gain some physical insight into how the noise is spatial-
dition, recently developed optimal array processing ly distributed. Section III presents some numerical re-
techniques 3 require knowledge of the spatial correla- suits for realistic ocean environments. In Appendix A
tion of the noise field, we show that the results derived in Sec. I reduce to

earlier results4 when the appropriate limits are taken.One of the major components of the ambient noise FiayApni prstsoepreynltir-

field in the ocean is produced by the action of the wind Finally, Appendix B presents some purely analytic re

at the surface. Previous theoretical studies of the spat- suits for an idealized waveguide.
ial structure of surface generated noise have been car-
ried out with deep water applications -in mind.4 - Thus, 1. DERIVATION OF THE SPATIAL PROPERTIES OF
the ocean has been modeled as a homogeneous half- SURFACE GENERATED NOISE
space which allows straight-line propagation without re-- The model geometry is shown in Fig. 1. The figure
flection, greatly simplifying the calculation. Such mod-
els are of doubtful validity in shallow water where theoverly-

acoustic field interacts strongly with the bottom. Cox ing a semi-infinite bottom, the density and sound speed
has pointed out that the assumption that noise arrives of the water and the bottom given by p r es(z) and
only from above the horizontal is counter to experi- P2presented be-olow is also applicable to more complex environments.
mental evidence. He shows how the spatial structure of For example, attenuation in the water and the bottom
the noise field is related to a plane-wave directivity~~~~~~function in terms of a sum of angular harmonics. The cnb nldda a aee otmwt iierg

fcints o tesofasu oan harmonics.anntur e rate t idity. Figure I is merely meant to suggest that the en-
coefficients of the harmonics :tan in turn be related to
deep water experimental results. We note however that vironment must be stratified in depth, thus ensuring
in deep or shallow water the sound speed is not constant seabityothwvequin.ntedvlpm t

below, we drop the subscripts distinguishing the sound
in depth, a fact which may have a profound effect on the seds ie wte adbot dnte the sound
noise field, as it does on the signal field. Since the speeds in the water and bottom "rod denote the sound

ocean is horizontally stratified it is quite possible that speed anywhere in the medium by c(z).
the acoustic field cannot be expressed in terms of the Consider an infinite plane parallel to the surface and

same weighted set of plane waves (same directivitt located below the surface at depth z'. Assume that at
function) at each of the hydrophones of an array. partic- each point in the plane there is a monopole source of
aarly a large aperture vertical array. strength s(r'. I), where r' is the radial vector in the

1988 J. Acoust. Soc. Am. 67(6), June 1980 1988



.- SURFACE simplify notation, we shall usually drop the subscript

p1,c1 (z) SOURCE PLANE The cross-spectral density is a measure of the spatialPjC coherence of the noise field. To obtain the cross-spec-

tral density we form the product of qp(r,, 4) and
-)*(r, z2) and take the ensemble average (9,* is the com-

(1plex conjugate of Vp). Thus,
(r2.22) V (r,, Z,)V*(r2, Z2))

(Z) BOTTOM = ff d2r'd2r"(S(r')S(r-))

x G(rj, r'; z, z l1'* (r2, r"; z2,z'), (7)

where the angle brackets indicate an average taken over
the random function S. It will be convenient to use a
transverse Fourier representation of the Green's func-

FIG. 1. The model geometry showing the source plane, at tion8 which we write as
depth z, below the surface, and the two field points (r1 ,zl) and
(r2,z2). G(r, r'; z, z')

f dnvg(q; z, z')expli n - (r - r')] (8)
source plane and t is the time variable. Let the func- 2r

- ~tion s(r', 1) be a random variable. These monopoles will weeg,~~' aife h qainf
couple into the water column as dipoles because of the
pressure release surface; this effect is automatically [k+(I-2 g=- 6(z-z'), (9)
incorporated in the wave-theoretic treatment used. We dZ2
use monopole sources because they represent the basic which follows from Eq. (6).
fluctuating volume source7 and more complicated
sources can be considered to be a sum of these sources Using this Fourier representation, we can express the I
appropriately aistributed in space. Therefore, the cross-spectral density function of the noise field as
source function is s(r', t)6(z - z ') so that the field (vel- ( I
ocity potential) in the water column 4 (r,z, t) satisfies
the wave equation 2 ffd 2rdr(S(r,(r)L

- .) t =-s(r', t)s(z - z(1) ) (3I ff d2 nd2 'g(?g;z1 ,z')g-&z'; z,)
where 6(a) is the Dirac delta function.

x expfill - (r, - r')] exp[-ii " (r2 - r ) . (10)
We represent 4b and s by their Fourier transforms r

Now let R=r,-r, and p=r'-r, and assume that the i

(r, z, t) = (20-'12 dw,(r, z) exp(-iwt), (2) spatial coherence of the noise sources, (S(r')S(r")), de-
pends only on p. We denote (S(r')S(r")) as q2 N(p). Sub-

s(r', t) = (2w) ":/A f. dwS,,(r')exp(-iwt), (3) stituting for r, and r in Eq. (10), the integrations over
f ( r" and q' can be performed, resulting in

where w denotes angular frequency. Cw(R,z, z.) * (,p(rl, zj) p*(r2 , z2))

Inserting Eqs, (2)and (3) into Eq. (1), we obtain, after 2 2 dp=N(p)g(j);ZZ,)
some manipulation, J.. 1

(V2 +k2 )V, =-S,(r')6(z-z'); km w/c(z). (4) xg*(q;z2, z)expfi-(R-p)], (11)

Equation (4) has the solution where w is used as a subscript to remind us that the
cross-spectral density function depends on frequency.

(P.(r-Z)=f d r'S,(r)G(r,r';,z,z), (5) Since g and g* depend on the magnitude of 17, but not its
direction f see Eq. (9)), we can perform the integration

where G(r, r'; z, z'), the Green's function of the prob- over the azimuthal angle associated with il, with the re-Ma
lem, satisfies the Helmholtz equation suit that the cross-spectral density function takes the

(V2.k 2 )G(r,r';z,z')=-(l/r)8(r-r')8(z-z ) (6) form

and the appropriate boundary conditions. Equation (5) C,0(R, z,)2rq =fdpN(p)j)
simply states that the total velocity potential is obtained
by summing over all source contributions. We note
here that S, is the spectral strength of the noise where Jo is the Bessel function of zero order. Another
sources and that the total field is given by integrating form for C,,, which is particularly simple, can be ob-

L I-over all frequencies as stated in Eq. (2). In order to tained by expressing N'pg) by its Fourier transform
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P q): enclature that the correlation function of the noise field
is given by

2% (13) ((r, z,,1) 4'(r 2 , z., I +

Then the integration over p in Eq. (11) can be per- (formed, giigC, CR, z,•z2) exp(- iwT) dw, (21)

1K formed, giving-
C(R, z2, z2) 2rq2 fd2Jp(,)g(,; lz') where r is a time delay.

In this paper, we are mainly concerned with the dis-

g* (; Z2 Z )e .(14) tribution oi noise in a stratified ocean, and in particular
(12) can be put into a form which will be useful in situations where the acoustic properties of the oceanIfor later calculations by dcomposing the Bessel func- bottom have a profound effect on the acoustic field.

tion into a sum of Hankel functions Nevertheless, the model should also handle situations
where the bottom is not important, for example, the

JJ,), (H) )(z)4 It '(z)). (15) deep ocean. In Appendix A ve show that the above theo-

where the superscripts denote the Hankel function of retical results reduce to earlier work' where the ocean
first and second kind. Using the relation - - was modeled as a semi-infinite isovelocity half-space.

=Ho'(z) a,:d noting that g and g* are even in q we can ex- II. NORMAL-MODE REPRESENTATION OF THE
tend the integration over q from -- to -. Equation (12) NOISE FIELD
becomes

In this section we apply the results of Sec. I to a
C,(R, zz)=vq2  dpN(p) qdrtl. (1qIR-p) stratified medium, that is a medium in which the sound

velocity and de:.sity of the medium are functions of
X A;Z'.Z,)* (1; , Z(16) depth z only. The Green's function can be expressed in

From the expressions for the cross-spectral density several equivalent ways; in this section we use a nor-
Fothe xr;ssionf(r ; ) (t6) cros-ptcra dest m only heGreen'suntion c e rese cin

function of the noise field [Eqs. (12). (14), and (16)], maR-mode representation in which the Green's function
is expanded in terms of the normal modes of the sys-we can immediately make some comments about its te .I h ed u sfntei e t it p rp it

structure. In any horizontal planc, it is independent of tem. If the medium is finite in depth with appropriate
asute. pin conditions given at the boundary, the normal modes will

- absolute position and depends only on the horizontal: -= be discrete and the propagating modes will be finite in
vector R connecting the field points. In the vertical, the bt
spatial coherence depends not otnly on separation dis- number. However, if the medium is infinite in depth,there will, in general, exist a finite number of discrete
tance but also on the absolute depth of the field points, modes and an infinite set of continuous modes. The

- Hence, in general, the noise is not spatially stationary Gres fnctin ensin se l thnos ofa.dis-
in the vertical. Green's function expansion will then consist of a dis-

crete sum plus an integral over the continuous modes.
An important special casr s that of uncorrelated For simplicity, we restrict ourselves to that part of

noise sources. Equation (16) is an expression for the the noise field which can be represented by a discrete
cross-spectral density function of the noise field as a
function of the spatial coherence of the noise sources set of normal modes. From the above discussion we
N(p). For uncorrelated noise sources, it has been see that this will be a complete description for the
s n apressure-release/rigid waveguide discussed in Appen-

f sdix B, but not for more realistic ocean models. The
N(p) = 28(p)/k~p. (17) latter usually consist of a layer of water and several

Using Eq. (17) in Eq. (16) we get sedimentary layers overlying a semi-infinite basement.
However, by making the acoustic impedance of the

C ,) k basement very high, we can minimize the importance

- • of the continuous modes.

Xg(1;z,z')g*(7;z 2 ,z1. (18) The Green's function g(q; z,z') can be written in terms ME

When we set R 0 and z, z z in the expression for of the normal modes as follows':
C,,,, we obtain a quantity proportional to the intensity of ; pz ) (22)
the noise field at a point. Equation (16) then reduces to 2s f q2 -k tai

fO Z )1,,() ZV2 f p~)where U,,(z) and k. are the normalized mode amplitude
C. pN,4p) function and the wavenumber of the nth mode and are

( solutions of the eigenvalue problem defined by the equa-
r/ dr/Ho -(rpljg(l; z, z')j2 (19) tion

or alternatively, from Eq. (14), + [ - k (23)de

. 2Xq 2 f d-i P(9) lgbq; z, z') 12. (20) with the appropriate boundary conditions. In Eq. (22)
The expressions given by Eqs. (18), (19), and (20) will p,(z') is the density of the medium at the depth z' and
be useful later. We also mention for clarity in nom- k(z) w c(z) with c(z) being the sound speed.

1990 J. Acoust. Soc. Am., Vol. 67, No. 6. June 1980 W. A. Kuperrman and F. Ingenito: Surface generated noise 1990



We assume that k,, is a complex number of the form Then Eq. (26) reduces to

k,= .,+i., (24) q fd N:

with K.,, a, > 0; a,, the imaginary part of k, is the 8 dpN(p)

modal attenuation coefficient. It is interesting to note
that we must include attenuation in the system to obtain ×F UU J0 (KIcR- p),
a finite cross-spectral density function. This is be- a. *

cause sound trapped by the layered medium (represent- (29)
ed by the discrete modes) suffers cylindrical spreading whwhl th muto nryraitdb h os where we have neglected the n *m terms. Finally, when z

ewhile the amount of energy radiated by the noiset
sources increases as the square of the range from the the noise sources are completely uncorrelated, the
field points. Hence, the contribution to the intensity of cross-spectral density takes the simple form
distant sources increases with range and the total in- C _(R,4,z 2 )
tensity diverges. Any amount of attenuation in the sys- 1q22( ,) ,(z,)]2U( )U (
tern will cause the intensity to decay exponentially with = q2 ,Zz'E' U jo(, cR). (30)
range and ensure convergence. It is important to note 2
that the resulting cross-spectral density functions and From Eq. (29) and Eq. (30) it is obvious that the
intensities will depend on the attenuation chosen. structure of the noise field is highly dependent on the

attenuation; in shallow water the attenuation is usuallyWe now insert the Green's function of Eq. (22) into the dominated by the acoustic interaction with the bottom
expression for the cross-spectral density function
[Eq. (16)) and evaluate the 17 integral. From Eq. (22) sediments.
we see that the integral of Eq. (16) has simple poles at In Appendix B we evaluate the cross-spectral density

function for a case which can be done analytically: an
(25) isovelocity waveguide bounded above by a pressure-re-

of which the poles at +k. and -k.* are in the upper half- lease surface and below by a rigid bottom. Though it is
plane. Using standard methods of complex integration not very descriptive of a real ocean environment, the
we close the contour in the upper half-plane with a analytic calculations are helpful in understanding how
semicircle of large radius and evaluate the residues of surface noise is distributed in a waveguide.
the integral. The result is

-2  I ,/ ill. NUMERICAL RESULTS AND EXAMPLES
cJ(R Z19 z2) : 4 ( dpN(p) In this section we present sample calculations which

Uexhibit some of the properties of the spatial correlation
and intensity of the noise-field. Most of the calculations
were made using the normal-mode representation of the

xf..["H(klR-P)-i() (-k.:IR-pI)I noise field presented in Sec. II, but we emphasize that
the model presented here is not bound to a specific rep-

(261 resentation; any wave-theoretical representation can be

where used. As an example, we will also give some resu!ts
calculated by a modification of the fast field program"0

f,. = l/(k,- kr). (27) (FFP), where the function g(q; z, z') is calculated di-

The quantity f,,, is a measure of the coherence be- rectly and Eqs. (18) and (19) are used.
tween the normal modes which make up the noise field. First we present three cases which illustrate the ef-
For example, if f.. vanishes for n * m, then the noise fect of sound-speed profile and frequency on the intens-
field reduces to an incoherent sum over the normal ity and spatial coherence of the noise field. In all three
modes. Writing f,, in terms of the complex k,'s and cases the water depth is 50 m and the bottom consists
assuming that K,>> Cl., >, CV.i, we get of 20 m of sediment overlying a hard basement. The

(1/(cZ,- 'c=) for rn, sound speed, density, and attenuation coefficient of the
ffor= {(28) sedimentary layer are characteristic of sand-silt-

1/4ij, for n = m. clay." The noise sources are assumed to be uncorre-
We see that the n= m terms in the sum of Eq. (26) be- lated and located 0.5 m below the surface; they are

come infinite in the absence of attenuation. This is due equivalent to sources at the surface with cos direction-
to the contributions of distant sources, as discussed ality.
above. The n * m terms remain finite because they are The three sound-speed profiles: isovelocity, down-
products of different modes with rapidly oscillating ward refracting, and upward refracting are shown in
phases which give negligible contribution from distant Fig. 2. The corresponding noise intensities are shown
sources. Equation (28) also indicates that if the attenua- in Figs. 3, 4, and 5 as functions of depth for the fre-
tion coefficients a, are much smaller than the smallest quenctes 200, 400, and 800 Hz. The results for the iso-
separation between eigenvalues, then the noise field can velocity and downward-refracting cases are qualiatively
be approximated by an incoherent sum of modes. This similar. Both cases show decreasing noise intensity as
is often the case in shallow water. We can further sim- a function of depth, with a faster rate of decrease for -

plify Eq. (26) by approximating k, by its real part x,. the higher frequencies. The intensity decrease is

1991 J. Acoust. Soc. Am.. Vol. 67. No. 6. June 1980 W. A. Kupeima an F. ingeni1o- Surfam genwated noise 1991 Q
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(a) M (d 200 Hz 400Hz 800 HZ

FIG. 2. Isovelocity. downrd-refractin, and upward-re- FIG. 4. Noise intensity as a function of depth for the down-
fracti~g sound-speed profiles used in the calculations. ward-refracting profile shown in Fig. 2(b) and for the frequen-

cies 200. 400, and 800 liz.

caused by the frequency-dependent attenuation of the
system. For the downward-refracting profile the atten- eous medium (Cron and Sherman4 and Appendix A) are

uation, which is dominated by the bottom, is greater, also shown. Again ie upward-refracting case is the

resulting in a more rapid decrease. The peak in intens- most interesting. I this case, as mentioned above, a

ity which appears at all three frequencies in the up- few low-order modes dominate the noise field, result-

ward-refracting case is caused by the low-order modes. ing in high values of coherence throughout the water

which are the dominant contributors to the intensity, column. In the isovelocity and downward-refracting

The low-order modes are trapped in the upper part of cases many modes contribute to the noise field and the

the water column and hardly interact with the bottom. coherence is much closer to the Cron and Sherman re-

Thus, their attenuations are very tamall and contribu- sults.

tions from distant sources are important. The domin- Finally. we give a calculation of the spatial correla-
ant low-order modes are strongest in the upper part of tion in the horizontal direction. We have assumed an
the water column, resulting in the observed peak. isovelocity water layer 100 m thick with a sound speed

For the noise intensity plots shown in Figs. 3, 4, and of 1500 m/s and a single semi-infinite bottom of unit

5 no absolute levels are given. The model does not pre- density. sound speed of 1600 m/s, and an attenuation

dict the levels of the noise sources, expressed by q2 in coefficient of I dBiA. Figure 9 shows the horizontal

Eq. (11), which we expect to be dependent on frequency. spatial correlation at 100 Hz along with the Cron and

For the purposes of these calculations q2 has been set Sherman result for comparison. For this environment

equal to unity in all cases, the model spectrum consists of a discrete part and a
continuous part, both of which contribute to the noise

Figures 6, 7, and 8 show the spatial correlation func- field. The correlation was calculated using a combina-
tion for the same cases as above. (For a single fre- tion of the normal-model and FFP methods. Thus, Eq.
quency and zero time delay the spatial correlation func- (26) was used for the discrete normal-mode part and a
tion is equal to the real part of the cross-spectral dens- modification of Eq. (18) was used for the continuous-
ity.) For comparison the results for surface sources mode part. In Fig. 10 we have plotted the discrete and
having cosi directionality in a semi-infinite homogen- the continuous contributions separately, both normal-

ized, to illustrate the differences between the two con-
MMINUrT We) tributions. The continuous part. while more coherent

O =  
1 t i I i I I A I I A I

SC * E50 - f-Y I"> ids

FIG. 3. Noie intensity as a function of depth for the isovelo- FIG. 5. Noise intensity as a function of depth for the upi~.rd-
city profile shown in Fitg. 2(a) and for the frequencies 200. refracting profle shown in Fig. 2(c) and for the frequencies
400. and SOO liz. 200. 400. and $00 lz.

1992 J. Acoust. Soc. Am.. Vol. 67. No. 6. June 1980 W. A. KuPerrnan and F. I ngenito: Surface generated noise 1992
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FIG. 8. Vertical spatial correlation functions for the upward-

FIG. 6. Vertical spatial correlation functions for the isovelo- refracting profile shown in Fig. 2(c) as a function of DIA,
city profile shown in Fig. 2(a) as a finction of D/X. where D is where D is the receiver separation, X the acoustic wavelength.
the receiver separation, X the acoustic wavelength, and with and with one receiver fLxed at 10 m. Three frequencies are

one receiver fixed at 20-m depth. Three frequencies are shown: -- 200 Hz; --- 400 Hz; and -- - -- 800 Hz. Also

shown: - 200 Hz; ... 400 Hz; and ... 800 Hz. Also shown is the result for a semi-infinite homogeneous medium
shown is the result for a semi-infinite homogeneous medium calculated from Eq. (A22): -.

calculated from Eq. (A22): -.

for small receiver separations (relative to a wave-

,1 length), quickly becomes less coherent than the discrete
-4.0- . part, the latter maintaining some degree of coherence

-3.0 over several wavelengths.
-5.0 The relative importance of the discrete and continuous

I. "-parts of the normal-mode spectrum is dependent on the
-21) total loss of the system. For low loss the discrete

-10 -.-

A -

0-

2.0 cc \

3.0-

-4D0

I ' I I

- 1.0 - 1
SPATIAL CORRELATION 0 to 2.0 30 40

D/'
FIG. 7. Vertical spatial correlation functions for the down-
ward-refractisg profile shown In Fig. 2(b) as a function of D/X. FIG. 9. Horizontal correlation function (solid line) for an iso-
where D Is the receiver separation, A the acoustic wavelength, velocity water layer overlying an Isovelocity semi-Infinite hot-
and with one receiver fixed at 40 m. Three frequencies are tom as a function of D1. where D is the receiver separation
shown - 200 Hz; --- 400 Hz; and ..-.. 800 Hz. Also and A Is the acoustic wavelength. The dashed line s the result
shown is the resuL $or a saml-iMtnite homogeneous medium for a semi-infinite, homogeneous medium [Eq. (A18) with m
calculated from Eq. (A22): -. =11.
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1.0 R fJr- r'l2 + .(z.+ z 1/2.

and k = w/c, where w is the angular frequency of the
source and c is the speed of sound in the medium. The
Green's function in Eq. (Al) is just that of a point

Z source and its image, with the negative sign to satisfy
- I the boundary condition at the surface,
= ,' / \ /"\G(rl, r'; 0. z') =0. (A3)

- / .- To obtain g(; z,, z') we note that's

p 4-. R

-T= -  f fjf_exp{ilv. (r, - V)+ iz _z'j

_ 1.0 ,(A4)
10 2.0 3.0 40

D/A where

FIG. 10. The horizontal spatial correlation for the same case = (k2 -q)/2 fork >if,
as Fig. 9 showing the discrete (-) a ontinuous (-) con-
tributions. both normalized. zi(,? - k2YZ for k2 < Y?.

Thus it follows from Eq. (8) that

modes dominate, as they can be propagated very large A; z, z')
distances from a very large area. In high-loss cases _ zp exp(n.
the continuous modes tend to dominate since they are = 4 -j-xpi i. , ,

important near the source while the long-range contri-
butions of the discrete modes are severely attenuated. Similarly we have that

IV. SUMMARY g'iz 2 ,*')

We have presented a model of surface generated noise it rj,- "

in the ocean in which the random noise sources are rep-
resented by correlated monopoles distributed over an We are concerned with the case z,,z. >z'. Then, from
infinite plane parallel to, and located on arbitrary depth Eqs. (A) and (A6).
below, the ocean surface. Expressions have been de-
rived for the intensity and spatial coherence of the noise A )-

field in a stratified medium based on a wave-theoretical I 1 expji(q z, - 9:z,)] sin(, z')sin(qz') I
treatment. Examples have been given which demon- 4xz  1r,2f:
strate that environmental factors, such as the sound-M

Inserting Eq. (A7) in Eq. (12) we obtain the expression
speed profile and the presence of the bottom, can be
important in determining the spatial properties of the r the cross-spectral density function
noise field. We have also shown that for an isovelocity, cio(R. z,.z 2 )
semi-infinite fluid medium our results are identical to
those of previous investigators. = a-e dpN(p)( jdqJ.(jj'B-pi)
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APPENDIX A: SPATIAL COHERENCE IN A
HOMOGENEOUS SEMI-INFINITE SPACE F' Jo(qJR l- p)expi(z, - )(k2 - :?2 V1

In this appendix we show analytically that the theory
developed in Sec. I reduces to earlier work4 where the sinel, (k - -]
ocean was modeled as a semi-infinite space. For this x 2 q dq

problem, the Green's function is

I *fIe"G(r , r'; z,. z') (A 1) 4ER"ll)
4 I t 4Y Al

where -k3 _/7( i i d/ . (A9)

- R = [Jr, -r'2 [ (z, -z 1') • (A2) We now must make some assumption about N(p).

and Cron and Sherman' have calculated the correlalion func-
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tion for a homogeneous half-space with noise sources N(p)=2ml(kp)-'J*Qrp), (A10)

having coswe directionality distributed uniformly overthe surface. Liggett and Jacobsoe$ have shown that for m; 1. Inserting Eq. (A 10) in Eq. (A8), the angular

cos" directionality is equivalent to assuming omnidi- part of the p integration can be performed, resulting in

- rectional sources with a correlation function given by the expression

C_ _ ,(R;z,,z2)=q'2Smlkhu F=(q)Jo.R)exp iZ(k 2 - ], jz(kz t - 7 d
k 2 -

S+ f'F.(7)J(R)exp!-(zs, +)-' s[,-kz1_ (All)

where Z=z, - z. F.(q) is known, and is given by"2  l4(0.Z)= f "' cos(ZC)dt. (A20)

For on I the integral is easily calculated. The result
fork<q, is

I 2-1k -f;~kf~nJ for k? i. (AZ2) i (.)k-snk)Z2cskl 1 A1

Thus, usingEq. (A12), Eq. (All) becomes Thus, we have, for e=1.

-CJ(R; Z,. Z.) 4 22mnk-2 f (k - 'J0 (,j) tijO. z) =2(kZY'l sin~kZ)+ 2(kZyIicoskZ) - I) (A22)
8

2  For i > I we note that U

(A13) I.(O.Z)=(-Ir' I,(OZ); (A23) IX si 0z'k-f - qdq. (A13) i

To compare with Cron and Sherman's results, we let 5_4R-2

z'- 0 and take the normalized function _.(R; z,.zi. '(0Z)(I)"" 2 Z, I$O,Z). (A24)

Thus (Re denotes the real part) The results expressed by Eqs. (AI8). (A22), and (A24)

e.(R;z,z z) are in agreement with those of Cron and Sherman.

Ref C1(R; z, 4le )] A commeut is in order about the significance of the r

,.. z _ _ _ . second integral in the large parentheses of Eq. (All).
Because of the source correlation function chosen I see

Then we must evaluate the integral Eq. (A10)], the second integral vanishes. We could

4,(RZ) =  (kz- iY" Jo(qRlco|Zk_- - ]q dq. hare taken the sources to be completely uncorrelated by
using the N(p) given by Eq. (17)% then each source would

(AlS) be equivalent to an independent dipole. The first term
of Eq. (All) wold then give Cron and Sherman's re-

First consider the case when z, =z,. Then we have suits, while the second term. which can easily be cal-
culated. would be negligible except near the surface.

1(R 0)= (k2-f )01 j (irRR1 . (A16) The second term therefore is the contribution of the
nearfield of the dipoles.

This is a standard integral and is given by" APPENDIX 8: A SIMPLE NORMAL-MODE EXAMPLEI=R,0)= "skR" , - ll!j=(kR). (AI7)

As an illustration of the normal-mode represetation
Therefore, of the noise field we consider an isovelocity waveguide

e4(R;z,.z,)=2*mIJ,(kRV(kR r, (AI8) of depth H bounded above by a pressure-release sur-
face and below by a rigid bottom. The boundary condi-

which is just the correlation function of the surface, Eq. tins for this problem are
(A1O).

Next, let R =0. Then Eq. (A 15) reduces to C'(0)0 (Bla)

1.(OZ!= (k2- =)-1cos|Z(k2-irh~dq. (A191 n

which, after changing to the variable C. where )
I ..=(k - i f , becomes where the functions --(z) satisfy Eq. (23). The solution

INS J. AcousL S. Am.. Vol- 67. No. 6. June 19S0 W. A. Kupemun vd F. ingenio: Suarte geimitd noie 1995 4-

___ _ _ __j



of Eqs. (23) and (BI) is We note that the attenuation coefficient E appears in

Un(z) = (2/H)1/ sin(A,,z), (B2) Eq. (B9) just as a scaling factor and does not affect the
form c' the cross-spectrp.l density function. This is a

With result of the simple example chosen. In general, the

2(B3) factor (a.K.)-1, which weighs each term in the sum will
not be a constant, but will depend on n.

where

= (. . . , n=1,2,3,... (B4)

We introduce attenuation into the system by letting the 1R. J. Urick, Principles of Underwater Sound for Engineers
- wavenumber k =w/c be complex: McGraw-Hill, New York, 1967), Sec. 3.8.

k=K+ia (B5) 2J. Capon, Proc. IEEE 57, 1408-1418 (1969).3A. B. Baggeroer, J. Acoust. Soc. Am. Suppl. 1 62, S30 (A)
with e, the plane-wave attenuation coefficient, taken to (1977)R

be a small positive number. Equation (B3) indicates 4B. F. Cron and C. H. Shermt i, J. Acoust. Soc. Am. 34. 1732-
that the modal wavenumber k, must also be complex. 1136 (1962).
Thus, we let SW. S. Liggett and M. J. Jacobsen, J. Acoust. Soc. Am. 38,

303-312 (1965).
k, =K,+ia,. (B6) 'H. Cox, J. Acoust. Soc. Am. 54, 1289-1301 (1973).

7D. Ross, Mechanics of Underwater Noise (Pergamon, New
The modal attenuation coefficient o,, can be shown by a York, 1976), "tp. 4.
similar method to that of the Appendix of Ref. 15, to be 8W. A. Kuperm&. and F. Ingenito, J. Acoust. Soc. Am. 61,
given by 1178-1187 (1977).

H M.J. Beran and G. B. Parrent, Jr., Theory of Partial Coher-
K,,' Ko Z)]U,(2dZ, (B7) ence (Prentice-Hall, Englewood Cliffs, 1964), p. 58.

10H. W. Kutschale, "Rapid Computation by Wave Theory of
for the general case of a depth-dependent sound velocity Propagation Loss in the Arctic Ocean," Lamont-Doherty Geo-
profile c(Z) = 0./,. In the case considered here, c(z) = c logical Observatory of Columbia University, CU-8-73, Tech.
a constant, so Eq. (B7) reduces to Rpt. No. 8 (March 1973).

11E. L. Hamilton, J. Geophys. Res. 75, 4423-4446 (1970); Geo-
Q,, = CIK.. (B8) physics 37, 620-646 (1972).

12 L. M. Brekhovskikh, Waves in Layered Media (Academic,Substituting (B2) and (B8) into Eq. (30) we obtain the NwYr,16) .29
New York, 1960), p. 239.

simple result t3F. Oberhettinger, Tables of Bessel Transformations

C.(Rz t Z2)=2q2 (Z'in/(Axz') sin(Xz,) (Springer-Verlaf,, New York, 1972), p. 80.
t Reference 13, p. 39.

X sin(,Nz 2 )Jo(,,R). (B9) 15F. Ingenito, J. Acoust. Soc. Am. 53, 858-863 (1973).
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