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AFIT/GA/AA/80D-1

Abstract

The Inertial Upper Stage (IUS) being developed for use

aboard the Space Shuttle is composed of three solid fuel

stages plus a satellite payload. One mission of the TUS

system is to launch from a shuttle parking orbit and place

the satellite in geosynchronous orbit in minimum time. Actual

Space Shuttle parking orbit data and TUS characteristics were

used in this study to examine the sequential timing and orien-

tation in inertial space of each stage as it is fired while

the spacecraft moves along a transfer orbit to geosynchronous

orbit. In addition, the sensitivity of the total transfer

time and the final orbital state was found as a result of not

meeting one or all of the time and orientation parameters.

This problem is unique in that it considers an optimal

orbit transfer problem involving solid fuel stages of fixed

thrust and burn time. Previous work with liquid fuel engines

examined orbital transfers with the intent of minimizing Ihr,

amount of propellant or required velocity change needed to

accomplish the transfer.
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THREE BURN INERTIAL UPPER STAGE

OPTIMAL ORBIT TRANSFER

I. Introduction

Previous work involving optimal orbit transfers was

centered around liquid fuel engines. The driving concern

with a liquid system is to minimize the amount of propellant

to be carried on the spacecraft to keep the overall weight as

low as possible. This is especially important for spacecraft

of one stage, where the engine is required to be restarted

for additional burns. There are a number of studies, of

which Reference 9 is an example, that explore the transfer

from one orbit to another using two impulsive burns. One

study was found which considered three burn optimal trans-

fers (Ref 10), but minimized the total velocity change needed.

The advent of the Space Shuttle made it possible to

carry a small spacecraft into near earth orbit inside the

cargo I)ay and then launch i t from that parking o rh i t i n to

another orbit. The storage problems associated with liquid

fuel qystems made solid fuel engines preferable for this

type of spacecrnft. The initial configuration for the

Inertial Upper Stage consisted of two solid fuel engines.

This allowed for the use of previous orbital transfer studieR

to define the exact capabilities of the configuration. The

desire to expand this capability led to the design of the
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three stage IUS which necessitated the need to examine a

three burn optimal transfer to geosynchronous orbit in mini-

mum time.

As in past studies, the firing of each stage of the

spacecraft is treated as an impulsive burn. This assumption

is justified because the burn time of a rocket engine is very

small when compared to the total time spent in an orbital

transfer. In addition, transfers in the near vicinity of the

earth are normally analyzed in three phases which yield in-

creasing degrees of accuracy.

The first phase is to consider the earth and the space-

craft as being alone in inertial space. The earth is con-

sidered perfectly spherical and homogeneous, and the effects

of the other major bodies such as the sun and moon are ignored.

These assumptions allow for a two-body analysis of an object

under the influence of a single gravitational field. The

equations of motion used to describe the behavior of an

object in this environmcnt are accurate enough to allow for

initial mission planning. The second phase is to take the

two-body equations of motion and add the oblateness and non-

homogeneity effects on the earth. The results are more

accurate, but they ditfer only slightly from those obtained

from the two-body equations alone. The last step is to agiini

modify the equations of motion to account for the effects ot

the sun, moon, and other major bodies. The end producl i,,

indeed, accurate but extremely expensive and tedious to cxt t,;Ict.

This study follows the tradition of previous work bY

2



assuming impulsive burns and two-body orbital 
behavior for

this initial mission analysis.
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IT. Problem Statement

The starting place for this problem is the near earth

parking orbit of the Space Shuttle. The IUS System Program

office at Patrick APB (Ref 1) was kind enough to provide the

following data describing the shuttle parking orbit at the

moment of orbit attainment:

TABLE I

Initial Parking Orbit Data

latitude 21.36240

longitude 59.2825*

altitude 7.11693 x 105 ft

inclination 28.788710

eccentricity 0.01497

velocity 2.561851 x 104 ft/sec

x = 1.029312 x 107 ft xd = -2.248185 x 104 ft/scc

y = 1.732354 x 107 ft yd = 9.356206 x 103 ft/sec

z = 7.881747 x 106 ft zd = 7.958385 x 103 ft/sec

where x, y, z, xd, yd, and zd are the position and velocity

components in the earth-centered inertial (ECI) coordinate

frame. In order to describe subsequent positions and times,

this initial fix (i.e. initial conditions) was chosen as a

starting place for the orbital problem at time equal to zero.

For the IUS, the engine burn times are of fixed duration as

shown in Table IT; therefore, the time of burn initiation and

4



TABE I T

IUS Characteristics

Vehicle Specific Burn Propellant
Stage Weight Impulse Time Delta-V Weight

(lbs) (sec) (sec) (ft/sec) (lbs)

1,2, F,3 56119 294.332 123.91 4242.17S 20263

2&3 33813.6 294.189 140.3S 9S6S.712 21SOS.6

3 8887.5 302.492 94.49 10997.98 6016.6

the orientation of each burn in inertial space are the vari-

ables of interest.

This problem is worked entirely in an ECI frame of

reference. Figure 1 describes the orientation of each stage

prior to engine initiation. Since the assumption has been

made that each burn will be treated as impclsive, this corres-

ponds to orienting the Delta-V vector in inertial space.

z

AV.
AzD

Beta
t (B.) _______

/ y

/ AxD
Alpha (Ai) /

AyD

Fig 1. Spherical Coordinates Definition
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The angles alpha and beta shown in Fig 1 completely describe

the orientation of the spacecraft and its Delta-V vectors in

inertial space. A third parameter, time, can then be used to

pinpoint the position of the spacecraft along each segment of

the transfer orbit. A pictorial representation of this is as

follows:

Tl
Al,BI,AV1 T

Initial Parking
Orbit Fix

TO = 0

T2

A2,B2,AV2

TA3,B3,AV3

Fig 2. Transfer Orbit

where

Ti = coast time to firing of first stage

Al & B1 = orientation of first stage at firing

T2 = coast time to firing of second stage

A2 & B2 = orientation of second stage at firing

T3 = coast time to firing of third stage

6



A3 &, B3 = orientation of third stage at firing

AVI,AV2,AV3 = impulsive velocity changes per burn

This allows the entire orbit from initial parking orbit to

final position to be described by the nine parameters TI, Al,

BI, T2, A2, B2, T3, A3, and B3.

As stated before, the calculation of the satellite's

position and velocity as it moves through each segment of the

transfer orbit will be done using a two-body formulation.

Several prediction algorithms are in existance today; all of

them solve variations of the differential equation

.R =- ' R (1)

R

where v is the geocentric gravitational parameter, R is the

vector position of the satellite, R is the vector accelera-

of the satellite, and R is the scalar distance from the center

of the attracting body to the satellite. Two such algorithms

were used in this study. The first is an actual series solu-

tion of the two-body differential equations known as the F

and p. series solution to the Kepler problem ('Ref 3). The F

and g series solution affords a rapid means of determining

position and velocity as a function of time and just as

importantly, avoids the penalties associated with the numeri-

cal integration of differential equations. A second prediction

algorithm, known as Hamilton's two body equations (Ref 2), is

composed of six first-order differential equations and was

used only to check the accuracy of the subroutine written to

do the prediction problem.
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By using the f and g series in a subroutine, an algor-

ithm defining satellite position and velocity as a function

of all nine parameters can be formed.

Algorithm

1. Given: initial position, velocity, and time (X

and TO = 0)

2. Coast in parking orbit for time Tl and calculate

final position and velocity.

3. Align the first burn in inertial space using Al

and Bl and calculate its component velocity con-

tribution. Add this to the velocity from (2) to

obtain a new state vector.

4. Coast in new orbit for time T2 and calculate a

final state vector. Repeat the procedures used

in (3) for the second stage and find the new orbit

parameters.

S. Coast in final orbit for time T3, add the vectoral

velocity contribution of the third stage, and cal-

culate the final position and velocity.

The requirement that the satellite's final orbit he geosyn-

chronous yields five constraints on the final state vector

as defined in the ECI frame.

1. The z component of position must equal zero.

2. The zd component of velocity must equal zero.

3. The satellite's speed must equal geosynchronous

speed.

4. The satellite's distance must equal geosynchronous

8



distance.

5. The final orbit must be circular.

The problem then is to find values for the parameters T1, Al,

BR, T2, A2, B2, T3, A3, and B3 that allow the satellite to

transfer from its initial position in the parking orbit to a

final orbit which satisfies the specified end conditions in

minimum time. It is readily apparent that this problem is

not amenable to closed form analytic treatment, which implies

the need to solve it iteratively.
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III. The Optimization Problem

A good definition of a parameter optimization problem

is how to change parameters in order to satisfy end conditions

with the least effort. Optimization theory provides the dir-

ection needed to change each parameter to reduce end constraint

errors and also offers figures of merit that can be used to

tell how well the procedure is progressing. This problem, as

stated, involves finding the values of nine parameters that

force the final orbit to satisfy five equality constraints

and allow the satellite to complete the orbital transfer in

minimum time. This defines the performance index as

G = T1 + T2 + T3 (2)

which is the total time of flight. The initial conditions

for the problem are simply the initial position and velocity

components supplied for the parking orbit for reference time

equal to zero. The final conditions or end constr:ai ts :irr

labeled by the vector M, where

M(I) = zd

M(2) = z

M(3) - (xd2 + yd 2 + zd2) 1/2_ 1.0096 x 104 (3)

2 2 2128
M(4) = (x + y + z 2 ) 1 2 - 1.3811 x 10

M(S) = x(xd) + y(yd) + z(zd)

where 1.3811 x 108 feet is geosynchronous orbital distancc,

10



and 1.0096 x 104 feet per second is synchronous speed. Each

constraint is written so that when its numerical value equals

zero, the desired condition has been obtained. By calculating

the norm of the M vector, a figure of merit is produced which

indicates the degree to which the end constraints are satis-

fied. The optimization problem is then to drive the norm of

the M vector to zero and the performance index to its minimum

value.

One procedure for accomplishing this is referred to as

suboptimal control. In an optimal control problem, the desircd

controls, which are functions of time, are directly calculated.

For this problem that would mean the alpha and beta parameters

are functions of time. The assumption that all three burns

are impulsive converts the alpha and beta controls to scalar

parameters. The suboptimal control technique approximates

these controls using polynomials.

In this problem the controls are the three pairs of

angles needed to align the stages for firing and the times

of firing. If all the parameters are expressed in one vector

A, then

A = [TI Al B1 T2 A2 B2 T3 A3 B3)T (4)

This vector A then contains all the information needed to

find the final position and velocity of the satellite.

X = Xr(A) (5)

In addition, the vector A also supplies all the information

needed to evaluate the performance index and the cnd condit ion

11



constraints.

C = G(A)
(6)

M = M(A)

If an augmented performance index, F, is defined functionally

as
F(A,v) = G(A) + vTM(A) 

(7)

where v represents a vector of Lagrange multipliers, it must

satisfy the first variational requirements

T
FA (A,v) = 0

FA = F(8)

F VT(A,v) M(A) = 0

to be a minimum solution. FA is the partial of the augmented

performance index with respect to the parameter vector A.

The FA matrix represents the change in performance resulting

from a change in each parameter in A(gradient). Since there

are nine parameters in A, FA is a row vector of nine element,.

Ihill and Edpeomin (Ref 6) describe a second-order parameter

optimization technique and algorithm specifically for appli-

cation to suboptimal control problems. Johnson (Ref 7) and

Peterson (Ref 8) used this algorithm to develop a computer

program to analyze aircraft time to turn problems. Their

program uses three controls, differential equations of motion,

and two end condition constraints. The program W as modified

to accommodate nine parameter controls, a series solution to

differential equations of motion, and five end condition

12



constraints. In short, the program which adopts 1hull and

Edgeman's algorithm uses second-order information to deter-

mine how to change the parameters in the vector A and the

Lagrange multiplier vector, v, such that the vectors FA and

M are driven to zero. The vector rclationships used to

change A and v are derived from Eq (8). For any guessed

values of A and v that are not a solution, the equality will

not hold.

TFA  # 0 M(A) # 0 (9)

If Eq (9) is then linearized about A and v, then

6FAT = FAA 6A + MAT 6v (10)

6M - MA 6A (11)

and define

FAT = PFAT (12)

6M = -QM (13)

where P and Q are scaling factors, yields

FAA6A + MAT6r = -pPAT (14)

MA6A = -QM (15)

which can he solved for 6v and 6A.
=MU - 1MT) - 1-pM

6V = (MAFAA MA (-PMAFAA A + QM) (16)

= -l (pF T T

6A = -FAA A + MA 6V) (17)

where

MA = A A 2 A

13



and P and Q are scaling factors which control optimization

and end condition satisfaction. FAA represents a change in

slope and the direction in which it is increasing or de-

creasing. The algorithm developed to iteratively change A

and v follows:

1. Guess A and v

2. Use the f and g series solution to find Xf

3. Compute M, MA, MAA, FA, and FAA

4. Pick values for P and Q and compute 6v and 6A

S. Set A = A + 6A and v = v + 6v

6. Check convergence and if unsatisfied, go to

step (2)

The computer program uses this algorithm plus a gradient

approach that allows the direct calculation of an initial v

vector which eliminates guessing five parameters. The pro-

cedure for doing this was also developed by Hull and Edgeman

and uses first-order information as follows:

V = (MAMA) -I_[(Q/P)M - MAA T  (18)

(S = -PFA (19)

where

GA - A

For a typical problem, the gradient portion of the

program would be used to locate the vicinity of the functional

minimum. At this point where gradient methods lose their

effectiveness, the second-order algorithm would he used to

14



rapidly converge the problem. As this procedure is followed,

the scaling factors P and 0 are gradually raised from very

small values to final values of one. In the final convergence

cycles, P and Q must be equal to one to yield an optimal solu-

tion. Although this procedure would appear straightforward,

its application to specific problems can, at times, require

some finesse as will be shown later.

Numerical Methods

(Ref 6:484)

The first- and second-order optimization routines re-

quire the matrices M, MA, MAA, and F AA These matrices were

evaluated using numerical techniques. F A and FAA are defined

as

FA = GA + VT MA (20)

5
FAA GAA + E ViMAA (21)

i=l 1

since
G = Tl + T2 + T3 (22

GA = 11 0 0 1 0 0 1 0 0] (23)

and
GAA = [0 19x9 (24)

The only quantities that need to be calculated arc M, MA,

and MAA.

The M matrix, or error matrix, is easily evaluated

after determining the final position and velocity vectors

using the f and g series solution to the Kepler problem.

The MA and MAA matrices are determined using a central

15



differences numerical. derivative technique. The technique

uses the initial values of the A vector parameters (An) to

calculatc an initial M. Each A is thcn positively perturbedn

by

A = An + 6n (25)

and then negatively by

An- =An 6 (26)

Using An+ and An_ , M and M are calculated. The central

differences representation for MA is then given by
n

MA - 26 + o(6 n 2 (27)
n n

2 2
where o(6 n ) represents an error term of order 6n where 6n

is a very small positive number. The MA matrix contains five

rows. The first row is determined using M 1 in Eq (27), the

second row using M 2, and so on. The MAA matrices are deter-

mined in a similar manner; however, two elements An and Am y

must be perturbed both positively and negatively to obtain

M++, M+_, M_+, and M__. The central differences representa-

tion for M is
n m

M+ -2M + M 2
MA A 2 + 0(6 ) (28)

n

for n = m and

M A I++ M+_ -M+ + M__ + 0(6 6
A nA -46 6 n mnm nm

for n m. The MAA matrix is really five matrices. One i

determined using MI values in the above equations, ;and then

16



the others by M2 through M5 in turn. The error terms in these

equations can be ignored if 6n and 6m are quite small. The

6 used for the central differences technique is

= DELTA * A (29)n n (9

and if the absolute value of 6n is larger than DELTA, then

6n = DELTA (30)

where DELTA is another small positive number. In this prob-
-6

lem, DELTA was initially chosen to equal 1.0 x 10

Selecting Initial Parameter

Values

Picking nine parameters to serve as an initial guess

for the orbital transfer problem is far from a simple matter.

Not only must the parameters be compatible, but they should

also provide an initial "miss" relative to the end condition

constraints small enough to allow for easy convergence. At

this point, some engineering insight was applied with only

marginal success. Since the actual parking orbit has an

eccentricity o 0.01497, one would think parameter." good I ,

a perfectly circular orbit would be good initial guesses for

the actual. With this in mind, a test orbit was constructed

in an ECI frame with ascending node on the X-axis at 2.16737

x 107 feet, inclined 22.8 degrees at a velocity of 25,618

feet per second. The first parameter, TI, was determined hy

calculating the time of flight to the descending node. since

the final orbit would lie in the X-Y plane, the first burn

17



was aligned to eliminate as much inclination as possible using

AVi = 2V sin e/2 (31)

where AVi is the change in velocity due to stage burning, V

is the original velocity of the spacecraft at nodal crossing,

and 0 represents the angular change in the inclination. This

allowed Al and BI to be determined. T2 was chosen to be the

time of flight to the next nodal crossing. The second burn

was aligned in an attempt to eliminate the remaining inclina-

tion yielding A2 and B2. T3 was again chosen to be the time

to the next nodal crossing, and A3 and B3 were varied to find

the smallest error in the end conditions. This orbit and the

actual orbit differ only by a rotation about the Z-axis to

align the nodes--ignoring eccentricity. This angle was then

added to the three alpha parameters, and TI was adjusted to

reflect the coast time to first nodal crossing from the

initial fix. The initial miss vector that this procedure

yielded was of magnitude 10 largely due to the circularity

constraint. Random adjustment of individual parameters proved

to be a hopeless means of reducing the error. The circular-

ity constraint proved to be far too sensitive to allow for

rapid convergence. To decrease the sensitivity of this con-

straint, the circularity was multiplied by a scaling factor

of l0-5. This allowed the program to drive down the errors

in the other four constraints. Each time this occu.rred, the

scaling factor was increased by a factor of ten and the pro-

cess repeated. This allowed the scaling factor to eventually

18



be removed once the vicinity of the functional minimum was

reached.
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TV. Results

Choosing P, Q, and DELTA

The selection of the P and Q scaling factors is unique

to every optimization problem. By their selection, one can

select several options. The first and most commonly used is

to choose P very small and Q large as compared with P. By

doing this, the program will attempt to satisfy the end con-

straints before doing any optimization. A second method is

to choose P larger than Q in an attempt to satisfy the end

conditions after finding an optimal region. The third common

method is to choose P and Q equal and, thereby, optimize

while trying to satisfy the end constraints. All three

methods were tried on this problem, with only the first being

successful. It was found necessary to first satisfy the end

conditions and then search for an optimal solution.

Second-order optimization methods are very unstable

far from the optimal solution. This requires very small

changes in the control parameters through each iteration to

prevent divergence. The magnitudes of these "delta" quanti-

ties can be controlled using P and Q. Trial and error

showed that for P equal to 1.0 x 10- 1 and Q equal to 1.0

x 10 -6, sufficiently small parameter changes were generated

to allow the program to run for an average of 25 iterations

before divergence occurred. This was caused by the numerical

20



routine generating an excessively large change in one of the

parameters. The program was modified to allow continuous

operation by examining the norm of these parameter changes.

Initially, whenever the norm exceeded 0.38, the divergence

was seen to occur. The program was then modified to reiniti-

alize all the Lagrange multipliers and restart itself whenever

this was observed. As the program began to approach the

vicinity of the functional minimum, the numerical routine

became more stable. The limit on the norm of the parameter

changes was relaxed to 0.5 and finally to 1.0. This simple

procedure proved extremely valuable after unsuccessfully

attempting to use a straight gradient method.

A third parameter, DELTA, also showed a large impact

on the success of the routine. For a similar problem using

differential equations of motion, DELTA would be chosen in

the 10- 4 to l0- 6 range. This insures the accurate calcula-

tion of the MA and MAA matrices. In addition, the size of

the parameter changes (da's) is directly proportional to

DELTA, since the "delta" perturbing values equal DELTA times

each element of A. in this problem, DELTA equal to 10-6 Was

used based on this previous experience. It was found that

the numerical routine stagnated when the solution was being

approached. It appears the function contours were steep to

the point where the parameter changes equal to 10- 6 times

their present value would not allow the program to move deeper

into the contour valleys. At this point, several iterations

were run with the same initial parameter values, but with

21



different DELTAs. By comparing the norms of the constraint

errors, it was found that performance improved as DELTA was

progressively decreased. Best performance resulted from a

DELTA of 10 -10, which was then used to find the solution pre-

sented here.

Gradient Method

The gradient method, which uses first-order information

in an attempt to move toward an optimal solution, proved to

be a dismal failure. Because the performance index was do-

fined as the sum of three times, the gradient method tried to

drive all three to zero. Gradient information was used,

however, to calculate initial values of Lagrange multipliers

by Eq (18). These were then used in the second-order method.

Numerical Results

The second-order method used in the computer program,

when modified to run continuously, steadily drove toward a

solution that satisfied the end constraints and then toward

an optimal solution. The parameters that satisfied the end

constraints changed very little during the optimization por-

tion of the program, which suggests that this may be a locally

unique solution. The optimization iteration process was

stopped with P and Q equal to one when the norm of the para-

meter changes was less than 10 - 9 and the norm of the Lagrange

multiplier changes was also very small. The A matrix solution

and the sensitivity matrix, MA, are shown in the following

tables.
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TABLE I I I

Parameter Solution Set

Ti = 2030.2449995 sec T2 = 3847.461750268 sec

Al = -0.435361007 rad A2 = 0.732341983313 rad

Bl = 0.7111815869 rad B1 =-2.731217478098 rad

T3 = 7470.83934000 sec

A3 = 1.30013074628 rad

B3 = 0.02236409011 rad

TABLE TV

End Constraint Errors

M(l) = zd = -2.5465 x 10 - 1 0 ft/sec

M(2) = z = 9.5367 x 10 - 7 ft

M(3) = synchronous speed = -1.0477 x 10- 9 ft/sec

M(4) = synchronous distance = 8.583 x 10- 6 ft

M(5) = circularity (R V) = 1.318 x 10-2

Total Transfer Time = 13348.54608 sec =
3.70792 hrs

Figures 3 through 8 depict the transfer orbit from

several points of view. Figure S shows a result that is some-

what surprising. The transfer orbit remains in the same plane

as the parking orbit. In other words, the transfer opts to

increase tile altitude and velocity of the slpac(cr-a(* early

in the transfer and complete the inclination change in thc

final burn. As Eq (31) points out, the cost to change
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TABLE V

Position and Velocity After Firing of Each Stage

Position and Velocity After Firing First Stage:

x = -2.0373124 x 107 ft xd = 1.11011967 x 104 ft/sec

y = -7.6147903 x 106 ft yd = -2.21389677 x 104 ft/sec

z = -1.3724214 x 106 ft zd = -9.3978524 x 103 ft/sec

Position and Velocity After Firing Second Stage:

x = -2.885451299 x 106 ft xd = -2.05530541 x 104 ft/sec

y = 3.20133328 x 107 ft yd = -1.176502728 x 10 4ft/sec

z = 1.257707996 x 107 ft zd = -5.014671267 x 10 3ft/sec

Final Position and Velocity after Third Burn:

x = 1.379638 x 108 ft xd = 464.30038 ft/sec

y = -6.351478 x 106 ft yd = 10085,31809 ft/sec

z = -8.118152 x 10. 5 ft zd = 2.8067 x 10 .9 ft/sec

inclination is less as the spacecraft velocity decreases.

The point at which geosynchronous orbit is obtained is where

the spacecraft velocity is lowest. This points out that the

assumption used to obtain initial values for the pnrnmeters

by eliminating the inclination of the transfer orbit was

wrong. Figure 6 depicts the entire transfer orbit in three

dimensions. Figure 7 is the same as Fig 6, except that the

scaling on the Z-axis has been changed to show separation of

the near earth portions. Figure 8 is the confirmation that

the final orbit is, indeed, circular and geosynchronous.
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a - Position at First Burn

b b- Position at Second Burn

c c- Position at Third Burn

to

4

0 .0 00400 0 0 12.0 100

X-XS8 0

Fig 3. Dpc i ofTase Ori inE XYIl e

25



03
0

0;
0-

C,

0

U,

b

a -Position at First Burn

V" ~b -Position at Second Burn

C - Position at Third Burn

NJ0

-4

9

C)

-;00 400 .04 .0 8 .0 12 .0 100 0 .

0-XSM0
0i . Dpcino rnfrObti C - ln

92



F"-

0
0
0

a Position at First Burn

0b

1)b Position at Second Burn
-c Position at Third Burn

o
0

W-4

o

0o,.

6c-4
Xa

Cr0

!~J

C~)

0
0
U
0
0

CD00

U
0

'-80.00 -;0.O0 - 0.00 -20.00 0.00 20.00 40.00 60.
Y - RxI S a 106

pg r. D~epiction or Trnnsrer Orbit in FCI Y-7Z l'lane
27



3-D VIEW OF TRANSFER ORBIT
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Fig 6. Depiction of Transfer Orbit in 3-D
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3-D VIEW OF TRANSFER ORBIT
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The MA matrix which is the partial of M with respect

to the A matrix indicates the sensitivity of each end condi-

tion to a change in any one of the A matrix parameters.

TABLE VT

MA Matrix

TI Al BI

Ml 9.9414 -11045.0 -17707.0

M2 -78377.0 83614230.0 147191047.0

M3 26.306 -28542.0 -45384.0

M4 -497674.0 473346710.0 756855918.0

MS 9.9097 -7.73 x 1012 -1.215 x 1013

T2 A2 B2

MI -10.353 3133.023 1377.528

M2 -248.21 4481256.0 60289542.0

M3 -26.293 7204.65 6391.623

M4 304516.131 -103134155.0 -82096056.0

MS 1.596 x 109 1.3178 x 1012 3.077 x 1011

T3 A3 B3

Ml -0.802865 0 10995.048

M2 14068.347 0 ()

M3 -2.0329 2449.40 -239.582

M4 50201.67 0 0

MS -646330649.0 -1.48 x 1012 -7.567 x 109

The MA matrix is extremely useful when one is interested

in how changes in one of the parameters in the A mat r ix w i I I

effect thc end conditions. As an example, consider the 1;i,;t

column, which represents the change in end conditions due to
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TABLE VII

MA Values for B3

B3

M1 10995.048

M2 0

M3 -239.582

M4 0

MS -7.567 x 109

a change in B3. These numbers indicate that if the third

stage was misaligned by plus one radian, it would increase

the zd component of velocity by 10995.048 feet per second.

Since B3 has no effect on position, the numbers that corres-

pond to z and geosynchronous distance are both zero. The

satellite's speed would decrease by 240 feet per second,
9

and the circularity of the orbit by 7 x 10 This clearly

illustrates the use of the MA matrix as well as the wide

differences in magnitudes of the individual errors.
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V. Application

The application of the information found in this study

is both simple and straightforward. The parking orbit and

the transfer orbit are fixed in inertial space due to the

choice of an ECI reference frame. The earth, on the other

hand, spins relative to this frame. To place a satellite in

geosynchronous orbit over a specific spot on the equator,

one has basically two choices. The first is to time the

launch of the satellite from the earth into its parking orbit

and then along the transfer orbit such that the final posi-

tion of the transfer orbit coincides with the desired equa-

torial position. A second and more practical approach

would be to launch into the parking orbit whenever convcnicnt.

The period of the parking orbit is roughly 90 minutes, which

allows for a transfer every hour and a half.

Because this problem was worked in an ECI frame of

reference, the position of the satellite at the end of thi

transfer relative to its position at the beginning is alwaYs

constant. Therefore, the angular difference in their posi-

tions, as seen in the X-Y plane and measured about the Z-

axis, is constant. By allowing for the rotation of the earth,

a transfer to a given position over the equator can be calcul-

ated in terms of longitude. Optimal launch conditions occur

when the longitude of the parking orbit initial fix is

33



114.90 degrees greater than the longitude of the desired

geosynchronous orbital position. For example, if the initial

orbit was obtained at longitude 23.90*E and the transfer begun,

the final position would be at longitude 91.0°W, which corres-

ponds to the Galapagos Island chain, after a flight time of

3.70792 hours.
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VI. Recommendations

One of the major assumptions made in this study was

that the three engine burns were impulsive. As was shown,

this reduced the alpha and beta controls to scalar parameters.

In reality, the engines operate for specific lengths of time

as shown in Table II. Since the computer program has the

capability to determine the alpha and beta controls as poly-

nomial functions of time, it would be interesting to remove

the impulsive burn assumption and rework this problem using

the solution found here as a good initial guess.

This study found only one solution to this transfer

problem and suggests that it may be unique. If the original

parking orbit were equatorial, there would exist two mirror

image solutions. It would be interesting to see if the

methods used in this study would yield both solutions.

The suboptimal control technique, as applied to this

problem, did yield a valid optimal soluition, but the method

did prove expensive in terms of computer time. It would be

worthwhile to apply one or two other second order or quasi-

second order optimization methods to this problem to see if

a more efficient method exists.
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Computer Program SubOpt
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:100: PROGRAM ORBIT ( INPUT OU'FUT)
I10*= DIMENSI ON lA(9),MAA3(9,9),MAA4(9,9),MAA5(9,9),WZ(9)
1.20..: DIMENSION A(9),AA(9)PGA(9)
1 1:11 [iiAll N MS) MA(5;,9) MAAi ( 9v9) vMAA "(9 ,9)
1 .40O= [i Ih1:I NS ION -.l (B (6 ) ID R ( 6' ) 1t :) ( ' ) 1f 11 6.) , :'. 6 ) I 11 ) 1"4 ( 6)
1 :§ 0:....:[ I EiS ION 1) E L ( 9 ) , MM AMA ( -5 vA I ( M AT ) , MAG A * I 5)
160= DIMENSION FAT(9),FAA(9,9)vFAAI(9,9),MAFAAI(5,9)
170= DIMENSION W(5,5),WI(5,5),C(5),vI(9),PNU(5),DPNU(5),F NUJMA(9)
180= DIMENSION E(9),FA(9),FFAA(9,9),FFAAI(9,9)
190= Ll IM'IE NS 1 () N GAA (9,9)
200= DIM[NSION MTXFXT(12y12)PFFAAB(22,22)
210= DIMFNSION M TX( i 2,12),MTXT(1'2,12),CONA(12),CONI Ft(12),MTXF(12,12)
220- COMMON/MISC/NPH,NPI,NATFIT,N,S,LL,PP ,TOT(8) ,FIXT
230= COMMON X,Y,Z,XlYD,ZD
240= COMMON/QUES/Al..PHA
250: REAL M,MIM2,M3rM4,MM1,MM2,MM3,MM4,MM5,MM6vMM7,MMBMA
260=r REAL M5,M6vM7,M8,M9,M1O
270: REAl- MM9,MM1O,MMI IMMI2, MM13,MMI4,MM15
280= REAL. MMI6,MM17,MMIMM19,MM2OMAA..,MAA2,MAA3,MAA4,MAA5
290::.. REAl MAMATMAMATI,MAGATMAFAAT ,NJORMANORMMNORMP
300=:C

310=C PROGRAM SUBOPT IS A SUBOPTIMAL CONTROL TECHNIQUE USED TO FIND AN
320=C APPROXIMATE SOLUTION TO AN OPTIMAL.. CONTROL PROBL.EM. THE SOLUTION TO
330=C MOST OPTIMAL CONTROL PROBLEMS IF THE CONTROLS CANNOT BE SOLVED
340=C ANALYTICALLY IS TO GUESS THE CONFROL S AND THE lA(RANGE MLIL.TIPLIERS
350=C AND SEE IF END CONDITIONS ARE MET AND THE PERFORMANCE INDEX MINIMIZED
3.0.=C THE SU13OPTIMAL CONTROL TECHNIQUE ASSUMES THE CONTROLS ARE A LINEAR
370=C COMBINATION OF POLYNOMIALS WITH UNKNOWN CO')-F-FICIFNTS. IN SO DOING
380:=C THE PROLEM I.S CHANGED FROM A FUNC.IOJNAL MINIMIZATION PROBLEM TO A
390=C PARAMETER OPTIMIZATION PROBLEM.
400=C IN THIS EXAMPLE THE CONTROLS ARE NOT FUNCTIONS OF TIME.

410=C THIS SIMPL..IFIES THE PROGRAM TO ONE OF PARAMETER OPTIMIZATION.
420=C
430=C THIS VERSION ADOPTS THE ORBITAL. TRANSFER PROBLEM
440:C
450:=C A =:MATRIX OF F'ARAMETERS(TI,A1,BII'2,A2,B2,T3,A3,B3)
460=C DA =MATRIX OF:' PARAMETER CHANGES (NP X 1)
470=C NE =NUMBER OF STATE VARIABLES
480=C NP ::zur.TAl NUMBER OF PARAMETERS
4 9 0:::- NC CNI.JlMEg.ER OF END rONDITIONS TO BE SATISFIED
500=C P =SCAL.ING FACTOR PERFORMANCE INDEX
510=C 0 =SCALING FACTOR FOR END CONDITION CONSTRAINTS (M)
520=C G = SCALAR PERFORMANCE INDEX
530=C GA = PARTIAL- DERIVATIVES OF G WRT A'S (1 X NP)
540=C GAA = SECOND PARTIAL- DERIVATIVES OF G WRT A'S (2 - NP X NP)
550=C M = MATRIX OF PRESCRIBED FINAL CONDITIONS (NC X 1)
560=C MA = PARTIAL DERIVATIVES OF M WRT A'S (NC X NP)
570=C MAA = SECOND PARTIAL DERIVATIVES OF M WRT A'S (2 - NP X NP)
500=C B =STATE VARIABLES (XYZXDjYD,.ZD)
590=C F = AUGMENTED PERFORMANCE INDEX (G + PNUT*M)
600=C FA = PARTIAL DERIVATIVE OF F WRT A'S (1 X NP)
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610=C FAT = PARTIAL. DERIVATIVES OF F WRT A'S TRANSPOSED (NP X 1)
620=C FAA = SECOND PARTIAL DERIVATIVE OF F WRT A'S (NP X NP)
630=C PNU = LAGRANGE MUL.TIPLIERS (NC X 1)
640=C DPNI.I= CHANGE IN LAGRANGE MULTIPLIERS (NC X 1)
650=C
660=C THE CIRCULAR PARKING ORBIT IS INCLINED 22.8 DEGREES
670=C AT AN ALTITUDE OF 2,1637E07 FT
680=C
690= T=0.0
700= X=1.029312E07
710= Y=1.732354E07
720= 7=7.881747E06

0= XD=-2.248185E04
,40= YD=9.356206E03

750= ZD=7.958385E03
760=C
770=C THE THREE BURNS ARE ORIENTED IN TIME AND SPACE
780=C BY NINE PARAMETERS
790=C
800:= Ti=2030.244999504
a I 0: .3.53-h6 10070055
820= 81=.7111815869911
830= T2=3847.461750268
840= A2=.7323419833131
850= B2=-2.731217478098
860= T3=7470.839340005
870= A3=1.300130746286
880= B3=.0223640901197
890=C
900=C THE FINAL ORBIT IS CALCULATED USING THE F & G SERIES
910=C SOLUTION TO THE TWO BODY PROBLEM.
920=C
930= R=(X*X-Y*Y+Z*Z)**0.5
940= V=(XD*XD4"YI*YD+ZD*ZD)**0.5
950= PRINT*P'X(O)= *,X
960= PRINT*PY(O)= ",Y
970= PRINT*,'Z(O)= ",Z
980= PRINT*,XD(O)= ",XD
990= PRINT*,'YD(O)= ",YD
1000= PRINT*,*ZD(0)= ',ZD
1010= PRINT*,RANGE= ",R

1020= PRINT*,VELOCITY= ',V
1030= PRINT*,"
1040= NP=9
1050= NC=5
1060= NF=6
1070= ITER=O

90= MAX=100
%j90= ZED=t.
1100= DELTA=I.E--08
1110= IMET=2
1120= 0=1.

1130= P=I.
1140= FNORMA=10.0
1150= FGNORM=10.0

I16,0 CCI=I.OE--04

1170- CC2=1.0E-02
1180- CC3=1.OE-08

1190= CC4=1.OE-04
1200- CC5=1.OE-04



1210= B(1)=X
1220= B (2) =Y
1230= E(3)=Z
1240- EI(4)=XD
1250= B(5)=YD
1260= B(6)=ZD
1270= A(i)=Tl
1280= A(2)=A1
1290= A(3)=B1
1300= A(4)=T2
1310= A(5)=A2

20)= A(6)=B2
.L,-30:z A(7)=T3

1340= A(S)=A3
1350= A(9)=B3
1360=555 ITER=O
1370= FNU(1)=-.00001
1380= PNU(2)=B.OE-08
1390= F*NU(3)=- -.0000537
1 400r PI ( -1):: 1. * 7r -07
1410= PNU(5)=-1.7E-A1
1420= riPNJ(I 1 )=riPNU (2) --0. 0
1430= EIPNU (3) =1iPNI.)(4) =PNI.J (5) =0.(0
1 440:=52 FO0RMAT(lXp5Frl5,7)
1450=50) F(JRMAT(1XrGE15.7)
1460=C
1470:=C DETERMINING Ml MATRIX BY INTEGRATING DIFFERENTIAL CONSTRAINTS
1 480:-:C
1490= DO 1 11,PNP
1500=~1 DA(I):=0.0
1510=1000) DO 2 I=1pNP
1520= A(I):=A(I)-+DA(I)
1530=2 AA(I)=A(I)
1540= PRINT*,* '
1550= PRINT*WITERATION NUMBER PPITER,' P= ',P, = va
1560= PRINT*r'
1570= DO 3 I=1,NE
1580=3 EB(I)=B(I)
1590= S=1.0
1600= CALL TRANS(AAYB4)
1610= M(1)=ZI
1620= M(2)=Z
1630= M(3)=((XD*XD+YD*YD+ZD*ZD)**0.5)-1.0096E04
1640= M(4)=((X*X+Y*Y+fZ*Z)**0.5)-1.3811E08
1650- M(5)=X*XD+Y*YD+Z*ZD
1660= M(5)=M(5)/ZED

',70= G=AA( 1)+fAA(4)+AA(7)
-,80= ITER=ITER+1

11)90= PRINT*, "
1700= PRINT*,A MATRIX*
1710= DO 666 I=17NP
1720=666 PRINT*,'A(PIP")= 'PA(I)
1730= PRINT*, '
1740= DO 4 TIPNC
17 J 1' NIJ) ( ) =PNIJ. I I) 4-.FFNLJ ( I)
17C)G. 1 PRINT*, *M( ', I,*) 'PM~ )
1"70-.- NORMM=0.0
1780= DO 5 I=lNC
1790 :. IJORmmWNnkmmf~i)**2,
1000= NORMII=SURT(NORMM) 4o



1810= PRINT*v*
1820= PRINT*PINORM OF M = ,NORMMY" P.I. "Y
1030=-C
1840=C DETER~MINING MA AND MAA BY CENTRAL DIFFERENCES
1850=C
1860;= S::0o.0
1870:= DO0 100 I=1vNP
1880= DO 6 J=IrNP
1890=6 AA(.:z(J
1900= DEL (I )=DEL-TA*A( I)
I90 IFAESDE() .L.ELA DEL(I)=IELTA
20- AA(I)=A(I)+'EL.(I)

1930= DO 7 J=lPNE
1940=7 B4P (J) =B(J)
1950= CALL TRANS(AAvBP)
1960= M1=Z'
1970=: M2=Z
1980= M3= ( (XD*XED+YD*YD+ZD*ZD) **0.* 5) - 1 , 0096E04
.1990-! M4::- ( (X*.X+1Y*Y-17*7 ) **0.* 5). 3831:1 170f.

200() W .::X*XL.+Y*YtDI.?*7Iy
2010= M5=M5/ZEr'
020e-: O1=AA(1)+AA(4)+AA(7)
2030= AA( I )=A(I)--DEI-( I
2040= DO 0 ..=1,NE
2050=8 BF(J)=B(J)
2060=: CALL. TRANS(AAPBP)
2070- M6=ZD
2080:- M7=Z
2090=- MQ=( (XD*XD+YD*YD+ZD*ZD)**0.5)-1 .0096E04
2100:= M9=((X*X+Y*Y+Z*Z)**0.5)-1.3811E08
2110= MIO:=X*XEI+Y*YD+Z*ZD
2 120= M1O::MIO/ZED
2130= G2=AA(1)+AA(4)+AA(7)
2140= MA(lI)=(M1-M6)/(2.0*[UEL(l))
2150= MA(2,I)=(M2-M7)/(2.0*'EL(I))
2160= MA(3rI)=(M3-M8)/(2.0*DEL(I))
2170= MA(4pI)=(M4-M9)/(2.0*tDEL-(I))
2180= MA(5pT)=(M5--MI0)/(2.0*T'EL.(I))
2190= GA( I)=(G1-G2)/(2.0*DEL( I))
2200= DO 100 K=1I
2210= TF(K.EO.I)6O TO 707
2220= IF(IMET.EO.1)GO TO 100
2)230= EDO 9 J1,VNP
2240:9 AA(.J)=A(J)
22'50-x AA(I)=A(I)+Dr.EL.(I)
21260= DEE.K='ELTA*A(K)

70= IF(ABS(DEL(K)).LE.DELrA EEL(K)=VELTA
2280= AA(K):=A(K)+EIEL(K)
2290= DO 10 J=lNE
2300=10 BEI1(J)=D(J)
2d10 CALL TRANS(AABP1)
2320!- mm1=zEI
21330= M M2 =7
23 0. motW3x: ( (xD*xED+Yri*Yri f.ri*zrI **o. *1 -- 1 .0096(.74

MM4:- (X)+YV* Y 7*~7) )**0.!,) -l .30 11l[70
:1360 - mmrl= * xrlD1Y*YD+ Z*ZD
23 7 0= MMS=MM5/ZEEI
2-380- flO1=AA(I1)+AA(4)iAA(7)
2390- DO It J=IPNP 4
2400-11 AAC.J)=A(J)



2410= AA(I )=A( I)+EIEL( I)
2420= AA(K)=A(K)-IEL(K)
2430= DO 12 J=1,NE
2440=121 EP2( J)=B(J)
2450:-- CALL. rRANS(AAPEIP2)
2460= MM6=7D,
2470= MM7=Z
2480= MMB= ( (XD*Xrt+Yi*Yt'Z*Z) **0. 5) -1 0096E04
2490= MM9=( (X*X-Y*Y+-Z*Z)**0.5)-l.318111E:08
2500:= MMIO- :X*Xr.1-1Y*Yr-Z*7rI
2510= MM10=MMIO/ZEI)
2520= GG2=AA(1.)+AA(4)+AA(7)

O= ~DO 13 .J=lPNF*
2..40=13 AA (J) =A (J)
2550= AA(I)=A(l)-:IEL(I)
2560= AA(K)=:A(K)+EIEL(K)
2570= DO 14 J:=1,NE
2580=14 EP3(J)=B(J)
'2590= CALLTAN(,B3
2600:n MM11=~r71'

26 ()MMl, ::: I
2620= MM13:n (XIlt*XEI+YED*Y'1I*i*zI:i~I) **() * 5) --1 . 0096E704
2630:= MM14::L (X*XY*YZ*Z) **0. 5) -. 1.381:LE08

2640=: MM1 5=--X*XrIY*YrI:IsZ*zEI
2 A ) 0nn. M M 5~M 15 7ErfD

2660n: G 63 = A( 1. ) A A( 4)+-fA A(7
26 7 0 DO 15 J=1YNP
2680:=15 AA (J) r-A J)
2690= AA(I)=A(I)-EiEL(I)
2700= AA(K)=A(K)-JiEL(K)
2710ir DO 16 J=1,NE
2720 = 16 DP4 (J)=t(J)
2730- CALLTRS(AD)
2740= MM16=zrI
27150= MM17=Z
2760= MMI 8= (XD*X[D+YD*YD+fZD*ZD) **0. 5) -1.0096E04
2770:= MM19=((X*X+-Y*Y+Z*Z)**0.5)-1.3811E08
2780= MM20=X*XEI+Y*YB+Z*ZDi
2790= MM2O=MM2/ZED
2800= GG4:%AA(l)+fAA(4)+AA(7)
21310= MAA1 (IrK) =MAA (KvI ) =(MM I-MM6-MM 1fMM 6) / 4. O*DELI I*DEL (K~)
2820- MAA2(IK)=MAA2(KI)=(MM2-MM7-MM12fMM7)/(4.o*riEL- 1*'FL-(K))
2830= MAA3 ( I K) =MAA3 (K,I ) =(MM3-MMS-MM1I3+fMM 11:) (4. *1I(I ) *rEL (K) )
2840= MAA4 ( I r K)=MAA4 (K P I ) =(MM4-MM9-MM 14 fMM 1 9) /(4.0O*DEL ( I ) *DEL (K) )
2850= MAA ( I vK) =MAA5 (KvI ) =(MM-MMO--MM . 4MMo) /(4. 0*1EL ()*DIEL (KO)
2860= GAA ( I K) =GAA (K I1 (GG I-GG2-Gj3+GG4) /(4. O*rL.I *DEL (K))
2870= GO TO 100

, 10-707 MAA I( I rI ) =(M 1-21.0*M( 1 )+M6) /(IIEL( I ) **2)
,J90--MAA2(TPI)=(M2-2.*0*M (2)+M7) /(EiIL(I)**2.-)

21900= MAA3(T 'T)=(M3-2.0*M(3)+fM8)/(EaEL( I)**2)
2 910 = MAA4 (I1'I)1(M4-2.0O*M (4) +M9)(DEL ( I )**2)
2920= MAA5)(IvI)=(M-2.*M()MO)( [7EL.( 1)**2

2930= GAA(II)=(G1-2.0*G+G2)/(DEL( I)**2)
'1940:100 CONTINUE
2990-n IF(TMET-1)759p759,747

29,70: FINDING INITIAL LAGJRANGE MULTIPLtIER~S AN!' DA 'S ((tiIiiv U:iI)

2990=759 P0O 18 I=1,NC
3000. DO 18 J=IPNC



3010!z MAMAT(I9,J=0.0
30210= DO 10 K1,?NP
3030=18 MAMAT(Ip,j)=MAMAT(I,J)+MA( IvK)*MA(.JK)
3040: CALL GAUSDI(NC,1.OE--30PMAMATYMMATIITr<,NC)
3050.- EDO 19 I=1,NC
3060= MAGAT(I)z-0.0
3070= DO 19 J=IPNP
3080=19 MA(3AT(1).MAGAT( I)+MA( I YJ)*GA(J)
3090= rDO 20 I=1,PNC
3100= PNU(1)=0.0
3110= DO0 20 J=1,NC
220 o NU(I)= PNLJ( I+MAMA TI(I YJ*(M(J)--MAGAT(j)
JO0 PRINT*,

3140= DO 21 I=1,NC

3160= PRINT*Y"
3170= DO 34 I=lpNP
3180= E(I)=0.0
3190- DiO 34 .J=1,NC
3 20 0:: 1 F (I ):rr.( T) +MA(J v I )f*tNUJ(J)
3210: DO( 3':7 l:: j NP:
3220= FA(T)=:GA(I)+E(I)
3230=:35 DIA( I )-P(I
3240= F=0.0
3250=z 110 36 I1;:-lNP
34160=36 F=F+t'IA(I)**2
3270=- GRNO)RM=SQRT(F)
3280:- DIFF=(FGNORM-ORNORM)/FGNORM
3290.: FGNJR'M=GRNORM
3300: PRINT*,a
3310= FRINT*,'FA MATRIX*
3320= PRINT 50P(FA(I)plIYNF)
3330= PRINTW "
3340= PRINT*, 'GRADIENT METHOD DA'S*
3350= PRINT 50,(DA(I),I=1,NP)
3360= PRINT*F*1
3370= IF(E'IFF.LT.CC2.AND.P.EQ. 1.0) V=1 .0
3380= IF(V.EQ.1.0)PRINT*Y'GRADIENT METHOD CONVERGENCE'
3390= PRINT* '
3400= IF(V.EO.1.0) P=.1
3410= ITER=0
3420= GO TO 1000
3430=C
3440=C
3450=C
34l60=C

A70:=C
80=C

3490=C
3500=C
3510"-C
3520=C CALCULATING DPNU AND DtA (SECOND' ORDER TECH)
3530=C
3S40:=747 rDO 22 I=I*NP

PNIJMA ( I ) =0*()
.Y,560 Di0 "21 . .,N C

PNlJMA ( I) PNUMA ( I ) 1PIJJ(J) *MA (JrI)
3500=22 FAT(TI)=GA( I)+PNLiMA( 1)
3rp90- PRINT*-*'
3600= PRINT*P*PNU'S' 43



3610= PRINT 50r(PNU(I)yI=lYNC)
3620= PRINT*v
3630= PRTNT*vwFA MATRIX8
3640= PRINT 50p(FAT(I)vl11,NP)
3650= DO0 24 I=1,loNP
3660= 10( 24 .)=ItNP
3670= FAA( I,J)=PNLI(3)*MAA3(Il,J)+F*N((4)*MAA4( I v..)+PNIJ(5)*MAA5(l ,J)

3690-- pR I T v F- AA 'YFAA(IYJ)
3700= NF=NP
'37107-7007 CALL G~it.SE(NF, 1.OE-30,FAAFAAiI ,JER,9)

720= ['0 25 I=1,NC
3730:= DO0 25 J=1,NF
3740= MAFA(IvJ)=0.0
7 750:r DO "" N4=1 NP
3760=25 MAFAAI (I,J)=MAFAAUIlJ)+fMA(II\)*I-AAI(KJ)
3770= DO 26 I=tvNC
3780:= DO0 26 J=1,NC
3790= W (I VJ)1=0. 0
3000)L 0' 2' 6iK=1 Y N P
30310:::2'6 W ( I YJ) =W ( II) +MAFAAI( IvK) *MA ( JvK)
30820L- CALL GALJ)SD(NC, 1.OE-30,WWI KI'ERNC)
3830= DO 0 27 I=1,NC
31-40t= C(I)=.tO
3850= DO 27 .J=1,NP
3860::::7 CCI )=C(I)+MAFAAI(IJ)*FAT(J)
3870= DO 28 I=1,NC
3080= D PN .1 ( I ) ::() 0 0
3890= lDO 28 J=1,NC
3 90 0 =2"If8 IP N ( I) = DPN U( I )+W I (I J)P* C(J)+ *M(J)
3910= PRINT*,'
3920= PR:ENT*, "DPN.J 'S.
3930= PRINT 50v(DPNU(I)pI=1,NC)
3940= DO0 29 I=1,NP
3950= D(I)=0.0
3960= DO 29 J=IPNC
3970=29 DC I)=D(I)+MA(J I )*DPNU(J)
3980= DO 30 I=1,NP
3990= DA(I>=0.0
4000= DO0 30 J=1,NP
4010=30 'A ( I)DA ( I )+F A AII J)(P*F AT(J-D (,J)
4020= NORMP=0.0
4030:= DO 31 I=IPNC

40150= N0RMP=Sr0RT(NORMP)
4060= PRINT*,'
)70= PRINT*p'NORM OF DFNU'S= 'YNORMP

4080= PRINT*P'
4090= PRTNT*v"DA MATRIX*
4100= PRINT 50?(DA(I)vI1,vNP)
4110= NORMA=0.0
4120= DO 32 I=1,NP
4150n32 NORMA=NORMA+DA( I)**2
4140- NflRMA.:')OPT(NflRmA)
4i150:- PIrF- 'FNORMA-NORMA) FNO)RMA
4160:= FNORMA=NORMA
4170- PRTNT*P*,
41800- PRINT*YNORM OF DA'S = 'vNOR~MA
4190- IF(iITER.GE.10.0)GO TO 555
4 200 IF(NnRMA.GE.1.0)00 TO 4371 4



4210= 0=1.

4220=C
4230:=C CONVERGENCE CRITERIA
4240.-C
4250=200 IF(NORMM.LE.CC3.AND.NORMA.LE.CC4.AND.P.EQ.1.0) GO TO 201
4260= IF(P.GT.1.0) P=1.0
4270= GO TO 1000
4280=4371 0=0/100.
4290:-: 60 TO 555
4300=201 PRINT*P,
4310= PRINT*,*'CONVERGENCE* PERFORMANCE INDEX= ",G,' F= ',P

-,0=757 STOP
END

4340=C
4350=C
4360:=C MATRIX INVERSION SUBROUTINE
4370=C
4380=C
4390= SUBROUTINE GALJSD(MEF'S , B, CKIER lAY)
4400::: [El I ,;:JOSN0 13 E I.AYvL.Y)v, C I.,Y IIY A 2 , 0 X(': 0 ,20)

4410= DOUBLE PRECISION Z,AXSRATIOEF'
4420= EP = EPS
4430:= N = M
4440= DO 1.00 J = I,N
4450= DO 100 K = 1,N
4460::= 100 A(.J,K) = B(JK)
4470== DO 1 I=1,N
4480= DO 1 J=1,N
4490= 1 X(IJ) = O.ODO
4500=- DO 2 K=lN
4510:= 2 X(KK) = 1.01)0
4520= 10 D)0 34 L=lvN
4530= KP=O
4540= Z = O.ODO
4550= DO 12 K=L,N
4560= IF(Z-DABS(A(KL))) 11,12,12
4570= 11 Z = DABS(A(KL))
4580= KP=K
4590= 12 CONTINUE
4600= IF(L.-KP)13,20,20

4610= 13 DO 14 J=L,N
4620= Z=A(L,J)
4630= A(LJ)=A(KFJ)
4640= 14 A(KP,J)=Z
4650= DO 15 J=IN
4660= Z=X(L, J)
'70= X.(LPJ)=X(KP,J)
..80= 15 X(KPJ)=Z
4690= 20 IF(DABS(A(LL))-'EP)50,50,30
4700= 30 IF(L-N)31,34,34
4710= 31 LPI=L+I
4720= DO 36 K=LP1,N
4730- IF(A(KL) )32,36,32
4740= 32 RATIO=A (K,1)/A (L,..)
4 75 0:: LID 33 .J.-:LP1 ,N
4760. 3 A(K,,J) =A (K,J)-RATIO*A (L, J)
4770: DO 35 J=I,N
47RO " 35 X(K,,J)=X(KJ)-RATIO*X(Lt,,j)

4790- 6 CONTINI1F
4100= 34 CONTINUE
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4310:: 40 DO 43 11,PN
4820= II=N4+1-I
4830= DO 43 J=1,N
4840= S = 0.0110
4850= IF(II-N)4lp43v43
4860= 41 IIP1=II+1
4870= DO0 42 K=IIPlYN
4880= 42 S=S+A(IIvK)*X(KrJ)
4890: 43 X( Ilv,)=(X(IIP.J)-S)/A(IIY 11)
4900= KER=1
4910=- LDO 200 J = 1YN
4920= DO 200 K = IYN
41930:: 2'00 C(JYK) := X(JYK)

40= 0O TO 75
4950= 50 KER=2
4960= 70o PRINT 71
4970= 71 FORMAT(1XP*MATRIX SINGULAR IN GAUSEI*)
4980= 75 CONTINUE
4990= RETURN
5000- E.ND

010[:: C
5020=4'Z
5030=C
5040:: SUBDROUTINE CHEBY (T)
5050= DIMENGION 7(7)
5060= COMMON/MISC/NPHNFPINATFNSLLpg::FPTCT(8-)pf-:IXr
5070= COMMON/QUES/ALPHA
5080= Z(1)=T
5090:= DO 1 1=207
5100= K=I-1
5110=1 Z(I)=Z(IK)*T
5120= TOT(1)=1.0
5130= TOT(2)=n2.0*Z( 1)-i.0
5140= TDT(3)=8.0*Z(2)-8.0*Z( 1)+1 .0
5150= TOT(4)=32.0*Z(3)-48.0*Z(2)+f18.0*Z(i)-1.0
5160= TOT(5)=128.0*Z(4)-256.0*Z(3)+1l60,0*Z(2)-32.0*Z( 1 )+1.0
5170= TOT (6) =512. 0*Z(5) -1280.0*Z (4) 41120.0O*Z (3) 400.0*Z(2)+-50.0*Z(1)-l.0
5180= TOT (7) =2048. 0*Z (6) -6144.0O*Z (5) +6912.0O*Z (4) -3584. .*Z (3) 4840.0O*Z (2)
5190= 1 -72.0*Z(1)+1.0
5200= TOT (8) =8192. 0*Z (7) -28672.0O*Z (6) +39424.0O*Z (5) -26880.0O*Z (4)
52 10 = 1 Fi9408.0*Z(3)-1568.0*Z(2)+-90.0*Z( 1)-1 .0
5220= RETURN $ END
5230= SUBRO.'UTINE TRANS(AB)
5240= DIMENSION A(9)YD(6)
5250= COMMON XYYZYXDPYDYZD
5260= X=B(1.)
5270= Y11(a2-)

~2 G0 -: Z=EI(3)
290= XD=B(4)

5300:!- YD=B(5)
5310!- ZD=B(6)
5320=~ T1=A(1)
5330= A1=A(2)
5340r:: B1=A(3)

5 3 p 0T2=A(4)

~~3!J0 r=A (7)
5390= A3=A(S)
5zs4 0( 0 03=:A(9)



5410= TnF=T1
5420= CALL FNG(TOFPXvYZPXE'YDvZD)
5430=C
5440=C VELOCITY CHANGE DUE TO FIRING OF FIRST STAGE
5450O=C
5460= DXD-::4242.175*COS(Pl)*COS(A1)
5470= DYD=4242.175*COS (BI) *SIN (A I)
5480= EZD=4242.175*SIN(B1)
5490= xJ)e=xV)I:'+Dxr
5500= Y Dr::.--Yr) 4+D Y 1:

5510= ZII=ZEI+DZDt
5520= T 0F:= T'

30= CALL FNG(TOFiXvYiZYXDPYDPZEI)
j:540=C
5550=C VELOCITY CHANGE DUE TO FIRING OF SECOND STAGE
5i560=C
5570= tXt=9565.712*COS(Fi2)*COS(A2)
5580= DYD=9565.712*COS(D2)*SIN(A2)
5590= DZD=9'565. 712*v5 IN (B2)
5600!.- I xr= X 1 f fE'X[)
561.0- Y 1'1:: y Y) 1 1 :'1
5620= ZD=Z)+IEIZEi
5630= TOF=T3
5640= CALL FNG(TOFXYZXE,YE',ZD)
5650=C
5660=C VELOCITY CHANGE DUE TO FIRING OF THIRD STAGE
5670=C
5680= DXE=10997.798*COS(B3)*COIS(A3)
5)690= DYD=10997.798*COS(B3)*SIN(A3)
5700= ZE=10997.798*SIN(B3)
5710= XE'=XlD+DXE'
5720= YII=YD+IIlYD
5730=: ZD=ZlD+fDZD
5740= R=(X*X+Y*Y+IZ*Z)**0.5
5750= V=(XD*XD+YD*YD+IZD*ZDl)**0.5j
5760= RETURN
5770= END
5780= SUBROUTINE FNG(TOFPXvYYZPXDPYDPZD)
5790:= AU=1.*4076468E16
5800= E=1.OE-06
5810= RO=(X*X+-Y*Y+-Z*Z)**0.5
5820= EPS= (XD*XD+YD*YD+ZD*ZD) /2. 0-AMU/RO
5830= A=-AMU/(2.0*EPS)
5840= XN=I.()
5850=1 ZZ=XN*XN/A
5860= C=(i .0-COS(ZZ**0.5) )/ZZ
5870= S=( (ZZ**0.5)-SIN(ZZ**0.5) )/(ZZ/**1 .5)

"la0= TN= (X*XD+Y*YDi+Z*Zi) *C* (XN*XN) /(AMU**0. 5)
'.890= TN=TN+( 1.0-RO/A)*S*(XN**3.0)
5900= TN=TN+4RO*XN
5910= TN=TN/(AMIJ)**0.S)
5920= RN=(XN*XN*C)+(X*XD+Y*YD+Z*ZD)*(1 .0-ZZ*S)/(AMU**0.5)
5930= RN=RNl1RO* (1 * -ZZ*C)
5940- DIT=TOF-TN
5950- IF(rT.-E.E)O TO 99
5 V6 (1: Xtl9:XJ4rlT* (AMIJ**0 5) /RN
5970: GO TO I
5tl.j:.o99 F71 .0 (XN*N*(,) / (R())
5990= ro =Tnr-(XN**3.0) *S/ (AM.J**0.!7)
6000: P:X



6010= 0=Y
6020o= V=Z
6030= X:=F*X+fG*XE'
6040= Y=F*Y-1G*YEi
6050= Z=F*Z+G*ZE'
6060:= GD=1 4 0--(XN*XN)*C/( (X*X+IY*yiZ*Z)**0.5)
6070= FE=(AMU**0,5)*(ZZ*S-1.0)/(RO*((X*X+Y*Y~tz*z)**0.,-))
"080o= FD=FDa*XN
390= XE'=FO*P+Gi*X'

61 00:= Yti=Ftil*QFG,-rD* YD
6110= ZtD=FE'*V+GEi*ZE'
6120= RETURN
6130= END
6140=*E:OR
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