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Abstract

The Tnertial Upper Stage (IUS) being developed for use
aboard the Space Shuttle is composed of three solid fuel
stages plus a satellite payload. One mission of the TUS
system is to launch from a shuttle parking orbit and place
the satellite in geosynchronous orbit in minimum time. Actual
Space Shuttle parking orbit data and TUS characteristics were
used in this study to examine the sequential timing and orien-
tation in inertial space of each stage as it is fired while
the spacecraft moves along a transfer orbit to geosynchronous
orbit. In addition, the sensitivity of the total transfer
time and the final orbital state was found as a result of not
meeting one or all of the time and oricntation paramcters.

This problem is unique in that it considers an optimal
orbit transfer problem involving solid fuel stages of f{ixcd
thrust and burn time. Previous work with liquid fuel engines
cexamined orbital transfers with the intent of minimizing the
amount of propellant or required velocity change nceded to

accomplish the transfer.
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THREE BURN INERTTAL UPPER STAGE
OPTIMAL ORBIT TRANSFER

I. Introduction

Previous work involving optimal orbit transfecrs was
centered around liquid fuel engines. The driving concern

with a liquid system is to minimize the amount of propellant

to be carried on the spacecraft to keep the overall weight as
low as possible. This is especially important for spacecraft
of one stage, where the engine is required to be restarted
for additicnal burns. There are a number of studies, of
which Reference 9 is an example, that explore the transfer
from one orbit to another using two impulsive burns. One
study was found which considered three burn optimal trans-
fers (Ref 10), but minimized the total velocity change necded.
The advent of the Space Shuttle made it possible to
carry a small spacecraft into near earth orhit inside the
cargo bay and then launch it from that parking orbit into
another orbit. The storage problems associated with liquid
fuel systems made solid fuel engines preferable for this
type of spacecraft. The initial configuration for the
Inertial Upper Stage consisted of two solid fuel ecngines.
This allowed for the use of previous orhital transfer studics
to define the exact capabilities of the configuration. The
desire to cxpand this capability led to the design of the
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threc stage IUS which neccessitated the need to cxamine a
three burn optimal transfer to‘geosynchronous orbit in mini-
mum time.

As in past studies, the firing of cach stage of the
spacecraft is treated as an impulsive burn. This assumption
is justified because the burn time of a rocket engine is very
small when compared to the total time spent in an orbital
transfer. In addition, transfers in the near vicinity of the
earth are normally analyzed in three phases which yield in-
creasing degrees of accuracy.

The first phase is to consider the earth and the space-
craft as being alone in inertial space. The earth is con-
sidered perfectly spherical and homogeneous, and the effects
of the other major bodies such as the sun and moon are ignored.
These assumptions allow for a two-body analysis of an object
under the influence of a single gravitational field. The
equations of motion used to describe the behavior of an
object in this environmcnt are accurate enough to allow for
initial mission planning. The second phase is to take the
two-body cquations of motion and add the oblatcness and non-
homogeneity c¢ffects on the earth. The results arc more
accuratec, but they differ only slightly from thosc obhtaincd
from the two-body cquations alone. The last step is to again
modify the equations of motion to sccount for the cffects of
the sun, moon, and other major bodics. The end product i,
indeced, accuratc but extremely cxpensive and tedious to coxtract,

This study follows the tradition of previous work by
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impulsive burns and two-body orbital bechavior for

assuming

this initial mission analysis.




I1T. Problem Statement

The starting place for this problem is the near earth
parking orbit of the Space Shuttle. The IUS System Program
office at Patrick AFB (Ref 1) was kind enough to provide the
following data describing the shuttle parking orbit at the

moment of orbit attainment:

TABLE I

Initial Parking Orbit Data

latitude 21.3624°

longitude 59.2825°

altitude 7.11693 x 10° ft

inclination 28.78871°

eccentricity 0.01497

velocity 2.561851 x 10% ft/sec
x = 1.029312 x 107 ft xd = -2.248185 x 10% ft/scc
y = 1.732354 x 10’ ft yd = 9.356206 x 105 ft/sec
z = 7.881747 x 10% ft 2d = 7.958385 x 10° ft/sec

where x, y, 2z, xd, yd, and zd are the position and velocity
components in the earth-centered inertial (ECI) coordinate
.frame. In order to describe subsequent positions and times, ﬁ
this initial fix (i.e. initial conditions) was chosen as a
starting place for the orbital problem at time equal to zero.
For the IUS, the engine burn times arve of fixed duration as

shown in Table I7; therefore, the time of burn initiation and ]




TABLE T1

TUS Characteristics

Vehicle Specific Burn Propcllant
Stage Weight Impulse Time  Delta-V Weight
(1bs) (sec) (sec) (ft/sec) (1bs)
1,2, §3 56119 294,332 123.91 4242.175 20263
283 33813.6 294.189 140.35 9565.712 21505.6
) 3 8887.5 302.492 94.49 10997.98 6016.6

the orientation of each burn in inertial space are the vari-
ables of interest.

This problem is worked entirely in an ECI frame of
reference. Tigure 1 describes the orientation of each stage
prior to engine initiation. Since the assumption has been
made that cach burn will be trcated as impulsive, this corres-

ponds to orienting the Delta-V vector in inertial space.
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Fig 1. Spherical Coordinates Definition
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The angles alpha and beta shown in Fig 1 complectcly describe
the oricentation of the spacecraft and its Delta-V vectors in
inertial space. A third paramcter, timec, can then be used to
pinpoint the position of the spacecraft along each segment of

the transfer orbit., A pictorial representation of this is as

follows:
Al,B1,AV1 T1
Initial Parking
Orbit Fix
TO = 0
A2,B2,AV2
T3 A3,B3,AV3
Fig 2. Transfer Orbit
where
Tl = coast time to firing of first stage
Al § Bl = orientation of first stage at firing
T2 = coast time to firing of sccond stage
A2 § B2 = orientation of sccond stage at firing
T3 = coast time to firing of third stage

6




A3 § B2

oricntation of third stage at firing

AV1,AV2,AV3

impulsive velocity changes per burn

This allows the entire orbit from initial parking orbit to
final position to be described by the nine parameters T1, Al,
B1, T2, A2, B2, T3, A3, and B3.

As stated before, the calculation of the satellite's

position and velocity as it moves through each segment of the
transfer orbit will be done using a two-body formulation.
Several prediction algorithms are in existance today; all of

them solve variations of the differential equation
-r - . ‘J —
R Eg R (1)

where v is the geocentric gravitational parameter, R is the
vector position of the satellite, R is the vector accelera-

of the satellite, and R is the scalar distance from the center
of the attracting body to the satellite. Two such algorithms

were uscd in this study. The first is an actual scries solu-

tion of the two-body differential equations known as the [
and g scries solution to the Kepler problem (Ref 3). The I

and g scries solution affords a rapid means of determining

position and velocity as a function of time and just as

importantly, avoids the penalties associated with the numeri-

cal integration of differcntial equations. A sccond prediction
algorithm, known as Hamilton's two body equations (Ref 2), is
composed of six first-order differential equations and was

used only to check the accuracy of the subroutine written to ;

do the prediction problem.




By using the [ and g scries in a subroutine, an algor-
ithm defining satellite position and velocity as a function
of all nine paramecters can be formed.

Algorithm

1. Given: initial position, velocity, and time (X
and TO = 0)

2. Coast in parking orbit for time T1 and calculate
final position and velocity.

3. Align the first burn in inertial space using Al
and Bl and calculate its component velocity con-
tribution. Add this to the velocity from (2) to
obtain a new state vector.

4, Coast in new orbit for time T2 and calculate a
final state vector. Repeat the procedures used
in (3) for the second stage and find the new orbhit
parameters.

5. Coast in final orbit for time T3, add the vectoral
velocity contribution of the third stage, and cal-
culate the final position and velocity.

The requirement that the satellite's final orbit be geosyn-
chronous yields five constraints on the final statc vector
as defined in the ECI framc.

1. The z component of position must cqual zcro.

2. The zd component of velocity must equal zcro.

3. The satellite's speced must cqual gecosynchronous
speed.

4. The satellite's distance must equal gcosynchronous

8




distance.
5. The final orbit must.bc circular.
The problem then is to find values for the paramcters T1, Al,

Bl1, T2, A2, B2, T3, A3, and B3 that allow the satecllite to

transfer from its initial position in the parking orbit to a
final orbit which satisfies the specified end conditions in
minimum time. It is readily apparent that this problem is
not amenable to closed form analytic treatment, which implies

the need to solve it iteratively.




I11. The Optimization Problem

A good definition of a parameter optimization problem
is how to change parameters in order to satisfy end conditions
with the lcast ceffort. Optimization theory provides the dir-
ection needed to change each parameter to reduce end constraint
errors and also offers figures of merit that can be used to
tell how well the procedure is progressing. This problem, as
stated, involves finding the values of nine parameters that
force the final orbit to satisfy five equality constraints
and allow the satellite to complete the orbital transfer in

minimum time. This defines the performance index as
G =Tl + T2+ T3 (2)

which is the total time of flight. The initial conditions
for thc prcblem are simply the initial position and velocity
components supplied for the parking orbit for refecrence time
cqual to zcro. The linal conditions or end constraints are

labeled by the vector M, where

M(1) = zd
M(2) = z
M(3) = (xd? + ya? + 2a®yY2. 1. 0096 x 10 (3)
M(4) = (x% + y2 + 2520 4 3811 x 108
M(5) = x(xd) + y(yd) + z(zd)
where 1.3811 x 108 fect is gcosynchronous orbital distance,

10




and 1.0096 x 10% fcet per sccond is synchronous speced. Tach
constraint is written so that when its numerical value equals
zero, the desired condition has bheen obtained. By calculating
the norm of the M vector, a figure of merit is produced which
indicates the degree to which the end constraints are satis-
fied. The optimization problem is then to drive the norm of
the M vector to zero and the performance index to its minimum
value.

One procedure for accomplishing this is referred to as
suboptimal control. In an optimal control problem, the desired
controls, which are functions of time, are directly calculated.

For this problem that would mean the alpha and beta parameters

are functions of time. The assumption that all three burns
are impulsive converts the alpha and beta controls to scalar
parameters. The suboptimal control technique approximates
these controls using polynomials.

In this problem the controls are the three pairs of
angles needed to align the stages for firing and the times
of firing. 1If all the parameters are expressed in one vector

A, then
A = [Tl A1 Bl T2 A2 B2 T3 A3 BS]T (8)

This vector A then contains all the information neceded to

find the final position and velocity of the satellitec,

Xp = Xp(A) (5)

In addition, the vector A also supplies all the information
neceded to cvaluate the performance index and the end condition

11
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constraints.

GéA)

[o»]
[}

(6)

=
"

M(A)

If an augmented performance index, F, is defined functionally

as

F(A,v) = G(A) + vIM(A) (7)

where v represents a vector of Lagrange multipliers, it must

satisfy the first variational requirements

T
FA (A,v) =0

_ oF
Fo = 2% (8)

FT(A,v) = M(A) = 0

to be a minimum solution. FA is the partial of the augmented
performance index with respect to the parameter vector A.

The FA matrix represents the change in performance resulting
from a change in cach parameter in A(gradient). Since there
are ninc paramcters in A, FA is a row vector of ninc elements.
Hull and Edgeman (Ref 6) describe a second-order parameter
optimization technique and algorithm specifically for appli-
cation to suboptimal control problems. Johnson (Rcf 7) and
Peterson (Ref 8) used this algorithm to develop a computer
program to analyze aircraft time to turn problems. Their
program uses three controls, differential equations of motion,
and two end condition constraints. The program was modificd
to accommodate nine parameter controls, a serics solution to
differential equations of motion, and five end condition

12




constraints. In short, thc program which adopts llull and
Edgeman's algorithm uses second-order information to deter-
mine how to changc the paramcters in the vector A and the
Lagrange multiplicr vector, v, such that the vectors FA and
M are driven to zero. The vectcr rclationships used to
change A and v are derived from Eq (8). For any guessed
values of A and v that are not a solution, the equality will

not hold.
Fol # 0 M(A) # 0 (9

If Eq (9) is then linearized about A and v, then

6F,T = Fpp6h + M,T 6y (10)
§M = M, SA (11)
and define
st " = - or,” (12)
SM = -QM (13)

where P and Q are scaling factors, yields
T - . T
FAASA * My v = -PF, (14)

MySA = -QM (15)

which can be solved for &v and 68A.

_ . -1, T,-1 . -1, T
dv = (MArAA MA ) (-PMAFAA IA + QM) (16)
I | . T T
SN = 'FAA (PTA + MA 8v) (17
where 2
oM _ 9°F
WY and Fan = 22,
3°A
13




and P and Q are scaling lactors which control optimization
and end condition satisfaction. FAA represents a change in
slope and the direction in which it is increasing or de-
creasing. The algorithm developed to iteratively change A
and v follows:

1. Guess A and v

2. Use the f and g series solution to find Xg

3. Compute M, MA’ MAA’ FA, and FAA

4. Pick values for P and Q and compute §v and 68A |

S. Set A=A+ 8A and v = v + §v

6. Check convergence and if unsatisfied, go to

step (2)

The computer program uses this algorithm plus a gradient
approach that allows the direct calculation of an initial v

vector which eliminates guessing five parameters. The pro-

cedure for doing this was also developed by Hull and Edgeman

and uses first-order information as follows:
v= MM M - M6, (18)
AA ATA

(19
where
Gp = 33 1
For a typical problem, the gradient portion of the
program would be used to locate the vicinity of the functional
minimum. At this point where gradient methods losc their
effectiveness, the sccond-order algorithm would he used to

14




rapidly converge the problem. As this procedure is followed,
the scaling factors P and QO are gradually raised from very
small values to final values of one. In the final convergence
cycles, P and Q must be equal to one to yield an optimal solu-
tion. Although this procedurc would appear straightforward,
its application to specific problems can, at times, require
some finesse as will be shown later.

Numerical Methods
(Ref 6:484)

The first- and second-order optimization routines re-

AA? and FAA’ These matrices were

evaluated using numerical techniques. FA and FAA are defined

quire the matrices M, MA’ M

as
F, = G, + vTM (20)
A A A
5
F = G + I v.M
AA AA j=p 1 AAi (21)
since
C=T1 + T2 + T3 (22)
GA = [1 0010010 0] (23)
and
Gan = [01gx9 (24)

The only quantities that need to be calculated arc M, MA’

shiaSettnin et antel

and MAA‘

The M matrix, or error matrix, is easily evaluated
after determining the final position and velocity vectors
using the { and ¢ serices solution to the Kepler problem.
The MA and MAA matrices arc determined using a central

15 '
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differences numerical derivative technique. The technique

uses the initial values of the A vector parameters (An) to

calculate an initial M., Tach An is then positively perturbed

by

A, = A+ 6 (25)

and then negatively by

A=A - 8 (26)

Using A  and A, M and M_ are calculated. The central

differences representation for M is then given by

An

M, - M_ 2
M = " + g(6.°) (27)
An 26n n

where o(énz) represents an error term of order énz where 6n
is a very small positive number. The MA matrix contains five
rows. The first row is determined using M1 in Eq (27), the

second row using MZ’ and so on. The M matrices arec deter-

AA
mined in a similar manner; however, two elements An and Am’

must be perturbed both positively and negatively to obtain

M,,» M,_, M__, and M__. The central differences rcpresenta-
tion for M is
A
M+ '2M+M_ 2
M = + 0(8.7) (28)
AAL 5 % n
n
for n = m and
y ) My, - M, - M _+M . . s
AN LY o(8,0y)
nm nm
for n # m. The MAA matrix is recally five matrices. One is
determinecd using M1 values in the above cquations, and then

16




the others by M2 through M5 in turn. The crror terms in thesce
equations can be ignored if 6n and 6m are quite small. The 1

§ used for the central differences technique is

Gn = DELTA - /\n (29)

and if the absolute value of an is larger than DELTA, then

Gn = DELTA (30)

where DELTA is another small positive number. In this prob-
lem, DELTA was initially chosen to equal 1.0 x 107 9.

Selecting Initial Parameter
Values

Picking nine paramcters to serve as an initial guess
for the orbital transfer problem is far from a simple matter.
Not only must the parameters be compatible, but they should
also provide an initial "miss" relative to the cnd condition
constraints small enough to allow for easy convergence. At
this point, some engineering insight was applied with only
marginal success. Since the actual parking orbit has an
cccentricity ol 0.01497, onc would think parameters pood tor
a perfectly circular orbit would be good initial gucsses for
the actual. With this in mind, a test orbit was constructed
in an ECT frame with ascending node on the X-axis at 2.16737
X 107 feet, inclined 22.8 degreecs at a velocity of 25,618
feet per sccond. The first parameter, T1, was determined hy
calculating the time of flight to thc descending node. Since

the final orbit would lic in the X-Y plane, the first burn

17




was aligned to eliminate as much inclination as possible using
AVi = 2V sin 8/2 (31)

where AVi is the change in velocity due to stage burning, V

is the original velocity of the spacecraft at nodal crossing,
and 6 represents the angular change in the inclination. This
allowed Al and Bl to be determined. T2 was chosen to be the
time of flight to the next nodal crossing. The second burn

was aligned in an attempt to eliminate the remaining inclina-
tion yielding A2 and B2. T3 was again chosen to be the time

to the next nodal crossing, and A3 and B3 were varied to find

the smallest error in the end conditions. This orbit and the
actual orbit differ only by a rotation about the Z-axis to
align the nodes--ignoring eccentricity. This angle was then
added to the three alpha parameters, and Tl was adjusted to
reflect the coast time to first nodal crossing from the
initial fix. The initial miss vector that this procecdure

yielded was of magnitude 1012

, largely due to the circularity
constraint. Random adjustment of individual parameters proved
to be a hopeless means of reducing the error. The circular-
ity constraint proved to be far too sensitive to allow for
rapid convergence. To decrease the sensitivity of this con-
straint, the circularity was multiplied by a scaling factor

of 10-5. This allowed the program to drive down the errors

in the other four constraints. Tach time this occurred, the
scaling factor was increased by a factor of ten and the pro-

cess repeated. This allowed the scaling factor to cventually

18
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B

be removed once the vicinity of the functional minimum was

reached.
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TIV. Results

Choosing P, Q, and DELTA

The selection of the P and Q scaling factors is unique
to every optimization problem. By their selection, one can
select several options. The first and most commonly used is
to choose P very small and Q large as compared with P. By
doing this, the program will attempt to satisfy the end con-
straints before doing any optimization. A second method is
to choose P larger than Q in an attempt to satisfy the end
conditions after finding an optimal regicn. The third common
method is to choose P and Q equal and, thereby, optimize
while trying to satisfy the end constraints. All three
methods were tried on this pioblem, with only the first being
successful. It was found necessary to first satisfy the cnd
conditions and then search for an optimal solution.

Second-order optimization methods are very unstatlc
far from the optimal solution. This requires very smatl
changes in the control parameters through each itecration to
prevent divergence. The magnitudes of these '"delta" quanti-
ties can be controlled using P and Q. Trial and crror

-1
showed that for P equal to 1.0 x 10 15

and Q equal to 1.0
X 10-6, sufficiently small parameter changes were generatcd
to allow the program to run for an average of 25 itcrations

hefore divergence occurred. This was caused by the numerical

20




routine generating an cxcessively large change in onc of the
parameters. The program was modified to allow continuous
operation by cxamining the norm of these parameter changes,
Initially, whenever the norm exceeded 0.38, the divergence
was seen to occur. The program was then modified to reiniti-
alize all the Lagrange multipliers and restart itscl{ whencver
this was observed. As the program began to approach the
vicinity of the functional minimum, the numerical routine
became more stable. The 1limit on the norm of the parameter
changes was relaxed to 0.5 and finally to 1.0. This simple
procedure proved extremely valuable after unsuccessfully
attempting to use a straight gradient method.

A third parameter, DELTA, also showed a large impact
on the success of the routine. For a similar problem using
differential equations of motion, DELTA would be chosen in

4 to 10.6 range. This insures the accurate calcula-

the 10°
tion of the MA and MAA matrices. In addition, the size of
the parameter changes (da's) is directly proportional to
DELTA, since the '"delta" perturbing values equal DELTA times
each element of A. In this problem, DELTA equal to 10-6 was
used based on this previous experience. It was found that
the numerical routine stagnatced when the solution was being
approached. It appears the function contours were steep to

6 times

the point where the paramecter changes equal to 10~
their present valuc would not allow the program to move deeper
into the contour valleys. At this point, several itcrations
were run with the same initial paramcter values, but with
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different DELTAs. By comparing the norms of the constraint

errors, it was found that performance improved as DELTA was
progressively decreased. Best performance resulted from a

-10

DELTA of 10 , which was then used to find the solution pre-

sented here.

Gradient Mcthod

The gradient method, which uses first-order information
in an attempt to move toward an optimal solution, proved to
be a dismal failure. Because the performance index was de-
fined as the sum of three times, the gradient method tried to
drive all three to zero. Gradient information was used,
however, to calculatc initial values of Lagrange multipliers

by Eq (18). These were then used in the second-order method.

Numerical Results

The second-order method used in the computer program,
when modified to run continuously, steadily drove toward a
solution that satisfied the end constraints and then toward
an optimal solution. The parameters that satisficd the cnd
constraints changed very little during the optimization por-
tion of the program, which suggests that this may bhe a locally
unique solution. The optimization iteration process was
stopped with P and Q equal to one when the norm of the para-

meter changes was less than 10 °

and the norm of the Lagrangc
multiplier changes was also very small. The A matrix solution

and the sensitivity matrix, MA’ are shown in the following

tables.




TABLE TI1

Parameter Solution Set

Tl = 2030.2449995 sec T2 = 3847.461750268 sec
Al = -0.435361007 rad A2 = 0.732341983313 rad
Bl = 0.7111815869 rad Bl =-2.731217478098 rad

T3 = 7470.83934000 sec

A3 = 1.30013074628 rad

B3 = 0.02236409011 rad

TABLE IV

End Constraint Errors

M(1) = zd = -2.5465 x 10 10 ft/sec
M(2) = z = 9.5367 x 10/ ft

M(3) = synchronous speed = -1.0477 x 1077 ft/sed

6

M(4) = synchronous distance = 8.583 x 10 ° ft

M(5) = circularity (R V) = 1.318 x 10 2

Total Transfer Time = 13348.54608 sec =
3.70792 hrs

Figures 3 through 8 depict the transfer orbit from
several points of view. Tigure 5 shows a result that is sowe-
what surprising. The transfer orbit remains in the same planec
as the parking orbit. 1In other words, the transfer opts to
increasc the altitude and velocity of the spacecralt carly
in the transfer and complete the inclination change in the
final burn. As liq (31) points out, the cost to change
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TABLE V

Position and Velocity After Firing of Each Stage

Position and Velocity After Firing First Stage:

-2.0372124 x 107 ft xd = 1.11011967 x 10% ft/sec

X = =
y = -7.6147903 x 10% £t yd = -2.21389677 x 10% ft/sec
z = -1.3724214 x 10% £t 2d = -9.3978524 x 10° ft/sec

Position and Velocity After Firing Second Stage:

-2.885451299 x 10% £t xd = -2.05530541 x 10% ft/sec

b ¢

y = 3.20133328 x 10’ ft yd = -1.176502728 x 10%ft/sec

7

z = 1.257707996 x 10" ft zd -5.014671267 x 103ft/scc

Final Position and Velocity after Third Burn:
8

x = 1.,379638 x 10" ft xd

464.30038 ft/sec

6

y = -6.351478 x 10° ft yd

10085.31809 ft/sec
z = -8.118152 x 10°° ft  zd

2.8067 x 10”9 ft/sec

inclination is less as the spacecraft velocity decrcases.
The point at which gcosynchronous orhit is ohtained is where
the spacecraft velocity is lowest. This points out that the
assumption uscd to obtain initial values for the paramcters
by eliminating the inclination of the transfer orhit was
wrong. Figure 6 depicts the entire transfer orbit in threce
dimensions. Figure 7 is the same as Fig 6, except that thec
scaling on the Z-axis has been changed to show separation of
the near earth portions. Figure 8 is the confirmation that

the final orbit is, indeed, circular and geosynchronous.
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3-0 VIEW OF TRANSFER ORBIT
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3-D VIEW OF TRANSFER ORBIT
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The M, matrix which is the partial of M with respect

to the A matrix indicates the sensitivity of each end condi-

tion to a change in any one of the A matrix parameters.

TABLE VI
MA Matrix
T1 Al Bl
M1 9.9414 -11045.0 -17707.0
M2 -78377.0 83614230.0 147191047.0
M3 26.306 -28542.0 -45384.0
M4 -497674.0 473346710.0 756855918.0
M5 9.9097 -7.73 x 1012 1.215 x 1013
T2 A2 B2
M1 -10.353 3133.023 1377.528
M2 -248.21 4481256.0 60289542.90
M3 -26.293 7204.65 6391.623
M4 304515.131 -103134155.0 -82096056.0
M5  1.596 x 10° 1.3178 x 1012 3.077 x 1011
T3 A3 B3
M1 -0.802865 0 10995.048
M2 14068. 347 0 0
M3 -2.0329 2449.40 -239.582
M4 50201.67 0 0
MS -646330649.0 -1.48 x 1012 -7.567 x 109
The MA matrix is extremely useful when onc is intercsted
in how changes in onc of the paramcters in the A matrix will
ef{fect thc end conditions. As an cxample, consider the last
column, which represents the change in end conditions duc to 1
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TABLE VII

MA Values for B3

B3 |
M1 10995. 048 |
M2 0
M3 -239.582
M4 0
M5 -7.567 x 10°

a change in B3. These numbers indicate that if the third

stage was misaligned by plus one radian, it would increase
the zd component of velocity by 10995.048 feet per second.
Since B3 has no effect on position, the numbers that corres-
pond to z and geosynchronous distance are both zero. The
satellite's speed would decrease by 240 feet per second,

and the circularity of the orhit by 7 x ]09. This clearly
illustrates thc usc of the MA matrix as well as the wide
differences in magnitudes of the individual errors.
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V. Application

The application of the information found in this study
is both simple and straightforward. The parking orbit and
the transfer orbit are fixed in inertial space due to the
choice of an ECI reference frame. The earth, on the other
hand, spins relative to this frame. To place a satellite in
geosynchronous orbit over a specific spot on the equator,
one has basically two choices. The first is to time the
launch of the satellite from the earth into its parking orhit
and then along the transfer orbit such that the final posi-
tion of the transfer orbit coincides with the desircd cqua-
torial position. A second and more practical approach
would be to launch into the parking orbit whenever corvenicnt,
The period of the parking orbit is roughly 90 minutes, which
allows for a transfer every hour and a half.

Because this problem was worked in an ECI frame of
reference, the position of the satcllite at the end of the
transfer rclative to its position at the beginning is always
constant. Therefore, the angular difference in their posi-
tions, as seen in the X-Y plane and measured about the Z-
axis, is constant. By allowing for the rotation of the earth,
a transfer to a given position over the equator can be calcul-
ated in terms of longitude. Optimal launch conditions occur

when the longitude of the parking orbit initial fix is
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114.90 degrees greater than the longitude of the desired
geosynchronous orbital position. For example, if the initial
orbit was obtained at longitude 23.90°E and the transfer becgun,
the final position would be at longitude 91.0°W, which corres-
ponds to the Galapagos Island chain, after a flight time of

3.70792 hours.
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VI. Recommendations

One of the major assumptions made in this study was
that the three engine burns were impulsive. As was shown,
this reduced the alpha and beta controls to scalar parameters.
In reality, the engines operate for specific lengths of time
as shown in Table II. Since the computer program has the
capability to determine the alpha and beta controls as poly-
nomial functions of time, it would be interesting to remove
the impulsive burn assumption and rework this problem using
the solution found here as a good initial guess.

This study found only one solution to this transfer
problem and suggests that it may be unique. If the original
parking orbit were equatorial, there would exist two mirror
image solutions. It would be interesting to see if the
methods used in this study would yield both solutions.

The suboptimal control technique, as applied to this
problem, did yicld a valid optimal solution, but the method
did prove expensive in terms of computer time. It would he
worthwhile to apply one or two other second order or quasi-
second order optimization methods to this problem to see if

a more efficient method exists.
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APPENDIX A

Computer Program SubOpt
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100=
110=
120=
130
140=
150
160=
170:=
180=
190:=
200=
210=
220=
230=
240
250=
260=
270:=
280
290
J00=C
310=C
J320=(
230=C
340=(
350=C
360=(
370=C
280:=C
390=C
400=C
410=C
420=C
430=(
440=C
450=C
4460=C
470=(C
430=(
490:=C
500=C
510=C
520=C
530:=0
$540=(
550=C
560=C
570=C
S580=C
590=2C
600=C

FROGRAM ORRITCINFUTOUTFUT)

DIMFNSTION DACD) yMAAZ(Dv9) s MAAA(D s ) y MAAS (P 92) yWZ (D)

NIMENSION A(2)yAA(D) yBAL(Y)

BTMEUSTON M5 oMASy D)y MANTI (R e DYy MAAD (99 D)

DIMENSTON RBOCAY s NIBCAHY vBRBOAY y BIFCAY v BIPLCEY s L2 CHEY s B3 CH) y REA(S) ‘
DIMENSTION DEL (2 »MAMAT (59 5) v MAMATI (52 5) s MAGAT (S5) :
DIMENSION FAT(?2)»FAA(DYy?) +yFAAT (999> +MAFAAT (S, 9)

DIMENSION WCSyS)vyWICSyS)sC(S)+T1(P) yPPNUCS)Y yODFNUC(S) s PFNUMA(9)
DIMENSTION E(2)yFA(?)sFFAA(P9P) s FFAAI (P )

DINENSION GAA(Y»9)

DIMENSION MTXFXT(12y12) yFFAAR(22+22)

DIMENSION MTXC(12912) s MTXT (1251 2)Y s CONACI2)Y yCONRCI2) s MTXF(12512)
COMMON/MISC/NFHyNFIyNAs TF s DTy Ny Syl Le PPy TOT(8) yFIXT

COMMON XeYrZyXDis YD ZI

COMMON/QUES /AL FHA

REAL MeM1oMD2yMI e MArMM1 yMM2 s MM3 » MMA4 y MMy MMO vy MM7 » MM8 » MA

REAL MSyMEy M7 M8y MP9M10

REAL. MMPyMMLIO0 s MM1L oy MMIZ2MM13yMM14yMM1S

REAL MM16yMM17MM18yMM12yMM20» MAAL YyMAAZ Yy MAAZ Y MAA4 Y MAAS

REAL. MAMAT yMAMATI » MAGAT s MAFAAT » NORMA » NORMM » NORMF

FROGRAM SUROFT IS A SUROFTIMAL CONTROL TECHNIQUE USED TO FIND AN
AFPROXIMATE SOLUTION TO AN OFTIMAL CONTROL PRORLEM. THE SOLUTION TO
MOST OFTIMAL CONTROL FROELEMS IF THE CONTROLS CANNOT EBE SOLVED
ANALYTICALLY IS TO GUESS THE CONTROLS AND THE LAGRANGE MULTIPLIERS
ANDI SEE IF END CONDITIONS ARE MET AND THE PERFORMANCE INDEX MINIMIZED
THE GUEROFTIMAL CONTROL TECHNIQUE ASSUMES THE CONTRODOLS ARE A LINEAR
COMBINATION OF FOLYNOMIALS WITH UNKNOWN COEFFICIENTS. IN SO DOING
THE FROBLEM I8 CHANGED FROM A FUNCTIONAL MINIMIZATION FROBLEM TO A
FARAMETER OFTIMIZATION FROBLEM.

IN THIS EXAMPLE THE CONTROLS ARE NOT FUNCTIGONS OF TIME.

THIS SIMPLIFIES THE FPROGRAM TO ONE OF FARAMETER OFTIMIZATION,

THIS VERSION ADOFTS THE OREITAL TRANSFER FROBLEM

A =MATRIX OF FARAMETERS(T1,A1yR1,T2,A2yR2,T3yA3+E3)
A =MATRIX OF FARAMETER CHANGES (NP X 1)

NE =NUMBER OF STATE VARIABLES

NF =TOTAL NUMBER OF PARAMETERS

NC =NUMEER OF CHD CONDITIONS TO EBE SATISFIED

F =SCALING FACTOR PERFORMANCE INDEX

Q =SCALING FACTOR FOR END CONDITION CONSTRAINTS (M)
G = GCALAR FERFORMANCE INDEX
G = PARTIAL DERIVATIVES OF G WRT A’S (1 X NF)
GAA = SECOND PARTIAL DERIVATIVES OF G WRT A’S (2 - NF X NP)
M = MATRIX 0OF PRESCRIBED FINAL CONDITIONS (NC X 1)
MA = FARTIAL DERIVATIVES OF M WRT A’S (NC X NF)
MAA = SECOND PARTIAL DERIVATIVES OF M WRT A’S (2 - NF X NF)
B =STATE VARIABLES (XsYsZsXDyYDe2ZD)
¥ = AUGMENTED FERFORMANCE INDEX (G + PNUTXM)
FA = FARTIAL DERIVATIVE OF F WRT A’S (1 X NP)
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610=C FAT = FARTIAL DERIVATIVES OF F WRT A’S TRANSFOSED (NF X 1)
620=C FAA = SECOND FARTIAL DERIVATIVE OF F WRT A’S (NF X NF)
&630=C FNU = LAGRANGE MULTIFLIERS (NC X 1)

640=C TIiIFNU= CHANGE IN LAGRANGE MULTIFLIERS (NC X 1)

650=C |
660=C THE CIRCULAR FARKING OREBIT IS INCLINED 22.8 DEGREES i
670=C AT AN ALTITUDE OF 2,1437E07 FT i
680=C !
690= T=0.0 !
700= X=1.029312E07

710= Y=1,732354E07

720= 7=7.881747E06

Q= XN=-2,248185E04

. 40= YD=9.356206E03

750= =7 ,958385E03

7460=C

770=C THE THREE BURNS ARE ORIENTED IN TIME AND SFACE

780=L BY NINE FARAMETERS

790=C

800:= T1=2030,244999504

810= Al=-, AZ5F3H10070055

820= Bl=,7111815869911

830= T2=3847.461750268

840= A2=,7323419833131

850= R2=-2,731217478098

8460= T3=7470,839340005

870= A3=1,3001307462864

880= E3=.0223640901197

890=C

900=C THE FINAL OREBIT 1S CALCULATED USING THE F & G SERIES
210=C SOLLUTION TO THE TWwO BODY PRORLEM.

?20=0

?30= R=(XkX+YXRY+ZXZ)X%KO, 5

?40= VU= (XDKXD+HYDXRYDHZOKZD ) XXOQ . 5

?250= FRINTX» *X(0)= *,X

960= FRINTX»*Y(0)= ®,Y

970= FRINTXky*Z(0)= *»Z

980= PRINTXy*XD(O)= ® s XD

290= FRINTXs "YD(O)= "oYD
1000= PRINTXs *ZD(0O)= *,ZD
1010= FRINTXs *RANGE= *"»R
1020= FRINT®, "VELOCITY= *,V¥
1030= FRINTX,* *
1040= NF=9
1050= NC=%5
1060= NE=6
1070= ITER=0

30= MAX=100
2aw90:= ZED=1,
1100= NEL.TA=1,.E-08
1110= IMET=2
1120= Q=1,
1130= P=1.
1140= FNORMA=10,0
1150= FGNORM=10.0
116G= CC1=1.0C-04
1170= CC2=1.,06~-02
1180= CC3=1.0E-08
1190= CC4=1.0E-04
1200~ £CS=1.0E~-04 3




1210= B(1)=X
1220= B(2)=Y
1230= B(3)=Z
1240= B(4)=XD
1250= B(5)=YD
1260= B(&)=2D
1270= A(L)=T1
1280= AC2)=A1
1290= A(3)=R1
1300= Al4)=T2
1310= ACS)=A2
20= A(H)I=R2
1030:= A(7)=T3
1340= A(B)=A3
1350= A(?)=R3
1360=555 ITER=0
1370= FNU(1)=-.,00001
1380= PNUC2)=8,0E-08
1390= FNU(3)=-,0000537
1400- FNUCY) =1, 782007
1410= PNU(S)=~1,7E~11
1420= DENU 1) =DOFPNU(2)=0.0
1430= ODFNUCE) =DFNUC4) =DFNU(S5)=0.0
1440=52 FORMAT (1X»5F15.7)
1450=50 FORMAT(1X»8E15.7)
1460=C
1470=C DETERMINING M MATRIX BY INTEGRATING DIFFERENTIAL CONSTRAINT
1480:=C
1490= O 1 I=1sNF
1500:=1 NACII=0.0
1510=1000 IO 2 I=1,NF
1520= AL =ACI+DACT)
1530=2 CAACD) =ACID
1540= FRINTX,"* * :
1550= FPRINTXy» *ITERATION NUMEER *yITER»*® F= *sFy°* Q= *»Q
1560= FRINTX,"* *® '
1570= DO 3 I=1sNE
1580=3 RE(I)=R(I)
1590= §=1.0
14600= CALL TRANS(AAYEBR)
1610= MC1)=ZD
1620= M(2)=Z
1630= MO =CCXDRXDHYRRYIZDKZIND X%0.5)~1 . 0096E04
1640= MCA)=C(XRXEYRYHZXZ)IX%0,5)-1,.3811E08
1650= M(S)=XRXD+YXYD+ZXZD
1660= M(S)=M(3)/ZED
“70= G=AA(1)tAA(A)1AA(7)
~-+80= ITER=ITER+1
1690= FRINTX,"* *
1700= FPRINTXy*A MATRIX®
1710= DO 6466 T=1¢NP
1720=6466 PRINTX»"A(®»I»")= *H»A(I)
1730= PRINT%X,* *
1740= D0 4 I=1+NC
1750 ENUCT)Y=FNUSTI)+DIFNUCT)
17001 PRINTXy "MC(®*9Lp*)= *»M(I)
1770 NORMM=0.0
1780= no %5 I=1.NC
1790 =% NORMM-=NORMMEM(T ) XX2

i 1800= NORMM=SQRT (NORMM) 40
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1810= PRINTX,® *
1820= FRINTXs "NORM OF M = "yNORMMys* F.I. = "+
1830=C
1840=C DETERMINING MA AND MAA EY CENTRAL DIFFERENCES
1850=C
1860= §=0.0
1870:= 00 100 I=1,NF
1880= D0 & J=1,NF
1890=6 AACD=ACD)
1900= DEL (I)=DELTAXACT)
1910 IFCARS(DEL (1)) JLE.DELTA) DEL (D) =DELTA
20= AACT)=ACTY+DEL (1)
1930= DO 7 J=1,NE
1940=7 BF () =R
1950= CALL TRANS (AAyEF)
1960= Mi=ZD
1970= M2=Z
1980= M3=  (XIRXIHYIRY D4 ZIKZID ¥ %0 . 5) -1, 00946E04
1990 MA= COORXHYRY +ZKZ) $k0 . 5) ~1 . 381 1EOB
20005 M XX Y KY D 2K 2 I8
2010= MS=MS/ZED
2020 G1=AAC1)+AA (I HAA(T)
2030= AACTY =AY ~DEL(T)
2040= D0 8 J=1sNE
2050=8 BF () =E(J)
2060:= CALL TRANS(AAyEF)
2070= M&=ZD
2080+ M7=Z
2090= MB= ( (XDXXDHYIXRYD4+ZDKZI) ¥XK0 . 5) —1 ., 009 6E04
2100= MP= C (XEX+YRYHZXZ)KKO0.5) -1, 3811E08
2110= M10=XKXDHYRYDHZXZD
2120= M10=M10/ZED
2130= G2=AA(1)+AA(4) +AA(7)
2140= MACLyI)=(M1-M&) /(2 OKDEL(T))
2150= MAC2, 1) =(M2=M7) /(2. OXDEL (1))
2140= MA(3 1) =(M3-M8)/ (2, 0XDEL(I))
2170= MACA,T)=(MA-M9P) /(2. OXIEL (I))
2180= MA(SyT)=(M5-M10) /(2. 0kNEL(I))
2190= GACI)=(G1-B2)/ (2, OKDEL(I))
2200= DO 100 K=1,1
2210= IF(K.EQ.T)GO TO 707
2220= IF(IMET.ER.1)G0 TO 100
2230= D0 9 J=1sNP
2240=9 AACD =ACD)
2250 AACT) =ACT)+OEL (1)
2260= DEL CK) =DIELTAXA (K)
70= IF (ABS(DEL(K) ) JLE.DELTA) DEL(K)=DELTA
2280= AA(K) =ACK)+DEL (K)
2290= [0 10 J=1,NE
2300=10 BF1 () =BCD)
2310= CALL TRANS(AA,EF1)
2320~ MM1=ZI
2330= MM2=7 .
2310 MHX = COXDRXDAYDXY T ZIKZIND K0 . 5 ~1 . 0096104
ABIAE MMA= ( CXKXEYRY4TEZ)%%0.5) -1, 381108
D260 MME=XXXTHY XY DI ZXZ I
2370= MMS =MM5/ ZED
23R0= GGI=AAC1+AACAI HAA(T)
2390= DO 11 J=1,NP 41
2400=11 AAC I =ACT)




2410= AA(T)=AC(T)+DEL(I)

2420= AA(R)=A(K)-TNEL(K)
2430= 00 12 J=1sNE
2440=12 BF2( D) =R(J)
2450:= CAaLL TRANS(AAYERF2)
2440= MM&=ZI
2470= MM7=Z
2480= MMB8= ( (XDAXO+YORYD4ZDXZD) X%X0.5) -1 . 00986E04
2490= MMP= ( (XXX+YXY+ZXZIX%0.5)~-1.3811E08
2500:= MM1O=XXXI4+YXYD4ZXZD
2510= MM10=MM10/ZED
2520= GE2=AA(1)+AA(A)+AA(T7)
Tt0= 00 13 J=1yNF
2u40=13 AAC)IY=AC))
2550= AA(D)=AC(T)-NELC(I)
2560= AACK)Y=A(KY+DEL (K)
2570= no 14 J=1ysNE
2580=14 BF3(J)=R(D)
2590= CALL TRANS(AAsEF3)
2600 MM11=7D
2610 MM1 27
2620= MM1 3 COXDRXDEYDXY D ZIKZID X X0« 5) -1 . 0096E 04
2630= MM1 4= COXRXFYRYHZXZ)RXO.5) -1, 381 LE08
2640= MM1S5=XXXT+YRYL4ZXZD
2650 MM15=MMI15/7ED
26460= GOE3=AA I +AACAYHAN(T)
2670~ DO 15 J=1yNF
2680=1%5 AACD =AY
24590= AACTI)=A(I)-NEL(T)
2700= AA(K) =A(K)~DIEL (K)
2710= N0 16 J=1sNE
2720=14 EBFA( D =R
2730 CALL. TRANS(AAYEF4)
2740= MM16=2D
2750= MM17=
2760= MM18=C (XIKXD+YDXYD+ZDXZIND X%0.5) -1, 0096E04
2770:= MM19=( (XKX+YXY+ZKZIX%X0.5)~-1,.3811E08
2780= MM20=XXXD+YRKYD4ZXZD
2790= MM20=MM20/ZED
2800= GGA=AAC1)+AACAYHANC(T)
2810= MAAL (IyK)=MAAL(Ky I)=(MM1~-MMO6-MM114+MM16) /(4. OXDNEL (I XDEL(K))
2820~ MAA2 (T K)=MAA2(KyI)=(MM2~-MM7-MM124+MM17) /(A OXDIEL (I XDEL (K) )
2830 MAAZ (IyK)=MAAZ(Ky I)=(MMI-MMB-MM134+MM18) /(4. OXNEL (IYXDEL (K))
2840= MAAA (I K)=MAA4(KyI)=(MMA-MM?-MM1A+MMI1D)/ (4. 0XDEL (IYXDEL(K))
2850= MAAS (T s K) =MAAT(Ky I) = (MMS~MMLO-MMLE+MM20) /7 (4. OXDEL (T XDEL (K)Y)
28460= GAA(I»K)=GAA(Ky 1) =(GG1-GH2-GG3+6GA4)/ (4, 0%kNEL (I)KDEL(K))
2870= GO TO 100
‘80=707 MAAL(TI»I)=(M1-2,0XMC1L)+MO) Z7CIEL. CT Y XXD)
~JP0= MAA2(T» I)=(M2-2., 0XM(2)+M7) /(DEL CTI ) X%2)
2900 MAAZ(T + T)=(MI3=2, 0XM(I)4MB) /(DEL (T ) X%X2)
2910= MAAACT»yI)=(MA-2, 0XMCA)Y+MP) /(DIEL.CI ) XXD)
2920= MAAS (I » I)=(ME~2,0KM(S)4+MI10) /7 (DEL (I)%XX2)
2930= GAA(I»I)=(G1-2,0%XG+C2)/(DEL(I)%X%X2)
2940=100 CONTINUE
2250~ IFCIMET-1)759y759+,747
2080 =1

2270-C  FINDING INITIAL LAGRANGE MULTIFLIERS AND DA‘S (GFALTINT TECHD
2200
2990=759 g 1R I=1sNC

3000~ DO 18 J=1,NC o

—




3590 PRINTX.* *
34600= PRINTX,»*"FNU’S" 43
— SRS PTG A

3010=
3020=
3020=18
3040
3050=
3040=
3070=
3080=19
3090=
3100=
3110=
T40=00
. 30=
3140=
3150=21
3160=
3170=
3180=
3190=
3000773
3210=
3220=
3230=35
3240=
3250=
3260=36
3270=
3280=
3290=
3300:=
3310=
3320=
3330=
3340=
3350=
3340=
3370=
3380=
3390=
3400=
3410=
3420=
3430=C
3440=C
3450=C
3440=C
TA20=C
80=C
3490=C
3500=C
3510=C
3520=C
3530=C
3540:=747
3550
3540 =
3570:03
35080=77

CFRINT®,* °

CALCULATING DPNU AND DA (SECOND ORDER TECH)

MAMAT(I»0)=0.0

00 18 K=1yNF

MAMAT (I J)=MAMAT (I y D) +MA(I»K)XMACIYK)

Call. GAUSD(NC»1,0E~30yMAMAT y MAMATI v IEKR Y NEC)
0 19 I=1,NC

MAGAT (I)=0.,0

DO 1?92 J=1,NF

MAGAT (T)=MAGAT (1) +MA (I JIXGA (D)

0 20 I=1sNC

FNUCI)=0,0 |
N0 20 J=1,NC '

FNUCTY=PNUCIYEMAMATI (T DX (MO -MAGAT (1))
PRINT#," * |
ng 21 I=1sNC i
FPRINTXy *PNUC®»Iy*)="sFNUCI)
FRINTX," *®

DO 34 I=1,NP

ECI)=0.0

no 34 J=1,NC

FECI) =0T +MAC)y TIRPNUC)

DO 3% I=1y N
FACI)=GACIIHECT)
DNACT)=-FXFACI)

F=0.0

O 386 I=1sNF

F=F+DA(I)%%k2

GRNORM=SQRT(F)
DIFF=(FOGNORM-GRNORM) /FGNORM
FOGNORM=GRNORM

FRINT*®,* *

FRINT%s "FA MATRIX®

FRINT S0y (FA(TI)»I=1yNF)

PRINTXs "GRADIENT METHOD DA‘S®

FRINT S50y (DACI) »I==1yNF)

PRINTX,»* * ‘
IF(DIFF.LT.CC2.AND,F.EQ.1.0) VU=1.0
IF(V.EQ.1.0)PRINTXy "GRADIENT METHOD CONVERGENCE®*
PRINTX,*® °

IF(V,EQ.1.0) = 1

ITER=0O

GO TO 1000

N0 22 I=1+NF

PNUMACTIY=0,0

D0 T3 =1 eNC
FNUMACT)=FNUMACT)Y4FNUCI RMA (S, 1)
FAT(IH)=6GAC(I)+PNUMAC(])
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34610= FRINT 509 (PNUCI)»I=1yNC)
3620= FRINT®y® *
34630= FRINTX,*FA MATRIX®
3540= FRINT 50 (FAT(I)yI=1sNF)
34650= IO 24 I=1,NP
3660= O 24 J=1,NP
34670= FAACT s ) =PNUCE)KMAAS (I y D HFNUCAIAMAAA Ty D HFNUCS)IXMAAT (T J)
3480=24 FAAC(T, D=FAACTy D) +ENUCL) AMAAL (T 5 ) +ENUC2YXMAAR (T D) +GAACT y )
3690 = FRINTXy *FAA= *yFAA(I»J)
3700= NF =NF
37107007 CALL GAUSD(NF»1.0E-30sFAAYFAAL y JER»9)
720= [0 25 I=1,NC
3730= 00 25 J=1,NF
3740= MAFAAT (T, 1)=0,0
3750 [0 2% K=1,NF
3760=25 MAFAAI (I5J)=MAFAAT (I ) +MACTIyKIXFAAI(KyJ)
3770= DO 24 I=1,NC
3780= [0 26 J=1,NC
3790= W(TyJ)=0.0
3800+ DO 26 K=1yNF
3810=24 WCTr ) =WCIy ) +MAFAAT (T yK)XMA(JrK)
3820= CALL GAUSD(NC,1.0E-30,WrWIyKER,NC)
3830= o 27 I=1yNC
3840+ CC1)=0.0
3350= 0 27 J=1,NF
3860=27 CCI=CCIHMAFAATI (I JIXFAT ()
3870= N0 28 I=1,NC
3880 DFPNUCTI)=0.0
3890= 0 28 J=1,NC
3900=28 OENUCTD) =DFNUCID) FWICTy J) K (—FXC (J)+QXM(J))
3910= FRINTX,® *
3920 FRINTK, *IFNU’S®
3930= PRINT SO, (DFNU(I)»I=1,NC)
3940= 00 29 I=1,NP
3950= [¢(I)=0.0
3960= DO 29 J=1,NC
3970=29 DCIY=DCI)4+MACIy I)XDFNUC(J)
3980= D0 30 I=1sNF
; 3990= DACIY=0.0
; 4000= N0 30 J=1,NP
! 4010=30 DACD) =BACI+FAAT (I y DX (~FRFAT(J)=D(J))
4020= NORMF=0,0
4030= N0 31 I=1,NC
4040=31 NORMF=NORMF+DFNU (T ) %%2
A050= NORMF=GORT (NORMF )
4040= PRINTX,® *
)70= FPRINTXs *NORM OF DFNU’S= *,NORMF
4080= FRINTX,® *®
4090= FRINTX, *[A MATRIX®
4100= PRINT 50, (DACI)yI=1,NP)
4110= NORMA=0.0
4120= N0 32 I=1,NP
A130-32 NORMA=NDRMA+DA (1) X%2
4140 NORMA=3ART (NORMA)
4150~ DIF=(FNORMA~NORMA) /FNORMA
A140= FNORMA=NORMA
4170~ PRINTX,® *®
4180~ PRINTX, *NORM OF DA‘S = *,NOKMA
4190 IFCITER.GE.10.0)G0 TO 555

4200 IF(NDRMA.GE.1.0)G0 TO 4371 Ly




4210= QA=1.

4220=C
4230=C CONVERGENCE CRITERIA
4240=C
4250=200 IF (NORMM.LE .CC3 . AND . NORMA.L.LE.CC4.AND . F.EQ.1.0) GO TO 201
42460= IF(F'00T01 +0) F=1,0
4270= GO TO 1000
4280=4371 Q=Q/100.
4290 GO TO 555
4300=201 FRINTX," *
4310= FRINTXy *XCONVERGENCEX FERFORMANCE INDEX= *4G,* F= *,F
R0=757 STOR
Lw30= ENI
4340=C
4750=C ]
43460=C MATRIX INVERSION SUEROUTINE
4370=C
A380=C
4390:= SUBROUTINE GAUSD(M/EFSyRyCrKERVLAY)
4400 DIMENSION BOLAYyLAY)y CULAYYLAYIvAC20920)y X(20920)
4410:= DOURLE FRECISION ZyAyXySyRATIOVER
4420= EP = EFS
4430:= N = M
4440= 00 100 J = 1yN
4450:= D0 100 K = 1N
4440= 100 ACJIK) = B(JsK)
4470= o 1 I=1,N
4480= 00 1 J=1,N
4490= 1 X(IsJd) = 0,000
4500:= 0 2 K=1+N
4510:= 2 X(KsK) = 1,000
4520= 10 DO 34 L=1sN
; 4530= KP=0
i 4540= Z = 0,000
1 4550= 0 12 K=LsN |
| 4560= IF (Z-DABS(ACKsL))) 11,12,12 .
; 4570= 11 Z = DABS(A(KsL))
g 4580= KF=K
: 4590= 12 CONTINUE ;
4600= IF(L-KF)13y20,20
44610= 13 DO 14 J=L,N ‘
4620= Z=A(L»yJ)
44630= ALy ) =A(KFyJ)
4640= 14 A(KF,))=Z
4450= no 15 J=1,N
4650= Z=X(LyJ)
“70= XLy J)=X(KFy.J)

.2B80= 15 X(KF»J)=2Z

4690 20 IF(DAEBSC(A(LYL)))~EP)S0+50,30
4700= 30 IF(L-N)31,34,34

4710= 31 LP1=L+1

4720= DO 36 K=LP1yN

4730= IF(A(KyL))32,36,32

4740:= 32 RATIO=A(Ksl)/ACLyL)

4750+ Do 32 J=LFP1isN

4740 = 33 AKs D) =Ky HD-RATIOXACL » J)
A7270 - no 3% J=1sN

4780 35 XKy DD=X(KyJ)-RATIOXX (L. v.})
479G 386 CONTINUF

4800= 34 CONTINUE




4310=
4820=
4830=
4840=
4850=
48460=
4870=
4880=
4890=
4900=
4910=
4920=
4930=
)40=
4950=
4940=
4970=
4980=
4990=
5000=
BOLO=0
S020=1]
3030=C
5040=
S5050=
5060=
5070=
S5080=
5090:=
S5100=
5110=1
5120:=
5130=
5140=
9150=
S160=
S170=
S180=
S190=
S200=
S210=
..;.;.‘.O»-
5230=
5240=

5250=

5260=

5270
=200

290=
5300=
5310
§320=

\’3 1() b

H380

u390“
5400

40

41

42
43

200

S0
170
71
75

o 43 I=1,N
II=N+1-1
DO 43 J=1,N
S = 0.0N00
IF(II-N)41,43,43
ITP1=TI+1
DO 42 K=IIF1sN
S=8+ACTIIyKIXX(K»J)
XCITy D=(X(ILs -S)/ACII»11I)
KER=1
nog 200 J 1sN
no 200 K 1sN
C(JyRK) = X(J9yK)
GO TO 75
KER=2
FRINT 71
FORMAT (1X» XMATRIX SINGULAR IN GAUSIN)
CONTINUE
RETURN
END

1 #

SUBROUTINE CHERY(T)

DIMENSTON Z(7)
COMMON/MISC/NPHsNFIsyNAYPTFyN»SyLLyFFTOT(B) s FIXT
COMMON/QUES/ZALFHA

Z(1)H)=T

00 1 1I=2,7

K=I-1

ZCI)=Z(K)XT

TOT(1)=1.0

TOT(2)=2,0%Z(1)~-1.0

TOT(Z)=8.0%Z(2)~8.0%Z(1)+1.0
TOTC(4)=32.,0%Z(3)~48,0%Z(2H)+18.,0%Z(1)~1,0
TOT(E)=128,0%Z(4)-256 ., 0XZ(Z)+1460,0%Z(2)~-32,0%kZ(1)+1.0
TOT(S)=512,0K2(5)-1280.,0%2(4)+1120,0%kZ(3)-400.0%Z(2)+50.,0%2(¢(1)~1.0
TOT(7)=2048.0KZ(6)-6144,.0%kZ(5)+6912.0%Z(4)-3584,.0%2(3)4+840.0%Z(2)
1 ~-72.,0%Z(1)41.0
TOT(B)=8B1922.0KZ(7)-28672.0%kZ2(6)+39424,0KZ(5)-26880,0%Z(4)
1 49408,0%Z(3)-1568,0%2(2)4983.0%Z¢(1)~-1.,0

RETURN $ ENI

SURBROUTINE TRANSC(AYE)

DIMENSION A(9?) s R{A)

COMMON XyYy»Ze XDy YDyZD

X=R(1) '

Y=R(2)

Z2=R(3)

XDi=R(4)

YDO=E(S)

Zh=R(4)

Ti=A(1)

Al=A(2)

B1=A(3)

T2=A(4)

A2=A/(5)

RB2=8(6)

T3=A(C7)

AI=A(8)

B3=ACP)




5410= TOF=T1
5420= CALL FNG(TOFsXrYrZyXIyYDsZD)
5430=C
5440=C VELOCITY CHANGE DUE TO FIRING OF FIRST STAGE
S450=C
5440= OXN=4242, 1 75%COS(R1) XCOS(AL)
5470= NYD=4242,175%C0OS (B1)%XSINCAL)
5480= DZ0=4242,175KSINCEL)
5490:= XYa=X0+ DX
i 5500:= Yh=YD+OYD .
5510= ZD=Z0+DZD0
5520= TOF=T2
"Z0= CALL FNG(TOFsXsYsZsXDsYDsZD)
WH40=(
5550=0 VELOCITY CHANGE DUE TO FIRING OF SECOND STAGE
5560=C
5570= DXD=9565,712%C0S(E2)XCOS(AD)
5580= DYD=9565, 712%C0OS(E2IXSINCAR)
5590= DZ0=956%5, 71 2%SIN(RD)
5600:= X=X I TX
9610 Yh=YD4OY
5620= Z0=Z040Z0
5630= TOF=T3
5640= CALL FNG(TOF yX»Ys»Zy XLy YDy ZIN)
5650=C
5660:=(C VELOCITY CHANGE DUE TO FIRING OF THIRD STAGE
5670=C
5680:= IX0=10997.798%COSCR3)XCOS(A3)
S5490= DYD=10997.798%C0S (RI)KSINCAZ)
5700= DZO=10997.798%XSIN(E3)
5710= XD=X04DXD
5720= YD=YDHDYD
5730= ZO=Z04DZD
5740= Rz (XEX+AYRYHZXZ)IXKO, 5
5750= Vs CXIOKXDHYIORY D 200K ZI) %0, 5
5760= RETURN
5770= END
5780= SUBROUTINE FNG(TOF sXyYsZy XDy YIyZD)
5790= AMU=1,.40764468E16
5800= E=1.0E~06
5810= RO=(XXX+YRY+ZKZ)IXXO0.5
5820= EFS= (XDXXD+YDXRYD+ZDRZD) /2. O-AMU/RO
5830= A=—-AMU/ (2., 0XEFS)
5840= XN=1.0
5850=1 ZZ=XNXXN/A
5860= 1=(1.0~-C0S(ZZXX0.5)) /22
5870= S=((ZZXXK0.S)I~SINCZZXX0.5) )/ (ZZX%1.5)
380= TN=(XKXD+YRYDH+ZXZ0) KCK (XNEXN) / CAMUX X0 . 5)
o890= TN=TN+(1,0~-RO/A)XSK (XNX*3,0)
5900= TN=TN4ROXXN
5910= TN=TN/ (AMUXXO0.5)
5920= RN=(XNEKXNXC) + (XKXDH+YRYDHZRKZD)k(1,0~ZZ*5)/ (AMUXX0,5)
5930= RN=RN1ROX(1,0~ZZXC)
5940 DT=TOF-TN
! 5950 IF(DTOEEYGO TD 99
| G940 X=XHATI TR CAMUX X0, %) /RN
5970 G0 TO 1
LYC099 Fz21,0- (XNRKXNEC) /7 (RO
5990 G=TOF -~ (XNXX3.0) X5/ (AMUXX0,5)
65000+ F=X

Lx] )47




6010=
6020=
46030:=
6040=
6050=
6060=
46070=
4080=
J90=
6100
6110=
6120=
6130=
6140=%EOR
6150=%E0OF

Y

p4

FXXHGXRXD

Y=FXY+GXYD

Z=FXZ+G%XZD

Gh=1 .0~ (XMNEXXNYXC/ COXKXAYRYAZRKZIRLO.S)
FO=C(AMUXXO . S5) X (ZZ%5-1.0) /7 (ROKRC(XKX+YKYHZRZ ) X%0,5))
FhO=FOXXN

XD=FDRP+GLok X

YD=FokQ4+GrokyD

ZD=FDXkV+GORZD

RETURN

END

3.

X <o
]

Bt




Vita

Mark N. Brown was born on 18 November 1951 in
Valparaiso, Indiana. He graduated from high school in
Valparaiso in 1969 and attended Purdue University, {rom
which he received the degree of Bachelor of Aeronautical and
Astronautical Engineering in May 1973. Upon graduation, he
received a commission in the USAEF through the ROTC program,
lle attended Undergraduate Pilot Training at Laughlin AFB
and was assigned to the 87th Fighter Interccptor Squadron at
K.I. Sawyer AFB, Michigan. He served initially as a T-33
pilot and then as an F-106 pilot until entering the School
of Engineering, Air Force Institute of Technology, in June

1979.

Permanent Address: 813 Wood St.
Valparaiso, IN
46383

51




——— ————

LN MG EIED

SLCURIYY Ct 2 v 20 v OF Vs PALT (Whan I),.m Fntree /;

REPGRT DOCULENTATION PAGE AN R RN

B

1. REVORTY Nu T30 12. GOVY ACCESSION NO.| 3 RECIPIENT'S CATALDS MuMui i

; AFLIT/GA/AT/80D-1 /@”J 7/]//

& TMIVLE (and Sulb i, $. TYPE OF REPORY & PEHIOD COVEREDS

THREE BULKN INERTIAL UPPER STAGE _— MS Thesis
OPTIMAL ORCIT TRANSFER

6. PLRFORMING OXG. REFPORT NUMDER

»
» AUTHOR(3) 8. CONTRACT OR GRANT NUMBER(s)

Mark N. Brown, Captain, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMUDLRS
Air Force Institute of Technology (AFIT- EN
Wright-Pattcerson AFB, Ol 45433

1. CONTROLLING QFFICE HRAME AND ADDRESS 12. REPORT DATE -
12 December 1980
13. MUMBLRR OF PAGES

60

4. MONITORING AGENCY NAME & ADDRESS(I! dilferont fro.n Controlling Oflice) 15. SLCURITY CLASS. fof this reporr)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Kopart)

17. DISTRIEUTION STATEMENT (of the absiract entered in Lilock 20, il dilteront from Report)

18. SUPXLEMENTARY NOTES
Approved for public release 1AW AFR 190-17
300 FREDERIC C. LYNCH, Major, USAF
EC 1980 Director of Public Affairs

q
l, KEY WORDS (Continue on reverse gide If necassary and ldentily by block number)

Three Burn Orbital Transfer Space Shuttle/Incrtial Upper
? Orbit transfer Stage
Minimum Time Orbit Transfer Parameter Optimization

20. AUSTRAC'{ (Continue on reverae side If necossary and identily by dblock number)
-/

The Inertial Upper Stage (1US) being developed for usce
aboard the Spuacce Shuttle is composcd of three solid fuel stages
plus a satellitc payload. Onec mission of thce TUS system is to
launch from a shuttle parking orbit and place the satellite in
geosynchronous orbit in minimum time. Actuual Spacce Shuttle  ~——




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ‘

| Block 20:

parking orbit data and IUS characteristics were used in this
study to examine the sequential timing and orientation in
inertial space of each stage as it is fired while the space- | ,
craft moves along a transfer orbit to geosynchronous orbit. :
In addition, the sensitivity of the total transfer time and
the final orbital state was found as a result of not meeting I
one or all of the time and orientation parameters.

This problem is unique in that it considers an optimal
orbit transfer problem involving solid fuel stages of fixed i
thrust and burn time. Previous work with liquid fuel engines
examined orbital transfers with the intent of minimizing the
amount of propellant or required velocity change needed to |
accomplish the transfer.

\1
l{ \\\ l

UNCLASSIFIED

SECURITY CLASSIPICATION OF Yu'* PAGE(When Date Entered)




