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Chapter I. INTRODUCTION

Axicon-type optical systems have received increased attention in

recent years because of the peculiar problems associated with handling

high-power laser beams. In high-power laser systems, any backscatter,

or retroflection of the beam into the laser system can be disastrous.

Also, many high-power lasers have annular output beams, which need to

be transformed into cylindrical beams, with no hole in the center, for

good propagation characteristics in the atmosphere.

The sharply pointed mirrors, characteristic of reflaxicon and

waxicon systems, are ideally suited for handling these problems. These

systems are illustrated in Figure 1.

Pointed mirrors are almost impossible to produce by classical

grinding and polishing techniques, but can be made very easily on a

single-point diamond lathe.

Because these systems have only recently become practical, very

little theoretical work has been done on them. It is the purpose of

this paper to develop generalized surface-equations which will permit

arbitrary transformation of the radial intensity distribution of the

laser beam, and to determine the relative sensitivities of such systems

to various types of misalignment. Guidelines will be established for

optimizing the performance of the systems.

Nonlinear reflecting systems have traditionally been based on the
'I

focusing properties of conic sections of revolution. As is well known,
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ii Figure 1. Typical reflaxicon (a) and waxicon (b) systems.
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conic sections of revolution have two foci and, have the property that

all rays originating at either focus, and intercepting the surface,

will be reflected to the conjugate focus. The optical path-length

(OPL) traversed by a ray as it goes from one focus to the surface, then

to the conjugate focus, is invariant, i.e., spherical aberration is

absent. Figure 2 illustrates the basic surfaces and their foci. In

the case of a sphere, the conjugate foci are degenerate; in the case of

a paraboloid, one focus is at infinity.

S. -

SPHERE ELLIPSOID

PARABOLOID HYPERBOLOID

Figure 2. Focusing properties of conic sections.

The conic surfaces may be used in any combination to form compound

systems free of spherical aberration, so long as the corresponding foci

for consecutive surfaces are coincident. Surfaces with such coincident

foci are said to be confocal.

For the purpose of this study, only the systems which transform a

bundle of rays, parallel to the axis, into another bundle parallel to

7



tbr -4is will be considered. Here, the conjugate foci of the system

are at ± infinity. Such systems are said to be afocal. Further, this

study will be restricted to two-mirror systems.

The classical two-mirror, afocal system consists of two confocal

paraboloids. The input and output beams may propagate in the same

direction, or in opposite directions, as shown in Figure 3. For that

matter, the axes of the two paraboloids may be oriented in iy

conceivable direction, relative to one another, but for the purposes

of this study, they are colinear.

Both systems shown in Figure 3 have a common fault that restricts

their application in laser systems. The paraxial rays of the input

beam are reflected back toward the laser and will re-enter the laser

and upset the mode control or may damage the front of the laser

hardware. Such systems may, however, prove useful when used with an

eccentric aperture, or when used with a laser 1'ving an annular output

beam. Such systems are shown in Figure 4.

The systems investigated in this paper will be those capable of

transforming a cylindrical input beam into an annular output beam, or

vice-versa, without obscuring or misdirecting any of the input rays.

Further, we shall seek a solution which allows arbitrary control of

the intensity distribution within the annular output beam. These

F systems are of importance in optimizing the beam propagation through

the atmosphere, and in increasing the efficiency of the beam in

cutting and welding operations. They would commonly be used in con-

junction with other, more traditional, optical systems in a beam

control system.

8
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Figure 3. Two-mirror afocal systems using confocal paraboloids.

9



avi

a

11

a
I

/

S.S

10J

9'J

Fiue4 cetl-pplssesuIgcofclprblis

Thsesytmsmaas beapida cvt irrsi aes



Chapter II. REFLAXICON SYSTEMS

A. Reflaxicon Surface Equations

The surface equations for an afocal reflaxicon will now be developed

allowing an arbitrary ray-height transformation. Two conditions shall

be imposed:

a) Any entrance ray, parallel to the axis, must emerge parallel

to the axis, i.e., the system must be afocal.

b) The optical path-length between the entrance plane, z0, and

the exit plane, z3 , must be constant.

For convenience, the equations will be developed in cylindrical

coordinates.

If the ray-intercepts of the inner and outer mirrors are desig-

nated by (rlzl) aad r2 ,z2 ), respectively, Figure 5 shows that the OPL

of a ray between z0 and z3 is given by

OPL zI - z0 + /(z2 - z)2 + (r2 - r1 )2 + z3 - z2 L)

V Then,

/2 2
/(z2 - 1) + (r2 -r 1 ) L z I + z0 -z 3 + z2 -k -z1 + z2, (2)

where k = L + z - z3 is a constant, and represents the OPL added by

y the system as the ray passes from z0 to z3 . Squaring Equation (2),

the following is obtained:

, - | 1, ,



Ir2' Z2)
(Fl z ---- 1)~_ __ _ _ _

'0 oi32

Figure 5. Diagram of reflaxicon system.

2 2 2 2(z2 - z 1 ) + (r2 -r) - k + 2k(z 2 -z) + (z 2 -z 1 ) (3)

or,

(r2 - r1 ) -k - 2k(z 2 -. z1 ) (4)

Noting in Figure 5 that

r2 - r1
tan 2e - 2 (5)z 2 - z1

and dividing Equation (4) by r2 -r ,

22

k2  2k2- r 2 - r + tan 2e (6)

Thus,
2k(r 2  r I

tan 20 2 (7)
, (r2  r) k2

12



This provides& system equation for the condition of constant

path-length.

Applying the half-angle formula for the tangent function,

tan e -l* tan 2 6 (8)
tan 26

we see that:

-1± J+ 2k(r 2 -r1)](r- rl)  _ kt

tan - 2k(r 2 r) -r (9)

(r r2 -r1 k2

which, after some algebra, yields

-(r2 - r 1)
2 + k2 k [(r2 - rI) 2 + k2]

tan 0 - - 2k(r 2 _ r1 )  (10)

Taking the positive value of the dual sign,

tan 6= k(1)
r2 -r 1

It is obvious from simple geometrical considerations, that for an

afocal system,

dr1  dr2
tan 0 - (12)

1 2

By integrating this expression, we have for the inner mirror,

k f dzI  f(r2 - rI ) dr (13)

or
1 r r rI2 + C

or1r 2  2 1 (14)

where C is an arbitrary constant of integration.
I1

13



Applying the afocal condition to the outer mirror,

kf dz2  f(r 2 - r) dr2  , (15)

or
I ~ 2  i 2 +C
I r2 _ f r dr + C' r2 _ rr 2 + f r2 dr + C1

z2  k k . (16)

Now the constants of integration, C and C', must be related by requiring

that Equations (14) and (16) satisfy the constant path-length condition,

thereby eliminating spherical aberration. The simultaneous solution of

Equations (4), (14), and (16) yields

2 2 _2 112
r2 - 2rlr 2 + r1 + 2 r 2 - rlr2

+ fr 2 dr + C' -fr 2 dr1 + r - C (17)

or,

k 2 + 2(C' - C) = 0 (18)

and

C - + C (19)
2

Substituting this into Equation (16),

1 2 2
ir 2 - rlr + f r dr -.- + C

z2  12 k 2 1 2 (20)

Equations (14) and (20) are the surface equations for the inner

and outer mirrors, respectively, as functions of the radial distance

between a ray and the axis.

B. Constant Ray-Height Transformation

4

Since (r1,z1 ) and (r2,z2) are the corresponding ray intercepts

at the inner and outer mirrors, respectively, Equations (14) and (20)

14
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may be rewritten eliminating r2, by introducing a ray-height transforma-

tion function defined by

r2
M(r1 ) = 2 (21)

M(r1) is simply the magnification of the input ray-height produced by

the optical system. Substituting this transformation into

Equations (14) and (20), the following is obtained:

1 2
rI M(r) dr rl + C(22)

1 2 r-(l2-
S[rM(r 2 - + f r M(rldr -_ + C

z2  1 k (23)

and,

r2 a r1M(rI) 1 (24)

These forms of the surface equations are very convenient when

performing numerical calculations.

Here, it should be noted that if the ray-height transformation,

M(r is constant for all r1, i.e., M(r1) - M, the surface equations

become

M 2 1 2
Z 2 - 2 r1 + C M - 1 r2 + (25)

k 2k 1 k

and
2 2 2

12 M 2 r2  k2  12 r2  r 2  k2

r2  2  22"- 2 r 2M M 2+C

2 2
C -k " k

4- 1 2] + 2C- k 2  M(.M- 1) 2 2C-k 2

2kM '2 + 2k 2k 1 2k (26)

15



Thus, both mirrors are simple paraboloids, with the inner and outer

mirrors having their vertices at z = C/k and zv2 - (2C - k 2)/2k,

respectively.

Recalling the parabolic equation
1 2

z - r + a (27)4F

which represents a paraboloid (in cylindrical coordinates) with a

focal length, F, and the vertex at z = a, it can be seen from Equations

(25) and (26), that

M 1 1 (28)
2k 4F1

and

M- (29)

2kM 4F 2

where F1 and F2 are the focal lengths of the inner and outer mirrors,

respectively. Thus,

k

F1 = 2(M-l) ' (30)

kM
F2 " 2(M-l) ' (31)

and

F 
22  M (32)

F1

The ray height magnification is given by the ratio of the focal lengths

of the two paraboloids. The locations of the foci on the z-axis are

F1 - a + F( + i) (33)
F1  1 k 2(M-l1)

and

z = a + F + k (34)
F 2  2 k 2(M )1)

16



Thus, ZF - ZF2, and the mirrors are confocal.

The system with constant M has the disadvantage of retroreflection

of the paraxial rays, but may be used with annular input-beams, or with

cylindrical beams in an eccentric-pupil arrangement. It is, in fact,

the only afocal system which preserves the beam shape, when used with

an eccentric beam.

Since M is constant, it also gives a constant intensity trans-

formation. The intensity of the output beam is 1/M2 times the

intensity of the input beam.

The problem of the retroreflection of the paraxial rays can be

alleviated by displacing the axis of revolution of the parabolas

from the geometrical axis. This is illustrated in Figure 6.

I - 3 ..

SI \  a
I' \z

Figure 6. Parabolic reflaxicon.
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C. Parabolic Reflaxicons

In this system, the geometrical axis of the parabolas is changed

from a line into a cylinder, and the focal points become focal circles.

The mirror surfaces are now toroidal. With a sufficient displacement

of the geometrical axis from the axis of symmetry, or optical axis,

all rays impinging on the inner mirror will be reflected to the outer

mirror and will continue out of the system without obscuration by the

inner mirror.

Referring again to Figure 6, it can be seen that the two-

dimensional meridional sections of the mirrors are exactly the same

as those of the mirrors in the simple parabolic case, except that the

curves are translated in the r-direction. Since the two-dimensional

equations in cartesian coordinates are the same as the three-

dimensional equations in cylindrical coordinates, the surface equations

of the mirrors may easily be written as

Z 2k (r + h) + (37)

and
2 M-l 2 2C -k 2  (8

z2 2kM (r2 
+ h)2 + 2k (38)

where h is the distance the geometrical axis is displaced from the

optical axis and is taken as a positive quantity. M is the constant

ratio

F 2 r 2+ h
M = + h (39)

18
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This system offers two serious disadvantages. One will notice

that an arbitrarily small annulus of rays about the optical axis will

be expanded into an annulus at the inside edge of the outer mirror.

This effects an arbitrarily large radial, and consequently, large area

magnification, thereby reducing the intensity in the output beam to near

zero. For good, long-range atmospheric propagation, it is desirable

to have the maximum intensity at the inside of the beam. Also, if one

uses the system in reverse with a large annular input beam, and a small

cylindrical output beam, the relatively intense inside edge of the

annular beam is reduced to an arbitrarily small diameter, and the

intensity becomes arbitrarily large. Here, of course, diffraction

effects are neglected. The use of the system in this mode with a

high-energy laser would result in the destruction of the axial region

of the mirror.

The second disadvantage is that the system is usually unsuitable

for use with an eccentric entrance pupil, to allow a solid (non-

annular) beam to be transformed into another solid beam. This is

also caused by the variable radial magnification in the system. It

has already been shown that the beam shape can be preserved only in

the case of constant ray-height magnification.

D. Beam Shape Distortion

Figure 7 presents the effect of beam-shape distortion in the

parabolic reflaxicon system. Here, the viewer is looking down the

optical axis at the profiles of the input and output beams. Within

19



Figure 7. Transformation of beam shape in a parabolic
reflaxicon with an eccentric pupil.

20
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the boundary of the inner mirror, a bulls-eye pattern can be seen

representing the boundaries of several eccentric, cylindrical input

beams. They are all centered about an input ray-height of 0.5 units.

The inner mirror is 2.0 units in diameter, the displacement of the

parabolic axis, h, is 1 unit, M* = 3, and the outer mirror is 10 units

in diameter. The large, distorted ovals are the boundaries of the

output-beams, corresponding to the cylindrical input-beams. It can be

seen that a very small input beam, well-removed from the optical axis,

may produce a usable, elliptical output-beam. The suitability of

such a beam would depend entirely on the application.

Since the reflaxicon would usually be used in critical applications

requiring precise control of the intensity distribution within the

beam, attention will now be directed to the beam intensity transforma-

tion function.

E. Intensity Transformation

If the area of a beam, or element of a beam, is magnified by some

factor, the intensity will change as the inverse of the area magnifica-

tion. One's first inclination may be to say that if the linear

magnification is M, the area magnification M 2 , and the intensity will

-2be changed by M . However, this is true only for a constant magnifica-

tion. It has been seen that in an afocal reflaxicon, the magnification

of the ray-heights is constant only if the mirrors are simple

paraboloids,with their geometrical axes colinear with the axis of

symmetry, or optical axis of the system. If the geometrical axes of the

21



surfaces are displaced from the axis of symmetry of the system, the

ray-height magnification is variable. The area magnification and

the intensity transformation will now be examined when the linear

magnification is variable.

As before, the ray-height transformation is defined by

M( r2
r1

It is now assumed that an input annulus has an inside radius, rl,

and a width, dr This annulus will be transformed into an output

annulus having an inside radius of r2, and a width of dr The area

of the input annulus is given by

A, = 2rr 1dr (40)

and that of the output annulus is

A2 = 2lrr 2dr2  (41)

Since

r2 = r1M(r1 )

dr2  dM(r1 )
dr = M(r!) +r 1  drI  (42)

Equation (41) now becomes

SA2 = 2irr1M(rI) [M(r1 ) + rl dr1 dr (43)

and the area magnification is

A2  2 dM(r1).4 A1  [M(r1 )] + rlM(r l) dr1  (44)

i,

A1

22
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Now, the intensity transformation function O(rI) is defined by

the relationship

1l0(r 2 )

O(rl) = i(rl) (45)

where Ii(rI) and Io(r2) are the intensities of the input and output

beams, respectively. Since the intensity of the output beam is

inversely proportional to the area magnification,

A1  1 dS9rl) (46)
2 2 dM(r)

(M(rl)2 + rlM~rl) dr1

For a given intensity transformation, O(rI), the required ray-

height magnification, M(rl), can be found from the differential

equation

dM(r) 2 1
S r M(r1) + [M(rl)] 0 (47)

Rearranging terms,

dM(r1) M(rl) 1

dr1  + r - O(rI) 1M(r) (48)

This is in the form of Bernoulli's equation,

4y + P(x)y = Q(x)yn  (49)
dx

where
, dy dM(r1)x) = 1

•x = Q(x)=
dx dr1  3(rl)r 1

x r1  y = M(r1)

P(x) = n = -1
r2

/i 23



Letting

1-n 2
v=y =y

and

dv 2y d

dx dx

Equation (49) reduces to

2 dx + P(X)v Q(x) (50)2 dx

or

dv
d + 2P(x)v 2Q(x) (51)

This linear equation may be solved by choosing the integrating factor

e 2fP(x)dx (52)

The solution is then

ve2fP(x)dx - 21Q(x)e2fP(x)dXdx + b (53)

Translating this back into the original variables, and noting that

2P(x)dx = 2f 1-- dr in 2 (54)
11

2 l r drI +b2 f dr1 + b r 2 .(55)

Recalling the surface equation for the inner mirror,

2 1 21

1k 1
r 1 12 12

f2 ff dr + b] dr 2rl I C

zr =k(56) k
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Likewise, the surface equation for the outer mirror becomes

1 2 k 2
jr 2 - r1 r2 + r2dr - + C

z2 = k
1

f r drI  + 1 - r [21 f (r. dr I + b]

z2  k

1

f[e f rl dr + b]2  k2

+ k.(57)

These surface equations appear rather formidable, but are entirely

practical when the desired 6(rl) has been defined.

Surface equations containing several constants have been

developed, and it is now worthwhile to observe the physical significance

of these constants.

The constant, C, is a constant of integration which simply moves

the mirror along the z-axis. If the same value of C is used in both

surface equations, the mirrors will automatically be spaced correctly

to assure an afocal system providing constant optical path-length.

The origin of the coordinate system may be positioned at will by a

suitable choice of C. Sometimes in ray-tracing, it is desirable to

move the origin of the coordinate system in order to center it on each
b

mirror. In this case, each surface equation will use a different

value of C, but then the mirror spacing must be accounted for separately.

The constant, b, is best defined in Equation (55). It may or

may not correspond to a simple physical dimension. If, for instance,
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the intensity transformation function is a constant, I, Equation (55)

shows that

2

r 2 =-- + b

Thus, when rI = O, r2  V . In this case, Y is the inside radius of

the annular beam. This would also be true if O(rI) = r., in which

case

2
r2 = 2r + b2 1

2
If, however, O(rI) r1 , Equation (55) yields

2
r2 = 2Un r1 + b

2
In this case, when r1  0 0, corresponding to the axial ray, r2 - .

This system clearly cannot be used with an input beam which contains

the axial ray. Indeed, r2 is imaginary whenever Zn r1 < -b. With a

suitable choice of b, this transformation couli be used if both the

input and output beams were annular.

Finally, if O(r1 ) = exp (-r2/2),

rl/2
r2 = 2e + b

Here, if r, = 0, r = Y/2 , again, the inside radius of the

annular beam.

As has already been stated, k is the difference between the

straight-line distance between the entrance and exit planes, and the

OPL of a ray joining the planes through the optical system. This may

be thought of as the excess OPL added by the system. However, this

quantity becomes a system shape factor. Figure 8 presents the
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k 0.1

k 6

Figure 8. Grazing incidence (a) and normal-incidence

(b) reflaxicons (I = 0.1, b - 1.5).

meridional cross section of two systems. System (a) is a near-grazing-

incidence system; System (b) is a near-normal-incidence system. It

is clear from the drawing that the OPL between Planes A and B is very

little more than the straight-line distance between them. Hence,

k is small. In System (b), the OPL between A and B is much larger than

the straight-line distance. In this case, k is large.

Thus, by varying k, the system can be varied from normal-incidence

to grazing-incidence. The constant, k, permits varying the shape of

the system to make it conform to the required physical dimensions, and

S 27
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changing the angles of incidence on the mirror surfaces in order

to take advantage of the improved reflectivity provided by the near-

grazing-incidence systems. Also, a near-grazing-incidence design

spreads the light beam over larger surface areas on the mirrors,

thereby reducing the heat loading.

Now, having seen the types of design variation possible, we

shall direct our attention to systems providing a specific intensity

transformation.

1. Farabolic Reflaxicons

The surface equations have already been developed for a

parabolic reflaxicon in which the geometrical axes of the parabolas

are displaced from the optical axis of the system by a distance, a.

The surfaces were found to be given by

M - i 2 C
z 1 = 2 k(rl+h) k

and

M- r 2+2C - k2

2 = M (r2  + 2k

Now the intensity transformation which they provide will be

examined.

Equation (39) shows that the ray-heights in the input and output

beams are related by
r r2 + h

+ h - M* -a constant

Thus,

r- (rI + h)M* - h - M(rl)rI  (58)
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and
(rI + h)M* - h

M(r) rl (59)

Differentiating with respect to r.,

dM(rl) -(M* - 1)h

drI  r 2

But, by Equation (55),

[M(rl)rl] 2_2 f (rl) dr I + b

Differentiating this expression with respect to rI ,

2[M(rl)r IM(r I ) + rI  drI = 2 a(r 1 (60)

The intensity transformation function is, then,

r1O(rl1)  = I M r)
M(rl)r 1 [M(r) + r dM(r ]

~r I

[(rl + h)M ,  h] [(r 1 + h)MW h- (MW l)h]

i - rr

- (rl + h)M* 2 
- M*h (61)

A specific case will now be examined. Let the input beam have

a radius of 1, and an intensity of I, - 1. Let h - 1, and M* -3.

This will give an annular output beam having an inside radius of 2,

V and an outside radius of 5. Figure 9 shows the radial intensity

distribution across the annular beam. For comparison, an equivalent
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0.20

PARABOLIC REFLAXICON

0.15

10 INPUT BEAM: I = 1.0

0 < r 1.0

0.10 h -1.0

PARABOLIC SURFACES

0.05

CONSTANT
INTENSITY
CORRECTION

0

0 12 3 4 5

r
2

Figure 9. Radial energy distribution of parabolic reflaxicon,
compared with equivalent constant intensity distribution.

annular beam of uniform intensity is shown. In this case, the intensity

transformation function for the beam of constant intensity is

6(r1  1/21.

2. Constant Intensity Reflaxicons

The constant intensity transformation is especially useful

in high-energy laser systems. The input and output beams will have

30



the same radial.energy distribution, i.e., a uniform cylindrical

input beam will be transformed into a uniform annular beam; a

Gaussian cylindrical beam will be transformed into a Gaussian annular

beam, et cetera. Of course, the reverse transformations are just as

easily accomplished.

If, in the surface Equations (56) and (57), 6(r ) is a constant,

I, we have for the first mirror:

(2 rldrl+ b)2 dr- - r' + C
f(I 1 1 l 2 1zl k

( )2 1 (62)
.i1+ bdr I - r I + Ck (2

or,

j-y{r1 (r2 + Ib)2 + lb in [r, + (r2 + Ib)2]} -  r2 + C

1 k (63)

Similarly, for the second mirror, we find that

: 1

S rldr + r,( fr 1 dr + b)2

z2  k
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!p

2 2 1 2 1 2

+ + b) + + b dr k + C

z 2 =l k

2 1
-- + -I rl+IbIr21 2 4r r21;I)

k
1 12( )2r ( ) + + 2

+ - rI rf + Ib + Ibm [r, + (r Ib ] L - C

2 1
k

21

Ib)) 2 k
-lb Ln Ir1 + ( r1 + 2 C

+ k

an r2  [21 f-r dr, + b]2 = )-[r 2 + Ib]2

Writing Equation (60) in terms of r 2 0
1

r- - r [(r - b)1]2 + br --kn [(r 2 b) + r r - k 2 + 2C

2k

(65)

Figures 10, 11, and 12, illustrate some of the possible forms of

the constant-intensity ref laxicon. The ref laxicons in Figures 10 and

11 accomplish exactly the same thing; only the shape factor, k, has

been varied. Careful inspection of these two figures will show a very

peculiar feature of the mirrors. They have both positive and

negative regions. The inner mirror is concave near the point and

convex near the rim. The outer mirror has, of course, exactly the

same slopes, but the convex region, corresponding to the concave

32
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I = 0.1
b - 1.5

k - 5.0

Figure 1. Fer-ora-lcience constant-intensity ref laxicon.
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S1.0
b - 1.5

4c = 2.0
k - 1.0

3-

2

R-

-2

-3

4

-5i I I I I I
-5 4 -3 -2 -1 0 1 2 3 4 5

Z

Figure 12. Constant-intensity reflaxicon giving

unit beam-intensity transformation.

region of the inner mirror, is confined to a very narrow zone about

the inner edge of the mirror.

The packing of the rays near the inner boundary of the annular beam

does not indicate that the beam is brighter at the inside boundary than

it is at the outside. This ray-packing only compensates for fall-off

in intensity at the inside boundary, which exists in an uncompensated

system.
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The system in Figure 12, giving a unit intensity transformation,

does not show an inflection zone, but the same S-shaped curve would be

present if the mirror surface were extended far enough. Thus, these

surfaces are properly termed "ogees-of-revolution."

Clearly, the surfaces used in these systems are virtually

impossible to manufacture by classical optical grinding and polishing

techniques. They are, however, well within the capabilities of

single-point diamond turning.

The ray-trace analysis will show that these ogees-of-revolution

are extremely sensitive to alignment errors, and every reasonable

effort must be made to assure high-precision alignment.

35
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Chapter III. WAXICON SYSTEMS

A. Generalized Surface Equations

Generalized surface equations for the waxicon will now be

developed analogous to those developed for the reflaxicon. The same

two conditions will be imposed that were imposed u the reflaxicon

system, i.e., constant path-length and afocality. There is one

significant difference. In the reflaxicon, the slopes of the two

mirrors at the ray-intercepts were required to be equal; the waxicon

requires the tangents to the surfaces to be at right angles to one

another. This makes the system retroreflecting as well as afocal.

Also, the entrance and exit planes may now be represented by a single

plane with the rays passing through it from both directions.

In Figure 13, a ray propagating from the reference plane, z = z09

through the system and back to the reference plane will travel a total

distance given by

OPL=z -z 0 + (z 2 - zl)2 + (r2 - rl)2 + z2 -z O =L (66)

= a constant.

Then,

, / Zl2 2

S 2 - + (r2 - rl) = L + 2z 0 - z1 + z2 = H - (zI + z2) (67)

where H is a constant. The mathematics which follows can be simplified

by translating the coordinate system along the z-axis by an amount H/2,
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vr 2 - 1  +C -  
1) =H z1 +z 2  H=-( 1 + 2  . (8

Ts ii

10

Fiur 131iga fwaio ytm

/I 22. )2+(r2-r1 =H-( z 2) H ( +z2 (8

equation, we find that:

(z 2 - z 2 + (r 2 - r1) 2 = (z 1 + z )2(69)

or,

(r2  2 = 4 z z (70)

This is the condition for constant path-length.

From the preceding figure, it can be seen that

r -r

2 1

tan 20 2 (71)

arid

dr I dz2

I -

tan2  - Zl 2 + ( 2 r ) -= -z +- 2  -z 2  (72)
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2 22

z ) - (r2 - rl)

t n 0 = -1 ± 20 -- 1an2  2 2  (z2  Zl)

tan 0 1 tan20 r2 -r 1

z2  1
- 2 2I

-(Z 2  - 1) ± /(z2  z1 ) 2 (r2 - r1 )
2

r 2  r rI

Substituting 4z1 z2 for (r2 - r1 ) 2, the preceding equation becomes

tan -(z2 - z) ± (z1 + z2 ) (73)r 2  r r I

Taking the positive sign will yield imaginary or complex solutions.

Therefore, the negative sign will be used. Then,

tan a -2z 2  - -2 z 2 dr 1 2 (74)
r 2 - r 1  Wr1) - lr 1  dzI dr 2

The equation for the outer mirror is, then,

dz2  dr2

2z 2 -r1
or,

9n z2 = 2 r2 r + Zn C (76)
2 J2 r~ 1

where Zn C is the constant of integration.

The equation for the inner mirror can be written very simply as

a function of the outer mirror by combining the constant path-length

b and slope equations.

P1 From Equation (74), we see that:

2 222r _(77)

\dZ1  (r2 -r

*
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But the condition for constant path-length requires that

2 ~z
(r2  r rl) 2 4 zlIZ 2

Then,
4 z 4 z2 2 (78)

(r2  r) 1 2

or, 2
4z 2  z2

2 (79)
(r2 -r 1 )2 z

Solving this equation for zl, the following is obtained:

- (r z2 1  (r2 - 1 ) (80)
1l 4= 2 4 z2  (0

4z 2

We shall now direct our attention to the intensity transformation

in waxicons.

B. Intensity Transformation

The waxicon gives a radial inversion of the input beam. The

inside rim-rays of the input beam are transformed into the outside

t rim-rays of the output beam, and conversely. If an input annulus has

an inside radius of r1 and an outside radius of r1 + E, the output

beam of the waxicon will have an inside radius of (r1 + &)M(r1 + 0, and

an outside radius of r1M(rl). The reflaxicon, on the other hand, would

b have an output beam with an inside radius of r1M(rl), and an outside

radius of (r1 + )M(rl + F). In either case, the area of the input

annulus would be

Al=7 [(rl + 2- r . (81)
',
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The output annulus of the waxicon would have an area of

A2 = 7T{[ r 1M(r 1 )] - [Cr 1 + [.)M(r 1 + F]2, )f (82)
W

and that of the reflaxicon, an area of

A2r = n{[(rl + 2)M(rl + E)]2 - [rIM(r 1 )] 2  (83)

Combining Equations (46), (81), and (83), in the case of the

reflaxicon, it can be seen that

(rI + ?)2 _ 2
(r 1) = 1Cr ~)]

t(rl) = [(rl + i.)M(rl + _)]2 - [rIM(r 1 )1 2

1 dM(r1 ) (84)

[M(r1)]2 + r1 M(r) dr

In the case of the waxicon, combining Equations (46), (81), and

(82), yields 2 2

0(r 1 ) = [r 1 M(r 1 )] 2 _ [Cr1 + E)M(rl + )] 2

2 2

(r + ) -r 1

[Cr1 + t)M(r 1 + ,)] 2 
- [rlM r+)] 2

-2 dM(r1 ) (85)

[M(r 1 )] 2 + r1M(r1 ) dr1

The negative sign does not imply a negative intensity, but only

a reverse ordering of the rays. We now have the following

differential equation:

~dM(r I
dr M(r [Mr 1 )] 2 + 1 = 0 (86)

dr 1 r 1  + ~
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It will be noted that this is exactly the differential equation

obtained for the reflaxicon, except that O(rl) has been replaced by

-O(r1 ). Hence, the solution is

[M(rl)r 2 =-2 f r b r 2 (87)

Substitution of this expression into the waxicon surface equations

provides a general solution for all O(rl).

The surface equation for the outer mirror becomes

dr
z£n z 2 =2f

1 z + in C (88)

r 1
- J (rl - rI

and that of the inner mirror becomes

1 2

rldrl 2_

Z1 4 z r (8)

The surface equation for the outer mirror can easily be written

as a function of rI and O(r alone by differentiating Equation (87)

with respect to rI to obtain the expression

dr - 1 1 (90)
2 O(r1 )r 2

~or,
dr2  r dr1  (91)

rldr, 2

0(rI) b- 2f 6(-r-l)]
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Equation (88) then becomes

Qnz 2  f r1drI2 1 +nC
rldr rldr 2

9 (r) E b - 2 f r[bi 2f rlr1 r 1

C. Constant Intensity Waxicons

If the intensity transformation function assumes the constant

value, I, it can be seen that Equation (87) becomes

22
2 , rldrl l
r= b - 2J - - b-j (93)

and

2 2
* = (b - r2 ) I (94)

Thus, the surface equation for the outer mirror is

Zn z2 = 2 dr295)r 2 - VI(b 2r2)

In order to integrate this expression, the following change of

variables is made:

r= Sco s

dr2 = _ rbsin *c4

= arccos = arctan r 2  (96)

Then,

_ r 2)  2 kbb sin' (97)

and

Zn z 2  2f - r sin OdO + Ln C -2f tan OdO + kn C

bcos V - /T sin 1 i- vitan (98)
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Integrating, we have,

n 2 = Y-+---

+ I arcta - WV-n / - + in C
I= + [is2 -cb](99)

Since(-i/l + l)kn b + in C is a constant, these terms may be written

as a single constant, In C. This new constant becomes a system shape

factor, in the same manner as k in the reflaxicon system. Equation (99)

may now be written

2r _

In z arctan + r 2  r /1b-r ))j +inC
2 (100)

Taking the exponential of both sides,

22 -1
z2 = C r2 - /I(b r) exp I+ 1 arctan r 2 (101)

The surface equation for the inner mirror is now

1 2

r2

b r r1

1 4 z

Ior

ZlFb 2 rj

Z1 r 2 + T F) 1
4C - /I(b - r2 ) exp I-+ 1 arctan 2 J
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or

2

zI 2 (102)

r 1 VTIri
4C [( I rI exp I arctan 1

Ib - r1

Turning now to the meaning of the constants in the waxicon surface

equations, Equation (94) shows that when rI = 0, corresponding to the

axial ray, r2 =fi €. Since the axial input-ray is reflected into the

outside rim of the annular beam, i/' is the radius of the outside rim.

Compare this to the case of the constant-intensity reflaxicon, in

which V was the radius of the inside rim of the annular beam. This

points out, again, the radial inversion of the beam in the waxicon.

As has been mentioned, the constant, C, functions as a system
shape-factor. When C is very small, the inner mirror will be used at

near grazing-incidence, and the outer mirror will work at near normal-

incidence. The reverse is true when C is large. Figures 14, 15, and

16 illustrate this variation with C.

Waxicons are usually made in a configuration similar to that in

Figure 15. As has been pointed out by David Fink , if waxicons are

iDavid Fink, "Polarizatiov Effects of Axicons," Applied Optics,
Vol. 18, March 1979, p. 581.
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I = 0.1
b - 16.0
c - 0.05

Vl

Figure 14. Waxicon with near-grazing-incidence on the inner mirror.
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I -- -

I = 0.1

b = 16.0

c = 0.2

411

Figure 15. Waxicon with nearly equal angles of incidence

on both mirrors.
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I = 0.1
b - 16.0
c - 0.05

Figure 16. Waxicon with near-grazing-incidence
on the outer mirror.
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dielectric coated, the polarization direction of the output beam is

rotated through an angle of 20, where e is the azimuthal angle around

the annulus. This can cause beam cancellation, clearly an undesirable

consequence. This can be prevented, however, by making one reflection

at less than Brewster's angle, and the other greater. A waxicon, such

as that in Figure 15, in which the angles of reflection at the two

mirrors are roughly equal, would almost always give polarization

problems. However, the polarization problem can be alleviated by

using designs similar to those in Figures 14 and 16, in which one

angle is large and the other small. With metallic coatings, waxicaons

similar to the one in Figure 15 provide a more compact system.

It is interesting to note that reflaxicons do not present this

polarization problem.

4
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Chapter IV. PERFORMANCE ANALYSIS

A. Ray-Tracing Procedures

Attention is now directed to the practical design of reflaxicons

and waxicons. One of the most serious problems in the use of these

systems is the sensitivity to alignment error. This can be readily

anticipated,because of the complexity of the surfaces. This sensitivity

was investigated by means of exact ray-tracing. Third- and fift-. order

theory is of little value in analyzing the performance of these systems

in the configurations in which they are usually made, because small-

angle approximations are inadequate for the angles involved.

An extremely versatile ray-trace computer program has been

developed by Dietrich Korsch2 . This program ray-traces systems of

conic sections of revolution,using exact formulas, and allows the tilt

of each component about two axes orthogonal to the optical axis, and

displacements along all three axes. It provides data-options of

centroid shift, root mean square (rms) spot-size about the centroid

in both the Gaussian and best-focus planes, intensity distribution

within the image of a point-source, field curvature, and spot-diagrams.

The program has been modified to give angular, as well as linear

measurements, rms decollimation, and a statistical output-beam

2Dietrich Korsch, "Ray Trace Evaluation Program," Vol. 1,

Teledyne Brown Engineering, Huntsville, Alabama, 1977.
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evI I tit i on w:en all misal I gnment parametels are chosen randomly within

spci! i ed 1I it.s. The proeram was expanded to accept the complicated

sUrt I.n ,s chnrcteristic of reflaxicons and waxicons.

• , Lcrs -,ot ions of the rays with the surfaces were found by

i:V ii ri .jlioned cases. At first, the Newton-Raphson

Ltczit i,,: I icoc was used, but it was found that the iteration

freqs:L- tv d; c n-t convergc. The iteration was then changed to the

f _i i,,lsti, '_r false position scheme, which was made to work reliably.

B. Reflaxicon Systems

As a basis for our analysis, a reflaxicon of a configuration will

be chosen that would be suitable for use in high-energy laser systems

as a beam-shaper or as a beam expander. The system will be required to

give a constant intensity transtormation, and the cylindrical beam will

have an intensity ten times that of the annular beam, i.e., I = 0.1.

The cylindrical beam will have a radius of Vl.5, being just large

enough to allow adequate space for mounting the inside mirror, without

its interfering with the annular beam. This would allow its use in

conjunction with conventional optical systems of moderate size, .1nd

would minimize the cost of the reflaxicon beam shaper.

4 The shape factor, k, will be given a value of unity, making the

mirrors forward reflecting. This system is very different from

normal-incidence and grazing-incidence systems. The angles of

incidence are large, and no small-angle approximations arc valid. The

constant, C, may be arbitrarily chosen, unless otherwis;e noted.
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For the actual ray-tracing, the origin is shifted for each mirror

in order that tilt variations will not be made about a distant origin.

If the origin is far removed from the mirror, a tilt of the mirror

about that origin would result in a large lateral displacement of

the mirror. This would make it impossible to study the effects of

tilt without significant decentering of the mirror. For each surface,

the origin was arbitrarily shifted to such a position on the z-axis,

that the intercept of a ray having an initial height of rI = 0.5 in

the cylindrical beam would fall over the origin, except in the case

where the origin was being deliberately shifted in order to determine

the effect of tilting the mirrors about various pivot-points.

The misalignment errors in the afocal reflaxicon fall into three

types. They are angular misalignment of one mirror with respect to

the other, a decentering of one mirror relative to the other, and a

tilt of the whole system with respect to the input beam.

Since the input beam is collimated, a lateral, or longitudinal

shift of the whole system has no effect on the collimation of the

annular beam. It would change the intensity profile of the annular

beam, however, unless the input beam were of uniform intensity.

In the afocal reflaxicon system, either a decentering or a tilt

of the inner mirror can be thought of as a decentering or a tilting

of the outer mirror with a corresponding misalignment of the whole

system with respect to the input beam. Therefore, only tilt, decenter,

and despace on the outer mirror will be considered as well as an off-

axis tilt of the whole system with respect to the input beam.
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1. Mirror Tilt

The effect of the shape factor, k, on the sensitivity to a

tilt error can be seen by choosing a fixed tilt angle of 0.1 mra

for the outer mirror, and computing the rms decollimation of the output

beam for several values of k. This tilt angle may seem large, but it

: : u t i v r , . : c i :, t i ,t t .*- >, . ,,~ . - . , , I , , . i : r t ( ] I i r e , a l i g n n e n t

in the field with minimi.il it ignme:it equipment is being examined. The

relationship between th, rn.:; deco llimation produet 4 by this tilt, and

the shape factor, is -en in Figur- 17.

0.20

= 0.1
o 0.15 b * 1.5

z
0

_ 0.10
-J

0

0.05

0.0

0 1 2 3 4 5

K

Figure 17. Beam decollimization produced by a constant tilt of 0.1 mrad

on the outer mirror, as a function of shape factor.
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It is noted that the grazing-incidence systems, represented by a

small k, are considerably more sensitive to tilt than the normal-

incidence systems, in which k would be larger than approximately four.

The direction of the annular beam will be changed by this tilt of

the outer mirror, and its dependence on k can be seen in Figure 18.

Clearly, the centroid shift increases sharply with increasing k,

although with the 0.l-mrad tilt, the centroid shift is still quite

small. Figure 18 illustrates conspicuously the effect of the location

of the origin when tilt is present. Notice that the centroid

shift is negative in the k = 0 to k = 1 region. This shift is in the

opposite direction to the mirror tilt. As seen in Figure 10, the outer

mirror is a very deep, barrel-shaped mirror, and the origin was placed

near its center. As will be seen, the system is very sensitive to

decentering. The inside region of the mirror, which contains the most

complicated part of the surface, is decentered in the opposite direction

of the mirror tilt. This introduces a negative component in the

centroid shift. Since this region of the mirror contains a convex rim

and an inflection of the curve, it is more sensitive to the negative

decentering than the remainder of the mirror is to its positive

decentering. The tilt contributes an extremely small positive centroid

shift, and is overpowered by the negative decentering. If the origin

were placed behind the inside edge of the outer mirror, the resultant

'decentering would be positive, and there would be a relatively large

positive centroid shift.
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Figure 18. Centroid shift produced by constant tilt

of 0.1 mrad on the outer mirror, as a function

of the shape factor.

If the shape factor, k, is held constant, and the tilt angle is

varied, then the rms decollimation varies linearly with tilt angle

(Figure 19). Also, the effect is shown in Figure 17, since each k

produces a different slope. This linear variation of decollimation

with tilt is indicative of coma.
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Figure 19. Beam decollimization versus tilt of outer mirror.

The beam decollimation is also dependent on the location of the

axial point about which the tilt occurs. Figure 20 shows this

dependence. The decollimation is minimized when the pivot-point lies

almost exactly in the plane of the inside edge of the outer mirror.

It is at this edge that the mirror has the strongest curvature, and

the most rapid change in curvature. Whenever possible, reflaxicons

should be designed with the mounting surface of the outer mirror so

positioned that any tilt will occur about a point as close to the

plane of the inside edge as possible.
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The effect of tilting the outer mirror can be best described by

the nomogram in Figure 21. A straight-edge can be applied to this

nomogram, and, for an arbitrary k, the rms decollimation produced by

any tilt of the outer mirror can be seen immediately within the range

of the nomogram.
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0.25 0.05
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Figure 21. Nomogram relating beam decollimization,

shape factor, and tilt of outer mirror.
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Because of the slight dip in the curve relating decollimation to

k, in the vicinity of k = 2, the k-scale folds back at k = 2 in the

nomogram. The k = 2 case represents a system in which there is,

roughly, a right-angle reflection at each mirror. The dip is not

strong enough, though, to influence a decision in the choice of k

significantly.

2. Decentering of the Outer Mirror

The beam degradation caused by decentering the outer mirror

will now be considered. This is esnecially important because by usual

alignment techniques, the centering of a component is usually much less

precise than the angular alignment. Angular alignment can be re.dily

accomplished with optical-tooling telescopes and interferometers.

Centering, however, usually depends on aberration analysis because the

optical center of an element may not coincide with the physical center.

Diamond machined optics can be better in this respect, since the

outside edge of the mirror can be machined in the same operation as

the optical surface. This procedure would guarantee coincidence of the

optical and geometrical centers. Depending on the configuration of

the element and its mount, however, this may not always be feasible.

bFigure 22 shows the variation of the decollimation with the

decentering of the outer mirror for several k. Once again, it is

noted that the variation is linear for any k. Thus, both tilt and

decentering introduce coma.

The various k give different slopes to the straight lines, however,

indicating a functional dependence of the decollimation on k, for any

58



2.0-

I - 0.1
b = 1.5

1.5.
.

0

1.0-

0
U

0.5-

0
S0.01 0.002 0. 03 0.004 0.06

DECENTER (CYLINDRICAL BEAM RADII)

Figure 22. Beam decollimization versus decenter of outer mirror.

fixed amount of decentering. This dependence is shown in Figure 23,

where the amount of decentering is taken as 0.002 times the input

beam radius.

It should be noted that the grazing-incidence systems, k = 0.1,

for example, show the least sensitivity to decentering, even though

they are the most sensitive to tilt error. But even in these systems,

4 the magnitude of the decollimation due to decentering is high compared

to that produced by tilt. Near-normal-incidence systems (k = 5), have

low sensitivity to both tilt and decentering.
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Figure 23. Beam decollimization versus shape factor for constant
decenter of 0.002 cylindrical beam diameters at the outer mirror.

The most sensitive to decentering are intermediate systems such

as those chosen in the example. From Figures 19 and 22, it can be seen

Cthat in the example in which k = 1, 0.l-mrad tilt produces approximately

the same beam degradation as a decenter of 0.0015 times the input beam

radius.

The effect of decentering the outer mirror can be determined quite

easily from the nomogram in Figure 24. This nomogram is also read by
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Figure 24. Nomogram relating beam decollimization,
shape factor, and decentering outer mirror.

applying a straight-edge, and observing its intersections with the

three scales.

The centroid shift resulting from a decentering of 0.002 input-

beam radii is shown as a function of k, in Figure 25. Once again the

grazing-incidence systems are least sensitive.
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Figure 25. Centroid shift versus shape factor for constant

decenter of 0.002 cylindrical beam diameters at the

outer mirror.

The centroid shift is probably the least serious of all the

effects of misalignment. In the laser systems in which a reflaxicon

might be used, this effect could be compensated by the aiming of the

system. The system would simply be aimed to position the average beam

spot center on the target. In some systems, this is done via an

automatic hot-spot sensing system.
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3. Despacing

It is obvious from Figure 26, that the reflaxicon system is

exceedingly sensitive to a mirror spacing error. In order to maintain

an rms decollimation of not more than 0.1 mrad, the mirror spacing

must be accurate to within 0.000017 times the input beam radius. If

precise collimation of the output beam is required, the mirror spacing

must be set with as high a precision as possible. Fortunately, this

spacing can be readily checked by autocollimation.
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Figure 26. Beam decollimization versus despacing of mirrors.
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4. Off-Axis Angle

When the reflaxicon systems were checked for sensitivity to

a misalignment of the whole system with respect to the input beam, it

was found that the rms decollimation was independent of k, to within

the error of computation (approximately seven significant figures).

Thus, the graph in Figure 27 applies to all shape factors, at least

within the range of 0.1 < k < 5.
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Figure 27. Beam decollimization versus off-axis
angle of incident cylindrical beam.
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The rms decollimation varies linearly with the off-axis angle,

and is 0.245 times the off-axis angle in the example.

5. Inside Radius of Annular Beam

Thus far, annular beams having an inside radius of VT5, or

b - 1.5 have been considered. Although this parameter will usually be

fixed by the size and type laser and/or optical system with which the

reflaxicon is used, it is instructive to let b vary in the hypothetical

system. Keeping k and I fixed at 1 and 0.1, respectively, and a tilt

of 0.1 mrad at the outer mirror, the relationship between b and the

rms beam decollimation can be found (Figure 28). The sensitivity to

tilt increases with the inner radius of the annular beam. In order to

minimize sensitivity to tilt, the inside radius of the annular beam

should be kept as close to the outside radius of the cylindrical beam

as possible.

Figure 29 shows the relationship between decollimation and b when

the outer mirror is decentered by 0.002 times the input beam radius.

The effect is just the reverse of the tilt sensitivity. The larger

the inside radius of the annular beam, the less sensitive the system

is to decentering.

6. Intensity Transformation

The intensity transformation function will almost certainly

be determined by factors other than alignment sensitivity. However,

Figure 30 shows beam decollimation for a ringe of intensity transforma-

tions with a constant tilt of 0.1 mrad. The model system becomes very

sensitive to tilt when the intensity transformation becomci very small
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Figure 28. Beam decollimization versus inside radius of annular

beam for constant tilt of 0.1 mrad at outer mirror.

or large. The chosen value of I = 0.1 is nearly optimum for this

system. Figure 31 is similar, but for a constant decentering of

0.002 input-beam radii.

7. Statistical Analysis

Obviously, there are many factors which govern the

performance of a reflaxicon, some of which have opposing effects.

At this point, all angular and linear misalignments will be allowed

to occur simultaneously. The angular misalignments were varied
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Figure 29. Beam decollimization versus inside radius of annular

beam for constant decenter of 0.002 cylindrical beam diameters
at outer mirror.

within a range of 4 0.1 mrad, and the linear errors varied

randomly within a range of 0.001 times the radius of the cylindrical

input beam. This was accomplished by multiplying each error limit by

4a random number between I and -1. The system was ray-traced 100 times,

using 112 rays per run. The shape-factor was varied through the range

from k = 0.1 to k = 5.
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Figure 30. Beam decollimization versus intensity transformation
for constant tilt of 0.1 mrad at outer mirror.

Figure 32 shows the results of these calculations. The mean

values of the rms decollimations are plotted along with the standard

deviations. It can be seen that the decentering was the dominant

error, since Figure 32 looks very much like Figure 23.

The standard deviations are rather large, but making 200 sets of

calculations per data point, instead of 100, produced almost no change

in the standard deviation of the mean rms decollimation. The mean value

of the rms decollimations was repeatable within 5%.

68



2.0.

kl
b 1.5

1 1.5
E

z
0

S 1.0.
0
Uw
a
ia

0.5

0

0 0.05 0.10 0.15 0.20 0.25

Figure 31. Beam decollimization versus intensity transformation
for constant decenter of 0.002 cylindrical beam diameters
at outer mirror.

Figures 33 through 39 show the distributions for each plotted

value of k. They show the percentage of runs falling within 0.l-mrad

increments of decollimation. It is noted that the narrowest

A4 distribution and the best performance were given by the grazing-

incidence system, k = 0.1.
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Figure 33. Decollimization distribution, k =0.1.
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Figure 34. Decollimization distribution, k =0.5.
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Figure 36. Decollimization distribution, k = 2.
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Figure 37. Decollimization distribution, k =3.

75



k 4

60

50-

40

z
LU30.

20-

10

0 0.5 1.0 1.5

mrad
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C. Waxicon Systems

Waxicons, as they are commonly constructed, present far fewer

alignment problems than reflaxicons. A waxicon system is almost always

made in one piece with both mirrors machined on a single metal blank.

This would not be practical with a reflaxicon system because the beam

must pass through the system. The support structure for the inner

mirror would interfere with the machining of the outer mirror, and the

two mirrors face opposite directions, requiring that the blank be

removed from the lathe and turned around to machine the other side.

Proper alignment would be very difficult to preserve in this way.

Since waxicons can be machined from one piece of metal, this

procedure should always be followed unless extraordinary design con-

straints prohibit it. If the two mirrors are machined on a single

blank without removing the blank from the lathe until the work is

completed, there will not be any significant alignment error within

The system. The centering and the angular alignment will be as good

as, and probably better than, the figure accuracy of the surfaces.

This can certainly be within fractional wavelength tolerances. The

spacing of the mirrors will have roughly the same accuracy and

precision as the mirror surfaces. Thus, the only realistic alignment

error is a misalignment of the entire waxicon with the input beam.

If the system is used with a collimated beam, there is zero sensitivity

to a lateral displacement of the system, leaving only an off-axis tilt

as the only source of alignment error.
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Even though the waxicon would almost always be made in one piece,

nevertheless, the sensitivity of the outer mirror to decenter and tilt

will be examined.

A model system will be defined just as it was for the reflaxicon.

In this case, the intensity transformation, I = 0.1, will be retained

and the outside radius of the annular beam will be v = 4. The

constant, C, will be allowed to vary at will.

1. Decentering

Following exactly the same procedures that were used with the

reflaxicon, and remembering that the waxicon shape-factor is the constant

C, a decenter of 0.001 input-beam radii on the outer mirror will be

imposed and the rms decollimation as a function of C will be observed.

This relationship is shown in Figure 40. The first thing noticed in

this graph is that the magnitude of the decollimation is much larger

than that in the reflaxiron. Also, by far the best performance is

with a small C. Such a system would have near-grazing-incidence of

the inner mirror and almost normal-incidence on the outer mirror.

If C is held constant, and the amount of decenter varied,

Figure 41 shows that the variation in decollimation is linear, just

as it was in the reflaxicon.

Combining the results of Figures LO and 41, a nomogram can be

constructed for arbitrary shifts and shape-factors, as shown in

Figure 42. A straight-edge is used with this nomogram in the same

fashion as with the reflaxicon nomograms.
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Figure 40. Beam decollimization versus shape factor for constant

decenter of 0.001 cylindrical beam diameters at outer mirror.

2. Tilt in the Waxicon

If the tilt of the outer mirror is held constant and the

shape-factor allowed to vary, the variation in decollimation is shown

~in Figure 43.

Once again, the system with a small C performs far better than

those with large C, and is comparable in performance to the reflaxicons.

A large C makes the waxicon very sensitive to mirror tilt.
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Figure 41. Beam decollimization versus decenter of outer mirror

for constant C.

If C is held constant, and the tilt-angle allowed to change, the

familiar linear relationship between tilt and decollimation results

as shown in Figure 44.

Combining the information in Figures 43 and 44, the decollimation

can be shown resulting from an arbitrary tilt and arbitrary C. A

nomogram showing this is given in Figure 45. It is also read with a

straight-edge.
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3. Off-Axis Angle

This is the only misalignment that is usually meaningful.

It is, therefore, of particular interest. If the decollimation is

computed as a function of the off-axis angle for many values of C, it

is found to be independent of C. This is the same phenomenon found in

the reflaxicon system. Figure 46 shows the rms decollimation to be

equal to 1.21 times the off-axis angle.
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Figure 46. Beam decollimization versus off-axis angle

of incident cylindrical beam.
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The rms decollimation was calculated for 100 off-axis tilt

angles, randomly chosen between the limits of -0.1 and + 0.1 mrad.

The mean of the rms decollimations was found to be 0.053 mrad with a

standard deviation of 0.031 mrad. This is less than half the

decollimation found in the statistical analysis of the best reflaxicon

(k = 0.1) with its many sources of appreciable error.
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Chapter V. CONCLUSIONS

Reflaxicons and waxicons are extremely versatile systems, capable

of performing ray-height and intensity transformations that could not

be achieved with classical optical systems. The mathematical theory

has been developed for completely generalized transformations in

two-mirror, afocal systems.

It has been shown that near-grazing-incidence reflaxicons are

capable of better performance than the more common configurations

because they are more tolerant of misalignment.

Waxicons are to be preferred to reflaxicons, whenever this

configuration is feasible. Their primary advantage is that they can

be made in one piece, thereby eliminating most of the potential

sources of misalignment.

The preferred configuration for waxicons is that with a small

shape-factor. This configuration is not likely to cause serious

polarization problems when used with dielectric coatings. The inner

mirror, which usually has the higher heat-loading, is used at almost

grazing incidence. This spreads the heat load over a larger area

and improves the reflectivity. It is a convenient configuration for

diamond-machining. This is a very different configuration from that
A

which is usually produced.
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Waxicons are usually restricted to applications in which retro-

reflection is required, but they could readily be used as fixed-focus,

telescopic systems if combined with a flat mirror to turn one of the

beams to the side. If this flat is an annular mirror reflecting the

annular beam, there would be no need to have a mirror support structure

obstructing either the input or the output beams. The system would

be completely unobstructed.

In view of the ligh performance of afocal ,;axicons, it is

recommended that focusing waxicons be systematically studied to deter-

mine their suitability for use in laser welding and cutting devices.

They would allow contouring of the beam intensity profile to optimize

the welding and cutting processes and would probably be less sensitive

to alignment errors than more conventional focusing systems. Thus far,

their use in this field has been almost completely ignored.

There is also a great need for beam-contouring reflaxicons which

can be focused over a reasonable range. These systems would have to

use more than two mirrors. They would be particularly useful in

pointing and tracking systems for high-energy lasers.
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