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I. INTRODUCTION

Following References 1 and 2, we propose to generalize well-known transport
equations for turbulent flows so that they are assumed to apply to two-
point correlation functions. We use analogy with their one-point counter-
parts to which they are required to reduce as the separation of the two
points is made to vanish.

In order to illustrate the development of this program, we concentrate in
this report on homogeneous turbulence at high Reynolds numbers so that the
two one-point models needed are

the dissipation model

-2v -x2b (b ) (1

and the redistribution model )

/ 1~~c (c u \ F _ _ 21 (2)

+,X ~L?~ c ).iu j3 i , C

Both models have been used successfully for such a long time that it is
difficult to assign rigidly their originators. They have acquired special
importance in the recent developments of turbulent transport calculations.
(Ref. 3). These models have rather obvious generalizations to two-point
correlations (they will be given in the next section). If such generaliza-
tions are made, then the rate equation for Rij = (ui(x)u3(y)> can be

closed and, in principle, solved, with the result that the structure as
well as the scale of the turbulent field can be determined.

A. For homogeneous flows, using the leading term in the moment expansion
*I ) of Rij

R _C i 6(jrj)
d) to obtain a closed scale equation is permissible because the correlation

lenqth is infinitely small compared with the size of the system.

1. Sandri, G., "A New Approach to the Development of Scale Equations for
Turbulent Flows," A.R.A.P. Report No. 302, April 1977.

2. Sandri, G., "Recent Results Obtained in the Modeling of Turbulent Flows
by Second-Order Closure," AFOSR-TR-78-0680, February 1978.

3. Donaldson, C.duP., "Construction of a Dynamic Model of the Production

of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants,"
Wor!z.hop on AVtometeo4otogy (D.A.Haugen, ed.), American Meteorological
Society, Boston (1973), pp. 313-392.1 ) - -



B. Experimental information in available on several variables for both
isotropic grid turbulence and homogeneous shear turbulence (Refs. 4
and 5).

With only two adjustable constants, the model covers qualitatively both
types of turbulent flows. We shall show this by exhibiting explicit
analytic solutions with several of the desired features. In particular,
the analytic solutions for the homogeneous turbulence models show the

t presence of two distinct time scales which characterize, respectively, the
rapid settling of the tensor character of the flow to an asymptotic state
and the slower development of the energy and mean scale. It is found that
for both grid and homogeneous shear turbulence, the ratio of the two scales
is about ten.

* The fast time is the redistribution time, A/q , while the slower one is
bA/q (dissipation scale) for grid turbulence and v'A/q (merging scale) for
shear flows (v' is defined in the next section) after an initial transient.
This feature of the model solutions seems to be well reflected in the data.

In this report, we will construct the general structure equations (Appendix
A). We shall also obtain a first-order test of our model by exploiting
the following result for homogeneous turbulence:

The equation for Rij is wholly determined from three requirements:
(i) that it should yield the observed transport for uiuj
(ii) that it should satisfy the continuity equation;
(iii) that it should yield the correct limit for isotropic turbulence.

We now consider briefly an analogy between the models (1) and (2) and the

Newton-Fourier heat equation. We may think of the Newton-Fourier equation,
9

qi = -K ax (3)

which gives the heat flow vector qi in terms of the temperature gradient,
as a phenomenological law (or, more incisively, "model") which allows us to

* close the heat equation and hence gives us a chance to solve it. As a
model, (3) is subject to restrictions. It is, however, tensorial and there-
fore independent of geometry, hence valid in any coordinate system. Fourier
luckily relied (intuitively) on the tensor nature of (3) and overlooked the
restrictions: (i) K is temperature-dependent even for the simplest
material (inert gases); (ii) K is a tensor for any nonsimple material;
(iii) in the presence of electricity, qi requires altogether a new term
(the thermoelectric effect of Thomson).

4. Harris, V.G., Graham, J.A.H. and Corrsin, S., "Further Experiments in
Nearly Homogeneous Turbulent Shear Flow," J. Fluid Mech. 81, 1977, pp.
657-687. Corrigendum, J. Fluid Mech. 86, 1978, pp. 795-74-'".

5. Corrsin, S. and Kollman, W., "Preliminary Report on Suddenly Sheared
Cellular Motion as a Qualitative Model of Homogeneous Turbulent Shear
Flow," Proc. SQUID Symp. on Turbulence in Internal Flows, pp. 11-33
(S.N.B.Murthy, ed.), Hemisphere Publishing Co., 1977.
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Of course, analogous remarks may well apply to (1) and (2). It seems to
us that Fourier's work encourages the view that a good treatment of the
simplest model is desirable.
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II. DERIVATION OF THE CLOSED EQUATIONS FOR THE REYNOLDS
AND SCALE TENSORS

We start with the Navier-Stokes equations for the velocity field ui and
the kinematic pressure p (pressure/density)

ui + ui Vu (4)
at k axk ax i

au.1-o (5)
xi

The velocity and pressure are decomposed,following Reynolds, into mean and
fluctuating parts

H - + u, (6)

p = + p' (7)

Substituting (6) and (7) into (4) and (5), one obtains separate equations
for the mean and fluctuations. After standard operations, these equations
can be cast into the form of equations for the correlation tensor Rij

Ri (x,y) = <u!(x)uj(y)> (8)
1UJ

namely,

k(x) + ;(y) a Rij +

at k

ikayk axk kjj

+ (

[ [ L i..(Y)) + Kui(x) 2L + ) ( +(Yu R y9+\axi J ay j/ x Y
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and

=0 (10)

axy.

It is convenient to recast these equations by introducing "centroid" and
'relative' variables as follows:

x x +(12)

r y - x (13)

Using the chain rule for differentiation, the equations for Ri~j become

aR. Iuk.,) + (u~) x c x Tr "ii
at -- 2 a k~ y uk( a~-

[Rik + cPk Rki]

' x [I j ~(~u()> + <uj(xNu(Y)U!(Y)>1 +

+ k 1< L(ui!xux)ujI()/ uxu(Yu(Y/

+ ca +

+ -[\ !(x(~!) - p' +u~~u(y

<v2  u:( u(y) U(),
R.-2 1 L......

c 13 axck axck (4



and

2Xi r (15)

aR. . aR.

ci iaXj rj (16)

where the arguments in the correlations are given by

xc - r (17)

-x + r (18)2

For homogeneous turbulence, the derivatives with respect to the centruie
vanish when acting on any correlation (but not, in general, on the mean
velocity) or on a fluctuation. We then have, for homogeneous turbulence,

aR. U -1 (x~ F ai + a!i. 1
at [ k k(x) 6rk L ik aXck a ckRkj +

+ a .(xNu1 (xM)> -xN(~!y> +ark L 1<U1

+ p(x) ax + < x) W(y +

/u W uj(Y)\
-2vax u > (19)

4 '

and

-  o(20)
ar i

- o 
(21)

ar i

The terms in Eq. (19) that prevent closure of the equation are the last
three. In order to achieve closure, we introduce generalized transport
models as follows:
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Dissipation equation

-2v / 2(-t) Roir) (22)

Intercomponent rearrangement

(x) + P y)) R j (Ra + T.) (23)

where Tij is assumed to satisfy

T. (r = 0) =0 (24)

fT(r)3d r 0 (25)

r ,t

These properties are utilized in Section III to derive the Reynolds stress
1and scale tensor equations. For a full determination of eddy structure,

additional properties are needed which will be discussed in Appendix A. In
addition to the two generalizations given above, we need a model for the
spatially homogeneous part of the triple velocity correlation which
represents the nonlinear effects of local turbulent convection. These non-
linear effects correspond to either eddy break-up (cascading, when wave
vectors add) or merging of eddies (when the wave vectors subtract). We
thus call the model

* Eddy size rearrangement

M -[u!(xu~xu!,y> - Ku!(xNu(y)u3(y)>1 V1 va [Rij NijI (26)
i!f

where Nij satisfies

Ni(r = 0) = u!u! (27)

r N1. d 3r = 0 (28)

7
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As in the case of the tensor Kij for a full specification of structure,
Nij must satisfy additional requirements (see Section III). Simple
examples of Nij are

n
nr (Irin Rij )  , n is a positive integer

Substituting the models (22), (23) and (26) into (19) yields

=~~~ !! - [ R +~ ....R1
at L ark L Rk 'ck + -ck j

,o _ Ii )] +

A 3 aa(29)

with (20) and (21), i.e., continuity, holding.

To obtain the rate equation for the Reynolds stress (divided by p), we let
r . 0 in (29) and find, using (24) and (27)

N( To obtain a rate equation for the scale tensor A.

EI - U]r d3r (31)

that includes the first order information on turbulence structure, we

expand Rij(r) in terms of its moments and retain the lowest terms. We
. obtain

( Ri(r) -- Ai6(IrI) (32)

8
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where the Dirac function of the magnitude of r is related to 6(r) by

6(r) = W (33)
47r

The approximation (33), as we remarked in the Introduction, is best justi-
fied for homogeneous turbulence because in this case the spatial scale of
the mean flow is infinite.

We now apply to (29) the operation (d3 r/47r 2  and, using (25) and (28), we
find f

q q2[ + ai A
qeAi c3 k ck + v )A~ +

I A [q 2 A - .1 6ijq 2A~~ - 2b 3 6~ (34)

Convection of Aij does not occur for homogeneous turbulence. To see that
this fact is a consequence of the moment approximation (32), we note that
(33) gives

3rf T[ k (xc + T2) k(Xc )] -- 2 6(IrI)

f d r 6(r)

axJ ckLuk ( xc) + L2 J+'xk k 1 2(r))

B5 k(xc)
-2 ax ck

where we performed an integration by parts and used continuity. We obtain

the final form of the equation for the scale tensor by substituting into
4(34)

2a q2 A q2 + (35)at i j) at i atj

9
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-2 u--  2bi q (36)at ikax. A

This latter, the energy equation, is obtained by contracting (30). The
result is

DA--, A auc a~ck A +  Aij 2 + a (2b + v) +
atik ax a- Ai A

ck +Xck q rci

A [A ~ A u - 2bq6 ~ (37)

Note that Eq. (37) is obtained by dividing by q2  and, therefore, it should

not be used in the absence of turbulence.

To close the pair (30) and (37), we choose

A =1 Akk (38)
3 k

The reason for this choice was discussed in a previous report (Ref. 1).
Contraction of (37) and use of (38) yields the equation for the mean scale

aA 2 ui 2uiu- auk +V
T- 2 A i. 2 + - +vq (39)

3 k ck q2  axck

It is interesting to note that, in this model, the coefficient of the
"production" term is not a universal constant and receives generally compet-
ing contributions from the Reynolds stress and from the tensor scale.

1
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III. SOLUTIONS OF THE COUPLED EQUATIONS
FOR STRESS AND SCALE TENSOR

In this section we give two analytic solutions to the coupled equations for
the stress tensor and scale tensor equations. We use subsections to
separate the different calculations.

A. Equations in Standard Coordinates

The centroid vector and mean velocity vector are taken to have components

(x,y,z) , (V(y),O,O)

with 3U/ay = U' = constant. The relevant components of the Reynolds stress
equations are obtained from Eqs. (30) and (36). We drop primes on the
fluctuations and give a form useful for numerical integration in which i11
and All are calculated from

-2 =q2~ _ 2---=q 1 -u2  -u3  (40)

A11 = 3A A22 - A33  (41)

The other relevant components of the stress and energy equations are

1(1 3 2 -2b) (42)

2
a u- 3 = (I 2b) qA - -A u (43)

a u 1 u 2 = -u U' A U uu2  (44)

A 1 u2

-U' -b b (45)at q A

For the tensor scale components, we obtain, using Eqs. (37) and (39)

atA 22 T A22 + (1 - 2b)q (46)

I 11



ifA3  - A3  + (1- 2b)q (47)

TAl = - 1LA - ' (48)

at A =2 1 2 U'A - -A 1 U + vq (49)
q

where

1. -2 1 2 U +R(1 2b v) (50)
q

B. Solution of the Shearless Equations

Setting U' =0 , we see that equations for q and A decouple from the

tensor components. Introducing the deviators

d. iiT-6i 6.q2  (51)

D.. =Aj 6..1 Akk (52)

and the time

A (53)
Tq

We have the set

q b A - 'A (54)

dat--. , -1 2b -v' D. (55)
13 T 13 at ii T 1

T~ = b to v' (56)

Integrating (56) as

T = b + ') t t LO(57)

12
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we see that q , A, dij and Dij are suitable powers of (qo/To)T ; for
example,

qo[ qo I "b/(b+v')

q q (b + v') 2- (t - to) + (58)

d = d. [ (b + v') (t - t + 1/(b+v')(59)ii o Aii
q 1-v'/ (b+v')

A- Ao (b + v') S(t to) + (60)

From grid turbulence data on q and A , we may choose

bz 1  v z 0.075 (61)
8'

We then see that for large times

q q 2 !t (62)

d dj[ . 2 2 t (63)

which shows that the deviator decays with a power about four times larger
than the energy. This substantial difference may eventually be checked in
our anisotropic grid plow.

From the solutions given above, we can verify that statistics are preserved
by the model equations if the modelparameters satisfy certain bounds. We
first show that the two tensors uiu i  and Aii are positive definite from
their definitions. Consider an arbiirary (constant) Ai then,

A4 Aiui-uAJ (u'A)2 > 0 (64)

the equality sign holding for A 0 only. Thus uiu. is a positive
definite tensor.

From the definition of the scale tensor given by Eq. (31), using Fourier
transform on Ri,

13
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_9-A =f.17 d 3r f81 di3 k (65)

where the power spectrum tensor Pi~j is positive definite by Khiutchine's

theorem. Thus,

2 i j 8WTF Adfk A .A. 0 (66)

Thus Aij is positive definite because q is positive as a consequence

Using the solution (61) and an analogous solution for Auj , we find

u -uu(t) = u j(0) ( qoT)-/) +

53 iiqo 0 1

A..(t) = A (0 oT+

+ [(OS !0 ' v'/(b+v') (L) (12b-v')/(b+v')](8

ii A0  A

We now multiply (67) by A A~ when A1  is an arbitrary vector and find

-1/(b+v')

1 u 1u.(t)A. = (A u 7 0 A+

A2  2[(2 q ) 2b/(b~v') !q T .4/(b+v')1(9

From (57) we see that

q0T>1 (L +v' > 0) (70)

14



Sufficient for the left-hand side of (69) to be positive is

q 2b/(b+v') -1/(b+v')
( ) -o> (71)

which requires, using (70),

2b < 1 (72)

A similar analysis applies to Aij ; however, no further restrictions on
the parameters is found.

C. An Exact Solution of the Equations with Shear

To obtain a solution of the equations with shear, we let

q = V eav 't A= L eav 't

12 W 1 e2av't 1 LI eav
't

u 2 W2 A22 = L2 eavt (73)

= W e 2av't A evt3 W3 eV t A33 L L3 e
a t

=W 4  A12  L4 eavt

Substituting these forms into the differential equations of III.A, we find
that the exponentials cancel and that an algebraic set of equations for the
amplitudes are obtained. It is possible, with some algebra, to solve the
amplitude equations explicitly in terms of the parameters b and v'
The energy components are

u1 . 1 + 6v' + 4b
-7 = 3(1 + 2v') (74)
q

2 2u2 u 3 a1 -2b 1 (75)

The scale components are

A11  1 + 6v' + 4b

A 1+ 2v' (76)

15
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A22 _ A3 3  1 - 2b

A A 1+2v' (77)

We see that
A11 _ul 1 + 6v' + 4b (78)

A22  u_2 1 - 2b

u2

The off-diagonal components are

r 1 (1 - 2b)(b + v') (79)

q
A12  3(1 - 2b)(b + v')
A 12- 1 (80)

The Corrsin parameter is

uC 1 2 = -+3  6v (81)

The ratio of the two times is

U A 1 +I r-73 2b (82)

and the growth rate, a , is

"1 v' / M1 2 b

a- += v. (83)
CL '+2v 3(F v7'

We notice two additional interesting parameters:

1 2 - =a'Br - b + v' (84)

ij q2 1

16



We make the following remarks:

1) Several numerical integrations suggest that any solution that initially
statistically realizable will remain so and will asymptote to the
exact solutions given.

2) If the scalar scale equation

DA A U- U,
-C UlU2  + v q (c z 0.35) (86)

is adopted instead of the tensor equation, an exponential solution
exists and has the same qualitative features insofar as scale and
energy are concerned (of course, no scale directivity results). This
indicates that the models for scale, which were not designed to fit
homogeneous shear data, are quite stable.

3) The equations for R.. itself (or the spectrum *ij , see Appendix.A)
have the same type ol convective equilibrium solutions.

9. 17
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IV. CONCLUSIONS

Our analysis of a model of homogeneous turbulence, deduced from simple
assumptions made on the two-point tensor Rij , has brought out four main
conclusions.

1. The model contains only two adjustable parameters which we chose to
fix from grid turbulence data. Good qualitative agreement with homo-
geneous shear flow results.

2. The model implies the existence of two distinct time scales whirh are
separated by a factor of about 10. They appear after an initial
transient phase has died out during which q/A becomes approximately
equal to U' . On the fast scale, A/q z (U')"', the normalized
deviator

a =q 61

locks into a constant value indicated by a Corrsin parameter

i~j~;-i 0.5(ul 2 ~

or by a Bradshaw number

2 -0.19
q

On the slower scale, v'(A/q) ~ 0.07(A/q) , the energy components and
the mean scale grow exponentially. This solution can be thought of as
a superequilibrium with convection. A qualitative physical picture is
as follows. During the initial transient, when (qo/Ao) <<U' , the
shear brings the sudden distortion-like turbulence up to convective
equilibrium (q/A z U'), while when (qo/Ao) >> U' , the turbulence decays
grid-like to convective equilibrium. Then a merging mechanism takes
over (a multi-layer Brown-Roshko effect) so that eddies fold with each
other, making larger ones indefinitely (as long as the imposed shear
provides the energy to sustain the process). Once the merging process
takes over, the eddy structure remains fixed and exhibits highly direc-
tional integral scales (see 4 below).

3. In the model, the two transverse energy components do not separate
while the data indicate that such a separation occurs. The splitting
can, however, be brought into the model by assuming a tensor coefficient
in the redistribution equation. We have taken this point to constitute
a refinement at this stage of analysis.

it 18

9' = . . . .- _ = ' - : . . . . _ . .. - - # :. . ." . . . -. .



4. The calculated angular averaged integral scales are quite directional.
The model thus gives a picture of the eddy structure of a sheared
turbulence. With our choice of parameters

2.6 0.19
A22  3A

this picture could eventually be tested by experiment.

i
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APPENDIX A. SPECTRAL EQUATION

The equation for the spectral tensor oij is

_t-_
t " U'K aT ijat 1 3K2 i

- - U'(0i26jl + '2i02j " i (K) + (-

P2
+ i I[K. PiK) - KjPi(-K)- 2vk oij (A.1)

where

p ij(K) K K!Siaj(r) e- i  (2w)d 3

(2,)

4.44

* I," \ -iK r. d
r, ~ ~~P(K) = *p(x)u(y)je - i '  d

Si j(r ) =<ui(x)uctx)u (x + r)>

Continuity requires the Poisson equation

4.4

* ik2 P~~~P(k) - P (-K) +.F ()+~,~'2 2U'KI1 2j + iKaO + ojK)i (A.2)

The following simple model gives a tolerable picture for the energy
spectrum of grid turbulence:

-1 Itj' + 0ii(-,)] 1

B k + 8 k + 2 i + C k2 2 + 4k a i + 2i

(A.3)

20
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with

A 0.075 , B 0.615 , C 0.27

which have been adjusted to give exactly a 5/3 law for equilibrium.

Even though a complete structure equation has not been determined for the
sheared turbulence, it is seen that any closure scheme such as that given
by Eq. (A.3) will have the exponential solution of the form given in
Section III.
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