OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC—=ETC F/6 9/2
DESIGN AND ANALYSIS OF UPDATE MECHANISMS OF A DATABASE COMPUTER--ETC(U)
JUN 80 D K HSIAO» M J MENON NUODIU-TS-C-0573
oSU—ClSRC-TR-BO-3

i Rt HoHe Teotimea) Library

JUL 111980

CORMPUTER K
(NFLRRIATIGI

CCIENCE
RESEARCH CENTER

t

THEOHIOSTATEUNN]] 2 02 150

e O BNy L i b e e Wt i

OSU-CISRC-TR-80-3

/ . e -

DESIGN AND ANALYSIS
OF UPDATE MECHANISMS OF
A DATABASE COMPUTER (DBC)

by

;10 David K.stiao &M, Jaishankar/Menon

IAPPROVED FOR PURL .~
. TI0H UNLIdla. ..

I
Work Pgrformed Under
Contract {N0O0Q14-75-¢-0573
Office of Naval Research

* For .
Computer and Information Science Research Center
. o The Ohio State University
s - Columbus, Ohio 43210 |-
' o / Junepsd980 !
] A

Y S5

e e RSN S SRR b S

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REFORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
0SU~CISRC~TR-80-3 AP0 7 508
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Design and Analysis of Update Mechanisms of a |__Technical Report

6. PERFORMING ORG. REPORT NUMBER

Database Computer (DBC)

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)

-—

David K. Hsiao

M. Jaishankar Menon N00014-75-C-0573

{

!

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK {

AREA & WORK UNIT NUMBERS !

Office of Naval Research |

Information Systems Program ‘ 4115~A1 :
Washington, D. C. 20360 .
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE { ‘\

[Juge 9, 1980 |

13. NUMBER OF PAGES !

132

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 1S5. SECURITY CLASS. (of this report) . ,

o e

15a, DECLASSIFICATION/DOWNGRADBING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Scientific Officer DCC New York Ar
ONR BRO ONR 437 ! FOR PURLIG T
ACo ONR, Boston RISIRIBUTION mmmgé.nr
NRL 2627 ONR, Chicago
ONR 1021P ONR, Pasadena

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

e o - < o 5 S e A . Ak s =

Database computer, update mechanisms, track-size buffers, insert-in-parallel, i
blocking, analytical model, queueing analysis. ;

\ /-/'.7 N 4) PR tel
20._WBSTRACT (Continue reverae side If neceseary end identify by block number)

This report Bhows how the process of update is carried out in the datahase
computer (DBC) wlich is a specialized back-end database machine capable of mana-
ging data of J0**10) bytes in size. Since DBC might often have to be used in an
update-intensive environment (that is, an environment where many update, delete
and insert commands and only a few retrieve commands are issued), we have indi-
cated throughout this report, the kind of architectural enhancements which will
provide good performance in an update-intensive environment.)

Perhaps the most important enhancement that affects the performance of all —

DD , 538", 1473 .’,

SECURITY CLASSIFICATION OF THIS PAGE rWhen Data Entered) i

e e - e o eyt oo

ST N R T A S

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

the four types of requests in DBC (retrieve, delete, insert and update) is the
incorporation of a track-size buffer with each TIP. The advantages that accrue
as a result of the incorporation are clearly demonstrated in the various sec-
tions of the report., For example, the process of compaction, which originally
took 487 revolutions the disk device now only takes one revolution of the
disk device and one readd-through of the buffer. Similarly, it is shown how an
update request can be handled in two read-throughs of the sequential track-
size buffer, This is a substantial improvement over the 16 revolutions that
will be necessary to do an update without the use of track-size buffers. With
respect to insertion requests, an important enhancement is the addition of an
insert-in-parallel capacity. That is, records do not have to be inserted into
MM of DBC one record at a time. Rather, all the TIPs can be inserting records
at the same time.

We have also isolated and studied in this report the problem of clashing,
i.e., requests being blocked by an update which has not been completely execu-
ted. The execution of the blocked requests must be stayed until the blocking
update is executed completely.

Throughout the report, we have always substantiated our claims of per-
formance improvement by using an analytical model to come up with quantitative
figures of the data loop throughout. By using the model, we have also shown
how a database administrator (DBA) can control the throughput achievable in
DBC.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ABSTRACT .

1.

TABLE OF CONTENTS

e« o

BACKGROUND

1.1

DBC Data Model

DBC Architecture
Control Flow During Command Execution
Organization of This Report

THE MASS MEMORY ¢« ¢« ¢ « « « &

2.1
2.2
2.3

The MM Design Philosophy
Toward an Intelligent Mass Memory . .
The Organization of the MM

2.3.1 The Mass Memory Controller (MMC) . .

2.3.1.1 Interface Processor (IP) . e .
2.3.1.2 The Mass Memory Monitor (MMM) . .
2.3.1.3 The Hardware Organization of the

The Flow of Information in the MM
The Track Information Processors . . e e e .

2.5.1 The Three Components of a TIP . . .

INSERTION OF RECORDS IN DBC .. v.cvverveen

3.1

3.7

Motivation for the Proposed Elements
Insert-in-Parallel
Comparison of the Two Methods
Algorithm Executed by MMM
Determining the Track for Placement of Record

3.5.1 Clustering Descriptors and Logical Clusters
3.5.2 Data Structures Used in the Algorithm . .
3.5.3 The Algorithm « ¢« « ¢« « ¢« o « o &

Analytical Study of Data Loop Performance . .

3.6.1 The Model . . . ¢ . « ¢ ¢ ¢ o o o« o s ¢
3.6.2 The Results of the Study . . .

The Choice of Record Buffering Size for the TIPs

DELETION OF RECORDS « .« . e e . e

4.1

4.
4.
4

The Method Used in CASSM
The DBC Method . « . . « « « ¢« « « « « e
Further Improvements . . . v e e e e s . .
Elimination of Compaction Mode and Deletion Bit Maps

4,4.1 Calculations of Data Loop Throughput

UPDATING OF RECORDS

5.1
5.2

The Nature of Update Commands . . .
The Concept of Blocking

5.2.1 Update of Nonsecurity and Nonclustering Attributes
5.2.2 Updating Security and Clustering Attributes

Table of Contents Continued

5.2.3 Requests Being Blocked Perpetually by Updates. 79

5.3 The Classification of Updates . . . ¢ ¢ ¢ v ¢« ¢ 4 o « s o s o s o o & 80
5.4 A Scheme to Determine if Two Queries are Nonclashing 90
5.5 DBCCP ProcesSing .« « + « » « o« o o o o o o o o o s o o o o s o o« » o 93
5.5.1 Data Structures Needed for DBCCP Processing. . . « « + + « « & 94
5.5.2 The Handling of Retrieve and Delete Requests+ . 95
5.5.3 The Handling of Update Requests e e e e 99
5.5.4 DBCCP Processing on Completion of an Update Request B 102]

5.6 Command Execution in the Mass Memory (MM) + + » +» 101

5.6.1 Calculating the Number of Revolutions for an Update 101
5.6.2 A Modification . . . + &« ¢ ¢ v v b i v v e e e e e e e e e .. 102

5.7 The Handling of Various Request Classes . . . + « &« &« &« « « » +» « . . 104 ﬁ

o

5.7.1 Handling CLASS IV ReqUeStS + « + « o« o« o« o o o o » s o o » o« - 104]
5.7.2 Handling CLASS V, CLASS VI and CLASS VII Requests 109

6. SUMMARY OF ARCHITECTURAL ENHANCEMENTS . . . « & + ¢ ¢« v o o« o o o o o « o 112

6.1 Handling Retrieves & & & ¢« ¢ ¢ 4 & o o o o « o o s o s o & o 112
6.2 Handling Updates . . . ¢ &+ v v ¢ o & o « o o o s o o o s o« o » » « - 113
6.3 Handling Insertions & ¢« ¢ v & 4 v s o« o o o« s s o s s o . . 114
6.4 Handling Deletions . . . v & ¢ ¢« o o o & « o o o o o o o o o « &+ « o« 115
6.5 Execution Times of Various Orders « ¢« + ¢ 4 & o & « & « » « « 115
6.6 The Components of a@a TIP . . . v v ¢ + &« v o & o« + o o o« o s+ o o+ « « » 116

7. CONCLUDING REMARKS . ¢ & v ¢ 4 ¢ ¢ ¢ o o o o o o o o o o o o o o o o s o o+ 119

REFERENCES . & & & & v v o ¢t 4 o o o o o o o o o o o o o o o o s o o o o« o 121

APPENDIX 1

ABSTRACT

This report shows how the process of update 18 carried out in the data-
computer (DBC) which is a specialized back-end database machine capable of
managing data of 10%**10 bytes in size. Since DBC might often have to be
used in an update-intensive environment (that is, an enviromment where many
update, delete and insert commands and only a few retrieve commands are
issued), we have indicated throughout this report, the kind of architectural
enhancements which will provide good performance in an update-intensive
environment,

Perhaps the most important enhancement that affects the performance of
all the four types of requests in DBC (retrieve, delate, insert and update)
is the incorporation of a track-size buffer with each TIP. The advantages
that accrue as a result of the incorporation are clearly demonstrated in the
various sections of the report. For example, the process of compaction,
which originally took 487 revolutions of the disk device now only takes one
revolution of the disk device and one read-through of the buffer. Similarly,
it is shown how an update request can be handled in two read-throughs of the
sequential track-size buffer. This is a substantial improvement over the 16
revolutions that will be necessary to do an update without the use of track-
size buffers. With respect to insertion requests, an important enhancement
is the addition of an insert-in-parallel capacity. That is, records do not
have to be inserted into MM of DBC one record at a time. Rather, all the
TIPs can be inserting records at the same time.

We have also isolated and studied in this report the problem of clash-
ing, i.e., requests being blocked by an update which has not been completely
executed. The execution of the blocked requests must be stayed until the
bloiking update is executed completely.

Throughout the report, we have always substantiated our claims of
performance improvement by using an analytical model to come up with quan-
titative figures of the data loop throughput. By using the model, we have
also shown how a database administrator (DBA) can control the throughput
achievable in DBC.

1. BACKGROUND
The database computer (DBC) is a specialized back-end computer whish is

capable of managing data of 1010 bytes in size and supporting known data

models such as relational, network, hierarchical and attribute-based models.
All operations performed by DBC are concerned with one or more of the following
four aspects - searching and retrievaly security, clustering and updating.

A number of papers [1-6] are available that motivate the design of DBC and

discuss the search and retrieval aspects in some detail. A description of the l
security and clustering mechanisms of DBC and of the concepts that form the

basis for these mechanisms appears in [7]. 1In this report, we intend to demon-

strate how update is carried out in DBC and to make some suggestions on how
the performance of DBC may be improved in an environment which is update-

intensive. An update-intensive environment is one in which a large number of

the requests issued to the database are insert, delete and update commands.
That is, there are only a few retfieve commands issued to the database.
Fundamental to our discussion is an understanding of the built-in data model
and overall architecture of DBC and these are dealt with in the following

sub-sections.

1.1 DBC Data Model !
The smallest unit of data in DBC is a keyword which is an attribute-

value pair, where the attribute may represent the type, quality, or character-
istic of the value. Information is stored in and retrieved from DBC in terms
of records; a record is made up of a collection of keywords and a record body.
The record body consists of a (possibly empty) string of characters which are
not used for search purposes. For logical reasons, all the attributes in a

record are required to be distinct. An example of a record is shown below:

(<Relation, EMP>,<Job, MGR>,<Dept, TOY>,<Salary,30000>).

The record consists of four keywords. The value of the attribute Dept, for
instance, is TOY.

DBC recognizes several kinds of keywords: simple, security and clustering. lf
Simple keywords are intended for éearch and retrieval purposes. Security
keywords are used for access control. Clustering keywords are utilized for ij
placing records with a high probability of being retrieved together in close
proximity. A discussion of security and clustering keywords appears in [7] and

will not be reproduced here.

A keyword predicate, or simply predicate, is of the form (attribute,

relational operator, value). A relational operator can be one of [=, #,
>, >, <, <1. A keyword K is said to satisfy a predicate T if the attribute
of K is identical to the attribute in T and the relation specified by the

relational operator of T holds between the value of K and the value in T.

For example, the keyword <Salary,l50@@> satisfies the predicate (Salary > 104000).

A query conjunction, or simply conjunction, is a conjunction of predicates.

’

An example of a query conjunction is:
(Salary>25000) A (Dept=T0Y) A (Name = JAI).

We say that a record satisfies a query conjunction if the record contains

keywords that satisfy every predicate in the conjunction.
A query is a Boolean expression of predicates in the disjuactive normal
form. Thus, a query is a disjunction of query conjunctions. An example of

the types of queries that may be recognized by DBC is as follows:
((Dept=TOY) A (Salary<1@pP@g)) v ((Dept=BOOK) A (Salary>5@@dp)).

If the above query (consisting of two conjunctions) refers to a file of
employees of a department store, then it will be satisfied by records of
employees working either in the toy department and making less than $14,380,
or working in the book department and making more than $5@,8fp. We say that a

record satisfies a query, if the record satisfies at least one of the conjunc-

tions in the query. Thus, we can refer to a set of records that satisfy a

query. A query, as defined above, is used not only to retrieve, delete and
update the set of records that satisfy the query, but also to specify

protection requriements {7]}.

1.2 DBC Architecture

Figure 1 shows the schematic architecture of DBC. It consists of two

{
loops of memories and processors, namely the structure loop and the data loop.

The data loop is composed of two components: the mass memory (MM), and the
security filter processor (SFP). MM is the repository of the database and

is made of modified moving-head disks where all the tracks of a cylinder may
be read in parallel in a single disk revolution. This modification is termed

tracks-in~parallel-readout. 1In addition, the mass memory of DBC is content-

addressable. Given a cylinder number and a query conjunction, it is possible
to content-search the entire cylinder 'on the fly' for records that satisfy
the query conjunction. The MM is described in detail in Section 2 of this

report.

PR

et e s

ot b e

., " o AL A G pg e it S
et T e SO AMAMIGARRICES. iy . T b -

INFORMATION PATH
— — — CONTROL PATH

DBCCP: Data Base
Command -
Control

SM'P]‘_ —_— SM Processor

KXU: Keyword

Transform
f y STRUCTURE 7 } ::‘" '
SM: ructure
LOOP // KXU | Memory
/ SMIP: Structure
// Memory

~
~ /- Information
et Processor

DBCCP IXU: Index

Transiation
Unit

FROM HOST COMPUTER

-
TO HOST COMPUTER

MM: Mass
Memory
SFP: Security

Filter
Processor

SCu: Security
and
Clustering
Unit

PP: Post
Processor

Figure 1. The Architecture of DBC

4

The structure loop is composed of four components: the keyword trans-

formation unit (KXU), the structure memory (SM), the structure memory informa-

tion processor (SMIP) and the index translation unit (IXU). KXU converts

keywords into their internal representations. SM is primarily used to store,
retrieve and update the indices of the database. Indices are maintained in
SM as a directory. Each entry in the directory consists of a keyword or a

keyword descriptor followed by a set of indices. A kevword descriptor

is a conjunction of a less-than-or-equal-to predicate and a greater-than-or-

equal-to predicate, such that the same attribute appears in both predicates.

An example of a keyword descriptor is:

R S

((Salary) > 2,008) A (Salary < 1(,008)).

e

More simply, this is written as follows:

-
el

S i 4

(2,999 - Salarv < 10,p00).

Thus, a kevword descriptor is an attribute (Salary) and a range of values
($2,000 - $10,000) for that attribute. A keyword K satisfies a kevword
descriptor KD, if the attribute of vK is identical to the attribute KD and
the value of K lies within the range of values or KD. An index is a pair of
the form (cvlinder number, security atom number) [7]. The cvlinder number
indicates where in mass memorv records with kevwords satisfving the keyword
descriptor may be found and the security atom number indicates the access
privileges accorded to these records. Any kevword that appears as part of »
directory entrv or satisfies a keyword descriptor in SM is called a directorv
keyword. For example, securitv kevwords and clustering kevwords are auto- ﬂ
matically defined to be directorv kevwords and thev alwavs satisfv certain
keyword descriptors in SM. However, not all simple kevwords are directory
keywords. Non-directory kevwords are mainlv used bv MM and SFP for record
comparison and sorting purposes. SMIP is responsible for performing set
intersections on the indices retrieved bv SM, IXU is used to decode the
indices output by SMIP. These four components are designed to operate
concurrently in a pipeline fashion. The hardware organization, details and
design philosophy of these components are documented in [5].

The database command and control processor (DBCCP) regulates the operations
of both the structure and data loops and interfaces with the front-end host

computer. It processes all DBC commands received from the front-end host

computer, schedules their execution on the basis of the command type and

2

priority, and routes the response to the front~end host computer. Additionally,
it makes use of SFP to search the tables needed for the enforcement of

security and clustering of records [7].

1.3 Control Flow During Command Execution

Figure 2 shows how certain commands are executed in DBC. Basically,
these commands forwarded from the front-end host computer (in pre-determined
formats), are recognized by DBCCP as either access commands or preparatory
commands. Access commands are those that require DBC to access the mass
memory; preparatory commands precede and follow access commands and convey
important house-keeping information. Access commands go through a security
check. Having undergone security checks, access commands are translated
by DBCCP into orders that can be processed by the mass memory. During trans-
lation, an access command involving insertion activates the clustering
mechanism in DBCCP. This clustering mechanism determines the mass memorv
cylinder into which the record must be inse>*ed. Records retrieved
by the mass memory (as a result of the execution of orders and the supply of
cylinder numbers provided by DBCCP) are transmitted to the sorter. The sorter
allows groups of retrieved records to be sorted on the basis of some attri-
bute, or joined with other groups of records (a join being a relational

equality join) [8,9].

1.4 Organization of This Report

In Section 2, we shall give an overview of the architecture of MM. Sec-
tions 3, 4, and 5 are devoted to describing how the processes of insertion,
deletion and update are accomplished in DBC. More specificallv, we shall
describe the process of insertion of records in Section 3, while Section
4 will be devoted to a discussion of the process of deletion of records.

In Section 5, we discuss the method used in DBC to update records. In each
of the last three sections, we shall use an analytical model of the data loop
of DBC in order to evaluate the actual performance improvements achieved as
a result of certain suggested changes. Finally, in Section 6, we present an

integrated picture of DBC with all the changes that have been suggested in

previous sections.

Components of
the Structure Loop

k o T DBCCP

Insert CluStE?lng
Mechanism

|

| House-keeping —~— =

’ /Eommand~ \

I Preparatory ///l ! /
! Commands \ //
| Access \\ Non-Insert Commands /

Translate

|
|
i

l Commands

Orders
| Security '
Check |
‘ Records
| R
Sorted |
Records Sorter MM

FIGURE 2. Access Command Execution in the Data Loop

2. THE MASS MEMORY

Since it is the intention of this report to study the updating of
records stored in the mass memory (MM), an understanding of the organization
of MM is essential. MM mav conveniently be thought of as consisting of two
parts. The first part is the repository of the database. Tnhe second part
is the set of processors that are used to search, retrieve and update records
stored in the repository. We begin by describing the nature of the repository
of the database and also the reasons behind our choice of such a repository.
Later, we go on to talk about the architectual features of the processing
elements that are used to manipulate the database. The philosophy upon which
the design decisions regarding these processing elements is predicated is

not discussed in this section. That will be done in later sections.

2.1 The MM Design Philosophy

For our design of the first part of the MM, we have chosen the moving-
head disk as the storage medium. Our discussiou in favor of this technology
is based on the following reasons: First, moving-head disk technology is well
entrenched and is unlikely to be replaced in this century [10]. Second, the
cost per bit of this storage medium is about 5 millicents, providing an order
of magnitude reduction in the storage costs over fixed-head disks or their
electronic replacements. Third, it is possible to enhance the processing
rate of a conventional moving-head disk by activating all the read/write
heads available in the access mechanism. The achievement of this parallel
readout does not involve any technological breackthrough. Ampex Corp. has
modified one of their 9300 series 300) megabvte disks to offer the transfer
of up to 9 disk tracks in parallel [14]. 1In such a modification, the
information on the tracks of a cylinder can be searched 'on the fly' by

employing a set of processing elements, one for each track. Each of the

processing elements would be responsible for searching the information read i
from the corresponding track.

The above scheme provides content-addressability on a cylinder basis.

L e e 4

We can thus think of the moving-head disk as being partitioned into cylinders,

with content-addressability provided within each cylinder In our subse-

quent discussions, we shall refer to a partition of the MM as a cylinder or

a minimal access unit (MAU).

2.2 Toward an Intelligent Mass Memorv

We note that data manipulation requests sent to MM can be highly content-
oriented. Also, data manipulation requests identify the data to be manipulated
by means of queries. Since a query is a disjunction of conjunctions, MM
must ensure that a record in an MAU (whose MAU number is supplied by the struc-
ture loop) sati
it as a valid data item. This can be done easily if both the query and the
record are handled in their natural formats.

Since a record in a track is to be compared to a query conjunction 'on
the fly', an arbitrary arrangement of keywords within the record and an
arbitrary arrangement of keyword predicates within the query conjunction can

lead to processing delays of up to several revolutions of the disk. For

example, consider the following record and query conjunction arrangement:

RECORD: (<1,x>,<7,y>,<4,2>)
QUERY CONJUNCTION:(4 > z) A (7 =y) A (1 < x)

Here, 1, 4, and 7 are attribute identifiers and x, y, and z are actual values.
In the above situation, the first attribute identifier read by the processing
element is 1. Since the first attribute identifier in the query conjunction
is 4, the processing element has to wait until the last attribute-value pair
is read before making a comparison. After the comparison has been success-
fully completed, the processing element must compare the value of the second
attribute 7 in the query conjunction with the corresponding value in the
record. However, since the disk device is a uni-directional device, the
processing element must wait for one revolution before attempting to make

the comparison. It is easy to see that it requires three revolutions of the
disk device to process the above record against the given query conjunction.
Thus, back~tracking on a disk device can be expensive in terms of processing
time.

Alternatively, if the query conjunction is stored in a random access
memory accessed by the processing element, then for each attribute identifier
read by the read head, a full search of the query conjunction memory can be
made to determine if the corresponding identifier is present in the conjunction.
The main drawback of this scheme is that, as the query conjunction gets longer
and longer, it becomes more and more difficult to undertake a full search of
the query memory in the time taken to read an attribute identifier (typically

1.5 microseconds).

A solution to this problem lies in a carefully planned layout of the
record and the query conjunction. The attribute-value pairs in a record are
arranged in ascending order of the attribute identifiers. The predicates in
the querv conjunction are similarly arranged in ascending order of their
attribute identifiers. The query conjunction is stored in a sequentially
accessed memory called query memory. The processor reads a stream of keywords
belonging to a query conjunction from the query memory. The two streams are
compared in a bit-serial fashion. Whenever there is a match between the
attribute identifier in the conjunction and the attribute identifier in the
record, the values are compared to determine if the predicate is satisfied.

If the attribute identifier in the record is less than the attribute identifier
in the conjunction, then the processing element skips over the corresponding
value to the next attribute identifier. If the attribute identifier in the
record is greater than the attribute identifier in the conjunction, it is
concluded that the record does not satisfy the conjunction. The above logic

is repeated until all the predicates in the conjunction are satisfied or the

processing element concludes that the record does not satisfy the conjunction.

2.3 The Orgrnization of the MM

The overall organization of MM is shown in Figure 3. The database
resides in volumes mounted on moving-head disk drives. It is desirable to have
a one-to-one corresondence between the volumes and the drives: but this is
not essential if the volumes are transferable. However, with disk technologies
moving towards higher bit densities, mechanical tolerances will not allow
frequent interchange of volumes between disk drives [10]. DBC design is
independent of the above consideration. A volume is composed of 200-400
cylinders. Each cylinder consists of a se¢t of tracks (usuallv in the range
of 20-40); there is one track of a cylinder per disk surface., The access
mechanism consists of a movable set of read/write heads, one per disk surface.
The heads are moved in unison to access all the tracks of a cylinder. Data
transfer to/from a cylinder is achieved by activating all the read/write heads
concurrently. Although previous desings [11,12] have taken advantage of the
fact that the read and write heads on a track could be positioned a short
distance from each other, we do not favor such an arrangement. This is
because, at high track densities (1000 tracks per inch or higher), the required
mechanical tolerances for supporting separate read and write heads may well

deprive the disk technology of much of the cost effectiveness brought about

by the higher densities [13]. 1In our design, therefore, we assume the conventional

10

Track
(TIPS)

Information
Processors

Disk
Drive
Controllers

A

;/Amu/u ™ /.//U/hw //N/N// <= m,wmAf,/,/wwA‘,,ILV/um/

- & //h/// s} //

AN /,//////// 77 /,

g8
O
& &
=
t
¥
t o]
[:V]
9 —
p—— z b —— ——— — — — ——
O W
) oL |
=
} sng 0T
- w — |
1 L/ VA o V4 > 7 T > re - _ b
YP.\PZ X % f \”\.\.\\\ A = V- %\
ZERZERZ YR 7] e | _ >
Z e V R RO RS T z \\& g
..n.n:muuuuuwwwv | =
(]
w
=K g
| v
-~
- =
U
AMHD> M UM OHO _ °
m
J F
[}
N
bl
c
]
o0
o
S

»a

Y /AN /M// N

«DDC

N

Figure 3.

_q/, 7TES 77 4\\ _ﬁﬁ

N

\

Volumes
1l

Database

NN

I N\}"""",
\\::*\\\s\//r ,/;;7
= obC,
i;/D/
/
DDC2

v \\\\\\\\\\\\\\\ i

[\\\\\\\\\\\\\\\\\\\ =

read/write mechanism. The implication of such a design is that MM can
either be read from or written into at a given time. Reading and writing
cannot be performed simultaneously.

Each MAU in the system is uniquely identified by a number known as its
MAU address. A disk volume contains a set of consecutively addressed MAUs.
The set of disk drives is partitioned into 8-16 drives for access and control

purposes. Each such group is controlled by a disk drive controller (DDC).

The DDCs are controlled by the mass memory controller (MMC). Data that are

retrieved from the disk volumes are routed to a set of track information

processors (TIPs) by a drive selector and by a track multiplexor/demultiplexor

(TMD). The drive selector is controlled by the MMC. The TIPs can request

the service of a bus called the IOBUS for transferring database information

to the MMC. The TOBUS is also used by the MMC to send control information and

data to the TIPs. i

MM operates in two basic modes - the normal mode and the compaction mode.

In the normal mode, orders sent by DBCCP are decoded by the MMC and are queued

according to the MAUs referenced by the orders. For each MAU for which a

queue of orders exist, MMC requests the appropriate DDC (if free) to position

the read/write heads to the cylinder corresponding to the MAU. When the MAU

is found, the MMC sends the orders one at a time to the TIPs. While the TIPs

are busy executing the orders, MMC can request the DDCs to position the read/

write mechanisms to the MAU(s) residing on other volumes for which there are

non-empty queues. Thus, the access time with respect to the MAU of one volume

is at least partly overlapped by useful work performed by the TIPs on the MAU]
of another volume. The information retrieved by the TIPs from the database
is sent to the SFP for further processing.

Records which are identified by a delete order under the normal mode are
tagged by the TIPs for later removal during the compaction mode. When DBCCP
orders MM to reclaim the space occupied by the records with deletion tags, MM |
enters the compaction mode. During the compaction mode, MAUs in which tagged
records exist are accessed, and data in each of the tracks is read into MMC by

the TIPs. MMC then writes back those records which are not tagged.

2.3.1 The Mass Memory Controller (MMC)
The mass memory controller is organized into two subcomponents: the 1

interface processor (IP) and the mass memory monitor (MMM). The IP is re- 1

sponsible for interfacing with DBCCP, for maintaining the database object

12

descriptor table (DODT), and for maintaining MM orders in the mass memory order

queues (MMOQ), and switching from normal to compaction mode. The mass memory
monitor is responsible for scheduling orders to be executed with the help of
the order queues (MMOQ), for issuing orders to the DDCs to position read/
write heads, for initiating TIPs to execute the orders on the contents of a

MAU and for keeping track of space availability in the MAUs.

2.3.1.1 Interface Processor (IP)

A. The Database Object Descriptor Table (DODT)
This table contains the database objects which are used as arguments of orders
issued by DBCCP. Each object is identified by a unique identification tag
assigned to it by DBCCP. A database object in this table could either be a

query conjunction, a record or a pointer. The keywords in a query or a

record are assumed to be sorted in ascending order of their attribute identifiers.
This sorting is done before the query or record is sent to DBC. Since database
objects are placed in the table only to be accessed later vhen the MM order is
scheduled to be executed, there must be a rapid mechanism to locate and retrieve
database objects from the table. The table is, therefore, organized in two

parts - an associative memorv (AM) and a random access memory (RAM). An

entry in the AM has two fields - an object identification tag and a pointer to
a location in the RAM. The RAM holds the database objects pointed to by the
AM. The AM can be searched on the basis of database object identifiers; the
response is the pointer to the RAM location where the corresponding database

object is stored. 1In Figure 4, the organization of the table is shown.

B. Order Queues (0Q)
Order queues, as the name implies, are used *to keep track of MM orders (sent bv
DBCCP) which are awaiting execution. There is one queue for everv MAU for
which one or more orders are awaiting execution. We shall often refer to all
the orders awaiting execution on a particular MAU as a set of orders on that
MAU. Two data structures are proposed in Ficure 5 to manage order queues.

The queue headers table (QHT) is used to carry information about the queues.

More specifically, each entry in the OQHT has three fields: the first field
has status information about the availabilitv of a MAU for processing. The
second field contains the MAU address and the third field points to the first
order to be executed on the MAU. The second data structure is called the
order table (OT), which contains the orders themselves. The format of an

order when it is received by MM is shown in Figure 6 and its format when it

is stored in the order table is shown in Figure 7.

13

Avail List Header

; Forward Link
" "Backward Link :

YkDatabase Object Identifier

Pointer to RAM
——

! -+

Associative
Memory (AM)

q

N

|
Random Access
Memory (RAM)
Contains Variable
Size Data Base Objects

Figure 4. Organization of the Database Object Descriptor
Table (DODT)

e R) . Ly el Gt Lot T RN o e

Queue Headers Table (QHT)

MAU Pointer into
Address Order Table
1 Byte 2 Bytes 2 Bytes

-, — - - . Sy

Order Table (OT)

6 Bytes per Order

e

.

.
-
~

= 0 Entry not in use
= 1 Entry i{s in use

= 0 This queue not processed yet
1 This queue is being processed

-
[}

/ — = 0 MAU not accessed yet
= 1 MAU accessed & ready for processing

MAU access order not issued yet
MAU access order issued

[}
- O

Figure 5. Order Queues

" # of orders awaiting execution for this MAU

14

————

MAU Database Order order # Database
Address Object # | Code rder Object
Variable Length
Figure 6. Format of a MM Order Sent by DBCCP

—Fixed Length—s

Database Order Order # Pointer to
Object # Code rder Next Order
Figure 7. Format of a MM Order Stored in the Order

Table (OT)

15

T

C. The IP Logic
IP executes Algorithm 1 (see Appendix 1) on receipt of an order from DBCCP.
The algorithm explains, in detail, how the IP places orders into the various

order queues.

2.3.1.2 The Mass Memory Monitor (MMM)

A. Mass Memory Deletion Table (MMDT)
The MMM maintains a deletion table to keep track of the MAUs in which there are
records tagged for deletion. This table is created during the normal mode of
operation and is used during the compaction mode to access the MAUs in which
compaction must be performed. There is one entry in the MMDT for each such
MAU. The first entry in the MMDT records the number of entries n that are

currently in use. This is followed by the addresses of n MAUs.

B. The MMM Logic
The mass memory monitor controls the DDCs via the control bus (CBUS) (see
Figure 3). The CBUS has an appropriate number of address lines by which
each of the DDCs can be addressed to the exclusion of the others. The CBUS
also carries status and control lines by which the MMM can control the DDCs
and communicate with them. The MMM also controls the track information pro-
cessors via the IOBUS. The IOBUS is operated in a master-slave mode with MMM
assuming the master role and the TIPs assuming the slave roles. The TOBUS
consists of bi-directional data lines over which data transfers between the
TIPs and the MMM can take place, and status, address and control lines which

enable the MMM to interrogate and activate the TIPs.

MMM executes two algorithms in the course of carrying out its functions
outlined earlier. 1In these algorithms, all dialogues with the DDCs are carried
over the CBUS and all dialogues with the TIPs are carried out over the TOBUS
(see Appendix 1). Algorithm A continuously monitors the OHT with a view to
keeping the TIPs and the disk drives busy. Algorithm B is responsible for the
detailed dialogues with the TIPs after Algorithm A has found a MAU that has
been accessed and is ready to be processed. Among other things, Algorithm B
answers interrupts from the TIPs when they have output to be sent out of MM or
when they have finished execution of an order. Once activated by Algorithm A,

Algorithm B executes concurrently with Algorithm A, until the pending orders

for the MAU have been executed by the TIPs.

TR

17

2.3.1.3 The Hardware Organization of the MMC

The organization of the MMC is shown in Figure 8. The internal data bus

(IDB) is the main data path inside the MMC. It connects all the table

memories with the mass memory order argument buffer (MMOAB) and the mass

memory data buffer (MMDB). The argument buffer is used to receive argument

data of a MM order from the communication bus before they are transferred

into the DODT. The data buffer is used primarily as a buffer between the
IOBUS on which the TIPs place the retrieved data and the post processor bus
PPBUS which transmits data to the SFP. The data buffer is also used during
compaction as a stager between the IOBUS and the internal data bus. The
interface processor (IP) logic is microcoded in ROM-1 and is executed by the
microsequencer MC-1. It 1 ponds to request signals from the DBCCP and controls
the transfer of data from and to the argument buffer. The MMM is implemented
with two microsequencers and two control ROMs. Microsequencer MC-2 is respon-
sible for executing Algorithm B of Appendix 1. It is responsible for control-
ling the activities of the TIPs, controlling the data transfers on the

IOBUS, and data transfers to and from the MMDB. MC-2 also receives interrupt
signals from the TIPs. The microsequencer MC-3 is responsible primarily for
scanning the order queues, initiating MC-2 and controlling the DDCs. Finally,
the bus arbiter is responsible for processing requests for control of and

access to the IDB and resolving contentions for the control of the IDB.

2.4 The Flow of Information in the MM

In this section, we describe how information is routed from/to the disk
volumes to/from the TIPs which process the information contained in the disk
volumes.

As mentioned earlier, there is a single set of TIPs in MM. The number of
TIPs in the set is equal to the number of tracks in a cylinder of a disk volume.
At any given instant of time, the TIPs could be processing information from
exactly one cylinder.

A set of disk drives is controlled by a disk drive controller (DDC).

The DDC can initiate data transfer operations on any one of the drives controlled
by it. DDC provides for a set of assembly/disassembly registers. There is

also a set of input/output registers which are multipléxed by DDC before sending
their contents to the drive selector. There is one pair of assembly/dis-

assembly and input/output registers for each track of a cylinder (see Figure

9). The width of these registers is known as the data unit. These registers

A ke e

Y

UUIISIE SRS . -

18

A7 To Disk Drive
/7 Controllers

[A AU R NMAARRAR R AL A RALA AL AR AR RSN

. g

o e adiia A

Argument
\ Buffer
\ (RAM) i
\ i |
\ 1
- i
From 1 MC-1 ; -
DBCCP T @ [
ROM 1 Order \ o i ;
Queue \ = 3
Table (RAM) \ !
Interface Processor :

AM ~ - .

Database Object
Descriptor Table

y =
RAM g
J
~ &
L =
Bus [
| _Arbiter | g
L]
fx
From/To for—r—r—o—— T > e e e <
SFP % AN SEP Bus — i ? &
) Dpata Path
——® Request Lines
— = =— % (Control Lines ‘
Figure 8. Organization of the Mass Memory Controller l

Disk Drive Coniroller Disk Drive

Combined Read/
Write Heads

1/0 Assembly
Registers Registers

AR,

32 Bits o) AR

AR3

Drive
Selector

32 Bit Lines

TIP,

From/ \'? ! y ng
To % L I 3
Disk == g :
Drive T
Controllers 0

AR

{ Figure 9. A Scheme to Route Information between Track Information
Processors and the Tracks

serve the following purpose: during a read operation, data bits from the

tracks are assembled into data units in the assembly registers: at the same time,
the previous data units are held in the input/output registers are multi-

plexed (by the track multiplexor/demultiplexor TMD2) into a serial stream of

data units and sent to the drive selector. During a write operation, the

reverse operations take place. That is, the sequential stream of bits received
from the drive selector are demultiplexed (by TMD1) and placed in the input/
output registers of Lhe DDC. At the same time, previous data units held in the

f assembly/disassembly registers are written onto the corresponding tracks.

During a read operation data units received by the drive selector from

i the appropriate DDC are allowed to pass through to t..e track multiplexor/de-
multiplexor (TMD2). The TMD (TMD2) then directs the data units to the appropriate

TIP. During 2 -rite operation, the data units from the TIPs are collected

by TMD2 and sent to the drive selector in a sequential stream. The drive
selector then routes the data units to the DDC selected by MMC. Thus, we note,
that not only is it possible to read out of all the tracks of a cvlinder in
parallel, it is also possible to write into them in parallel. We shall call

this capability the parallel-write-in capability.

2.5 The Track Information Processors

A track information processor (TIP)} is responsible for manipulating the
contents of a track belonging to a MAU. The number of TIPs is equal to the
number of tracks in a MAU and is usually in the range 20-40. The TIPs are
capable of searching the tracks (of an MAU) for records satisfving a user

query conjunction in one revolution of the rotating device.

2.5.1 The Three Componentsof a TIP

Each TIP has three sub-components - the disk drive interface processor

(DIP), the controller interface processor (CIP), and the buffers for the auery,

retrieved information (records), track header information and communications.
The DIP is responsible for receiving/transmitting data as demanded by TMD2 and
carrying out the orders sent to it. The CIP is responsible primarily for !
communicating with the mass memory controller over the IOBUS. Such communi-
cation involves acceptance of orders and database objects from the mass memory
controller and transfer of data retrieved by the DI to the post processor I
via the TOBUS.

The communicatien buffer and the buffer for the track header information l

are small random access memories. The query memory is a sequential access

memories. The query memory is a sequential access memory with a capacity

to store the largest single query conjunction that may be encountered by MM
(about 1 Kbytes). The record buffer is also a sequential access memorv.
This memory is divided in to n number of individually accessible segments. FEach
segment mav be rcad out ol or written into in a sequential manner. The moti-
vatio: for dividing the record buffer into segments is as follows: Whilc the
DIP is extracting information trom the track and placing it in one of the
segments, the CIP can be transmitting previously extracted information present
in one of the other scgments to MMC over the IOBUS.

The readout rate of the query memory and the transfer rate of the record
buffer should be high enough to keep up with the data transfer rate of the
disk device. The organization of a TIP is shown in Figure 10. The format
of the communication area between the CIP and the DIP is shown in Figure 11.
The format of a track as perceived by a TIP is shown in Figure 12. Each of the ’
TIPs utilizes a bit map to remember the positions of the records which were
found to satisfy a search criterion during the execution of a delete order. ;
Each record on the track is represented by a unique bit in the bit map. When
a record is to be deleted, the corresponding bit is turned on. This bit map ;
is stored at the beginning of a track. Before processing of a cylinder is to]
begin, the bit map in each of the tracks is read by the corresponding TIP.
In processing a retrieve or update order, this bit map is consulted to ensure
that no tagged records are retrieved. After the last order for an MAU has

been executed (i.e., after the execution of a set of orders), the bit map is

et

written back on the track. During the compaction mode of operation, this bit

map is used to distinguish between tagged and untagged records. Each track

O Ny T

is divided into a fixed number of sectors for the purpose of allocation. The

T
PR

first two sectors are used by the TIPs to store the bit map and other house-~

RaTA

keeping information.

The disk drive interface processor (DIP) is a bit-slice processor capable

of carrving out fast comparisons of attribute identifiers occurring in records

e T

stored on a track with those occurring in the query conjunction in a user ﬁ
request. It is also capable of comparing keyword values in the records with :
values associated with keyword predicates in the query conjunction of a user 3
request. This enables the drive interface processor to carry out range i

searches., The control unit of the DIP is microprogrammed to interpret the

orders sent to it by the MMC. ©

T P . W orp

R T R Ll ot

e i e h . e ey ’ T

-
-
22
Controller Disk Drive
Interface Interface
Processor (CIP) Processor (DIP)
Programmable - Programmable
Control Control
| I ,
' i M * T |
To/From I0BUS " NTNE n
—— HE : l
4) | [i! 16 X 16 Bit ' /-———)
N b1 , 3 Registers U
_Assembly %!! |4} (m Bit Data &
Disassembly R n Bit Control)
Registers R C To/From TMD
I 1
Lﬂ ALU
| I

U

6 Byte Communication

Area and 256 Byte Track
Header (RAM) \\\

i
B Query Buffer (about 1 Kbytes)
(Sequential Access)

Record Buffer(s)
(Sequential Access)

Figure 10. Organization of a Track Information Processor

23

01234567

of Bytes

Reserved MAU Address Transferred

\:Order Code
Successful Completion

Read Write Errors
Buffer Overflow
MAU Mismatch

Figure 11. Format of the Communication Area between the CIP and
the DIP

R o .

24

Ve Index Gap ~ Denotes beginning of track

Deletion
- Bit Map
/ 1>~-_.A_"’" ~
. 7 r .
Sector 1 ' Sector 2 . Sector 3 : : ' ' ' Sector n
e e o
Track Header
Track Format
1 1 r of sec # 0 R d ID‘Y
MAU | Track '# of |# of sec| # of ltogs '1 ecord D,
ADDR ' ADDR ' clusterslurity atom records‘available availabll ounte i rv
0 15 16 23 24 39 40 55 56 71 72 79 80 95 96 111 112
Format of the First Sector on Track
-~ Inter-Record Gap
1/‘/
e —y— : -
Record | Cluster Atom i No. of - Keywords Record
ID ID ! Name keywords . Body
NV I le 0 3132 47 48 . _ . _55

Record Header

Figure 12. Format of a Track as Perceived by a TIp

25

The controller interface processor (CIP) can be a commerciallv available

microprocessor capable of transferring information from the record buffer to

the MMC via the IOBUS.

3. INSERION OF RECORDS IN DBC

This section will be devoted to an explanation of the process of insertion
of records into the mass memory (MM) of DBC. Also, certain architectural
elements are proposed to respond more quickly to insertion requests. However,
the proposed elements are simple and do not require anv major technological
breakthrough. The advantages that will accrue as a result of the nroposal are
analvzed the last sub-section. These elements will become increasinglv
attractive in an update-intensive environment - an environment in which a verv
large proportion of the requests to DBC will consist of inserts, deletes, and

updates.

3.1 Motivation for the Proposed Elements

A simulation study [15] of DBC was conducted in order to determine the
potential bottlenecks to its smooth performance. It was discovered that the
data loop may not be able to match the throughput of the structure loop. The
study showed that the data loop should have a throughput of about 35 orders
per second in order to be compatible with the throughput of the structure loop.
However, it was discovered that the MM design allowed only for a throughput
of 20 orders per second. One of the suggestions made as a result of that studv
[15]) was that the data loop be speeded up. Later on, in this section, we shall

propose a means for improving the throughput of the data loop.

3.2 Insert-in-Parallel

Earlier, in Section 2, we had made the observation that our design of
MM allowed for a parallel transfer of data from the track information processors
(TIPs) to the tracks of the moving-head disks (besides allowing for the parallel
transfer in the opposite direction from the tracks to the TIPs which we have
termed tracks-in-parallel-readout). We propose to make use of this parallel-
write-in tacility to improve the processing speed of the data loop.

Let us recapitulate the process involved in inserting a record into the

MM of DBC. First, the database command and control processor (DBCCP) determines

the security atom and cluster that the record belongs to [7]. Next, it determines

the cylinder number (MAU) into which the record should be inserted. Firally,
the structure memory (SM) is accessed and one entry is made in it per directorv
keyword in the record. That is, for each directory keyword in the record, an
index entry indicating the securitv atom of the record and the cylinder in which

it is to be inserted is created in SM. The record is now presented to the data

-

N
|

-

e s N A AN A kA 15412 At oyttt £ [T T T e eSS eiba A R e
———— 4 e ’

27

loop which then proceeds to insert it into the MAU selected by DBCCP.

The mass memory monitor (MMM) determines the track withim the cylinder
into which the record is to be inserted by querving all the TIPs. We recall,
from Figure 12, that this information is available in the first sector of
each track. The record to be inserted is then sent form the MMM, via the IOBUS,
to be placed in the TIP buffer corresponding to the selected track (remember
that there is a one-to-one correspondence between tracks in a cylinder and the
TIPs). The MMM now issues the'insert-record' request to the selected TIP,
again using the IOBUS. The TIP does the insertion in one revolution of the
disk device. We note that during the course of this revolution, onlv one out
of all the TIPs (20-~40) is doing useful work. This is a utilization ratio of
between 1/20 and 1/40. 1In the following paragraphs, we ocutline a method for
improving the utilization of the TIPs.

There are two possible schemes to take advantage of the inherent parallelism
present in the MM architecture. These schemes are merely two different wavs
of implementing the same logical idea. We shall call them Scheme 1 and Scheme
2, respectively.

The basic idea is to insert many records in parallel, all in the same
revolution. How many records can be inserted in parallel in one disk revolu-
tion? Theoretically, as many records as can fit into one cylinder may be
inserted in one revolution of the disk device.

We now describe the first of the two schemes. The operation proceeds as
follows. First, as each record is presented for insertion to DBC, the cylinder
and the track within the cylinder into which it must be inserted is determined

by DBCCP. All records that are to be inserted into the same cylinder are
grouped toge;her and only one 'insert-records' request is issued for this
entire group of records. Vhen the mass memory monitor (MMM) comes around to
executing this order, each record is first placed in the huffer of the TIP
correspending to the track in which the record is to be inserted. This
communication between the MMM and the TIPs is conducted via the IOBUS. The
'{nsert-records' request is then broadcast to all the TIPs using the IOBUS.
AS many records per track may be inserted in a disk revolution as the size of
the TIP buffer will allow. If the TIP buffer is as big as the size of a

track, then an entire cylinder's worth of records may be inserted per disk

revolution.

28

The problem with the above method is that just before the TIPs begin to

execute the 'insert-records' request, the IOBUS will be congested by traffic

owing to the large number of records that must be sent to the TIPs for insertion.

This may cause a delay of one or more disk revolutions in addition to the disk
revolution needed to insert all the records. A way to avoid this delay is to
have direct connections from the MMM to each of the TIPs and to do away with
the IOBUS. Figure 13 illustrates the situation. An alternative scheme that
does not need these costly additional communication lines and yet avoids most
of the delay of Scheme 1 is proposed below.

Once again, DBCCP first determines, for each record to be inserted, the
cylinder and the track into which the record is to be inserted. However, no
grouping of records that are to be inserted into the same cylinder is done.
Instead, the DBCCP sends out these records for insertion, one at a time.

Each 'insert-record' order, as received by the MMM, has two arguments -~ the
record to be inserted and the cylinder and track in which it must be inserted.
When the MMM has to insert a record, it places the record in the buffer of the
TIP corresponding to the track chosen for inserting the record. This may be
done by the MMM when the TIPs are doing other useful work. For example, after
the MMM issues a 'delete-by-query' request, it waits for the TIPs to delete
those records that satisfy the given query. At the end of the deletion process,
the TIPs will interrupt the MMM. During the time that the TIPs are busy
performing the deletion (that is, for one revolution of the disk device),
microsequencer MC-2 of the MMM (see Section 2) is idle. This idle time of the
MMM may be fruitfully employed in order to place records for insertion into
TIP buffers. Similarly, the MMM is idle after it issues an update request
until the time it is interrupted by the TIPs (to indicate that the TIPs have
furnished processing the update request). However, the time between the
issuance of a 'retrieve-by-query' request to the TIPs by the MMM and the
receipt of an interrupt by the MMM from the TIPs (indicating that the TIPs
have completed processing the request) mav not be utilized to place records

in the TIP buffers because the retrieved records are being sent to the MMM

via the IOBUS.

After the record to be inserted has been placed in the appropriate TIP
buffer, the MMM continues the processing of other requests. The above logic
is repeated for every 'insert-record' request. That is, the MMM places the

record in the next available space in the TIP buffer corresponding to the track

chosen for insertion. After all the requests on a particular MAU have been

ORI P VT

29

Database
Volumes Track
. ‘ Processors
(l:);sl’(Dlliwe (TIPs)
ontrollers
\
DDC.}.‘ |
w\ 1 W
' ‘ (I
i
i N O\ o
\ R PP
|
5 v |
L] L] m‘ E. L] From
S s-d TMD MMC === oo
o=l
St E . : oi
o L irect
| 13 I Communication
. . | c . ! Lines to
V/;/)#g : TiPs
/i |
1 R .
o W/
T, =
¥)
N—7 U M)
TR oo]
|
' TIR ‘
VED G |
{
L S

Figure 13, A New Bus Structure for the Mass Memory

e iy

et e ey 5

30
completed (i.e., after the execution of a set of orders), one additional
revolution is used to insert the records present in the TIP buffers. We may
recall, from Section 2, that one additional revolution is required at the
end of each set of orders (i.e., after all the orders on a MAU have been
completed and before a set of orders on another MAU is chosen for execution)
in order to rewrite the bit map onto the beginning of each track in the cvlinder.
This same revolution of the disk device may be utilized to insert all the
records present in the TIP buffers. Thus, all the insert record requests

present in one set of orders can be executed without incurring a single extra

disk revolution. For example, if the average set of orders has ten insert

commands, then the proposed scheme will result in a saving of ten revolutions
of the disk device per set of orders. This will considerably improve the

performance and throughput of the data loop.

3.3 Comparison of the Two Methods

Scheme 2 has a disadvantage which is not present in Scheme 1 because it
demands that each TIP have two buffers. This is because the TIP buffers need
to be used during the execution of retrieve and update queries in order to
store records to be retrieved and sent to the security filter processor (SFP)
or to store records to be updated. Hence, an additional buffer will need to
be used to store the records for insertion since, in Scheme 2, many retrieve
and update requests may be executed in the time between the placement of a
record for insertion into a TIP buffer and the actual insertion of that record
onto the track. The size of the second buffer will depend upon such factors

as the number of '

insert-record' requests that are expected per set of orders,
the distribution of these requests among the tracks and the size of the records.
However, this buffer need be no larger than the size of a track. We may
recall that the TIP record buffer consists of a number of individuallv
accessible segments. A number of these segments mav be set aside for use as
the second buffer. For example, if the buffer consists of M segments,
Segments 1 through m mav be used as the second buffer to hold records for
insvertion., Segments m+1 through M will then be used bv the TIPs only
tor retrieval and update purposes. We have already mentioned the considerations
to be made hefore arriving at a decision for the value of m.

The two methods differ onlv in the wav in which the records are placed
in the TIP buffers. Scheme | waits until both the MMM and the TIPs are idle
a

hefore placing the records in the buffers. Scheme I can utilize moments when

the TIPs are busv and the MMM is idle. Since the transfer of records from the

MMM to the TIP buffers does not require the participation of the TIPs, this

T ool - ' - AN L) ORI

31

latter scheme is entirely feasible. However, at this point, we would like to
add a note of caution. Consider what happens when a file is being loaded into
the MM of DBC. It is possible that a large number of 'insert-record' requests
occur in a sequence, one after the other. Scheme 2 takes advantage of the
presence of requests other than 'insert-record' requests in order to overlap
useful TIP processing time on these other requests with MMM processing time on
'insert-record' requests. However, if a large number of ‘insert-record’
requests occur in sequence, this overlap may not be attainable to the extent
desired. In the worst case, when all the requests in a particular set of
orders are 'insert-record' requests, Scheme 2 will take as long as Scheme 1 to

execute.

3.4 Algorithm Executed by MMM

The algorithm that will be executed by the MMM in order to process a set
of orders on a MAU on which a seek has already taken place is described below.
It is a modification of Algorithm B of Appendix 1. The algorithm is the one

that will be employed if Scheme 2 is implemented.

ALGORITHM B MODIFIED: To initiate the execution of orders by the TIPs and to
accept data retrieved by the TIPs.

Input Arguments: 1., The number of N of orders pending execution.
2. The address of the first order in the order table (OT).

Step 1: [Initialize] p=1. FLAG=0.
Step 2: Pick up the pth. order from the OT. If the order code indicates
an insert-record order, go to Step 6. If the order code indicates
a delete~record order, then go to Step 5. If the order code indicates
an update order, then go to Step 7. If the order code indicates a
compaction order, then go to Step 15. 1
Step 3: [Retrieve] Broadcast the order to all the TIPs and go to Step 1l4.
Step 4: [Herewe try to utilize MMM idle time to place records for insertion
into TIP buffers] TIf FLAG=@, then continue execution of Algorithm
C (which places records for insertion into TIP buffers) until TIP
interrupt occurs. If FLAG=1, then wait until TIP interrupt occurs.
When the interrupt occurs, go to Step 8.

Step 5: [Delete] Broadcast the order to all the TIPs., Turn on DELETE flag. 3
Go to Step 4. k
Step 6: {Insert] Check the mark bit to see if the order has been taken care of

by Algorithm C. TIf so, then go to Step 13. Else, place the record
to be inserted into the buffer of the TIP corresponding to the
track chosen for insertion. Go to Step 13.

Step 7: [Update] Broadcast the order to all the TIPs. Turn on the
UPDATE flag. Go to Step 4.

INTERRUPT ENTRY
Step 8: If the UPDATE flag is on, go to Step 9. 1If the DELETE flag is on,
then go to Step 11. 1

32

Step 9: [This part of the algorithm will be described in Section 5.] 1

Step 11: [Check if there was any deletion.] Turn off the DFLETION flag. If
the TIPs indicate that some records were tagged for deletion, then
go to Step 12, else go to Step 13.

Step 12: Store the MAU address in the mass memory deletion table (MMDT).

Step 13: Delete the order from the OT. p=p+l. If p>N, then request the
TIPs to write back all deletion tags and to insert all the records
in their buffers into the tracks, set IDLE flag on and halt; else
go to Step 2.

Step 1l4: [Receive retrieved records] If the TIPs have records to be output,
then receive them and send them to the SFP. Go to Step 13.

Step 15: [Compaction] The algorithm for compaction will be discussed in the
next section.

i i ol

ALGORITHM C: This algorithm is executed by the MMM whenever it is waiting
for a TIP interrupt. The interrupt causes the abandonment of the execution of
this algorithm. The point of interrupt is remembered, and the algorithm is
resumed at a later time by the MMM when it is idle waiting for a TIP interrupt.

Step 1: q=q+l. If g>N, then set FLAG=1 and terminate.

Step 2: Look at the qth order in the OT. If it is an 'insert-record' order,
then set the mark bit corresponding to this order and go to Step 3.
Else, go to Step 1.

Step 3: Place the record to be inserted into the buffer of the TIP corres-
ponding to the track chosen for insertion. Go to Step 1.

3.5 Determining the Track for Placement of a Record

In this sub-section, we shall demonstrate that it is indeed possible tor
DBCCP to determine, for each record submitted for placement, the cylinder ard
the track within that cylinder in which the record must be stored. Howewver,
before we explain the method adopted in DBC to determine the cylinder and racw
for insertion of a record, the concept of clustering must be well understood.
Accordingly, the first sub-section below describes the concepts behind the
strategies emploved in DBC to place data elements that have a high probability
of being retrieved and updated together, in close proximitv of one another.
Certain data structures used by the algorithm are then presented, followed by
the algorithm itself.

We would like to mention, in passing, that the determination of the track
for insertion may be done by the TIPs since information regarding space
availability is part of the track header information in each track (Figure 12).
However, we must keep in mind the results of the simulation studv [15].

That is, the throughput of the data loop is lesser than that of the structure
foop. Thus, whenever a piece of work can be performed either in the data loop
or the structure loop, we shall choose to do it in the structure loop in order

to close up the difference in throughput rates of the two loops,

:
|
I
|

33
3.5.1 Clustering Descriptors and Logical Clusters

A file is associated with a single primary clustering attribute and any

number of secondary clustering attributes. The latter attributes are specified

in an order of importance. The importance of a secondary clustering attribute
is defined to be its relative position in the above list. Thus, we can talk
of one secondary clustering attribute as being more important than another
secondary clustering attribute for clustering purposes.

At the time of file creation, the file creator also specifies a set of

clustering descriptors. These descriptors may be of one of three types:

Type A: The descriptor is a conjunction of a less-than-or-equal-to
predicate and a greater-than-or-equal-to-predicate, such that the
same attribute appears in both predicates. An example of a type-A

descriptor is as follows:
((Salary>2p@@) A (Salary<1Pp@p)).
More simply, this is written as follows:
(200¥@<Salary<1¢pe@) .

Thus, the file creator merely specifies an attribute (i.e., Salary)
and a range of values (2009 - 10@80M) for that attribute.
Type B: The descriptor is an equality predicate. An example of a type-B

descriptor is:
(Position=PROFESSOR).

Type C: The descriptor consists of only an attribute name. Let us assume
that there are n different keywords K1, K2, ..., Kn, in the records
of this file, with this attribute. Then, this type-C descriptor is
really equivalent to n type-B descriptors Bl, B2, ..., Bn, where
Bi is the equality predicate satisfied by Ki. In fact, this type-C
Jescriptor will cause n different type-B descriptors to be formed.
These o pe~B descriptors formed from a type-C descriptor are known
as tvpe-C sub-descriptors.

The attribute that appears in a clustering descriptor must be either the

primary clustering attribute or one of the secondary clustering attributes. A

clustering descriptor is a primary (secondary) clustering descriptor if

the corresponding attribute is a primary (secondary) clustering attribute.

34

A primary (secondary) clustering keyword is a keyword of a record such

that one of the following holds:

(a) The attribute of the keyword is specified in a type-A primary

(secondary) clustering descriptor and the value is within the range of that
descriptor.

(b) The attribute and value of the keyword match those specified in a

e a e A s A s b s

type-B primary (secondary) clustering descriptor.

(c) The attribute of the keyword is specified in a type-C primary

(secondary) clustering descriptor. .
In all these cases, the primary (secondary) clustering keyword is said to

be derived or derivable from the corresponding primary (secondary) clustering

descriptor. Each primary clustering descriptor is associated with a maximum
space requirement (in terms of number of cylinders) which indicates the estimated

amount of storage required in the mass memory for all records having keywords

SR VP VREPURRUNF PV PV

derived from this descriptor. The importance of a secondary clustering

kevword is defined to be the same as the importance of the corresponding
secondary clustering attribute of the kevword.

Each (primary clustering descriptor, secondary clustering descriptor)
pair defines a cluster of records. Each record in this cluster must satisfy Lol

two conditions.

(1) The primary clustering keyword of the record should be derivable

from the primary clustering descriptor of the cluster.

DU T R

(2) The most important secondarv clustering keyword of the record should
be derivable from