
AD-A093 788 MCDONNELL DOUGLAS ASTRONAUTICS CO HUNTINGTON BEACH CA F/8 9/2
METRICS OF SOFTWARE BUALIT¥.(U)
NOV 80 Z JELIKI, P MORANDA- J CHURCHWELL F4%20-77-C-0099

UNCLASSIFIED MDC-G9326 AFfl-To- nl t'U IEIIEIIIEII
mulllluuulllll
-Ehllllllllll
mIIIIIIIIIIII
-mllllllllllEI
-EEEEEEEIIEI

00

t4D

>4 MUCOONLL DOUGOLAS ASYMNAUVOCS COM.PRAV

.- ONWWL a C-

j 0

METRICS OF SOFTWARE QUALITY
FINAL TECHNICAL REPORT

MCDONNAELQ .

CORPOAVION

NOVEMBER 1980 MDC G9326

1C

AIR FORCE OFFICE OF SCIE,"TIFIC RESEARCH (AFSC)
NOTICE OF TAI,SMITTAL T0 DDC
This tecb:,ielu r(port has ben reviewed and is
approved for public release IAW AFR 190-12 (7b).
oistribution is unlimited.
A. D. BLOSX
rechnioal Information Off lo-er

MCDONNELL DOUGLAS ASTWONAU-TaCS COMPANY-HUNTINGTON WEACH

5301 Bolsa Avenue Huntington Beach, California 92647 (714) 896-3311

SECURITY C JN4.CATION OF THIS PAGE (0%-ef 0848 Entered)__________________

- ____ a.D INASIFCTRUCION

IS DSTIBTO T DOUMNATO PAGE BEFOR COMLEIN FRoMt

12. SUPLEENAR ACESITEO.IS

This~~~~~~~~~~~u report3, coer thteidfo ue17 o3 coe 90
A40 mao tas on thscnrc a omk-opeesv review6of r

METIC OF SOFTAREDTO QUITY REOVR NUMBERLTEL~ ~ JZ-d

w ~ SECUR I CLSSFIATO OF THI P GE(We9 et 26e

TW

_ ,?(" y/5/y72 6
SECURITY CLASSIFICATION OF THIS PAOS E(Wl Doa ENtood)

program testing.) The original review is contained in the first Interim
Report (MDC G75T7, dated July 1978); this review has been slightly revised
a, u Edd-in this report.

-Another accomplishment was the development of an automatic procedure for
testing FORTRAN Programs with random numbers and random symbols. This
procedure first drives the program with sets of random data, then senses
the tracks taken, compares each generated track against all predecessors,
then on the basis of the pattern of occurrence of new tracks, provides an
estimate of the total number of residual paths. Additional sets of random
numbers can be then generated.

The program developed to instrument a given FORTRAN program and provide
data for evaluating coverage is described in the Final Report of earlier
work (MDC G6553, dated December 1976). Changes which have been made are
described herein.

In the related topics of Software Reliability, two methods of estimating
the residual error content of an entire program on the basis of data
obtained in the testing of portions of it have been developed and are
detailed here.

SECURITY CLASSIFICATION OF THIS PAGE(When Dots Entered)

iv

PREFACE

This report documents the results obtained during an Air Force

Office of Scientific Research Contract entitled

"Metrics of Software Quality." This work conducted during the

period 1 June 1977 to 31 October 1980, was performed by personnel

of the Computer Science Branch of the Data Control and Processing

Subsystems Department of Av4onics Control and Information Systems

Subdivision, McDonnell Douglas Astronautics Company-West, in

Huntington Beach, California. The Principal Investigator and study

director was Zygmund Jelinski. Substantial contributors to the study

were P. B. Moranda and J. B. Churchwell. This work was monitored by

Lt. Col. George W. McKemie whose assistance is gratefully acknowledged.

-lowr

I & _

I
/

ABSTRACT

A major task on this contract was to make a comprehensive review

of the literature on software metrics and of quantitative measures of

program testing. The original review is contained in the first

Interim Report (MDC G7517, dated July 1978); this review has been

slightly revised-iid updated in this report.

Another accomplishment was the development of an automatic pro-

cedure for testing FORTRAN programs with random numbers and random

symbols. This procedure first drives the program with sets of random

data, then senses the tracks taken, compares each generated track

against all predecessors, then on the basis of the pattern of occur-

rence of new tracks, provides an estimate of the total number of

residual paths. Additional sets of random numbers can be then

generated.

The program developed to instrument a given FORTRAN program and

provide data for evaluating coverage is described in the Final Report

of earlier work (MDC G6533, dated December 1976). Changes which have

been made are described herein.

In the related topics of Software Reliability, two methods of

estimating the residual error content of an entire program on the

basis of data obtained in the testing of portions of it have been

developed and are detailed here.

ACflCft4ELL DOUNOLS VI

CONTENTS

Section 1 INTRODUCTION AND OVERVIEW 1

1.1 Introduction 1
1.2 Objectives and Tasks Descriptions 1
1.3 Course of the Research Program 2
1.4 Publications and Presentations 5

Section 2 LITERATURE REVIEW AND CRITIQUES OF
SOFTWARE METRICS 7

2.1 Reviews 7
2.2 Critiques of Software Metrics 13

Section 3 COVERAGE BY RANDOM AND CONSTRUCTED CASES 33

3.1 Introduction and Background 33
3.2 Applications 56
3.3 Additional Problems in Coverage

Testing 80

Section 4 ERROR-DETECTION MODELS 87

4.1 Summary 87
4.2 Introduction 87
4.3 Conclusions 95
4.4 Glossary 95

REFERENCES 97

Appendix A AUGMENTED ORLA PROGRAM A-1

Appendix B APTS OUTPUT B-1

Appendix C OUTPUT FROM A CONSTRUCTED CASE AND

CONSTRUCTED CASES LISTING C-1

ix

06moomEpiLL DO2iLOL~JJ

FIGURES

1 Test Scores Program and Flow Diagram 36

2 Coding for Example Program 42

3 Combined Flow Chart and Code of Example Program 43

4 Augmented Code for Example Program 44

5 Flow Diagram of Miller and Spooner Example 47

6 Selected Path Through Example Program 48

7 Response to Zero Matrix 51

8 Response to Data Formed by Interchanging 1st
and 2nd Rows of Original Matrices 52

9 Reversal Analysis 60

10 APTT Numbering for Program 61

11 APTS Segment Identification 62

12 Listing of an Example Program 76

13 Response to First Data 81

14 General Flow of Computation 82

15 Partially Pruned Flow Diagram 85

16 Purification Process and its Realization 89

TABLES

I ORLA Segment Usage Versus Trial Number 70

Xi

Section 1
INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

The essential focus in this research has been the production of useful

metrics to characterize the quality of software at any stage of its develop-

ment. The end product desired is simply a set of metrics which have utilityj

and a description of the means of applying them. The metrics selected are

few in number. For completeness a list of all metrics which were found and

considered as candidates at the time of the review in 1978 are included with

comments on their prospective use.

The primary metric considered as an integral part of this research is

coverage. Coverage can be described by a spectrum of choices: coverage at

the branch level, at the instruction level, the segment level, "track" level,

or execution path level. The procedures which are required to firmly estab-

lish the level of testedness or coverage of a software package form the

substantive portion of this research.

In addition to coverage metrics, the software reliability models

developed during an earlier contract and which have been employed to estimate

mean times to failure and error content of a completed package, were modified

so as to derive estimates on the basis of observations of errors during the

initial phases of testing on incomplete or partial programs. Two models were

developed, one is based on the assumption that a cumulative record is main-

tained of the percentage of the completed program that the (varying) tested

portion represents, the other assumes that the count of the number of

instructions under test is available.

1.2 OBJECTIVES AND TASKS DESCRIPTIONS

The original plan for the first phase of the research was given in terms

of the tasks:

A. Review contemporary work of researchers in software testing field to

postulate testing strategies.

B. Perform preliminary tests of selected programs to obtain some data

on various testing strategies.

C. Evaluate parameters influencing software quality to suggest

appropriate metrics.

D. Document as appropriate to facilitate later extensive experiments.

The primary effort during the second period encompassed work on three

tasks:

A. Tailor or expand the testing programs that were developed in the

first phase of the contract.

B. Code so as to provide valuations of the program predicates, and

values of the artificial program variables which provide the data for the

search procedures.
C. Modify, install, and test the tool on a laboratory computer when

the scope and size of the test tool are established.

The subsequent work centered on the assessment of the practicality of

a fully automated version of testing. The goal of this work was to test the

tool and the methodology, using the several constructs (connection matrix,
status vectors, predicate valuations, and input and output data) through the

implementation on a "laboratory" type of computer, such as the Nanodata QM-l.

The assessment of the practicality has been carried out but the implementa-

tion required programming effort which far exceeded budgeted labor.

1.3 COURSE OF THE RESEARCH PROGRAM

The initial effort was made on a literature review. The review made was

very comprehensive and its scope is indicated by the list of papers, publi-
cations, and reports which were reviewed either in depth and critically, or
in content. This list comprises Section 2.1. Subsequently, evaluations of

the metrics which had potential ability were made. These are given in
Section 2.2.

2

do

The substantive contribution to two aspects of software quality were

initiated after the literature review. The metrics which showed promise,

the two which could be most productively studied were the degree of coverage

(or testedness) and MTTF (meantime to next error detection). These two

metrics were exclusively studied in this research.

Previous successes in testing simple programs with random numbers led

to the belief that such testing could serve as an efficient initial testing
set on more complex programs. This testing has been found to be very much
more effective than the sometimes trivial and always, limited in number,

check problems, which are normally used (some of the cases generated by

random test data for a polynomial-solving routine produced polynomials whose

coefficients had ratios of 10 13 and this would be an essentially incon-

ceivable choice for most testers). Accordingly, experiments were performed

on progressively larger FORTRAN programs and the general tendency which was

indicated on smaller programs was supported, random numbers generally pro-

duced good tests and in fact, in one of the later programs tested, the first

100 random number sets produced 99 different tracks.*

A means of determining the number of residual tracks still existing has

been developed in earlier work (Reference 1) but it required a time consuming

matching or comparison procedure. One of the earliest programming tasks

was to automate this procedure. Developed was an even further extension of

the already augmented Program Evaluation and Tester (PET) tool, which itself

was developed in 1974 (Reference 2). With the random number generator, which

was an augmentation to PET made in earlier work (Reference 1), and distin-

guished by the name Program Testing System (PTS), and the automated compari-

son procedure, it was possible to produce sets of data in quantities approach-

ing, to any desired degree, the asymptotic number of tracks which could ever

be generated by random numbers. The modified program is designated as the

Augmented Program Testing System (APTS).

*A track derives its name from two facts: first, a segment of the associated
execution sequence is counted only once even though it may have appeared with
multiplicity in the execution sequence; second, the order of execution is
immiaterial and, for example, the sequences ABCAC and BACCA are equivalent.

3

The next step was to develop a systematic way of executing the still

remaining tracks by formation of what are called constructed cases. The

framework in this was a procedure developed by W. Miller and D. L. Spooner

(Reference 3). This consists in converting the problem of unguided search-

ing for data input points which will drive a particular path or track, into

a systematic process related to a common optimization problem. Auxiliary

variables are inserted at predicate sites, and a certain simple function of

these variables is evaluated for each input data set, when a data set is

found which produces a positive value in the function, the path associated

with the preassigned predicate valuations then will have been exercised;

and, if the trial data set does not produce a positive value, then any

of several search techniques commonly employed in optimization problems can

be used to determine subsequent trial data sets. The initial work in this

application was all performed without computer assistance.

The final major goal was to incorporate both the random testing and

constructed cases into one comprehensive sequential testing process. Starting

with random numbers, these would be employed until new cases become difficult

to find, at which point a transfer to testing by constructed cases would be $
made, using displays to show the predicate sites and the unexercised branches

(valuations of the predicates). Auxiliary variables would then be inserted,

the program would be recompiled, starting- or trial-data would be used, the

composite objective function would be evaluated, and a search procedure

invoked. The latter two steps would be carried out in an iterative fashion

until the selected path was achieved or judged to be infeasible. Unfortu-

nately, the magnitude of the programming effort required to implement the

display/operator/computer complex was judged to be too extensive and expensive

to carry out. Accordingly, only portions of the implementation have been

developed. These are described in this report.

With respect to the study of the MTTF, it was carried out in a low

priority status, throughout the course of the research. Interfaces were made

at several conferences with most of the analysts who have worked in the field

of software error modelling. Two significant new models of the error-making

process were developed durinq the third year of this study.

4

~COOPdP4F
I

1.4 PUBLICATIONS AND PRESENTATIONS

The following are the major publications or presentations of research

sponsored in whole or in part by the Air Force Office of Scientific Research:

1. P. B. Moranda, "Limits to Program Testing with Random Number Inputs",
Proceedings of COMSAC 1978, November 13-15, Chicago, Illinois.

2. P. B. Moranda, "Event-Altered Rate Models for General Reliability
Analysis", IEEE Transactions on Reliability, Vol R-28, No. 5,
December 1979.

3. Presentation by P. B. Moranda of a paper, "On the Modelling of the Error
Process", to the Ist Minnowbrook Workshop on Software Performance
Evaluation, sponsored by Syracuse University at Rome Air Development
Center, October 1978.

4. P. B. Moranda, "Error Detection Models for Application During Program
Development", Proceedings of Pathways of System Integrity, ACM Meeting
Gaithersbury, MD, June 1980.

5. Presentation by P. B. Moranda of same paper at National Computer
Conference, Anaheim, California, 22 May 1980.

6. Presentation by P. B. Moranda of same paper to 3rd Minnowbrook Workshop
on Software Performance Evaluation, sponsored by Syracuse University and
Rome Air Development Center, August 1980.

7. Presentation by Z. Jelinski of a paper "An Approach to Solution of
Problems with Support Software as Deliverables" to Defense Systems
Management Review, Ft. Belvoir, Virginia, March 1978.

8. P. B. Moranda, "Asymptotic Limits to Program Testing, INFOTECH
State-of-the-Art Report on Program Testing, INFOTECH 1979.

5

AqC00040ELL
10O~

3 ~

* 0*>~.,'. - -___ 0

$

Section 2

LITERATURE REVIEW AND CRITIQUES OF SOFTWARE METRICS

2.1 REVIEWS

Two different levels of review were made, one is thorough and complete

at an analytical level, the other for content only.

2.1.1 In Depth Reviews

2.1.1.1 Review of Work Published Prior to July 1978

Rather extensive and detailed examinations were made of the literature

of the software testing field and of software metrics in general. The

following papers were reviewed indepth during the period June 1977 to

June 1978. Informal reviews of the following listed papers were provided

to the contractor.

1. TRW Software Reliability Study. TRW Final Report, RADC, TR-76-236,
August 1976.

2. M. L. Shooman, "Structural Models for Software Reliability Predictions",
Proceedings of the 2nd International Conference on Software Engineering,
13-16 Oct 1976, San Francisco, California.

3. H. E. Williams, T. A. James, A. A. Beaureguard, and P. Hilcoff,
"Software Reliability Systems: A Raytheon Project History",
RADC-TR-77-188, Final Technical Report, June 1977.

4. IBM Federal Systems Division, "Statistical Prediction of Programming
Errors", RADC-TR-77-175 Final Technical Report, May 1977.

5. Doty Associates, Inc., "Software Cost Estimation: Vol 1", RADC-TR-77-220,
Final Technical Report, June 1977.

6. J. R. Brown, H. N. Buchanan, "The Quantitative Measurement of Software
Safety and Reliability" SDP 1776, 24 August 1973.

7. M. Shooman and A. Laemmel "Statistical Theory of Computer Programs -
Information Content and Complexity" Digest of Papers Fall COMPCON 77,
Washington, D. C., 6-9 September 1977.

8. G. J. Schick and R. W. Wolverton, "An Analysis of Competing Software
Reliability Models" IEEETSE, March 1978; Vol. SE-4, No. 2.

7

9. G. J. Myers, Software Reliability, Wiley-Interscience, 1976.

10. A. Fitzsimmons and T. Love, "A Review and Evaluation of Software
Science", ACM Computing Surveys Vol. 10, No. 1, March 1978.

11. B. Littlewood and J. L. Verrall, "A Bayesian Reliability Growth Model
for Computer Software", Record of 1973 Symposium on Computer Software
Reliability, New York, N.Y., 1973.

2.1.1.2 Additional Reviews

1. A. L. Goel and K. Okumoto, "Bayesian Software Prediction Models, Vol 1:
An Imperfect Debugging Model for Reliability and Other Quantitative
Measures of Software Systems", RADC-TR-78-155, Rome Air Development
Center, N.Y., 1978.

2. J. D. Musa, "Progress in Software Reliability Measurements", Proc. 2nd
Software Life Cycle Management Workshop, Atlanta, Georgia, August 1978.

3. R. E. Schafer, et a], "Validation of Software Reliability Models", Hughes
Aircraft Co., RADC-TR-79-147, June 1979.

4. W. D. Brooks, R. W. Motley, "Analysis of Discrete Software Reliability
Models", IBM Corp., RADC-TR-80-84, RADC, New York, April 1980.

5. E. H. Forman and N. D. Singp(:rwalla, "An Empirical Stopping Rule for
Debugging and Testing Computer Software", Journal of the American
Statistical Association, Vol 72, December 1977.

6. A. N. Sukert, "An Investigation of Software Reliability Models", Proc.
1977 Annual Rel. Maint. Symp., Philadelphia, PA, 1977.

2.1.2 Literature Reviewed for Content

1. Z. Manna. Mathematical Theory of Computation, McGraw-Hill, Inc.,
New York, 1974.

2. T. Gilb, Software Metrics, Winthrop Publishers, Inc., Cambridge,
Mass., 1977.

3. A. Goel. "Bayesian Software Predictions Models," RADC-TR-77-112,
March 1977.

4. M. Shooman, "Manpower Deployment Effects on Software Error Models,"
in RADC-TR-76-143, May 1976.

5. Boeing Computer Services, "Software Data Acquisition," RADC-TR-77-130,
April 1977.

6. W. H. Howden, "Methodology for Generation.of Program Test Data,"
IEEE TransComp, Vol. C-24, May 1975.

7. L. Clarke, "A System to Generate Test Data and Symbolically Execute
Programs," IEEETSE, SE-2, 1976.

.... ' ' -- " - " 7 - i. _ 8-

8. S. Gerhart and L. Yelowitz, "Fallibility in Applications of Modern
Programming Techniques," IEEETSE Vol. SE-2, No. 3, Sept. 1976.

9. R. F. Serfozo, "Compositions, Inverses, and Thinning of Random
Measures," Syracuse University, Dept. of Ind. Eng. and Ops. Research,
December 1975.

10. L. Osterweil, "Depth-First Search Techniques and Efficient Methods for
Creating Test Paths," Univ. of Colorado Dept. of Comp Sci TR No.
CU-CS-077-75, August 1975.

11. W. Miller and D. Spooner, "Automatic Generation of Floating Point Test
Data," IEEETSE Vol. SE-2, No. 3, Sept. 1976.

12. G.E.P. Box and K. B. Wilson, "Attainment of Optimum Conditiions,"
J. Royal Stat Soc., Vol. XIII, No. 1, 1951.

2.1.3 Review of Testing Tools and Procedures

Articles of a review nature have identified and briefly described a

large number of different testing tools. D. J. Reifer (Reference 4)

identified 70 different types of tools and briefly discussed each type.

C. V. Ramamoorthy and S. F. Ho (Reference 5) discuss, in some detail, 15

different tool types. A review of these different types here would be dupli-

cative. Instead a composite review of the limited number of reports listed

above dealing with the testing process will be presented. Usually the

potential deficiencies of the processes or tools are brought out in the

description, but not their advantages.

Before the discussion of individual classes of tools is undertaken here,

it is well to note that the paper by Goodenough and Gerhart (Reference 6)

illuminates many of the heretofore neglected points concerning testing.

Some of the important points they make in this respect are:

A. It is not enough to execute a statement with a particular set of

conditions, it must be tested in all combinations of conditions;

B. In the same sense, a path through a loop may have to be taken

several times before the conditions for error revelation are met;

C. Missing, but required-for-correctness, components of a program

*(such as predicates or assignments) clearly cannot be identified by

"cover-testing" a program;

D. Generally a program must be examined for what it actually does
instead of what the tester is told the program does and, at each point of

/1

1~(

interface, it must be examined for what it can do;

E. The environment, including the operating system, hardware
processor and language, have to be examined.

2.1.3.1 Inside Out Testing

Several different techniques have been employed to develop test cases on

the basis of a specified set of valuations or outcomes of the proqram's

predicate. The mathematical expressions employed in the program predicates,

are used to develop a set of restrictions on the input data space. Solution

of the set of equations then produces a point or set of points that will

achieve the path through the program. The difficulty with the procedure is

that the set of equations involved often are not tractable, even for cases

where only "area" (as distinct from point) solutions are required. This

difficulty is, to a degree, alleviated by use of interactive entry of data

and display-guided solutions.

2.1.3.2 Symbolic Execution

Instead of operating on numerical (or logical) values for variables in

a processing, the program's operations can be carried out on the symbols

themselves. This technique was independently proposed by W. E. Howden
(Reference 7) at McDonnell Douglas Astronautics Company, B. Elspas, et al.

(Reference 8) at Stanford Research Institute, J. C. King of IBM (Reference 9)

and Lori A. Clark (Reference 10) of the University of Massachusetts.

Programs, so exercised must be augmented so they become capable of

symbolic execution of expressions and provide means for selecting specified

branches or paths in them. Howden employs a system (DISSECT) processing the
program that is to be symbolically executed, along with a list of commands

that cause symbolic execution.

The advantages of symbolic execution are clear. In certain cases the

printout consists of an explicit formula that is unambiguous to the reader.

If the formula is correct, the program is correct for all data and there is
no necessity for numerical comparisons or independent checks.

In many cases, however, the output is far from clear to any but the most

experienced users. There is, for example, sometimes a need to maintain the

10

list of possible antecedents (a suspense file) for a program variable having

several different symbols and values assigned to it. Further there is a

context-dependency that a given assignment may have, caused, for example,

by different encounters of an assignment during looping. This must be

accounted for, and in the case of DISSECT, the context is identified by a

number representing the dynamic instruction number (as distinct from the

static sequence number associated with a listing). These and more complex

problems have been faced by Howden and others and they provide finished

products that are proof that sucI6 techniques can be used to good effect

when the tools are in the hands of experts.

While there are some barriers to the "field" use of such techniques,

they do not seen insurmountable and it is probably reasonable to expect that

symbolic execution can be of common use.

2.1.3.3 Automated Verification Systems

Several systems instrumenting a given program to permit the tallying of

the uses of its instructions, branches, and so forth, are classified as

automated verification systems by Reifer (Reference 4). They are usually not

automated in the strict sense of the word: although they require a set of

input test data to drive the program, there is no instantaneous feedback to

change the data to test new unexercised sections of the program. A complaint

on word usage can be also made that these systems do not really verify the

tested program, and generally do not even consider the output in respect to

its accuracy, or even its relevance.

A McDonnell Douglas Automation Company tool, called PET (for Program

Evaluator and Tester) described by L. G. Stucki in a company report

(Reference 2) and in the open literature (Reference 11), is typical of this

class.

For a given data set, PET reports the usage by instruction and branch,

which the execution sequence represents. There are other useful metrics,

including the range of value for each of the program variables. Lists of

unexercised program components also are printed out.

An augmented version of PET, that formed segments consisting of

"dynamically contiguous" program instructions, was used and described in a

recent AFOSR-sponsored study (Reference 1). In that study, as with most

other applications of PET, the emphasis is on the "coverage" of the tested

program. Repeated tests with randomly generated input data were used, and

their effects merged to produce a composite (montage) of the testing status

of the program. Unexercised segments were used to find the governing predi-

cate or predicates in the program listing, and so-called constructed casei

were then formed. The process was continued as far as deemed possible to

establish the testing degree.

This class of program monitors is useful in another way. Frequently

exercised portions of a program can be identified by the tallies or counts

and the identified regions can be examined to see if improvements can be

made in the coding or basic algorithms.

2.1.3.4 Automatic Test Generators

Conceivably any particular segment of a program has some input data that

will cause it to be exercised. Since it is possible, as indicated in the

section on inside-out testing, to back up from a particular point in the pro-

gram to the "top," it should be possible to choose a set of inputs that will

cause any given segment to be exercised. The technique used amounts to an

identification of the program variables that are "active" at the segment, and

then to relate these to the input variables. This is illustrated in

Section 3.1.2 where the precise set of relations to the input data are

developed explicitly from a particular "straight line" path through the

program.

Usually it will not be necessary to develop the precise relations (which,

it is noted, is almost the same as symbolic execution) between the proqram

variables and the input, and it is only necessary to identify those inputs

affecting the selected program variable. This can be accomplished in an even

less elegant way by simply generating random numbers to serve as values for

the input variables.

Whatever scheme is used, the automatic test generators provide a basis

for economically meaningful testing-to-"completion." The idea is simply to

12

-OPEN-

form a "feedback" loop between a cumulative record of the segments previously

tested to, what might be called, a scenario generator. The scenario

generator would provide a one-at-a-time selection for the untested segments,

and the standard test generators could be used to "find" the required data.

This will then cause the new scenario update and a new selection. This idea

is mentioned again later in connection with the use of "tracks" and the

automatic case generation process.

2.1.3.5 Domain-Testing Strategies

The point mentioned above, in connection with the possible creation of a

truly automatic test tool, brings up the important problem identified earlier,

the essential impossibility of producing a particular numerical value by the

usual kinds of random number generation. This is not a problem in estimating

the asymptotic limits to testing with such numbers, because of the infrequent

occurrence of these numbers in the sample. For tne development of con-

structed cases where exhaustive testing can be achieved, it is necessary to

specify the set of points in the input space which, after processing, will

produce a specified value for a program variable.

Generally speaking, the particular set of points achieving the specified

value has relatively small dimensionality (a point in two-space, a line in
three-space, etc.) making the problem of testing boundaries important.

E. 1. Cohen and L. J. White of Ohio State University (Reference 12), have

investigated this and similar problems and developed strategies that will test

domains with linear and non-linear boundaries (the latter only in two

dimensions at present) in efficient ways. As noted, work of this kind is

essential to any ultimately automatic testing scheme.

2.2 CRITIQUES OF SOFTWARE METRICS

2.2.1 Software Science Metrics

In the review paper by A. Fitzsimiions and T. Love (Reference 13) the

principal metrics employed in Software Science are discussed in some detail.

They are few in number: length, volume, program level, language level,

effort and time.

13

0CUC~aPPdiEL& 0PhJO& M

A troubling feature of these metrics is that they are all based on counts

of operators and operands and, as noted in Reference 14, there are many cases

where it is not at all clear what particular mix of these fundamental elements

a given program instruction represents. The effects of this lack of precision

in the definition of operator and operand has been studied by J. L. Elshoff

(Reference 15). In this study all of the primary metrics are computed for

some 34 different programs for each of eight different interpretations of the

way in which the counts of programiing elements should be taken. These eight

different methods produced exceptional variability in the metrics in cases

where there was a significant effect in the vocabulary definitions. For

example, program No. 13 which is the largest program, showed counts of 185

and 746 for operations and operands, respectively, under the first interpreta-

tion, and counts of 118 and 900 for the second interpretation. The effects

on the metrics under the two interpretations are:

estimated length 9,645 versus 8,512 (11.7% smaller)

volume 91,902 82,373 (10.3% smaller)

level 0.00365 0.00212 (41.7% smaller)

minimum volume 334.6 174.2 (47.9" smaller)

effort 25.243 38.945 (54.2% larger)

global level 1.1037 0.607 (45% smaller)

The variation in these metrics is indicative of the effect that the sub-

jective choices (8 different types) can cause. In a separate comparison, the
single metric, effort, for the 8 options (for program No. 1) were: 0.783,

0.881, 0.937, 1.010, 1.065, 0.764, 0.794, 0.679. This variability, which is
over 50% (from min to max) is evidence of a lack of "objectivity" in this

(and other) measures.

2.2.1.1 Complexity (Software Science Interpretation)

In the abstract of the paper by Fitzsimmions and Love it is noted that

complexity of programs can be measured by the theory of Software Science.

It was difficult to locate precisely where in the paper this complexity is

measured because the word appears only incidentally in the text. It was

determined, by direct inquiry, that it was measured by the effort metric.

14

"IM

This use of an extensive measure for complexity is indeed novel and does
not correspond to intuition or to any other measures advanced by others.

Halstead states that complexity of a program is measured by the total number
of elementary discriminations required to produce it, and this count depends
on the bulk of the program more than on its logical structure.

The previously published measures of complexity had to do with intensive

measures such as the (normalized-to-unity) spectrum of the program listing
across its indenture levels, or the density of branching statements.

The recently described measure of complexity by T. J. McCabe

(Reference 16) is the cyclomatic number obtained from the flow graph of the
program. This metric is described in a later section when the topic of com-
plexity is re-examined. Suffice it to say, it is more an intensive measure
than an extensive measure, and as McCabe points out (op.cit.) it is easy to
write a program that is physically small but ultra complex.

The complexity measure of software science is directly related to the
length of the program (the total number of operators and operands) and is
finally developed on an absolute basis by the use of the so-called Stroud
number, which is taken by M. Halstead to be 18 mental discriminations per
second.

This Stroud number has, as its basis, some physical measurements of a
human's ability to discriminate the frames of a kaleidoscopically presented
visual sequence of images (related to the "flicker rate" in motion pictures).
The use of this visual discrimination rate, as equal in value to the mental
discriminations rate, is surely questionnable.

2.2.2 Software Metrics

Probably the best starting point for this discussion is a review of the
metrics presented in the book by Tom Gilb (Reference 17). This serves more
to cover the field than to make precise the concepts and definitions of the
many metrics identified. Following this is a list of metrics having a
reasonable likelihood of surviving through test and time.

15

~C@~E&L Y43t43L4 ~iA

2.2.2.1 Review of Glib Metrics

Maintainability

The first definition offered by Gilb is that of maintainability. He

defines it as

"the probability that, when maintenance action is initiated under

stated conditions, a failed system will be restored to the condition

within a specified time."

That definition is essentially the same as that used for hardware. In

the hardware case the measure is almost always applied in a bottoms-up way,

that is the maintainability is derived for each major assemblage from the

records of its contained minor assemblies; the system's figure is derived

from the major assemblies. Work records on the times to fix are estimated

during design, and, once hardware is delivered, records are kept of the

actual fix times.

Software should be amenable to the same broad guidelines. Some modules

are likely to be more easily fixed than others and a better systems-wise

figure can be developed from the bottoms-up composition. The records of

maintenance of individual modules should be used to extrapolate for new

errors. The fact that the process of error-finding tends to have long periods

between finds (probably) does not alter the fundamental measure of the

average time to fix. This is (probably) so because the late occurring

errors are (probably) not of a different level of difficulty than the early

occurring errors. (Should there be a trend towards longer fix times with the
"age" of the error, a model would need to be developed).

Logical Complexity

Gilb's introduction into this topic identifies early work by L. Fart, and

H. J. Zagorski, who used the IF statement density as a measure of the logical

complexity. Gilb also mentions "psychological" (his quotes) complexity of

source programs and refers to some statistical work by L. M. Weissman which

correlated metrizable program aids (commnents, indentations, etc.) to

productivity and accuracy.

*CW@~NLL16

Structuredness

One of the metrics identified by Gilb is structuredness. This was one of

many metrics proposed by TRW in a study for the National Bureau of Standards.

Structuredness is one of 12 low-level metrics identified by Gilb, the

others are: device independence, completeness, accuracy, consistency, device

efficiency, accessibility, communicativeness, self-descriptiveness,

conciseness, legibility, and augmentability.

For structuredness, there are 9 submetrics which are, in actuality,

questions concerning the existence of module size limits, program flow, and

so forth. Gilb's Figure 51 (page 103) can be referred to for identification

of the particular questions. It does not appear that the underlying metrics

have any quantitative basis, and necessarily have either a zero or an all

value.

Typical of a question, under a column headed "Definition of Metrics to

Measure Structuredness," is: "Do all subprograms and functions have only

one entry point?" Here, should the answer be no, there is no way of

differentiating between "all-but-one" and "none."

Presumably a yes answer to all questions would indicate a perfectly

structured program. Using these the characterizing features (from Figure 51

of Gilb) the program would be one which:

A. Has rules for transfer of control between modules.

B. Has limited modules sizes (Note: the limit is not specified).

C. Has the ordering: commentary header block, specification statements,

executable code (Note: it is hard to imagine a program that does not follow

the order).

D. Subprograms all contain, at most, one point of exit.

E. Subprograms and functions all have only one entry point.

F. Program flow is always forward, except where commented.

G. Overlay structure is consistent with the subprogram's sequencing.

H. Is subdivided into modules in accordance with readily recogrized

functions.

I. Is written in standard constructs.

17

These submetrics are then scored as to their "correlation" with a "high

score for the metric." The use of "correlation" as a descriptor for sub-

jective judgment is highly questionable: there are no numbers to associate

with the identified metrics, and the numbers associated with the "score," if

present at all, are certainly vague.

Nonetheless, the "quantifiability" of the metrics is judged against six

categories which, while neither exhaustive nor mutually exclusive, are

nonetheless indicated as such by the tabular entries.

The other 12 metrics are probably treated in the same way as the

structuredness metric, and, beyond their identification, do not appear to

merit additional inquiry. (Self-descriptiveness, communicativeness, and

accessibility, for example, appear to be invented to exercise the invention

process, and do not represent useful metrics; others, such as augmentability,

may have some value).

Reliability

Gilb's definition of system reliability is in close accord with the

customary (hardware) definition. It states that "reliability is the proba-

bility that the system will perform satisfactorily (with no malfunctions) for

at least a given time interval, when used under started conditions." This

is modified only slightly under the definition offered later. Gilb's variation

of his definition for system reliability when applied to program or software

reliability are minor, a particular machine is denoted, and operations are
"within design limits."

Repairability

The concept of repairability is a variation of the maintainability con-

cept. The emphasis is on the probability of a repair within a specified time,

when maintenance is performed under specified conditions. The requisite

tools, parts, and men, are assumed to be available at the start, and this is

one of the specified conditions.

18

Serviceability

This metric is taken from hardware reliability and is the degree of ease

or difficulty with which a system can be repaired. It is not considered

quantifiable at present.

Availability

Again, from the hardware reliability definition, this is the probability

a system is operating satisfactorily at any point in time. It is usually

measured by a ratio of times or mean times, and Gilb offers three variations

of the concept (intrinsic-, operational-, and use-availability).

Attack Probability

This metric is one of several Gilb suggests in the security aspects of

programs. This metric is the probability of an attack (of a particular type)

on a system during a particular time interval.

These attacks can be considered to be active (malicious) or passive

(typified by invalid data).

Security Probability

This is described by its alternative title, attack repulsion probability,

and is a metric gauging the probability of a successful rejection in the

system at any time. The attack type is specified. Gilb states that this

concept is close to the concept of error detection probability. This is less

true of active attacks (which may not persist) than it is for passive

attacks such as bad data.

Integrity Probability

This probability is the probability of no successful attack on the

system:

Ig = 1-[A t.(I-S)]

where At is the attack probability for a particular time interval, and S is

the probability of rejection (for all times).

MCOP4W#LL DC GL I 19

Accuracy

Several examples of the metric and a discussion contrasting it with

precision are given by Gilb. The measurement ratio, correct data/all data,

appears to be too vague for use involving, as it does, the idea of "correct

data." Usually accuracy involves a continuum of values so that "correct"

data is too narrowly defined for practical usage.

Precision

The suggested measure of this metric, which aims to gauge the degree

"to which errors tend to have the same root cause," is the ratio formed by

dividing the number of actual errors at source, by the number of

corresponding root errors observed in total caused by source bugs.

The difficulties in first knowing how many errors there are at the source

seem unsurmountable, and tying together the "corresponding" errors with the

source would not seem to be an easy task.

Error Detection Probability

Gilb suggests a categorization of the error types and an assignment of

the likelihood of detection of errors of the pre-specified type. The failure

to include time aspects into the problem makes for a flawed definition. The

probability of an eventual detection of an error is (probably) unity for

almost all error types.

Error Correction Probability

As defined by Gilb, this is the probability of reconstructing "data in

the form and content originally intended." This is a vague concept when

identification of the random event is sought. The originally intended form

and content is generally not known, rather it develops as effects are judged

unsatisfactory and tentative changes are made. There is a chance that the

repair made will have an error that may lie undiscovered for a period of

time, and so time should be involved in the measure in some way.

Logical Complexity
In the text two metrics for logical complexity are identified, the

num .oer of binary decisions and the ratio of absolute logical complexity to

MCDOMELLDVJOL~,~ .20

total complexity. But Gilb also suggests under the Figure 83 on page 161

that it be measured by the number of possible logical path combinations in

a program.

In this respect Gilb illustrates with an unanswered question, the defect

in using even the density of branching statements as a measure of complexity.

In his Figure 84, two programs are shown, one which has 6 binary decision

points and the other only one. But for a sufficiently large number of total
instructions (say 239 as indicated in the description) the density of the

clearly more complex program is less than the ultra-simple one. This alert
is examined in the discussion of complexity later in this report.

Flexibility
Gilb defines this as that part of complexity that is useful, and it is

the ratio of useful to total that is the metric.

Built-in Flexibility

This is defined as the ability of a program to immediately handle

different logical situations. It must be built-in in order to respond

without loss of time.

Adaptability_(open-ended flexibility)

Gilb acknowledges the difficulty of originating a metric for this con-

cept and suggests, as a tentative measure, the count of the linkages between

modules. This is the same as the metric used later for structural

complexity.

Tolerance

This is defined as the ability of the system to accept different forms

of the same information as valid. The proposed metric is the count of the
number of different variations that can be handled by the system, where

variation means the different media, different formats of input, or logical
variations (such as misspellings and synonyms).

A*COOCVOELL DO4Jl-~Z

Generality

The "degree of applicability of a system within a stated environment"

constitutes generality. Its measurement is subjectively assigned (0 to 1).

Portability

This is defined as the ease of conversion of a system from one environ-

ment to another. The metric is obtained by first forming the ratio of the

resources required to move the program to a target environment to the

resources needed to create the program for the target environment, and then

subtracting the ratio from unity. The result is the ratio of the cost dif-

ference to the creation cost and, on the extremes, agrees with an economic

measure of portability, because for a zero-cost move the portability is

unity, and for a cost equal to the creation cost, the portability value is

zero.

Compatibility

This attribute is, according to Gilb, related to the concept of porta-

bility, the difference being that portability is a characteristic of a single

system whereas compatibility applies to an average over a class of systems.

This distinction provides the metric, an average portability over the

collection of program systems.

Redundancy Ratio

This is the first of what are called structural metrics by Gilb. This

ratio generally is formed by taking the actual count of quantities to the

minimum possible count.

Hierarchy

This structural metric describes the number of indenture levels and the

spectrum of program elements across these levels.

Structural Complexity

As noted earlier in the section concerninq adaptability, this is

measured by the number of modules (absolute) or the ratio of linkages to the

total number of modules. This is an easy metric to derive for some languages

22

ACUOWJELL DI00 glg

as Gilb shows. For FORTRAN the modules are counted by the number of

subroutines and functions, and the number of linkages is the total of

subroutine parameters and the references to the commion area.

Modularit

Although modularity is stated to be a synonym for structural complexity,
it seems to stress the number of modules and not the linkages.

Distinctness

Distinctness as defined by Gilb involves errors and, in fact, is
measured by a ratio between the number of bugs in the module and the number
that are common to the module and another ("simultaneously"). It is hard to
see how this ties to the intuitive concept of uniqueness, particularly how
errors are necessary components of distinctness.

Effectiveness
Among the performance metrics, effectiveness is listed first. It is a

probability of "success" within a given time and specified environment. The
"9success" means meeting an operational demand. Gilb composed efficiency
from three probabilities: reliability, readiness probability, and design
adequacy (on a scale from 0 to 1).

Efficiency

This attribute is defined as the ratio of useful work to the total

expended.

Cost

Among financial metrics are costs and its major subdivisions, fixed and
variable. Gilb uses the terms capital and operational.

Time

Computer and "Human" time resource metrics.

SpaceMetrics
This is more commonly called the size of a program. It can be measured

on an atomic level by bits and bytes and, on the more common scale, by the
number of instructions.

ACUO~SLL23

Information

Gilb says that information content of a program is not directly

measurable, and suggests use of "useful data" as an indirect means for

measurement.

Evolution
This is a measure of the incremental change to a system during a time

interval, t. If the change is so pervasive that it constitutes a

substitution, the metric would have a value of unit.

Stability

Stability is the complement of Evolution and it denotes the percentage

of unchanged content of a program (over a specified time period).

2.2.3 Candidate Metrics

Clearly some of the questions that should have been asked of the

commnunity several years ago are:

A. Are any attributes worth study?

B. Which attributes are useful?

C. Can these be measured in a form useful to the community?

It is clear from inspection of the Gilb metrics that there are many that

will not survive the tests required of practical gauges. Most of the 13

low-level metrics identified by Gilb have little hope of common usage. The

discussion concerning structuredness, in that section, indicates that the

concept is initially vague and becomes amorphous after its component parts

are identified (in the form of questions).

Of the metrics listed above, the following are considered of primary

value: reliability, complexity, cost and time.

Regarded as secondary in importance are: maintainability and

availability.

24

Supplementing these metrics are some that history may judge to be of more

value than any of the metrics identified above: mean-time-to-next error,

mean-time-to-perfection, error content, testedness, and purification level.

Excepting the complexity metric, it does not seem necessary to amplify

on the previous Gilb definitions, and the following subsections deal with the

augmenting metrics.

2.2.3.1 Mean-Time-To-Next-Error

Of primary importance in the testing of programs is the decision on

whether or not to release a given module or program. A good guide to this

choice lies in the time pattern of the errors found, whether this pattern lies

in a data base metered by CPU units, hours, days, or weeks is not relevant

(except as its potential future uses may have to be considered). If the time

pattern indicates a steady state or constant error rate, or, even worse,

shows an increasing failure rate, there is clearly no reason for releasing

the module and much evidence to the contrary. Once a pattern of decreasing

counts (per unit time) is achieved, any of several models can be applied to

the data that the error pattern represents, and estimates of the mean-time-

to-next-error can be obtained.

It is the magnitude of this mean-time-to-next-error, or more commonly

called the mean-time-to-failure, MTTF (which for a certain probability

distribution, and steady state conditions, is the same as the mean-time-

between-failures [MTBF]), considered in the context of its expected use, that

is important. For real-time systems, governing, for example, weapons or

aircraft, the MTTF should be several times as large as the mission duration.

The proper figure for the MTTF is determined by the reliability specified by

the customer for the system.

Values for the MTTF are available in any of several models: Jelinski-

Moranda, Shooman, Schick-Wolverton, Moranda Geometric Purification, Moranda

Hybrid Geometric-Poisson.

Littlewood and Verrall (Reference 18) avoid MTTF and insist instead on

percentiles (such as the median) of the distribution describing the time

between errors.

25

.......... L L iD gI

It is important to note, that for all models the MTTF is a parameter

that is changed by either event or time. The Jelinski-Moranda model has an

MTTF, indexed by the dummy variable i, which increases at the occurrence of

each error, and can be given in terms of the model parameters N and € as

1

MTTFJ-M : [N-(i-l)]O

The Schick-Wolverton model has an "instantaneous" MTTF depending on both
time and event, and it has an averaged MTTF that is obtained from the first

moment of the Rayleigh distribution for the time of next error. Thus,

MTTFsw-~ [211
For the Geometric Purification model, the MTTF is

MTTFGP I nDk

where D is the failure rate for the first error, k is the geometric ratio

which is used to obtain the error rates, and n is the number of found errors.

The Shooman MTTF is given by

MTTFs = [C ET-Ec(t -I

where C is a proportionality constant, ET is the total error content, and E C(t)

is the total number of errors found.

2.2.3.2 Mean-Time-To-Perfection

Some models permit an estimate of the mean time required to achieve an

error-free program. Generally this estimate is accompanied by a variance

(standard deviation) that is so large that it has little or marginal utility.

It is nonetheless a guide to management and it is changed, and generally

made more precise, as more errors are discovered.

26

The simplest way to form this estimate is to sum the estimated MTTF's

for all remaining errors; hence (using MTTP for mean-time-to-perfection), the

estimate so formed for the Jelinski-Moranda model is:

I N-IMTTP j-M Nz_ 1-j

j=n

For the Schick-Wolverton Model,

N-1 1/2
MTTPs -

j=n

This last formula is incorrectly given in the latest Schick-Wolverton paper

(Reference 19).

The Shooman model does not permit an estimate of the MTTP because the

failure rate of that model is a continuous exponential. The mean time to

achieve a zero with the exponentially decreasing failure rate is infinite.

The Moranda Geometric Purification model also does not have a finite

average time to perfection. Even though discrete, the failure rate does not

attain a zero value.

The Littlewood and Verrall model, based on Bayesian adjustment, does not

involve a parameter that can be directly related to the MTTF, and it is

required that some alternative be found. This can be provided by any of the

percentiles of the distribution formed by convolution of the family of

related exponential distributions they use in their examples. It is neces-

sary, however, to rely on the most recently available, "a posteriori" distri-

bution for one of the two parameters, and to continue the assumption con-

cerning the way that the sequence of values for the other parameters are

related. It presents a difficult problem analytically and probably has

practical objections.
4.

27

IWC"01161AL 41110 1AO

AC0@fP4EL eAW-low~

The recent publication by A. L. Goel and K. Okumoto (Reference 20) has

relevance to this and some of the other problems. Their work in the present

context employs a family of distributions that are the same as those used by

Jelinski and Moranda but with an essential difference, they assume an

imperfect repair and account for it with a parameter, p, that is the same for

all errors. Using these variations, the distributions of the "first passage"

times (zero errors) and of the times to achieve various levels of purification

are derived.

2.2.3.3 Error Content

Three models can be used to derive estimates of the error count. The

Jelinski-Moranda model accomplishes it through use of equations developed

from the assumption that there is a direct proportion between error content

and failure rate. The corresponding Shick and Wolverton assumption is that

the failure rate is proportional to both the number of errors and the

"debugging time." The Shooman model can be used at two or more separated

time intervals to estimate the error content. From observations of the

average MTTF for these intervals, parameters of thL linear relation between

failure rate and error content can be found by simultaneous equations (for

two intervals) or by least squares (for three or more).

2.2.3.4 Purification Level

Although some models do not measure error content and may not achieve a

perfect state, there is a measure that, in some cases, can be used to describe

the state of perfection achieved at a given point in time. For error-content

models, the ratio of the number found to the total number (estimated) provides

the reasonable estimate. For the Moranda Geometric Purification process, the

purification state can be estimated by taking the ratio of the initial

failure rate to the achieved failure rate.

The purification level or percentage is clearly of more value than the

error content since the absolute number is, by itself, generally a poor

indicator of status because it is size-of-program related.

28
.CDO.'LLOUO Ir /

The several estimators of the purification percentage are (in terms of

their defined parameters):

Jelinski-Moranda n x 100

n
Schick-Wolverton f x 100

Ec
Shooman c x 100ET

Geometric (1-k) (100)
Purification

2.2.3.5 Testedness (Degree to Which a Program Has Been Tested)

A metric of a different kind is represented by the degree to which the

program has been tested. There are several different types of "coverage" for

a program, where "coverage" means that the program "elements" have been

executed.

E. C. Miller (Reference 21) presented a useful list of several different

coverage types in a sequence reflecting the increasingly larger size of the

covering unit. The lowest level of coverage is obtained when every statement

is executed at least once, the next level is achieved when each segment

associated with the explicit or implicit predicate outcome is executed.

For complex programs involving nested loops, the test coverage may neces-

sarily be limited to the exercising of the program so as to test, one time,

all so-called boundaries and interiors of loops,it being assumed that all

segments are exercised. (Boundaries are the entries and exits from a loop.)

A higher order of coverage consists of multiple passes through loops, these

are tests that iterate all loops up to a certain specified limit (even 1),

and provides additional coverage. The ultimate test coverage (with several

other types in between) exercises all logical paths through a program.

29

. - I V -, , LW ~ . ~. j I I , ' . . . n r . L

One additional type is afforded by the testing of the type described in

the earlier work (Reference 1), where tracks were identified. Coverage by

tracks is intermediate between segment coverage and logical path coverage.

The metric for any of the types is simply the ratio of the number of
"elements" (defined as instructions, segments, branches, predicates, tracks

or logical paths) to the total number of these elements.

A new concept was introduced by Moranda (Reference 1) where the diffi-

culty of enumerating the number of different elements is avoided. By using

random numbers, it is possible (under some assumptions that are reasonable

or acceptable to some and questionable or unacceptable to others) to esti-

mate the total number of program elements that will eventually be achieved

by random numbers. This technique was used in the original work

(Reference 1) to estimate the total number of "tracks," but could as easily

be used to derive the asymptotic limit to the number of logical paths.

2.2.3.6 Complexity

As noted in the discussion on the effort metric employed for complexity

measures by the Software Science advocates, the use of an extensive measure

for complexity runs counter to intuition. The total number of "elementary

discriminations" required to produce a program does not seem to properly

reflect the structural aspects of complexity, for a "straight-line" program

(no loops) of extreme length would have a high effort value, but might be

judged rather simple.

Other measures were suggested in that same discussion. The density of

branching statements was suggested, but as noted by McCabe in Reference 16,

the density, as measured by instruction count, may be misleading. In that

reference, a reasonably complex program containing six branches had so many

(hypothesized) instructions that the density of branching statements was

less than a short straight-line program (with one branch).

It is clearly necessary to alter the concept, and base the metric on the

segment counts, rather than the instruction counts. This is a reasonable

*CDS~NL&30

position to take because some segments may contain a very large number of

instructions. As far as the intricacies or complexities of a program are

concerned, all segments are the same and do not depend on the number they are

comprised of.

Thus, a more satisfactory metric for complexity would be either the

number of segments or the number of logical paths. Since the latter are

difficult to count in many cases, the former can be used, even though the

way they connect is not measured thereby.

Another measure of complexity which may be of use is the indenture level

spectrum. This concept is rather simple in that it tallies into each inden-

ture level, each instruction of the program. By dividing the number in each

category by the total number of instructions, a normalized-to-unity spectrum

can be produced. There are clearly some deficiencies in this approach since

a program that "shifts" back and forth between two adjacent levels is not

judged to be more complex than one that has the same number of instructions

at each level and "shifts" but once. The metric would require a complementary

measure to provide a total measure of complexity.

A far better metric for complexity has been developed by T. J. McCabe

(Reference 16). He suggests that the program be represented by a directed

graph, G, in the usual way. The way the nodes (or vertices) and segments

(edges) of G are connected is measured by a cyclomatic number, denoted by

V(G), determined by the number of edges, vertices, and connected components

(where the latter is a subgraph of G).

McCabe proves a theorem that permits an alternative way of finding the

cyclomatic number: for strongly connected graphs, the cyclomatic number is

the maximum number of linearly independent circuits. In order to apply this

theorem, it is necessary to form a strongly connected graph by looping back

from the exit node to the entrance node.

It is generally easy to identify the cyclomatic number of most reasonably

well-structured programs of small to moderate size. Where the program is

extensive, the algebra set up by McCabe can be used to calculate the number.

aWUQ ELL ENJ~LA~~...31

p

$

Section 3

COVERAGE BY RANDOM AND CONSTRUCTED CASES

3.1 INTRODUCTION AND BACKGROUND

The following introductory section is essentially a duplicate of the

text material used to introduce the topic of coverage in Reference 1.

3.1.1 Framework for Representation

In the customary renditions of program flowcharts, each (rectangular)

block represents either a simple instruction, or a group of operations, with

a single output, while each diamond represents a single, explicit or implied,

predicate which has two or more exit options. Connecting the blocks and

diamonds of a flowchart, are directed lines denoted, and referred to, as

arrows. These lines represent the options possible and are called flow-of-

control arrows. These fundamental building blocks are adequate for the

static or structural description of a program, but are not convenient for e
representing its operational aspects. The basic operations are better

defined in terms of some simple program components. These lend themselves

to mathematical descriptions and they motivate the choice for the'"atomic"

or fundamental unit of description.

First, it is noted that an instruction in a program, while easy to define

(statically) in "mdchine language", becomes rather difficult in most of the

higher order languages. Thus a "clear and add" instruction, in machine

language, causes a register (accumulator) to be set to zero and another

register to be transferred to the cleared register and nothing more. Once

the final bit is transferred, the machine waits until the next instruction,
which is generally started by a timing or clock pulse. On the other hand,

the concept of an instruction in the higher languages is less clear. An

"instruction" in ALGOL, for example, is either a statement or a declaration,

and in either case is used to indicate required compiler (as against computer)

actions. As a result of compiler action, an object program with computer

interpretable instructions, is produced.

33

MCDONN&LL DOhJLA~

Thus, there is a spectrum of statements in that language: the simplest

type is an assignment, such as X:=l; while one of the more complex statements

is, begin ... erd, which groups statements together to form compound

statements (and blocks).

In any higher order language where grouping is required, there is a need

for so-called delimiters (explicit or implicit) which can be used as bound-

aries for the steps, and form the building blocks of a program. A similar

device is required in the description of dynamic operations - a means of

grouping instructions into fundamental operational units.

Generally, the linking of instructions can be represented by means of a

Boolean indication, with the value 1 used where the instructions are or can

be "contiguous", and 0 used to denote the fact that they are not connected.

These Boolean values could be used as entries of a connection matrix whose

row and columns are numbered to accord with an (arbitrary) numbering scheme

for the steps. But a straightforward application in this manner, on the

instruction level, would normally produce inordinately large and unmanage-

able connection matrices. Some of the redundant information in such a

matrix could be eliminated if certain agreements can be made: for example,

if step 1 is always followed in sequence by steps 2, 3, and 4 and there is not

opportunity for branching until step 4 (at least), then steps 1 through 4

can be merged or combined, and three of the rows and columns of the connector

matrix could be eliminated. This reduction in redundancy is an additional

reason for choosing groups of instructions for the description.

Because certain instructions or statements have more than one output

(such as if...then...else) there is a need to devise a conventic- which will

permit identification of each of the exits. If statement A is a single-

output statement and it connects to statement B which has multiple outputs,

the notation [AB), which is "closed" on the left and "open" on the right, is

meant to imply that A is executed and control is passed to (or toward) B,

but that B is not executed, but it is next in line. If B is a two-output

instruction and connects to L1 and L2 , then both [B,L I) and [B,L 2) are used

to describe the optional branches which can be taken.

34

The procedure which has been described can be illustrated by a flow diagram

of a very simple program. In Figure 1 is a combination of a code listing on

the right and a flow diagram on the left. Numbers refer to the instructions

listed. The program is designed to process a sequence (one or more) of lists,

with each list consisting of "test scores" augmented by the number -1 (which

is not a test score); the last list is further augmented with a -2 (for HALT

purposes). The program tallies the numiber of scores within each list

which are at least as large as 70 (passing), and also tallies the total

number of passing scores within all lists (the Grand Sum).

To continue with the description, it will be seen in Figure I that the

first connection to a branching instruction is made at instruction number 3.

From 3 the branch taken is determined by the predicate (X=-2) and how the

input to 3 (carried out of 2) values it (true or false). Thus, instruction

number 3 is connected to 14 and to 4, as potential (operating) successors

to 3. In the same way, 5 as a branching statement connects to 6 and 10.

A variation of the technique which is usually employed, characterized

by connecting "nodes" (representing sets of instructions) is proposed here.

Emphasis in this variation is on the branches which emanate or terminate

with branching instruction, and, in fact, the fundamental or "atomic"

element in the representation of a program is taken to be a segment or

string of instructions between two branching instructions. More precisely

a segment is: a sequence of instructions starting with either a START, o;,

a branching instruction, and ending (but not inclusively) with the first

subsequent branching instruction, or a HALT, in which particular case the

segment is considered to include the instruction which ends it.

As an example of the way segments are developed, the flow diagram in

Figure 1 is analyzed:

=, [1,2,3)

S [3,14,15)
S 3 =[3,4,5)

S 4 -[5,10,11 ,12,13,3)
S [5,6)

S [6,8,9,5)
5 7 =[6,7,8,9,5)

MC~P~kL D4N4,&35

dr

I I GSUM- 0

2 2 READ X

3 3 IFX=-2GOTO14

4 4 SUM-0

5 5 IF X -1 GOTO 10

6 6 IF X < 70GOTO 8

7 7 SUM + SUM- I

8 8 READ X

9 9 GOTO 5

10 10 PRINT SUM

11 11 GSUM + GSUM -SUM

12 12 READ X

13 13 G070 3

14 14 PRINT GSUM

15 15 HALT

Figure 1. Test Scores Program an.I flow Diagram

36

The distinction between brackets and parentheses is important and has

been noted. The only cases where square brackets are used on the right are

those in which the last instruction listed is a HALT (number 15 in the example).

Any particular set of values (for the coordinates) of the input vector

(point in the input space), causes exactly one sequence of operations to be

executed. These segments linked together form a logical path through the

program. This is also called an execution sequence.

It is useful to modify the term logical path with the work realizable

when input data can cause it. Before data is entered, possible (or feasible)

logical paths can be formed by any concatenation of contiguous segments which

have the START-segment first and end with a HALT-segment. In the case a

program has self-contiguous segments (loops) or one or more concatenations

which join end-to-end, the number of (possible) repetitions of the joined

segments is arbitrarily large - except where a predetermined number of

traversals are specified in the program.

The following sequences of segments in the program of Figure I are

illustrative of some possible or feasible logical paths:
S1IS2
SIS 3S4S2

SI S3S5S7S4S2

The first path is of minimum possible length, linking, as it does, the

START - and HALT - segments. The last two are interesting in that they

exhaust the collection of segments (but not the logical paths).

In order to determine realizable logical paths, the documentation or
"program writeup" must be considered. In this simple case it is very easy

to establish data which will realize the flows represented by the last two

sequerxes of the above list. (It should be noted that insofar as testing

to the instruction-level only one of these two need be driven but to obtain

sement or branch-level testing, both need to be tested).

37

L I-ft

If for example the data sequence (stacked)

x = 35, -1, -2

is employed, the next to the last sequence of the above list describes the

flow, and for the "stack"

x = 75, -1, -2

the last sequence describes the flow. The two stacks together provide an

exhaustive test of the segments of the program.

Moreover, a single sequence 35, -1, 75, -1, -2 would also produce an

exhaustive test of the segments with the sequence SIS 3S5S6S5S7S4S2. While

these do not exhaustively test the realizable logical paths (which, without

further explicit restrictions, are infinite in number), it is well to note

that the complete segment-testing partially accomplishes one of the major

purposes of case selection, that of exercising all instructions so as to

uncover incompatibilities with the machine and other errors.

This limited form of testing brings up a very interesting and very

obvious observation that is true for any program represented as a collection

of segments: if a program consists of k segments, and every segment can be

exercised by some data point, then only k data points are required to

exhaustively test the program in the segment testing sense. This is of course

very useful in the case that an interactive or communicative mode of testing

is employed.

3.1.2 Extension to Testing for Track Coverage

Under AFOSR contract AF 44620-74-C-0008, MDAC developed a model which

employs random numbers as input data, and, on the basis of the trial numbers

on which "new" logical paths are driven by the input data, estimates the

asymptotic, or eventual, level of testing achieved with random numbers.

The basic analysis mechanism is the original Jelinski-Moranda model

(Reference 22). The measurement used in the model is the number of trials

38
*C@~LLU1NJI /~.

occurring between the discovery of new logical paths (rather than times

between errors which comprised the raw data for the estimation of residual

error content in the original application of the model).

There is another relevant use of this same model. If the probability

law governing the selection of input data is known, then the coupling of

information derived from sampling with universal (a priori) error rate data

will permit an estimate of the operational reliability of the program. This

procedure, also developed under the same AFOSR contract was reported in

Reference 23.

A second model employing program or software input data for analysis, is

due to TRW (Reference 24). In essence, this model uses a subdivision of the

input data space into equivalence classes, each characterized by the

particular logical path exercised by all of its members.

This subdivision was suggested earlier by W. Howden (Reference 7) and

also by B. Elspas, et al., (Reference 8). In applications the TRW model his

been used in the estimation of software reliability. The estimate is derivea

by composing the assumed-to-be-known probability that each subdivision is

employed, with a sample-derived conditional probability of committing an

error when the subdivision is used. The problem in the application of such

a model is the difficulty involved in the formation of the subdivisions,

confirmed by almost everyone who has attempted to work from a specified

logical path to the descriptor of the input data associated with it. Another

deficiency occurs when the model is used for estimation because, a permanent

program is assumed which does not change to remedy the found errors. The

problem of precisely carving out the equivalent classes is a severe barrier

to application of such techniques. It is probably better to avoid the problem,

as done in the application of random numbers described in Reference 1, or by

using techniques like those described by W. Miller and D. Spooner (Reference 3).

The use of random numbers as inputs to a software package has fundamental

limitations. For example the occurrence of an input which takes on a zero

value is essentially impossible and this input, and others of a similar

nature, must be supplied to produce a set of inputs which will achieve such

values.

39

AWDEAEI

Nevertheless, as shown in earlier work (Reference 1), the fundamental

limitation can be numerically estimated for a given program on the basis of

the set of logical paths effected as a result of random drivers. It can be

said that the number found in this way is an always fair and often an

excellent bound on the total number of logical paths which are ever actually

exercised.

The work of Miller and Spooner avoid these problems with an elegant

substitute: instead of attempting to solve, in the input data space, the set

of equations (or inequalities) associated with a specified logical path, they

insert a new set of variables, one at each branching point in the program.

An objective function of these variables is chosen so that when its functional
value is positive, the input data is in the equivalence set associated withI
the specified logical path. This method employs standard procedures from

the field of system optimization, starting with a randomly chosen initial

point in the input domain.

For additional background, a review is made of the means of representing

the flow graph by a connection matrix. As noted in prior work the matrix is

constructed by assigning a 1 or 0 as an entry, according to whether or not
there is a connection between the nodes (or segments) corresponding to the

associated row and column of the matrix. A simple way of visualizing the

problem of exhaustive testing can be posed in matrix format. Since a

connection matrix C is a descriptor of potential links between segments, the

execution sequence in response to an input data value x, (in most applications

xis a vector instead of a scalar), can be associated* with a submatrix of

C, say S1. Since C is finite, the problem of exhaustive testing can be

framed as follows: for C a given connection matrix find a set x, 9..xm
so that for the associated submatrices S1,S 29 .. .S

m
C =B S.i

i=l

*As discussed in Reference 1, an execution sequence can be mapped to

submatrix by ignoring the ordering of its branches. This is valid only
because of the definition used here f - exhaustive testing.

40

WA7D@WOWOLL 00"0"~~

r where

m
B Si
i =1

represents the Boolean union or sum of the S..* (This essentially defines
the nature of exhaustive testing at the track level).

An efficient test would be one in which the number of test points,
m, is minimal.

As noted above, essentials of the process involve associating with each
decision point (two-way) or predicate within the program, a function which
has a non-negative value when the predicate is true, and negative value when
it is false. In many cases, such as comparison between program variables
by inequalities, the expression in the predicate can serve directly to define
the function. If, for example, there is a test P<Q, then the variable
assignment, or function, C=P-Q, can be used. Since the functions are
relations among variables, they, can be considered to be program variables.
By forming variables of this kind at each branch point, the program is
augmented in such a way that, in response to an input data set, an execution
sequence will take place in which values are given not only to all program
variables but also to the augmenting variables, which, as noted, are program
variables.

Because the signs (+ or -) of the augmenting variables, set up a unique
pattern for any input data, they can be used to define the equivalence
classes mentioned above. It is noted again that in the formation of the
equivalence classes the ordering of the sequence has been ignored.

In a different mode of usage, the sign of each of the augmenting
variables can be specified in advance, and a point (or region) in the input
data space causing this pre-specified pattern of signs can be sought. By
assignment of any of a number of simple objective functions of the augmenting
variables, with properties described subsequently, the problem can be stated
as a search problem generally identified with optimization problems.

41

Generally the search is made to find data which will make the objective

function positive; it is not necessary to achieve a maximum for the objective

function, only that the value of the function be positive. This problem is

much simpler than the optimization problem.

The technique due to W. Miller and D. Spooner (Reference 3) is

illustrated by their example shown below. Their description of the example

has been augmented in several ways.

The problem of the example is one of triangularization of an NxN matrix

by Gaussian elimination.

The original code is shown in Figure 2. A combined flowchart and code

with predicates and branches identified, is shown in Figure 3. The predi-

cates, shown enclosed in rectangular boxes are attached to the node represent-

ing the site of their occurrence. The augmented code employing the functions

associated with the predicates, is shown in Figure 4. The input data to the

program consists of the nine matrix entries: A(l,l),A(2,1)...,A(3,3).

IP(N) - 1
DO 6 K - 1,N

IF (K.EQ.NI GO TO 5
KPI = K+I
M=K

DO1 I -KP1,N
IF (ABS(A(IK)).GT.ABS(A(M,K))) M = I

1 CONTINUE
IP(K) - M

IF(M.NE.K) IPN) = -IP(N)
T - A(M,K)

A(M,K) - A(K.K)
A(KK) - T

IF (T.EO.O.) GO TO 5
DO 2 I = KP1.N

2 AIK) - -A(I,K)fT
DO4 J =KPI,N

T - A(MJ)
AIMJ) = AIK.J)
A(KJ) = T
IF(T.EQ.O.) GO TO 4
DO3 I-KP1,N

3 A(I,J) - A(IJ) + A(IK)T
4 CONTINUE
5 IF (A(K,K).EQ.O.) IP(N) = 0
6 CONTINUE

RETURN
END

Figure 2. Coding for Example Progran"

42

SCR34
#P(N)

DO 6 K IN

T

F KP1 - K+1
M - K
DOI I KPIN

F
ABS(A(IK)) > ABS(A(MK))

TRUE
M - I

1

W(K) M

F

TRUE
INN) ANN)
T - A(MK)
A(MK) - A(KK)
AIKK) - T

T

- -
F

DO 2 1 KPIN

A(1,K) -A(I.K)rr

2

D04 J - KPIN
T - A (MJ)
A(MA - A(KA
A (KA - T

T

F

DO 3 1 - KPIN
A(1,J) - MIA) + A(I.K)*T

3

4

5 A =KK) 0
F T WIN) 0

6

Figure I Combined Flow Chart and Code of Example Program

43

Formation of the augmented code is accomplished by making a straight line

pass through the program under the assumption that the predicates inside the

DO loop 1 are all true, and all of the rest are valued false. It is noted

that the test results denoted as K=N, are governed by the input assignment

to the matrix order, N, here taken in the example as N=3. There is a "false"

valuation until K=3. These valuations are implicitly made in the construction

of the program into a straight line representation. Similarily the tests,

denoted as M=K, are completely determined by the tests in the DO loop 1 and

do not explicitly show in the augmented code; they are used to develop the

straight line code.

The variable Cl, shown on the first line of Figure 4, is positive if the

predicate, ABS (A(2,1))-ABS (A(l,l)), is true; and this condition has been

specified as holding, since the predicate is in the DO loop 1. A similar

remark applies to C2 and C7 in the straight line listing because they are

repeats Df the same test encountered under new conditions. On the other

8CR34
c1 . ABS(A(2.1)) -ABS(A(1,1)) > 0

C2 = ABS(A(3.1)) - ABS(A(2.1)) > 0
T - A(3.1)
A(3,1 - A(1,1

A(1.1) - T

C3 . ABS(T) > 0

A(2,1) - -A(2,1)T
A(3,1) - -A(3.1)rT

T - A (3,2)
A(3,2) - A(1.2)
A(1.2) - T

c4 - ABS(T) > 0
A(2,2) - A(2,2) + A(2,1)*T
A(3,21 - A(3,21 + A(3,1)T
T - A(3,3)
A(3,3) A(0.3)
A 1,3) - T

C = ABS(T) > 0

A(2,3) = A(2.3) + A(2,1)'T
A(3,3) - A13,3) + A)3,1)*T

c6 ABS(A(1.1)) > 0

C7 - ABS(A(3,2)) -- ABS(A(2.2)) > 0
T - A(3.21
A13.2) = A(2,2)

A(2.2) = T

C8 ABS(T > 0
A(3.2) = -A(3,2)/T

T - A(3.3)

A(3.3) = A12.3)
A(2.3) - T

c 9 = ABST) > 0

A13,3) - A13.3) + A(3,3)"T

C10 - ABS(A(2.2)) > 0

C1 1 ABS(A(3,3)) > 0

Figure 4. Augmented Code for Example Program

44

hand, the two tests shown in Figure 3, denoted as T=O, are taken to be

false on each encounter, and the value C3, C4, C5, C8 and C9 will all test

positive if the false branches are to be taken. (Since it is only required

that T be non-zero, the C's could also be chosen to be negative, but the

analysis is tailored around positive valuations.)

It is, of course, possible to express the C's to explicitly relate them

to the input data. This was done by Miller and Spooner threading back from

the predicate, where variable is defined, through intermediate assignments

to the original input data. This is fairly simple because the program is

straight-lined. The technique is illustrated by a detailed analysis of the

auxiliary variable, C7 . In terms of program variables

C7 = ABS (A(3,2))-ABS(A(2,2)),

and these can be traced through the calculations and assignments as follows:

substituting for A(3,2) and A(2,2),

C7 = ABS (A(3,2)+A(3,l)*T)-ABS(A(2,2) O+A(2,1)*T);

then, since only A(2,2)0 is input data (and is marked by a superscript, 0)

further backing is required; since T = A(3,2)0 at this point in the proqram,

and A(3,2)0 is input data, the expression can be written

C7 = ABS (A(3,2)+A(3,l)*A(3,2) -ABS(A(2,2) +A(2,1)*A(3,2));

but A(3,2)=A(l,2)0 , A(3,l)=-A(3,l) /A(3,1) 0 and A(3,1) in the numerator is

equal to A(l,l) O. These and similar substitutions provide

C = ABS{A(I,2) 0 - (A(l,l)0/A(3,1) 0)*A(3,2)0]}-ABS{A(2,2)
0

7

-[(A(2,1) /A(3,1))*A(3,2)] .

This is an explicit representation of C7 in terms of input.

This illustrates the difficulties in attempting to relate logical paths to

input data. 45

Cf--ELL-ap

Although this process is feasible for simple programs, and in many respects

resembles symbolic execution in"reverse, it presents the same difficulties

accompanying the development of equivalence classes. An alternative is to work

forwardly from the input data to valuations of the C's, and their associated

predicates. In this procedure, for properly picked input, all of the C's will

be positive and the execution path will proceed along the prespecified path.

The new problem is then one of searching for areas rather than solving for

points. These may seem to be problems of the same order of difficulty but they

are not. In general applications the searching process need not proceed to the

same level of definition that the solving process does. An analogy can be made

with polynomial evaluation: it is far easier to locate a point where a

polynomial is positive, than it is to find a root for the polynomial.

3.1.3 Test Techniques for Segment Coverage

To illustrate some of the characteristics of the test techniques employed

the problem discussed above is taken in the framework of the flow diagram of

Figure 5. The node numbers shown are in a 1-1 relation to the instructions and

labels of Figure 3. DO-loops are easy to identify by the letters E (end) and S

(stay), emanating from the end of the loop. The predicates are also easy to

identify by means of the T and F letters labelling the exits. The DO loop, for

example, starts at node 6 and ends at node 9, similarly the D06 loop starts at

2 and ends at 31. The specified path for the sample problem can be identified

in Figure 6. All predicate valuations (that are input dependent) are false

except the one inside of the DO loop. Both True and False branches were

shown to be taken of the nodes 3 and 11, corresponding to the predicates

R and [RI3II] . These are not assigned auxiliary variables but are used

to straightline the program; as a result they are permitted either predicate

valuation.

Miller and Spooner employ several "objective" functions, generically denoted

f(Ci,C 2,...Cm); each has the property that f>O, when one or more of the C's is

negative, and f>O when all of the C's are positive. As an example, the function

F(C C 29 ...,Cm)=min(C-,C2,,,C

would serve for that purpose.

46

C14

CY) 0
C14 C14 c

NS

U..

47.

ACDO~PJEE

D L

w~,

.ul
wa-IG-

CJ CLU) C
ZO

UOZ LO

<Lu- N

11 UU
Z Co a _jLL .>- Z <ih < r- L
0 3: U,

LU.

ACVWUELL

The problem at hand, then, becomes one of searching over the input data

space for values where f is positive for the specified execution track. In

the example problem, Miller and Sponner start the search with a "randomly"

chosen matrix

A0
3

1

which produces f = -2

Using direct search methods, they derive a data set

F0.3857 18.62 1.01
A = 0.6268 -13.865 1.0

1.439 1.0 5.

which makes f=0.2411. According to Miller and Spooner, this is accomplished

in less than 1 second of CPU time on an IBM 370/168. The resulting coverage4

of the program is indicated in Figure 6. Because of multiple passes over

some portions of the program, depiction is less than perfect. The specified

path, however, is achieved by the data.

The usefulness of this procedure is best appreciated when used in

conjunction with a combination of the "random" drivers, suggested in the

earlier work, augmented by constructed cases. The latter cases, are designed
to "fill-in" for data that were taken so infrequently by random numbers that

they make the former process uneconomical.

For illustrative purposes, the initial input data is taken as the "random"

* matrix, used by Miller and Sponner to start the process. For this matrix as

* input, the FALSE branch out of 7 is taken at least once. Thus, the "random"j start exercises a path segment which the "optimum" data does not.

:49

ACD@WELL DrEOMc

The predicates II are not true unless the zero-valued matrix elements.

If the 3x3 zero matrix is used for data, all tests T=O, as well as the final

A(K,K)=O are true, and the constructed case produces the execution track

shown in Figure 7.

Additional tests for programs can often be suggested by some built-in

symmetrics in the problem. Thus, for a short problem it can be generally

assured that when input data is permuted, the resulting execution tracks will

be different. When a polynomial solver is employed it is well known that a

set of symmetric relations, involving the roots, define the coefficients of the

polynomial. Further, there are relations between the coefficients of a

polynomial and the polynomial whose roots are shifted, squared, and inverted.

In the present instance of a matrix triangularization, the interchange of two

rows can be expected to cause a different response.

As a matter of interest, when the matrix obtained by the optimization

process is used with its Ist and 2nd rows interchanged, the resulting track is

shown in Figure 8. The False branch out of node 8 is taken on the first entry,

and the True branch on (one or more) subsequent passes. (In the particular

sequence of tests employed, there is nothing new added by this test).

For the simple problem illustrated here, all segments of the program

are tested by the three cases consisting of the starting "random" matrix, the

zero matrix, and the matrix obtained by the optimization procedure.

The method suggested in the illustration leads to extensions of value

to the general problem of exhaustive testing. As noted in earlier work, the

problem of testing a program, only to the point where every instruction and

every branch has been executed, is generally a computationally small enough

problem making it feasible for almost any program. This is true basically

because, for a minimum with k predicates (two-way), there are no more than

2k data points required to "test" the program in this way, whereas there are

as many as 2k differential logical paths (many more if loops are permitted).

50

C44

10C4

CA0

U.$

LL2

U..
Mg

51

mC"OOOECL " O

I.b
co o

(D N

co U) a
(a U-

N~ co

(p 1%
CA)

LO-

CAC

*4
V

C

E
IA.

52

For the general testing problem, a sequence of random numbers or vectors

many be used to develop a set of tracing vectors whose components represent the

Boolean valuations of the C's. These runs would generally be both inexpensive

and, because they are the first to be employed, would be of high yield. After

a reasonably large set of random numbers have been run, the set of associated

vectors (as distinct from the values of the auxiliary function exemplified by

f in the above discussion) can be examined.

Except for cases where predicates involve equality between expressions

involving program variables, the vectors can be collected on the basis of com-

ponent comparisons. Thus, if there are both zeros and ones* in the first

component position, the testing has "exhausted" the cases provided by the first

predicate.

A simple sorting procedure will identify unexercised branches. In case

specific predicates are not represented by both "true" and "false" values,

the process described above can be used to search for data that will force

the program in the desired way. Should there be neither valuation, the same

general procedure can be used initially.

It is possible in this scenario, that the so-called "scaling problem", a

result of non-common scales on the variables involved which tends to confuse

some optimization problems, can be used to advantage in the case of a search

for data to exercise a specific branch. For example, if a variable associated

with a predicate is more sensitive by multiplication or division of appropriate

factors employed in its definition, then strong responses will occur with only

small changes in input. A sequence of applications of such factors to each

localized variable would, probably, produce good coverage.

3.1.4 Test Techniques for Trac' I-'..i _overage

The major use of the above technique is in establishing exhaustive tests

for a given program package. The utility as a software metric is clear. As

*A blank would indicate no test.

53
ACD rEMSLL D4MO&4 I

noted in Reference 1, one quality of s.dtware having universal appeal, is the

degree to which a problem has been testel. Ideally this would be measured in

terms of the ratio of the number of logical paths executed by all tests per-

formed on the package, to the total number of paths present. However, the

latter is almost never known, and there are many non-realizable paths which are

not apparent; even the realizable ones may not be easy to enumerate. Thus the

more easy to obtain ratio is a substitute.

Reference I describes the method of estimating the total number of tracks

realizable by random numbers. This method depended on the development of the

count of the number of trials between discovery of new paths. An asymptotic

limit to the total was then developed on the basis of an algorithm. This

technique could be applied to individual branches or to any selected set of

branches. Some measure of the degree to which a program has been tested

may be developed from the combination of the yields obtained by using

constructed cases and from application of random numbers. In specific

production-type applications, studies of so-called impossible pairs may be

made but for development of a universal metric, such a fine-grained investi-

gation is not warranted.

In order to automate the track-level testing procedure several

modifications to the APTS were made and a post processor of data was

programmed.

First, the algorithm which obtains the estimated number of tracks

through a program obtained by using random numbers as program drivers was

programmred as part of a post processing routine. This problem had been solved

in principle, but implementation of it heretofore had been effected by the

tedious process of desk checking segment usages against all past usages.

The selection of random values for the input variables (real or integer)

provides the set of values for one run. The procedure employed for estimating

the number of tracks that will be exercised requires a number of executions

and comparisons. In the automatic version, the track that accompanies one

input data (random) selection is identified in terms of a zero or one assign-

mient to the arbitrarily ordered set of segments which comprise the list of

54

segments: a zero for nonusage and a 1 for one or more usages. (Two paths

which differ in their nonzero counts of the usages of segments, or in their

order of execution, are considered to have the same track).

In the implementation of the estimation process, the above outlined initial

portion is followed (in the postprocessor) by a routine which compares the

sequence of binary n-tuples (one "ordinate" for each program segment) in

order to accomplish two things:

A. Establish whether a newly examined track is the same as some track

earlier examined, effected by comparing the n-tuples ordinate by ordinate

against all previously taken tracks,

B. Marking the trial number of the current track by a zero or 1 in

accordance with the results of the comparisons, a zero if an "old" n-tuple

has been found and a 1 if the examined track is new.

The data for the estimation procedure consist of the pattern of O's and

l's obtained in the above comparisons. The primary observable consists of the

total trials between adjacent l's. These spacings between l's are reported

as XV, X2 , Xn and represent the difference in the indices representing

trial numbers: X is the separation between the first trial number (by defi-

nition, the first trial results in the first new track) and the trial number

which produces the second new track (usually tFis separation is 1 because of

the high likelihood that a new data set will produce a different track); X2 is

the separation between the third and second new track, etc.

With data X,, X2 0...,Xn obtained by running the program over T trials,

the number of new tracks is estimated from the equation

n
Y_ 1 - nT

_ l n T
N-(i-l) = n

NT - E (i-l)X.i=1 i

where N is the unknown, X. are as defined, T is the total number of trials and

n is the number of Xi employed.

The augmented version of PTS achieves this entire process of comparison and

estimation automatically.
55

&MVDOrEWELL C0L

3.2 APPLICATIONS

3.2.1 Air Force Logistics Model--ORLA

In order to avoid the algorithmic-type programs previously studied,

programs which are more typical of those encountered in the field were

reviewed, specifically the Air Force Logistics programs were reviewed. Inspec-

tions of several programs were made for the purpose of selecting a useful

candidate for coverage testing. A review of the MOD-METRIC model revealed

a very complex program which would have provided an excellent candidate because

of the diverse modes which can be exercised. However the fact that documen-

tation of the FORTRAN program is almost non-existent in the mid-levels of

documentation (between the overview, on the one end, and inserted comments,

on the other), the program was passed over. The LSC (Logistics Support Cost)

model was not selected because it consists of a set of rather simple algebraic

formulas. Another model, LEM (Logistics Effect Model) is not yet widely known

in the Air Force, and primarily was eliminated for that reason. The Air Force

LCOM (Logistics Composite Model) was investigated and while its basic or

underlying language is FORTRAN, it has a language of its own and is not there-

fore suitable for analysis. Another difficulty with LCOM is that production

runs with that model would cost far in excess of any contemplated expenditures

for the testing task which was planned. This is so because the model relies

on simulations with an underlying SIMSCRIPT II program, to produce Monte Carlo

based statistics of operational parameters. The program with greatest poten-

tial among those investigated is commonly called ORLA (Optimum Repair Level

Analysis). The particular version employed was written by 0. R. Johnson of

Warner-Robins Air Force Logistics Center.

ORLA employs costs associated with the acquisition, logistic support,

and replacement, or airplane subsystems. Three options are generally con-

sidered in an ORLA analysis: discard at (suspected) failure of the subsystem;

repair of the failed subsystem at the base (home airport), or repair at an

Air Force depot (generally supoorting several bases). Some 11 different cost

components are involved for the latter two options, while 3 cost components

comprise the discard option total. Although computations are not complex,

and, indeed, the cost components are simply algegraic formulas, the so-called

sensitivity analysis presents some interesting complexities and decisions.

56

WC001VEL& OIOA

The aim of this sensitivity analysis is to determine (to the nearest 1% of

the baseline value) the point at which the nominal decision, derived from
the baseline values, will be reversed. This is accomplished for any choice

from the 17 different input factors, and it provides, as the name indicates,

a measure of the sensitivity or stability of the decision in the face of

possible changes in or misestimation. The sensitivity analysis is flow-

charted in Section 3.2.1.1 where the application to the ORLA program is

illustrated.

3.2.1.1 Segment Level Coverage of ORLA

The main ORLA program consists of 488 lines of FORTRAN code (each branch

of branching instructions are counted). Briefly the components of ORLA can

be described by the following: Initialization (about 15 instructions); Read

Constants (64); Compute Failure Rate (59); Computation of Aerospace Ground

Equipment Usage (66); ORLA Variable Identification (34); Economic Analysis
(33); Write Summary (15); Computation Routine (58); Rank Economic Values (2?);
Sensitivity Analysis (93); Write Repair Summary (12). (In addition three
peripheral and non-essential subroutines are included in the program: two

are merely messages for the user in case he requires explanations of the
program, the third is set of error messages in case of inconsistencies in
the data. These subroutines are not included in the discussion which follows.)

A listing of an APTS-augmented ORLA is given in Appendix A.

To drive the basic ORLA a total of 54 variables are employed. These

variables provide descriptions of all the logistics involved in acquiring,
shipping, repairing, maintaining, and resupplying an aircraft subsystem.
Included are variables which represent overhead, such as, training of main-
tenance personnel, management of iP entory, and facilities. The 54 variables
are divided into 2 main classes. First a set of 36 variables describe the
rates which hold or are projected to hold for the time of the analysis, the
force size and deployment scheme, labor and material rates, and so forth.
In addition to these, a second class bears directly on the item or subsystem
analyzed (ORLA'd); there are 17 variables in the class and they describe,
cost and weight of the subsystem and its parts, repair time, and the docu-
mentation, training, and special facilities which are required for the item.

57

...
.

In addition to these basic variables there are 10 additional variables

which are derived from intermediate computations which rely either on keyboard

entry (of parameters relating to the MTBF) or on sharing of resources by

several items (AGE or test equipment which is employed or several different

subsystems of the aircraft for example). The reason for identifying them

with the input variables is that they also can be subjected to the sensitivity

analysis.

As noted earlier the ORLA program employs the input values associated

with a given item and computes the costs which would be incurred under the

three options (discard, repair at base, repair at depot). On the basis of

the three ranked costs the optimum or least cost repair level can be determined.

Although the numerical values of the costs of the various components of cost

are printed out and an indication of the assurance or firmness of the decision

which the program makes can be made from these magnitudes, a better measure

of the firmness of the decision can be made by use of sensitivity analyses.

Each run a set of up to 10 user-selected variables can be identified for use

in this analysis. As noted before, the primary purpose is to determine, from

variations in the costs due to changes in the selected variable, the point

(a percentage of nominal value) where the decision based on nominal or baseline

costs is reversed. This is determined to the nearest percentage on the range

20% to 500% (1/5 to 5 times nominal). Should no change in decision occur

over this range, the decision is clearly stable with respect to the variable

inspected.

Certain variables are known to affect certain options more than others

and a user wishing to test for coverage could be guided by this a priori

knowledge. Some of this kind of knowledge is also used in the construction

of cases which are discussed here. This is countei to the mode which would

be used in the final testing scheme where it is assumed the user is unaware

of the relationship between input and any particular program segment. In the

final version each variable would be varied at random to provide an initial

coverage; subsequent coverage would be initiated by a specification of a

program path or track, then continued by invoking a search procedure on the

input data, and hopefully consumated by an identification of a point which

58

produces an execution which includes selected path or track. Because the

status of the study has not progressed to the point where automatic insertion

and data generation are possible the procedure used in the example relies

on knowledge of the program.

It is cumbersome to illustrate the usage of APTS on the entire ORLA pro-

gram, but a good indication of the way APTS can be applied in static analysis

can be provided by use and inspection of a compact portion of the listing.

In Figure 9 is a flow chart of the portion of the program called Reversal

Analysis. This is used in part of the sensitivity analysis to compare and

rank the costs of the three options. For convenience the ORLA program with

segments identified comprises Appendix A.

Application of APTS in static composition of segments from the coding of

the above identified program portion is effected by first numbering the instruc-

tions as shown in Figure 10. This shows the numbering in the leftmost column

and these are associated with the instruction on the right. Labels shown

correspond to the original listing and are employed in the flowchart of

Figure 9. Thus 396 corresponds to the labelled (215) instruction, JSEN(l)=KDT,

at the top of Figure 9, 415 corresponds to the predicate, NMl)-NUMJ(1Y=O,

which appears just after the labelled 310 CONTINUE instruction in Figure 10.

The APTS segmentation of the program in the above described region is shown

in Figure 11.

It is important to note that in most cases the segments are made up of

several of the PTS segments defined in Reference 1. Those segments were

truncated by labels, GOTO's, etc. Several other points require explanation.

First the segments identified with the bracket/parenthesis, start with an

instruction number which is either the start of the program or subroutine,

or a predicate (IF statement in most cases), the remainder of the numbers

in the sequence denote the instructions which will be executed in sequence,

the end of the sequence of numbers is identified by a number corresponding

to a predicate or branch point. Thus T I starts with the labelled instruction

396, then in turn by 397. 398, 399, 400 and ends with 401. The instruction

401 is an implied predicate, DOLOPED=TRUE . If the predicate is true

the next segment taken is T 3 which describes passage from the D0210 loop to

59

ENTRY LABEL 215 JSEN (ll - KDT

.SEN (2) - KFT

JSEN (31 - Kl?

D0210 0-1,3

210 NUMJ (1) 1

320
DO 310 18-1,2

K - 16 + 1

Ip k< 8 00 310 IZ -K. 3

NO YE E JE(B-S~I)C0

PCT PCT - pC7-
0.09 PCT + 0.09 306 HOLD - JSEN (IB)

JSEN 119) - JSEN IIZ)
JSEN (IZ - HOLD

OX - ORIG*PCT HOLD - NUMJ fib)

VAL (IC) - OX NUMJ (IB) - NUMJ |IZ)

QCTGM (IPASS) - NUMJ IZ) - HOLD

UE*UR*OPAMTBF 3__

ASSIGN 715* TO JUMP

TO TO -COMPUTATION28ROUTINE" 22

PC- - PCT -.1 23Wo

VAL (10) - IG

GO TO SENSITIVITY ANALYSIS*

0 715 'CHECK FOR REVERSAL-

Figure 9. Reversal Analysis

60

L4 D E 2 _O 5 3

REVERSAL ANALYSIS

396 215 JSEN(1) = KDT
397 JSEN(2) * KFT
398 JSEN(3) * KTT
399 DO 210 I 1,3
400-401 210 NUMJ(I) = I
402 300 DO 310 18 = 1,2
403 K - IB +1
404 DO 310 IZ = K.3
405 305 IF (JSEN(IB)-JSEN(IZ)) 310,310,306
406 306 HOLD=JSEN(IB)
407 JSEN(IB) = JSEN(IZ)
408 JSEN(IZ) = HOLD
409 HOLD = NUMJ(IB)
410 NUMJ(IB)=NUMJ(IZ)
411 NUMJ(IZ)=HOLD
412-414 310 CONTINUE
415 IF (NLXK(1) = NUMJ(1)) 320,228,320
416 228 CONTINUE
417 IF (IP-8) 322,222,229
418 222 PCT = PCT-.90
419 GO TO 2300
420 322 PCT = PCT-.1
421 GO TO 2300
422 229 PCT = PCT + .1
423 GO TO 2300
424 320 CONTINUE
425 IF (IP-8) 375,375, 360
426 375 PCT =PCT + .09
427 GO TO 340
428 360 PCT =PCT -.09
429 340 OX =ORIG * PCT
430 VAL(IC) = OX
431 QCTGM(IPASS)=VAL(31) * VAL(32) * VAL(46)/VAL(56)
432 ASSIGN 715 TO JUMP
433 GO TO 100

Figure 10. APTT Numbering for Program

61

. -CDOWELL 0
0

O.OLL

MDAC SEGMENT XLATOR

T1 [396-401)

T 2 [401,399-401)

T3 [401-405)

74 [405,412-413)
T5 [413,404-405)

T6 [413-414)

T7 [414,402-405)

T 8 [414-415)

T9 [415,424-425)

T10 [425-427,429-433,304-319)

TlI [425,428-433,304-319)

T12 [415-417)
[417,420-421,460-461)

T13 [417-419,460-461)
114

T15 [417,4220-429,460-461)

T16 [405-413)

Figure 11. APTS Segment Identification

MCOON4dNL U. 62

the D0310 loop, and continuation to the next predicate which is an explicit

predicate, JSEN(IB-JSEN(IZ)=0 . If the predicate is false, the segment T 2
is executed, with an initial 401, the entry or reentry into the 00210 loop

at 399.

Because of the selection of only a portion of the program, some segments

shown in Figure 11, such as T 10, list instructions which are outside the range

of those shown in Figure 10. The explanation for T 10 which will be given here

should serve for others as well. T 10 is made up of (425-427, 429-433, 304-319),
and it is the last group that is out of range. Instruction 433 is a GOTO 100

instruction and the APTS number 304 corresponds to the label 100, which is the

start of the so-called Computation Routine. This routine computes cost compo-
nents for the three options and the 304-319 segments is the initial segment

of that routine. A "return" to the portion which is displayed in Figure 9 is
at the end of the Computation Routine (at APTS number 355-not shown). There
is one entry point from the Computation Routine and that is at T 1. So far as
the local analysis is concerned T 10 joins to T 1. The original set of segments
can be tailored so as to exhibit only local connections by the above method.
So far as the illustration of technique is concerned, however, there is no
need to work at that level of detail.

Figure 9 shows the two major exits: computation routine (label 100 and

APTT number 304); sensitivity analysis (label 2360, APTS Number 384). The
program was -initially driven with a set of standard elements for one of the
Air Force's aircraft types and an imaginary subsystem. The program's pre-

selected variables were used in the sensitivity analysis (these correspond
to the size of the force being fitted, the number of hours per month the
aircraft will be used, the repair manhours, the unit cost, the Mean Time
Between Failures, the cost of depot AGE, and the cost of base level AGE).
The initial data exercised the segments listed in Figure 11 as follows.

Segment Number of Executions

T 1 118

T 236

T T3 118

*CDO4MEL abo~a~ 63

Segment Number of Executions

T- 241I
4

T 5 118

T 6 236

T 7 118

T 8 118

T 9 5

T 10 3

T 11 2

T 12 113

T 13 28

T14 4

1 15 81

For this arbitrary set of data all explicit and implicit predicates were

exercised. This complete (local) testing was fortuitous in a sense, for in

three successive runs with other data T 0was not exercised, while T19 and T 11
were not exercised in one case.

The static aspects of APTS are well illustrated by the foregoing. The

dynamic aspects can be illustrated by the results from four data sets. The

first or nominal is the set identified above, the second maintained the same

standard elements and changed one item parameter, the unit cost (from 3600 to

36). The third restored the unit cost to the original value and changed one

standard element, depot labor rate (from 12.44 to 1). The fourth changed

the turnover rate from 0.15 to 15.

Results over the entire 113 segments of the program show that the initial

choice of data was indeed exceptional, since 96.63% (86 out of 89) of the

segments exercised by the four segments were exercised by the initial set.

64

The change in cost by a factor of 100 (the second case) exercised two

segments not exercised by the first set and these correspond to predicate

branches caused by the re-ranking of the costs of the three options (discard

would be the least expensive). Similarly for the fourth set, a reversal of

the costs of depot and intermediate repair is effected by the extreme value

chosen for depot turnover.

Examination of the 113 segments comprising the ORLA program, shows that

24 segments were unexercised by the four simple cases. But, of these, 13

depend on choices which are prompted by the program; that is they are yes/no

responses to questions concerning choices as to whether the user wishes to

correct an entry, whether he wishes an explanation, whether he wants to run

a batch of several items, etc. In some cases these choices reflect into the

substance of the program and in others they stimulate isolated calls and

returns without exercising any computations. Of the 11 segments which remain,

all but four can be exercised with data.

As a very simple and brief explanation of the actual technique used for

constructed cases, and as a useful means of discussion of the automated version

of the process, the predicate, FEOQ<A, involving the two program variables

EOQ and A will be discussed.* The APTT post-processor tally usages of the

entire program shows that the true branch of this predicate is taken on every

encounter (1143 passages in the 4 cases). The code contiguous to the predicate

shows that the true branch corresponds to the inequality:

4.4 /A < A

or

19.36 < A

*These variables occur in the Computation Subroutine and represent Economic

Order Quantity (EOQ) and a "Pipeline" content (A).

/ 6

Again by use of other parts of the code, it is established that

A = 12.V 4 5.V48V31 .V32.V4 6/V5 6

where the V's are all input variables.

Thus the choice V45 = 0, among many others, will cause the false branch

to be taken.

It is well to note that in the contemplated scheme, random numbers would

be used over convenient ranges for all of the input variables, and, in this

case, the probability of producing an A value less than 19.36 would be

extremely high. Thus it is highly likely that the case investigated here

would not have arisen in the context of an unexercised branch at a correspond-

ing stage of testing, and in fact, when 100 cases were run this branch was

indeed executed.

Should a similar predicate branch be untested after an initial set of

data runs, the following procedure would apply. The augmenting program

variable C=EOQ-A would be inserted at the predicate site during the APTS pre-

processing. During each pass the value of C would be evaluated (in combination

with other inserted augmenting variables at other sites of predicates). Varia-

tions on the input data would be made according to a search scheme until a

point is reached where all augmenting variables have the desired sign - in

the present case, C must be positive.

The more extensive test of ORLA comprised a run of size 100. Several

interesting problems arose in the process of obtaining these runs.

Most of these problems concerned character string inputs. To test in a

random way, the variables of ORLA, the user must become somewhat familiar with

the sites where meaningful input is done, and what type of input is expected.

There are five types of input required by ORLA:

1) real variable containing either "yes" or
1no"

2) real variable containing real values

66

AO@P114PiLL £34NJL~

3) integer variable containing integer values

4) double precision variable containing an a8 string

5) double precision variable containing one of sixty-four possible

a8 string names

Because FORTRAN allows character strings to appear in all data types,

trying to recognize inputs and generate random values for them causes a major

problem. After the sites for inputs from the user were established they were

replaced by a call to a hand-generated input routine of the proper type.

It was decided to run one hundred test cases using the random inputs as

test values. The ORLA source program was pre-processed by APTS and compiled,

then linked to the random input routines. One hundred executions of the

instrumented program followed. For each execution, an output report was

generated by ORLA and a post-processor report was generated by APTT. A log

was also kept for each test case run. There were five types of run-time

errors that were detected by the FORTRAN run-time library.

1) Floating point divide check

2) Floating point overflow

3) Square root of a negative number

4) Integer overflow

5) Illegal character in data

Each of these errors is not an expected output of the ORLA program. At

this point, an interesting point should be made about program testing. To

facilitate the testing of computer programs where there is a possibility of

run-time errors, either fatal or non-fatal, there must be a mechanism for

gathering the statistics that have been collected up to the point of the

error. Fortunately the DEC-l0 operating system has such a facility.

67

...... . . tfL_ & gI aI iOL -. L. L-- - - _ - , - .,,_.

After one hundred test case executions, only four segments failed to

be executed:

1) Segment 86 [457,461), To execute this segment there must be a

premature end of file on FORTRAN logical unit IWORK2. This appears

to be impossible because the loop which reads the data from this

file is controlled by a variable that is incremented for each

write to IWORK2. (See line 277.)

2) Segment 96 [199-204), To execute this segment the variable ITAGE

must be less than two and the AGE SUMMARY option must have been

selected.

3) Segment 98 [187,200-204), This segment appears to be impossible to

execute under all input values. If variable ITAGE is greater than

two and the AGE SUMMARY option has been selected then the loop

from statements 143 to 199 would be exited at statement 169 before

segment 98 has a chance to be executed.

4) Segment 104 [64-64,62-64), This segment was not executed due to

the restricted range of values selected for random input to varia-

ble IT. If the range had been expanded from (0,10) to (0,11) then

segment 104 should have been hit.

Thus segment coverage by the 100 test cases was essentially complete.

Two of the segments are apparently impossible to execute, and two require user

options which could be taken but were not. The comprehensiveness of the

random number testing is clearly demonstrated in this example.

3.2.1.2 Track-Level Coverage of ORLA

The 100 test cases which were used for the segment coverage testing were

also employed in the analysis of track coverage. This number turns out to be
inadequate for this purpose but the difficulties which were described in the

previous subsection proscribed any attempt at exhaustive testing. The fact
is that 98 out of the hundred tracks generated were unique. This relatively

simply formula-oriented program requires a test sample of at least 100 different

AW~IjELLIM~iLA~l68

- c - -- --

runs and as indicated below the probability is high that several hundred or

several thousand may be required. This is in stark constrast to the fact that

almost all segments have been covered.

For ordinary programs there would not be any problem for generation of

random input is "from the top" and can be inexpensively provided, whereas,

for the interactive ORLA, requests for input must be responded to by on-line

monitoring, resulting in constant attention and manual input of information.

Nonetheless, the procedure of track estimation can be well illustrated

by considering the initial segments of the ORLA, and sequentially increasing

its size from 15 to 75 in steps of 15. Estimates are made on these segments

to produce trend data.

In Table I (two parts) the segment usages of the complete ORLA program

are shown. This program consists of 113 segments in the main program. These

correspond to the first 38 octal numbers to the left of the arrow between the

38th and 39th number. Those to the right of the arrow represent subroutines.

Each of the first 37 octal numbers represents usages of three consecutive seg-

ments. An octal digit of 5 in the first position indicates, for example,

usage by the 1st and 3rd segments and non usage of the 2nd, a 7 indicates

usage by all three segments. This coding is continued, each representing

3 consecutively listed segments. The 38th digit represents a mix of the

112th and 113th segment of the main program and the first segment of the

first subroutine (which is immaterial).

It is noteworthy that the subroutines of the program have apparently

or probably been fully tested at the track level since the octal numbers

(in the 39th through 41st columns), 375, 777, 775, 377, 335, 001 appear to

comprise all tracks, with no new occurrences past the 36th run number.

As noted above the number of runs made could not serve to test the

entire (113 segments) program. But it is interesting to analyze the problem

from the bottom up.

a'

~ 60

Table I (Part I). ORLA Segment Usage Versus Trial Number

(Page I of 2)

QLOOP : 100

1 : 1 575677777777777777577777617755660757673750000000
2 : 1 775757777777773777777777775740000157667770000000
3 : 1 773677777777773777777777777757000700077750000000
4 : 1 573677777777773777577737617753760700063770000000
5 : I 777777777777777777777777777740000100067750000000
6 : 1 571677777577773777577737612751660757663350000000
7 : 1 777677777777773776177000007753000700067770000000
8 : 1 577677777177737777577777617751000700063750000000
9 : 1 571777777777773777777777736740000155663350000000

10 : I 775777777777773777577777617740000157667770000000
11 : I 575777777777773777777777777740000157663350000000
12 : 1 577357777757703736177000003640000100063750000000
13 : 1 771677777177737777377777537755000757777750000000
14 : 1 575677777777733777777777777757765757673750000000
15 : 1 571657777777733776177000005753000755663750000000
16 : 1 575777777577777776177000007740000155663750000000
17 : 1 575777777777743777777777777740000157663750000000
18 : 1 771677777777777777577777617755000757677750000000
19 : 1 577777777777773777777777777740000100063750000000
20 : I 571677777577773777401777755015000757673750000000
21 : 0 777777777777777777777777777740000100067750000000
22 : 1 571777777777743777777777757740000157663750000000
23 : 1 776263777577743776177000002653000700067750000000
24 : 1 575657777177733776177000003751000757663750000000
25 : 1 577657777577773777577777617753000700063750000000
26 : 1 575777777777773776177000007740000157663750000000
27 : 1 776277777577743777401777614653000700067350000000
28 : 1 573677777577773777777777773757000700073750000000
29 : 1 774777777577773776177000003740000157667750000000
30 : 1 571677777777773776177000007757000757673750000000
31 : 1 777777777577767777777777777740000100067750000000
32 : 1 777677777777767777577777617751000700067750000000
33 : 1 575677777577767777577777617753000757663750000000
34 : 1 573677777777733776177000006753765700063750000000
35 : 1 577677777777733776177000002753760700063750000000
36 : 1 570677777777743777777777773753760757660010000000
37 : 1 771777777777777777577777617740000157667750000000
38 : 1 771677777777737777777777773755000757677350000000
39 : I 577677777777773777777777757755000700073750000000
40 : 1 573757777577767777577777617740000100063350000000
41 : 1 773677777777773777577777617755000700077750000000
42 : 1 573677777777773777577777757751065700063750000000
43 : 1 7717777775777437775777775577a000157667750000000
44 : 1 775677777577777777777777737755000757677750000000
45 : 1 577677777777733776177000002751000700063350000000
46 : 1 775777777177733776177000007740000157667750000000
47 : 1 575677777777777777777777777757000757673750000000
49 : 1 570777777777733777777777777740000157660010000000
49 : I 573677777777733777777777777751065700063350000000
50 : 1 777677777757703736177000003751000700067350000000

iWC@ BLL OJL70

Table I (Part 2). ORLA Segment Usage Versus Trial Number
(Page 2 of 2)

51 : 1 773677777177733776177000007753000700067750000000
52 : 1 573677777777737777777777777755660700073350000000
53 : 1 771677777777737777777777777755000757677350000000
54 : 1 775777777777733776177000007740000157667750000000
55 : 1 575677777777737777577777617751000757663750000000
56 : 1 771777777577773776177000007740000157667350000000
57 : 1 571677777777773777777777777753000757663750000000
58 : 1 775777777777777777577777617740000155667750000000
59 : 1 773677777777733776177000007757065700077350000000
60 : 1 773677777577773777777777777751660700067750000000
61 : 1 771777777777773777377777415740000157667750000000
62 : 1 7756637717777733776177000002757000757677750000000
63 : 1 773677777177733776177000003751000700067350000000
64 : I 571677777177733776177000007757065757673750000000
65 : 1 573677777777767777777777773757760700073350000000
66 : 1 573677777577743777577777617755000700073750000000
67 : 1 573677177777773777777777777755000700073750000000
68 : 1 773777777577773777577737617740000100067750000000
69 : 1 777677777777773777577777617751000700067750000000
70 : 1 577677777777777777577777617755000700073750000000
71 : 1 571677777577777777577777617755000757673750000000
72 : 1 771777777777773777777777777740000157667750000000
73 : I 777677777177737777777777777755000700077750000000
74 : 1 575677777777773777577777617757660757673350000000
75 : 0 575677777777773777577777617757660757673350000000
76 : 1 575677777777777777777777737755065757673750000000
77 : I 571677777777743777777777777753000757663750000000
78 : 1 577677777577773777577737617757760700073750000000
79 : 1 7757777777777737761770000077400001576677500000C0
80 : 1 775777777777773777777777777740000157667750000000
81 : 1 777777777577777777777777733740000100067750000000
82 : I 777777777777737776177000006740000100067750000000
83 : I 575777777577777777577777617740000157663750000000
84 : I 571677777777743777777777777757000757673750000000
85 : 1 777673777777733776177000007757000700077750000000
86 : 1 577777777177733777777777775740000100063750000000
87 : 1 775677777777733777377777417757765757677750000000
88 : 1 573677777777733776177000007755660700073750000000
89 : 1 577677777777773776177000003751000700063750000000
90 : I 775777777577773777577737617740000157667750000000
91 : I 577777777777777777777777777740000100063750000000
92 : 1 775777777777733776177000003740000155667750000000
93 : 1 771677777777773776177000007757165757777750000000
94 : 1 773677777577773777777777777755065700077750000000
95 : 1 773677777577767776177000003753000700067750000000
96 : 1 777777777777773777777777757740000100067750000000
97 : 1 777777777577777777777777617740000100067750000000
98 : 1 775677777177727776177000007753000757667750000000
99 : 1 573777777777777777777777617740000100063750000000
100 : 1 777677777577773777777777777751000700067750000000
ALL : 0 777777777777777777777777777757765757777770000000

71/

The initial analysis on the main program was carried out on the first five

octal numbers (representing the 15 initial segments of the list of segments

shown in Appendix A). It is well to note again that the octal number 57567,

or binary l0lllllOlll0lll associated with the first run, means that segments

2, 8, and 12 were not exercised and all the rest were exercised. By comparison

of the first five numbers of each run with its predecessors the pattern of

occurrences of new (partial) tracks can be established. From this sequence

the X.'s of the algorithm can be established as

l= = 2 = 1

X = 2, X = 4, X16 = 4

X = 17 = 1 ; X = 2, X2 0 = 2

X21= 7, X2 2 =l, X23 =3,

X24= 4, X2 5
= 4, X2 6 =14

X27= 6, X28 = 31.

(The Sequence of Boolean symbols is not written because they can be recovered

from the Xi: 13 ones, 1 zero, 1 one, 3 zeroes, etc.)1I
The ratio E(i-l) Xi/EX in this case is 20.94, and the tables in

Appendix II of Reference 1, indicate that the expected residual track count

(by extrapolation) is less than 0.04 (notwithstanding the occurrence of a

unique track on the 99th run).

For the first 30 segments (i.e., first 10 octal numbers) the pattern is

X X2 X13 1; X = 2, X15 = 1 16 2;

X17 =1, X = 4, X = X20 = 21 = X22 X 23 = 24 = 1;

X25 =2; X26 = X27 = X28 =X 29 = 1; X30 =3; X31 1;

X32 = X33 2; X34 =3; X3 5 =9; X36 =X 3 7 2;

X38= 4; X = X40= 5; X = 7; X = 4= 1;

X44= 3; X45 8; X46 = X4 7 = 1

72

~eC U @~-- - -- --------~.

The ratio z(i-l) Xi/X i is 29.13 and tables for n 47 in Appendix A of

Reference 1, show that this corresponds to a residual count of 10.9 tracks.

In the context of the present illustration this means that there remain

10.9 tracks which will exercise the first 30 segments differently from the

way they were exercised in the first 100 runs and which will differ from

one another.

A very coarse approximation to the total testing required can be found

by multiplying the number of remaining tracks by the mean number of trials

between occurrences of the next track as provided by the entry for the MTTF

analog to this in the tables of Reference 1. In this case this meantime is

about 5.8 so that total testing will require in excess of 63 additional trials

(163 in all).

A better estimate can be obtained repeated use of the tables, in this way

the stretching out of the MTTF which occurs as new tracks are found can be

accounted for. Using the aforementioned tables this estimate for the addi-

tional trials 9 is

s = 5.6 + 5.7 + 6.0 + 6.5 + 7.0 + 7.7 + 8.5 + 9.9 + 12.0 + 16.6 + 30.1

115.6

where the individual terms are taken from the MTTF column of the tables for

n = 47 to 57. The refined estimate is that about 116 additional runs are

required.

For the 45 initial segments the separations between new tracks are:

X X2 . . X19 1; X20 3; X = 2 = 1;

X24= 2; X2 5 = 26 X = 1; X38 = 3;

X = 1; X40= 2 = X41 = 42; X43 = 1= X4 4 ;

X4 5 2; X4 6 X4 7 1; X48 =2; X49 X50 =X 5 1 =X 52 =l,

X53 =2; X = 1 = X55 ; X56 =X57 = 2; X = 1;

73

AfC"OW&L VOIJO .1I

X59 2; X60 =; X61 =3; X62 1; X6 3 3; X64 1;

X6 5 3; X6 6 =X 6 7 =l; X68 =3; X69 =1;

X70 2; X71 2; X72 1; X73 =; X74 = 75 1.

The pattern of separations of occurrences, produces an estimate of 95.5

(170.5 total) additional tracks, and a mean time to next new track of only 1.82.

The number of trials required to achieve perfection can be approximated by

the formula for MTTP for Section 2.2.3.2. In this case N = 170.5, o = 0.00576,

and

169 95

MTTP 170- i k
i=75 k=1

which can be approximated by the sum of the logarithm of n and the Euler

constant

MTTP - (In 95 + 0.57721

890

Thus 890 additional tests are estimated to be required for a complete test.

For the first 60 segments, the pattern of 87 Xi's, produces an estimate

of the undiscovered tracks of about 359, of 0 = 0.00217, and the total number

of runs required for a fully tested program is about

445 359

MTTP --I__ -= 1
M L.. 446 - i k

i=87 k=l

300

The analysis for the initial 75 segments produces 91 separation intervals,

with a pattern showing only 8 values of Xi differing from 1. These are all 2

74

and occur at the indices 21, 43, 51, 60, 71, 79, 82, 85, and 86. These

produce an estimate of N 1108, ¢ = 0.000857. Corresponding is an

1107 1016

MTTP -1 108 - i 1

i=92 k=1

8750

Naturally these later estimates are extremely weak with unquestionably

extremely large variances. The point with any such estimates is one of

determining the status of testing and gross estimates are sufficient.

The preceding sequence of tests clearly indicate by the increasingly

large value of MTTP that the testing required is extremely large, probably

in excess of 50,000 runs. And this is for track level testing on coverage,

not execution sequence coverage.

It is useful to note that the bottom row, denoted all, which shows in

each position the "union" of all octal tokens above it in the column, shows

segment coverage complete through 85 segments. (86 was noted before an

impossible segment.)

3.2.2 Comprehensive Testing of Matrix Triangulization Problem

The matrix triangularization example discussed earlier will be reexamined.

Directed graphs of the potential program flow, and a few examples of the

coverage by random numbers and constructed cases were given in Section 3.1.2.

Listings of the MAIN and TRIANGULARIZATION subroutine comprise Figure 12.

Appendix B contains tables and reports of the APTS output for three

separate test runs. The reports show the testing coverage provided by using

the user-described input routine INROUT. INROUT returns a new set of randomly

distributed over the logarithm in the range -2 to 1. The sign of the individual

data items is also selected randomly.

75

w &OaIO flfJiL4

ic

U,, V. r

tI C' I N

7

C_ eV, r

r- L .) - .4- C?'-

76IIa

III

If If 11C, 1

% ,.% . -o C)c

%- %t %w99C*

~12

-44 (L. p% q.4

0 b. In.II

T)
4

If 11 4fly Is 11 N ~ '.~~

+ 7f
f.AC@Wo-% %KALA

The first three cases of test run No. 1 (see Pages B-2 to B-4 in Appendix B)

show coverage of code for the MAIN program as 100% in the column marked Summary.

Subroutine TRIANG gets a summnary coverage of 86.96%. The remaining segments

to be tested are numbers 3, 12, and 16, as seen in the segment reference report

(Page B-3 of Appendix B). The segment reference tables are used to relate the

segment numbers and their corresponding program statement numbers together.

As an example, it is seen that segment 3 contains lines 34, 35, 36, and 37 in

subroutine TRIANG (see Figure 12). These lines correspond to:

IF(A(K,K).EQ.0)3 IP(N) =0

CONTINUE +* K = K+1 36 IF (K.LE.N)37 loop

(DO-loop termination includes an implied conditional branch)

Following the summary reports and the segment reference tables, the trial

statistics appear on Page 8-4, for example. These are the X. that are needed

to calculate the estimate of the number of remaining tracks. (Actually, more

than three cases are required for the estimation and the three entries on

Page 8-4 form only a part of the data used.)

Supplied as part of the testing package is a program that interacts with

the user and calculates the difference of the two sides of the estimation

equation in Paragraph 3.1.4 based on trial solutions supplied by the user.

To explain how the X. are formed, the formation of XIand X2will be

considered. Case 1 of run 1 (see Page B-2) shows the number of times each

segment of MAIN and TRIANG were executed. Since this is the first test case,

the first unique track is automatically formed. Case 2 of run 1 for TRIANG

(Page B-2) shows the same segments being executed (the number of executions

of each segment listed happen to be the same, but this is irrelevant, the

comparison is made on the basis of whether or not the segment was executed,

not on how many times) as in case 1, run 1. However, the MAIN routine shows

a difference in execution. Therefore case 1 and case 2 are different, so we

form XI= 1. This means that one case occurred since the last unique track.

If we compare case 3 of run 1 against cases 1 and 2 we also find a difference

in the MAIN routine (see segment 3 execution counts). This gives us our

third unique track. Hence, X 2 1, also, since only 1 case occurred since

the last unique track. 7

""" -/3(8

-- I

Continuing in this fashion, by comparing cases I through 9 (in Appendix B),

in order, we find unique tracks for cases 1, 2, 3, 4, and 8. (A summary of

the nine cases is found on Page B-iO.) The Boolean tokens associated with the

sequence are shown below:

CASE 1 2 3 4 5 6 7 8 9

NEW/ I 1 1 1 0 0 0 1 0
OLD(=1 ,=o)

X =l =l X4=4

By using the estimation equation, it was determined that there existed 9.1 new

tracks to be found.

Appendix C contains reference tables of the APTS output for a constructed

case. The constructed case shows the use of monitor variables (page C-2).

For constructed cases, the user is required to supply input data to the program,

and to supply the monitor variables. It is seen that the user-supplied input

is in the DATA statement in the MAIN program. Subroutine TRIANG shows the

use of monitors inserted into the program of branch points.

By analyzing the unexercised segments, 3, 12, and 16 of the three test

runs of Appendix B, where they are marked by asterisks in all three of the

segment reference tables (Pages B-3, B-6, B-9), it can be determined from the

listing that the variable T holds the key to exercising these segments.

Further examination suggests that if A[3,3] is equal to zero then segment 3

will be exercised.

Segment 12 requires variable T to be zero. For this to be true, A[1,l]

could be equal to zero or IA[3,2]f could be greater than IA[2,2](and A[1,2]

must be equal to zero.

Segment 16 also requires variable T to be equal to zero. This condition

will result if A[l,l] is not zero and A[l,2] is equal to zero.

These findings determined the initial values of A for the DATA statement.

By observing the segment reference for subroutine TRIANG, we find that seg-

ments 3, 12, and 16 have been executed and the test coverage is complete.
79

r 3.3 ADDITIONAL PROBLEMS IN COVERAGE TESTING

3.3.1 Formation of Execution Sequences

It is well to state at the outset that only the outline of this problem

has been established. The following paragraphs describe the background and

outline of the problem.

The use of tracks as proxies for execution sequences is in part necessary

and in part expedient. Tracks are necessary because one usually carnnot deter-

mine the actual sequence from a list of usages: with several entrances and

several exits from a node and a different usage number of-each, there is

usually no way to determine the actual sequence of the computation that would

produce the usage numbers. On the other hand, information often is available

which would allow the program flow to be determined in a gross or general way,

and that information heretofore has not been employed in our studies. It

would be helpful to program testers to provide a general sequence of the flow

resulting from a given input driver set.

To illustrate this, an example, depicted in Figure 13, shows the set of

executed segments and their counts as solid lines or arcs between all nodes

which were passed during the first data set employed on the ORLA program.

It will be noted that dotted lines are also shown emanating from certain of

the nodes which were passed. These are branches which were not taken on this

run; they would be important in coverage testing but can be ignored for the

present discussion. The flow of the computations can be determined unambigu-

ously only in the cases where a single execution is performed on a segment

and no other segment parallels the segment. For example, there is such a

segment joining nodes 355 and 263 in the central lower one-third of the chart.
This and others are highlighted in Figure 14, where they may be easier to

locate.

The general flow can be formed from the unambiguous segments which show
a usage of one. In one case, there are (at node 226) two segments, both with

a count of 1, shown exiting a node. But this particular ambiguous case is

easily resolvable (i.e., precedence determined) because the branch along

segment 13, joining nodes 226 and 483, joins to the exit (END), and so cannot

INWOLAI~ iso

CR76

0

2(0)_ 1 (1)

#0 10

3(99) 113(l)
16 401)

20

6(1)
5(17) 7(0)

11201)

66

801)

88(019(00

0- N~k' 15 153--- 226End
8910)(8 02

92(l)

263) 10(9 296 170o

-0 319-- - -80

CR76
0

2(0 1 (1)

Op 10

3(99) 16 () 113 (1)

20

641)
5(07) 7(0)

58

112(1)

66

a(1)

89020) 188090()

1447

89104 88 90() 292

1004e 1 90)00) 267 4 296 4870

69828) 46140)

64(111) 2 3()0

F~~gue12 48. Genea 16w
f opuato

823 39- ol

61(2)ENL 185(0) 235 31(2

precede the segment joining nodes 226 and 235. This suggests an interesting
problem of which the preceding example is the most trivial: given a set of

nodes and their counts, determine under what conditions the actual flow can

be determined. This "academic" problem will not be pursued in this study.

The application of the simple rule which establishes the one-time and

segments (a "footprint," or better, a "one-print") permits a linking of

certain segments to form contiguous blocks of the program, the General Flow

of the title of Figure 14.

Such linkings are shown in Figure 14, where the defined flow consists of

the following:

Block 1: Segments 1, 113, 4, 6, 112, 8, 102, 11, 87, 101

Block 2: Segments 96, 18, 86

Block 3: Segment 26

Block 4: Segments 30, 32, 33, 45, 36

Block 5: Segments 41, 42, 13, 15, 17 (END)

Even the undefined flow can be combined to form pseudo segments if there

are not dotted lines: thus, the series/parallel segments 20, 21, 84, 22, 23,

24, and 25, which are between nodes 319 and 355, can be treated as a single

pseudo segment with a usage of 150, the entry and exit counts at the two

joined nodes. In addition to these pseduo segments, another type of merging

is possible in certain areas. For example, some of the segments from Block 4

of the above list can be joined with the segment of Block 3 to form a super-

block. Since all possible paths to and from nodes 263 and 273 have been

exercised, these can be eliminated from further consideration, permitting

formation of a pseudo segment with which to join segment 30 to segment 26.
Also, since node 291 has all exits exercised, it too can joint to form a

larger block (26, pseudo segment, 30, and 32). Because node 292 has a dotted

line out of it, there is no further merging possible between the two blocks.

Even though the remainder of the program flow is undefined, there are

many points which are internal to the undefined blocks where reduction is

possible. A trivial example is the pair of parallel paths 91 and 99 between

nodes 191 and 209, which can be merged into a two-use segment; more interesting

83

777747-w

cases can be identified in the lower left portion of Figure 13. Thus, between

nodes 401 and 415 are segments 53, 68, 54, 55, 57, 56, and 58, all of which

can be merged to a 118-use pseudo segment.

Figure 15 shows a considerably pruned version of thL flow diagram. As

with the preceding, it is developed from the one-prints and more is required

to establish the sequence. For example, segment 42 appears to follow

(dynamically) 41, but there is no reason to think, a priori, or in a local

context that it actually does. In a global context, however, it is known

that segment 42 is the later exit from node 385, because 42 joins to 226 and

from there out to the END.

The primary purpose of investigation of the problem of pruning the flow

diagram was to assist in the development of a display-aided test bed, where

sections of the program could be showed in network form and successively

pruned on a case by case basis.

3.3.2 Partially Automated Test Bed

In keeping with the desire to achieve economical testing, the goal was

to automate the entire process which has been outlined in the preceding

discussion.

The major problems in completely automating the cover-testing process are

in construction of the software required to establish the status of testing,

maintain suspense files on all unexercised program segments, insert augmenting

viarables corresponding to predicates which define the entry into the (unex-

ercised) computational segments, search the input variable space to achieve

entry, compare the resulting track with previously obtained tracks, and prune

the original tracks to a set of smaller dimension (manifested in the reduction

of the original n-tuples to tuples of smaller size). This is to be done within

the restricted physical environment of current displays and 1/0 equipment.

The complete list of tasks required is briefly surmarized once again:

A. Identify unexercised branches (at the end of the initial runs with
random numbers).

W@~3LL84

L CR76

0

2(0) 1 (1)

110
1699 401)

20 601)

710)
5(17) 58 - -

112(0)

66

8(1)
9(01 End

131

Figaro ~ ~ ~ ~ 02 15harily rnd lwDiga

857

Rpm"-,-

B. Pick an unexercised branch and display the listing associated with

the branch (a "back" sort is required which identifies the instruction number

of the involved predicate).

C. Formation of an auxiliary variable based on the nature of the

predicate. (For example, if the test, A<B, is the predicate, the auxiliary

variable could be C1I B-A).

0. Create a variable (with requisite modifications to the object

program). Recompile the program.

E. Vary input variables until the auxiliary variable is positive.

Rationale for the variation depends on the program variables identified in

the listing.
F. List all exercised segments and compare with preceding usage.

G. "Release" the variable and proceed to a new unexercised branch.

H. In an extension of the above procedure, several auxiliary variables

can be inserted at one time and input data chosen in some systematic way

(a search) to achieve arbitrary valuations on all auxiliary variables.

The results of a run or series of runs can be displayed in the form of

a list of unexercised segments. It is clear that the information of the type

shown in the bottom row of Table 1, can provide a quick look at the status

of segment coverage after an initial set of runs has been made. The segment

numbers marked by asterisk as, for example, on Page B-3 of Appendix B, can be

displayed.

The back sort to identify the instruction number at the beginning of

any chosen segment can be easily automated.

The process of inserting auxiliary variables at the predicates associated

with unexercised segments at present must be done manually. The problem of

inserting the variables requires a recompilation and this must be monitored.

Development of the form or expression with which to represent the auxiliary

variable may require scanning the listing over an extensive set of instructions.

L8

Section 4

ERROR-DETECTION MODELS

4.1 SUMMARY
Two variations of the Jelinski-Moranda model were developed for estima-

tion during program development. The first permits estimation of the error

content of the completed software package using data which is taken on only

portions of the package. That model is applicable when the eventual size of

the program is known at the outset.

The second model permits a similar analysis during the development of any

software package which is homogeneous with respect to its complexity (error

making and finding).

These models should assist analysts in an early determination of error

content. They should also eliminate the present practice of applying models

to the wrong regime (decreasing failure rate models applied to growing-in-

size software).

4.2 INTRODUCTION

In normal usage of the Jelinski-Moranda model, the software package

under test is assumed to be of fixed size with a fixed number of incipient

errors. The size of the package does not appear explicitly in the model as a

parameter, and its effect is only indirectly realized by the way it affects

the number of incipient errors which exist at the start of testing (there is

a direct relation between instruction count and error count).

The model could not be employed legitimately on software packages which

were incomplete. Several workers attempted to fit the model to an initial

period of time when its error rate was, indeed, increasing, due to the grow-

-~ . ing size, and they met with no success. (As a matter of fact, the only models
which produced reasonable estimates when applied during this regime, were

the increasing failure rate models.)

87

*W001tE16gLL 01OLf4b11

It would be helpful if, at the outset, an estimate could be obtained of

the total error count which will be realized in test and usage of a package.

Recent work by IBM (Reference 25) has prompted a reexamination of the

original Jelinski-Moranda model for the purpose of incorporating the (changing)

program size. This turns out to be very easily effected if good record keep-

ing can be maintained during program development so that the size of the

package is recorded as a function of some convenient timing metric (CPU or

calendar). Following is a description of the analysis.

The original model is depicted in Figure 16, where the two parameters

are shown in Figure 18(b), and a typical realization of the error-finding

process is shown in Figure 16(a). N is the initial error content (of a com-

pleted program) and F is the contribution to the error rate due to a single

error.

While the meaning of is maintained in the two models, the meaning of

"initial error content" needs to be clarified. This is done below in the

description of Model 1, where, in effect, N maintains its meaning as the

number of errors in a completed package. In the second model, a fixed error

rate per instruction is assumed, and growth of the package is measured by the

count of instructions (under test) versus time.

4.2.1 Model 1

Let S(t) denote the fraction of the total number of statements which a

complete program will have. The metric t is measured in terms either of the

accumulated CPU time, or of the amount of calendar time, which has been used

for testing the package.

The simplest way of introducing the effect is to use S(t) as a "modulation"

of the error detection rate Z(t) of the original model. In the notation

formerly employed, this combined or modulated rate, denoted W(t), is:

W(t) = SMt ZMt

= S(t) [(N-i+1)0p] for T!_ <z t <Tt (2)

WC"IVWES L"Ve88

AO93788 MDONNLL DOULAS ASTRONAUTICS CO HUTINGTON BEACH CA F/9 9/2
METRICS OF SOFTWARE QUALITYT(U)
NOV 80 Z JELINSKI, P MORANDA. J CHURCHWELL F4920-77-C-OO99

UNCLASSIFIED MC-69326-

IMuuuuuuuuuuuu-EElllEEEllEEE
mu...lllll

-71

I~STEP SIZE =

N 0

N INITIAL CONTENT

TIME
(b) FAILURE RATE VERSUS TIME

0

w
U-

0
w
zw
0

_z

TIME
(a) TYPICAL REALIZATION

Figure 16. Purification ProeM and its Realization

89

and T. T5, T ,..., denote the times of detection for the errors. (Primes

are employed on T's to distinguish them from the times of the original process.)

The effect of S(t) on the T! should be made clear at the outset. When S(t),
I3

the fraction of the total count, increases, the composite error rate will

generally increase, as will the liability for error for the "modulated"

process. For this reason, the times T! for the composite process, W(t), will
I

be different from the T.i of the Z(t) process. Since N in the original model

represented the total error content of a complete software package, a proper

correspondence which preserves the meaning is that N is the error content at

a time corresponding to the completion of the software package, S(t) = 1.00.

This necessarily presumes that the size of the package which will be developed

is known at the outset. (S 0(t) would represent the fraction of the total

which is accomplished at time t.) This may or may not be a serious barrier.

Some modules can be sized at the outset, but large complex programs may not be.

An alternative to this is offered subsequently in Model 2.

For the present model, S 0t) is a nondecreasing function which starts at

zero at T6and achieves its maximum value at some unknown-at-the-outset time,

V~.

Thus, 0 < So(t) < 1, with S 0(T6= 0 and So(Tc = 1.

While S 0tM is, in the large sense, random, the records of progress will

permit specific values of S 0(t) to be determined and the randomness is of no
concern. In particular, it is necessary that S 0(M can be determined at the

epoch times T T',.. T' at which the errors are detected.

When the completion time, T', is reached and for times thereafter, the

software package is complete (So (T') = 1) and, formally, the density given in

Equation (1) is the same as that given in the original paper (Reference 3).

It has been mentioned earlier that the time pattern of errors will be

different for the "modulated" process, and it is interesting to see just what

would happen if S 0(T6), or for short, S () were 0.10 (10% of the package is

initially available for test), and it did not increase beyond that for a long

90

period of testing. The time pattern of errors Ti. T ,..., Tn which would

f occur, would have associated separations Xi : Ti - T6, Xi = - Ti ..

XI = T' - T'
n nn-l

Because S (0) = 0.10, the composite detection rate for the first error

would be (0.10) N , that is, 10% of the original error-detection rate. This

means that the first detection time Ti, would (on the average) be 10 times

as long as the time for the corresponding error of the ummodulated process.

The second error would have the same property (on the average), and so forth.

The implications of this fact can be seen from the following. The likelihood

function would be

n
L(Xi. X , ... , Xn) = fl So(O)p[N-(i-l) exp {-[So(O)(N-i+l)X']}.

i=I

The likelihood equations obtained by differentiating the logarithm of the

likelihood with respect to N and p are:

n n

n 1 S(0~(3a)
N-(i-l) - S = 0i=l i=l

and

n n
n S0(0) 3 [N-(i-l)] X = (3b)

As noted above, the observables X! would be (about or on average) 10

times as large as before. Thus, from Equation (3b), the solution € will be

(on average) the same as its value for the unmodulated process, or for the

completed software package.

Using the solved-for value of 0 in Equation (3a) and the fact that

S0(O)Xi in the new process is the same as Xi in the original process, it is

seen that the solution N is also the same as before.

91

R 4 N... L i4 4J1 L"AMP

The analysis then shows that if it is known that a package under test

represents (in all respects) a certain percentage of the total, then the total

eventual error content can be estimated by using these slightly modified

likelihood equations.

The result is encouraging for the outlook for success in the following

simple generalization of the above example. In this generalization, the

S0(t) modulating function is constrained to be constant during each test

interval. Using essentially the same notation as before, the likelihood

equations for the generalized modulated process are

I l ' = 0 (4a)

and

S x Si(N-i+l)X! = 0 (4b)
€ i=li-

where Sil is the percentage completion achieved prior to the start of the ith

interval.

Solutions for the parameters can be carried out as indicated above in

the example.

The mean-time-to-next error MTTF (n+l st in the present context) can be

estimated by evaluating the rate at time T' and taking the reciprocal of it.n
In the present case (using a subscript on the left side to correspond to the

model number):

MTTF I
S(Tr')(N-n)

where N and * are solutions to the Maximum Likelihood Equations (MLE's).

92,2

.. . . 1 H :LA Ol ' 1

4.2.2 Model 2

Let E denote a characteristic rate of error-making for the programmer
p

(or programmer team) and the program type. This rate will be estimated by

application of the model described subsequently, but there are some useful

facts concerning this parameter.

In 1975, it was observed (Reference 23) that there appears to be a
t... $universal' coding - error rate ... , which has a value of about 2 errors

per 100 instructions (of the language in which the program has been written).

This observations was based primarily on the data (now famous) provided by

F. Akiyama, but also on earlier observations made by B. J. Hatter, et. al.

Subsequently, the validity of this "thermodynamically stable" parameter has

been reinforced by several other studies.

The interesting feature of some of this later data (Reference 24) is that

the error rate of two per hundred was observed on programs which had completed

their development and integration phases; they were under test before the

relevant error counting was initiated. This is surprising since the coding

error rate is thought of as being similar to a typist's miskeying, and should

be purifiable by edit routines and by code checking due to early misstarts of

the program.

These features of an hypothesized entity are fortunately not used in the

following analysis.

The error rate at any point in the development of a program whose cur-

rent instruction count is G(t) is assumed to be proportional to the current

error content

V(t) = O[G(t).Ep - n(t)] (5)

where n(t) is the accumulated number of error corrections, and Ep is the

per instruction error rate.

As before, if G(t) can only change at error-discovery epochs, Tl, T2,

Tn, and, if n(t) also has this feature, then the rate has the form

93

-7 77

V(t) = [Gi_ I Ep - (i-i)] for Ti1 < t < i (6)

where Gi l = G(Ti1 l), and n(t) is i-i for the interval starting at T i_.

Since G(t) is a function or process which takes place without any apparent

dependence on the error-finding process (except that the error epochs are

assumed to be the points of entry of new code) it is reasonsble to assume that

the random time separations between errors (Xl, X2, ..., X n) are statistically

independent.

Under these conditions, the constant rate implies an exponential dis-

tribution for the Xi, and the likelihood function for n errors is:

L(XI , X2, ... Xn) =

n
L 4[Gi1 1 Ep - (i-1)] exp {-1Xi[Gi l Ep - (i-l)]} (7)
i=l

The MLE's obtained by differentiating the logarithm of the likelihood

function with respect to @ and Ep are:

n G n
E_ - (i-) - -Gi Xi 0 (8a)i=l p 1 i-l I

n - [G E - (i-l)] Xi 0 (8b)

The MLE's are solved as before: Equation (8b) can be algebraically

solved for 4; this is substituted in Equation (8a), and the resulting key

equation is solved for Ep by trial and error.

It is recalled that the desired performance parameter is Ep, which can

then be used with either the current (known) or projected (estimated) instruc-

tion count to determine the total error content.

AC00P111 4Efl i, 0 "O 4I~LA

94

Estimates of the MTTF at any time can be obtained by the formula

MTTF2 = (9)
O[G n E p - n]

4.3 CONCLUSIONS

The two models presented in the analysis are both very tractible

analytically.

Model I would be of use for those programs whose eventual size is known

at the outset. It requires that a record of the times of error occurrences

be maintained as well as a record of the percentage of completion at each of

the error-detection times. It provides, at any stage of testing, an estimate

of the error content of the untested complete package.

Model 2 applies to any developing software package which is homogeneous

with respect to the complexity of programming and with respect to the talents

of the programmers. The important property is that E p, the error-making

rate (or error-finding rate), must be a constant across the entire software

package. In case of inhomogeneity separate analyses are advised.

4.4 GLOSSARY

Terms and symbols used in the preceding sections are identified as

follows:

S o(O) A "modulation function" which ranges from

0 < S0 (t) < 1.0 and is nondecreasing. It represents

the fraction of the code completed up to time t. It

s a given for the problem.

Z(t) The Jelinski-Moranda detection or purification

process.

W(t) The product of S(t) and Z(t). It represents the

error-making or error-detecting rate versus time

for Model 1.

N The number of errors in the completely coded

software package. This is estimated from data.

95

The contribution of one error to the detection

(failure) rate. This is estimated from data.

T' The time at which the i- error is found, measured

in any convenient timing metric. An observable.

Xi The separation between the 0 and the i-lst

error. An observable.

n The cumulative number of errors found in testing

up to time T.n"

Si Is the percentage of completion during the (iil) st

interval. This is provided as exogenous data.

MTTF i The estimated meantime to error obtained by using

Model i (i = 1,2).

G(t) The nondecreasing function representing the total

instruction count of the package at time t. This

is a given for the problem.

Ep The error making rate for a given program-programmer

mix. It is estimated from data.

n(t) The number of errors found during test up to time t.

An observable.

V(t) A stochastic process representing error-making

or error-detecting rate versus time.

L(X1, X2,..., Xn) The generic representation for the likelihood

function.

Cf@~~EEL W4,EIL~ I96

REFERENCES

1. P. Moranda, "Quantitative Methods for Software Reliability Measurements",
Final Report on AFOSR Contract F44620-74-C-0008, MDC Report G6553,
December 1976.

2. L. G. Stucki, "Program Evaluation and Tester: PET", MDC Report
M2085074, 1974.

3. W. Miller and D. L. Spooner, "Automatic Generation of Floating-Point
Test Data", IEEE Transactions on Software Engineering, September 1976,
Vol SE-2, No. 3.

4. D. J. Reifer, "A Glossary of Software Tools and Techniques", Computer,
July 1977.

5. C. V. Ramamoorthy and S. F. Ho, "Testing Large Software with Automated
Software Evaluation Systems", IEEE Transactions on Software Engineering
March 1975; Vol. SE-l, No. 1.

6. J. Goodenough and S. L. Gerhart, "Towdrd a Theory of Test Data Selection",
Proceedings of International Conference on Reliable Software, Los Angeles,
California, 21-25 April 1975.

7. W. E. Howden, "Methodology for the Automatic Generation of Program
Test Data", TR No. 41, McDonnell Douglas, February 1974.

8. B. Elspas, M. W. Green, K. N. Levitt, and R. J. Waldinger, "Research in
Interactive Program Proving Techniques," SRI Report 8398-I, Standard
Research Institute, 1972, Menlo Park, California.

9. J. King, "Symbolic Execution and Program Testing," Communications of the
ACM, July 1976.

10. L. Clarke, "A System to Generate Test Data and Symbolically Execute
Programs," IEEE Transactions on Software Engineering, September 1976;
SE-2, No. 3.

11. L. G. Stucki, "Program Evaluation and Tester: PET," MaDonnell Douglas
M2085074, 1974.

12. E. I. Cohen and L. J. White, "A Finite Domain-Testing Strategy for
Computer Program Testing," (CSU-CISRC-TR-77-13), The Ohio State University,
Columbus, Ohio, August 1977.

13. A. Fitzsimmons and T. Love, "A Review and Evaluation of Software Science",
ACM Computing Surveys, Vol. 1, No. 1, March 1978.

97

*COPEIWLL a4WOaOL L~j

14. P.B. Moranda, "Comments on A Review and Evaluation of Software Science",
Surveyor's Forum, Computer Surveys, Vol 1, No. 3, September 1978.

15. J. L. Elshoff, "An Investigation into the Effects of the Counting Method
Used on Software Science Measurements," IEEETSE, Vol. SE-2, No. 4,
December 1976.

16. T. J. McCabe, "A Complexity Measure." IEEE Transactions on Software
Engineering, December 1976; Vol. SE-2, No. 4.

17. T. Gilb, Software Metrics, Winthrop Publishers, Inc., Cambridge, Mass.
1977.

18. B. Littlewood and J. L. Verrall, "A Bayesian Reliability Growth Model
for Computer Software", Record, 1973 IEEE Symposium on Computer Software
Reliability, New York, NY, 1973.

19. G. J. Schick and R. W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEETSE, March 1978; Vol. SE-4, No. 2.

20. K. Okumoto and A. Goel. "A Model for Reliability and Other Quantitative
Measures of Software System Subject to Imperfect Debugging," Vol (of 5),
RADC-TR-78-155, July 1979.

21. E. C. Miller. Tutorial on Program Testing Techniques. COMSAC77,
Chicago, Illinois, 8-11 November 1977.

22. Z. Jelinski and P. B. Moranda. "Software Reliability Research" in
Statistical Computer Performance Evaluation, Walter Freiberger, Ed., $

23. P. B. Moranda, "Estimation of A Priori Software Reliability," Computer
Science and Statistics Interface Symposium, February 1975, Los Angeles,
California.

24. T. A. Thayer, M. Lipow, and E. C. Nelson, "Software Reliability Study",
Final Tech Report AD030798, TRW, Feb., 1976.

25. R. W. Motley and W. E. Brooks, "Statistical Prediction of Programming
Errors", RADC-TR-77-175, Final Technical Report AD41106, Rome Air
Development Center, AFSC, Griffiss Air Force Base, New York, May 1977.

98

"COMWRIIL 1"10LA

I

Appendix A

AUGMENTED ORLA PROGRAM

A-1

ORLA M4DAC SF'4E'NT XLATOR 10/31/1930 11:36 Fmi ?AGE

PROGRAM ORtk
c
C -- OPTIMUM RFPA[P LEVEL ANALYSIS (ORLA)
C -- O.R. Ji4)NSOaI ACDCM4-WA'PNER ROPI[NS ALC-5503
C
c - THE COlNSTANTS ARE ASSIGNED ACCOPVINrLY-
C 1-RRT 2-CONi 3-EDLA 4-DL.,P
c 5-opt. 6 -n S:31 7-FLA @ - F LW
C 9-TAC 1o-IPC 11-!N 12-flSTICON
C 13-OSTICS 14-OS3TNCO3N 15-O)STNOS 16-PILP
C 17-PSLRCtYI IJ-PSLO'rS 19-PSMIVCflN 2O-PSmwl"a3
(7 21-PWRCON 22-PURfS 23-R4C 24-QPC
C 25-SA 26-SRICON 77-SPIJS 23-sRNcluN
C 29-S'QNOS 30-Tf) 31-UF 32-Ut
C 33-VD 34-VF 35-YT 36-Z!
C -- TH4E VARIAILES ARE ASSICNED ACCORDI1NGlLY-
c 37-DF 31-DM~R 39-FBkP 40-FF
C 41-H 42-J 43-L 44-LP
C 45-PP 46-OPA 47-941i 48-SC-
Cr 49-SW 50-UC 51-(JW 52-w
C 53-X 54-YO) 55-Zo
C -- THE CCM'PUTEn VARLALLLS 4RE ASSl 4%E ACCOREPJIGLV-
C 56-MTSrE 57-Uk 58-DAM1 59-F
c 60-FAM

?7 ~-- THIE AGE COST VARIABLES ARE ASSIGNEE ACCfI1RC 11GLY-
C 61-OCS 62-DUA 63-1(' 64-IL.1

C -- STORPAGE TABL.ES
C

N UM.1 (3) , I PA s(10 0
C

DEAL VPL(64) ,FV(11) ,UV(12)
QCTr-, !(10 , TV(3),

-A[A(lOO) ,DAA(100)

REAL AlIS14F9 ,dLAIYK ,CA S ,'tu
- UT(3) X ,YFS

C
DOURIF PRECTS19JN A~e(2,z-) ,AIR
- DATE(2) ,D1 ,DY

IZ FA ,PW4) ,PIS(2,3)

i J C (2)
C
C -- LITERPL FO?'4ATS OF DATA NOM'FS
C
C LOG I C&L L(O LT) ,LA(3)
C

/ A-2

ACDOP4AEL

ORLA VDAC SEGM4ENT XLAT09? 10/31/1980 11:36 F4 ".ACE

DATA Bf. A NK ,DASHI ,No x yrs
/14 ,l1 ,29NO ,1I x r ,31YFS

DATA AIR RF
/71!A4kRLIFT ,7HNOlN-AIR /

DATA YAP
f'RRTO 'CO' ,eDLA-, -OLWs ,CPr.-
ODSSO OFLA' rFLhi",fACo !C

-OSTIOR- ,-STI9S-
- OISTNaCN' -9SThOSO ,'PIJP'
- PSLRCON' -PSL iUS-
- PS HCONo fps.4s-

- o~PC- -SA- -SPTCUN- 1RC1
- SRNCON' , SW4C, T - , 'F'
- UW' ,VD* 'VFN .YI. ,ZI,

.. , A . *LP* ,1pJCp

'DA' -DA!i -FA- FAv* C Sp
'DUB' -Tcs- O-T) /

C -- REcoRr FORMITS
C
2 F9RMAT(8F9.2,8X)
3 FORMAT(19.1,10X,CONSTA14TS UISFD IN THIS R~--,'-AkX

4 FORMAT(2Y, A7,F12. 4,4X, 37,F12 .4,4X, 47, Fl2. 4)
5 FORM1AT(13,5X,7A9)
6 FOR4BT(FR.0,4F5.2,2X,I1)
6 F3QI4AT(8F9.2)
809 FORMAT(4W9. 2, 4X,31 2)
119 FOR4AT(2OX,-ECNl,4yC/SF'NSIT1VITY A'ALYSS,6X,Nt)4nER, 3/f)
9 F09"AT(2y, 14,4X,2AR,B1, 1T,3A8,A2,2-A8,A2)
101 FUR!MT(/11Y,-K FACTORS: KI',F'5.2,- (2-,F5.2-, r3-,F5.2,

v WoFS.2)
10 FOTRMAT(/6X,-DESI(GN MTFF-,FA.,2X,UmTl0,F1.l,- UJr,

F3.0,3X, R7)
11 FOq'AT(11,9X,4410,F.1?.2,F5.2, 13)
12 F0RMAT(3,7X,3A0,F3.1)
13 FORM'AT(1"1 ,7X,ITEREDIATF S'ULTIPLF SUPPOJRT A,-I SUWINA2WV',

8X,!2ATEv,')X,A8,2X,AP//)
14 F1QRMAT(' AGE NJ1MENCL&rEYR',I iX, !UC,4,-A' CrST.,3Y,

-4ZRS AVATL,2-,),AGF SETS %~FF0D-f)
15 FORMAT(1Il ,3A8,42,l1X,A5,F).2,2X,Fd.2ef:(, 1)
16 F0R4AT(/1X,'ITFM NOr. DEMANDS/ miTTT jRF4UtIRP',

. % TOT'AL SHAPE? OF ArF COIT * /l13 Y, - NT'i'11 Xf
-iruRs, 5x, - iouR s ,!) x, -cfls', sx , - AL.LVC AT f Ll 14

17 FflR4AT(2X,T4,4,F7.1,4X,F.1,F.,F9.2,2(2X,'10.2))
18 ~FlUMAT(/X,rT3TAt.S',IOX,F10. 1,F9.2,2IF12.')
1) FJTZAT(1f'1,11XpDEPtlT MULTTPL-r SUP'PORT 41%SfTAhX

'DATF,2X, ,A2/)
21 FLJQMAT(/26Y,'F.C0N1I~C ANALYSVS/)

/ A-3

F4UcfopdMEcLL coE34JoLS_ .

OPLA M4D&C SF(G4E'T XLATOR 10/31/1910 11:36 FM4 PAC!E I

22 FOQMAT(26,POT,6X,ITNTEVIEUATE,f6X,DISCA9D-/)
550 POR~kT(//2&6X,'tNPUT DATA VALUES//)
23 FOPRAT(l1XBASE STOCF LEVEL-,r6X,I19,6KjI9,6Xrl9)
551 FOR'4T(4X,A7,12.4,2X,47,Fl2.4,,2X, %7.FI2.4)
24 FOR4AT(- ACE-tl9'(,19,6X,T9)
25 FORMAT(' AG~E MA[N-r.%,12X,19,,fX,,19)
129 FOR~(AT(% ITEM NRO,?X,OPART NUMIBER-,7X,-NOMNCLkTUE",14X,

26 FORI4AT(w TECHI flAT,13XoI9,61X,I))
27 FORMAT(TRAININC',14X,19,6X,19)
28 7O'q,4T(' PACKING I S41PPIN(~',4Xjf9,&X,I9,6X,19)
29 FORMAT(- SAFETY STOCK-,ioxrt9)
30 FOP'44T(LhiOW',17X,Ij9,6X,I9)
31 FORMAT(' SPECIAL FACfL[TIES-,4X..9,6X,I9)
32 FORMAT(- RFPAIP MATERIAL-,7X,19,6X,,19)
552 FORMAT(4X,A7,FI2.4,2X,.A7,Fl2.4/)
149 FOJPNATM/
33 FORMAT(' ITEM4 ENTPY-,1'X,19,6X,19)
34 FORMAT(' SUPPLY AD'AIP.W,24X,!9)
35 FORMAT(w PIPELINE SPkRES-,7X,IQ))
16 FURMAT(' RFPLACEML6IT SPARES-,34X,,19)
37 FOR'AT(5X,TOTAL.,12XIl0,SX,I1lo5X,110)
40 FOR!AT(2XrLIMITS- FRO4 20% TO 5001 OF ORIrIIVAL FACTOTP',

41 *VA.LUE WTTHIN 1%'/l0X,'PRrNTEn AT RFVlSA'f)
41 FORMAT([4.3A',A3,F9.0,F8.0,3Al)

411 FORMAT(2X,13,4X,3A9,%1,FU.0,F9.0,2(5XA1),6X,ALl)
42 FJ!N4T(1IF1,25X,SENsITIVtTY ANALYS[I//1)
43 FlJR~T(/7X,'FAf.T0Rp6X,' t OP1(G ,o6X'.VAL9E*,fX,flEPGT',

6X, -INTER-, 4X, -E)!SCARD -)
44 FLJR4AT(/7X,A7,14XF9.2,lX,3112,4X)
45 FOR4AT(/I1X,F6.0,4X,F9.2,1X,3112,4Xf)
412 FORIAT(rR,2A8,A2,3A8,A3,2A8,A2)
46 FU%7MAT(/21X,RPPAtP LEVFL SUAY,15X,AF,2X,A,2X,A3/1)
47 FORMAT(3XlTE4,30X,UNTT14X,REPAIR LEVELf5X)
48 FORMAT(2X,NJ4ER,3X,-NQFCLATUE,13XPPICjF',5X,

'MTUo,3XrDEPOT IN?ER DISCARD'/)
49 FNJQM.AT(//)
556 PFnPMAT(7x,-NnMFNCLATUE,5X,-NPA,IO!,DAT,XA8s)
6010 FUR'4Ar(01 YOU viTS4 AN~ EXPLANAT1134 OP T41S P03RAY?',

6011 FJRMAT(A4)
6012 FORMAT(1X,44)

FAO30 FdJ'tAT(ENTER CONhiTANT VALUPS (36 VALUES) IV ORM)FP AS LISTW:9')
9350 FOA&T(7X,l0(A7,5K))
)991 FU9?MAT(1X,10F12.4)
9353 F3RMAT(/7X,9([3,9X))
6040 FORMIAT(/)
60S0 FIJRMAT(/ ANY ACCITIOJNAL CONSTANTS/VAPIADILFS HR SENSIT11t Y '

'AH flA. VSIS? *)
6055 PIIIPAT(/ 'UW MANY? (LIMIT 10)')U
9992 FfIR'AT(IX,[2)

/ A-4

04L1 14DAC SFG.ME'JT XL.ATOq 10/31/198C 11:36 F4 PArF 4

1620 FORM4AT(/' NINE ',3e ADDITION1AL CONSTANTS/VARIBLFS-,
*(USE-j[3,- LINES)

1621 FOJRMA'(AR)
1622 FOR'4AT(lX,10A8)
6060 FUIR'4%T(o INCORRECT NAME')
1640 FORMAT(2XAS,- DPOPPFD FPO'M A?ALYSIS.-)
6065 FURMAT(/ FNTEP TH!E 4U'IjFR 9F ITEuS TO BE RUN' IN T;Iev A';ALYSU.)-
6070 FOR4AT(18X,'E4TER ITEM DATV)
1710 FOQ4AT(/lXo'ENTFR? PART NUMSR, NOMEN47LAT1JRE, NVXT !fIP'

wASSFP9LY/l0X,vvO9 !TTFM NU~qER %IT3,4X,(USv 3 L[',-C)')
1711 FOP4AT(3A8/4A8/348)
1712 FO'RMAT(lX,3A8/IX,4Adf1Y,3A3)
6080 F3D01AT(o ENTFR MFANJ TIME EPETWEFN FiTLURS, 'f FA,-'IR3) (4 V'ILJE';)
6090 FORMAT(' ANfl SHiIPPING CODE (0 = AIRIFT, I = N(J'!-IRLUiT))
6091 FUP~NAT(1lF'd.0,4F6.2,I4)
6100 FORMAT(' ErTE1R VAR!AqLFS (2)3 VALUFS) FJR T11!IS TTFM IN T',-

'PROPER ORDER')
9354 F0R4T(/7X,10(I2,l0X))
2955 FORM4AT(/' ANY COPPFCT[OrNS? (YESI/1)')
9352 FORMAT(7X,I0(A7,5X))
6110 FORMAT(- DO YOU W~ISH TO PUN A14 AGE SUN.4ARY COMPUTATION?*,

0 (YES/NO)')
2000 FOQMAT(/- D9 YOU NiANT A."I EXPLAPIATION CF A(;- SU~mIUY? (Y;KS /NQ)*)
6120 FORMAT(/' FNTEP THlE NUMRFR OF ACE SUMMARIES TO 3F ! Ul')
6140 F'IRAT(/' FITER TYPE OF JGF,COST, %VAILABILITY/I4 OL'PS, %%.P-/

T9F 4UMRER OF trFMS YOU fU&F. FLIP VIL A3E SUOAV')
6130 FORM"AT(o EP'TFi AGE NOMENCLATURF (MAXI1M OF 26 C!A)I/

AND 4UC UNIT COIJF ('1SF 2 LINES)')
6151 FJlQMAT(3AaA2/2A8)
6152 FJRA4T(X,?A8,2/Y,A9)
6153 FORMAT(lY,T1,3F1O.2)
6160 FO)R.AM/I FNTER THJE TTE4I NU'4PER ANC !FN TIqF TU TFST')
6161 FcPMAT(1'X,I4,Fl0.2)
2997 VJQM4T(F9.,4F6.2,Tl,7Fl01.2)
2993 FORvAT(5F10.2)
2999) FtJ"MAT(11IlO.2)
C
C -- OPEN LOCICAL DEVICES
C

0- 1PNUI=,EVC=l)K'
2 OPFN(UNIT=4,DEVTCE=DS:'flIALIJG=*O4LA. [NP', ICCISS=' r(I,*)
3 f]P!(UNIT=O,UEVICF=FPSK: ,ACCFSS=OSF.Qt OUTCUTSPISF=ULFTF')

C -- AD COUE TO ALLOA RECOYWRY OF STATISTICS UPON ARSOkm'AL EXIT
C

'3 ASSIGN 510 TO [9REN
6 CALL REEN(TIEEN))

8 WPITE(IO!TT,600)

A-5

As

nPLA MAC SFG"'FRT xf.ATOD 10f31f1)q0 11:36 F" PA rFP

11 1W0RK2=17

C -- R'EPL&F WIT"! n'A'4i1i YF.S/4ll

C RIEA([NPUTs601l)AN34FP
12 CALL ASK(ANSW~2q)

C -- [PTE(t0UTP?,6O12)A4SWEQ
13- 14 TF(AHSEP.VFj.YFS)CALL XPLATN(!OUTPT,VAI)

C
C -- INITI&L VA4[ARLFSIT48LE
C

15 IZOUNT=0
16 00 51t N=11l00
17 A IA0()000
is DAA(N)=0. 0
19- 20 51 C!)TTNUE

22 ~VR
23- 24 1511 CJrfuFf

25 NVAR(1)=l1
26 N JA,(2)=32
21 NVAR(3)=47

29 NVAR(5)=56
30 NVAR(6)=62
31 rVAR(7)=64cf
32 WRITF(TOUTPT..6020)

C -- READ CONSTANT VhLUFS

33 CALL DATFV(DATF(l),GlTE(2))
34 WRIM1I[0(TP?r603O)

36 W1!rF(YGUITPT,9150)(VAR(J),1=1,9)
C

C
37 NU=

c - RFPTACE Wt1T4 1PAN09!1 RF'AI

39~ C ALL RFAL4(VL(1),9,-2,.)
39 ic~['F.(troUTPr,9991)(VA(r),1=1,9)
40 W~RTE(TUtlrT,4353)([,t=10,13)

41 WRTFl(1N;UP1T,*)(yAL(V), 1l,1=10)

A6

URL DAC 'SF3ZFNT MLATO-) 10/31/198C 11:16 Fli rA;F 6

42 CALL REAL4(VAL(lO)p9,-2,2)

44 W~RTTE(TT9353u(,1=19,27)
45 WRITEC !W'TOT,915O)(VAR(1),I=19, 27)

C -- RFPLACE WITI "A40OM REAL
C
C REAO(INPUT,*)(V7ALCI),[~9, 27)

46 CALL REAL4(VAL(19),9p-2,2)
47 WRITE(IOUTPT,9991)(VA.([),1=19,27)
48 WRrTECTOUTPT,9353)(I,I=29,16)
49 WRITE(IOU)TPT,9150)(VAI.(),It28,36)

C -- RFPrACE dIT~I PANDOM RFAL
C
C READ(INPUT,*)(VAL(TI),I~2P,36)

so CALL PFAI.4(VAL(29),q,-?,2)
51 W:.ITTF(TtUTPT,9991)(VL(11,1=28,36)
52 *d71TE([OUTPT,2955)
53 1IPUT=4

C
C -- iRFPLACE olIT'l RANDOM VFSIN'O
C

r'ElAD(NPU,6011)ANs4FP
54 CALL ASK(AN'AER)
55- 56 IF(ANSWEP.E(J.YES)CALL CiRC(NOOTTAN4R I-
57 WRiIT1F(IOUTPT,60bO)
58 1NPUT=4

C
C -- REPLACE~ VTTV RANLJ' YFSINfl
C
C READ(INPUT,6011)AhN'wPR

59 CALL ASK(ANSW4ER)
C WR1TE(1OUTPT,6012)ANSaF

60- 61 [7(AMSWIE9.FQ.P4O)CUTJ 50
62 1600 WRITE(TUJUTPT,6055)

C
C -- P'FPLACF 4[1V? RANV'IM 14TTCP!7
C
C READ(INPIIT,*)[T

63 CALL [NT4(!T,1,I,1O))
C WRITE(IUUTPT,999?)rr

64- 65 rF(1T.C'r.10)rIJ'0O 1600
66 WR~TE(TOUJTPT,1623)IT,IT

C -- RF'PLACE WIT RANOOM INDEX iJE VAR
C
C RD(P(1T,1621)(SVAI(J),J=1, [T)

67 CALL CflPVAP)(VARjSVAQ,tT)
C W441TE(IOUTPT,1622)(SVAQ(.1),JI=1,!T)

69 1,1=0
69 Oil 1630 [=1,1?

70 DU 1639i Jzl,64

A-7

ORLA VDAC SEGM'ENT~ XLATOR 10/31/19340 11:36 F4 PAGE 7

71- 72 TV(SVAR(T).EQ.VAP(-J))G)JJ~
73- 74 1635 CON4TI N1F
75 WtTE([IJTPTt6O60)
76 13=1,)l
*77 ViRYT (rUTJTrl,640)SVAR(I)
78 GOTfI 1630
79 1638 NVAR(7t!-IJ)=J
30- 31 1630 CONJTINUE

C
C -- COMFUT'- QCTCM FflR FwC PkSS
C

82 4R[TE(rOfi?0?,6040)
33 sio CONTINUE
34 WRITE(IDIYTPT,bfl65)

C -- RFPID1 CF WIT'f PA4DOMX 14TE"'EP

C REND(INIP1T,*)IT
85 CALL INT4(1T,1,1,13)

c WR[?F,(1OUTPT,9992)1T
86 DOJ 5550 lr=1,rIr
87 WRITE([fOtTPT,6070)
88 WRITF(IOUTOT,149)
89 W?TTE-(TUUTPT,17l0)K

C
C -RF.PLACE i[T RANDOC4 CI4ARACTFR

r REA0(lViPUT,1711)PN,N0,N4A
90 CALL C'IARa1(PM,3)
91 CALL CHARtH(MiO,4)
92 CALL C~fA~d(N'!A,3)

C -- ITE(IOUTPTpl7l2)P~NOM ,NHA
92 T PASS:"

95 WRITF(IWlJTPT,6)
96 VQTTF(TG'lTPTr,6080)
917 %RtTE(1OllEPT,60390)

C

98 CALL RF&L4(XATPFf,,2,2)
99 CALL PA4~~ 1 2?

too) CALL PF'AL4,(XF2,1,-2,2)

1.01 CALL RFAL.4(XK3,1,-2,2)
103 CALL PRF(4(LI'T,1,O,1)
104 C L I4(. F,10

105 WeRTTF(r UITPT, b 0 V)
106 YPTTF(lQUTPT,6100)
107 'LPTTE(!UlTrT,93'4)(1,1=1,j0)

109 t N"JT: l

A9CW@P4WLLA8B

ORLA P4DAC SEGM4ENT X[.A~TO 10/31/1990 11:16 F*4 PACE

C -- REPLACE WTHI 9ANDOM~ REAL
C
C RIFA(INPIT*)(VAL(),137,46)

110 CALL REAL4(A!.(37),10,-2,2)
Ill WRVE(TOUTPT,9991)(VAL(I),r=37,46)
112 1WR[TE(OtTOT,9154)(1,1=11,19)
113 WRITE(IOUITPT,9352)(VAR([),1=47, 55)

C
c -- REPLACE WI11 RANDC4 RE~AL
C

C 9PEA0([NPUr,*)(VAf.(1),1=47,5i)
114 CALL RFAL4(VAL(47),9,-2,2)
115 WRITE(TOTT,9991)(VAL(1),1=47, 59)
116 WRTTE(TUUITP"T, 9354)(I,1=20,23)
11? WRTTE(!OUTDT,935))(VAR(1),1=61,64)

C
C -- RFPLACE W~ITH~ RANDO'i REAL
C
C REiA(NPUT*)(VAL(I),I=61,64)

118 CALL RFAL4(VAL(61),4p-2,2)
119 WR!TE(TGUTPT,9991)(VAL(I),1=61,64)
120 WRITE(Id(TPT,2955)

C
C RE ~PLACE WI1T9 RAPJDVM' YFSfNO

C 'PEAD(I4PtIT,601l)ANSwFR
121 CALL ASK(A!ISiER)

C -- PITE(ICUTPTt60t2)tNSAEP
122- 123 TFASE.QYSCL COR~FCT([!PUT,IOUTPT,VAL.,A;JSA",70

VAQ)
124 WRITEC olI K1(,2997)XTF,XKI,XK2,XK3,XKA,LIFT,

125 W9TTF(rWOR4K12998)(VAL(),1=44,41)
126 bWRITE(TWORK1,2999)(V4L(T),1=49,55),(VAL(J),J=61,64)
127 VA[.(56)=XuTrF/f(XK1*X!F2*XK3*XK4)
128 OTMTAS=k(1*A(2*k(6/A((.
129- 130 9!)50 CONIrNUE

C
C -- ACE SUMMARY C9MPUTAT!IMJ
C

131 iWRITF([IOiTP?,6040)
132 WRITF(TOUTPT,61IO)
133 1'WPJT=4

c
C -- RFPLACE WITH! RA'Ulm YFS,'W
C
(7 PEAD(1NP1JT,b011)AN~eFR

134 CALL ASK(AO"SWE?)
%, -- WRTTE([OUTPT,612)ASWi

115- 136 TF(ANSWER.F.Nfl),;M o,5
r

C -- 4E CflMPUTATIPJ 9DUTTNF

W*3ULA~j IA-9

ORLR4 MDAC SFGMENT XLATOR 10/31/1990 11:36 F4 PAGE 9

C -- ITAGEl INTFRNEDIATE = 2 DTRECT
C

137 WRITE(YaUTPT,2000)

C, -- RFPLACE WTT!l RANDOM YES/NO
C
C R7-:AD(INPUT,6011)ANSiE

138 CALL ASK(ANISWEQ)
C -- WITE([OUTPTp60l2)%SUIrQ

139- 140 TP(ANSWE.P.FIJ.YES)CALL AGFTLK([OlUTPT)
c

141 WRITE(IOUTPT..612O)
C
C -- iREPLACE iWITI! RA4UOfM INTEGER
C
C PFAD(ftPUr,*)I?

142 CA.LL 1NT4(IT,1Ir,1)
C -- rRITE(IOOTPTo9992)IT

143 DOU 553 L=1,1T
144 WRTTP(!UUTPT,6040)
145 WRITE(10IVTr,6 130)

C

C

146 CALL CIARd(A"'E,4)
147 CALL C'fAR8(4UC,2)
148 WRITF(IO JTPT,bl1)2)((AGE(I.-J),J=I,,2),1=1,2),ioLC
149 WRITE(IL'UTPT,6140)

C
C -- RFPLACE ITTH PANDflm INTFG9hRf~c:Af.
C

C PYEA9(INFUT,) ITAGEoAC,Afi,RJA!E
150 CALL. I'r4(ITAGE,1,0,9)
151 CALL RFAL4(AC,I,-2,2)
152 CALL RFAL4(A4,l,-2,2)
153 CALL RFAL4(RNAGE,1,-2,2)
154 wp!TF(FOUTPT,6153)ITAG,AC,Afl,!?NAG%-

C -- IrTM(OUTPT,6190)
155 N AqE = 4AGE
156 TIIRS=0.O
157 0O 51 11,4A(CE
158 '-RTF(T1GUPT,6l60)

C
C - RFPT.ACE WITH RANDOM~ 1NMtEPREAl.
r
C RFEAD(INPUT,*)IPAS(),TTT1(T)

159 CALL I'T4(fPAS(I),1,,,IO)
160 CALL RFAL4(TTT'!(I),1,-2,?)
161 WPITE(IOUTPT,6161)tPks(I),TTTMt(I)
162 IF=IPAS(I)
163 iRST)=QCTG4(IP)*TTT4(I)
164 ~' l"S=TcPS4!lPS([)

ACD@ELL EIJOA9IA 10

ORLA maDAC SEGMEN1'T XLATOR 10/31/1980 11:36 Fm PAIIE '10

165- 166 57 CONTINUE
167 XNAS=ANT(THRSA44.99999)
168 RAS=XNAS
169 !F(ITAGE-2)54,55o65
170 54 WRITE(IOUTOT,49)
171 WRTTE(TOUTPT,1 3)DATE(1),DATE(2)

172 COTO 56
173 55 W~RTE(IOUT"T,49)
174 WRrTF(!TOiTOT,1 9)DATE(1), JATE(2)
175 56 WR[TE(IO(ITPT,14)
176 WRrTF(rOUTnT,15)((AGF(r,-J).J=l,2),[F=1,2),

177 lWRYTf(fOLTPT,16) WC1rCA~N-

178 TSHAR=0. 0
179 TFPAC=O. 0
18~0 TXTX=0.0
131 P1) 63 1=1 ,'JAIE
182 P =1 PAS (l)
183 FvC=HRS()/ ~iPS
184 StHARF=FRAC*AC
185 XI ASHAPE*XIAS
186 FfcAC=FRAC*100.0
187 IF([TAGE-2)60,61,65
188 60 Al i(P)=XIA
189 CUITO 62
190 61 DAA(IP)=XIA
191 62 aFITF(TtIUTPT,17)[PAS(1),jC?~(T'),TTT'(I),

192 F 9 A CT FR At.FR AC

193 TS 'AR=TS HA R+S~hARE
194 TXIA=TTIA+X1A
195- 196 63 (70 NT INU E
197 WRITE(lOtlTfT,13)?ij9S,TFPkC,TS1AR,TUA
198- 199 553 CCNTINUE.

C
c -- U'qLA PASS R(1UTIVEi

200 65 REO[NI! IWJPK1

C -- o(RITE CO1NST ANTS FO)R RUN
C

201 69 W'R1TE(TOUiTPT,49)
202 WRITE(IOUTPT,3)DkTF(t),D&TF(?)
203 WdR'TEC !UTPT,4)(YAQ(T)#,VAL(T),T=1, 36)
204 70 5I.RAD)(1W1PK1,41,END=50O)IPASS,PNNUI1,1%IA
205 71 P;A~WrI29)Mq,~,KX3X4LFVLt,=J?,]
206 R!AD(IhUVK,2998)(VAL(11,1=14,43)
207 REDIO~t99(A~)14,5,VLi,=1f4
208 VAL(i6) =YMTPF/(XK1*YK2*XI(3*KK4)
209 IF(f.YFT)73,72,73
210 72 fIC=VAL(17)
211 flSTf=VAL(13)
212 tVA()

A11

ORLA M~DAC SEGM4ENT XLAT09 10/31/1980 11:36 Fm VAGIL

213 Sql=VAL(27)
214 TCzA1R
215 GOT'1 74
216 73 nSTCzVAL(14)
217 flSTG=VAr.(15)
218 SR:VAL(28)
219 SR1=VAL(79)
220 TC=REk
221 74 WR[TE(IOUTPT,4l)
222 WRTTF(TOUJTPTrl19)IPASS
223 WRITF(IOIITP?,129)
224 WRITE(IOUTPT9)IPASSPNN'~,NhA
225 WRITE(TOUTPT,1o)XMHihF,qA!.(56),VAL.(50),?l-
226 WRITE(IOUTPT,109)XKI,XF2,XK3,XK4
227 ASSPfN 75 Tn JUM4P
228 COn13 100

C -- PRINT WI'UTI'JE FOR ECONOM4IC ANALYSIS
C

229 75 WRIT'F(!CUTOT,550)
230 W:?TF(rJUT7T,59l) (VA&?(), VAL (1), =37,54)
231 W4RITE(TaUTPr,551)VkP(55),VAL(5-5),(VAR(I),VAL(I), I=61,o)
2032 WRITE(1UUTPT,592)VAD([)rVAL(f),1=63,64)
233 ARITF(YOUTPT,41))
234 WRTTF(101!TPT,21)
235 W4RITF(IOUTPT,21)
236 D:) 60 1=1,12
237 IF(1-3)76,76,77
238 76 K(()=OV(I)
239 KF(1)=FV(I)
240 KT-(I)=TV(I)
241 77 TF(T-11)78,783,79
242 78 ol=vl
243 YF(I)=FV('I)
244 CO'l1 do
245 79 ~JC=VI
246- 247 30 CONTINUE
248 WRITE(IIUTPT,21)KO0(8),KF(5),KT(3)
249 WRlTEroIOTPT,24),KJ'2),KF(l)
250 WTTF(TOUT PT, 25)-)(3),K F (2)
251 WR.ITE(I0UTPr,26)Kfl(4),'KF(3)
252 WRITF(IOUTPT,27?)VL('i),KF(4)
253 W-TF(IuUTPT,28prD(6),tF(7),FT(2)
254 W!ITF(l0T'TPT,2)!F(7)
255 WRITF(C'JTPT,30)I(D(9),KF(6)
256 WRrTF(TUUTPT,31)FD(ln),vKc0)
257 VR[TE(YOUITPT,32)K',(11),KF(10)
258 WR[TE(IOUTPT,31)KD(1?),KF(11)
259 WqR[TF(fOJ'TT,14)vF(0)

261 '4MtE(Ifl1TVT,36)P'T(1)
262 W:TT(TUP,3)VF,~

C

AC~4~ELL HNJ~&~~.A 12

MPADAC SFG'4ENT XLATOR 10/31/1990 11:36 k4 PAGE 12

c 10 1TE TO WOQK TAPE THE 9EPAIR LEVvL SU4ARY

263 no 82 K~iii
264 OUT(K) =PLA19K
265- 266 82 CfJNTINUF
267 IF(KFT-K0T)37,7,J5
268 85 H'(KTT-KCT)89t89,88
269 96 tNDEX=2
270 Gd?0 95
271 47 IF(KT?-KFT),39,99,36
272 88 INOEXzl
273 GiTo 95
274 89 14DEK=3
275 9bi flhT(INDfEX)=X
276 WR!TE(IWO4R'2,4l)1PR$SSNfi'4,VAL(5O),VAL(56),(OUr(1),I=1,3)
277 [Z'nN=cuql
278 GJTo 200

C
C -- COMPUTATION ROUT1'WE
c

279 100 yKX=oC'rcf(PASS)*VAL(16)*12.0
280 TV(I)=TXX*VAL(50)
281 PSCC9N=VAL(19).V&L(17)+V[.(21)*SQ
282 PSCUS=VAL(20)4+VAL(ld),VAL(22)*SRI
293 PXX=VALU?)*PSCCON,(1.O-V.kL(2))*PSCOS
34 ,V(2)-=TXK*VA.(51I*rlXX

'CBS USTO=QCTCM(IPASS)*(V4L(2)*STC+USTl*(I. 0-VFL(d)))
286 0SX(SbSRTln0T)
287 TV(3)=VAI(0)*STX(

C
288 FV(I)=A1A(TPASS)+VAL(64).VAL(63)/VAL(11)
289 FV(2)=VAL(39)*VAL(16)*(k!A(1PASS)+VAL(64))
290 FV(3)=VA?.(42)A'IAL(10)/'tIAL(11)
291 FV(4)=(1.OVAL(34)*(VAL.(o)-l.n))*(VkL(52)*VAL(5c5)*

- (VAL(36).4f0.0*VAL(8)))
292 A=VkL(45)*VA.(43) *12.0*UjCTrM([PASS)
293 FiJf)4. 4*SQ 0T(A)
294 IF(eOU-A)1C0J,120,120
295 108 A12=A/12.O

297 110 EF1Q=Al2
219 GOTO 130
299 120 ' W) = A
300 130 R!?C?C(;"(tPASS)*VAt.(1
301 FY(5)=VAr.(50)*(RRC,'O"qT(3. 0*SRC)),YAr.(41)*(1.O-VAL(45))).

- 0OSTX+Ei'u
302 FV(6)=TXV*V~tr(47)*VAL(R)
303 PV(7)=TXX*VAL(4))*lXX
304 FV(A)="AL(l6)*VAL(2,)*(VftL(43)eVAL(44))
305 FV(4)=VA(.(40)
306 FJ(10)=QCTG'4(PASS)*12.O*VIL(16)V4I.(49)

- VAL(43)/VIL(11)*(vRL(9),(VAL(1Ir)-.0)*"!bL(?3))

AA~f~LL 5E3i~iL~I.A 13

ORLA '4OAC SFGMIENT Xr.ATOR 10131/1480 11:36 Fm PACE i

308 DV(1)=QCTGPA(IPASS)*VAL(5)*VAL(50)
309 DV(2)=(VAA(IPASS)4VAL(62)G"IAL(61))/VAL(11)
310 DV(3)=(VAL(3R)*VAL(16)*(rAA(!PASS)+VAL(62)))/VAL(11)
311 OY(4)=VAt(41)*VAT.(30)/VAL(11)
312 DV(5)=(1.0+VAL(33)*(VAL(16)-l.0))(VRL(53)*VRL(.)4)-

(VAL(35)+40.O*VAL(4)))/VAL(11)
313 D (6)TXX*2.0*VAI,(51)*PXX
314 DW(7)=Qcyc.4(TPISS)*VAL(6)*VA.(50)
315 DV(a)=TV(3)
316 OV(9)=TXX*VAL(47)*VAL(4)
317 DV(10)=V&L(37)fVAL(11)
318 DYC 11)=TXX*VAL(4l)
319 DV(12)=FV(11)
320 K1I'=0
321 KFT=O
322 KD?=IFIX(DV(12))
323 00 140 1=1,3
324 KTT=K!1'+IFIXUTV(1))
325- 326 140 CLJNT1IUE
327 no 150 1=1,11
328 KFT='XFT+IF !X(FV(1))
329 D=?+'1(V)
330- 331 150 CrINTIN UE
332 GaTO JIIMP,(75,215,715)

333 200 N=
334 LSA=10
335 VAL(57)=flV(2)
336 VAVA94)=DV(3)
337 VAr.(59)=FV(1)
338 VAt.(60)=FV(2)

C
C -- ANK THE FCIIN VALU; i

339 219 KSEN(1)=FDT
340 KSEN(2)=VwFT
341 KSTN(3)=FT?
342 03 315 I=1,3
343 %!UmK([)1l
344 I=+
345 FSFNJ(lH)=KSCJ(I)
346- 347 335 I'4TINUE
343 (U 3100 11=1,2
349 lf=1i3+1
350 DO 310(1 r7=f,3
351 TF(KS;E4(T3)-VSFhi(1Z))311OO,3IO(.,304
352 304 HULCi FN(U1)
353 KS!FN(l93)=KSFJ CIZ)
354 FS'-'N(I .=~fL
359 f!CLU-=umI(IR)
356 'U4(1)N14(U

A 14

ORLA MDAC SEGME'4T XLATOV 10/31/1')30 11:36 Fm nAllF 14

35-360 1100 CONTINUE NV(I~IL
C
C -- SFNSITIVITY ANALYSIS

361 2360 NV=N4V41
362 IF(NVAR(NV))70,70,2365
363 2365 IC=NVAR(KV)
364 C:VAR(IC)
365 ORIG=VAL(IC)
366 PCT=0.90
367 Da 2300 TP=1,48
368 CX=OR[G*PCT
369 VAL(IC)=flX
370 2370 (CTG(IPASS)=VAL(31)*VAL(32)*VA'L(46)/VAILC,6)
371 ASSIGN 215 T9J JUMP
372 GOTO 100

C
C -- RFVERSAL- ANAL.YSTS
C

373 215 JSFN(1)=KiD
374 JS!FN(2)=KFT
375 JSFN(3)=OTT
376 no 210 1=1,3
377 N(P4J([)=f
379- 379 210 CON1?l R
380 300 DO) 310 ft9:l,2
331 Kra~
382 DO 310 IZ=K,3
383 305 fF(JSFN([f)-JSN(I'))310,310, 3(6
384 306 MOLD=JSE'J(rp)
385 l1SEN(IR1)=JSFN(I'-l)
386 JSFN(IZ)=HO(fl
387 HL=WJ ~
388 NUM.J(18)=NrP J(IZ)
389 NU'IJ(I?)=iIOLD
390- 392 310 CONTINUE

228 IF(NUMK(t)-NUIMJ(l))320,228,320O

396 GOT3 2300
396 322 PCT=PCT-0.1
398 COTO 2300
399 229 PCT:PCT40.1
400 COTO 2100
401 320o 1[-3) 375, 375, 360
402 375 PCT=PCT+0.09
403 COTOJ 340
404 160 PCT=PCT-0.19
405 34n ox=aRI(*PCT
406 VAL(rC)=J X
407 fCTGM([PASS)=VAL(:I1) tYAL(32)*VAt(46)/VL('0)

- 40ff ASSIGN 715 TO IU4P

W~fl~ELLA-15

ORL A 40AC SEGMENT XLATOI 10/31/t94O 11:36 Fm PACE 15

409 COTO0 100

C -- CHECK FJR RFVFRiSAL
C

410 715 JSFN(1)=KUT
411 JaF4(2)=KFT
412 JSPN(3)=KTT
413 Po 712 1=1,3
414 U J(i
415- 416 712 CUNTINUE
417 700 00 710 1=1,2
418 KT~
419 W1 710 IZ=K,3
420 705 (JE([I)JE(I))071,C
421 706 FJdD=JS EN IS)
422)FI9=S11t
423 JsvN(1Z)=Po(.
424 VIL0- IJ TwJ(IR)
425 NUmj(T9b=mU4Mj(1.)
426 NU'JJ(1Z)=i0L",
427- 429 710 C(4T IN (W
430 [F(NUMK(1)-li[iMJ(1))400, 350,400
431 350 TF(rP-t3)355,359,325
432 355 PCT=PCT-0.01
433 C073 340
434 325 PCT=PC?.O.01
435 COTO 340
436- 437 2300 CONTINUE
438 V&L (CIOkR, -
439 COTOJ 2360

C
440 400 IF(LSA-10)4009,400q,401O
441 4009 WRITF(TOTJTPT,49)
442 idRITrF (IUT3T, 4)
443 WRTTF'(!OUTPT,40)
444 W!IZITF(IOtlTPT, 43)
445 40t0 PCT+=PCT*100.0
446 425 iRITE([UfJTPT,44)C,OR[G,(KSFN(K),'(=4,6)
447 LSA=I.SA+t
448 WdK7E(TOUTPT,45)PCT,CIX,KlT,KFT,f(TT
449 VAT.([C)=rPTG
450 GaT3 2361)
451 500 ?EWI'ND ro^OK2

C
r -- qvl'TF PFPA[P LEVE'L SUMAMARY
r

452 505 W4fTF,(IuW!TPT,4())
453 W4PTE(TUUITPT,46)PATE(l),VATE(2)
454 WRITF(TUUTPT,47)
455 .RTP(TOUTnDL,49)
456 DO) nod 1=1,IC0'IINT

((UT (K) , K1, 3)

/ A-16

mccfloimAVEL "1A2JOA 13La9.

ORLA !4DAC SEGM~ENT X!.ATO'Q 10/3111910 11:36 F%4 fA .E 16

458 WRTTE(TOUTPT,4ll)IPASS,NO'M,VtL(30),VAL(56),
(OU'r(L),L=If3)

459- 460 508 CO'ITINUF
461 510 STOPI
462 END

~fCD~~ELLA-17

MDC Segment , ator 10/31/1980 12:51 N%4 Page 4

ORLA Selment Reference

1. (0-13)
2. [13-20)
3. t20,16-20)
4. C20-24)
5. t24,21-24)
6. (24-55)
7. [55-60)
R. 160-61,83-122)
9. [122-130)

10. 1130, d6-122)
11. [130-135)
12. (13b-136,200-204)
13. [204-209)
14. (209,216-228,279-294)
15. (294-296)
16. (296-298,300-326)
17. (326,323-326)
18. [326-331)
19. (331,327-331)
20. (331-332)
21. (332,229-237)
22. [237-241)
23. 1241-244,246-247)
24. (247,236-237)
25. r247-266)
26. (266,263-266)
27. (266-267)
28. [267,271)
29. (271P274-279,333-347)
30. E347,342-347)
31. [347-351)
32. (351,358-399)
33. (359,350-351)
34. (359-360)
35. 1360,348-351)
36. (360-362)
37. (362,204)
38. E362-372,279-294)
39. [391-359)
40. [271,269-270,275-278,333-347)
41. (267-268)
42. [268,274-278,333-347)
43. r268,272-273,275-271,J33-347)
44. (241,245-247)
45. (237,241)
46. [332,373-379)
47. C379,376-379)
48. E379-383)
49. (383,390-3-31)
50. C391,332-343)

A-18

'DAC Segment Xlator 10/31/1980 12:51 Nu "a q e 5

RL& Segment Reference

51. E391-392)
52. (392,380-383)
53. (392-393)
54. C3q3,401)
55. t401-403,405-409,274-294)
56. C401,404-409,279-294)
57. C393-394)
5R. r394,397-398,436-437)
59. C437,367-372,279-294)
60. E437-439,361-362)
61. (394-396,436-417)
62. [394,399-400,436-417)
63. r393-391)
64. C332r,410-416)
65. 1416r413-416)
66. U416-420)
67. [420,427-423)
68. (428,419-420)
69. [428-429)
70. C429,417-420)
71. 1429-430)
72. (430,440)
73. (440-450,361-362)
74. r440,445-450,361-362)
75. (430-431)
76. [431-433,405-409,279-294)
77. t431,434-435,405-409,279-2-)4)
78. t420-428)
79. E 296,300-316)
80. U294,299-326)
81. t209-2l5,221-228,279-294)
82. (204,451-457)
83. [457-460)
84. C460,456-457)
85. (460-4611
86. [457,4611
87. [135,137-139)
88. [139-166)
89. E166,157-166)
90. C166-161)
91. [169-172,175-187)
92. C 187-189, 191-196)
93. (196,141-L97)
94. (196-199)
95. r 199,143-166)
96. r199-204)
97. [197, 190-19b)

* 98. 1187,200-204)
99. r169,173-147)
100. [169,200-204)

/L A-19

MDAC Sejuent X1ttor 10/31/11'10 12:51 N4 F~e t

3PLP. Segms~nt Deference'

l0t C13)41~-166)
102. [122,124-110)
103. (60f62-64)

* 104. t64-65,62-64)
105. C64,66-71)
106. 171-72,79-81)
107. tB1,69-71)
108. rdl-122)
109. M7173-74)
110. E74,70-71)
iii. r?4-78,80-ql)
112. (5s,57-60)
113. 113,15-20)

-NO) CS$SqONTTOR for MOVULF' 'OPLA v-

ACETLK Segment Qsefererice

1. CO-21

- NO CS$WMtMtTfR for HODOLE 'ACETLK w-

XPLA IN Segm~ent Reference

1. (0-7)

- mn CSIMONITflR for MMlAILF OXPLAIN -

COP.ECT Seiment ! eference

1. tO-7)

3. (16-11,0-7)
4. (1kr18-191
S. C7,9-10)
6. E(10,6-7)
7. E10-12,2-7)

SnO C$SMONITOIR for 4f)ULF ICPRFCT I-

OATV eqmuent Peferenc

1. (0-31

- N CS$MHOWTTO' tor MODULF. *JATEV -

4e~a~.At£JQJOLA2.2A-20

Appendix B

APTS OUTPUT

~CD@ENE*. W IIJ L(~, IiB-1

1 s 2 Case 3 Sum air Y

1014 6 o67 C 3.33 Pc 33.33 Pc 100.00 Pc
1. 1 0 1

3. 3 9 1 1

P6.6 'C . P 86.1 Pc 16.96 Pc
A . i 1 1 3

2. 1 1 1 3

I. ,) 0 0

. 2 2 6
'1. 1 1 1 3

0. 3 3 3

7. 2 2 b

I . I I

14. 1 1310. '

19. 2

It. t)0 o o
17. 113
1p. 2 2 6

to. . 3 3

20. 2 2

21. 1 3 3 9
22.) 2 2

3 3

*Program 9 4 .6' 11c 90.77 Pc 80.77 Pc 89. 16 Pc

B2

,E[! ISegment "eference

1. tO-11)
?. r11,5-11)

3. E11-12)

- NO C$SSONITUR for 40AILI 'MAIN -

TRIANG Segiment Reference

1. [3-3)

2. r3-1,34)
3. E34-17)
4. [37,2-1)
5. 3"-3d]
6. (34,36-37)
7. r3,5-8)

9. [11,7-8)

10. [11-13)
• 11. Eli-tcl)

* 12. t1-1),34)
11. 113, 20-27)
14. [27,70-22)

15. C22-17)
16. C27-23,32-33)
17. [3',?3-27)
IP. [33-31)
19. [27,2)-31)
20. C31,2)-31)
21. (31-33)
22. [13r15-19)

- NO C$$, ONITflR for :Anl)UJLF 'TRIMA' -

4B-3

Trial Statistics

Number of trials(T): 3

Value of XI:

Kt 11 1
XE 21 1

Number of Xl(AM) 2

B-4

416 6 . 7 P c 33. 3 Pc 33. 33 Pc 100. 09 Pc

3. j 01

TR~ f V;I:c Pf.f C 3i. 46 PC 8~.T)e c

.0 3

2 2 6

2. 2
21

1 3

t.. 3 .

19. 13 ()
6

13. 2

*Jrog 1- 7. 3 I 1 c 3 . c 9 . 5 P

1'-. ..

Segiment Reference

1. [o-it)
7. (11,5-11)

3. rll-12"

- NI C.$ 4rJN[lTfP for 4fIYJLF. 'AP .I

?RI ANG, cegent ! eference

1. 10-3)
2. r3-4,34)

* 3. C34-17)

4. [37,2-3)
5. [37-191
F. 131,T3-17)
7. [!,5-3)
P. [3-11)
9. [11,7-,9)

10. (11-13)
11. [13-1,)

t I12. C 1 1-14, 34)
13. r19,20-22)
14. 122,20-22)15. C21-77)
I f.. (27-23, 32-33)
17. r3l,23-77)
1 q. C33-3-)

1 .r27, 119-31
20. (31,'l-3t)
:1). r 1-3)

27. r 13, 1 -13)

- 4) C ' O.NT?fl f or 3,IU...A "TD.IANG -

i 1

B-6

Trial Statistix.-

lumh-r o f t r 1,,j? 1

Value ot Xii:

1II1 :
xc 21 3
KU 3 :11

8-7

Case 7 Case 8 Case 9 Summary

MAIN 66.57 Pc 33.33 Pc 33.33 Pc 100.00 Pc

1. 1 0 0 1
2. 1 1 0 2

3. 0 1 1

TRIANG 86.96 Pc 78.26 Pc 86.96 Pc 86.96 Pc
1. 1 1 1 3
2. 1 1 1 3

3. 0 0 0 0
4. 2 2 2 6
5. 1 1 1 3

6. 3 3 3 9
7. 2 2 2 6
8. 1 0 3 4
9. 1 1 1 3

10. 2 2 2 6

11. 1 0 1 2

12. 0 0 0 0

13. 2 2 2 6

14. 1 1 1 3

15. 2 2 2 6

16. 0 0 0 0

17. 1 1 1 3

18. 2 2 2 6

19. 3 3 3 9

20. 2 2 2 6

21. 3 3 3 9
22. 2 2 2 6

23. 3 3 3 9

*Pcogra% 64.62 Pc 73.03 Pc 80.77 Pc 88.46 Pc

M*ANWEL WAIEOL A 8.8

- - ----- ~ ~-~-----

UI~N Se~jpint ?eference

I. C0-1 I

- 437) l"W tT,3P for -'(MflVt. 'Mlr!'-

MANI~ Sernent Oeferernce

1. r 0-3)
? . r 3- I,)

* 3. r3.4-17)
4. C 37 , 2- 3

5*r37-'3 1
6. 13 ,S37)
7. 3-)

9. [11,7- 1)

1. 1l-1)

13. f 19,2u~-22)
1.4. [2?V It-22)
1 S. [2?-'?)

* 26. U -~,J-?
17. [i3,')3-27)
le-. r3l-l't)
1.'. [27,2.4-31)
" C 1,2')-31i)
21. C3 1-31)
2?. r 11315-11
23. 19,10l-l1)

No clps-nw(rTr for '4'1%'If *r,7r

8-9

b O

Trial Statistics

number of trials(f)= 4

Value of Xl:

XI 11 : 1x['j : I
KE 3] : I
XE 4] : 4

Number of Xi(N)= I

iJ

B-10Dou 11 L.

Appendix C

OUTPUT FROM A CONSTRUCTED CASE
AND

CONSTRUCTED CASES LISTINGS

c-1
iWO O OV L 0 0 -'p-

OUTPUT FROM A CONSTRUCTED CASE

Case 1 Summary

AIN 66.67 1'c 66.67 Pc1. 1 1
2. 0 0
3. 1

TRI N3 73.91 Pc 73.Ql Pc
1. 1 1
2. 1 1
3. 1 1
4. / 2
5. I 1
6. 3 3
7. 2 2
8. 2 2
9. 1 1

10. 2 2
11. (1 0
12. 1 1
13. 1 1
14. 0 015. 1 1

16. 1 1
17. 0 0
18. 1 1
19. 0
20. (0
?1. 3 0
22. 2 2
23. 3 3

*Pcogram 71.)t3 Pc 73.03 r

C-2

M A I ' 'lepent :eference

- 1j C $$" '4I TT, F or 1.)W

1. rj-1l

3. r 3~)

7. r 3,~

r. II- I)

1. 11 -

13. C1J~?

17. 3jTh

C, C. 1 , 31 - I

- 4onitir ['reli-7at -

1. In,.i:.
'.~~iO000100140 .v0T . 9OOCOfQOOO..() *' f0010OOOiOE6

*VCON"OVfLL U1EJO4JE3LC3

Trial Statistics

Number of trials(T.)=

Value of YXj:

l~umber of XIMfi) 0

CA --4-- .

CONSTRUCTED CASES LISTINGS

P'ROGRA4 MAIN

I'dYEGER IPM3
RKIL AC 4p3),r

0- 1 UPUO(UNIT=20,DwVICS=LSK: ,FTLE=OBRAD.RE3,PACCESS=OSFQOUT?)

2 N=3
3 N4
4 4=1

C
5 DOJ 10 tK=1,4
6 WRITE(20s,0LI)K.((A([,jJ)dJ1l,!O, [=1, Nt1)
I CALL ?RIAM(!PAN)

9- 10 10 CJIT[NUE

12 101 FORM'ATV BEFORK TRIVEGULARIZATION (,jI,')'/33X720.1O))
13 102 FUIMAT(v AFTER ?PIAIGULARIZATTON (,Il,)'13(3X,!2O.10))

14 I

C-6

[40LICIT IvqTgGER(A-Z)
C

0- 1 rN~
2 Dl' 6 K=1,N

3- 4 TFK9*)COTO 5

7 [hO I=[KPlN
8- 9 F(S((,).?,!S(1)) 4=1

10- 111COIJ'INUE
12 PK=
13- 14 1F(9.N.'.2) P4=1()
is5 1' A (4,K)
16 4(M,0K)zA(K#it)
17 I (K',K) =?

rM fn Tla=KAL mnfNT)
19- 20 IF(r.eQa.O) GOTO 5
21 DO 2 I=FI,1N
22- 23 7 A(1,K)=-A(I,K)IT
24 pn 4 J=KP1,N

26 A(4, 1)=A('(,J)

2% 1P4ON=AIS(T)

29- 30 TF(1.EQ.0) GOV3 4
31 00 3 I=KPlvN
32- 33 3 A~r,j)=A([,J)+A(I,K)*T
34- 35 4 'XJ'WrTNUE

36- 37 IFAK5.QO IP(N)=D

40 ITP

41P

C44

