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ABSTRACT

A functional inequality is used in the formulation of a regularity
condition on the scaling of production. This functional inequality

is characterized and then applied to: ("r);'deduce a law of diminishing
return;, "derive a bound on the growth of an open economy.

2 d »f




A FUNCTIONAL INEQUALITY, WITH APPLICATIONS TO PRODUCTION THEORY
by

King-Tim Mak

1. INTRODUCTION

Functional equations have always been an important area in math-
ematics, and have found much applications in the physical sciences.
Functional equations have become a useful technique in economic analysis;
for example, in the study of aggregation, technical progress, structures
of utility functions, price indices and scaling of production, etc. See

Eichhorn [1978].

In the study of scaling of production, functional equations are used
to formulate notions of homogenity, homotheticity and semi-homogenity
etc; again, see Eichhorn {1978]. This approach was extended to the for-
mulation of ray-homotheticity (Shephard and Fiare [1977)) and general-
homotheticity (Mak [1980-a]). 1In this paper, a different approach is
taken, A simple functional inequality is proposed as a general condition
on scaling, called regular scaling. This functional inequality is then
characterized. Finally, the notion of regular scaling is applied to:

(1) deduce a law of diminishing return, (i1) derive a bound on the speed

of growth of an open economy.
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} 2. REGULAR SCALING AND A FUNCTIONAL INEQUALITY :

(2.1) Definition: A function ¢ : R: -+ Eg_ satisfies regular scaling

if for every X € l&+ there is a scalar f()) € R, such that
(2.2) ¢(rex) S £(N)0(x) , x € R} .
Note that the condition of regular scaling is satisfied for homogenous
and sub-homogenous functions. Furthermore, it is easy to show that
1
the condition also holds for all "polynomials" of the form i
K n o
ki n
¢(x) = Z (II a .x ),xG]R , K < 4= |
. k=1 \i=1 ki™i +

if ¢(x) > 0 on R::_.

To see how large is the class of functions which satisfy the

functional inequality (2.2), it is convenient first to restrict the

domain of ¢ ¢to R

. - With this specialization, the following function

¢(x) = 3 +sinx, x € Ig.

shows that a regular scaling function may go up and down in value.
Hence, it seems useful to delimit the class of functions further since
we are mainly interested in production functions. The following
properties (they are part of Shephard's [1974] weak axioms for produc-

tion) may be imposed:

¢.1 ¢$(0) =0 .

¢.2 ¢(x) 1is bounded if x 1is bounded.

e e ot v T
. 2 T AN L M e e b aas et b e B




6.3 ¢ 1is non-decreasing (on 34).

.4 ¢ 1is upper-semi-continuous.

»

In the following, a characterization of the class of ¢ : R} > E*

satisfying regular scaling is given. But, first note that

if ¢ : R+ - m4 satisfies regular scaling and ¢.1
(2.3)
but ¢(x) = 0 for some x >0 , then ¢ = 0 .
When ¢ is taken as a production function, (2.3) may be somewhat too

restrictive a condition. However, the properties of a production

function already imply much of regular scaling in the following sense:

(2.4) Proposition: Suppose ¢ : R* > mw satisfies ¢.2, ¢.3 and ¢.4.
If ¢(x) is positive over a compact interval {a,b] where a > 0 ,
then for each A € lg+ there exists a scalar f()) € IH+ such

that (2.2) holds for all x € [a,b] . ‘

Proof: To use contra-positive argument, suppose for a Ao € Ig+ there
is an infinite sequence {xk} C (a,b] with ¢(A6-xk)/¢(xk) + 4= , Since
{a,b] 1is compact, there is a subsequence {xj} C {xk} with {xj} -+

x° € [a,b] . Clearly, :Ao-xj; -+ Ao-xo . Since ¢(a) > 0 by assumption
and 4.3 and ¢.4 hold,

$(2gx) )

- 1 JY <
+o = 1im sup ¢(xj) =3 lim sup ¢(Ao X ) = 32
This contradicts the boundedness assumption ¢.2. 11/

Note that if ¢ # 0, say ¢(z) > 0 , then by the monotonicity of

¢ , ¢ 1s positive on every interval {z,y] where y > z . Hence,
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every non-trivial production function ¢ : I{P > n1+ satisfies regular

scaling at least over a certain range.

(2.5) Theorem: Suppose ¢ : R+ > mg satisfies ¢.1 and ¢.3. Then
¢ satisfies regular scaling if and only if for some scaling
factor Ao (S Ig+ , and X, € R,, , there is a scalar 6 € lh+

such that
(2.5.1) ¢(Ag+l-xo) S 6'¢(?\g-xo)

for all j € {0,+1,+2, ...} .

Proof: Without loss of generality, one may assume Xo > 1.

The "only if" part follows directly from the definition of regular
scaling.

To show the "if" part, first observe that due to ¢.1 and ¢.3, if
¢(x°) =0, then ¢ = 0. This is consistent with condition (2.3). Next,
note that it suffices to consider only those x € IQ+ since ¢.1 1is

assumed., Also, 6 > 1 because A, 1s taken to be > 1.

Consider an arbitrary x € R, . Let p € {0,+1,+2, ...} be the
largest integer such that Aﬂ-xo S x . Since ko is assumed to be
. P, P2,
larger than 1, Ao X € [Ao X, AG xO] . Thus

2
10D o) o8P o),
Yy R g Ty

Note that the above inequality is independent of the arbitrarily chosen

x . Hence, by letting f(xo) HE ] 62 » the functional inequality (2.2)

holds for Ao .




5
|
To show (2.2) holds for all A € l%+ , first suppose X < Ao .
It follows from ¢.3 that
¢ (A _°x)
()ux < [o] <
= — = f(A = .
i Yo i S 16 B
+ +
Hence (2.2) holds for all X < xo . Now, suppose \ > Ao . For an
arbitrary x € Ig+ , again let p be the largest integer with
xg-xo Sx . Let m be the smallest integer such that A<x : A:'xo '
. k k+l
It may be easily shown that for A € AO,AO ) (where k € {1,2, ...}) , i
the integers p and m associated with x 1is related by: m - p < '
2 + k . Then by ¢.3 and the regular scaling hypothesis on X, with
scaling factor xo
1
m, P, (1P,
$(Aex) < ¢('\o xo) < 8 ¢(Ao xo) < g2tk
¢(x) P, = P, =
o(20x,) o [Eex,)
Since the inequality on (m - p) depends only on A and not on the
arbitrarily chosen x , by letting £()) := 82+k (where k 1is the
integer depending on 1), the functional inequality (2.2) holds. /1]

Theorem (2.5) is quite remarkable in demonstrating that a single

scaling factor ko and a single sequence of points }""i—.xo’xo'

o
ono, ...: is necessary and sufficient to test if regular scaling

prevails.

With the domain of ¢ taken to be lﬂ: , property ¢.3 (which is

the assumption on input disposability when ¢ 1s a production function)

is modified to




——

$.3” d(Aex) Z $(x) if A 21, x€ m:

$.3.8 x 2y implies ¢(x) 2 ¢(y)

; or

The following propositions are concerned with function ¢ having

domain B: . The first two are direct analogs of (2.4) and (2.5),

hence proof will be omitted.

n

(2.6) Proposition: Suppose ¢ : R, ~+ R, satisfies 4.2, $.3” and

+

¢.4. Let K be a compact subset of Ri .

0 , then for each X € IH+ there is a scalar

(2.2) holds for all x €K .

n

(2.7) Proposition: Suppose ¢ : R, > R, satisfies ¢.1 and ¢.3".

¢ satisfies regular scaling if and only if for some scaling

factor Ao € R, , there is a scalar 6 € Ig+ such that

JHL, X\ < 4.
¢(xo nxu) S 64

i, x
()‘o ||xl|)

for all j € {0,+1,+2, ...} and each mix x/[x|

The above characterization of regular scaling hinges on the existence

If Inf{¢(x) | x €K} >

f()\) € l{H_ such that

Then

of a scalar 0 for which the functional inequality holds for each mix

x/Ix]l . The author has not been able to establish conditions under

which such a scalar 6 exists. However, the following proposition

relating the regular scaling of one mix to another is of some interest.

First, as notation, for a function ¢ : R: > ng_ and a mix x/|x|] € )

define the function

a € l{b-* oo | x/0xl) ¢ = (arx/lxl) .

[ SR wres o

l
i
|




(2.8) Proposition: If ¢.3.S5 holds for a function ¢ : R: > R+ and
for some mix x/lxl > 0 , the function ¢(+ | y/ixl) # 0 and
satisfies regular scaling, then ¢(+ | y/lyl) also satisfies

regular scaling for every mix y/lyl > 0 .

Proof: Suppose the mix x/lxl > 0 has ¢(- | x/lIxll) satisfying regular
scaling while the mix y/f§yl > 0 has ¢(+ | y/lyl) violating regular
scaling. For each B > 0 representing an element on the ray {é'y/ﬂy" }

g > 0} , define

al(B): =max {0 > 0 | o-x/lIxll £ B+y/lyl} ;

o?(8) = min {0 > 0 | o-x/Uxl Z B-y/Iyl} .

Since x/lixl > 0 and y/{yl >0, al(B) and az(B) are well defined
for B > 0 . Furthermore, it is a simple geometric fact that the ratio
A= az(B)/al(B) is independent of B8 .

Since the function ¢(+ | y/lyl) violates regular scaling, there

*
exists a A > 1 with

%*
o(x 8 | y/liyly _
(2.8.1) Z:g YCREZITID = 4= ,

Since ¢(° l x/Ixll) satisfies regular scaling, for the scaling factor

*
A 4, there is a scalar f(A*A) such that

* *
(2.8.2) o(xao | x/lxl) S £(A A)e¢(o | x/Ixl) , Wo > O .

* * &
Now (2.8.1) implies the existence of a 8 > 0 with (A & | y/lyl) >

* *
£(x 8)+¢(B | y/liyl) . But by construction and ¢.3.S




o 8™) -x/ixl) S 08 -y/ivl) ,

and

o2y ex/1x) 2 6 8% y/1yD) .

*
Hence letting o: = al(k ),

¢(>\*Aa1i)\*)-x/||xll) - Q(A*uz()\*)-x/llxll) S ¢Q*e*-j/||y||) N f()‘*A)
* = %* ¢
et ™) ox/1xl) 0@y xsix) 6 y/uyD

This contradicts (2.8.2), and the proof is completed. /11




3. APPLICATION

essential for production if ¢(x) = 0 for every input x with x; = 0(1)
An input factor combination ICC {1, ..., n} 1is strong limitational for

(A.1) A Law of Diminishing Returns

Suppose ¢ Ri -+ m4 is a production function. The input level

sets induced by ¢ are given by

u € R* + L(u) ¢ = :x € mﬁ | o(x) 2 ug

The technical efficient subsets of the technology are

Ew:={x€L) [y<x=y&Lw},ueER . A

In addition to ¢.1, ¢.2, ¢.3°, ¢.4, Shephard's [1974] weak axioms for

production impose the following on the production technology:

4.5 If ¢(x) 2 u >0, then for every 8 > 0 there is a Ag > 0
with ¢(xe~§) > 8eu .

E E(u) 1is bounded for each u € B% .

An input factor combination 1CC {1, ..., n} is said to be

output if for every bound B € lg+ on x; , sup {o(x) | “xIH S B} < 4= .,

(3.1) Proposition: Suppose a production function ¢ satisfies Shephard’'s
weak axioms and regular scaling. Then an input factor combination
ICC {1, ..., n} is strong limitational for output if and only if

it is essential.

(1)

X, denotes the components {xi,i € Il of a vector x .

1

e e r—— -




The above proposition in general is not true without the assumption of
regular scaling (see Shephard [1970]). For a proof of the proposition,

see Mak [1980-b].

(A.2) A Limit on the Growth of an Economy

Suppose an economy has a single manufactured commodity which is
used both as consumption goods (u) and as inputs to production (y) .
The production technology of this economy is represented by a production
function ¢ . The other inputs (q) to production are exogenous to the
economy and primary (i.e. essential). The stream of exogenous resources
is given as (qo,ql, sees Qs «++) . The initial endownment of the
manufactured commodity is ; . The evolution of the economy is char-

acterized by a program {(u ) 3 t=0,1, ...} :

£t

uo + yO = ¢(}',q0) ’

(3.2)
u, + Ve = ¢(yt_1,qt) , t=1,2, ... .

Assumption: The production function ¢ of the economy satisfies regular
scaling. Moreover, there exists K € R, such that the scaling factor
£f(A) in the functional inequality (2.2) satisfies f(1) S K\ for all

A>0.

(3.3) Progosition(z): Suppose the production technology ¢ of an
economy satisfies ¢.2, ¢.4 and the above Assumption. If for
some o > 0 the sequence of exogenous primary resources satisfies

uqt“ = atnqoﬂ , then given the endownment y , for every program

(Z)This proposition is an analog of Radner (1967, Theorem 2.1].




{(u )} which is feasible (i.e. satisfies (3.2)), the sequence

}(ut + yt)/at; is bounded.

7t

Proof: Suppose to the contrary that (ut + yt)/at is not bounded.

Tten there is a subsequence of indices S such that

lim at/(ut +y.) =0; and

tes
(3.3.1)
u +y u_ +y
t"'l t-l < o t
0 < at°l = at , for all t €S .

Denoting X, := (yt—l’qt) , it follows that

t
(3.3.2) el ¢ Ve ol 1, 210
ut + yt u, + yt u, + yt o ut + Ye
Thus, {xt/(uc + yt)} is a bounded sequence and has a subsequence ‘

*
(with index set SS8) converging to some input x .

By rearranging the functional inequality (2.2), it follows from

the Assumption that for each t

¢( X, . 0= A 1.,
ue ¥ ¥

f(ut + yt) K'(ut + yt) K
where f(+) denotes the appropriate scaling factor. Then, by ¢.4
* * * %
(the upper-semi-continuity of ¢), ¢(x ) >0 . Let x = (y ,q)
* *
The exogenous resource component q of the limit point x has

t
g, a“lq,l

*
fq | < lim sup < lim T "0 ‘

tess Yt v Ye T tess Vet Ve

This contradicts the fact that exogenous resources are primary (essen-~

tial). 11/
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Remark: Proposition (3.3) generalizes the cited theorem in Radner
{1967, Theorem 2.1] in the sense that the technology of the ecomomy

is not assumed to be homogenous. Although a production function was

used, the notion of regular scaling may be extended to the case of
production correspondences (see Mak [1980-b]) and the result of (3.3)

will remain essentially unchanged.
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