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APSTRACT
The study of the radially symmetric equilibria of a non-linear diffusion
equation in several space dimensions leads to an ordinary differential
equation. Under the hypothesis that the reaction terms are in gracdient form,
conditions are found which imply that solutions are asymptotically constant at
infinity. As an application it is shown that the all spherically symmetric

solutions of the sine-Gordon equation are asymptotically constant (and

consequently bounded).
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SIGNIFICANCE AND EXPLANATION

Diffusion - reaction equations approximately govern the behavior of
chemical reactions, population changes etc. The analysis of such eaquations
begins with a description of those solutions that are constant in time.
Frequently, something about the number and type of such solutions can be found
without actually finding the solution itself. In such a case further
information about the solution might follow from general considerations.

This work provides a general means of determining that certain
equilibrium solutions must be approximately constant for large values of the

space variables.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE BEHAVIOR OF SPHERICALLY SYMMETRIC EQUILIBRIA NEAR INFINITY

C. Conley

§1. The problem considered here arose in the study of spherically
symmetric equilibria of a non~linear diffusion reaction equation in the
special form:

(1) du/9t =D A u+ V F(u) ,

where u is an m-vector valued function of the n-vector x and scalar t ,

D is a positive definite symmetric m X m matrix and A is the Laplacian
operator in R" acting component-wise on u . The specialization is in the
assumption that the non-linear terms have the form VF(u) where F is a
(smooth) scalar-valued function on R and V is the gradient operator.

The equation for radially symmetric egquilibria of (1) can be written as

a first order system of ordinary differential equations:

-1

du/dr D v

(2)
dv/dr

-(n-1)v/r = VF(u).

In these equations u and v are m-vector valued functions of r. The
aim is to give conditions under which a solution tends to a constant as r
tends to infinity. Since the constant, say (uw,vw) , must be a rest point of
the "limit" equation (i.e. (2) with the 1/r term absent) v_ must be zero

and u, must be a critical point of F .
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The result is that if the limit set of the solution is compact and either
contains a minimum of F or contains only maxima of F , then it must
contain only rest points. Since it is also connected, it must then be
contained in some component of the rest point set. The case where the limit
set contains a minimum is trivial but the case with maxima (Theorem 1 of §2)
requires a little more argument.

It is not shown that compactness of the limit set implies it contains
only rest points, even tlough this seems the obvious thing to expect. The
main point is that the function H(u,v) = (v,D-lv)/z + F(u) is strictly
decreasing on non-constant solutions of (2). If that equation were
autonomous, it would follow that all bounded solutions tend to rest points.
However, in the present case the rate of decrease is (v,D-lv)/r and without
further work, it can only be concluded that a bounded solution tends to a set
of solutions of the limit (Hamiltonian) system and that this set must bhe
contained in some one level surface of H .

However, since H decreases on solutions, some conditions under which
the limit set must be compact (i.e. conditions enabling avplication of the
theorem) are obvious. For example, if the initial conditions lie in a
(compact) component of a set of the form {(u,v)lH(u,v) < h} (where h is any
constant) then the full solution curve must lie in the same component.

Also, if F(u) is periodic in u with a compact periodic domain then
the compactness hypothesis is satisfied on the identification space and the
theorem applies. In particular, it follows that radially symmetric equilibria
of the sine-Gordon equation wu_, = Au + sinu are bounded and asvmptotically

tt

constant as r tends to ® . (cf, §3).
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Other solutions which are bounded as r tends to infinity come out of

the study of traveling wave solutions of (1). This comes from a
correspondence between these waves and the radially symmetric equilibria,
This will be described in another paper where the present theorem on
asymptotic behavior is used to refine the existence results proved there.

It seems to be true that if a traveling wave is to be stable, it's limits

at infinity should be maxima of F . 1If this is the case, Theorem 1 applies

in the case of stable waves.

Theorem 1 is proved in §2 and Theorem 2, concerning periodic F, in §3.
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§2. Theorem 1.
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By introducing p = 1/r the equations (2) can be rewritten in the

autonomous form:

u' = D-lv
(3) v! = =(n-1) pv - V F(u)
v - 2
p’ = =p

where '= d/dr. It is assumed that n is greater than 1.
The rest points of (3) are all of the form (u0,0,0) where
v F(uo) =0 ;
points of F.

Suppose (u(r), v(r), p(x))

then, they are in one-one correspondence with the critical

is a solution of (3) with limit set @

as r + o, Note that p is identically zero on €2 o+ The aim is to

prove v 1is zero on
set of u~coordinates of points in O .

Since the derivative of H(u,v) along solutions of (3) is

-(n-l)p(v,D-1v) (with n=1 > 0)

Q , at least under some conditions. ILet Qu

H is non=-increasing on solutions and must be

constant on §. Thus { 1lies in a level set of H , say H=h. Since

H = (v,D-lv)+ F(u), this implies Qu is contained in the set F

< h.

when F is replaced by F-h, the equation doesn't change, so it can be

assumed that h = 0. Then it follows that F is non-positive on

Q .
u

In particular, it follows that if Qu contains a (strict) minimum of

F then 8 consists of just one rest point. More generally, suppose C is

a (connected) set in the zero level of F and is the intersection

neighborhoods U such that the restriction of F to the boundary

positive (so C consists of critical points of F). Then Qu
disjoint from C or contained in C.

The theorem below pertains to maxima of F.

-l -
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Theorem 1. Let (u(r), v{r), p(r) be a solution of (3) with limit set { and

let Qu be the set of u-coordinates of points in & .
Then & 1is .ontained in a level surface of H which can be assumed to
’ be the zero-level. If { is compact, Qu is a connected compact set
containing a critical point of F .

Let C be the set of critical points in Qu « If C admits a
neighborhood U such that F is non-positive in U then § consists of
rest points. In particular, if C contains a strict maximum of F , &
consists of one rest point. //

Proof: In view of the paragraphs preceding the statement of the theorem

it can be assumed that the solution (u(r), v(r), p(r)) has compact limit set

2 contained in the zero-level of H and that Flﬂu < 0. It is well known

that compact limit sets are connected and it follows that Qu is connected.
To see that  must contain a rest point, let W be any open

neighborhood of the rest point set and let K be a compact neighborhood of

! « (These neighborhoods are in the (u,v,p) space; in particular, X

contains a tail of the given solution). Given any solution

h {ulr),vir),clr)) with initial values in K\W , consider f;(v,D-lv)dr.

5 Were this zero, v  would have to be identically zero on [0,1] so that

i ~

u would have to be constant and V F(u) zero. But this would require

the solution to be a rest point and therefore in W which it is not.

Since K\W is compact it follows that there is a positive § such that for
' solutions starting in K\W , f;(v,D_1v)dr > 48 .

Now consider the function p-lﬂ. The derivative of this function on

solutions is H - (v,D-lv) « On the given solution, H Jdecreases to zero
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as r tends to infinity, and p-lﬂ is positive. Choose ro so that if

r > T, o H < §/2 . Define a (possibly finite or even empty) sequence

r1, rz,... as follows: let r1 be the first (if any) r > r0 such that
(u(r), v(r), p(r)) is in K\W. Having defined r (1if

+ is i = .
(u(rn 1) v(r n+ 1) ,p(r 0+ 1)) is in K\W , let ¥ o1 r + 1

Otherwise, let r be the first r after r such that
n+l nt+1
(u{r), v(r), p(r))is in K\W.
Now from the choice of r0 and the definition of the sequence it follows

that

-1 -1 1 -1

p "H(r +1) - p "H(r ) = [ [H(u(r +s8),v(r _+s)) - (v(r +s),D "v(r +s))] < -§/2,

n n 0 n n n n

Thus if the solution were eventually outside W , p-lﬂ would go to =~ . But
it is known to be positive. Therefore the solution enters W for arbitrarily
large r and § therefore contains points in W . Since W was an
arbitrary neighborhood of the rest point set, { contains a rest point.

Now let C be the set of critical points in Qu and let U be any
neighborhood of C restricted to which F is non-positive. Let V be any
neighborhood of the intersection of § and th:2 rest point set such that the
u-coordinates of points in V 1lie in U .

Since V contains all the rest points in §{ there is a neighborhood
W of the rest point set and an r_ > 0 such that if r > r  and
(u(r), v{r), p(r)) is in W, then it is also in V .
Choose r, as before (that is so that if r 2 r0 then H evaluated on

the solution is less than §/2) and also so that I, 2 r, . Now when the

-1
solution is outside W , p "H decreases at rate at least §/2. Also when

the solution is in W it is in Vv . Now in Vv ,

d(p-1H)/dr =H - (v,D_1v) = F(u) -3@ (;30 v) € 0 . Therefore p-1H is also
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F(u) =Y (v,p" 1v)
decreasing when the solution in in Vv . Since p-lﬂ stays positive, it must
eventually stay out of O\W and so must stay in V . Since V can be
chosen to be an arbitrarily small neighborhood of the rest point set in

Q , it follows that § itself consists of rest points. This proves the

theorem.
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§3 pPeriodic F.

Suppose now that F(u) = F(ul,...,um) is periodic in each variable.
Also assume F 1is smooth and therefore bounded.

If (u(xr), v(r), p(r)) is any solution of (3), H(u(r), v(r)) =
(v(r),D -lv(r)) + F(u(r)) is a non-increasing function so is bounded as r
goes to «® ., In fact this is even true when n = 1,

The bound on H then implies that v(r) is also bounded. However, it
doesn't follow that u 1is also bounded. For example, equation (4) below has

unbounded solutions if n = 1.

u' =v
(4) v' = =(n=-1)pv - sinu
1 2
p = =p

On the other hand, if the equations are viewed in the space obtained by
identifying points whose u-coordinates differ by a period vector then the
boundedness of v(r) implies that all solutions admit a compact limit set.
For example, the unbounded solutions of (4) (with n = 1) have a limit set
which is a "circle" around the cylinder {0,27n) x R (which is the identified
space).

Now the compactness obtained on going to the identified space allows the
argument of the theorem to be applied in the case where n > 1. Doing so in
the case of equation (4), it is found that, since all critical points of F

= =cos u) are either maxima or minima, the theorem implies that all

solutions tend to a rest point. But now on going back to the unidentified

space, it follows that if n > 1, all solutions of (4) are bounded.
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The general statement is:

Theorem 2: If F(u) 1is smooth and periodic in all its variables then each

solution of 3) with n > 1 has a compact limit set € in the
identification space and the conclusions of Theorem 1 hold.

If § consists of critical points then the solution is bounded in the
original space.
Corollary 1: In the case of one degree of freedom (i.e. u,v € R1) if F
has only maxima and minima then any bounded solution tends to a critical
point. If F is periodic, then all solutions are bounded; thus radially
symmetric solution of the sine-Gordon equation tend to a constant as r tends

to = .

CC/db
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