
AD-A093 465 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/6 17/2

THE USE OF THE IEEE-488 BUS AND THE MASCOT PHILOSOPHY IN AUTOMA--ETClU)
SEP 80 M O'BRIENUNCLASSIFIED RSRE-MEMO-3285 DRIC-BR-76468 NLII' IIII! , .,,omoml

UOI

EhEE~EEEI!

2-1 1112 .2123_6 ONII
1111 * *3 11111

.I 1 .8I'll' m lll111 '*'1

11IL25 .41 111111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURIAL) OfE SlANDAR[DS 1963 A

?10

ROYAL SIGNALS AND RADAR ESTABLISHMENT

SThis meorandumdscribes eoradumt ofreerc udrtke o nvsigt

Title:E
OF EEU48 8a

R-8 U AND THE HlILOSOP
Q)N4SA=CTST EQUIP~gNT,

to Software Construction Operation and Test (MASCOT) as a standard softw are technique
in Automatic Test Equipment.

• _ .. o7esio For

SB v

VIA A

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive Ministry
of Defence

D Copyright

. C
" " Controller HMSO London

1980 1;o

Dis

RSRE MEMORANDUM No 3285

THE USE OF THE IEEE-488 BUS AND THE MASCOT PHILOSOPHY IN AUTOMATIC TEST EQUIPMENT

M O'Brien

CONTENTS

1 INTRODUCTION

2 SUMMARY OF THE EXPERIMENTAL AUTOMATIC TEST EQUIPMENT

3 IMPLEMENTATION OF THE EXPERIMENTAL AUTOMATIC TEST EQUIPMENT

3.1 Design, Construction and Test of IEEE-488 Bus Controller Interface

3.2 Preparation of a Library of Simple Software Routines

3.3 Design and Construction of a Microprocessor Based Pattern Generator

3.4 MASCOT System Design and Test

4 CONCLUSIONS

REFERENCES

ACKNOWLEDGEMENTS

Appendix A Intel Multibus Compatible IEEE-488 Bus Controller Interface

Al Introduction

A2 Implementation at IEEE-488 Bus Controller

A3 Operating the IEEE-488 Bus Controller

N Appendix B The MASCOT approach to Software Construction

Appendix C MASCOT Module Description

1 INTRODUCTION

This memorandum describes the results of research work which was directed
towards assessing the usefulness of the IEEE-488 Bus(l) and the Modular Approach
to Software Construction and Test (NASCOT(2)) philosophy, in Automatic Test
Equipment (ATE).

It was decided that to bring about the aims of the research work a simple

experimental ATE would be constructed. This involved designing and building an
Intel compatible IEEE-488 Bus controller and deriving a basic MASCOT system.
Once the experimental ATE was operational then various tests would be performed
to determine the value of the Int1-488 Bus and MASCOT in ATE.

ia

2 SUMMARY OF THE EXPERIMENTAL ATE

As the aim of this work was to investigate the value of applying the
IEEE-488 Bus, (for Bus details see Appendix A) and the MASCOT approach to ATE

(for MASCOT details see Appendix B), it was clearly unrealistic to build a com-
plete ATE system so a small experimental ATE to test a digital circuit was
devised. The function of this simple ATE was to stimulate a digital Unit Under
Test (UUT), collect the output responses, compare them with the responses

expected from a good circuit and give either a 'pass' or 'fail' report con-
cerning the UUT.

From the block diagram in Figure 1.1 it can be seen that the system consists

of a microcomputer with an IEEE-488 controller interface, a pattern generator

and a logic analyser. The input pins of the UUT are connected to the pattern

generator. If required the pattern generator initially outputs an initiali-

sation sequence, this is followed by a test pattern in parallel with a clock

output. (The clock is used to inform the logic analyser that the data on its
inputs are valid.) When the data have been acquired the logic analyser
indicates this to the microcomputer via the IEEE-488 Bus. The acquired data is
compared with previously collected data from a known working unit to give either
a 'pass' or 'fail' report.

(3)
The programs were written in CORAL 66 and were developed on an Intel

Microprocessor Development System (MDS). During development the MASCOT super-
visor with trace facilities and a capability to initiate, stop and restart
program segments, was used. After development the programs were reconfigured
so that the test program would run on a target machine, in this case an Intel
SBC 80/10 microcomputer system.

3 IMPLEMENTATION OF THE EXPERIMENTAL AUTOMATIC TEST EQUIPMENT

The implementation of the experimental ATE was broken down into 4 distinct
phases. These were:

1 Design, construction and test of an IEEE-488 Bus controller interface
compatible with the Intel Multibus.

2 Preparation of a library of basic software routines to test the
controller interface.

3 Design and construction of an Intel 8085 based pattern generator.

4 MASCOT system design and test.

3.1 DESIGN, CONSTRUCTION AND TEST OF AN IEEE-488 BUS

CONTROLLER INTERFACE

The IEEE-488 Bus controller interface was designed to operate with an
Intel SBC 80/10 microcomputer as the target machine although much of the
development was done using an Intel NDS. As both microcomputers use an

Intel Multibus internal bus the IEEE-488 Bus controller interface was
designed to interface with this internal bus. The IEEE-488 Bus controller
which is described in more detail in Appendix A, was built, tested and

"it1 from the prototype a printed circuit board layout was produced.

2

3.2 PREPARATION OF A LIBRARY OF SIMPLE SOFTWARE ROUTINES

A series of simple software routines was written to test the IEEE-488
Bus cont;9ller. These routines were written in Intel 8080 assembly
language and after assembly the object code modules were formatted by
the ISIS (5) librarian facility and stored on disk.

Figure A5 contains a listing of the more important software routines
needed to drive the IEEE-488 Bus controller. (Controller address selection
is set by links on the board).

3.3 DESIGN AND CONSTRUCTION OF AN INTEL 8085 MICROPROCESSOR BASED
PATTERN GENERATOR

A pseudo listener function was implemented using two 8-bit parallel input
ports of an INTEL 8085 to monitor the state of the IEEE-488 Bus. (The
device was a pseudo-listener because it did not create an active handshake.)
The Pattern Generator was designed so that it responded to a trigger command
after it had been addressed. On receipt of the trigger command a pattern,
previously loaded into the 8085's EPROM, was used to stimulate the UUT.

3.4 MASCOT SYSTEM DESIGN AND TEST

An ACP diagram described the system and is reproduced in Figure 2.
Activity LGASET sets the logic analyser, via the IEEE-488 bus to a state
which was determined by interpreting the parameter received from the root
activity AC1. Activity LGASET then triggered the pattern generator, and
when a test was complete extracted data from the logic analyser. These
data were then compared with the data stored in a pool LGADT which was
obtained from a known good UUT and a result, good or faulty was given.

In order to check the flexibility of such a software scheme an additional
IEEE-488 Bus compatible multi-function voltmeter was interfaced to the
bus. Another activity DVMSET was conceived together with two additional
channels to give bi-direction links to the activity ACI. Activity ACl
passed a parameter which was interpreted by DVMSET to obtain the range and
function to be measured. Next DVMSET set the multi-function voltmeter to
the required function and after a reading had been taken returned the
measured value to activity AC1. Figure 1.2 shows the block diagram for
the modified test system and Figure 2.2 is then related ACP diagram.

4 CONCLUSIONS

The limited research work undertaken indicated that the IEEE-488 Bus
simplified many of the design and construction problems associated with con-
ventional ATE systems. The task of expanding the number of devices connected
to an IEEE-488 Bus structured ATE is relatively straightforward and by having
more than one IEEE-488 Bus operated by a process controller, more than 15 instru-
ments, the maximum for a single Bus, can be used. The research also showed that
the IEEE-488 Bus could potentially be applied to limited digital testing if
used with an intelligent instrument, such as a logic analyser. (It must however
be appreciated that switching matrix problems were not addressed by this work.)

The IEEE-488 Bus runs at the rate dictated by the slowest device connected
to it and so, although the maximum speed of the Bus is 1M Byte/second, the actual

3

rate will be much slower. As an example the logic analyser took over 3 minutes
to dump the contents of its memories in ASCII form to the controller, a data
transfer rate of only 5 bytes/second. (This was due to the internal processing
performed by the logic analyser).

For large integrated digital test systems, the IEEE-488 Bus would create
severe limitations due to its speed and the small number of parallel data
lines.

The results of the work with the MASCOT approach demonstrated that some of
the claimed advantages of this philosophy are indeed valid. For example, once
the basic ACP diagram and the related software scheme are designed, the task
may be divided and written by various programmers.

Originally it was thought that the MASCOT approach would use an excessive
amount of the available memory and the development system (including the super-
visor) did use 21K bytes out of the maximum of 64K bytes. However once develop-
ment had been completed, removal of the supervisor saved 7K bytes of memory and
deleting redundant code (used for diskette and other operations) saved another
5K of memory, so the system could actually be implemented in only 9K bytes.
Out of these 9K bytes about 1K byte were required by the channels. If it is
considered that in expanding the system, many previously written routines can
be utilised, then by using MASCOT, even with a machine with limited memory
address capability, such as an 8080 microprocessor, the overheads are not too
great.

REFERENCES

1 IEEE Standard Digital Interface for Programmable Instruments. The Institute
of Electrical and Electronic Engineers.

2 The Official MASCOT Handbook. MASCOT Suppliers Association.

3 Official Definition of CORAL 66. HMSO Publication.

4 Intel 8080/8085 Assembly Language Programming Manual. Intel Corporation.

5 ISIS-II Users Guide. Intel Corporation.

6 Intel Multibus Application Note. Intel Corporation.

7 8291 DATA Sheet. Intel Corporation.

8 8292 DATA Sheet. Intel Corporation.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance given by members of T2
Division, T18 Section and D P Taylor in particular with this project.

4

BLOCK DIAGRAM OF EXPERIMENTAL DIGITAL TEST SYSTEM

1Losle Analyser Fetter Generator

U.U.T. P.C k

M icro- IEEE-499 $US

* I -

i FIG. I.h. BLOCK DIAGRAM OF EXTENDED SYSTEM

L.A. U.U.T P.. D.V.M.

Micro- '0 IEEE-416 BUS
computerl

FIG. 1. 2.

* MASCOT ACP DIAGRAM OF EXPERIMENT ATE
~~ Co ACC

II

MASCOT ACP DIAGRAM OF MODIFIED ATE

V 0U Supervisor ACIOME

I0VIC

L FIG.M2.2

APPENDIX 1

INTEL MULTIBUS COMPATIBLE IEEE-488 CONTROLLER INTERFACE

I INTRODUCTION

As an IEEE-488 Bus controller was needed for the research work described
in this memorandum, it was decided to construct an Intel Multibus Compatible
IEEE-488 Bus Controller Interface that could be used in conjunction with an
Intel SBC80/1O microcomputer or an Intel MDS.

1.1 THE IEEE-488 BUS

The IEEE-488 bus is known by a variety of names including the General
Purpose Interface Bus (GPIB) and the Hewlett-Packard Interface Bus (HPIB).
It was originally developed by Hewlett-Packard as an unambiguous method
of interconnecting programmable instruments which are in close proximity,

such as in a laboratory. When the standard was adopted by the IEEE it was
changed slightly so as to be more rigorous and standard 488 was thus
developed.

The bus allows up to fifteen instruments to be directly connected
together using a standard connector and each instrument to be programmed
independantly of the others. By using an IEEE-488 Bus controller,
information can be exchanged between the controller and instrument or even
between instruments. Information is transferred on an 8 bit parallel data
bus under the sequential control of a three wire interlocked handshake.
By this means, no step in the sequence can be initiated until the preceding
step has been completed. The independent control at the instruments
connected to the bus is achieved by using 5 lines, known as the management
bus. Thus the IEEE-488 bus consists of 16 lines, the groupings being

shown schematically in Figure Al.

2 IMPLEMENTATION OF IEEE-488 BUS CONTROLLER

The IEEE-488 Bus Controller Interface was designed to use two large scale
integrated (LSI) circuits which implement all the talker-listener interface
functions and all the controller functions specified in the IEEE standard.

The block diagram of the circuit is shown in Figure A2 and a brief functional
description of each block is given below. The circuit diagram of the interface
unit is shown in Figure A3. Figure A4 shows the layout of the prototype inter-
face unit.

2.1 ADDRESS DECODERS

The address decoding is performed by 8205's, which are high speed
Schottky bipolar decoders with a delay of under 18 ns together with Schottky
TTL devices. The interface unit has 10 input and 10 output port address.
The talker-listener element has 8 sequential addresses and the controller
element has 2 addresses the starting positions can be configured anywhere

in the address space.

Al

2.2 MULTIBUS DATA TRANSCEIVERS

A small amount of logic was needed to control the direction of data
flow through the transceivers and to disable the outputs when not driving
the bus. Control is achieved by using the read and write lines on the
multibus and the chip select output from the address decoders.

2.3 TRANSFER ACKNOWLEDGE

The transfer acknowledge block gives an output to the transfer acknow-
ledge line on the multibus to inform the processor that the data have been

accepted. The talker-listener LSI circuit responds rapidly to commands
whereas the controller LSI circuit is very much slower, so the transfer
acknowledge circuitry delays a transfer acknowledge signal for much longer
when data are sent to the controller LSI circuit than when sent to the
talker-listener LSI circuit.

2.4 TALKER-LISTENER AND CONTROLLER

The talker-listener functions are implemented by the 8291 (7) which is
a LSI circuit designed to operate all the interface functions specified

by the IEEE-488 Standard except the controller functions. The device has 8
read registers and 8 write registers, the device being progranned and data
sent onto the bus by writing to the appropriate write registers and the
device status is checked and data extracted from the IEEE-488 bus by
interrogating the appropriate read registers.

The controller functions are implemented using the 8292 (8) which is a
pre-programmed microcomputer. The device which has 2 input ports and 2
output ports is programmed by writing operation commands to the input

ports and the device status is checked by writing utility commands to the
input ports and then reading from the appropriate output port.

2.5 ADAPTER LOGIC

An IEEE-488 Bus transceiver circuit has been designed by Intel and
connects directly to the 8291 and 8292 and is designated the 8293. How-
ever due to the non-availability of the 8293 transceivers other transceivers
were substituted and some logic was needed to operate these devices.

2.6 TRANSCEIVERS

The transceivers used wereMotorola type MC 3448. Each device contains

four independent driver/receivers, has a high impedance output mode, an
active pull up or open collector output option, and meets the specifica-

4 tions for a transceiver as defined in the IEEE-488 Standard.

3 OPERATING THE IEEE-488 BUS CONTROLLER INTERFACE

The IEEE-488 Controller Interface can be operated using any progranuing
language which allows data to be put out to or taken in from a specified port,
and has been operated by BASIC 80, CORAL 66 and 8080 Assembler Programs.

Originally the controller was tested using 8080 assembler routines and as
the required response was obtained, the routines were included in an ISIS
library. A comprehensive library of basic software routine was built and an

A2

extract from this library is given in Figure A5, and a brief description of each

of these routines is given below.

3.1 TALK AND LISTEN

This talk routine initialises the 8291 talker-listener into the talk
only (TON) mode. The 8291 is informed of the external clock frequency,
which must be in the range 1-8 MHz. The operation code for talker only
is sent followed by an immediate execute power on (PON) message which
release the 8291 from the initialised state. The listen routine is
identical to the talk routine except that the operation code for listen
only (LON) is substituted for the TON code.

3.2 TRIG

This routine causes a 'Group Execute Trigger' message to be output to
the IEEE-488 Bus. This stimulates addressed instruments to operate in the
manner decided by their respective programming.

3.3 SREM

This routine sends an operation code to the 8292 controller which upon
receiving the message sets the Remote Enable Line (REN) on the IEEE-488

bus low. Due to the negative logic specified in the standard, a low means
that line is active.

3.4 GIDL AND TCNTR

The Goto Idle (GIDL) Command instructs the 8292 controller to go to an
idle state. As this happens the Attention Line (ATN) goes high-inactive
and the controller LSI circuit idles.

The Take Control (TCNTR) commands instructs the 8292 controller to take
control of the IEEE-488 bus and as the idle state is left, the ATN line
drops and becomes active.

3.5 RESET

The reset routine resets both the 8291 and the 8292 state. The 8291
enters an initialise state and can be programmed before being released from
this state by a PON local message. The 8292 sets all outputs high then
resets the interrupts low and clears the registers. The effects caused
are identical to those produced by reset on the external reset pin.

3.6 SRQIN AND EOIIN

0 If the Service Request Line (SRQ) or the End Or Identify Line (EOI) are

inactive after calling the respective routine, then the A register will
contain a zero. These are useful routines although the 8291 can be con-
figured to produce an interrupt when EOI becomes active and the 8292 can
be configured to produce an interrupt when SRQ becomes active.

These routines could be expanded and built into a library for ease of
assembly language programming or they could be modified and included in
Coral 66 procedures or macros as code inserts. The latter course was
chosen as the system was expanded.

A3

DEVICE A-
Able to _________ ___

* ~~~Talk only ____________

(iRe counter)

DEVICE C
Able to

Talktan olsy

DEVICEDC
1Al oTalk/dListen adt

r EE-4-8- - - -

Multi bus -
Interface ** __________

Unit 10101
I D 108 DATA bUS

I MUti busi NRFD HANDSHAKE BUS
I NOAC

SBC 8010 I4ANA GEMENT

UComputer - U

FIG. Al. INTERFACE CAPAB ILITIES AND BUS STRUCTURE

__ uJ
'AJ

w

ct z

i

D I0a

4n 39 m
a 0 %,

C)b

wtw

443

AU

AV,

201 8080/

AV2 t

DA2 si

AS 1 3 A

I wc-omN
am,

*13

8080/5 IEEE BUS CONVERTER 1A

DAV/ MC344S

1531 - M)OT

-- ~~ ,, 822 S

7490A
N./ 8291_ __ __ __T/_

U c 6,6T "AA(/9 w(A

r -1 **M11SC V~tCl

LM,

INTc FIG/ MC3

..

Fig A4

FIGURE A5

ASSEMBLY LANGUAGE ROUTINES FOR IEEE-488 CONTROLLER INTERFACE

MhIINI 1. 002

OBRILN.SRC - ASSEMF4LER ROUl JNf S FOR IL-F--4l8 CONTFROLLER INTERIrACE

T1IlLS PROGRAM CO)NIAINS THE ASI Mr'tFR ROULT1NES
s NE:rJr.I, 10 SET 11L I[Fr--488 INIr :I"ACE.

* * I HF sr:J. COULD IrE NS..I;I EL INU ii cOl,:Al. 66 CODE *
;, *SE(OMENIS OR USUI IN AN 1I3IS L T/IdIARY. *
I $* $,**'*4'******$tt$***$********** tl;,****************

NAME MOD
"IL OU OXXf4 ;WHERE XX IS THE L.WEST PORT ADDRESS OF
ILI Eau TLOH + 1 I FH17 (,'?1 AS DECIDED BY THE LINK
TL2 EOU TLOH 1 2 F 'OSITIONS
TI.3 LOU ILOH + 3
TL4 EaLu TLOH + 4
IL5 EGO TLOH 51
"1L6 EOU TLO4 + 6
IL7 ELI TLOH + 7
C:LOCK EQU OOIOFFrFH *FFFF IS LINARY RFF'. OF CLOCK FREOUENCY
CONO ECU OYYH ;WHERE YY IS THE ADDRESS OF THE 9292
CONI EOU CONO + 1 I LOWEST PORT

4PUBLICS TALKER, LISTEN, TRIGSREM.GIDLRESETTCNTRPSROINEOIIN

CSEG

'TAILKER: $SET 8291 AS A IALKER
MVI ACLOCK $CLOCK 'REOUENCY REPRESENTATION (1-8 MHZI
OUT TL7 ISEND 10 AUX MODE REGISTER
MVI AIOOOOOOOD $ENABILE TALK ONLY MODE (TON)
OUT TL4 ;ADDRESS REGISTER
MVI APO ;IMMEIIATI EXECUIE POWER ON (PON)
OUT TL5 ;AUX MODE REGISTER
RET IRETURN TO CALLING PROCEDURE

LISTEN: $SET 8291 AS A LISTENER
MVI A,21H ;SET CLOCK

* OUT TL5 I
MVI A,40H IENABLE LISTEN ONLY MODE (LON)
OUT TL4 I
MVI AO ICON
OUT TL5 I
RET $RETURN

'IRIS: IGROUP EXECUTE TRIGGER (GET)
MVI AOO000100 IAUXILIAf.Y COMMAND FOR GET
OUT TL5 IAUX MODIL REGISTER
RET

SREM: $SET INTERFACE TO REMOTE CONTROL
MVI APOFOH 18292 SREtt CODE
OUT CON1 $UPPER TORT ON 8292
RET I

GIDLI 10 TO IDLESETS THE ATN LINE FALSE
MVI AOFIH 18292 GIDL CODE
OUT CON1 lCOMMAND FIELD PORT ON 8292

RET I

FIG Al

NOSPO 002 O1*IE~oSRC ASSL.143US l(OtITIMES lOft ICEE-409 CON~kuLEN R ~ F

TCHTR I SIlMS. CCJNTkOI. .ETH TW4 ATN 1. INE ACTIVE
"V I APOFAH 11292 UTILITY I:(NUAND FOR TCNTR
(KIT CO~l I COMMAND r i i
RET I

RESETS IrFSrci THE 8: A91 11 8292
NV! A v0214 09291 RE.ELT LUDE
OUT TL5 SAll ISE otr OI!UTcR
14VI AvOF2H IRST UTILITY COMMIANDS
OUT CON1 #COMMIAND FIELD*UPVER P*ORT
ACT I

SROINt $SRO LINE ACTIVL IF NOT LCRO IN A REO(NO FLAG)
MI AvOE74 lkllST UTILIlY COMMINMI.IKAD SPIP OUS SiTATUS REGISTER
OUT CON1 1COIPAMI' F)Iro ,OR~T
HLT 0897~ IS St.OW TO KESSUNPI.USE TC! INTrRRUPT ELSE LONG
IN CoNo SRAA! INTO ICIWIR PORT A# TER UTILITY COMMAND -WAIT
AM! 01H ISRO LINE SELTS ID IsohrfHIS REMOVES OTHER PITS
RET I

COIINI #CO! LINr ACTIVE. IF A REG NOT ZERO
MV! AVOE74 MREAD OrJI' L'U' SFATUG REIShTER
OUT CON1 ICOMNANI' POli
S4LT #AS ABOVE ('291 SL.OU.EITISR WAIT OR USE TCI INTERRUJPT
IN CO I
ANT 20H MEOT ACTIVE. Sris .1? U,5
RET #

CPO

FIG All(s..t)

PAGE OA

APPENDIX B

THE MASCOT APPROACH TO SOFTWARE CONSTRUCTION

MASCOT (A Modular Approach to Software Construction Operation and Test) is
a design method which can be used with many programning languages or even
assembly language. With the MASCOT technique a large system is broken down
into smaller modules of which there are three main types, Activities, Channels
and Pools.

An Activity is a process which is separately scheduled and conceived to run
simultaneously with other Activities and performs a certain processing or control
function. Activities may only transfer data externally, to another Activity or
a physical peripheral device, by explicitly defined Intercommunication Data
Areas (IDA's) these being Channels or Pools.

A Channel is a unidirectional data path used to transfer data between
activities or between activities and peripheral devices. A channel consists of
an input interface and by an activity that produces data to be transferred to
another Activity and an output interface used by an activity that receives data
which is consumed in the process. A channel also has a data area used for
storing data which has been received but has not been stimulated to output.

The third type of module, the other IDA is known as a Pool and is a store
of data for reference purposes. A pool may be read by one or more activities
depending upon requirements. It is possible to modify data in a pool by means
of a destructive overwriting operation that destroys all the previous data.

In order to schematically illustrate a MASCOT system a MASCOT ACP diagram
is drawn, using the symbols that have been assigned to the various module
types. In ACP diagrams a fourth symbol is often encountered, this being the
representation of a system data source or sink, a peripheral device. The

symbols used in MASCOT ACP diagrams are shown in Figure Bl.

Intel 8080 MASCOT developed by System Designers Ltd was used for this
project. 8080 MASCOT is a simple yet effective realisation of MASCOT which
implements on the essential features so as to keep the software compact. 8080
MASCOT is a 'frozen' system as the system is constructed before run time using
standard ISIS programs.

31

V

-Activity

I - Chnnel

1i-Pool

E I-Device

FIG. 8I MASCOT ACP DIAGRAM MODULE SYMBOLS

,a

APPENDI X C

MASCOT MODULE DESCRIPTION

The MASCOT modules used in the complete test system are all described below
except for those shown within the dotted lines. These modules make up the super-
visor as it was supplied by System Designers Limited and is only a tool for
debugging the system and was later removed to reduce the memory allocation
required by the program.

I ACTIVITY AC1

This is the main activity and is dependent upon the test being made but
independent of the interface specification of the instruments used. In order to
measure a certain value or to set a generator to a particular range and level,
activity AC1 passes various parameters to the activity which controls the
required instrument and, if applicable, receives a value back from that activity.
Activity AC1 also displays after completion of the test the result obtained.

2 ACTIVITY LGASET

Activity LOASET is used to control the Logic Analyser and the Pattern
Generator. Its purpose is to test one of several different simple digital
circuits. The activity LGASET receives a parameter from AC1 indicating which
digital unit is to be tested. Upon receipt of this the activity LGASET checks
the IEEE-488 Bus status and at an appropriate time sets the Logic Analyser to
the required state for a test. LGASET then addresses the Pattern Generator and

triggers both instruments. The IEEE-488 Bus is monitored and when the test has
been completed the data from the Logic Analyser is extracted. The data thus
obtained is then compared with that for the relevant known good unit, the
relevant sequence being decided by the value of the parameter passed from AC1.
If the two streams are identical then a 'pass' message is transferred to AC1

otherwise a 'fail' message is sent.

3 ACTIVITY DVMSET

This activity is used to control the Multi-function Voltmeter and is
independent of the test to be taken. The activity receives a parameter from
AC1 which is interpreted to give the range and function required. The activity
DVMSET then checks the IEEE-488 Bus status and then addresses the DVM and sends
a suitable device dependent message so as to set it to the required state.
After a measurement has been taken the DVMSET addresses the DVMI to talk and
reads from it a data string. This data string is checked to see if an error
occurred and if not converts the value to floating point format and transfers
it to activity ACI.

4 CHANNELS INI AND COACC

INI is a channel that allows the supervisor to initiate the activity AC1
and COACC is a channel from AC1 to the output device so that AC1 can display
the results of the tests. Having manual intervention by the supervisor enables
the facilities to be more fully used.

5 CHANNELS LAOACC AND LAIACC

These channels were used to allow communication between the activities ACl
and LGASET. Two channels are required due to the unidirectional nature of

I.

Cl

t

-

MASCOT channels. The direction of the arrow on the MASCOT ACP diagram shows
that the LAOACC is used to transfer information from activity ACI to activity
LGASET. LAIACC is used to transfer information in the reverse direction.

6 CHANNELS DVOACC AND DVIACC

These two channels perform a similar task to LAOACC and LAIACC in that they
allow coumunication between the main activity AC1 and an instrument dependent
activity, in this case the Multi-Function Voltmeter service activity.

7 CHANNELS OUTACC AND INACC

These two channels are used to allow communication between either of the

activities LGASET and DVMSET and a peripheral device, in this case the IEEE-488
Bus Controller Interface. All access to and from the Bus is via these channels.

8 POOLS LGADAT AND DVMDAT

These modules, Pools, are used for data storage. The pool LGADAT contains
the codes needed to set the Logic Analyser to the required state and also the
streams of data obtained from various known good units. The pool DVMDAT con-
tains the codes needed to set the Voltmeter. Obviously the codes needed to
set the instruments depend upon the specification of the instruments.

C2

II

)I

I;

Ic

_ _ - ,

