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SUMMARY

A high pressure hot gas supply system has been developed for the
FFA 0.5x 0.5m S5 supersonic wind tunnel to allow the study of
aerodynamic interference effects caused by plume induced flow
separation on afterbodies. Capable of operating with gases cover-
ing a wide range of specific heat ratios, the facility serves to
critically evaluate the merits and limitations of plume modeling
techniques. The project, which is carried out in close coopera-
tion with members of the Gas Dynamics Laboratory at the University
of Illinois at Urbana-Champaign, is granted as a three year program.

During 1979, which is the second year of the program, the final
shake down and calibration testing of the facility has been accom-
plished and the facility is now fully operational. Plume modeling
experiments have been performed using air and Freon-22 for jet
simulation at a free stream Mach number of 2.0 and zero angle of
attack. One prototype air nozzle and two Freon nozzles modeled in
accordance with the methodology suggested by Korst have been in-
vestigated.

The Freon plume shapes have been found to be in close agreement
with those of the corresponding air tests supporting the suggested
modeling methodology and design procedures. The agreement between
prototype and model base pressures was satisfactory not only for
the design point but also for a rather wide range of off-design
conditions. The more sensitive parameter, the location of the sep-
aration line on the conical afterbody, was equally well correlated
but for a narrower range in the vicinity of the design point and
only for the nozzle designed with the assumption of a weak shock
closure condition.
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NOMENCLATURE
Geometry
Afterbody
D Forebody diameter [m])
L Boattail length [m]
a Angle of attack [deg.]
B8 Boattail angle [deg.])
Nozzle
R, Exit or lip radius [m]
o Conical divergence angle ([deg.]
Tunnel Flow
PoE Stagnation pressure [Pa]
PE Freestream static pressure ([Pal
Mo Freestream Mach No. [-]

Nozzle Flow

Lip Mach No. [-]%)

M
PzI Nozzle stagnation pressure [Pa]
P Lip pressure [Pal
Tor Nozzle stagnation temperature [°C]
‘ Y Specific heat ratio [-] >
t wp, Prandtl-Meyer angle corresponding to ML [deq.]
v
H Plume
; M Surface Mach No. [-] {
& OF Initial surface slope [deg.] ]
? R. Initial surface curvature [m]
t Fe R/Rp, (-]
; wp Prandtl-Meyer angle corresponding to MF (deg.]

-
—

Conical source flow assumed, otherwise nozzle geometry and

lip conditions have to be specified in greater detail,
see Reference 16
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Wake Conditions

s, S Separation distance measured from end of boattail [m]

P, +P,Pg Base pressure [Pa]

SUBSCRIPTS

M Model

P Prototype
A Air

F Freon
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1. INTRODUCTION

The interaction of rocket or jet plumes with the external flow
over a vehicle as well as surrounding equipment or surfaces is

)

important to system performance [1].* In particular, such
interactions are critical in their effects on the near wake
base temperature and pressure, flow over the vehicle itself

due to external flow separation, wake flow field at angle of
attack, afterbody fin effectiveness, and launch eguipment per-
formance. Thus, the jet-slipstream interaction can give rise
to undesirable aerodynamic performance by introducing drag
penalties through lower than ambient pressures or, as the ratio
of jet stagnation pressure to ambient pressure increases, by
leading to plume induced separation [2]. In extreme cases,
plume induced separation can result in catastrophic pitch up of
missiles because of loss of stability or degradation of control
effectiveness [3]).

Rocket or jet plumes have been treated in wind tunnel tests
using a variety of methods which include the use of cold or
heated air through geometrically modeled nozzles, small rocket
motors, radial gas injection, and solid surfaces with simulated
plume shape (either calculated or determined from Schlieren
photographs of jet plumes). Shortcomings inherent in these
methods can be traced to failure to account for all, or part,

of such factors as plume deflections, mass entrainment, wake
closure, influence of specific heat ratio, viscous effects,
geometry, and temperature. It is, of course, not feasible to
take account of all the contributing parameters simultaneously
in a simulation test. While certain methods of plume simulation
appear to be more appropriate than others, i.e., cold gas rather
than solid surfaces, only limited comparisons have been under-
taken between results for a simulation model and actual proto-

*)

Numbers in brackets refer to entries in REFERENCES
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type. 1In addition, documentation of the importance of individual
factors such as plume geometry, plume stiffness or jet surface
Mach number, and wake closure conditions for the various Mach
number regimes has been lacking.

It is the purpose of this project to undertake, in close coopera-
tion with the Gas Dynamics Laboratory at University of Illinois

at Urbana-Champaign, the evaluation of modeling techniques [17]
and importance of primary and secondary factors. To this end, it
is essential that accurate and well controlled test results be
available. Thus, the test conditions must be well known in terms
of the wind tunnel working conditions and allow for careful con-
trol of the modeled propulsive jet, throat sonic condition, nozzle
design methodology, local accelerations and Mach number distribu-
tion at the nozzle exit plane, and the working fluid.

The project was proposed [4] and is granted as a three year pro-
gram. During the first year the design and construction was ac-
complished of a facility for the use of superheated Freon (y=1.16)
at high pressure to be used for jet simulation in the FFA 0.5x 0.5m?
S5 wind tunnel. Shake-down testing of the facility was started
and an existing strut-supported axi-symmetric model was modified
for tests with heated Freon. The activities during the first year
have been reported [5, 6]. A second semi-annual status report [7],
covering the scientific work accomplished during the period 1 Jan
1979 - 30 June 1979, has been issued for internal management use
only. Most of the material presented in (7] is however included
in this report, which covers the second year activities.

This report briefly describes the simulation test facility, the
systems performance tests accomplished and the modifications made
to the facility. The analytical basis for the plume modeling
methodology proposed by Korst [8, 9] is reviewed. The results

of tests at Mach number 2.0 and zero angle of attack with Freon

of two nozzles designed in accordance with this method are presented

and discussed.
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2. SIMULATION TEST FACILITY

i 2.1 Introduction

A jet simulation test facility has been designed and constructed
for use primarily with the FFA 0.25 m? S5 wind tunnel at super-
sonic free stream Mach numbers. It is possible to add an insula- i
ted and heated extension in the future for use with the FFA 1.0 m?
54 wind tunnel at transonic free stream Mach numbers. The unit

has been constructed exclusively for this research project with the
objective of allowing critical evaluation of the merits and limita-
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tions of plume modeling techniques. The facility is designed for
various types of heated Freon but can in principle also be used in
future investigations for other gases (i.e. Argon) with small

‘ changes in the instrumentation. Description of the facility with
details of component design and construction are presented in the
1st Annual Report [6]) along with a discussion of the temperature

{ control requirements and system developed for this purpose.

2.2 Systems performance tests

Upon completion of the facility in December 1978 initial shake-
down tests to check the mechanical functions of the facility

were undertaken. During the period covered by this report a more
extensive program to assess the performance of the facility has
been carried out. To a large extent it has been possible to co-
ordinate these tests with the start-up of the plume investiga-
tion program.

The performance of the facility is largely as expected. In part-
icular, the simple convection type heater (Figure 1) has proved
to be effective. Some minor modifications have, however, been
necessary and these are briefly discussed below.
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The insulation (E\ of the heater <i> was severely less effect-
ive than specified.

It was evident that extensive convection
occurred within the insulation, thereby increasing the heat losses
by a factor of at least five. This has the effect of prolonging

the heating-up time, in particular when high temperatures are
: desired.

e -

-

The insulation was improved by additional packing of

cover is possible. This remedy was fairly simple and reduced

; ; insulation material at two levels where easy access through the
i the convection efficiently.

A timer has been installed to start the heater prior to normal
working hours. Due to the elaborate automatic temperature con-
trol system with its associated over-temperature activated power

‘ shut-off switches, this procedure is considered perfectly safe.

The Freon charging pump .34 has been furnished with a second
pressure tap leading to the heated part of the facility. This

modification is merely a matter of convenience for the operators

of the rig - the heater may now be charged independcent of the
pressure within the cold part of the system.

G

Pressure activated switches have been installed in both the

suction and pressure lines of the pump.

The suction line switch
closes down the pump below the set-point pressure, thereby pro-

tecting the pump from possible damage due to insufficient inlet

} pressure. The pressure line switch closes down the pump above

-w— g

the set-point to avoid unnecessary blowing of the safety valve.

-y -

“\
Additional heating elements <ﬁ7) have been installed on the
model feed-line as close as possible to the model.

This pre-
heating is more effective than heating by letting a small air

N

flow pass through the model as was first attempted.

i Y

Numbers in circles refer to item-list in Figure 1
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The pressure-time history recorded in the model during a blow-

down (Figure 2) shows at first a pressure drop and then a posi-
tive gradient during the larger part of the run. The pressure
drop in the beginning of the run starts the flow of cold Freon
from the unheated part of the system (E) into the heated part CZ\,
where the high density cold Freon is being heated to a tempera-
ture close to that of the heated tubes. The lag in the heating
process is so large that in the beginning of the run the mass

flow of cold Freon into the heated section is appreciably larger
than the mass flow of heated Freon into the model. When the de-
layed heating of the cold Freon becomes appreciable the pressure
begins to rise. After a short time when the pressure in the heat-
ed part is equal to the pressure in the cold part, the inflow of
cold Freon to the heated part stops and thereafter the flow is
reversed, i.e. low density heated Freon flows from the heated

to the cold part. The pressure loss caused by the low density
flow is cvidently so large that the total outflow is insufficicnt
to compensate for the volume increcasce of the cold Freon that
already has cntered into the hceated part, and consequently the
pressure continues to rise. The force necessary to accelcrate

the cold Freon is also a contributing factor to the pressure

rise.

It is possible to counteract the pressure increase by operating
the main valve (iD during the run, as demonstrated in Figure 2.
The solution to the problem has been, however, to use fast
response transducers instead of the Scanivalve for measurement
of those pressures, which are affected by the jet stagnation
pressure. Combined with synchronized Schlieren photographs, the
current procedure allows a range of pressure conditions to be

monitored in a single run as the stagnation pressure varies.

In Figure 3 is shown a temperature-time history in the heated

tube array (E)during a heating cycle. Air was used as the medium.
It can be seen that convection takes place with a temperature
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difference of just 15-25°C between the directly and indirectly
heated tubes. The relatively slow temperature increase is due
to the substantial mass of the tubes being heated - the iron
mass was near room-temperature when the heating was started.
Immediately after a run considerable heat is left stored in the
iron mass. The heating process is then mainly a matter of heat-
ing gas, a much faster procedure.

3. REVIEW OF THE PLUME MODELING METHODOLOGY SUGGESTED BY KORST

Integral and component approaches to near wake solutions, with
their wake closure conditions linked to second law concepts,
have led to a basic understanding of the problem and even to the
establishment of relations [10] accounting for the influence of
all pertinent variables. The difficulty of making specific as-
sessments concerning the wake closure has led to extensive ex-
perimental studies in support of semi-empirical relations to
account for the incomplete realignment of streamlines during

recompression [11].

Experimental programs require proper plume simulation whenever

the use of prototype propellant is not feasible. The modeling

of plume interactions requires in principle geometrically congru-
ent inviscid jet contours and correct pressure rise-jet boundary
deflection characteristics (plume stiffness) as well as mass
entrainment along the wake boundaries. Thus modeling with gaseous
plumes is needed and normally involves dissimilar specific heat
ratios.

The importance of generating the correct jet plume geometry has
been stressed in prior efforts to c¢stablish modeling laws betwcen
propellant gases having dissimilar specific heat ratios [12, 13, 14].
However, the geometrical requirements were only formulated for the
initial deflection angle of the jet, a condition not stringent
enough to cope with plume induced separation [12].
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the range of convergence for the corner expansion itself [16].
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The analysis of axisymmetric centered expansion [15)] forms the

basis for geometrical jet plume surface modeling [8]. This ap-
proach allows to match not only initial deflection angle but

plume radius of curvature (shape), see Figure 4. It can be shown
that the accuracy attained by such a procedure extends well beyond

The plume expansion derives its initial conditions from the flow
approaching the end of the nozzle. For the case where exit con-
ditions can be sufficiently well described, locally (ML, eL), by
conical source flow, sweeping simplifications in the interpreta-
tion of results are possible [16]. The solutions lead to a
direct correspondence of nozzle plume shapes producing the same
plume boundary geometry with one free parameter remaining avail-
able for satisfying the inviscid recompression conditions at the
end of the separated flow region. It is thus possible to deter-
mine nozzle exit conditions in terms of Mach number at the nozzle
lip and the nozzle divergence angle at the lip which will geo-
metrically duplicate the jet contour produced by a gas with dif-
ferent specific heat ratios as it expands from a given nozzle
under specific adjacent conditions (within the present degree

of approximation), that is

] = @ and R = R (1)

where the geometry and notation are shown in Figure 5 and sub-
scripts M and P are for model and prototype respectively. The
downstream specifying condition should properly account for the
viscid aspects of the base flow problem in their interaction
with the inviscid components. With only one choice available

as a result of the geometric requirements, it is obvious that
one has to account above all, for the proper pressure rise in
the external flow [12]). The recompression mechanism of the dis-

sipative boundary of the jet, as a consequence of its mass entrain-
ment characteristics, will, however, generally not be simultaneously
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satisfied. While this effect may be expected to be small for
cases involving strongly underexpanded plumes [16], it is pos-
sible to account for it in principle by introducing mass bleed.
The concept of equivalent mass bleed has been shown [{11] to be
useful for both mass and temperature effect simulations.

The effect of plume stiffness has been examined in some detail
[17] in tests carried out at FFA and at Calspan [18]. The results
underscore the importance of the selection of plume flexibility
characteristics to the simulation process particularly at super-
sonic Mach numbers. Selection of the pressure rise-deflection
characteristics of the plume leads to the inviscid specifying

relations [8].
[y M2 /(M2 =1V2] = [y, M2 /(M2 -1V (2)

for weak shock recompression and

2 - =
[2y, ME M = (ry~T) 1/ vy +1)
[2vp M;i p = (Yp=1)1/(yp +1) (3)

in case a strong shock occurs.

It is now necessary to identify the type of separation phenomenon
to be investigated in order to establish design criteria for proper
modeling. For a known pressure distribution over the prototype
afterbody due to the non-separated slipstream, one can estimate

the pressure rise due to seraration by utilizing information on
free interactions [11] or slight modifications thereof due to

local pressure gradients and/or surface slope discontinuities.

The resulting plateau pressure determines the jet surface Mach
number MF,P so that the prototype conditions (nozzle flow, ML,P

0 especially for conical source flow) are all given and the

L,P
model jet surface Mach number M {(Egs. (2) or (3)) are deter-

F,M

mined.
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For this "design point", Egs. (1), (2), or (3) are satisfied.

In the vicinity of this design point, only the more stringent
condition of plume slope matching is retained. This can be
expressed in the form of

®,u = F,p (4)
1
2 and
weop = 9%,m " %%L,p tY%,p T YL, YF,M (5)
Since the nozzle flows - and therefore eL,M' eL,p, wL.M’ wL,P -

| remain identical for design and off-design operation while one
' may expect that the wake pressure ratios shall still be closely
modeled

] pb/pE‘P = (pb/PE)M = f(POI'M/POE) (6)

one finds the pressure ratio for the prototype flow from the
Prandtl-Meyer relation

[

M (7)

p,p - f(¥pr0p p)

and the identity

i

e p .y W
T B . e ————— * -G s W et o e

PoI,P/PoE : (PoI,P/pb)MF,P ) (pb/pE)M° (PE/POE)ME (8) {

Thus, for each model flow experiment series for which the f

relations

-
—
P

(pb/PE)M = f[ME'(pOI,M/POE)' YM] (9)

e

has been established, the corresponding operating condition of
the prototype flow can be determined.
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4, EXPERIMENTAL PROGRAM

4.1 Wind tunnel models

The compatibility of the Freon plume facility with the models
reported on by the FFA in earlier jet interaction series of
experiments provides a base of well defined prototype conditions
to be modeled while furnishing the information necessary to
critically evaluate the accuracy and applicability of the method-

ology discussed in Section 3. ;

The strut supported wind tunnel model for the study of slipstream

plume interference effects used in the prototype air series [18)
had to be modified to allow the high pressure heated Freon to be
introduced to the model with minimum piping losses. The latter
requirement is important since modeling from air as prototype,
to Freon, as model, requires higher pressure ratios for the
latter.

Figure 6 shows both the original configuration and modified ver-
sions of the model and Figure 7 is a photograph showing the
modified model mounted in the wind tunnel and Figure 8 depicts the

location of pressure taps on the boat tail.

The model body, boattail, and base region ~ the basic confiqura-
tion being an 8°-degree boattail with L/D=1 [18,19] - are instru-
mented with pressure taps. As mentioned in Section 2 the indi- 4
vidual pressures, which are affected by the jet stagnation pres-
sures, are recorded from a series of fast response transducers,
while the rest of the pressures are recorded from a Scanivalve.
Combined with Schlieren photographs (and in some cases oil flow
photographs), this allows the accurate determination of the ex-
ternal flow-jet interference pattern. 1In particular, location of
the plume induced separation on the afterbody is a very sensitive
measure of plume interference effects and of the accuracy ob-
tained by use of the proposed modeling methodology.
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Based on earlier series of experiments conducted with air nozzles
{18,19,20], calculations were carried out according to the method-
ology of Section 3 to select the most suited prototype configura-
tion for initial Freon 22 modeling tests with both weak and

strong shock closure conditions. The results mapped into the
Freon facility performance plane are shown in Figure 9. Based

on these calculations, the air nozzle with a nominal exit Mach
number of 2.5 and a conical wall angle of 10° was selected as

the first prototype (see Figure 10a). Design conditions were
chosen to allow for both design and off-design experimentation

with the Freon nozzles for weak (ML M 3.9, eL M- 19.760,
’ ’
P = 12.83 MPa, see Figure 11la, corresponding to P_/P =26.1)
oIM o L' ElA
and strong (ML,M = 3.19, eL,M = 14,197, poI| = 5.69 MPa, see

Figure 11b, corresponding to PL/PE = 9,.20) shock closure con-

A
dition. Operating ranges for these model tests are shown in

Figure 9.

Computer calculations using the method of characteristics follow-
ing transonic flow solutions for the nozzle throat region have
been carried out, confirming the validity of conical source flow
approximations near the lip for both prototype and model nozzles
(7, 16].

4.2 Calibration tests

While the earlier strut confiquration produced only negligible
interference effects, as has been confirmed by comparison with
sting mounted runs, it was anticipated that the new additional
Freon piping and its enlarged fairing might cause noticeable
interference effects. This was checked in tests with air as
propellant using two nozzles for ML=-2.5; 91‘=10° and 20° as
shown in Figure 10. The pressure distribution on an 8° conical
boat~tail of length one diameter was measured and Schlieren

photographs were taken with variation of the lip pressure ratio
pL/PE'
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The measured pressure distributions for the two nozzles are shown
for a lip pressure ratio with separated flow on the boat-tail in
Figure 12 in comparison with the earlier test results. The dif-
ference between the two tests, which is probably mainly due to

the different interference from the support strut, is small but
measurable. The Schlieren photographs reveal that the exten-

sion of the separated region seems to be nearly unaffected. The
base pressure is for GL‘=10°changed from Pb/PE= 1.35 in the earlier
test to Pb/PE= 1.30 in the current test.

The small differences noted for the prototype air nozzle due to
the modified strut required that the air prototype tests be re-
peated over the range reported in earlier papers to guaran-

tee that strut effects did not introduce unanticipated changes.
The results from the current air tests are shown in Figure 13,
The results from the earlier tests are also shown for comparison.

The base pressure from the earlier air tests were used when cal-
culating the shapes of the Freon nozzles manufactured for the
modeling tests. Recalculations using the base pres;ure from the
current air tests have revealed, that the change in the modeled
nozzle lip angle is too small (approximately 0.60 degrees) to
justify construction of new nozzles for the current tests.

)

4.3 Plume modeling experiments

Tests were carried out with thé two Freon nozzles for weak and
strong shock closure conditions respectively with Freon 22 as
propulsive gas at a free stream Mach number of 2.0 and at zero
angle of attack. The stagnation pressure PoI M was varied in

a wide range around the design pressure ratio and the stagnation
temperature was kept in the range 200-250°C. The free stream
stagnation pressure was atmospheric, the free stream stagnation

temperature around 20°C and the Reynolds number based on model

.. .. o R R SR o WV O
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length of 6 x 10°, The jét stagnation pressure and temperature
were measured in the nozzle settling chamber.

A complete set of the model pressures recorded are presented in
tables 1-6 in the Appendix. Typical pressure distributions for
prototype and model nozzles at pressures close to the design
conditions are shown in Figures 14 and 15. The agreement .achiev-
ed between air prototype and the Freon model pressure distribu-
tions is good. The corresponding Schlieren photos, Figures 16
and 17 are seen to be nearly identical. A direct comparison of
the essential features of the two flow fields from photo over-
lays are given in Figures 16c and 17c and the agreement is also
satisfactory for shock and plume geometries along the entire
near-wake region.

Shown in Figures 18 and 19 is the base pressure ratio Pb/PE as
a function of the jet stagnation pressure Py measured in the
settling chamber of the nozzle. For the weak shock nozzle, the
plume surface Mach numbers are sufficiently large at the higher
stagnation pressures that, combined with the temperature loss
in the model and its support, condensation has been found to

occur in some tests and those points are flagged in Figures 18
and 22.

For éomparison between the prototype air and the model Freon
base pressures the relat;on Pb/PE is plotted in Figure 20 as
function of the lip pressure ratio PL/PE . which was computed.

It is also possible to make the comparison in the Freon plane

in the way, demonstrated in Figure 21 where Figure 21a shows the
experimental results for the model nozzle, Figure 11a (weak
shock modeling). The theoretical prototype curve is found with
the help of Eqs. (4) through (9) which yield the corresponding
stagnation pressures in accordance with Figure 21b.

Air prototype results transformed into the Freon model plane
are for comparison plotted in Figures 22 and 23 together with




- 20 -

the replotted Freon model results (from Figures 18 and 19) and
the design point is identified. From these results, it can be
seen that the present modeling technique allows to conduct in-
vestigations of thz plume induced separation phenomena with air
at much lower nozzle-to-ambient stagnation pressure ratios than
would be required for many conventional propellants as Yy > yp
(note that in the present experimental program, the roles of
model and prototype have been exchanged). It is also evident
that with air as model gas, replacing the Freon in the present
high pressure gas facility,very high prototype pressure ratios
can be simulated.

Also shown are a few results for the Freon nozzles run with hot
air to illustrate the shortcomings of retaining nozzle congruence.
Slope modeling of these results gives reasonable correspondence to
the prototype data but at effectively much lower pressure ratios.
At this conditions, no separation essentially, the radius of curv-
ature is less important. In contrast to the proposed technique
based on distorted nozzle geometries, very high stagnation pres-
sures would be required for modeling with gases of higher than
prototype specific heat ratios. This in turn would restrict exper-
imentation to lower-than-ambicent base pressures in accordance with
the limitations anticipated and stated in Reference [12].

The separation location S/D for the air prototype and Freon model
nozzles are shown as a function of lip pressure in Figure 24 and

with the air prototype results transformed into the Freon model
plane in Figure 25.

While the modeled nozzles have been calculated for a single de-
sign condition, comparisons are made over the operating range

of the tests to indicate off-design applicability of the modeling
procedure. The strong shock nozzles appear to provide better
correlation over a wider range for base pressure, Figures 20 and
23, than does the weak shock nozzle, Figures 20 and 22. For the
more sensitive separation location, however, as shown in Figures
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24 and 25, the weak shock nozzle provides the best correlation,
particularly near the design pressure ratio. From Figure 24 it
might possibly be concluded that the agreement between prototype
and model results decreases with increasing lip pressure for both
strong and weak shock closure conditions.

5. CONCLUSIONS

The high pressure, hot gas Freon jet simulation facility develop-
ed at the FFA is fully operational. It can be utilized for

well controlled jet slipstream interference studies with a vari-
ety of gases simulating propellants. In particular, it allows

to evaluate the merits and the potential of a plume modeling
methodology suggested by Korst [8,16]. Equally important will

be the ability to critically examine the wake closure conditions
for the modeling procedure, including the possible requirements
for equivalent mass bleed to account in greater detail for trans-

port phenomena across the plume boundary.

The initial tests show good agreement with anticipated facility
performance. The Freon plumes shapes have been found to be in
close agreement with those of the corresponding air test support-
ing the suggested modeling methodology and design procedures.

While agreement between prototype and model experiments for base
pressures was satisfactory not only for the design point but

also for a rather wide range of off-design conditions, the more
sengitive separation distance was equally well correlated, how-
ever, only for a narrower range, in the vicinity of the design
point for the weak shock closure condition. Since the weak shock
is physically realistic for the flow near the confluence point,
this modeling scheme appears presently to be the most appropriate.
The continuing experimental program will extend and allow further




- 22 -

critical evaluation of the modeling technique to a wide range
of freestream Mach numbers.

MRt e e e

Since the dynamic recompression modeling relations are not re-
stricting to axisymmetric stream confluence geometries and as
base pressures are practically constant in case of large separa-
' tion regions, the simulation methodology should remain valid

.k for afterbodies having more complex geometries and for cases

{ involving appreciable angles of attack, a = O,
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Figeio 2. Jet stagnatjon pressure P, and temperature T, during a run.
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Figure 3. Will temperatures in the heated tub array during
8 heating cycle.
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Model installation with leading and trailing edge fairings of
the support strut in position but with side plates removed.
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Comparison of plume shape from Schlieren photos.
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TESYT DATA 5

QF BASIC

TABLE

AU 1384

FFa

.
e
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PE=13.02 KPA

POE=101.85 KPA

NE=2.00
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DATA 6 CONCLUDED

BRSIC TEST
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