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/ IDEAL FILTER

There are two ways of viewing the characteristics of an ideal

filter. The first and most common is from the point of view of the
frequency domain. This first class of filters would pass without

attenuation all frequencies inside certain frequency limits and pro-

vide infinite attenuation for all other frequencies. The second

point of view is from the time domain. A designer may only be in-

terested in the time response of a filter. This class of filters

would have an output that is identical to ts input except be delay-

ed by some time To.

" This set of notes will present in a basic manner some of the

characteristics of mathematical models which have been derived to

approximate these two types of filters.

The first class of filters to be considered are those whose

desired response is to pass or attenuate specific frequency ranges.

We will discuss four basic types of filters in this class. These

are Low-Pass, Band Pass, High Pass, and Bandreject.

Based on the definition of the ideal filter the following

filter types can be defined.

Low-Pass Filter

Passes signals from zero frequency up to a certain

cutoff frequency and rejects all signals whose fre-

quency is beyond the cutoff frequency.

r Representation of UAf u lsnono .o

Idea Low-Pass Filter Jt__/t Cation or

,*1 _, ... . _.7
f I" . ' , OS5 - ,- .. , ;



High Pass Filter

Rejects all signals up to f and passes all frequencies

greater than fc with no attenuation.

Frequency Domain

Representation of

Ideal High Pass Filter

Band Pass Filter

Passes only those signals that are within a specific

frequency band and rejects all others.

I "AlA

Bandreject Filter

Rejects those signals within a specific frequency band

and passes all others.
,4Me
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The shapes of these filters must be approximated by mathematical

models which can be physically realized before a circuit can be built

which will behave like the desired filter.

These mathematical models are based on the ratio of two polynomials

in S. In order to develop a feel for the shape of the amplitude versus

frequency curve of various polynomials in S let us consider one such

function. We will discuss a second order function in order to keep the

description simple and still deal with all of the basic parameters of

an Nth order function. The function we will consider is Equation 1.

(I) 0
H(s) S2 + WoS + o2

Figure 1 shows the magnitude of H(s) as a function of the real

frequency (S jw) W.

SECOND ORDER TRANSFER FUNCTION

A

0I \ LA

In general you can select values for the parameters Ho , Wow and Q

and you will have slightly different amplitude vs frequency plots. There

is, however, one characteristic which will not change. That is, as the

frequency w gets far away from w the roll off (slope of the curve) be-
comes -N*2OdB/decade where N is the order of the filter. In this case

N = 2 and the slope is -40dB/decade.

It is generally desired to have the gain at w = 0 (i.e. A) be set

to 1. Let's look at the result of this criteria.



A Hj)HO - H 0
A=H'PA (302+ + 2o '

A o H

(jol 2
WOJ

Solve for Ho
2

HO = W0

The result is the following general transfer function.
1Ik~s)\

I S

We call wo the corner frequency. Let's find the magnitude of

H(s) at w = wo

22
H(jwo) 2 2 2 2 2

(Jo) + jt) + o "o + 1o + %

2

H(owo) = 12 Q2 -90°

Thus we see that the magnitude of the transfer function at w



NOTICE: A potential hardware

implementation problem

can come about with

high Q circuits.

Example:

Requirement: DC gain = 1 (i.e. IN(i4 at w = 0 is 1)

Wo = 1 K1z

Q = 10

Max. Input Voltage

Swing = + 10 volts

NOTICE: At w (1 KHz) the filter gain will be 10 (Q).

This requires that the output be capable of

swinging + 100 volts. 2

You can get around this by making H o  0

In actuality a customer would not specify a Q for the filter but

instead he will have a desired shape for the transfer function. The

shape is controlled by the location of the poles and zeros of the transfer

function.

The poles of the function are the values of S (jw) which make the de-

nominator zero. The zeros of the function are the values of S(jw) which

make the numerator zero.

For the 2 pole low pass transfer function there are 2 poles (obviously).

S1 = - o + j. I - I
2Q 4Q2

2 = -'o - - 1 _2
2Q 4Q2

and two zeros

S = +

- ---- - - - - ---- - ,. Jv - ' \ -, ,.. . . .



By changing the location of the poles of this function you can

change the shape of the function.

Let's say you wanted to stretch out the function i.e. move w0  To

do this all you have to do is to multiply all the poles by a constant

K where K is the ratio of the new corner frequency w to the original

frequency wo (i.e. K =

EXAMPLE: Given the general pole values

Sp= - + jB

Sp2 =- -jB
P2

The frequency shifted poles would be

S* =-Ka + jKB

S2 =- - jKB

If you multiply out the poles and compare them with the original
denominator of H(s) you will find that your scaled transfer function

is now

2

H(s) 0
S2 + K"OoS + K2 o2

Changing the poles by changing a and/or B will effect the shape of the

transfer function. Let's look at the general transfer function and

compare it to the expansion of the two general pole equations.

Sl =-+ jB S2-a -jB

multiplying these poles together

(S + a - jB) (S + a + jB) = S2 + 2aS + (2 + B2)

Comparing co-efficients of S with the original

transfer function we see that

WO = 1 2 + 2

and ("}o

, ' :. '- .. . .- - 7 -: " -.- -.- - -*,w,. _- , , .- . . . . . . L . - . - . -J7 
"

'.- . / " -- .. . . .. . . ._ _ _ _ _ _ _ _



We can thus see that by changing a and/or B we can change w0 and/

or Q. It is not immediately clear from these equations how the shape

of the function will change by a change in pole location.

There are equations which will tell us whereto put the poles

of a transfer function in order to achieve a certain shape. That

is where Tchebyscheff, Butterworth and Bessel and numerous other

mathematicians come into the act.

Before we get to them lees take a second to note what the location

of the zeros of the Functions do to its shape.

Lets move one of those zeros that is out at and bring it in

to w=o. The result is:

SHo0
H(S) =

S2 + S + WO 2

Note at S=O the function is 0

and at S=- the function is 0

and we can show by taking a derivative

that the function is a maximum at

S=jw0

The result is a shape as shown below.

Let's solve for iH(Jwo)I

00
~H(Jwo

0 (jw) 2 + Ow(jw) + W 2

j0 0 W0 0

I0

H 0wo Q

2



HoQ
I H(Jw) =-

0

If we set the gain at the center =l

we have
W w0

H = Q

We thus have the general transfer function for a second order Bandpass

filter

H S0

H(S)
S2 + o S + G)02

0 0

If we move both zeros from '" to 0 we have a transfer function as

follows

H S
2

H(S) = S2 +Wo S + t 2

Notice: The value at S=O is 0

The value at S=, is H0
(divide numerator and denominator by S2 and let S

The shape of this is a highpass function

IH(J.)i



Thus by moving the zeros of the transfer function we can generate

lowpass, highpass, bandpass or even band reject filtersif we place both

zeros at the frequency we want to reject.

Since we can derive any type filter depending only on zero

locations we will now talk only about the lowpass filter poles realizing

that the same general characteristics will hold true for the other

filter types.

One desirable transfer function shape is one which is maximally

flat in the passband.

A Butterworth filter has this characteristic. The pole locations

for a Butterworth filter are given by the following equations.

Butterworth Formulas

N = Degree of filter = # of poles
ANote: All filters in Butterworth

At rfamily have 3dB at w=l.A -4 1 + z

a 20 Log A

Pole location

Poles from K=l to N

PK Si oK + j Cos K

(2(2K-K-I))

K 2-N- = (2K- N N

Note PN-K+l is Complex conjugate of P

AmP r o:

0 . .



When you think of a filter most often you think of the ideal

case with an infinitely steep roll off. Because of certain physical

constraints we cannot achieve -odB/decade but a Tchebyscheff type

filter tends to give maximum roll off with a small sacrifice in the

flatness in the passband.

TCHEBYSCHEFF Very fast initial roll off

final roll off -N*2OdB/decade

-N*6dB/octave

Attenuation Ratio

A() =f 1 + C2 C2N 

Given a0 in dB - Passband Ripple

E:410 lo -l

CN(w) - Tchebyscheff Polynomials

for w>l i.e. stop band

*CN(w) = Cosh (N Cosh -1)

or solving for

W = Cosh ( 1 Cosh-' CN(LM)
for w<l in passband

* CN (w) = Cos (N Cos' w)

or

W = Cos (k Cos, C(w))

TchebyschefF Polynomials CN()

N C N(w)

2 2w2-l
3 4w3-3w

4 8w4-8 2 + 1

5 l6w5-20 3 +5w

ri _~lm ml,'m m ll|| m i



Tchebyscheff Poles

for K=1 -N poles

PK =-Sin o Sinh B+j Cos o Cosh 8
KK K

where 0 = (2K-I) - = (2K-I) 9

K 2N N

a Sinh1 (-)N e

Note: PN-K+I & PK are complex conjugates

When N is odd there is one real pole

PN+I = - Sinh a-2--

, JuJ - IOlar e ot

4 Wu
PASS

PASS

i PeAss

Refresher Equations

Cosh X =e -
x  '

m " Sinh 1 X = In (X + FX )

Cosh " X = In (X + fX2 -1)

_ - - .-



Useful identity to generate table

CN (w) =2w C Nl(w) - CN-2(w)

j Useful identity when evaluating A(w)

C2()= 2(W) +1

c2N(w) =2C2(w) -1 ~rS~ e-c!

eve1 7 dee f/r
TCHEBYSCHEFF FILTER SHAPE

4~U -'a

GA-N S /J/ kle f al!
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A third filter type which sacrifices attenuation in the stopband

for rapid roll off is the Elliptic filter. Its transfer function

is formed by placing the zeros near the poles of the function

rather than at the two extremes of the frequency spectrum. A

typical transfer function is shown below: 4H )"

H0  (S2 + a) A -
H(S)= _______

S2 + 0 S +0 2  
+

A very steep roll off can be acheived with this type filter as

long as the resultant floor of attenuation A2 can be tolerated. Notice

that as you bring the zero in from - the roll off increases and so

does the floor. When the zero is located at the corner frequency

(assuming originally we had a Butterworth transfer function) the

result is a Band Reject filter.

Let's now consider the class of filters that attempt to satisfy

the time domain condition of pure time delay. Mathematically the

transfer function must be as follows:
e (W) Filter I e(t-To

INPUT OUTPUT

Ii Stating this in equation form

eout t) = ein (t -T 0 )

We must now see what this equation looks like in the frequency

domain (S).

Lets take the laplace transform of both sides of this equation.

Remember:

Starting with eout(t) (f(t)] = If(t)e'Stdt=F(S)

[eout(t J = eout(t) eoStdt Eo(S )
0

Now with the Rt side

"[e in(t TO)]  = 7 ein(t - 0) e"Stdt

- - -- ~ --- --- - - - - -- -.. - ~ --- --.--0



make a variable substitution t*=t-r0

then dt* = dt & t=t*+x

= fe i (t*)e5 (t*+t[o)dt*
0 i

co st* -ST t= fe.i (t)e&5  e o dt
0

Note e-S 0 is a constant over the integral so

=esT S 0  e. en (t*)e tdt* let t=t* and we see
0

[ein -O e in(S

Now forming the original equation we have

E (S) = e- OE. (S)out in

ou~t( = e-STO

in

H(S) = e

H(S) is the frequency domain equivalent of the original time domain

transfer function.

There are two important characteristics of H(S)*

1) Its amplitude is 1 i.e. independent of frequency

2) Its phase is proportional to frequency with proportionality

constant T 0

*Recall S=Jw Therefore H(jw) = e- W o;from Eulers identity

=JW Coswr 0 - J sin W T0.The amplitude of this complex number is
'(COS W TO)' + (Sin T O 2 =T - 1. Its phase angle is

-SinwT 0
arc tan Cos 1 arc tan (-Tan wr0 ) -T



A Bessel type filter approximates this desired response for

input signals within a specified passband.

H(S)zHB--7
n

where .. n-1 Sn
'l +Sn

Bn(S) = a0 + aI S+ . + +

where the coefficients a are computed from the following equation

ai= i(n-i)! (2To)i-n for I=0,1,2,...n-I

n = the order of the filter

To= delay time

The corner of the Bessel filter is generally specified as w= L.1T

specifies it as the -3dB point in order to keep all of our speifications
consistent. Note the F.D.I. corner is just K . 1 . A good measure

TO

of the linearity of the phase across the passband is the term called

the Group Delay. The Group Delay is the derivative of the phase. If the

group delay is a constant then the phase will be linear. The Bessel

coefficients are derived by establishing a criteria of maximally flat

group delay.

Over the passband the phase increases linearly from 0 to nn/4

radians at the cut off frequency.

..
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Oroup-delay charactistics for maximally fiat delay (lesset) fiari.
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IMPLEMENTATION OF FILTER THEORY

Topical Outline

1. Two types of filter synthesis commonly used to realize filter

polynominal functions

A. Passive RLC ladder synthesis techniques

B. Active RC and Amplifier techniques

2. Design techniques that simply design procedures for passive

and active filters

A. Frequency scaling

B. Impedance scaling

C. Lowpass to Bandpass and other transformation
+S11S 2 + wo

LP - BP S

gives Geometric Symmetry

LP - HP S..1

3. Design Lowpass filters and transform up to wo to get Bandpass filters

4. Circuit Configurations

A. Stagger tuned

B. Leap frog

C. Primary resonator block

D. Analog computer circuit

S. Som common active filter circuits

A. Sallen and key resonator

B. Multiple feedback

C. State variable - dual integrator

6. Sensitivities of various circuit configurations

7. Practical limitations for active filters

A. Q is limited by available gain

B. DC offset and noise of amplifiers
C. Frequency limitations (QA product)
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ABSTRACT

The Active Filter is now available in what is commonly

referred to as component form. It is an item the system

designer may order off the shelf in any of'a variety of

configurations. As is the case with any component there

are performance limitations to be considered and benefits

to be derived by proper selection and application.

The presentation will outline system factors which

relate directly to filter selection and review the state of

the art from a performance point of view. Individual filter

specifications will be discussed. The importance and method

defining the filtering requirements before selecting a•

filter type will be emphasized.

L i. ...



FILTER SPECIFICATIONS

* (typical @ 25*C and ±15V unless otherwise specified)

REQUIRED DESIRED TYPICAL

Center/Cutoff Frequency .001 to 50kHz

Tuning Range 20:1 to 1000:1

Drift 50 to 100 ppm/*C

Tolerance (Fixed Frequency) to ±.lZ

Passband Gain 0 to 60dB

Amplitude Match Hatch is a Function

Frequency Range of the sensitivity &

Phase Match initial tolerance of

Frequency Range the design to be used

Input
Impedance __ 103 to 109a

Source typ <6000

Bias Current 1-l0nA

Voltage Range ±lOV at ±15V V

Safe Input Voltage V
_ _ _S

Output

Full Power Response 50kHz

Noise 10 to 50PV

Rated Output 2-5mA

Offset Voltage lmV-1OmV

Drift 10 to 20PV/9C

Resistance In to l0(

Power Requirements

Quiescent Current (mA) Depends on Device

Voltage, Rated Specs (V) ±15V

Voltage, Operating ±5 to ±18V

Temperature (*C)

Commercial Operating 0 to 70

Storage -25 to +85

Military Operating -25 to +85 C-6" Tc t

Storage -65 to 150

Standard Mechanical Configurations

Length 1.0" to 3.00"

Width 1.0" to 2.00"

Height 0.4" to 1.00"

_ -~ 4
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FILTER SPECIFICATIONS

- 4 (typical @ 25°C and ±15V unless otherwise specified)

REQUIRED DESIRED TYPICAL

Center/Cutoff Frequency .001 to 50kHz

Tuning Range 20:1 to 1000:1

Drift 50 to 100 ppm/°C

Tolerance (Fixed Frequency) to ±.l%

Passband Gain 0 to 60dB

Amplitude _tch Match is a Function

Fre4uency Range of the sensitivity &

Phase Mtch initial tolerance of

Frequency Raqge the design to be used

Input

Impedance 103 to i09

Source typ <6000

Bias Current 1-1OnA

Voltage Range ±IOV at ±15V V
s

Safe Input Voltage Vs
Output

Full Power Response 50kHz

Noise 10 to 50V

Rated Output 2-5mA

Offset Voltage _mV-1OmV

Drift 10 to 20PV/°C
Resistance _1 to 100

Power Requirements

Quiescent Current (mA) Depends on Device

Voltage, Rated Specs (V) ±15V

, Voltage, Operating ±5 to ±18V

Temperature (*C)

Commercial Operating 0 to 70

Storage -25 to +85 -

Military Operating -25 to +85 (-55 rc -iI
Storage -65 to 150

Standard Mechanical Configurations

Length 1.0" to 3.00"

Width 1.0" to 2.00"

Height 0.4" to 1.00"/
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