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%%STRACT (continued) '
- critical speeds reaching a maximum of 28,000 rpm,

which was 74% of the maximum intended rotor speed of o
38,000 rpm. Balancing for operation above the feurth- -
critical speed, which was predicted to occur at 33,000 rpm,
was prevented due to a sub-synchronous rotor instability.
Causes of the instability-have~be§%§$ttxibuted to the con-
figuration of the squeeze film bearing damper and the

engine rotor support structure as opposed to any limitation
of the balancing techniques employed.

The preliminary composite shaft design was completed
" assuming that a Ti-Borsic metal matrix composite with 60%
fiber volume and 40% metal matrix would be used. This
dgtiff? shaft was designed as a direct substitute for the
multi-plane high speed balancing demonstrator rotor. Analy-
tical studies performed>indicate that the composite rotor
will have a 24% third critical speed margin when operating
at 38,000 rpm.
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FOREWORD

This document is the final Technical Report on the High
Speed Multi-Plane Balancing Rig Demonstration Evaluation and the
Composite Material Shaft Design and Analysis for Contract
F33615-79-C-2018 Revision P00001 Project 306612. The contract
was sponsored by the Aero-Propulsion Laboratory, Air Force
Wright Aeronautical Laboratories, Air Force Systems Command,
United States Air Force, Wright-Patterson AFB, Ohio, 45433,
under the direction of Captain James F. Walton II, Project
Engineer. Mr. Glenn Hamburg, Department Head, Rotating Systems
Analysis Departmént, Teledyne CAE, had overall technical
responsibility for the program. Mr. Thomas Walter, Project
Engineer, Mechanical Technology Incorporated, was responsible
for his company's analytical efforts, the balancing rig design
and fabrication, and the balancing demonstration. Mechanical
Technology Incorporated was a subcontractor to Teledyne CAE in
“this program.
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SUMMARY

The purpose of the Multi-Plane, High Speed Balancing
Program was to demonstrate the balancing of a flexible,
prototype, solid (steel) low speed (LP) shaft of a cruise
missile rotor through four critical speeds, thereby reducing
unbalance related vibration.

A rotordynamics analysis of the LP rotor was conducted
to predict the undamped critical speeds and associated mode .
shapes. The location of the anti-nodes established the location
of the balancing planes required to traverse the four predicted
critical speeds.

A test rig was designed and fabricated using engine
hardware and adaptive support hardware. The rig included both
an air turbine motor to drive the shaft through the required
speed range, and a vacuum chamber to permit high rotor speeds
with relatively low drive power requirements. Displacement
sensors were used to monitor shaft displacement in four planes.

Temporary balance weight additions were achieved by
using washers placed under bolts on the nose cone, lead tape for
the balance lands on the shaft, and safety wire on the turbine
stages.

The rotor was successfully balanced through three
critical speeds and reached a maximum speed of 28,000 RPM, which
is 74% of the maximum rotor speed of 38,000 RPM. Balancing at .
the fourth critical speed, which was predicted to occur at i
33,000 RPM, was prevented by rotor instability. Causes of the
instability have been attributed to the existing configuration
of the damper and engine support structure.
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SECTION I

INTRODUCTION

1. INTRODUCTION

Advanced, Air Force turbine engine requirements are dicta-
ting higher speeds, lighter weight, fewer parts and the need for
increased life. As a result it is becoming more likely that
turbine engine rotor design techniques that appear practical are:
(1) to design for operating above one or more bending critical
speeds and to employ multi-plane high speed balancing, or (2) to
design for operation below the bending critical speeds through
the use of high specific stiffness composite materials. Both
alternatives are addressed in this report as a means of meeting
future engine requirements, with specific application to the
small cruise missile sized turbofan engines.

When designing supercritical shafting for turbine engines,
the unbalance must be kept to a minimum to achieve safe and
smooth operation throughout the engine speed range. Because the
unbalance is distributed along the length of the rotor, it is
unlikely that a single plane balancing method would neutralize
the unbalance forces and couples sufficiently to allow super-
critical operation. The recently developed techniques of
multi-plane, high speed balancing provide a better balancing
capability and appear to provide the best approach for allowing
supercritical shaft operation. A successful demonstration of
the multi-plane, high speed balancing technique would give the
designer the ability to design supercritical rotors with the
added benefits of reducing hardware, simplifying engine
configuration, and reducing the engine life cycle cost.

An alternate approach to the problem of supercritical speed
operation is to avoid running through the bending modes by using
a high specific stiffness composite shaft design which is capable
of moving the lowest bending mode above the maximum operating
speed of the rotor. To accomplish this, the design and analysis
of a metal matrix composite low pressure (LP) shaft should be
completed. The design criteria should include both sufficient
third critical speed margin above the maximum speed (38,000 rpm)
and the following structural criteria: (1) sufficient torsional
shear strength to transmit fan driving torque, (2) adequate
flexural strength to accommodate both fan and turbine rotor
gyroscopic bending moments under all anticipated maneuver
conditions, (3) adequate tensile strength to sustain axial

pressure and aerodynamic gas forces coupled between the fan and
turbine sections.

The design criteria must be met in the thermal environment
imposed by the engine under the most severe operating condition.
These design criteria must also be considered in designing the
method of attaching the composite section to the turbine and fan
rotors.




To verify the design and analysis, an LP rotor which
includes a composite metal matrix shaft should be tested in a
rig.

2. BACKGROUND

Past government studies have shown the potential of the
multi-plane high speed balancing technigues to reduce rotor
unbalance levels, and thus vibrations, to a point that will
allow supercritical shaft operation. However, this technology
has not yet been demonstrated with a rotor operating above the
fourth critical speed in an actual engine environment. While
there has been limited use of this technology in the turbine
engine industry, primarily for single plane trim balancing of
subcritical rotors, it has not been used to its full potential.

Since current trends in turbine engine design are towards
lighter weight and higher rotational speeds, it is evident that
supercritical shafting will be required in advanced turbine
engines. As a test-bed for the use of supercritical shafting,
the non-man-rated, limited life cruise missile engines are
ideal. The design methodology that is necessary for the
application of these advanced techniques may be developed and
demonstrated with an engine of the cruise missile variety
because of its size and environment.

Since the engine low pressure spool is small, the power
requirements necessary for high-speed balancing can be minimized
through the use of a vacuum chamber. Additionally, since the
cruise missile engine life is limited to S50 hours with a maximum
of 5 to 7 hours running time between refurbishments, the
degradation of system balance due to erosion and other
time-dependent factors is minimized. Thus, to achieve the goals
of increased performance and life at reduced cost, the
application of the multi-plane high speed balancing concepts in
turbine engines must be investigated and exploited.

Previous investigations of the relationship between
critical speed and the ratio of elastic modulus to density
(specific stiffness) of the shaft material indicate that for a
simply-supported (two bearing) shaft, the system critical speed
varies closely with this ratio. This relationship was
established from analyses of geometrically identical hollow
shafts comprised of various composite materials (40/60
Ti-Borsic, 50/50 Ti-Borsic, 60/40 Ti-Borsic, 50/50 Al-Borsic,
60/40 Al-Borsic), and steel and beryllium. These investigations
indicated that a composite shaft could be designed to provide a
third critical speed above the maximum engine operating range.

Alternative composite shaft design concepts, based on the
selective reinforcement (SERIF) of metal shafts, have also been
investigated for both internal and external reinforcement of
sleeves with composites in which the fibers had a longitudinal
and also a cross-ply orientation. SERIF configurations have
lower stiffness characteristics than do the all-composite
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designs for a given shaft geometry due to the inherent lower
fiber volume percent, which effectively reduces the elastic
modulus to density ratio.

3. SCOPE

The Multi-Plane, High Speed Balancing Program was
approximately a twelve month effort and approached the problem
of supercritical speed operation in two ways. The first was to
demonstrate the feasibility of using the multi-plane, high speed
balancing technigues to balance a supercritical low pressure
(LP) shaft of a limited life turbofan engine. The second was to
design a shaft which would have the lowest bending mode above
its maximum operating speed through the use of a high specific
stiffness material. The fabrication of this shaft was made
feasible by the use of recently developed advanced manufacturing
techniques..

a. Task Definition

The balancing task was to provide a small gas turbine
rotor, balance it using multi-plane balancing techniques, and
demonstrate it in a simulated engine assembly and operation.
The original program schedule is shown in Figure 1.

The composite shaft design task was to design a shaft with
high specific stiffness so that its lowest bending mode was
above its maximum operating speed.

The balancing and composite shaft design tasks were to be

conducted through seven tasks described in the following
paragraphs.

(1) Task 1 - Shaft Design

Teledyne CAE, teamed with their subcontractor,
Mechanical Technology Incorporated (MTI), was to analyze and
establish a multi-rotor shaft system for an existing turbofan
engine applicable to a limited-life, cruise missile mission, for
an unmanned vehicle (Figure 2). The configuration was to be
such that a simply supported supercritical operation occurred
below the maximum shaft speed. Design features to be provided
with this configuration included: (1) simplified solid low
pressure (LP) spool of the two-spool system, and (2) removal of
two intershaft bearings which currently maintain the third
critical speed (first bending) above the LP spool operating
regime (Figures 3 and 4).

A balancing procedure was to be established to identify
balance planes and speeds to provide acceptable vibration
response throughout the operational speed range of the LP shaft.
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Teledyne CAE Model 471-11DX Turbofan Engine; Cruise

Missile Program DFRT Configuration.

Figure 2.
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The balancing criteria necessary to identify a successful
balance of the LP shaft were to be established. These criteria
were to be based on the results of analytical studies and
existing vibration characteristics of the candidate turbofan
engine. Sensitivity analyses for varying degrees of rotor
unbalance, were to be independently conducted by Teledyne CAE
and MTI, using state-of-the-art, rotor unbalance, response
analytical techniques. Potential rotor instabilities resulting
from the supercritical operating design of the shaft system were
to be evaluated by MTI and the results incorporated into the
final shaft configuration.

(2) Task II - Balancing Rig Design

Teledyne CAE and MTI were to jointly determine
the amount of existing engine hardware which could be used in
the construction of the high speed balancing demonstration rig.
The final configuration of this rig, including support systems
such as bearing services, vibration and displacement sensors,
and- the drive system, was to be designed by MTI. Teledyne CAE
and MTI were to present a briefing detailing the shaft and
balancing rig designs to obtain Air Force approval prior to
proceeding with Task III (Fabrication and Procurement).
Teledyne CAE and MTI were to present an interim briefing of the
activities and results of the first two design tasks for Air
Force evaluation.

(3) Task III - Fabrication

Final shaft drawings were to be prepared by
Teledyne CAE. Teledyne CAE was to fabricate, assemble and ship
the shaft assembly to MTI for the rig demonstration.

MTI was to prepare the final drawings for the fabrication
of all rig adaptive hardware. The demonstration rig was to be

assembled by MTI upon the receipt of all shaft and adaptive
hardware.

(4) Task IV - Multi-Plane High Speed Balancing Rig
Demonstration

Mechanical Technology Inccorporated was to
balance the assembled rotor in the demonstration rig. The
balanced rotor vibratory response characteristics were to be
evaluated against the design criteria as established in Task I.
Following successful balance of the rotor and its demonstrated
operation on the balancing rig, the rotor was to be
disassembled, then reassembled and the balance checked to verify
repeatability. MTI was to document the rotor dynamics
characteristics including critical speeds, mode shapes and
unbalance sensitivity for the configuration tested.

b




(5) Task V - Balancing Demonstration Evaluation

At the conclusion of the program, Teledyne CAE
was to evaluate the results and present them in the form of a
final report. Specific attention was to be given to the
following program criteria: (1) feasibility of using
multi-plane, multi-speed balancing techniques to operate rotors
above bending critical speeds, and (2) evaluation of using
multi-plane, multi-speed balancing techniques for simplified,
flexible, cost effective rotors.

(b) Technical Approach

The LP rotor assembly of a limited life
turbofan engine was to be modified to ensure that the simply
supported rotor's third and fourth critical speeds occurred in
the operating speed range. To accomplish this modification,
analyses were to be performed to determine the shaft critical
speeds, shaft sensitivity to imbalance, and rotor system
stability. The modified rotor system (with fan and turbine
stages included) was to be procured and assembled in a balancing
rig and balanced. After balancing, the necessary rotor
disassembly to remove the rotor from the balancing rig was to be
accomplished. The disassembly procedures were to be
representative of those required to prepare the rotor assembly
for engine installation. Once disassembly was accomplished, the
LP rotor was to be reassembled in a manner representative of
engine assembly procedures in the balancing rig and then rerun.
This test was designed to verify that the rotor system balance
could be maintained after removal from the balancing rig and
engine installation and that the rotor would meet the
established vibration criteria.

The balancing rig was to be designed to use
as much existing engine hardware as possible so that the LP
shaft support characteristics (stiffness and damping) would be
accurately simulated. The balancing rig was intended to serve
not only to balance the LP shaft assembly but to also
demonstrate the feasibility of operating a complete rotor
assembly above the fourth critical speed.
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SECTION II

ACCOMPLISHMENTS i

1. INTRODUCTION

This section summarizes the accomplishments of the
Multi-Plane, High Speed Balancing Program.

2. SHAFT DESIGN

The rotor dynamics analyses, including undamped critical
speeds, unbalance response sensitivity and instability studies
were conducted to establish the solid LP shaft design, and to
assure that the third and fourth modes (critical speeds) would
be in the operating speed range of the LP shaft. The mode
shapes which resulted from the undamped critical speed analysis
were used to define the locations of the balancing planes.

3. RIG DESIGN

The balancing rig was designed to accommodate the
demonstration LP rotor with available engine hardware and
adaptive hardware to duplicate the structural stiffness and
damping provided by the engine structure. Bearing lubrication
and damper o0il supply services were provided. Proximity probe
brackets were designed to sense shaft displacement in four
planes. An air turbine with a spline drive was incorporated
into the test rig design as the prime mover. The test rig was
housed in a vacuum chamber which lowered the drive air turbine
power requirements.

4. FABRICATION AND PROCUREMENT
a. Shaft

The solid LP shaft was a newly fabricated item to
which an existing second stage turbine rotor was electron beam
welded. The fan shaft was a newly fabricated item. The two
fans and two turbine rotors were available from existing engine
parts inventory as were the front and rear bearings, the front
bearing support and the rear bearing support spring ring.

b. Rig

The required adaptive hardware was fabricated after
reviewing the available engine hardware. The bearing support
pedestals were designed to simulate the stiffness of the engine
static structure.
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5. BALANCING DEMONSTRATION

The so0lid steel LP rotor was successfully balanced through
three critical speeds and reached a maximum speed of 28,000 rpm,
which is 74% of the maximum required shaft speed. Balancing at
the fourth critical speed was prevented by sub-harmonic rotor
instability. Causes of the instability have been attributed to
the existing configuration of the o0il squeeze film damper and
the engine support structure.

6. TI-BORSIC SHAFT ANALYSIS AND DESIGN

The Ti-Borsic Shaft Analysis and Design included structural
and rotordynamics analysis (undamped critical speed analysis and
unbalance response analysis) of a metal matrix LP shaft for the
same limited life engine. The shaft geometry and percent fiber
volume mixture of titanium-borsic was finalized by iterative
critical speed and structural analyses predicated on front and
rear bearing support spring rates of 150,000 and 300,000 pounds
per. inch, respectively, and a goal of 25 percent margin of the
third critical speed above maximum LP rotor speed 38,000 RPM.
The 24 percent margin obtained in the final design represented a
compromise between available manufacturing technology and
critical speed requirements.

A thermal heat balance analysis was also completed for the
LP shaft from which it was determined that the shaft temperature
would not exceed 550°F due to HP shaft thermal radiation. All
material physical characteristics and properties used in the
ggg%yses were based on the maximum predicted temperature of

F'
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SECTION III

DISCUSSION

1. INTRODUCTION

The purpose of the Multi-Plane High Speed Balancing Program
was to demonstrate the feasibility of controlling vibrations in
a supercritical low pressure (LP) shaft of a limited life turbo-
fan engine by high speed balancing at each of the critical
speeds. The program consisted of five separate tasks: (1)
analysis and design of a supercritical rotor; (2) design of a
test rig to balance the supercritical rotor; (3) fabrication and
procurement of the shaft and balancing rig; (4) balancing
demonstration; (5) evaluation of the balancing demonstration.

The purpose of the Ti-Borsic shaft program was to control
resonant vibrations by avoiding running through the bending
critical speeds. This approach uses a high specific stiffness
composite, Ti-Borsic shaft which is capable of placing the
bending modes beyond the maximum operating speed.

2. SHAFT DESIGN

The constraints of using as much of the existing engine
hardware as practical for the Multi-Plane High Speed Balancing
Program immediately imposed the use of the engine front and rear
bearing supports with experimentally determined stiffnesses of
6,000 and 51,000 1b/in, respectively. The front bearing support
also included an oil squeeze film damper.

a. Critical Speed Analysis

The solid LP shaft was designed on the basis of the
close agreement of the results of independent critical speed
analyses by Teledyne CAE (prime contractor) and Mechanical
Technology Incorporated (sub-contractor). Both analyses
utilized the actual hardware stiffness values of the front and
rear bearing supports of 6,000 and 51,000 1lb/in, respectively.
Teledyne CAE's analysis is a matrix solution for multiple shaft
systems. The analysis considers both bending and shear effects,
flexible bearings and gyroscopic effects from attached disks.

The actual rotor is transformed into an idealized equiva-
lent system consisting of a series of disks connected by sec-
tions of elastic but massless shaft. The mass of the disks and
their spacing are chosen so as to approximate the distribution
of mass in the actual rotor (See Figure 5). The bending flexi-
bility of the connecting sections of the shaft corresponds to
the actual flexibility of the rotor. The matrix solution used
in this program is essentially an iterative method. At a
selected frequency it is used to compute progressively the
deflection, slope, moment and shear from one station to the next

o i
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in a manner similar to the Holzer method. Mechanical Technology
Incorporated used a lumped mass geometric model and the mathe-
matical model is included in Appendix A.

b. Selection of Balancing Planes

The results of the two independent undamped critical
speed analyses by Teledyne CAE and MTI compared favorably for
the first five modes, with critical speed variances for modes
one through five being 2, 6, 3, 8 and 4 percent respectively
(See Table 1). The corresponding mode shapes (Figures 6 through
10) were in good agreement, and the location of the anti-nodes
(maximum relative deflections) were used to define the location
of the balancing planes on the shaft. These planes were located
at 5, 10 and 16 inches from the front flange of the fan shaft
(Figure 11).

c. Unbalance Response Sensitivity

Teledyne CAE and Mechanical Technology Incorporated
independently conducted the unbalance response sensitivity
analyses using calculated values of viscous damping coefficients
for the front bearing support. MTI used a viscous damping
coefficient of 6.7 lb-sec/in, and Teledyne CAE used a value of
3.78 1lb-sec/in. The results of the MTI unbalance response
analysis are summarized in tabular form in Appendix B. The
results of the Teledyne CAE unbalance response analysis are
summarized in Figures 12 through 17 and Table 2. Both analyses
indicate that the rotor is extremely sensitive to unbalance.

d. Rotor Instability Analysis

Mechanical Technology Incorporated conducted the rotor
instability analysis using a low value of 0.1 lb-sec/in. viscous
damping coefficient at the front bearing support and also 6.7
lb-sec/in. to show the effects of minimum damping compared to
existing calculated values of damping on the stability of the
rotor. The results of the instability analysis indicated that
all mode shapes were stable, although the level of stability,
measured by the log decrement, was very low, particularly for
the third mode (see Figures 18 and 19).

e. Design Layout
The final design layout of the LP shaft was completed

as well as the detail drawings prior to the interim review
meeting with AFWAL.
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TABLE 2

SUMMARY: BEARING REACTION FORCE 471-11DX
SOLID STEEL LP SHAFT AT APPROXIMATE CRITICAL
SPEEDS DUE TO UNBALANCE AT THREE SEPARATE
BALANCING PLANES

UNBAL. BEARING REACTION
SPEED . FORCE (POUNDS)
STATION (RPM) "FRONT ~  REAR
lgm. 5,110 0.15 0.36 :
, 7,330 9.5 14.7
3 23 13,900 2.5 53.5
31,792 10.8 94.1
57,352 19.1 101.0
1°gm. 5,110 0.5 0.15
7,330 13.0 21.0
18 13,900 3.5 80.3 :
‘ 31,792 2.3 5.6 .
: 57,352 27.2 164.0
1 gm. 5,110 1.1 0.1
7,330 7.6 12.7
13 13,900 3.0 77.1
31,792 9.0 72.2
57,352 18.4 128.6
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3. RIG DESIGN

The balancing demonstration rig was designed to accommodate
the solid LP shaft and as much of the engine hardware as
applicable (Fiqure 20). The bearing support pedestals (Figures
21 through 23) were designed to accurately duplicate actual
engine hardware stiffnesses. The rig was designed to be
enclosed in a vacuum chamber (Figure 25) to reduce the power
requirements on the available drive air turbine.

a. Existing Hardware Review

A review of the available engine hardware which
comprise the non rotating parts associated with the LP rotor
showed that the following parts were required as new design
items: front and rear bearing support pedestals, oil
lubrication system, oil supply for front squeeze film damper,
proximity probe bracket for sensing shaft motion in four planes,
spline drive coupling from air turbine drive to the LP rotor,
and. a vacuum chamber. to house the balancing rig and reduce the
power requirements for the drive air turbine.

b. Adaptive Hardware Layout

The final design of the adaptive hardware and vacuum
chamber was completed prior to the interim review meeting with
AFWAL.

4, FABRICATION AND PROCUREMENT
a. Shaft
The solid LP shaft was a newly fabricated item to
which a second stage turbine disk was electron beam welded after
being cut off of an existng LP shaft. The fan shaft was also a
newly fabricated item.
b. Rig Adaptive Hardware

All of the balancing rig adaptive hardware was newly
fabricated for this program as was the vacuum chamber.

S. BALANCING DEMONSTRATION
a. Test Plan
(1) Background

The purpose of the balancing test was to :

3 demonstrate the applicability of multi-plane multi-speed i
balancing techniques in reducing unbalance related vibration in jj
a prototype solid LP shaft cruise missile rotor. Analyses have
shown that the rotor will traverse four critical speeds within

its 38,000 RPM operating speed range.
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Figure 20. Solid LP Shaft With Adaptive Hardware.

Figure 21, Solid LP Rotor Assembled in Bearing Pedestals -
? Fan End View.
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Figure 22. Solid LP Shaft Assembled in Bearing Pedestals -
Turbine End View.
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Figure 23, Solid LP Rotor Assembled in Bearing Pedestals
(Side View).
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Figure 24.
Vacuum Chamber.

18022

Solid LP Rotor Assembled in
vacuum Chamber.

Figure 25.
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(2) Test Plan
(a) General Procedure

, For flexible shaft balancing, data are

; usually taken at speeds just below the shaft's critical speeds.
If the shaft is to be balanced through more than one critical,

it is often impossible to safely traverse (because of excessive
rotor vibration) the lower critical speed to take balancing data
at higher critical speeds. It is then necessary to perform an
"intermediate" balance to correct shaft response to the lower
critical speed. Subsequent balances can then correct response

: at higher critical speeds as well as at the lower critical speed.

(b) Predicted Critical Speeds and Balancing
Locations

Rotordynamics analyses resulted in predicted
rotor critical speeds at approximately 5,000, 8,000, 14,000 and
30,000 RPM. Based on calculated mode shapes, three balancing
plahes were located along the shaft. Depending on the actual
amount of rotor unbalance, the balancing planes at the center
and forward end of the shaft should be most effective in
reducing vibration for the first three critical speeds. At the
fourth critical speed, the center balancing plane should be
almost nodal, and the end balancing planes would be more
effective in reducing unbalance.

(c) Balancing Criteria

The objective of the high speed balancing
effort was to maintain acceptable unbalance related bearing
loads at maximum rotor speed as well as limit maximum shaft
deflection (and stress) through each critical rotor speed.

Final balancing criteria was to be
established during balancing tests based on actual rotor
behavior and response. The criteria used were: bearing loads
at operating speed: 50 lb (front), 100 1lb (rear), maximum shaft
deflection through critical speeds: 0.04 inch (peak-to-peak)

(d) Trial Weights

Analytical studies indicated that the rotor
was very sensitive to mass changes, especially at the shaft
balance planes. Calculations showed that although the mode
shapes would remain relatively unchanged, the added mass of
balancing collars at the three shaft balancing planes could
significantly alter the rotor's critical speeds. The added mass
from the balancing collars would also lower the fifth critical
speed to a speed just above the maximum rotor RPM. The final
impact of the balancing collars was that, while in place on the
shaft, they would prevent rotor disassembly. This disassembly/
reassembly check simulates the disassembly required to install
the shaft in the engine case. Use of balance collars for the
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balancing tests was eliminated, therefore, in favor of presssure
sensitive lead tape for initial trial weights. This tape would
be effective in providing the amount of trial weight mass
required without adding a large amount of mass to the overall
rotor. Because of the small increase in shaft diameter at the
balance planes, the tape would also allow rotor components to be
disassembled and reassembled without interference.

(e) Check Run

After high speed balancing had been
successfully completed (and with the trial weights in place), it
was planned to disassembly the modified LP shaft. This action
would simulate the disassembly required to install the shaft in
the engine case. The shaft would then be reassembled and
installed in the demonstration rig. A check run of the
reassembled shaft and comparison to pre-disassembly vibration
levels would indicate the change, if any, in unbalance that
could be anticipated when a balanced shaft is installed in an
engine case. This evaluation might also suggest modifications
in assembly tolerances and reveal the effect of shifted
components on shaft unbalance.

Only one disassembly/reassembly check run
was planned at this time. Final decisions regarding this effort
were to be made based on the observed changes in vibration, as
well as schedule and funding restraints.

(£) Grinding of Final Correction Weight

Following disassembly/reassembly checks, the
final correction weights were to be ground on the rotor. Pre
and post-balance shaft responses of the first and second rotor
assemblies were to be compared.

(g) Rotor Operation With All Engine Bearings

At the conclusion of all balancing and check
runs, the balance rig rear ball bearing was to be removed from
the rotor and replaced with the engine roller bearing.

Operation of the rotor in the low thrust condition (vacuum
chamber) of the balancing rig without positive preload on the
remaining engine ball bearing might cause bearing skidding,
instability, overheating and possible reduced life and/or damage
to the bearing and rotor system. The balancing test rig was
designed to accommodate the engine roller bearing. MTI planned
to perform this final test of the rotor within the schedule and
funding constraints established.
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(h) Impact of Actual Test Data on Test Plan

A prime consideration concerning details of
the high speed balancing test plan is an on-the-spot analysis of
actual test data. Actual critical speeds and rotor response may
differ from calculated values, thereby necessitating
modification of the plan for subsequent balancing runs. This
test plan was intended to serve only as a guide to the tests to
be conducted. The actual test sequence depended on evaluation
of the test data acquired in process.

b. Low Speed Balancing

Prior to the multi-plane high speed balancing
demonstration the assembled solid LP rotor was low speed check
balanced, and a permanent correction weight of .94 inch grams
was ground on the turbine end of the rotor. The correction on
the fan end was not installed; however, its magnitude and angle
were recorded so that, if required during high speed balancing,
a correction weight could be added.

c. Rig Checkout

The balancing rig with the LP rotor system was checked
out at low speed for alignment, bearing lubrication, air turbine
drive control, and proximity probe response.

d. Multi-Plane High Speed Balancing

This section describes the actual balancing of the LP
turbine rotor. Details of balancing methodology, monitoring
instrumentation and balance weight addition are discussed.

{1) Instrumentation

Primary vibration measurements were from Bently
Nevada displacement probes placed at the nose cone, adjacent to
the first and second balance lands, and at the second turbine
stage.

Signals from the instrumentation were input to
oscilloscopes for visual display, to an X-Y plotter and tape
recorder for record purposes, and to an MTI Commandtm
Balancing System for calculation of balance weights.

Additional instrumentation included:

o Thermocouples for each bearing.
o Air temperature thermocouple sensing probe
environment.
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o RPM/Zero phase indication from a fiber optic
system.

o Vacuum gauge.
(2) Trial and Balance Weight Addition

Three different weight-addition methods were
required. At the nose cone precisely weighed washers were
placed under the bolts. On the shaft balance lands, lead tape,
cut into strips and stacked as required, was used. Fiberglass
packing tape was then wrapped to secure the weight. At the
turbine stage, safety wire was twisted around the appropriate
blade. Permanent balance corrections on the shaft were made by
hand-grinding on the appropriate balance land.

(3) Results by Configuration

Because engine hardware modifications were
required to progress- to higher rotor speeds, the results of the
balancing tests are presented by rotor configuration. Appendix
C includes sketches of the various confiqurations and a brief
summary for each.

(a) 1Initial Configuration

Initial tests were conducted with the shaft
and supports in the as-received condition. The damper assembly
was installed and damper o0il was supplied to the damper. Lube
o0il was supplied to both bearings in the form of o0il mist.

Figure 26 shows the vibration response of
the rotor in the as-received condition for shaft center vertical
probe. Maximum speed attained was 7,500 RPM. Using the center
balancing land, speed was gradually increased with repeated
balancing steps until the rotor became unstable at a speed
running of 11,500 RPM. Figure 27 represents the maximum speed
run for this configuration. The dips in Figures 26 and 27 are
phenomena of the non-contacting proximity sensors and run out of
the shaft. Figures 28 and 29 show the rapid growth of the
subsynchronous vibration (9,000 CPM) that prevented reaching
higher speeds. Attempts to investigate the instability were
hampered by poor rotor repeatability. It was decided to
disassemble and carefully examine the rotor for the source of
the non-repeatability. Disassembly revealed no sign of oil in
the damper surface between "0O" rings. It was discovered that a
bleed hole designed to permit entrapped air to be forced out of
damper and allow 0il to enter, had not been drilled in the part
sent to MTI. This modification was made at MTI and the rotor
was reassembled.
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(b) Positive 0il Flow to Damper Surface

A repeat of the best balance from the pre-
vious configuration was performed with the positive oil flow to
the damper. This resulted in a much cleaner speed amplitude
curve with a well defined peak at approximately 9200 rpm (Figure
30). The 9000 rpm instability was still present, this time at
12,500 rpm running speed. The observed second mode did not
correlate closely with the analytically predicted second criti-
cal speed of 8000 rpm and the discrepancy is probably related to
the description of the analytical model. Closer agreement could
have been achieved by fine tuning the model; however, the impor-
tant consideration is that the calculated and running mode shapes
agreed. Fiqure 31 shows the instantaneous vibration spectrum
for both 9000 rpm running speed (approximate location of mode)
and 12,500 rpm (onset of instability). It appeared that the
instability was caused by excitations of the mode at 9000 rpm.
The harmonic components of the synchronous running speeds in
Figure 31 are geometry related and probably due to misalignment.
They were stable during the runs, and therefore of no concern.
In contrast, the sub-harmonics were unstable and practically
"exploded" in amplitude during running. The harmonics could
have been a problem had they occurred at higher critical speeds.

In an attempt to refine the balance, a
two-plane two-speed balance was performed using the nose cone
and the shaft center. Although this attempt successfully
reduced rotor amplitudes, the rotor instability was unaffected.
To determine if the instability was damper related, the outer
damper housing was removed, thereby eliminating the damper.

(c) Damper Removed

With damper removed, the first critical
speed (approximately 5,900 RPM) was no longer critically
damped. Maximum speed reached with previous correction weights
was 5,100 RPM. A single plane balance at the nose cone
sufficiently reduced amplitudes to pass through the 5,900 RPM
mode and acquire data at 8,600 RPM. Using the nose cone and
shaft center, a two-plane two-speed balance permitted operation
through both modes to 14,000 RPM with no signs of instability.
Due to concern about losing the lead correction weight at the
shaft center at higher speeds, it was decided to make a
permanent correction by grinding the center balancing land on
the shaft. Figure 32 presents the results of the center shaft
rotor amplitudes after grinding the permanent correction.

A trim balance was performed at the center
shaft since the amount cf material actually removed by grinding
was difficult to evaluate, With the trim weight installed, the
rotor was operated to 18,000 RPM.

Figures 33 through 35 show vibration ampli-

tudes at the nose cone, shaft center and turbine. A failure of
the front bearing halted further testing. It should be noted
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Figure 32. Damper Removed Mid Span Amplitudes.
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that the aft bearing amplitudes were significantly higher than
the forward bearing at the top speed (as predicted by the
response analysis in the vicinity of the third mode).
Disassembly of the front bearing also revealed fractured front
flexures in the forward bearing support.

Possible causes of bearing failure:

o Foreign material from grinding permanent
correction.

o Excessive loading from previous runs.

o Insufficient oil to dissipate heat
build~-up in bearing.

Possible causes of flexure failure:

o Excessive displacement while traversing
first mode without damper.

o Heat from bearing failure.

o Instability related-oscillating
amplitudes.

A new front bearing and bearing support were
installed, and the rig was reassembled. The damper housing was
reinstalled without "O" rings or damper oil supply. The
function of the damper housing in this new configuration was
only to act as a "bumper" by limiting deflection of the front
flexures.

(d) Damper Housing Reinstalled as a Bumper

With the previous correction weights still
installed, a three-plane three-speed balance using the nose
cone, shaft center and the second stage turbine was performed at
5,200, 8,600 and 16,500 RPM. The resulting correction weights
enabled speeds up to 21,000 RPM with low amplitudes at this
speed. Additional permanent correction was made at the shaft
center. Figures 36 through 39 represent rotor amplitudes for
nose cone, first balance land, shaft center and turbine for test
runs to 25,000 RPM. The limiting factor was front bearing
temperature which reached 3300F at 25,000 rpm. In order to
reach higher speeds, the lubrication at this bearing was changed
from oil mist to an oil jet.
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Figure 36. Damping Housing as Bumper - Nose Cone Amplitude.
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(e) O0il Jet to Front Bearing

A test run was made to 28,000 RPM. Figures
40 through 43 represent rotor amplitudes for nose cone, first
balance land, shaft center and turbine for this run. A marginal
instability occurred at 23,000 RPM. On subsequent runs, an
instability consistently prevented passing 23,200 RPM. The sub-
synchronous frequency was 11,700 CPM. This frequency is probably
a gyroscopically stiffened second mode. Figure 44 shows a stabi-
lity map which plots critical frequency versus rotor speed. It
can be seen from this figure that the critical frequency of the !
second mode increases approximately 3,000 CPM with increasing :
rotor speed, supporting the possibility of the 9,000 CPM instabi-
lity recurring at 11,700 CPM. Several runs were made to deter-
mine if oil supplied to the damper at pressures varying from 10
to 90 psi would effect the instability. No significant change
was observed.

The test results indicated that the instabi-
lity was related to -‘the presence of an active damper on the
rotor. It was decided to machine the damper housing to increase
the clearance between the damper surfaces, thus minimizing the
tendency for the damper to function with small amounts of throw
off oil present around the front bearing.

(f) Modification to Damper Housing

The inner diameter of the damper surface was
bored out between "O" rings with a thin land left to act as a
bumper. A variety of problems on subsequent runs appeared to be
0il related. Some runs encountered the instability after traver-
sing the first mode while other runs resulted in a beating
between the second mode and the running speed. The front seal
was installed to prevent o0il entrapment in fan stage. However,
even with the seal installed, large amplitudes of 9,600 CPM
subsynchronous vibration at 13,500 RPM prevented operation at
higher speeds.

6. TI-BORSIC SHAFT ANALYSIS AND DESIGN
a. Shaft Design

The Ti-Borsic LP shaft was designed to satisfy the
structural, dynamic and environmental requirements of the Model
471-11DX Turbofan Engine. The primary design criteria for this
LP shaft were adequate torsional shear strength to transmit the
fan torque requirements and sufficient structural rigidity to
avoid deleterious vibrational modes. In addition the shaft must
have adequate tensile strength to accommodate the gyroscopic
bending moments imposed by the fan and turbine rotors under all
anticipated maneuver conditions, and transmit the net axial
thrust force between the turbine and fan sections due to ,
pressure and aero dynamic gas loads. ]
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The design criteria were based on the thermal
environment imposed by the engine on the shaft and on the
attachment of the Ti-Borsic shaft to the turbine and fan rotor
sections.

b. Shaft Adaptation
(1) Structural Analysis

Structural analyses indicated that the 60/40
TI-Borsic shaft and diffusion bond joint of the composite shaft
and end pieces had adequate strength margins for the thermal
environment and all imposed loading conditions on the LP shaft.
Table 3 and Figure 45 summarize the results.

(2) Thermal Analysis

The thermal analysis of the Ti~Borsic LP shaft
was. performed under the following conditions and resulted in the
; highest shaft operating temperature: 471-11DX cycle at S.L.,

; M = .7, hot day. The shaft is immersed in the oil sump :
[ containing o0il liquid, o0il vapor and air at 5000F and 14.7 3
: psia. The shaft center contains dead air. The tube surrounding
the shaft prevents conduction and allows radiant heat exchange
only. As a result of the above assumption, the heat flow is
radial only and the shaft runs at nearly constant temperature.
The shaft temperature is 5490F, Figure 46 depicts the radial
temperature distribution at a typical point along the shaft.
Figure 47 is a sample calculation at this typical point.

(3) Undamped Critical Speed Analysis

The undamped critical speed analysis was an
iterative process considering various mixture volume percentages
for the Ti-Borsic material composition. The shaft geometry was
finalized through an iterative process, involving front and rear
bearing support stiffness parameters as well as shaft structural
properties. The results of the critical speed analysis of the
optimized shaft resulted in a third critical speed of 47,397 RPM
providing a margin of 24% beyond the maximum LP shaft speed of
38,000 RPM. The composite shaft final design is a Ti-Borsic
mixture composition of: 60/40 percent fiber volume, with 1.10
inch 0.D., .94 inch I.D. and using front and rear bearing
support spring rates of 150,000 and 300,000 pounds per inch
respectively.

The critical speed analysis was a matrix solution
for a multiple shaft system, see Figure 48, which considers both
bending and shear effects, flexible bearing supports, and
gyroscopic effects from the attached disks. 1In the analysis the
actual rotor was transformed into an idealized equivalent system
consisting of a series of disks connected by sections of elastic
but massless shaft. The masses of the disks and their spacing
were chosen to approximate the distribution of mass in the
actual rotor. The bending flexibility of the connecting
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SAMPLE CALCULATION

FAN INDUCED

| {4—.44

Ro = .55
= .47

SHEAR STRESS (Sg) Ti-BORSIC SECTION

167 - -(16)  (2087)
"[‘2' (5 4]<OD)3 w[1-(%)4](1'1)3

= 17,110 PSI

'
»
)

SHEAR STRESS AT DIFFUSION BOND JOINT
DUE TO FAN INDUCED TORQUE OF 2087 IN-LB

- T_ 2087 _ ,i40318s

F ri- .47

44403
27{4.7) (.44)

ss=-§= = 3417 PSI

39888

Figure 45. Structural Analysis 60/40 Ti-Borsic LP Shaft.
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2.

Heat Balance on Tube: (T = Tube, S = Shaft)

T4p + 14.818 Tp - (20.209 + T4g/2) =0

Heat Balance on Shaft

T4g + 29.635 Tg - (T4p + 28.45) =0
T B Ts B T
1000 -29.4 963 -20.639 1268
1200 -30.5 995 -20.700 - 1271
1270 -30.6 1012 -20.734 1259
1260 -30.96 1009 -20.729 1259
Tg = 1009°R = 549°F
Tp = 1259O°R = 799°F

Figure 47. Sample Calculation.
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sections of the shaft was taken to correspond to the actual flex-
ibility of the rotor. The matrix solution used in this program
is essentially an iterative method. At a selected frequency it
is used to compute progressively the deflection, slope, moment
and shear from one station to the next in a manner similar to

the Holzer method. The results of the undamped critical speed
analysis are summarized in Table 4 and the relative Ti-Borsic
shaft deflections (mode shapes) are depicted in Figures 49
through 51.

(4) Unbalance Response Sensitivity

The unbalance response sensitivity analysis used
the same input data as the undamped critical speed analysis with
the addition of the calculated value of the viscous damping
coefficient for the front bearing support, 3.78 lb-sec/in. The
unbalance response sensitivities were computed for an unbalance
of 1 gram at appropriate radii separately at the first stage fan,
at three random locations along the Ti-Borsic shaft and at the
second stage turbine.rotor.

For each location of unbalance the response
analysis was conducted at each of the previously determined
undamped critical speed, 16,015, 23,105 and 47,397 RPM. The
unbalance response in terms of deflection and phase are
summarized in Tables 5 through 8 and the bearing reaction loads
in Tables 9 through 11l.

The flexural strain energy (U) has been
calculated for the final design configuration of the Ti-Borsic
rotor system and was based on the vector totals (in y and z
axes) of the bending moments, shear loads and bearing
deflections from the unbalance response analysis at the first
critical speed (16,015 RPM) which resulted in the largest total
bending moment due to 1 gram (.003366 in-lb) unbalance imposed
at the balancing ring of the first stage fan.

The total strain energy (Up) of the rotor
system is the sum of the total strain energy due to bending
(Ug) , shear strain energy (vy) and strain energy in the
bearing due to bearlng deflections (Ugqy + Ugp). Total
strain energy (Up) = 3Ug + vy + Ugq) + Ud2: where Up

= M2 Ax/2EI, v,= v2 axy , Ugy = Ki1(81) 2/2,

and Ugz = K2(82 2)/2. The total strain energy in the
Ti-Borsic rotor system due to 1 gram (.003366 in-1b) unbalance
at the first stage fan at the first mode (16,015 rpm) is 105.451
in-1bs (100%); the Ti-Borsic section contains 67.5% of the total
strain energy; the front and rear bearings contain 16.1 and 2.5
percent of the total strain energy respectively. Since the mode
shape of the Ti-Borsic shaft at the first critical speed (16,015
rpm) contains more than 50% of the total system strain energy,
it is considered a bending mode but occurs below the idle speed
and should be traversed quickly during the start cycles of the
engine. The above strain energies were adjusted by the ratio
.000689 to reflect the strain energies due to an unbalance of
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.000689 in-1b resulting from the weight of the Ti-Borsic section
of the shaft at the total maximum allowable eccentricity of the
shaft relative to the front and rear bearing journals. The
adjusted total strain energy is 21.596 in-1lb (100%); the
Ti-Borsic section of the shaft contains 14.586 in-lb strain
energy and the front and rear bearings contain 3.481 and .547
in-1b respectively. The strain energies are summarized in Table
12,

The flexural strength and elastic modulii of
6AL-4V 60% fiber volume Ti-Borsic at 600°F is Upg = 192,000
PSI and E = 42.14 x 106 pSI and the ultimate flexural strain
energy density Upp = 1 (FLEX o )(dAdx), where dAdx = volume of
2 b3

the Ti-Borsic shaft. Uyp = 2043 IN/LB the Ti-Borsic shaft
therefore has a shear energy factor of safety of

2043 in-lbs N = 140

- n- S= =

(5) Ti-Borsic Material Properties Variation

The final design configuration of the
Ti-Borsic shaft resulted in the third critical speed margin of
24%. Additional critical speed analyses were conducted to
show the effect of degrading the values of the elastic modulus
(42.14 x 106 ps1) and the shear modulus (9.9 x 106 psI) by
10, 20 and 30%. The resultant critical speeds and third
critical speed margins are summarized in Table 13.




TABLE 4

CRITICAL SPEED SUMMARY
60/40 TI-BORSIC LP SHAFT

_ BEARING SUPPORT . % MARGIN
SPRING RATES (LB/IN) CRITICAL SPEED 3RD Ncg
15T 28D 3RD ABOVE
FRONT  REAR (RPM) (RPM) (RPM) 38,000 RPM
150,000 300,000 16,016 | 23,105 | 47,397 24
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Ti-Borsic Shaft Relative Deflection - 16,015 rpm.
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Figure 50. Ti-Borsic Shaft Relative Deflection - 23,105 rpm.
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TABLE 12

STRAIN ENERGY TI-BORSIC LP SHAFT
AT 1ST CRITICAL SPEED 16,015 RPM

STRAIN ENERGY DUE TO UNBALANCE PERCENT
STRAIN ENERGY (IN.-LB.) (IN.-LB.) % :
]
Urotal 105.451 21.596 100.0 i
UTi-Borsic Shaft 71.219 14.586 67.5
UFront Bearing 16.999 3.481 16.1
URear Bearing 2.699 0.547 2.5
Urans 0.864 0.177 0.8
UFirst Turbine 0.021 0.004 0.02
Usecond Turbine 13.678 2.801 13.0
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS
1. CONCLUSIONS
a. Multi-Plane'High Speed Balancing Demonstration

When operating above the second critical speed with
the squeeze film damper, non synchronous vibration corresponding
to the second mode prevented running to full speed. With the
squeeze film effect eliminated, the rotor was successfully run
through three critical speeds (more sensitive without the
damper, but controllable) before increasing bearing temperature
prevented higher speed operation. The high bearing temperature
was caused by insufficient lubrication which resulted from the
minimum flows necessary to prevent captured excess oil from
activating the damper through capillary action. Since higher
speeds have been attained with the damper made inactive it is
inferred that the problems are associated with the damper. The
existing damper was designed for the original engine hollow
shaft configuration which included two inter-shaft bearings, and
perhaps has some inherent destabalizing characteristics when
supporting the modified flexible rotor.

b. Ti-Borsic Shaft

The Ti-Borsic shaft will fulfill all structural and
operating engine requirements.

2, RECOMMENDATIONS
a. Multi-Plane High Speed Balancing Demonstration

In view of the demonstrated success in running through
three critical speeds (two bending modes) by means of the high
speed multi plane balancing techniques, it is recommended that
further work be undertaken to attempt to predict the
sub-synchronous instabilities that occurred. The analytical
tools generated in a current AFWAL-MTI damper program would form
the basis for such a program, and should be used to design a
damper which would allow full speed operation with no
sub-synchronous vibration encountered (increasing stability
range). The damper support system design would be coordinated
with the rotor system to provide an integrated, vibration free,
LP shaft system. Rig verification including multi-plane high
speed balancing would be demonstrated leading to a full scale
TCAE funded engine test program.

b. Ti-Borsic Shaft

It is recommended that funding be provided to

fabricate full scale Ti~Borsic shafts for rig testing and engine
verification.
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Appendix A

MTI UNDAMPED CRITICAL SPEED
MATHEMATICAL MODEL
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Appendix B

MTI UNBALANCE RESPONSE SUMMARY
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Appendix C

HIGH SPEED BALANCING
DEMONSTRATION OF RESULTS
AND ROTOR CONFIGURATIONS

98a/98b(Blank)




FINDINGS:

ACTION:

A. INITIAL COMDITION: /

DAMPER -IN PLACE
0-RINGS INSTALLED

OIL PRESSURE TO DAMPER U /1
NO SEAL ‘
OIL MIST LUBE fﬁ—-l —\)

FIRST MODE DAMPED

INTERMITTENT REPEATABILITY |
PROBLEMS . ,1

SECOND MODE NOT WELL
DEFINED

INSTABILITY AT 11,500 RPM. “
SUBSYNCHRONOUS AT 9000 RPM 1

NO DAMPER OIL BLEED HOLE ' i

ADD BLEED HOLE FOR DAMPER
OIL




B. DAMPER MODIFIED:

o ADDED DAMPER OIL-BLEED
HOLE

FINDINGS:
- e AMPLITUDES MORE CONSISTENT

e SECOND MODE WELL DEFINED AT
9000 RPM

o STILL UNSTABLE AT 11,500- -
12,500 RPM - j

e

ACTION:
o ELIMINATE DAMPER




C. DAMPER ELIMINATED:

FINDINGS:

.

ACTION:

. DISASSEMBLY REVEALED

REMOVED DAMPER OUTER
HOUSING

FIRST MODE UNDAMPED (5900
RPM)

TWO PLANE BALANCE THROUGH
FIRST TWO MODES

PERMANENT WEIGHT CORRECTION
AT CENTER OF SHAFT

RAN TO 18,000 RPM
FRONT BEARING FAILURE;

[ X
ROTOR EXTREMELY SENSITIVE
TO UNBALANCE

FRACTURED FLEXURES

"BUMPER" NEEDED TO LIMIT
DEFLECTION AT FRONT BEARING

INCREASED OIL SUPPLY NEEDED
TO LUBE/COOL FRONT BEARING
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D. DAMPER HOUSING REINSTALLED:

o OUTER DAMPER HOUSING ,
REINSTALLED

o NO O-RINGS | :

o NO OIL SUPPLY TO DAMPER | .

o FRONT BEARING REPLACED —L_jg\— - '

° _— h ]

L

FINDINGS : O

o ROTOR REMAINED SENSITIVE TO
UNBALANCE BUT NOW HAD SMALL
VIBRATION LIMIT (6-8 MILS,
PP) AT FRONT END

e SEAL REMOVED BECAUSE OF EX-
CESS DRAG & HEAT BUILDUP

o 'THREE PLANE BALANCE THROUGH
THREE CRITICAL SPEEDS

o ADDITIONAL PERMANENT WEIGHT
CORRECTION AT CENTER OF SHAFT

o RAN TO 28,000 RPM. HIGH
FRONT BEARING TEMPERATURE

- @ CHANGED OIL LUBE TO FRONT
BEARING TO JET. IMNSTABILITY
AT 23,000 RPM

o VARIED BEARING PRELOAD. NO
SIGNIFICANT EFFECT ON
INSTABILITY

¢ VARIED OAMPER OIL SUPPLY PRES-
SURE: 0-40, 90 PSIG NO SIGNIF-
ICANT EFFECT ON INSTABILITY

SEAL INSTALLED
OIL MIST INCREASED (,E_( X)

ACTION: '

¢ ENLARGE DAMPER CLEARANCES TO
PREVENT INADVERTENT DAMPING
ACTION FROM EXCESS BEARING \
LUBE OIL ENTERING DAMPER i
CAVITY

—— R
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