

Report No. FAA-RD-80-69

1h

JT8D ENGINE INTERNAL EXHAUST MIXER TECHNOLOGY PROGRAM

1.1.1 1.1.1 by F.H. Pond and R.A. Heinz

Final Report April 1980

Å

060

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590 80 12 18

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's	Catalog No.					
19; FAA-RDH80-69	AD-4043057							
4. Title and Subtitle		15. Repart Date	· · · · · · · · · · · · · · · · · · ·					
			1980					
JT8D Engine Internal Exha	ust Mixer Technology	Program 6. Performing	Organization Code					
- Z. Author(s)		8. Performing	Organization Report No.					
O F. H./Pond and R. A./Hein		/ / PWA- 558	34-33 /					
9. Performing Organization Name and Addres		10. Work Unit	No. (TRAIS)					
Pratt & Whitney Aircraft	-							
Commercial Products Divis		11. Contract o						
United Technologies Corpo East Hartford, Connecticu		13 Tunn of Po	17 1 1 4 1 1					
12. Sponsoring Agency Name and Address	2 00100		/					
	nortation	Final R	lep ert .					
U. S. Department of Trans Federal Aviation Administ	-							
Washington, D. C. 20591		14. Sponsoring						
		ARD-	-200					
15 Supplementary Notes								
16. Abstract		······································						
This technology program was directed towards demonstrating the reduction in jet noise achieved by the use of an internal exhaust mixer. The ef- fort focused on static engine acoustic testing of different mixer con- figurations suitable for JT8D-powered commercial aircraft. A series of 12 lobe mixers with different lobe geometries was evaluated for perform- ance and acoustic characteristics. On the basis of test results, the final mixer configuration selected for JT8D-17-powered DC-9 aircraft showed a reduction in jet noise of 2.0 PNdB at static takeoff power with an attendant 0.3 percent improvement in fuel consumption. A second mixer configuration, defined on a preliminary basis for JT8D-powered 727 air- craft, demonstrated a 4.7 PNdB reduction in jet noise at takeoff power. However, a penalty of 1.3 percent in fuel consumption was incurred, and this, combined with an incompatibility in the reverse thrust mode, indi- cated that significant additional development work is required to demon- strate a viable configuration for 727 aircraft. Testing was also succes- sful in demonstrating the structural integrity of the mixer. In addi- tion, the presence of the mixer did not impart any adverse interactive effects on the stress levels of other engine components.								
17. Key Words	18. Distrib	ution Statement						
		nt is available to	-					
Internal Exhaust Mixer			chnical Information					
Jet Engine Noise Reducti JT8D Engine	on Service	e, Springfield, Vi	rifinna cetor.					
19. Security Classif. (of this report)	20. Security Classif. (of this p	age) 21. No. c	of Pages 22, Price					
			+6					
Unclassified	Unclassified	<u>_</u>	TU un					
Form DOT F 1700.7 (8-72)	Reproduction of completed pag	e authorized						
	supresses of completed pug							
, ,	1		1*					
	· ·							

Symbol		ġ	Ę	÷	21	Ē				<u>e</u> ~p,						8 ₽						. 5	ā	ີະົ	- 04				ۍ ۲		L.	200 200	Ţŝ
: Measures To Find			inches	teel	yards	miles				square inches souare vards	square miles	acres				ounc es pounds	shart tons				LIUIS OUNCES	ounts.	gallons	cubic feet	cubic yards		-		Fahrenheit terressitie			0	
sions from Metric Multiply by	LENGTH		₩0.0	3.3	1.1	0.6		AREA		0.16				MASS (weight)		0.036 2 2	11		VOLUME		E0.0		0.26	35	1.3		TEMPERATURE (exact)		9/5 (then	(96 808		94.6 BO 120	
Approximete Conversions from Metric Measures When You Know - Multiply by To Fied			multimeters contineators	melers	meters	Autometers			1	square centimeters	sound to hildmeters	hectares (10,000 m ²)		2		grams L. Lonner	tonnes (1000 kg)		Ĩ		milliliters	111015	inters.	cubic meters	cubic meters		TEMI		Celaius			°F 32 - 40 0 140	
Symbol			£ (5 6	E	w.w				ר ני ל	Ĵ	2				5	?				Ĩ			. ^e	Ē				ç				
			i t	i	i		1		T	1	l		ł											1				}	1		1		
• • • • • • • • • • • • • • • • • • • •	, , , , , ,	i (1) 1 · j · i · 6	 	, 1011	1.1.	, 	-1. 1	' 1 '	i.i.	, e , ,	j. I 1111	 	'] '	1' '' 1' ''	udan 1 111 1	13800 1711 1] ,1		.).I.	11 	']'		3 '	' '	. .	j•1	' ' 2	/// ']'	1' ' ' '	" " ' '	"	 * * 	יטי יוין' ווווווו
	Synbol 	i i i i i i i i i i i i i i i i i i i	1 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7	- 1 - 1 - 1	" 1 "	1	~1		' ' 		2	iudau 1 -1-1	- - - - - - - - -		· · · · ·	.) .1.		וווח י י י ד		_	' ! ' ' ! '		, -	' ' 2 2	"]" ;	1.1.1 1.1.1	יין יי	•	11 11 1 *] * 	1
• .i.hiiii		1. j. i . 8	1 1	,	5	7			1	~1		square meters m ²		2	ud u 1 ° j° 1	-	;	-	, ì , L,			Ē	ters m				·		1.1.1.1 1.1.1 1.1 1.1	יין אווי יין אווי יין אוויין אוויין אוויין אוויין אווייין אווייין אווייין אווייין אווייין אווייין אווייין אווייין אווייין	rature		see NBS Misc. Publ. 286.
) . .1.1.1.1	Fiad Symbol -	, induiting (1997) (199		,	5 centimeters cm	Centimeters Cm L	E .5		1			square maters	square kultmeters	2		-	45 kilograms kg **	-				milititers mi	miliiters		liters	l sters	ÈĨ		ERATURE (exect)		d temperature		see NBS Misc. Publ. 286.
Appreximate Conversions to Metric Measures	Te Fiad Symbol .	, a		,	5 centimeters cm	30 Centumeters Cm 2	meters m kritometers km	1	1		Sound to the factors	s 0.8 square meters	2.6 square kulometers	0,4 hectares ha	MASS (weight)	S TART P	0.45 kilograms kg **	tonnes -	VOLUME		milituters	is 15 millititers ml	miliiiters	0.24 liters	liters	3.8 liters	Cubic meters m ²		TEMPERATURE (exact)	Celsius	ure subtracting temperature	32)	1

. ...

METRIC CONVERSION FACTORS

TABLE OF CONTENTS

.

.

....

and the second

the Constant of the Party of th

1

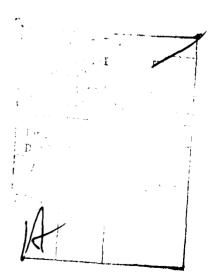

Part I	JT8D ENGINE EXHAUST MIXER PROGRAM - Executive summary	
SECTION 1.0	INTRODUCTION	1
SECTION 2.0	MIXER AEROMECHANICAL DESIGN	1
	2.1 Design Considerations and Installation	
	Requirements	1
	2.2 Final Mixer Designs	2
SECTION 3.0	EXPERIMENTAL ENGINE TEST RESULTS	5
	3.1 Test Program Summary	5
	3.2 Overall Performance Effects	5
	3.3 Acoustic Characteristics	5 5 5
	3.4 Fuel Consumption Effects	7
	3.5 Structural Integrity	9
SECTION 4.0	CONCLUSIONS AND CONCLUDING REMARKS	9
PART II	MIXER DESIGN AND DEVELOPMENT TESTING TECHNICAL DISCUSSION	
SECTION 1.0	INTERNAL MIXER DESIGN AND FABRICATION	11
	1.2 Design Goals and Airframe Integration	**
	Requirements	11
	1.2.1 Mixer Design Goals	11
	1.2.2 Airframe Integration Requirements	11
	1.3 Base Mixer Design	13
	1.3.1 Aerodynamic Definition	14
	1.3.2 Mechanical Definition	15
	1.4 Mixer Fabrication	16
	1.5 Summary of Mixer Design Evolution	18
	1.6 Final Mixer Designs	23
SECTION 2.0	TEST PROGRAM AND PROCEDURES	27
SECTION 2.0	2.1 Introduction	27
	2.2 Test Objectives and Methodology	27
	2.2.1 Test Objectives	27
	2.2.2 Test Method and Procedures	28
	2.3 Test Vehicle Description and Instrumentation	37
	2.3.1 Test Vehicle - General Description	37
	2.3.2 Instrumentation	39
	2.4 Test Facilities	42
	2.4.1 Sea Level Test Facility	43
	2.4.2 Acoustic Test Facility	44

TABLE OF CONTENTS (Cont'd)

Page

PART II	MIXER DESIGN AND DEVELOPMENT TESTING TECHNICAL DISCUSSION (Cont'd)	
SECTION III	TEST RESULTS AND ANALYSIS 3.1 Introduction 3.2 Mixer Aero/Acoustic Performance Summary 3.3 Comparative Analysis of Selected	49 49 49
	Configurations 3.3.1 Overall Performance Effects 3.3.2 Acoustic Characteristics 3.3.3 Fuel Consumption Characteristics 3.3.4 Structural Integrity	51 51 65 83 85
SECTION IV	CONCLUSIONS AND CONCLUDING REMARKS 4.1 Conclusions 4.2 Concluding Remarks	89 89 90
	APPENDIX A APPENDIX B	93 135

LIST OF ILLUSTRATIONS

_ _ _

ſ

1

Figure No.	Title	Page
PART I	Ĩ	
2.3-1	Final Mixer Design for the DC-9 Airframe	3
2.3-2	Final Mixer Design for the 727 Airframe	3
2.3-3	Cross Sectional View of Mod. 5M Configuration	4
2.3-4	Cross Sectional View of Mod. 5Z Configuration	4
3.1-1	Exit Velocity Profiles	6
3.2-1	Typical Noise Trends	7
3.3-1	Predicted Fuel Consumption at Simulated Cruise	8
PART II		
1.2.2-1	DC-9 and 727 Installations	12
1.3.1	Mixer Aerodynamic Flowpath Definition	14
1.3.2	Mixer Mechanical Definition	15
1.4-1	Mixer Lobe Sections	17
1.4-2	Mixer Subassembly in Final Stage of Rough Machining	17
1.4-3	Finished Mixer Subassembly	18
1.5-1	Mixer Configuration Mod. 2	19
1.5-2	Mixer Configuration Mod. 3	20
1.5-3	Mixer Configuration Mod. 4A	21
1.5-4	Revised Outer Strut Retention Scheme	22
1.5-5	Basic Mod. 5 Mixer Configuration	22
1.6-1	Final Mod. 5M Mixer for the DC-9 Installation	23
1.6-2	Final Mod. 5Z Mixer for the 727 Installation	24
1.6-3	5M Mixer and DC-9 Tailpipe	25

v

LIST OF ILLUSTRATIONS (Cont'd)

Figure No.	Title	Page
PART II (Con	t'd)	
1.6-4	5Z Mixer and 727 Tailpipe	25
1.6-5	Flowpath Definition of the Final Mixers	26
2.2.2-1	Typical Regression Curves	34
2.3.1-1	JT8D-17 Test Engine	38
2.3.1-2	JT8D-17 Test Engine	39
2.3.2-1	Schematic of JT8D Engine Showing Instrumentation Locations	41
2.3.2-2	Traversing System	42
2.4.2-1	Schematic Representation of the Arrangement of the Pratt & Whitney Aircraft Acoustic Test Facility Stand X-314	45
3.3.1-1	Engine Performance Trends With Mod. 5M Mixer	52
3.3.1-2	Engine Performance Trends With Mod. 5Z Mixer	53
3.3.1-3	Exhaust System Performance Trends	55
3.3.1-4	Analytical Projection of Mixer Performance in Relation to Standard Exhaust System Performance	57
3.3.1-5	Exhaust System Performance Trends	58
3.3.1-6	Exit Velocity Profile of Standard JT8D-17 Engine With DC-9 Tailpipe	59
3.3.1-7	Exit Velocity Profile of Standard JT8D-17 Figine With 727 Tailpipe	60
3.3.1-8	Exit Velocity Profile With Mod. 3 Mixer	61
3.3.1-9	Exit Velocity Profile With Mod. 4A Mixer	62
3.3.1-10	Exit Velocity Profile With Mod. 5 Mixer	63
3.3.1-11	Exit Velocity Profile With the Mod. SM Mixer	64

LIST OF ILLUSTRATIONS (Cont'd)

• --

. . .

Figure No.	Title	Page
PART II (Con	t'd)	
3.3.1-12	Exit Velocity Profile With Mod. 5Z Mixer	65
3.3.2-1	Perceived Noise Level Trends	66
3.3.2-2	Perceived Noise Level Directivity Trends	67
3.3.2-3	Perceived Noise Level Directivity Trends	68
3.3.2-4	Noise Spectra Trends at Takeoff Thrust Setting	69
3.3.2-5	Noise Spectra Trends at Cutback Thrust Setting	70
3.3.2-6	Noise Spectra Trends at Approach Thrust Setting	71
3.3.2-7	Estimated Inflight PNL Time Histories for Takeoff and Cutback Thrust Settings	73
3.3.2-8	Inflight Noise Spectrum at Time of Peak PNL for JT8D Engines	74
3.3.2-9	Perceived Noise Level Trends	75
3.3.2-10	Perceived Noise level Directivity Trends	76
3.3.2-11	Noise Spectra Trends at Takeoff Thrust Setting	77
3.3.2-12	Sound Pressure Level Reduction	78
3.3.2-13	Exit Velocity Profile With 5M/DC-9 Configuration	79
3.3.2-14	Exit Velocity Profile With 5Z/727 Configuration	79
3.3.2-15	Velocity as a Function of Radial Location	80
3.3.2-16	Estimated Inflight PNL Time Histories	81
3.3.2-17	Static and Estimated Inflight PNL Versus Noise Radiation Angle	82
3.3.3-1	Comparative Fuel Consumption Characteristics	84
3.3.3-2	Comparative Fuel Consumption Characteristics	85

LIST OF ILLUSTRATIONS (Cont'd)

• • •

. . .

• •

.

•

. .

Figure No.	Title	Page
PART II (Cont	'ð)	
3.3.3-3	Predicted Fuel Consumption Characteristics at Altitude	86
3.3.4-1	Post Test Condition of Final Mixer Configurations	87
3.3.4-2	Circumferential Profile of Tailpipe Temperatures	88

viii

LIST OF TABLES

Table No.	Title	Page
PART I		
3.3-I	Static and Simulated level Flyover Noise Restrictions	8
PART II		
1.3-I	Mixer Scale Model Test Results	14
1.5-I	Summary of Different Mod. 4 Designs	21
1.5-II	Summary of Different Mod. 5 Designs	23
2.2.2-I	Steady-State Calibration Power Settings	29
2.2.2-II	Standard Engine and Mixer (Mod. 5M) Operating Conditions With DC-9 Tailpipe	31
2.2.2-111	Typical Standard Engine and Mixer (Mod. 5Z) Operating Conditions With 727 Tailpipe	32
2.2.2-IV	Samples of Acoustic Data Printout	33
2.2.2-V	Engine Thrust and Core Jet Velocity Values	35
2.2.2-VI	Perceived Noise Levels at Constant Thrust	35
2.2.2-VII	Perceived Noise Levels at Constant Thrust	36
2.2.2-VIII	Perceived Noise Levels at Constant Thrust	36
2.2.2-IX	Perceived Noise levels at Constant Thrust	37
2.3.1-I	Standard JT8D-17 Operating Parameters	38
2.3.2-1	Performance Instrumentation	40
2.4.2-1	Pole Microphone Angles and Distances DC-9 and 727 Tailpipe Test Arrangements Referenced to a Standard Angle	46
3.3.2-1	Static and Simulated level Flyover Noise Reductions	82
A-1	Engine Operating Conditions With DC-9 Tailpipe	93
A-2	Engine Operating Conditions With 727 Tailpipe	93

ix

LIST OF ACRONYMS AND ABBREVIATIONS

A ALT	Area Altitude
ADR	Automatic data recording
B/M	Bill-of-material
CD	Nozzle discharge coefficient
c _T	Nozzle thrust coefficient
dB	Decible, re .0002 dynes/CM ²
Deg	Degree
EPNdB	Effective perceived noise in decibels
EPNL	Effective perceived noise level
EPR	Engine pressure ratio
F	Thrust
Hz	Hertz
MIC	Microphone
Mn	Mach Number
OASPL	Overall sound pressure level
P	Pressure
PNdB	Perceived noise in decibels
PNL	Perceived noise level
PNLT	Total perceived noise level
psig	pounds per square inch gage
SPL	Sound pressure level
SSDS	Steady-state data system
T	Temperature
TEC	Turbine exit case
TSFC	Thrust specific fuel consumption
v	Velocity

Subscripts	
AMB	Ambient
Corr	Corrected
F	Fan
N	Net
P	Primary
T	Total

х

PART I JT8D ENGINE EXHAUST MIXER PROGRAM --- EXECUTIVE SUMMARY

SECTION 1.0 -- INTRODUCTION

During the past seven years, Pratt & Whitney Aircraft has been actively involved in developing internal exhaust mixing technology as a method to suppress jet noise in turbofan engines. Internal exhaust mixing involves mixing the low velocity fan stream flow with the higher velocity core engine flow to produce a uniform exit velocity profile for low noise. Furthermore, if the mixing can be achieved efficiently, an improvement in propulsive efficiency may be attained.

The merit of exhaust mixing has been verified in previous technology programs. Noise reductions up to 3 PNdB have been demonstrated with scale models of mixer configurations under an earlier Federal Aviation Administration (FAA) sponsored program (contract DOT-FA76WA-3809).

To demonstrate that these benefits are translatable to a full scale mixer, Pratt & Whitney Aircraft completed a two-year program sponsored by the Federal Aviation Administration (FAA) and supplemented by an inhouse mixer technology program. This effort focused on static engine acoustic testing of different mixer configurations suitable for JT8Dpowered commercial aircraft. Most of the work centered on establishing a mixer configuration with a relatively flat exit velocity profile for DC-9 aircraft, although some testing at the end of the program was accomplished on a mixer for a 727 installation. The major goals defined for the program included:

- A reduction in static noise of 3 PNdB (peak percieved noise level)
- o Minumum installation changes in JT8D engine-powered aircraft
- o No loss in takeoff thrust
- o No adverse engine effects
- o No increase in cruise thrust specific fuel consumption.

SECTION 2.0 -- MIXER AEROMECHANICAL DESIGN

2.1 DESIGN CONSIDERATIONS AND INSTALLATION REQUIREMENTS

Major factors influencing the mixer aeromechanical design were experience gained in previous work, durability requirements, and compatibility with JT8D engine mounting and structural limitations.

The basic mixer design was predicated on the results from a preceding Federal Aviation Administration and Pratt & Whitney Aircraft-sponsored model test program. This work established the number of lobes and aerodynamic definition of the lobe convolution. In addition, results from ongoing programs funded by Pratt & Whitney Aircraft provided guidelines for the structural design.

Other factors affecting the mixer design were the installation constraints imposed by the different airframes. To coordinate the mixer design with the requirements unique to the DC-9 and 727 airframes, integration studies were conducted on a continuing basis throughout the program. This effort was aimed at assuring component/airframe compatibility with mimimum airframe modifications. Significant results from these studies that directed the mixer design are summarized below.

- o The differences between the 727 and DC-9 airframes, in particular the thrust reverser system in the 727 aircraft, dictated a different mixer configuration for each airframe.
- o A maximum temperature of approximately 500°F was established for the DC-9 tailpipe acoustic lining because of the potential deleterious effect on the bonding of the lining material. The implications of a 900°F temperature recorded on the 727 tailpipe could be potentially serious, but were not investigated because tailpipe considerations for this test were deleted by the FAA.
- o The outer attachment flange and support system was revised to improve structural integrity characteristics.

2.2 FINAL MIXER DESIGNS

On the basis of airframe differences, separate designs were pursued for each installation. The final mixer configurations, as evolved through experimental testing, are shown in Figures 2.3-1 and 2.3-2 for the DC-9 and Boeing 727 installations, respectively. Each design was successful in reducing peak perceived noise levels and meeting physical installation requirements. However, although a determination of any operational problems between the 5Z mixer and 727 tailpipe while in the reverse thrust mode was beyond the scope of work in this program, testing in a related program has identified a mixer/reverser incompatibility in the reverse thrust mode.

The principal components of the mixer assembly are the (1) convoluted mixer geometry, (2) hardwall tailplug and (3) outer support ring. Both mixers are a 12-lobe configuration. In each design, the tailplug is supported by twelve inner struts and the entire mixer structure is supported by twelve outer struts. The outer support system is flexible to compensate for thermal expansion differences between the lobes and outer attachment ring. The main distinction in the two mixers, however, is the differences in the lobe geometry, particularly the discharge scarf angles.

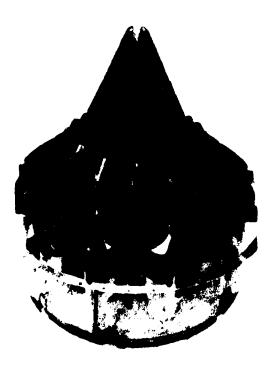


Figure 2.3-2

Mixer Design for the 727 Airframe.

A cross sectional view of the mixer design and installation hardware for the DC-9 airframe, designated configuration Mod. 5M, is shown in Figure 2.3-3. Because of the tailpipe temperature limit, the lobe shape and length is sufficient to direct the high temperature core gases away from the tailpipe outer wall. This design is characterized by nonuniform scarf cuts. Larger scarf angles are incorporated on the top lobes, relative to the bottom six lobes to accommodate the cant in the DC-9 tailpipe.

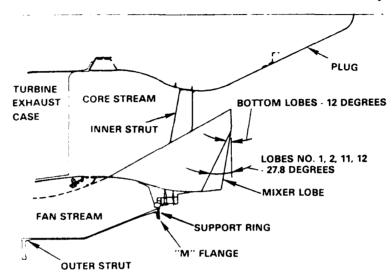


Figure 2.3-3 Cross Sectional View of Mod. 5M Configuration

A cross sectional view of the mixer for the 727 airframe, designated configuration Mod. 5Z, is shown in Figure 2.3-4. In contrast to the 5M configuration, the lobes have uniform scarfing of 36 degrees and extended lobe valleys. Since no tailpipe temperature restrictions were imposed with the 727 installation, the lobes were shorter and oriented for minimum protrusion into the reverser cascade area in order to prevent interference during operation in the reverse thrust mode. The tailplug has also been moved aft 6 inches to improve engine matching and reduce the mixer/plug gap.

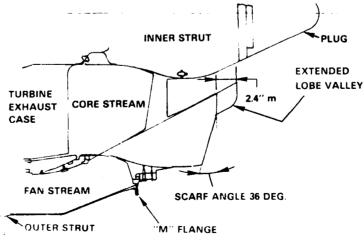


Figure 2.3-4

Cross Sectional View of Mod. 52 Configuration

Both mixers are fabricated from conventional materials using standard manufacturing practices. Installation trials demonstrated that the mixer could be installed in an engine in an hour or less.

SECTION 3.0 -- EXPERIMENTAL ENGINE TEST RESULTS

3.1 TEST PROGRAM SUMMARY

Substantiation and refinement of the mixer designs was accomplished through a series of performance and acoustic evaluations using a Pratt & Whitney Aircraft JT8D-17 experimental engine as the test vehicle. All testing was conducted at sea level static conditions. Special instrumentation was installed to monitor engine sensitivity to the presence of the mixer and to acquire key temperature and pressure data, including exit profile patterns. Acoustic testing was conducted at the Pratt & Whitney Aircraft outdoor acoustic facility, which is equipped to measure far field, near field and sideline noise levels.

In total, 11 mixer configurations were evaluated during the program, accounting for approximately 230 hours of development testing. Over 1100 performance data points and 360 acoustic points were acquired.

3.2 OVERALL PERFORMANCE EFFECTS

General engine component operating characteristics were essentially unaffected by the installation of the final mixer configurations. Fan surge margin, although sensitive to area ratio as demonstrated during the testing of earlier configurations, closely approached the characteristics of a standard JT&D engine with the final mixer configurations. The effects on operation in the reverse mode were not investigated in this program. Other key engine parameters such as net thrust, discharge pressures and temperatures, and flow showed only slight differences from standard engine levels. The effects on fuel consumption and noise levels are summarized in following sections.

The degree of radial and circumferential mixing was assessed by obtaining velocity profiles of the nozzle exit plane. Figure 3.1-1 illustrates the effectiveness of the final mixer configurations to disperse radially the higher temperature and higher velocity core gases. The dispersion of core gases to the outer portion of the fan stream is most pronounced with the Mod. 5Z mixer since the tailpipe wall temperature was not a constraint. In contrast, the degree of radial penetration of core gases in the DC-9 tailpipe is decreased because of the temperature limits.

3.3 ACOUSTIC CHARACTERISTICS

Experimental testing of the final mixer configurations demonstrated significant static jet noise reductions over the range of engine thrust settings, frequencies and angles. The peak static noise reduction attained with the Mod. 5M mixer with the DC-9 tailpipe was 2.3 PNdB, which approached the goal of 3 PNdB. However, the goal was surpassed by nearly 1.7 PNdB with the Mod. 5Z in the 727 tailpipe. The differences in noise suppression are attributed essentially to the differences in mixing associated with the mixer design modifications to limit the outer wall temperature in the DC-9 tailpipe.

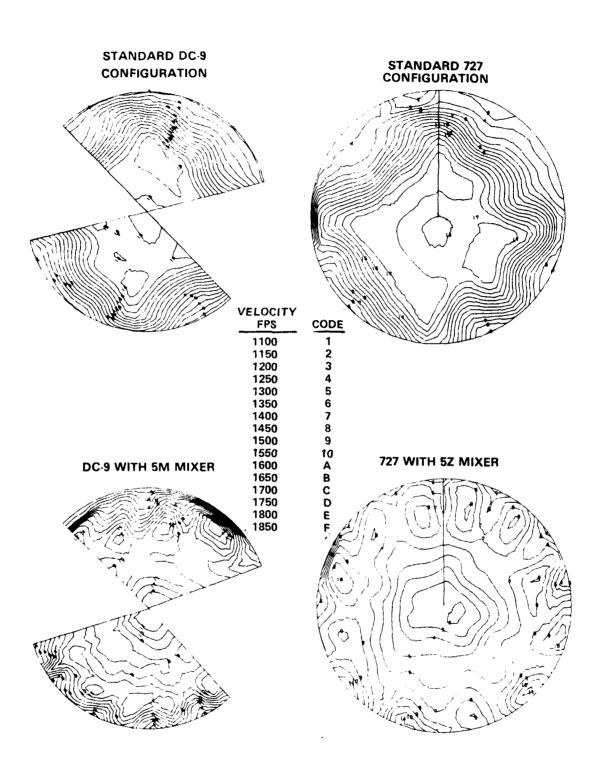


Figure 3.1-1 Exit Velocity Profiles

t

The trends of peak perceived noise level reduction as a function of thrust in Figure 3.2-1 exemplify the magnitude of noise suppression achieved with the two final mixers relative to standard JT8D noise levels. As indicated, the greatest reductions occur in the 12,000 to 16,000-pound range, which relate to cutback and takeoff flight operation. Similar trends were evident from the analysis of directivity patterns and noise spectra.

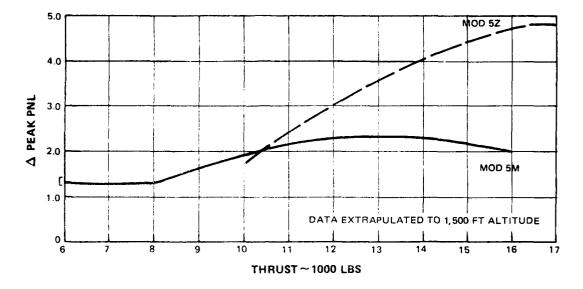
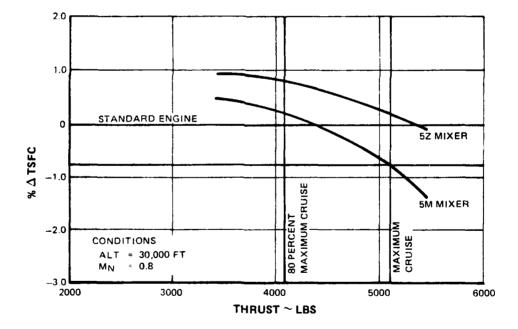


Figure 3.2-1 Noise Reduction Trends

Predictions of in-flight noise for a level flyover were analytically derived for three static gross thrust levels. The results, summarized in the Table 3.3-I, indicate that at JT8D-9 and JT8D-17 takeoff gross thrusts of 14,500 and 16,000 lbs., respectively, the large noise reduction advantage measured under static conditions of the 5Z/727 configuration relative to the 5M/DC9 configuration would be somewhat reduced in the flight situation.

3.4 FUEL CONSUMPTION EFFECTS

Installation of the Mod. 5M mixer with the DC-9 tailpipe produced a 0.3 percent reduction in fuel consumption at static takeoff thrust, thus achieving an important performance goal. However, fuel consumption was increased by 1.3 percent with the 5Z mixer/727 tailpipe configuration.


Predictions of fuel consumption at simulated altitude cruise conditions are shown in Figures 3.3-1. In comparison to a standard JT8D engine, the Mod. 5M mixer increases the propulsive efficiency at the maximum cruise thrust to reduce fuel consumption by 0.75 percent. At 80 percent of the cruise thrust, a 0.2 percent increase is estimated.

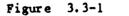

7

TABLE 3.3-I

STATIC AND SIMULATED LEVEL FLYOVER NOISE REDUCTIONS (1500 ft. altitude)

	Mixer 5M (Flat Profile)	Mixer 5Z (Inverted Profile)
Static Test Results		
(Peak PNL Reduction)		
D-17 Takeoff Thrust (16,000 lb.)	2.0	4.7
D-9 Takeoff Thrust (14,500 lb.)	2.2	4.5
Takeoff Cutback (12,000 lb.)	2.3	3.0
Analytical Flyover Predictions (EPNL Reduction)		
D-17 Takeoff Thrust	2.7	4.3
D-9 Takeoff Thrust	2.6	4.2
Takeoff Cutback	2.4	3.2

Predicted Fuel Consumption at Simulated Cruise

The estimated fuel efficiency with the 5Z mixer is much less favorable. An increase approaching 0.8 percent is predicted at 80 percent cruise, but the increase is reduced to 0.2 percent as thrust increases to the maximum cruise condition. This result, in combination with the takeoff fuel consumption characteristics, indicates that further refinements are required in the 5Z configuration.

3.5 STRUCTURAL INTEGRITY

Testing was successful in substantiating the structural integrity of the mixer component. Typically, thermal-mechanical stress levels were well below conservative analytically-derived limits. Also, surface metal temperatures were within established limits. Inspections of the different mixer configurations throughout the test program showed no evidence of cracking or other indications of thermal distress. On the basis of these results and observations, it is believed that the mixer has the structural capability to meet flight test requirements.

In addition, the presence of the mixer did not impart any adverse effects on the stress levels of other engine components. Comparative strain gage measurements, both with and without the mixer, showed essentially no differences in fan and low pressure turbine vibratory stress characteristics, verifying that the mixer does not produce any aerodynamic excitation on uptream components.

SECTION 4.0 -- CONCLUSIONS AND CONCLUDING REMARKS

On the basis of the results obtained from the different series of performance and acoustic tests, the following conclusions have been made.

- A mixer geometry has been defined for JT8D-powered DC-9 aircraft. However, a configuration has been defined only on a preliminary basis for 727 aircraft.
- The testing accomplished under this program has been successful in demonstrating the acoustic benefits of internal exhaust mixing technology. Moreover, these benefits are attainable, particularly with the Mod. 5M configuration for the DC-9 aircraft, without serious compromises in engine performance. Further refinement of the 5Z mixer for the 727 installation is necessary to negate the demonstrated loss in engine performance.
- Installation of the 5M mixer does not impart any special problems or extensive modifications to either the airframe or JT8D mounting system. Further work is required with the 5Z design, however, to prevent an adverse flow interaction with the thrust reverser while operating in the reverse mode.

o Structural integrity of the mixer component has been demonstrated.

The technical achievements made in this program have contributed substantially towards furthering the state-of-the-art in noise reduction technology. Also, this effort has identified areas, particularly with the Mod. 5Z mixer configuration, where additional refinement or development is necessary. Such areas should be thoroughly investigated as part of a static engine test program. Configurations suitable for service engines should be then flight tested to verify structural and environmental performance under flight conditions.

PART II

MIXER DESIGN AND DEVELOPMENT TESTING

TECHNICAL DISCUSSION

SECTION 1.0 INTERNAL MIXER DESIGN AND FABRICATION

1.1 INTRODUCTION

Design and fabrication of the mixer was conducted under Task 1 of the program. The initial design effort was directed towards definition of a base mixer configuration. However, as the design evolved through experimental engine testing to a final configuration, design, design associated analyses and various fabrication operations were performed on a continuing basis.

In conjunction with the design process, Pratt & Whitney Aircraft conducted design coordination studies with the airframe manufacturers to ensure mixer compatibility with aircraft installation requirements. The studies were conducted under Task 2 of the program and focused on the requirements of the Boeing 727 and McDonnell Douglas DC-9 aircraft.

This section describes the aeromechanical design of the base mixer, including evolution of the design to the final configurations. Also discussed are the results of the airframe compatability studies and the fabrication of the mixer component.

1.2 DESIGN GOALS AND AIRFRAME INTEGRATION REQUIREMENTS

1.2.1 Mixer Design Goals

Design criteria for the internal mixer component were directed towards meeting several aero/acoustic performance and structural goals. In terms of performance, the goal was to achieve a noise reduction of at least 3 PNdB without any negative effects on engine performance such as an increase in cruise fuel consumption or a loss in takeoff thrust.

From a structural standpoint, goals were established for weight, durability, and installation effects. A definitive weight goal was not determined. However, the intent was to minimize component weight without compromising structural integrity.

Installation effects were a special area of concern. The goal was to minimize airframe changes and JT8D mounting requirements imposed by installing the mixer in DC-9 and 727 aircraft. In working towards this end, airframe compatibility studies and field surveys were conducted with the airframe manufacturers to ensure compatibility of the mixer design with the different aircraft installations. Results of these studies are discussed in the following section.

1.2.2 Airframe Integration Requirements

Key design information pertaining to installation requirements and constraints unique to the DC-9 and 727 airframes was acquired from field surveys and compatibility studies with the airframe manufacturers. This effort was conducted in parallel with the evolution of the mixer design. As design modifications evolved, detailed prints were reviewed by the airframe manufacturers to determine potential airframe integration problems.

One major result which had a profound impact on both the direction of the program and mixer design was the determination that one common design was not compatible with both the DC-9 and 727 installations. The thrust reverser in the DC-9 aircraft is external to the tailpipe and thus has little interaction with the mixer. In contrast, the thrust reverser in the 727 installation presents a special problem. This reverser incorporates blocker doors that redirect the flow through a series of cascades in the sides of the tailpipe. Consequently, the mixer discharge plane can actually protrude beyond the leading edge of the cascade passages and adversely affect the engine match in the reverse mode. These differences between the DC-9 and 727 reverser are depicted in Figure 1.2.2-1.

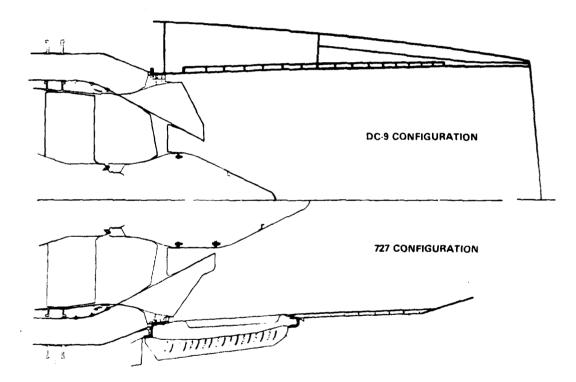


Figure 1.2.2-1 DC-9 and 727 Installations -- The major differences between the DC-9 and 727 installations, resulting primarily from the thrust reverser designs, are shown in this figure. The method of eliminating lobe protrusion in the 727 installation involved incorporating a severe mixer lobe angle. This, however, produced unacceptably high tailpipe wall acoustic liner temperatures in the DC-9 installation. As a result, it was evident that a single mixer design would not meet the requirements of the different airframes, and separate designs were pursued for each airframe.

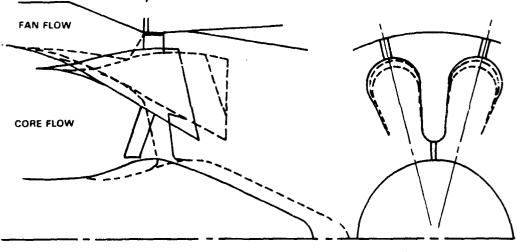
The occurrance of high temperatures on the outer wall of the DC-9 tailpipe introduced some additional design constraints. As identified through design coordination with the airframe manufacturers, the high temperatures adversely affected the bonding of the acoustic material lining, thus reducing service life. With increased mixing, elevated temperatures could be experienced along the tailpipe walls, and assuming fully mixed flow, temperatures up to 700°F were predicted at takeoff. For the type of bonding technique used in the DC-9 tailpipe, a temperature of 500°Fwas considered the limit to maintain current service life. This limit became a governing criterion in defining a design for the DC-9 installation. However, a temperature limit was not established for the 727 tailpipe. While temperature considerations were deleted by the FAA for the 727 tailpipe, subsequent integration efforts with the manufacturer may result in similar limitations.

The coordination effort was also instrumental in determining the final design of the outer attachment flange. The early designs incorporated a 0.500-inch flange welded to the outer struts, making the mixer an integral assembly. However, this configuration introduced a potentially high stress condition because of the thermal mismatch between the mixer and attachment ring. Also, The Boeing Company indicated that any flange over 0.160 inch thick was unacceptable because of a potential mismatch of the nacelle doors and door seals. On the basis of these requirements, the selected attachment scheme eliminated a high stress concentration and meets the thickness limit.

1.3 BASE MIXER DESIGN

Definition of the full scale base mixer design, in terms of basic configuration and aerodynamics, was predicated on results from the preceding one-seventh scale model test progam sponsored by the Federal Aviation Administration under Contract DOT-FA76WA-3809. In brief, three basic model configurations were reported in this program: a long flowpath design tested under the Federal Aviation Administration contract, a short flowpath design and a zero length design tested in a Pratt & Whitney Aircraft program. A summary of the pertinent performance and physical characteristics of each design is presented in Table 1.3-I. On the basis of these results and aircraft installation considerations, the zero length configuration was selected as the base design concept for the full scale JT8D mixer.

13


TABLE 1.3-I

MIXER SCALE MODEL TEST RESULTS (Reported under FAA Contract DOT-FA76WA-3809)

	Long Flowpath	Short Flowpath	Zero Length Flowpath
Engine Length Extension (in)	16	7.6	0.15 to 0.25
Weight increase (lbs)	157	125	105
Takeoff Noise Reduction (dB)	3-4	3-4	3-4
Takeoff Thrust (%) Cruise Fuel Consumption	0	-0.25	-0.30
Improvement (%)	1.3	0.9	0.5

1.3.1 Aerodynamic Definition

The flowpath of the base mixer was defined by scaling key dimensions directly from the model points with one important exception. The final model evolved directly from the 7.6 in. M flange extension model through variations in scarfing and plug positioning. Therefore, the flowpath of the final mixer model was not considered optimum for the length of the extension desired. In defining the flowpath for the full scale mixer, the mixer and plug were translated 2.6 inches rearward to achieve less severe turning of fan stream flow as it enters the mixer. The flowpath of the final model is compared to the flowpath of the full scale mixer in Figure 1.3.1-1.

- INITIAL FULL SCALE DESIGN WITH 0.500-INCH FLANGE - ONE-SEVENTH SCALE 'ZERO' EXTENSION MODEL

Figure 1.3.1-1 Mixer Aerodynamic Flowpath Definition -- This comparison shows the close resemblance of the flowpath of the zero length model to that of the base mixer. The shape of the centerbody and side profiles of the full scale design are essentially the same as the model. An adjustment was made to the relative flow areas in the fan and core streams to reflect a shift in effective area ratio, a requirement recognized during a Pratt & Whitney Aircraft-sponsored mixer technology program. The revision consisted of a slightly larger fan stream area in order to maintain desired fan operation with the mixer installed.

1.3.2 Mechanical Definition

A cross sectional view of the base mixer mechanical design is shown in Figure 1.3.2-1. The main components of the mixer assembly are the 12-10be convoluted mixer geometry, a hardwall tailplug with a slip joint front flange and an outer ring that supports the complete mixer system through twelve struts. The design is based on a modular construction so that installation or removal of the mixer can be easily accomplished and to negate any requirement for new engine cases.

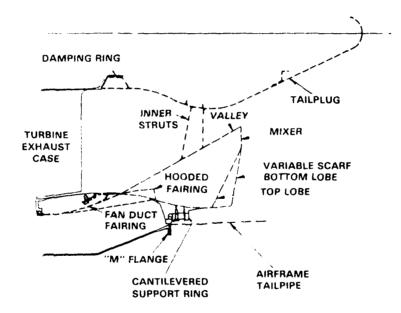


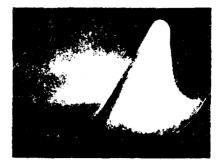
Figure 1.3.2-1 Mixer Mechanical Definition -- This figure identifies the various components that were designed and fabricated during the program.

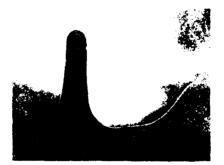
Allowances for radial and axial thermal expansion were considered in the design of the slip joints. Also, the lobe walls are curved to minimize panel vibration and sensitivity to thermal and pressure gradients.

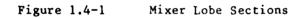
The support system consists of twelve inner struts to support the tailplug, along with twelve outer struts to support the entire mixer structure. In addition to structural support, the struts provide concentricity and circumferential pitch control to ensure the most acceptable mixing profile. The inner struts were fabricated from Inconel 625 nickel base alloy and the outer struts were fabricated from Inconel 718.

The inner struts are aerodynamically shaped and welded to the inner lobe, as shown in Figure 1.3.2-1. This method of support facilitates modular assembly and prevents loads on the tailplug from being applied to the inner flange of the turbine exhaust case. The sheet metal ring on the exhaust case inner flange provides a flexible interface with the tailplug as well as additional structural stability.

The outer support ring, sandwiched between the fan exhaust duct (M flange) and the aircraft tailpipe/reverser flange, was sized to absorb engine maneuver, blowoff and thermal loads. The ring is manufactured from Inconel 718 material, a nickel base alloy.


The mixer lobes and the tailplug are constructed from Inconel 625 material. The selection of this material was based on strength characteristics, fabricability and cost considerations. In addition, this material has excellent repairability properties for service usage.


The aluminum fan duct fairing is convoluted to serve as a fan flow filler piece. This fairing consists of three segments to facilitate installation. The segments are attached to the outer mixer crown and inner valleys. The fairing is slotted to allow optimizing the match of the flowpath at the lobe valley interface and crown forward of the outer struts.


1.4 MIXER FABRICATION

Fabrication of the base mixer subassembly, installation hardware and tooling was accomplished with conventional manufacturing practices and standards used at Pratt & Whitney Aircraft. Before machining operations were initiated, however, raw materials were examined as a quality assurance measure.

In fabricating the mixer subassembly, lobe sections were first stamped out of sheet metal and welded together to form the convoluted structure. A completed lobe section is shown in Figure 1.4-1. After individual sections were formed, each was welded together to construct the mixer subassembly. Slots to accommodate the inner and outer struts were then installed, as shown in Figure 1.4-2. Finally, finishing operations, such as final machining, polishing and smoothing the flowpath surface, were completed.

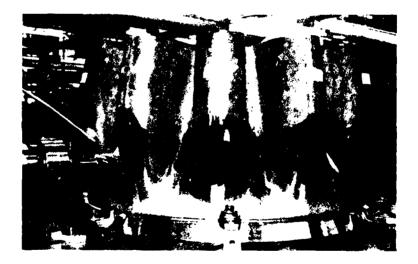


Figure 1.4-2 Mixer Subassembly in Final Stage of Rough Machining --At this stage of the fabrication process, the slots for installing the inner and outer supports struts are being machined in the lobes. Precautions were taken to minimize lobe distortion during welding. Also, various quality control checks were performed during the different phases of manufacturing. These consisted of dimensional inspections of critical tolerances and areas and detailed visual examinations for flaws such as welding deficiencies or cracking.

The inner and outer support struts were manufactured with numericalcontrolled equipment because of the somewhat complex geometry. This necessitated developing a computer program for machining as well as conducting trials to verify the machining sequence and finished part.

After machining, the struts were installed to the inner and outer support rings. The finished base mixer is shown in Figure 1.4-3.

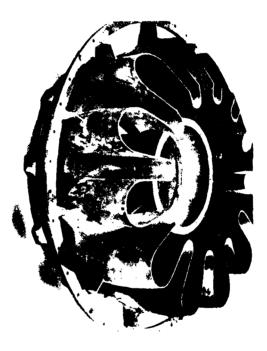


Figure 1.4-3 Finished Mixer Subassembly -- The fininshed component is shown with the support struts and rings welded in place.

1.5 SUMMARY OF MIXER DESIGN EVOLUTION

Several perturbations of the base mixer configuration were made based on the results of experimental engine testing and airframe compatibility studies. In total, five main generations evolved from the initial design. A performance summary of the different mixer designs is presented in Section 3.2 of Part II.

The base mixer (referred to as Mod. 1) was modified because of performance considerations. The modifications consisted of scallop cuts in each of the twelve lobes to move the mixing plane forward, thereby decreasing the effective area ratio. A cross sectional view of this configuration, designated Mod. 2, is shown in Figure 1.5-1 compared to the base design.

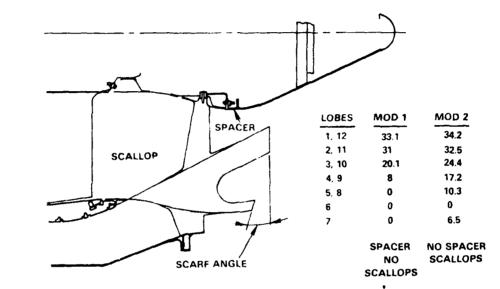


Figure 1.5-1 Mixer Configuration Mod. 2 -- This design is characterized by the scallop cut lobes.

The scalloping was only partially successful in restoring nominal JT8D performance and further revisions were necessary. These changes defined the Mod. 3 configuration and are indicated in Figure 1.5.-2. The changes included bulging the lobe sidewalls and increasing the scarf angles.

Configuration Mod. 4 represented a continued refinement of mixer aerodynamic and acoustic performance. The lobe sidewall bulge evident in Mod 3 was eliminated and the radial penetration of the mixer lobes was increased to improve engine matching. In the evolution of the Mod. 4 design, several variations were evaluated, including hooded fairings, hooded fairings with short fan exhaust fillers, straight fairings with long fan exhaust duct fillers, and scarf angle variations to reduce tailpipe wall temperatures.

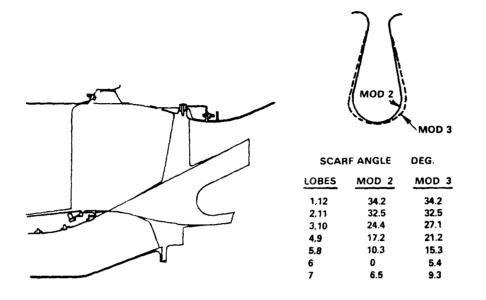


Figure 1.5-2 Mixer Configuration Mod. 3 -- The main feature of this design is bulged lobes and increased scarf angles.

The problem of excessively high tailpipe wall temperatures, which was detrimental to the bonding of the acoustic tailpipe lining in the DC-9 aircaft, was resolved by allowing a thin cooling layer of fan air to remain against the wall while mixing continued within the confines of this layer. This was achieved by modifying the scarf angles at the mixer discharge plane. Increasing the amount of radial inward turning of the core gases at the outer portion of the mixer discharge resulted in a lower wall temperature, although some loss in mixing efficiency was evident. Various scarf angles were tested to determine the angle that would provide a temperature within the airframe manufactures limits, while imparting a minimum effect on mixing performance. By varying the scarfing from lobe to lobe, an effect of tailpipe cant could also be reconciled.

Configuration Mod. 4A was successful in achieving acceptable performance, noise reduction, engine match and tailpipe temperatures. However, the outer support system became an area of concern and consequently necessitated redesign. A cross sectional view of the Mod. 4A design is shown in Figure 1.5-3, and Table 1.5-I lists the different combinations of changes tested, including scarf angles, in the Mod. 4 generation.

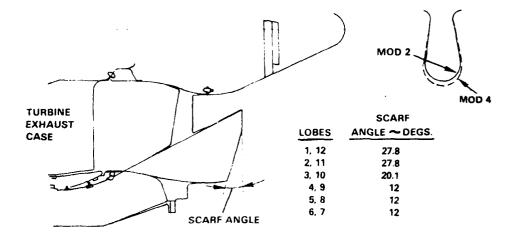


Figure 1.5-3 Mixer Configuration Mod. 4A -- The main feature of this design is increased penetration and modified scarf angles.

As in the base mixer design, all configurations evaluated through Mod. 4A incorporated a 0.500-inch attachment flange welded to the outer support struts, thereby making the mixer assembly one integral unit. A potential problem, however, was a high stress area resulting from the thermal growth mismatch of the mixer and the appreciably cooler outer ring. In addition, results of compatibility studies from The Boeing Company disclosed that an outer attachment flange thickness in excess of 0.160 inch would be unacceptable because of the potential mismatch of the nacelle door and door seals. After an analytical assessment of several attachment schemes, the approach shown in Figure 1.5-4 was adopted. This design allows a flexible retension/support system and complies with the thickness requirement dictated by the Boeing installation.

TABLE 1.5-I

TION	SCARF ANGLE					
Lobe #	1,12	<u>2,11</u>	3,10	4,9	5,8	<u>6,7</u>
	27.8	27.8	20.1	8	0	0
	27.8	27.8	20.1	12	12	12
	27.8	27.8	20.1	20	20	16
	27.8	27.8	20.1	20	20	16
	27.8	27.8	20.,1	15	15	15
		Lobe # 1,12 27.8 27.8 27.8 27.8 27.8 27.8	Lobe # 1,12 2,11 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8	Lobe # 1,12 2,11 3,10 27.8 27.8 20.1 27.8 27.8 20.1 27.8 27.8 20.1 27.8 27.8 20.1 27.8 27.8 20.1 27.8 27.8 20.1	Lobe # 1,12 2,11 3,10 4,9 27.8 27.8 20.1 8 27.8 27.8 20.1 12 27.8 27.8 20.1 20 27.8 27.8 20.1 20 27.8 27.8 20.1 20 27.8 27.8 20.1 20	Lobe # 1,12 2,11 3,10 4,9 5,8 27.8 27.8 20.1 8 0 27.8 27.8 20.1 12 12 27.8 27.8 20.1 20 20 27.8 27.8 20.1 20 20 27.8 27.8 20.1 20 20

SUMMARY OF DIFFERENT MOD. 4 DESIGNS

21

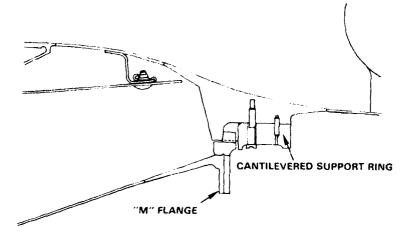
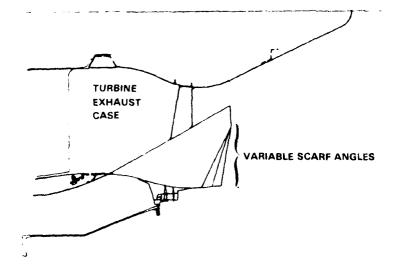
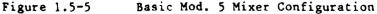




Figure 1.5-4 Revised Outer Strut Retension Scheme -- This flexible attachment scheme eliminates the potentially high stress condition in the earlier welded configuration.

The final generation, Mod. 5, combined the optimized Mod. 4A flowpath with the redesigned outer support system. The basic configuration produced unacceptablly high tailpipe wall temperatures. A series of configurations with revised scarf angles as well as other subtle changes was evaluated in the Pratt & Whitney Aircraft sponsored program. The configuration demonstrating acceptable performance, noise reduction and airframe compatability for the DC-9 installation was designated 5M. Because of the differences in the Boeing installation, however, additional refinements to the 5M design were necessary. The final configuration for the Boeing application was designated 5Z.

A cross sectional view of the basic Mod. 5 design is shown in Figure 1.5-5, and Table 1.5-II lists the different combinations of changes tested. Each of the final configurations is described fully in the next section.

22

TABLE 1.5-II

SUMMARY OF DIFFERENT MOD. 5 DESIGNS

CONFIGURATION			sc	SCARF ANGLE				
	Lobe #	<u>1,12</u>	2,11	<u>3,10</u>	<u>4,9</u>	5,8	<u>6,7</u>	
Mod 5M Mod 5Z		27.8 36	27.8 36	20 36	12 36	12 36	12 36	

1.6 FINAL MIXER DESIGNS

The final mixer configurations, Mods. 5M and 5Z, are illustrated in Figures 1.6-1 and 1.6-2, respectively. Figure 1.6-3 shows a cross sectional view of the 5M mixer and the relative positioning in conjunction with the DC-9 tailpipe exhaust/reverser system. A similar illustration is presented in Figure 1.6-4 for the 5Z/727 tailpipe configuration.

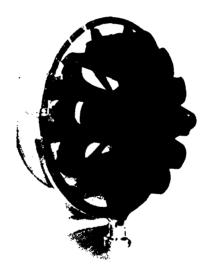


Figure 1.6-1 Final Mod 5M mixer for the DC-9 Installation

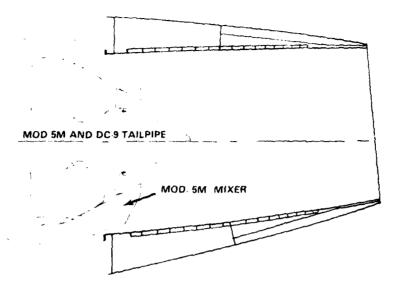

The main distinction between the two mixer configurations is the difference in lobe geometries. Figure 1.6-5 shows the flowpath definition of the 5M and 5Z mixers, along with a summary of the lobe scarf angles. As indicated, the scarf angles in the 5M configuration are nonuniform -angles are higher at the top six lobes relative to the bottom six. The higher angles direct the high temperature core gases away from the outer wall of the canted tailpipe to maintain acceptable tailpipe liner temperatures in the DC-9 installation.



Figure 1.6.2 Final Mod. 52 mixer for the 727 Installation

As stated previously, the thrust reverser in the 727 installation presented some unique design challenges. To minimize the impact of reverser/mixer interactions on operating stability in the reverse mode, lobe scarfing was more severe in comparison to the 5M mixer. As indicated in Figure 1.6-4, the mixer was scarfed to the point where the outer strut support pad joins the mixer skin. The lobe geometry of the 5Z mixer is characterized by an exaggerated scarf angle that is uniform in all twelve lobes at 36 degrees, as indicated in Figure 1.6-5. Since tailpipe temperature restrictions were eliminated by the FAA for the 727 application, the lobes were shorter and oriented for maximum mixing of high temperature core gasses. The extreme scarf angles do not guarantee satisfactory operation in the reverse thrust mode. Test results from a related program have shown that the operating line limit is exceeded by 1.5 percent with the 5Z mixer incorporated.

Because of the redesigned outer support, the Inconel 718 ring, which was selected initially for welding compatibility with the mixer subassembly, was replaced with AMS 5616 (Greek Ascoloy material). This material is less expensive and has a better thermal coefficient match with the existing fan exhaust duct.

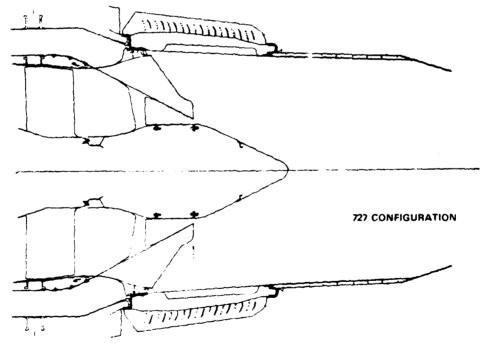


Figure 1.6-4 52 Mixer and 727 Tailpipe -- This figure shows the orientation and interface of the mixer with the 727 tailpipe and reverser system.

SCARF ANGLE~DEG.

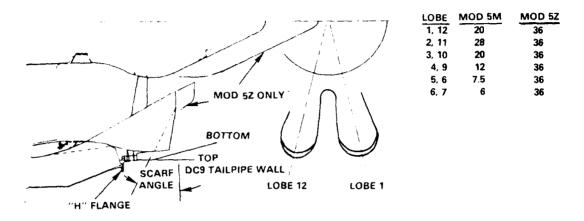


Figure 1.6-5

Flowpath Definition of the Final Mixers -- The main difference is the nonuniformity in lobe scarf angles in the 5M configuration relative to the 5Z configuration.

Mixer axial, radial and tangential thermal-mechanical loads are taken at the 12 mixer strut locations and transferred into the ring. The ring is attached to the fan exhaust duct. Axial loading is transferred through a hardface wear surface on both the mixer struts and support ring. The tangential loading is transferred through anti-torque lugs that are integral with the mixer strut and fitted into grooves on the support ring. Radial loads are transferred from the strut base to the ring through a contact wear surface. The ring has a deeper groove at one location and a corresponding longer lug on the mixer strut to allow for proper orientation when the mixer system is installed into the engine.

An aerodynamic fairing is bolted to the mixer strut. This locks the component axially and radially to the support ring if an inward radial load and a forward axial load occurred. Once locked together, the mixer system can be installed as a module onto the engine.

SECTION 2.0

TEST PROGRAM AND PROCEDURES

2.1 INTRODUCTION

The test plan for demonstrating mixer performance and acoustic goals was organized under Task 3 of the program. This involved defining a matrix of operating conditions for acquiring meaningful performance and acoustic data and appropriate test procedures. In addition, it entailed preparing the test vehicle for testing, establishing instrumentation requirements and selecting the test facilities.

This section describes the test plan and technical approach for conducting the performance and acoustic evaluations. Also presented are descriptions of the test vehicle, instrumentation, special test equipment, and test facilities used during the program.

2.2 TEST OBJECTIVES AND METHODOLOGY

2.2.1 Test Objectives

The overall objective of the experimental test program was to demonstrate a mixer configuration that met or exceeded the goals for performance, noise suppression and durability. However, in addition to this objective, specific test objectives were defined for the different phases of performance and acoustic testing.

Objectives for the performance tests were to:

- Determine the installed performance with the mixer in comparison to a standard JT8D engine.
- o Identify the necessary jet nozzle area changes required to optimize engine performance with the mixer installed.
- o Determine the performance impact of the mixer on other engine components.

The objectives for the acoustic tests were to:

- o Provide a complete characterization of engine noise levels under static conditions both with and without the mixer throughout the operating range.
- Using the measured static data, estimate the noise reduction provided by the mixer under flight conditions.

2.2.2 Test Method and Procedures

The general test approach consisted of first conducting a performance calibration without the mixer installed to acquire baseline data pertaining to engine aerothermodynamic performance. The same operating conditions would then be repeated with the mixer installed for a direct comparison. A similar procedure was also employed for the acoustic tests. The test matrix of operating conditions as well as specific test procedures for both performance and acoustic evaluations are described in the following sections.

2.2.2.1 Performance Test Procedures

Performance tests were conducted at sea level static conditions. Before actual testing was initiated, a functional checkout of the test stand support systems and data acquisition equipment was conducted. After engine startup was accomplished and operation was stabilized at preselected steady-state conditions, checkouts of instrumentation, electrical and plumbing systems were made. With the satisfactory completion of these checks, testing proceeded according to the planned program.

The performance calibration consisted of a total of ten operating conditions run in order of decreasing power. These power settings are tabulated in Table 2.2.2-I. Engine operation at each power setting was stabilized for at least three minutes before acquisition of data.

For data consistency and accuracy during the performance calibriation, the following general test procedures were followed.

- A thrust meter adjusted calibration was conducted prior to testing and after all remount or engine module changes. "As is" thrust meter calibrations were completed immediately after each performance calibration.
- o Fuel samples were obtained before and immediately after each performance calibration. The samples were sent to the Pratt & Whitney Aircraft Materials Engineering and Research Laboratory for specific gravity and lower heating value analyses.
- o Instrumentation and data recording systems were checked both at idle and 10,000 pound thrust settings prior to the acquisition of performance data. Calibrations, however, were not conducted when critical instrumentation was inoperative.
- Fuel flow was measured using two 0.750-inch coxmeters calibrated prior to use and "as-is" calibrated after testing was completed.

Point No.	Corrected Net Thrust (1bs)
1	16,500*
2	16,000 (Takeoff)
3	15,000
4	13,000
5	11,000
6	10,000
7	9,000
8	6,000
9	3,000
10	Idl e

TABLE 2.2.2-I STEADY-STATE CALIBRATION POWER SETTINGS

Observe all engine operating limits: Maximum low-pressure rotor speed of 8600 rpm Maximum high-pressure rotor speed of 11,950 rpm Maximum exhaust gas temperature of 1202°F Maximum burner pressure of 247 psig.

2.2.2.2 Acoustic Test Procedures

D ing the acoustic tests, a four-step procedure was followed to ensure accurate and consistent measurements of engine noise levels.

- (1) The engine power setting was set at a preselected level. After operation was stabilized for approximately three minutes, noise levels were recorded for a period of 60 seconds, with all microphone signals being recorded simultaneously. During the recording period, the tape recorded playback signal was monitored to ensure that each microphone signal was being properly recorded as well as acceptable in quality.
- (2) Engine performance data were recorded concurrently during the acoustic data acquisition. Engine low-pressure rotor speed was maintained to a + 25 rpm tolerance during this period.
- (3) Along with noise and performance, ambient air temperature, relative humidity, barometric pressure, and wind velocity were recorded at each test condition. Neither noise nor performance were recorded when the wind speed exceeded 8 knots or when the crosswind component exceeded 5 knots.
- (4) Acoustic data tapes and respective data sheets were sent to the tape library to await data reduction.

Table 2.2.2-II presents typical operating conditions (pertinent to the analysis of acoustic data) at which noise measurements were obtained with both a standard engine configuration and with the Mod. 5M mixer using a DC-9 tailpipe. Similar information is presented in Table 2.2.2-III for the JT8D engine with a 727 tailpipe both with and without a Mod. 5Z mixer.

Constant Thrust Comparison Method for Baseline and Mixer Acoustic Data

Table 2.2.2-IV presents a sample of an acoustic data printout. Listed on this sheet are the ambient test conditions, reference values of observed and corrected low-pressure rotor speed, and one-third octave band sound pressure level (SPL) values at each one-third octave band center frequency for each microphone (denoted by angle relative to the upstream jet axis). At each angle, values of overall sound pressure level (OASPL) and perceived noise level (PNL) are also listed. All the acoustic data presented are corrected to a 77°F day at the measurement radius of 150 feet from the centerline of the tailpipe exit. A tabulation of acoustic data at a selection of operating conditions is included in Appendix A.

The goal of the noise measurements was to provide a direct assessment of the noise levels of both a standard JT8D engine and configurations with the internal mixer installed at the same values of engine thrust. Since installation of the mixer causes a slight change in engine match characteristics along with engine operating line and since the same value of thrust for both standard and mixed configurations could not be set during testing, the following procedure was employed for provide equal thrust noise comparisons.

- (1) Noise data for each engine test configuration were extrapolated to a distance of 1500 feet, parallel to the tailpipe centerline, and perceived noise levels were calculated.
- (2) At each angle, the 1500-foot perceived noise level was correlated to the core jet velocity, V_p 77° (expanded to ambient pressure and corrected to a 77°F day), using a least squares third order regression computer program. (Based on jet noise theory and Pratt & Whitney Aircraft experience, jet velocity has been shown to be a better correlating parameter for jet noise than the other available engine parameters.) As an example, Figure 2.2.2-1 shows regression curves for a perceived noise level at 140 degrees versus core jet velocity for a standard JTSD and mixer configuration. Regression curves at other angles were of similar quality.
- (3) From the performance values in Tables 2.2.2-II and III, correlations of engine thrust and core jet velocity were developed for both the standard and mixer configurations. Table 2.2.2-V lists core jet velocity values for static gross thrusts, ranging from 6000 to 16,000 pounds for the engine with a DC-9 tailpipe.

TABLE 2.2.2-II STANDARD ENGINE AND MIXER (MOD. 5M) OPERATING CONDITIONS WITH DC-9 TAILPIPE

Corrected Thrust *	Corrected Low Rotor Speed **	Engine Pressure Ratio	Exhaust Gas Temp.***	Core Jet Velocity +	Corrected Low Rotor Speed (Ref) ++
		Stan	idard Engine		
4561	5363	1.2585	1160	958	5335
7637	64 70	1.4719	1258	1281	6447
10636	71 72	1.7039	1348	1543	71 51
5608	5789	1.3282	1190	1075	5775
8678	6750	1.5508	1289	1377	6730
7692	6479	1.4754	1257	1285	6467
13597	7756	1.9528	1434	1770	7741
41 52	51 59	1.2314	1147	908	5149
16041	8424	2.1829	1545	1968	8406
3585	4865	1.1958	1119	833	4858
14591	7990	2.0435	1467	1 845	7972
9734	6987	1.6324	1326	1472	6964
115 89	7325	1.7780	1385	1622	7304
16595	8576	2,2342	1578	2020	8566
15560	8262	2.1366	1508	1923	8242
		W	ith Mixer		
7669	6579	1.4634	1265	1271	6557
12571	7590	1.8579	1405	1690	7565
56 51	5889	1.3202	11 85	1062	5889
4642	5504	1.2524	1153	94 5	5486
16551	8593	2.2429	1584	2028	85 52
872 0	6817	1.544	1287	1371	6817
4203	52 85	1.2232	1138	890	52 63
14709	8010	2.0565	1476	1860	8010
3616	4995	1.1884	1116	817	4976
10803	72 58	1.7060	1357	1550	7231
15820	8362	2.1675	1532	1955	8337
462 5	7023	1.6135	1319	1453	7023
7784	6582	1.4680	1255	1275	6554
1 3890	7829	1.9671	1444	1785	7800
16361	8512	2.2187	1567	2005	8489
*				y the thrust day barometri	
**	Rotor speed	in revolution	a per minute	corrected to	a 59°F day.
***		in ^o R correct			
+	rected to a	77°F day.	-	_	essure and cor-
++	on the test		er. This val	ue is used to	or speed based identify the

TABLE 2.2.2-III STANDARD ENGINE AND MIXER (MOD. 52) OPERATING CONDITIONS WITH 727 TAILPIPE

Corrected Thrust *	Corrected Low Rotor Speed **	Engine Pressure <u>Ratio</u>	Exhaust Gas Temp.***	Core Jet Velocíty +	Corrected Low Rotor Speed (Ref) ++
		Star	ndard Engine		
17,610	8894	2.336	1645	2113	8892
17,530	8880	2.326	1639	2104	8875
16,628	8616	2.327	1564	2011	8614
16,332	8521	2.217	1540	1985	8527
16,246	8497	2.205	1534	1975	8497
15,702	8337	2.156	1498	1926	83 3 3
14,688	8053	2.057	1449	1840	8056
14, 331	7965	2.022	1435	1811	7968
14,269	7942	2.015	1433	1806	7946
13, 167	7668	1.913	1394	1719	7670
12,999	7647	1.896	1391	1706	7640
11,350	7298	1.757	1342	1580	7301
11,298	72 80	1.751	1342	1576	72.75
9,262	6922	1.599	1285	1419	6913
9,199	6915	1.593	1286	1414	6913
5,388	5562	1.289	1145	1068	5554
4,788	5556	1.286	1145	994	5557
		W	ith Mixer		
17,447	8892	2.321	1648	2108	8892
17,428	8857	2.335	1635	2106	8853
15,946	8478	2.181	1 52 7	1958	8474
15,840	8414	2.182	1510	1948	8417
15,472	8336	2.139	1493	1914	8333
15,440	8304	2.144	1485	1911	83 00
15,031	82.42	2.089	1473	1874	8245
14,956	81 84	2.092	1461	1868	81 83
14,569	8120	2.043	1450	1833	8123
14,455	8065	2.038	1439	1823	8063
14,007	7982	1.989	1423	1784	7977
13,634	79 01	1.950	1410	1752	7893
13, 541	7864	1.945	1402	1744	7861
12,417	7641	1.836	1363	1649	7631
10,713	7314	1.685	1311	1506	7310
10,618	72 88	1.676	1309	1498	72 88
8,773	6970	1.528	1260	1339	6970
6,784	64 34	1.386	1198	1153	6441
6,744	6406	1.385	1193	1149	6403
4,789	5611	1.248	1127	927	5606
4,729	5589	1.244	1123	919	5588

32

;

* Thrust levels based on correlations of indoor and outdoor test stand thrust specific fuel consumption.

** Rotor speed in revolutions per minute corrected to a 59°F day.

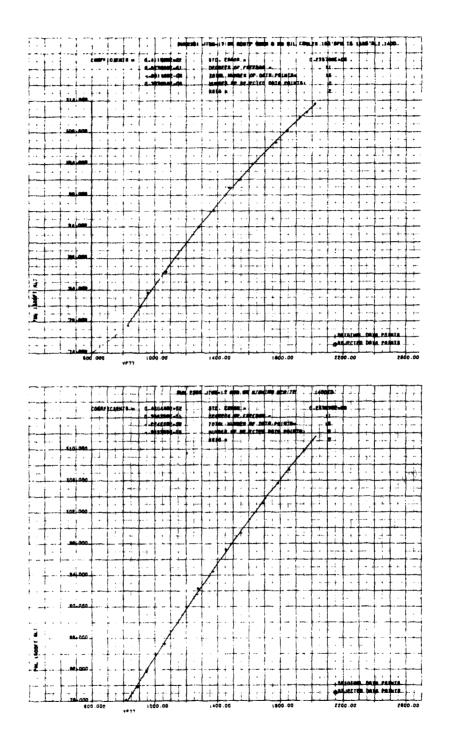
- *** Temperature in ^{OR} corrected to 59^oF
- + Velocity in feet per second expanded to ambient pressure and corrected to a 77°F day.
- ++ An approximate value of corrected low-pressure rotor speed based on the test stand rpm meter. This value is used to identify the acoustic data printouts contained in Appendix A.

TABLE 2.2.2-IV

ACOUSTIC DATA PRINTOUT SAMPLE

2351 H 01923 JT8D-17 REF SPLITTEN B/L.DC9 REV 5DEG CANT NORTH GP150RA150.1740

	= JT80 -17 = 000372 = 124.0 DB.	TEMPERATURE	-	30.0 F	INLET TEMP Time of day Barm. Pressure	= 30.00 F = 756 = 30.02 IN. HG.
STAND DATE	= X-314 = 02/28/79	HUMIDITY	=	78.0 PER CT.	WIND DIRECTION WIND VELOCITY	= 30.02 IN, NG. = S = 1 MPH
		OBSERVED RPM		6265		
		CORRECTED RPM	=	6447		


FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT.

ANGLE IN DEGREES

FREW		100	110	120	130	135	140	145	150	155		
EK HZ					•••	•••		•		••••		
. 350	e7.7	89.2	90.3	93.0	98.4	100.3	101.8	103.0	104.4	105.7		
.063	89.A	91.1	91.8	95.3	100.0	102.6	104.1	105.A	106.2	107.3		
.090	90.1	91.6	93.7	96.6	101.8	104.3	106.3	107.8	108.2	108.3		
.100	91.8	94.1	95.7	98.5	103.2	105.5	207.0	208.7	109.2	109.6		
.125	93.5	95.2	97.1	99.5	104.4	106.4	107.8	108.8	108.5	108.3		
.163	44.6	96.0	98.1	100.9	105.0	106.6	107.2	108.1	108.4	104.1		
.200	45.2	97.1	98.9	101.6	104.9	105.9	106.7	106.2	100.4	101.1		
.250	45.0	97.5	99.5	101.6	104.4	105.0	105.0	104.2	104.3	98.5		
.315	95.3	97.4	99.9	102.2	104.2	104.1	103.6	102.4	102.4	98.9		
.400	46.8	98.3	100.0	101.9	103.6	103.1	102.5	101.5	100.5	98.7		
.500	95.6	97.0	99.0	101.0	102.3	101.5	101.0	99.6	98.9	96.5		
. 0 30	94.7	97.2	98.3	100.3	101.3	100.5	99.5	98.2	97.9	94.6		
.800	94.2	96.4	97.0	99.0	49.8	99.0	97.9	96.9	96.1	94.0		
1.00	43.6	95.0	96.8	98.0	48.4	97.2	96.6	95.1	94.0	92.9		
1.25	93.0		96.1	97.1			94.8					
1.60				95.9			93.3			90.8		
2.00						93.0				89.2		
2.50							91.0		88.6			
3.15							89.8					
4.00	A9.6			90.3	90.4	89.7	88.0			85.2		
5.00			89.3	88.9		87.8	86.7					
6.30						87.2						
8.00							87.8		86.0			
10.0	90.6	94.2	96.2	43.6	91.2	88.9	87.5	86.1	85.5	83.5		
DASPL	107.0	100.4	110.3	112.0	114.6	115.5	116.1	116.7	116.9	116.0		
PNL T			120.3									
PNL			120.3									
08 A	104.1	106.1	107.2	108.1	108.9	108.3	107.7	106.8	106.4	104.1		
8 AN D	24	24	24	24	24	24	24	24	24	24		
TCORR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	MASIMUM	PASPL	• 1	116.87			COM	OSITE	•	SPL	=	117.75
	MAXIMUM	PNLT	• 1	121.82			COM	POSITE	' PN	11	٠	123.29
	HAXINUM	PNL	. • 1	121.82			PNL	T (IN	TEGRATE	D)		130.57
	MAXIMUM	D8A	* }	09.89								

CENTER

THE FULLOWING CONDITION HAS BEEN ADDED TO THE WOOL DATA BASE BASE IC LD DATE ENG MOU ENG NO STND C OBS CORR TENP HUN TTI TIME BARM WD WY RUN 364 10 250 02/28/79 JTBD -17 000372 X314 3 6265 6447 77,0 70.0 30.0 756 30.02 S 1 2351 H 01923 JTBD-17 REF SPLITTER B/L.DC9 RE V 5DEG CANT NORTH GP150RA150.1740

Figure 2.2.2-1

Typical Regression Curves -- These curves present the statistical correlation of perceived noise and corrected core jet velocity for a specific angle.

It is noteworthy to point out that at the same thrust settings, installation of a mixer produced a slightly higher core jet velocity at thrust setting above the 14,000 pound level and lower jet velocities at thrusts of 14,000 pounds and below.

Using the perceived noise level versus core jet velocity regression procedure as well as the thrust versus core velocity from Table 2.2.2-V, the perceived noise levels at angles for 90 to 155 degrees at a series of engine thrusts were tabulated, as shown by the examples in Tables 2.2.2-VI and VII for the standard JT8D engine and with the mixer installed, respectively. From data in these tables equal noise comparisons, including peak perceived noise levels versus thrust and perceived noise level directivity patterns, were made.

TABLE 2.2.2-V

ENGINE THRUST AND CORE JET VELOCITY VALUES Standard Engine and Mixer Configurations for DC-9 and 727 Tailpipes

	DC-9 T	ailpipe	727 Ta	ilpipe
Thrust (lbs)	Standard	5M Mixer	Standard	52 Mixer
6000	1130	1100	1135	1072
8000	1316	1302	1315	1270
10,000	1487	1476	1475	1445
12,000	1649	1642	1630	1613
13,000	1728	1724	1710	1700
14,000	1807	1806	1785	1785
15,000	1885	1889	1865	1872
16,000	1964	1973	1955	1965
16,600	2020	2030	2010	2020

TABLE 2.2.2-VI

PERCEIVED NOISE LEVELS AT CONSTANT THRUST Standard JT8D Engine with DC-9 Tailpipe 1500 Ft Perceived Noise Level

Thrust (1bs)	6000	8000	10000	12000	13000	14000	15000	16000
Jet Vel. (ft/sec)	1130	1315	1437	1649	1728	1806	1885	1964
Angle (deg)								
90	89.4	93.2	96.4	99.2	100.6	101.9	103.3	104.7
100	90.7	94.7	98.2	101.2	102.6	104	105.4	106.8
110	91.5	95.5	99	102.1	103.6	105	106.5	108 ·
120	91.7	96.2	100	103.5	105.1	106.6	108.1	109.5
130	91	96.3	100.6	104.5	106.3	108.1	109.9	111.7
135	90.5	95.9	100.5	104.6	106.5	108.5	110.4	112.3
140	89	94.9	100	104.4	106.5	108.5	110.3	112.2
145	87.5	93.5	98.7	103.3	105.4	107.4	109.3	111.1
150	85.3	91.8	97.4	102.1	104.2	106.1	107.7	109.4
155	82	88.4	93.5	97.7	99.6	101.4	103.1	104.8

35

and the second second

TABLE 2.2.2-VII

PERCEIVED NOISE LEVELS AT CONSTANT THRUST JT8D Engine with Mod. 5M Mixer and DC-9 Tailpipe 1500 Ft Perceived Noise Level

Thrust (lbs)	6000	8000	10000	12000	13000	14000	15000	16000
Jet Vel. (ft/sec)	1100	1301	1476	1642	1724	1806	1888	1973
Angle (deg)								
90	88.6	92.8	96.1	99	100.4	101.6	103	104
100	89.8	94	97.4	100.5	101.9	103.2	104.5	105.7
110	90.6	94.9	98.4	101.5	102.9	104.3	105.6	107
120	90.6	95	98.6	101.9	103.5	104.9	106.4	107.8
130	89.4	94.4	98.6	102.3	104.1	105.8	107.4	109.1
135	88	93.5	98	102.2	104.2	106.1	108	109.9
140	86.6	92.6	97.6	102	104.2	106.2	108.3	110.3
145	85	91.1	96.3	101	103.1	105.4	107.5	109.6
150	82.7	89.4	95	100	102.3	104.5	106.6	108.6
155	79.4	86 3	91.9	96.6	98.8	100.8	102.6	104.3

The PNL values at similar thrust levels for a standard JT8D engine and 5Z mizer configurations are tabulated in Tables 2.2.2-VIII and IX, respectively. However, the tests with the 727 tailpipe were conducted without fan duct acoustic treatment, in contrast to the DC-9 tailpipe, which incorporated a standard production fan duct double-wall acoustic treatment. Consequently, fan noise levels would be higher with the 727 tailpipe configuration. To provide noise results of the 52/727 configuration that would be more representative of this installation in a JT8D engine with fan duct treatment as well as to permit a direct comparison with 5M/DC-9 data, the extra fan noise in the 5Z data was analytically removed from the noise spectra and the perceived noise levels were recalculated. A discussion of the additional data processing procedures to account for the absence of the fan duct treatment is presented in Appendix B.

TABLE 2.2.2-VIII

PERCEIVED NOISE LEVELS AT CONSTANT THRUST Standard JT8D Engine with 727 Tailpipe 1500 ft Perceived Noise Level

Thrust (1bs)	6000	8000	10000	12000	13000	14000	15000	16000
Jet Vel. (ft/sec)	1135	1398	1475	1630	1710	1785	1865	1955
Angle (deg)								
90	89.4	95.1	96.6	99.6	101.1	102.4	103.7	105.2
100	89.9	95.7	97.2	101.3	101.8	103.2	104.7	106.4
110	91.8	97.5	99	102.1	103.7	105	106.5	108.2
120	91.4	97.9	99.6	103.1	104.8	106.4	107.9	109.5
130	90.7	98.1	100.2	104.3	106.3	108.1	110	111.8
135	89.8	97.7	100	104.5	106.7	108.6	110.3	112.5
140	88.6	97	99.4	104.1	106.3	108.2	110.1	112
145	87.4	96.1	98.7	103.3	105.5	107.4	109.2	111
150	84.6	93.8	96.4	101.3	103.6	105.6	107.2	108.8
155	81.6	91.1	93.9	99	101.4	103.4	105.1	106.6

TABLE 2.2.2-IX

PERCEIVED NOISE LEVELS AT CONSTANT THRUST JT8D Engine with 5Z Mixer and 727 Tailpipe 1500 ft Perceived Noise Level

Thrust (1bs)	6000	8000	10000	12000	13000	14000	15000	16000
Jet Vel. (ft/sec)	1072	1360	1445	1613	1700	1 785	1872	1965
Angle (deg)								
90	88.1	94.2	95.8	98.6	100	101.3	012.5	103.7
100	89.5	95.6	97.1	100	101.4	102.7	104	105.6
110	91.8	97.4	98.8	101.5	102.9	104.2	105.6	107
120	90.9	96.7	98.2	101.4	102.9	104.3	105.7	107
130	88.7	95.5	97.4	100.9	102.7	104.2	105.7	107.3
135	87.5	94.4	96.4	100.1	1 02	105.7	105.4	107.1
140	85.8	93.5	95.5	99.5	101.5	103.4	105.4	107.4
145	84.4	92.1	94.3	98.7	101	103.2	105.4	107.8
150	80.8	89.4	91.9	96.8	99.2	101.6	104	106.4
155		85.8	88.6	94.1	96.9	99.6	102.1	104.7

2.3 TEST VEHICLE DESCRIPTION AND INSTRUMENTATION

2.3.1 Test Vehicle - General Description

All testing, both performance and acoustic, was conducted with a Pratt & Whitney Aircraft JT8D-17 development engine. During parts of the program, testing was augmented with the use of two JT8D-17 engines.

The JT8D-17 is a dual spool, axial flow turbofan engine with a rating of 16,000 pounds of net takeoff thrust at sea level static conditions. In brief, the low-pressure spool consists of a two-stage fan and four stage low-pressure compressor driven by a two-stage low-pressure turbine unit. In the high-pressure spool, a seven-stage compressor is driven by a twostage uncooled turbine. The combustion system is a multi-can annular system. Table 2.3.1-I lists key engine operating parameters.

Before testing, the engine was diassembled and thoroughly inspected. Worn or damaged parts were either repaired or replaced. Instrumentation, such as strain gages and thermocouples, was also installed on selected components while the engine was disassembled.

Figure 2.3.1-1 shows the JT8D test engine installed in the a sea level static performance test facility (stand X-16) prior to testing a mixer configuration. The engine incorporated an inlet bellmouth to ensure undistorted inlet flow conditions. During noise evaluations at the Pratt & Whitney Aircraft outdoor acoustic facility (stand X-314) an inlet noise suppressor tube was installed to minimize contamination of jet noise

-

measurements by inlet radiated fan and compressor noise. In addition, an exhaust system, consisting of an acoustically-lined tailpipe, was used in this program. Tailpipes of the respective airframes, the DC-9 and 727, were used during selective performance and acoustic tests. For the acoustic tests, the tailpipes were canted away from the ground microphones (DC-9, 5 degress and 727, 3.3 degrees) to simulate the engine/ tailpipe orientation during an overhead flyover. Figure 2.3.1-2 shows a JT8D engine installed in the outdoor facility with the inlet noise suppression tube and a DC-9 tailpipe.

TABLE 2.3.1-1

STANDARD JT8D-17 OPERATING PARAMETERS (Takeoff Sea Level Static Conditions)

Fan Pressure ratio	2.06
Bypass Ratio	1.02
Overall Compressor Ratio	16.93
Turbine Stator Inlet Temperature (°F)	1990
Turbine Discharge Temperature (°F)	1108

Figure 2.3.1-1 JT8D-17 Test Engine -- The engine is shown installed in stand X-16 prior to performance testing of the 5M mixer configuration.

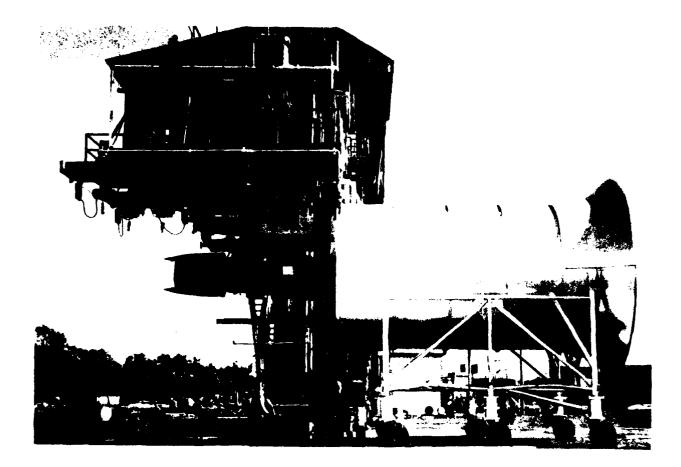
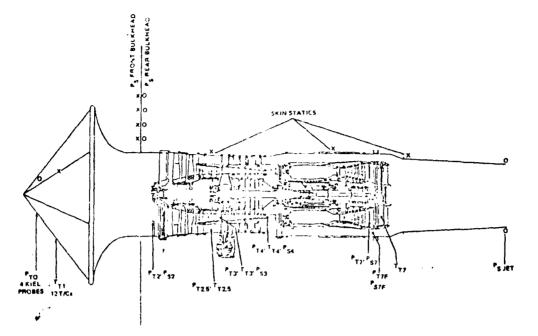
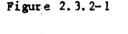


Figure 2.3.1-2 JT8D-17 Test Engine -- The engine is shown installed at the outdoor acoustic facility with an inlet noise suppression tube and a DC-9 tailpipe.

In test conducted with the DC-9 tailpipe, the standard double-wall fan duct acoustic treatment was used. This treatment, however, was not installed during the test with the 727 tailpipe.

2.3.2 Instrumentation


The engine was equipped with sufficient instrumentation to measure key performance parameters as well as ensure the structural integrity of the engine and mixer component. Pressure and temperature sensors were installed at standard measurement locations. The JT8D-17 development engine typically has instrumentation installed at these locations. This previous experience provided reliability, accuracy, pressure and temperature circumferential variations and absolute levels as a basis for comparison to baseline testing. A listing of the different types of pressure and temperature instrumentation is presented in Table 2.3.2-I, and the installation locations are depicted in Figure 2.3.2-1.


TABLE 2.3.2-I PERFORMANCE INSTRUMENTATION

.....

Description
otal Temperature Sensors Pitot Total and Static Pressure Probes
Total Pressure Pole Rakes with 5 Sensing lements per Rake 6 Individual Total Temperature Probes **
Total Pressure Pole Rakes with 5 Sensing lements per Rake Static Pressure Bleed Cavity Sensors Total Temperature Pole Rakes with 5 ensing Elements per Rake**
Total Pressure Rakes with 4 Sensing lements per Rake Static Pressure Bleed Cavity Sensors Fuel Control Static Pressure Sensor Total Temperature Rakes with 4 Sensing lements per Rake **
Bleed Cavity Static Pressure Sensor
Total Pressure Probes with 6 Sensing lements per Rake (1 Manifolded Average ensor) Outer Static Pressure Sensor at Each urbine Exit Location Total Temperature Rakes with 1 Average ensor per Rake**
Total Pressure Probes with 6 Sensing lements per Probe (1 Manifolded Average ensor) Outer Static Pressure Sensor at Each Fan uct Exit Location
mmended Practices Thermocouples

The instrumentation was calibrated before testing and periodic calibration checks were conducted during the test sequence to ensure data validity.

Schematic of JT8D Engine Showing Instrumentation Locations -- The basic test configuration is equipped with a full complement of calibration type instrumentation.

Strain gages were installed on selective fan and turbine blades to verify that the presence of the exhaust mixer did not impart any high stress levels on these components.'Strain gages and thermocouples were also installed at predetermined locations on the mixer and, in some cases, on the tailpipe to monitor thermal response.

During selected tests, a traverse instrumentation system was used as a diagnostic tool to determine the amount of radial and circumferential mixing in the exhaust plume. The temperature and pressure data acquired with this system were used to generate velocity profiles, which served as a basis to guide geometric modifications to the mixer.

A schematic of the traverse system is shown in Figure 2.3.2-2. The system is installed directly behind the nozzle discharge. The traverse gear consists of a traverse rake attached along a diameter of a circular ring which in turn rests on four idler wheels. A chain drive attached to the ring is driven by a stepper motor to rotate the ring. Twelve total temperature probes alternating with eleven total pressure probes are contained along one half of the rake length. This system was used to acquire data at 5 degree increments for the entire nozzle exhaust plume of the 727 tailpipe. However, when used with the DC-9 tailpipe, the system could not be traversed at the 4:00 and 10:00 o'clock locations because of an interference with the reverser support stangs.

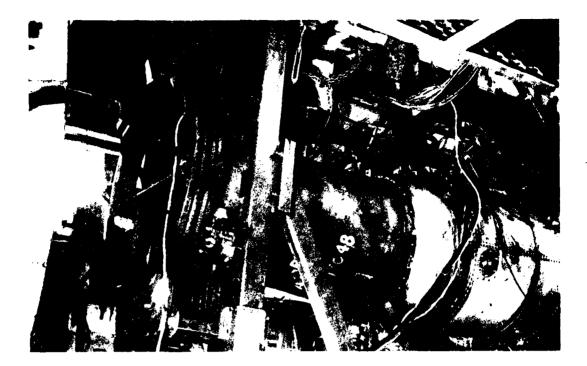


Figure 2.3.2-2 Traversing System -- The system consists of a series of alternating pressure and temperature probes from which velocity profiles can be generated to show mixing efficiency.

Pressure and temperature data were recorded on magnetic tape by a portable, high accuracy pressure and temperature system (HAPTS). The HAPTS signal is converted to engineering units which are recorded on punch cards. These cards are loaded into the IBM 370 computer and displayed on an interactive scope for data editing. The edited data are processed by another computer program that uses the input temperatures and pressures to calculate velocities. The program also generates information used to create contour plots of pressure, temperature and velocity on an automatic plotting system.

2.4 TEST FACILITIES

All experimental engine testing was conducted at the Pratt & Whitney Aircraft Commercial Products Division in East Hartford, Connecticut. Performance testing was conducted in a sea level test stand (stand X-16) and acoustic testing was conducted in an outdoor facility (stand X-314). A description of these facilities is presented in the following sections.

2.4.1 Sea Level Test Facility

The sea level test facility, stand X-16, is designed to develop both afterburning and nonafterburning turbojet and turbofan engines. Total airflow in the stand is limited by the inlet sound treatment to 1800 lbs/sec. Testing can be conducted at static sea level inlet and exhaust conditions.

The stand is constructed or reinforced concrete in the form of an enlongated "ELL". A horizontal inlet and resonant chamber exhaust silencer with a vertical discharge stack are located at the extreme ends. Extended sound-stream type acoustical panels with 42 percent open area are installed in the inlet. The engine is mounted to a suspended overheadtype thrust measurement platform. Ambient air is supplied to the inlet, which is isolated from the afterpart of the engine by a partial bulkhead. Exhaust gases are ejected into a collector tube where they are mixed with and cooled by atmospheric air aspirated over the inlet bulkhead vane. Additional cooling of exhaust is accomplished by injecting water into the air stream by means of spray nozzles in the exhaust duct. The mixed gases are then dispersed through an exhaust silencer.

The controls and instrumentation to operate the engine and monitor performance are located in the control room. This room is located at an intermediate elevation, and an observation window allows visual inspection of the test cell interior testing. Support equipment and services are located beneath the control room.

Test parameters are recorded automatically by the steady-state data system (SSDS). This system consists of a central computer area and four remote subsystems. There are also four seven-track 556 BPI tape units for recording stand data, one card punch, one card reader, one printer and computer-subsystem interface log.

When data acquisition is initiated, the data are processed first through the central computer that converts the electrical signals to engineering units. The conversion is accomplished by a preprocessor program with information pertaining to the engine configuration supplied by input in the long term and pretest. The engineering units can then be printed at the stand and at the central computer area. In addition to printed output, the engineering units are recorded on magnetic tape and/or cards in the automatic data recording (ADR) card image format. Within the central computer, a "quick-look" program receives the engineering units and calculates, for printout at the stand or on the central printer, the measured data, selected answers and selected gas stream radial pressure and temperature profiles.

Special cabling is provided from the test cell to the control room and to an outside mobile van panel. This enables connecting special instrumentation such as vibration meters, pressure transducers, strain gages, closed-circuit televisions, fuel flows and communications.

2.4.2 Acoustic Test Facility

Stand X-314 was the outdoor facility used for evaluating noise and performance characteristics of the JT8D-17 test engine with various mixer configurations. The engine was mounted on the stand supported by two large "I" beams cantilevered from a vertical open truss structure in a manner to provide noise radiation free of acoustical shadow zones around the engine. The engine was installed at a height of approximately 16 feet above the ground.

The test pad area is directly under and adjacent to the test stand consisted of paved asphalt and concrete. A cleared and carefully graded controlled ground surface with uniform reflective characteristics extended for the test pad in a semicircle around the right side of the engine in an area enclosed by an arc of an approximately 200-foot radius. The controlled surface consisted of a 12-inch deep layer of 1 to 1.5-inch size trap rock, with a drainage system to maintain a water table of at least 18 inches below the finished surface. On the left side of the engine on an arc from 90 to approximately 170 degrees, the ground surface consisted of sealed asphalt to a radius of approxixmately 160 feet. Figure 2.4.2-1 shows the surface arrangement with the microphone locations.

Engine noise levels were measured over the trap rock surface by an array of pole microphones permanently located along a nominal 150-foot radius arc with diaphragms placed to receive noise at grazing incidence at a height approximately in the same horizontal plane as the engine centerline. The array consisted of 19 microphones. The microphone distances and angles relative to the jet exit plane centerline are listed in Table 2.4.2-I. A hard, smooth-sealed asphalt surface exists on the opposite side of the engine covering the area from 90 to 160 degrees within a 150foot arc. A portable array of ground level microphones, spaced at no greater than 10-degree intervals along the arc, was used to obtain a clear definition of low frequency noise. These microphones were also placed relative to the centerline of the exhaust plane of the engine tailpipe.

The acoustic data recording system was contained in a mobile van located adjacent to the test area. The signal conditioning and recording console provided calibration and monitoring instrumentation, switching capability, variable gain signal conditioning amplifiers, and full analog magnetic tape recording capability. Calibrations were completed both before and after testing to ensure system measurement reliability, provide appropiate microphone, cable and system responses, and provide a known sound pressure level to the system for an acoustic reference point.

Figure 2.4.2-1 Schematic Representation of the Arrangement of the Pratt & Whitney Aircraft Acoustic Test Facility Stand X-314 --The test stand configuration together with the sound field and microphone system are of the highest quality, and the facility has been used previously to produce data used by the Federal Aviation Administration to approve acoustic changes in engine hardware.

TABLE 2.4.2-I

POLE MICOPHONE ANGLES AND DISTANCES DC-9 AND 727 TAILPIPE TEST ARRANGEMENTS REFERENCED TO A STANDARD ANGLE

TO STD 90 DEG MIC (150 FT)		NOBTH				
	≜	NON IN		١		
		.	53.5 IN		-\$	
	44 IN			5 DEG	TAILPIPE	
STD ENGINE			1		EXIT PLANE	
MID SECTION		"M" FLANGE			REFERENCE	
REFERENCE X-314 STAND		FLANGE				
X-314 STAND						
Pole	Standard	DC-9 Tailpipe		727 1	727 Tailpipe	
No.	Ang. (deg)	Ang.(d			Dist.(ft)	
حند فحد المحد						
4	30	33	157	32	157	
5	40	43	156	41	156	
6	50	53	155	51	155	
7	60	62	154	61	154	
8	70	72	153	70	153	
9	80	82	151	80	151	
Portable		90	150			
10	90	92	150	90	150	
11	95	97	149	95	149	
12	100	102	148	100	149	
13	105	107	148	105	148	
14	110	112	147	110	147	
15	115	117	146	116	146	
16	120	122	146	121	146	
	Portable	127	145	126	145	
17	130	132	144	131	145	
18	135	138	144	136	144	
19	140	143	143	141	144	
20	150	155	143	152	143	

Each analog tape containing noise data was reduced to yield one-third octave band sound pressure levels from each microphone at each measured condition. The analysis system consisted of a playback tape recorded from which signals were directed through an amplifier to a contiguous filter set. The filter covered one-third band center frequencies from 50 Hz to 80 kHz and provided outputs to a multi-output detector. The detector sensed the filtered values and provided input to the computer.

The computer controls the analysis sequence, stores interim data sets, reads and stores manually-entered information, and transfers data to a digital tape ready for computer processing. Data output was selected for an averaging time of two seconds and accumulated sixteen times in the computer, then averaged to yield one-third octave band data integrated over the 32-second time period.

Upon completion of one-third octave band data reduction, the results of the reduction process were stored on incremental magnetic tape. The incremental magnetic tape information was input to the large IBM 370/168 computer where the data were processed through computer programs to apply calibration and weather corrections to the data. The results were then made available in the form of plots/curves, hard copy printout, and storage in the computer disk file. Other programs then assessed the data and provided additional output such as plots, power levels, perceived noise levels, data extrapolations and flight predictions.

SECTION 3.0

TEST RESULTS AND ANALYSIS

3.1 INTRODUCTION

The analysis of performance and acoustic data was a continuing process throughout the test program, and results served as the basis for selecting design modifications. During the test program, a total of 11 mixer configurations was evaluated, accounting for approximately 230 hours of development testing. Over 1100 performance data points and 360 acoustic points were obtained.

The different types of tests and data analysis were accomplished under Tasks 4 through 7. Task 4 was associated with performance and acoustic testing of earlier mixer configurations, and Task 5 was concerned with the analysis and correlation of test results. Testing and analysis of the final mixer configurations was accomplished under Task 6 of the program.

In this section, the general performance and acoustic trends of the different test configurations are first presented in a comparison with the baseline nonmixed JT8D configuration. The final mixer configurations are then discussed in detail in terms of overall performance effects, including the impact on thrust specific fuel consumption, acoustic characteristics and structural integrity.

3.2 MIXER AERO/ACOUSTIC PERFORMANCE SUMMARY

As discussed in Section 1.4, Summary of Mixer Design Evolution, the base mixer design underwent several generations of changes before the final configurations were established. The performance results that influenced these modifications are summarized in the following paragraphs. A complete discussion of the performance and acoustic characteristics of the two final mixer designs is presented in the next section.

Testing of the base mixer design (configuration Mod. 1) indicated that exhaust system efficiency was essentially equal to that demonstrated in previous model tests. However, the fan operating line was substantially below the operating line of the standard JT8D engine, thereby producing a penalty of 30° F in exhaust gas temperature at takeoff thrust. The operating line shift and attendant exhaust gas temperature penalty was attributed to a mismatch of the mixer area ratio (Afan/Aengine). Because of the performance decrement, no acoustic testing was conducted with this configuration.

To improve performance, the mixer was modified by scalloping each of the twelve lobes. This configuration (Mod. 2) demonstrated a reduction of 15° F in the exhaust gas temperature penalty as well as a reduction in

ut.

area mismatch from +26 percent to +14.5 percent. However, performance remained unacceptable and further modifications were incorporated to improve system performance.

The third generation (Mod. 3) was successful in demonstrating acceptable exhaust gas temperatures, indicating that the area mismatch was further reduced. Acoustic testing was conducted with this configuration installed in a DC-9 tailpipe, but results showed no significant improvement in noise suppression compared to a standard JT8D engine. In addition, nozzle system performance was reduced by one percent in nozzle thrust coefficient (C_T) relative to the preceding design. Measurements of internal pressures at the mixer discharge plane and velocity surveys suggested (1) the occurrence of flow separation on the lobe sidewall and (2) a reduction in the degree of mixing which was associated with the flow separation and/or the presence of scallops on the lobe sidewalls.

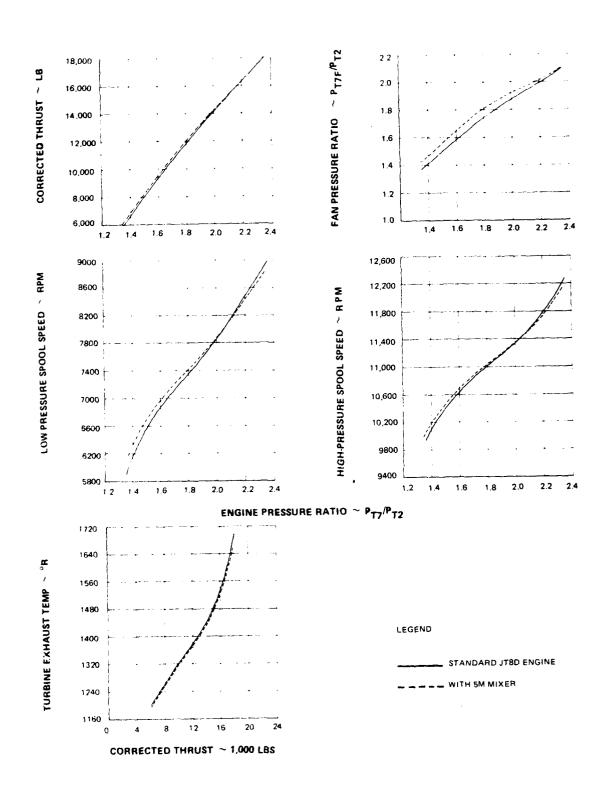
To eliminate the condition of flow separation, the mixer design (Mod. 4) was changed to increase lobe outer penetration, thereby achieving an increased core engine area without the necessity of diffusing sidewalls or scallops. Testing of an optimized version of the Mod. 4 configuration (Mod. 4A) demonstrated acceptable performance, along with a significant reduction in noise level and an exhaust gas temperature that was only 5°F higher than a standard JT8D engine.

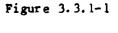
Although the Mod. 4A configuration was acceptable in performance and noise reduction, structural considerations indicated the requirement for a flexible outer support system. This design characterized the Mod. 5 mixer. Initial tests with this mixer showed a penalty in thrust specific fuel consumption of 0.2 percent and an exhaust gas temperature increase of $8^{\circ}F$ at sea level static thrust relative to the Mod. 4A configuration. This was caused by an increase of 6.4 percent in mixer area ratio. In addition, tailpipe wall temperatures exceeded levels defined for the DC-9 installation. Variations of the Mod. 5 mixer, involving a reduction in the scarf angles, resulted in the 5M configuration which met the the temperature limit of 500°F for the DC-9 tailpipe. The Mod. 5M mixer reduced the peak percieved static noise level by 2.3 PNdB. Also, general engine operating characteristics, including fuel consumption, were unaffected by the mixer.

The final mixer configuration for the 727 installation was designated Mod. 52. In terms of acoustic performance, this mixer was superior to the 5M design, demonstrating a maximum noise reduction of 4.7 PNdB. However, this had a counterproductive effect on engine performance. Fuel consumption was increased appreciably and other engine operating characteristics deviated from standard engine levels.

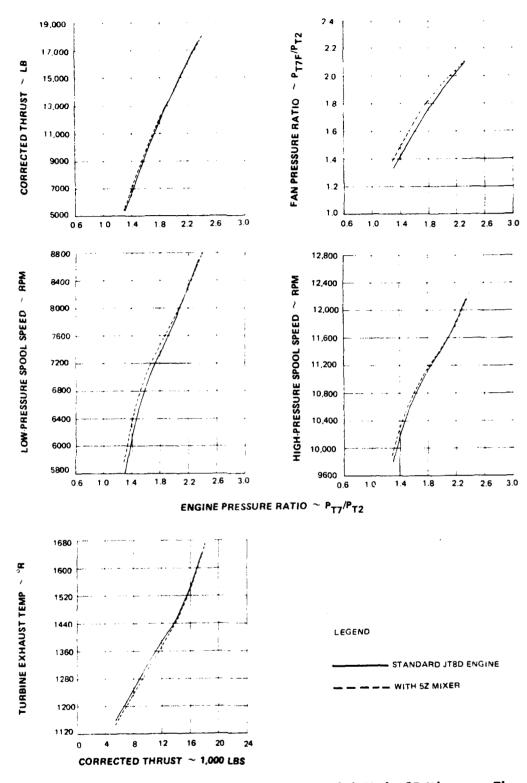
3.3 COMPARATIVE ANALYSIS OF SELECTED CONFIGURATIONS

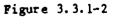
The presentation of detailed results focuses mainly on the final mixer configurations by comparing and contrasting test data to the levels of a standard JT8D-17 engine. Where appropriate, comparisons are made between the final configurations and earlier designs.


3.3.1 Overall Performance Effects


3.3.1.1 General Engine Performance

Effects produced by the 5M configuration on parameters such as thrust, rotor speeds and pressure ratios are shown in Figure 3.3.1-1 compared to a standard JT8D-17 engine at a constant pressure ratio. The slight differences with the mixer are indicative of a +1.0 percent effective area ratio (Afan/Aengine) change. In essence, these results suggest that t'e 5M configuration does not compromise static performance to any measurable degree at takeoff, since the exhaust gas temperature and fuel consumption at the 16,000-pound thrust rating are improved compared to a standard JT8D-17 engine. The slight deficiency in thrust at engine pressure ratios of 2.17 and above could be overcome by a minor adjustment to inflight power setting curves in order to ensure rated thrust at power setting engine pressure ratios. It should be pointed out, however, that this would not be detrimental to engine service life, since data indicate no penalty in exit temperature at a given thrust over the full range of power settings. Revision to power setting curves, would only result in achieving the same rated thrust as demonstrated with the standard engine configuration with no degradation in exit temperature.


Figure 3.3.1-2 shows the similar effects on thrust, rotor speeds and pressure ratios resulting from the Mod. 52 mixer. As indicated by these trends, engine thrust and pressure ratio are somewhat more sensitive to the presence of the 52 mixer than the 5M configuration. Low- and highpressure spool speeds, however, are consistent with the 5M mixer trends.


These results indicate that the presence of an internal exhaust mixer does have an influence on engine component operating characteristics, although the overall influence is slight. The difference in operating trends between the 5M and 5Z is apparently related to geometry differences.

1 Engine Performance Trends with Mod. 5M Mixer -- This mixer has a negligable effect on thrust, low- and high-pressure rotor speeds, and pressure ratio in relation to standard JT8D levels.

Engine Performance Trends with Mod. 5Z Mixer -- The presence of the 5Z mixer, compared to the 5M, has more of an effect on thrust and pressure ratio.

3.3.1.2 Exhaust System Performance

In general, mixer performance and its interaction with the engine can be assessed in terms of three parameters. These are nozzle thrust coefficient (C_T) , nozzle discharge coefficient (C_D) and area ratio. The nozzle thrust coefficient represents the combined effects of mixing and pressure loss on exhaust system efficiency. Similarly, the nozzle discharge coefficient provides an indication of the effect of mixing and pressure loss on the amount of airflow exiting the tailpipe per unit of nozzle area. A change in this parameter corresponds to the amount of increase in jet nozzle area required with the mixer to maintain the same operating line as a standard JT8D engine. Finally, the ratio of calculated flow areas in the fan and core streams at the mixer discharge reflects the flow split between these streams. This parameter is determined on the basis of measured total pressures, temperatures and flows on each side of the mixer. A change in shape or level of this parameter will indicate a change in the engine bypass ratio. In using these parameters as indicators of exhaust system performance, the influence of the Mod. 5M and 5Z mixers is discussed.

The effect on exhaust system performance with the 5M mixer is shown in Figure 3.3.1-3 as the performance differences between the mixer calibrations and corresponding standard engine configurations. These incremental differences are compared as a function of nozzle expansion ratio.

At the takeoff nozzle expansion ratio (2.15 at 16,000 pounds thrust), the nozzle discharge coefficient was 3.4 percent below a standard engine level. To compensate for this reduction in flow coefficient, the DC-9 jet nozzle area was increased by removing a section of the conical nozzle. The physical area achieved was 2.8 percent larger than the standard configuration and within 0.6 percent of the desired nominal area.

Area ratio, the other indicator of gas generator matching, was 2.9 percent below a standard engine at takeoff power. This would tend to raise the fan operating line slightly at this condition. At low nozzle expansion ratios, however, the area ratio differs significantly from a standard engine configuration. Early in the program it was determined that the total area at the mixer discharge plane can have a major affect on the shape of the engine operating line. The JT8D mixer design incorporates a bulbous plug which contributes to a reduction in flow area at the mixer discharge. The corresponding reduction in flow results in a flattening of the fan operating line. Since it is desirable to duplicate the standard engine match at the takeoff, the mixer area ratio was sized for this condition. The reduction in mixer discharge total area, therefore, resulted in a higher operating line at low power conditions.

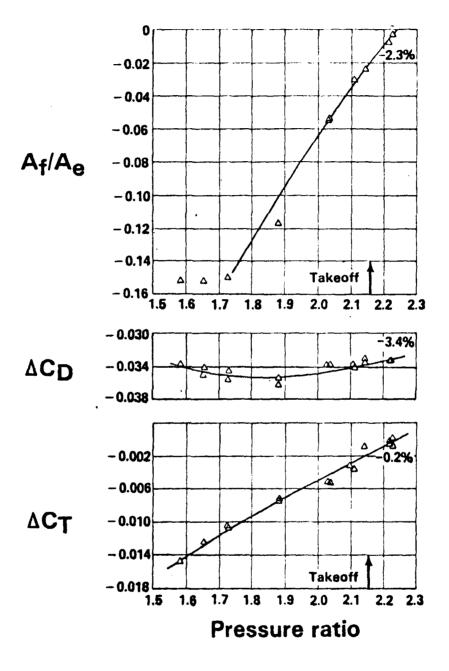


Figure 3.3.1-3

Exhaust System Performance Trends -- The figure shows the effect the 5M mixer produced on nozzle discharge coefficient, nozzle thrust coefficient and area ratio.

Nozzle thrust coefficient at takeoff is 0.2 percent below a JT8D-17 level. This, in turn, results in a 0.35 percent increase in static fuel consumption, which must be added to the effects of engine cycle efficiency because of the slight mismatch in jet nozzle area and mixer area ratio. As expansion ratio is reduced, exhaust system efficiency continues to decrease as pressure loss effects become dominant.

It is important to understand the contributions of increased mixing and increased pressure loss on exhaust system performance. Since the potential gain in thrust from mixing is a function of engine power setting and the effect of pressure loss is dependent on nozzle expansion ratio, which is a function of engine power and flight Mach numbers, both effects must be separated to predict engine performance over the range of flight conditions. This is possible through an analysis of shifts in thrust and discharge coefficients. Both parameters are reduced by increases in pressure loss, but increased mixing will improve the thrust coefficient while reducing the discharge coefficient. Only one combination of increased mixing and increased pressure loss will explain the shifts in mixer nozzle coefficients in relation to a standard JT8D engine. Analysis of test data using this method resulted in the estimates of mixing and increases in pressure loss shown in Figure 3.3.1-4.

Exhaust system performance trends with the Mod. 52/727 tailpipe configuration are summarized in Figure 3.3.1-5. At an expansion ratio of 2.15, the nozzle discharge coefficient is 0.6 percent below a standard engine and equivalent to a 1 percent increase in takeoff fuel consumption. Also, this is a 0.4 percent reduction in nozzle thrust coefficient relative to results with the Mod. 5M mixer. The decrease in nozzle thrust coefficient is suspected the result of a combination of two factors. The first is an increase in pressure loss, probably associated with the high velocity core air impinging on and scrubbing the tailpipe. Second, traverse results of the nozzle exit properties indicated an increase in mixing. This is also associated with the outward penetration of core gases that displace the fan discharge air around the tailpipe wall and thus promote mixing.

The contention of increased mixing and pressure loss is supported by the nozzle discharge coefficient trends in Figure 3.3.1-5. Both mixing and pressure loss tend to reduce the flow coefficient. Test data with the 52 mixer indicate substantial reductions in flow coefficient in relation to both a standard JT8D engine and Mod. 5M configuration of 4.3 percent and l.1 percent, respectively. Calculations of mixing and pressure losses based on the nozzle coefficient closure technique discussed previously further support this contention.

For testing the 52 mixer, the jet nozzle area of the 727 tailpipe was increased by 3.8 percent. Since the discharge coefficient was reduced by 4.3 percent at takeoff, the nozzle matching at takeoff required a 0.5 percent larger nozzle increase to attain the desired match. The net effects of mixing and pressure loss result in a decrease in the discharge coefficient, which varies as a function of engine power setting.

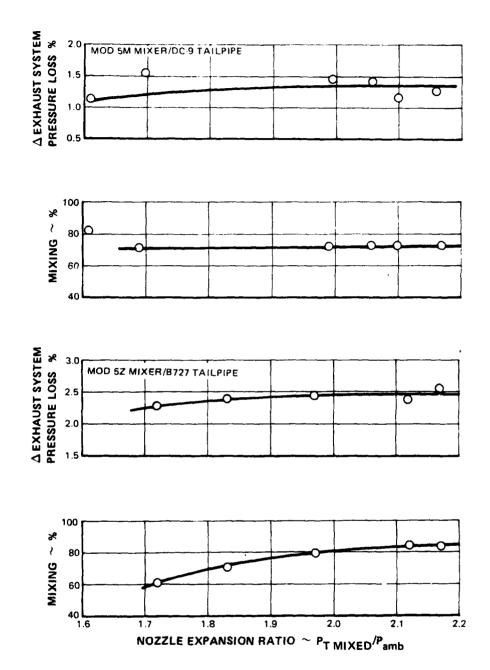
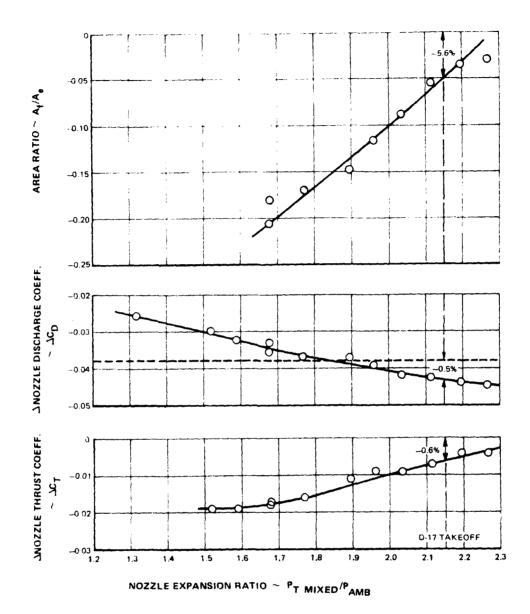



Figure 3.3.1-4 Analytical Projection of Mixer Performance in Relation to Standard Exhaust System Performance --Estimates in mixing and pressure loss can be derived from the analysis of shifts in nozzle thrust and discharge coefficients.

Therefore, correct nozzle sizing could only be achieved at a single point. An area increase of 3.8 percent was selected to avoid excessive compromises in operating line shift at very high or very low power setting.

<u>)</u> E

Figure 3.3.1-5 Exhaust System Performance Trends -- The figure shows the effect the 52 mixer produced on nozzle discharge coefficient, nozzle thrust coefficient and area ratio.

Area ratio, as shown in Figure 3.3.1-5, is 5.6 percent below a standard engine at takeoff with a much larger variation at low power. As with the 5M configuration, the reduction in area at the mixer discharge plane results in a variation in calculated area ratio as a function of power.

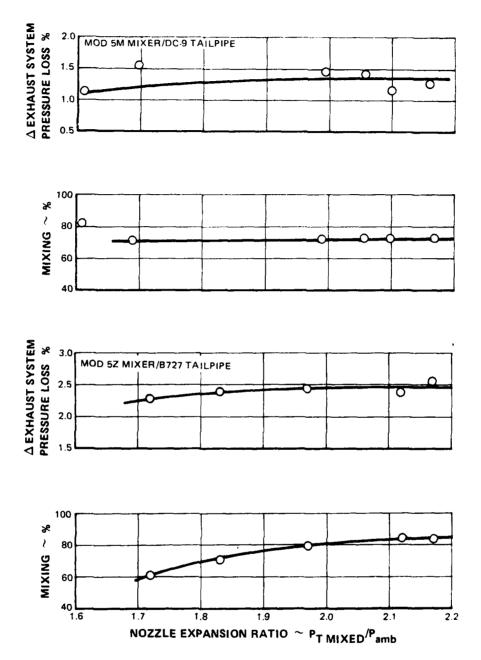


Figure 3.3.1-4

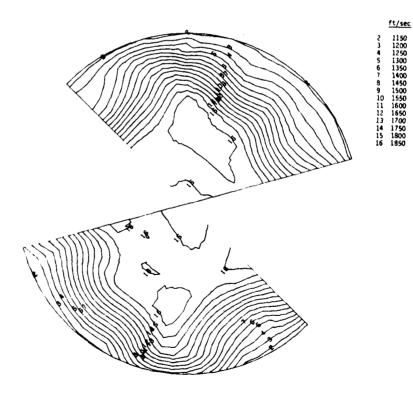
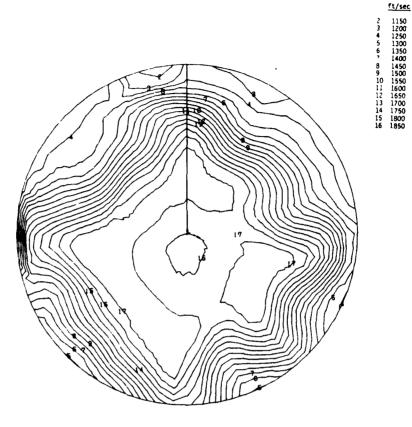
Analytical Projection of Mixer Performance in Relation to Standard Exhaust System Performance --Estimates in mixing and pressure loss can be derived from the analysis of shifts in nozzle thrust and discharge coefficients.

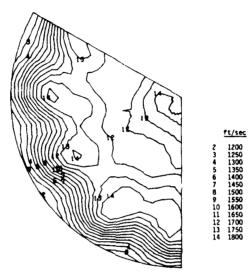
Therefore, correct nozzle sizing could only be achieved at a single point. An area increase of 3.8 percent was selected to avoid excessive compromises in operating line shift at very high or very low power setting.

3.3.1.3 Mixer Aerodynamic Performance

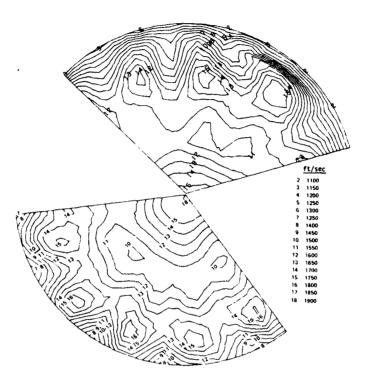
Nozzle exit velocity profiles were used to assess the degree of radial and circumferential mixing of selected mixer configurations. Data to generate the profiles were acquired with traversing pressure and temperature instrumentation in a plane approximately 2 inches from the nozzle exit. By assuming that static pressure is constant across the face of the nozzle and that this pressure is equivalent to the static pressure measured on the external surface of the nozzle, velocities could be calculated from the traverse data and isopleths of constant velocity could be generated. All traverse data were obtained at maximum continuous power and velocities corrected to ambient conditions were used for correlating noise data (77°F ambient temperature).

The exit velocity pattern of a standard JT8D-17 engine with a DC-9 tailpipe is shown in Figure 3.3.1-6 and a profile with a 727 tailpipe is shown in Figure 3.3.1-7. Figures 3.3.1-8 through 3.3.1-12 show the exit profiles of selected mixer configurations. The missing sectors at the 4:00 and 10:00 o'clock positions correspond to the locations where the gear on the traverse instrumentation equipment interferred with the stangs that support the DC-9 reverser linkage.


Figure 3.3.1-6

Exit Velocity Profile of Standard JT8D-17 Engine with DC-9 Tailpipe — The higher temperature and higher velocity flow is concentrated in the central region.


Exit Velocity Profile of Standard JT8D-17 Engine with 727 Tailpipe — The exit flow pattern is essentially the same as that with the DC-9 tailpipe.

As indicated in Figure 3.3.1-6, the higher temperature, higher velocity gases exiting the turbine in a standard JT8D engine are concentrated in the center of the DC-9 tailpipe. Peak velocities in excess of 1850 ft/sec are exhibited in the flow. Cooler, low velocity gases tend to accumulate near the tailpipe walls, and a fair degree of mixing as a result of viscous shear is evident from the lack of a distinct boundary between the two streams. The diamond shape of the velocity contour is typical of a JT8D engine and is attributed to an interaction of gases with the tangential struts in the fan stream and the turbine exhaust case struts in the core stream. Overall, the exit porfile of the JT8D with the 727 tailpipe is very similar, as indicated in Figure 3.3.1-7.

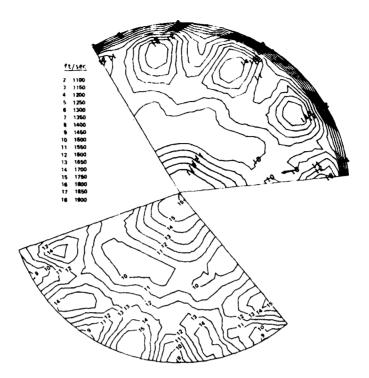
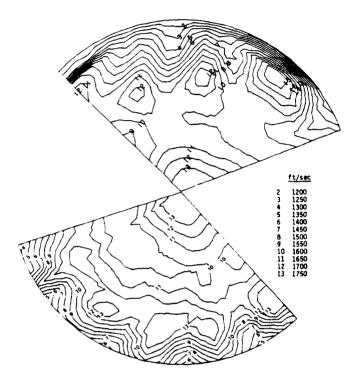
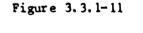

Exit Velocity Profile with Mod. 3 Mixer -- This profile exhibits appreciable mixing of core and fan stream gases.

Figure 3.3.1-8 shows the velocity pattern with the Mod. 3 configuration, the first mixer evaluated for acoustic performance. The position of the mixer lobes is clearly visible as high velocity islands at the mid span location. In contrast to the profile in Figure 3.3.1-6, the region of high velocity gas diminished considerably, although some moderately high velocity regions up to 1800 ft/sec are still present.

Exit Velocity Profile with Mod. 4A Mixer -- Increased mixing, representative of a substantial noise reduction, is indicative of the greater penetration of core cases to the outer area.


The design changes in the Mod. 4A mixer successfully increased mixing, as indicated in Figure 3.3.1-9. The higher velocity gases penetrated further towards the outer tailpipe wall and a region of low velocity gases displaced the hotter gases at the 30 to 60 percent span location. These changes in exit characteristics are significant since the Mod. 3 configuration produced essentially no reduction in noise, while the Mod. 4A design demonstrated a substantial noise reduction.



Exit Velocity Profile with the Mod. 5 Mixer -- The higher rate of mixing with the attendant higher temperature gas flow in the outer region produced high tailpipe wall temperatures.

Traverse results with the basic Mod. 5 configuration are shown in Figure 3.3.1-10. The effect of increased deflection of the mixer lobes is apparent in the radial movement of high velocity regions. Although this outward dispersement of high temperature gases appeared to increase the rate of mixing, it also produced unacceptably high tailpipe wall temperatures for the DC-9 installation. The effect of configurational changes to alleviate this condition (Mod. 5M) is shown in Figure 3.3.1-11. Exit velocity characteristics indicate a similar degree of mixing and the position of the lobe centers as achieved with the Mod. 4A design. Also, a coolant film of fam air protects the outer wall from the direct impingement of high temperature core gases.

The profile with the Mod. 5Z mixer/727 tailpipe in Figure 3.3.1-12 shows the apparent increase in the displacement of the core flow with the fan stream flow. The absence of a tailpipe temperature limit and thus elimination of a cooling film on the outer wall, permitted the penetration of the higher temperature core flow to the outer wall. The displacement of fan and core stream flows is so thorough that the central region is dominated by fan flow while the outer region is dominated by core flow. In other words, the flow distribution has been inverted, thereby forming an inverted velocity profile — a characteristic evident only with the 52 mixer. Further discussion of the inverted velocity profile and the influence on acoustic characteristics is presented in Section 3.3.2.4.

Exit Velocity Profile with the Mod. 5M Mixer -- As evident by this profile, the 5M configuration was successful in optimizing mixing properties while maintaining acceptable outer wall temperature levels. Note the similarity to the Mod 4A profile.

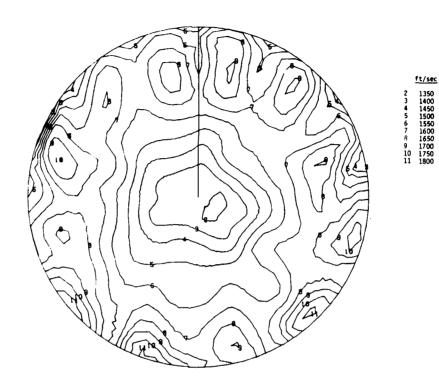


Figure 3.3.1-12 Exit Velocity Profile with Mod. 5Z Mixer -- This profile is characterized by an displacement of fan and core - inverted velocity profile.

3.3.2 Acoustic Characteristics

3.3.2.1 Acoustic Comparisons with 5M Mixer/DC-9 Tailpipe

In this section, representative noise reduction trends demonstrated with the 5M mixer are compared to a standard JT8D engine and discussed in terms of peak perceived noise level (PLN), directivity and noise spectra. These comparisons show that the Mod. 5M mixer provided significant static jet noise reductions over the range of frequencies and angles necessary to obtain meaningful reductions in airplane takeoff noise. Noise levels presented in this section are based on static data.

Estimates of inflight levels are contained in Section 3.3.2.3.

To illustrate the effect on peak PNL, Figure 3.3.2-1 shows a comparison of peak PNL at 1500 feet versus thrust for both standard JT8D-17 engine and 5M mixer configurations based on the data regression procedure outlined in Section 2.2.2.2. At the bottom of the figure, the reduction in peak perceived noise level from the mixer is shown as a function of thrust. As indicated, the mixer provided a reduction in peak PNL over the entire thrust range. The maximum reduction was 2.3 PNdB at 13,000 pounds, which is the thrust range typical of reduced thrust "cutback operation" used during takeoff. The minimum reduction was 1.4 PNdB, occurring at the 6000 pound thrust level.

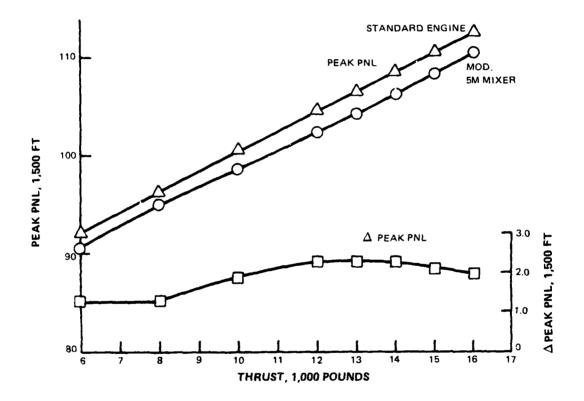


Figure 3.3.2-1

Perceived Noise Level Trends -- Compared to a standard JT8D engine configuration, the mixer provides a maximum noise reduction of 2.3 PNdB, occurring at a thrust setting of 13,000 pounds.

Comparisons of PNL directivity patterns (PNL versus radiation angle,) for the same test configurations are shown at three thrust conditions in Figure 3.2.2-2. Radiation angle is defined as the angle relative to the upstream jet axis and centered at the tailpipe exit plane. The operating conditions shown are a takeoff static gross thrust rating of 16,000 pounds, a typical cutback thrust level of 12,000 pounds, and a low power level of 6000 pounds which is within the thrust range used during landing approach. As indicated by this figure, the maximum reductions in PML from the mixer occurred in the mid-angle range for all thrust levels. Figure 3.3.2-3 shows the reduction in PML also as a function of radiation angle for the same thrust conditions. The peak reduction angle ranged from 130 to 150 degrees, depending on the thrust level. At angles less than 110 degrees, the noise reduction was less than 1 PNdB and there was no distinct trend with thrust level. However, at 130 degrees, the reduction in noise increased with thrust, reaching a maximum value of 2.5 PNdB at 16,000 pounds thrust. Above 135 degrees, noise suppression decreased with thrust. The maximum reduction at any one angle was 2.7 PNdB, occurring at 150 degrees and 6000 pounds thrust.

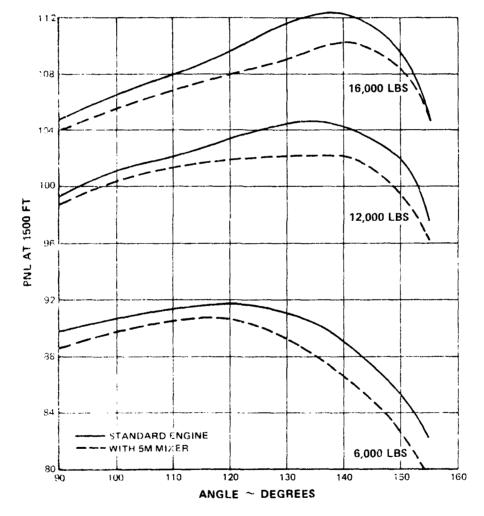


Figure 3.3.2-2 Perceived Noise Level Directivity Trends -- At all thrust conditions and angles, the mixer demonstrated a reduction in noise.

67

A special procedure was employed to compare noise spectra at equal thrust values. One-third octave band data were processed with the Pratt & Whitney Aircraft computer program for one-third octave band averaging. The program provides a high order polynominal least squares regression for each one-third octave band sound pressure level versus a selected parameter — in this case, the core stream jet velocity in feet per second, expanded to ambient pressure and corrected to a $77^{\circ}F$ day.

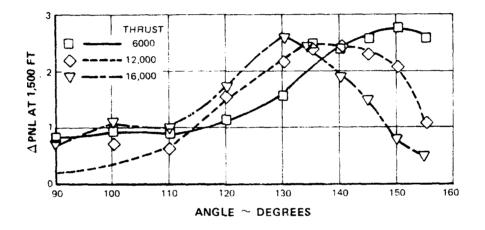
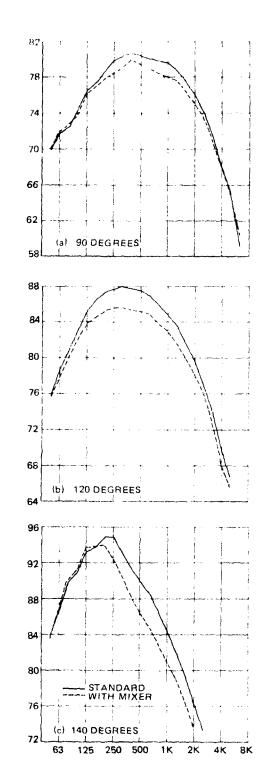
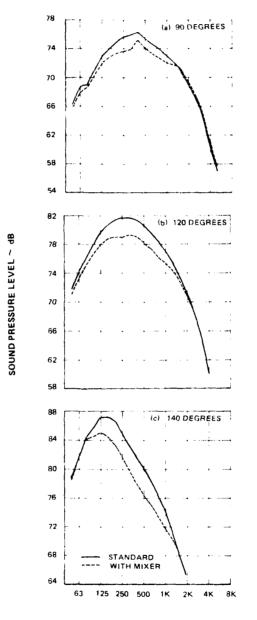



Figure 3.3.2-3 Perceived Noise Level Reduction Directivity Trends --As indicated, the maximum noise reduction at any single angle is 2.7 PNdB, occurring at 150 degrees and 6000 pound thrust.

Figures 3.3.2-4 through 3.3.2-6 present a comparison of one-third octave band averaged free-field spectra extrapolated to a 1500-foot sideline distance for a 77°F FAA day. In these figures, spectral data for both standard and mixed configurations are shown for three angles at each of the three thrust settings.

Figure 3.3.2-4(a) shows the spectra at an angle of 90 degrees for a thrust level of 16,600 pounds. Significant reductions in sound pressure level (SPL), up to 1.6 dB, resulting from the mixer occur at frequencies from 200 to 2000 Hz, with essentially no reduction at frequencies outside this range. The small noise peak in the mixer spectra at 400 Hz is attributed to combustion noise, described in detail in FAA report "Combustion Noise Investigation" (FAA RD-77-3). This noise is not in the standard engine spectra because of the higher level of jet noise. At an angle of 120 degrees (Figure 3.3.2-4(b)), noise reductions up to 3 PNdB were obtained. However, as indicated in Figure 3.3.2-4(c), only a 1 PNdB reduction was attained at an angle of 140 degrees.

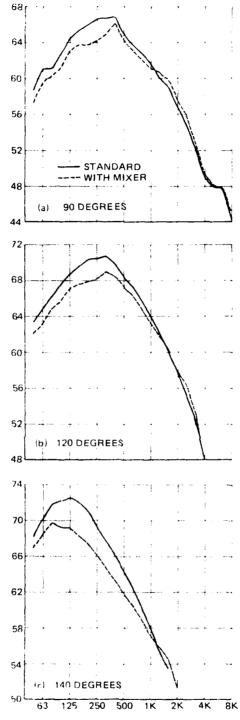
ąp


1

SOUND PRESSURE LEVEL

ONE-THIRD OCTAVE BAND CENTER FREQ ~ ${\rm H_Z}$

Figure 3.3.2-4


Noise Spectra Trends at Takeoff Thrust Setting --This series of curves shows that the most significant reductions in sound pressure level resulting from the mixer occur at frequencies from 200 to 2000 Hz. Spectra at a 12,000-pound thrust level are presented in the series of curves in Figure 3.3.2-5. At 90 degrees, the peak at 400 Hz is more pronounced in the mixer spectra than at 16,600 pounds (Figure 3.3.2-4(a)). The results at 120 degrees are similar to trends at the higher thrust level. At 140 degrees, however, the peak SPL noise reduction is 2 PNdB, compared to only 1 PNdB at 16,000 pounds thrust.

ONE-THIRD BAND CENTER FREQ ~ H₂

Figure 3.3.2-5

Noise Spectra Trends at Cutback Thrust Setting --Noise reduction trends are similar to results at takeoff power.

Note Spectra Trends at Approach Thrust Setting -the reduction trends are similar to results at a transport

SOUND PRESSURE LEVEL ~ dB

Figure 3.3.2-6 shows spectra at the 5000-pound thrust level. Results at a 90-degree angle show the noise peak occurring at 400 Hz in the mixer spectra is more prominant than at either of the higher thrust levels. Also, the 400 Hz noise is apparent in the standard JT8D engine spectra, a result not evident at higher thrust levels. Moreover, as indicated in Figure 3.3.2-6(b), the 400 Hz noise is present in both spectra at 120 degrees. These results, in terms of frequency and level, are consistent with core combustion noise predictions published in the aformentioned FAA report (RD-17-3) for the JT8D engine. In the standard engine configuration, core noise is present at low thrust levels because jet noise diminishes at a faster rate with decreasing thrust. The core noise is evident in the spectra at all thrust settings with the mixer since the mixer produces significant reductions only in the jet noise component.

A comparison of noise spectra at 90 and 120-degree angles in Figure 3.3.2-6 indicates that reductions in jet noise were achieved at frequencies up to approximately 1600 Hz. However, above 1600 Hz, the mixer produces SPL levels up to 1 PNdb higher than . standard JT8D. This is believed to be the influence of fan-generated noise, which would be expected to increase with the mixer installed because of a small increase in low-pressure rotor speed at low thrust settings. At an angle of 140 degrees, as shown in Figure 3.3.2-6(c), a significant reduction in noise at most frequencies was demonstrated with the mixer.

3.3.2.2 Inflight Noise Estimates -- Mod. 5M Mixer/DC-9 Tailpipe

Noise data obtained from the static tests were used to estimate effective perceived noise levels (FPNL) reductions for a mixer-equipped engine relative to a standard JTOD engine when both are operating under forward flight conditions at equal thrust levels. For these estimates, airplane altitude and airspeed were defined at 1500 feet and 300 feet per second, respectively, which are typical operating conditions for JTBD-powered aircraft. Since the static data used in the inflight estimates were measured by ground plane microphones, the EPNL estimates have been made for ground plane measurements. It was assumed that noise from the engine exhaust was not contaminated by other noise sources such as the fan. Possible effects on noise propagation from aircraft shielding were not considered and extra ground attenuation was ignored.

The analytical procedure employed to establish the estimates consisted of the following:

- (1) Static noise levels from each configuration measured by the ground plane microphone (90 to 155 degrees) were extrapolated to an altitude of 1500 feet. Perceived noise levels at angles forward of 90 degrees were established by assuming that the ground microphone perceived noise level versus angle shapes for angles less than 90 degrees were the same as those measured by the pole microphones.
- (2) The static PNL at each angle was corrected to provide flight PNLs by accounting for the effect of airplane

forward speed the procedure described in NASA TM 79155 (An Improved Method for Predicting the Effects of Flight on Jet Mixing Noise: J. R. Stone; June 1979).

- (3) Flyover time histories (flight PNL versus time) were plotted by assuming a level flyover at an altitude of 1500 feet and an airplane speed of 300 feet per second.
- (4) Effective perceived noise levels were calculated by interpolating the PNL time history plots at 0.5-second intervals, and using the formula below over a duration corresponding to that specified by the 10 dB down point.

 $EPNL = -13 + 10 \log [10 Exp (PNL/10)]$

The estimated inflight perceived noise level time histories for a standard JT8D engine and an engine incorporating a Mod. 5M mixer are presented in Figure 3.3.2-7 for the static gross thrusts of 16,000 and 12,000 pounds, which correspond to the engine power setting at maximum and cutback thrusts, respectively. The reduction in EPNL produced by the mixer at the 16,000 pound thrust power setting was calculated at 2.7 dB. This estimate is greater than the reduction in peak static PNL by 0.7 dB. The estimated reduction in EPNL at the 12,000-pound thrust level is 2.4 dB, which is 0.1 dB greater that the peak static PNL reduction.

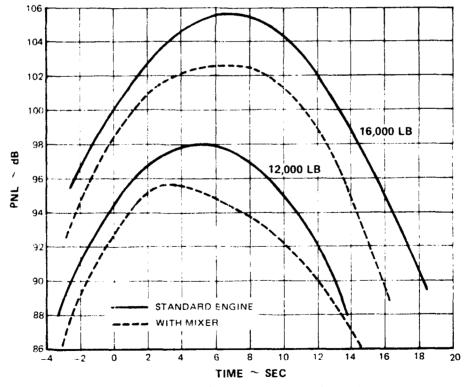


Figure 3.3.2-7 Estimated Inflight PNL Time Histories for Takeoff and Cutback Thrust Settings -- Estimates of inflight EPNL noise reduction are higher than measured static peak PNL reduction.

It would be also desirable to estimate the inflight noise reduction with the mixer during the landing approach condition. However, actual approach flyovers of airplanes powered by JT8D engines clearly show that fangenerated noise dominates the overall noise signature at this low thrust condition, as illustrated by the noise spectrum in Figure 3.3.2-8. This spectrum, occurring at the angle of peak PNL (between 70 and 80 degrees) during the approach flyover of a JT8D-powered DC-9 airplane, contains a large amplitude discrete tone at 3300 Hz generated by the fan. The static data measured during this program does not show the presence of this tone since the use of an inlet suppression tube eliminated the inlet-radiated noise. Thus, although the mixer produced significant reductions in jet noise at low thrust levels, as discussed earlier, the dominance of fan noise precludes estimating mixer noise reductions at this operating condition.

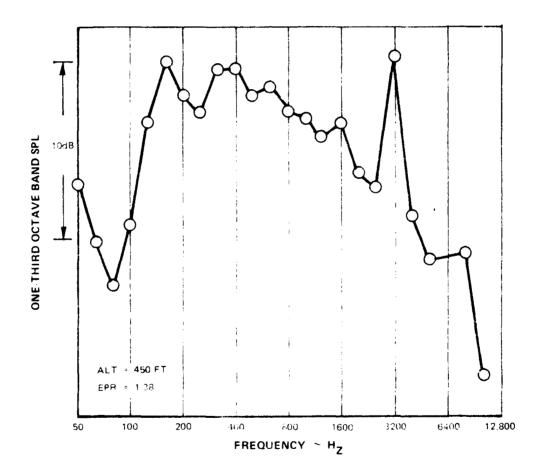


Figure 3.3.2-8 Inflight Noise Spectrum at Time of Peak PNL for JT8D Engines -- Fan-generated noise dominates the noise signature at this low power setting.

3.3.2.3 Acoustic Comparisons with 5Z Mixer/727 Tailpipe

Static acoustic test results acquired with the 5Z mixer and 727 tailpipe are discussed in terms of peak perceived noise level (PNL), directivity and noise spectra. These results demonstrate that the variations in mixer geometry produced significant differences in noise reductions compared to the Mod. 5M/DC-9 configuration. Estimates of inflight levels are contained in Section 3.3.2.4.

Figure 3.3.2-9 shows a comparison of peak PNL at 1500 feet versus thrust for both standard exhaust and 5Z mixer configurations based on the data regression procedure outlined in Section 2.2.2.2. Noise characteristics of a standard JT8D engine were essentially the same with the 727 tailpipe as the DC-9 tailpipe, indicating that a change in tailpipe had a negligible effect on peak perceived noise level. However, in comparison to the Mod. 5M mixer, the 52/727 configuration produced substantially lower values of peak PNL at thrusts above 10,000 pounds. The reduction in peak PNL was 4.7 PNdB at 16,000 pounds thrust, which is 2.7 PNdB greater than that exhibited with the 5M mixer. At a thrust of 12,000 pounds, the peak noise reduction was 3.0 PNdB, compared to 2.3 with the 5M mixer.

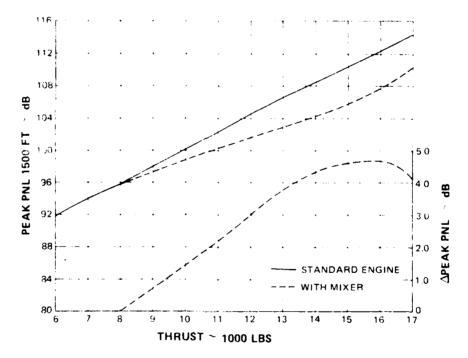


Figure 3.3.2-9 Perceived Noise Level Trends -- The demonstrated noise reduction at high power settings is 4.7 PNdB with the 5Z mixer.

Comparisons of PNL directivity patterns are shown in Figure 3.3.2-10 at both 16,000 and 12,000 pounds thrust. In comparing these results with data acquired with the Mod. 5M mixer in Figure 3.3.2-2, it is apparent that the 5Z configuration produced significantly greater noise reductions at angles beyond 110 degrees. It is also noted that the directivity pattern of a standard JT8D engine with either a DC-9 or 727 tailpipe is quite similar, except at a 155-degree angle where noise levels with the 727 tailpipe are higher. This indicates that differences in tailpipe geometry had a negligible effect on noise directivity.

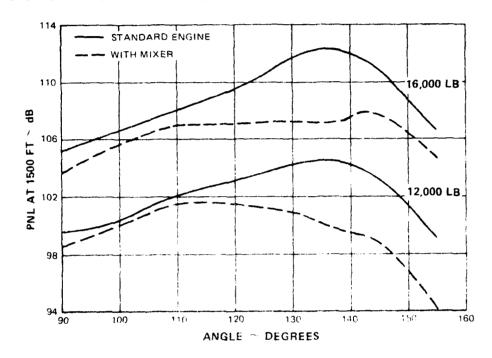
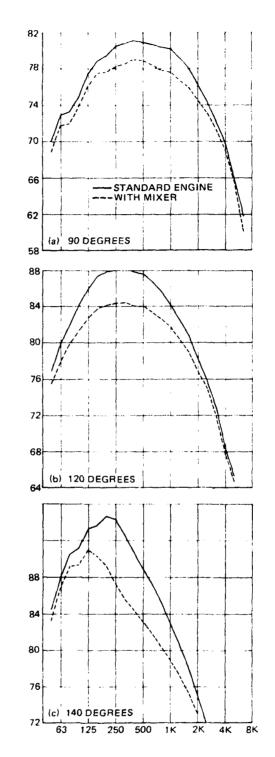



Figure 3.3.2-10 Perceived Noise Level Directivity Trends -- At all thrust conditions and angles, especially beyond an angle of 110 degrees, the 5Z mixer demonstrated a reduction in noise.

Noise spectra data are presented by the series of curves in Figure 3.3.2-11. In comparison spectra data with the Mod. 5M mixer, the 5Z mixer again produced more suppression over most of the frequency range. For example, at 140 degrees and at 16,000 pound thrust, the 5M configuration reduced the peak sound pressure level by 1 PNdB, in contrast to the reduction of 4 PNdB demonstrated by the 5Z mixer.

1/3 OCTAVE BAND CENTER FREQUENCY \sim H_Z

Figure 3.3.2-11

> dB

SOUND PRESSURE LEVEL 1500 FT.

Noise Spectra Trends at Takeoff Thrust Setting --These results show the most significant noise reductions in sound pressure level with the mixer occur at frequencies from 125 to 2000 Hz. The data in Figure 3.3.2-12 quantity the differences in sound pressure level versus frequency at a thrust of 16,000 pounds. In this figure, the differential sound pressure levels of each of the two mixers are shown in relation to a standard engine. At each of the three angles presented, the 5Z mixer/727 configuration produced greater noise reductions at frequencies below 2000 Hz than the 5M/DC-9 configuration.

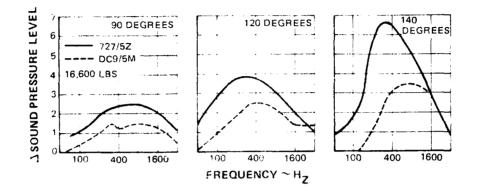
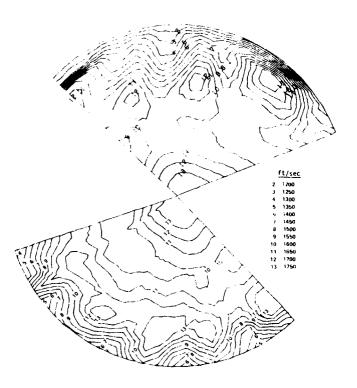
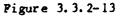
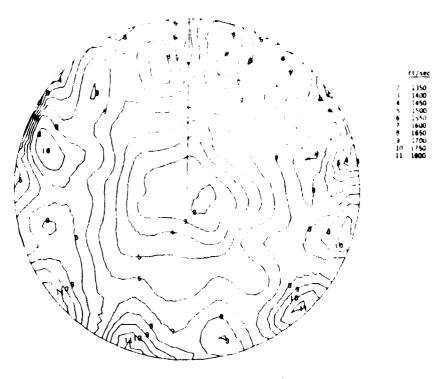




Figure 3.3.2-12 Sound Pressure Level Reduction -- The superior noise reduction copability of the 5Z mixer is clearly indicated -- this capability can be related to differences in tailpipe exit velocity profiles developed by each mixer configuration.


The differences in noise reduction capability between the 5Z and 5M mixers can be related to the differences in tailpipe exit velocity profiles developed by each mixer configuration. Figures 3.3.2-13 and 3.3.2-14 show the exit velocity characteristics with the 5M and 5Z mixers, respectively. Each profile is distinguished by lines of constant velocity (iso-velocity contours), the values of which are indicated on each isovelocity line. In examining these profiles, there are several major differences. First, the 5M/DC-9 configuration shows very high velocities, in excess of 1750 ft/sec, in the central region, while this same region in the 5Z/727 configuration exhibits low velocity levels -- on the order of less than 1400 ft/sec. Secondly, maximum velocities (greater than 1800 ft/sec) with the 5Z/727 tailpipe were located at the outer edge of the bottom tailpipe cross section, while in the other the maximum velocities were located at about 80 percent of the radius with slightly lower values.

78

Exit Velocity Profile with 5M/DC-9 Configuration --The central region exhibits higher velocity levels compared to the 5Z/727 configuration.

Exit Velocity Profile with 52/727 Configuration --The central region of this profile is dominated by lower velocity fan stream flow and the outer region is dominated by the higher velocity core flow.

Figure 3.3.2-15 further illustrates the differences in these profiles. In this figure, the velocity along a radial line at approximately 190 degrees clockwise from the top of the engine is shown as a function of radial location. The 5M profile, although reasonably well mixed in this region, contains higher than average velocities in the central and 80 percent span regions. In contrast, the 52 profile has an inverted characteristic -- the lower temperature fan flow is dominant in the central region while the higher velocity, higher temperature core flow dominates the outer radial region. The inverted nature of this flow is believed responsible for the appreciable noise reduction by the 52 mixer.

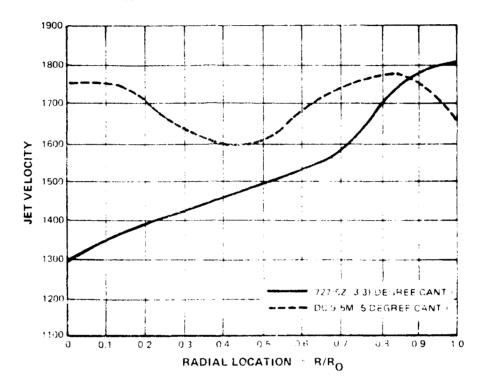
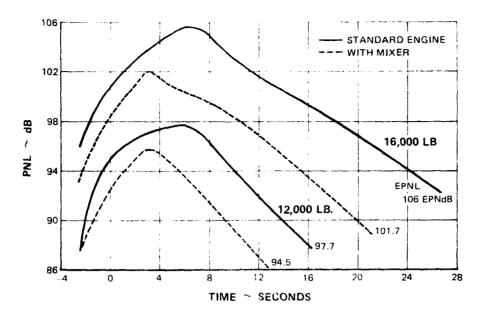
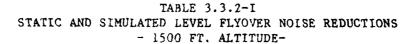


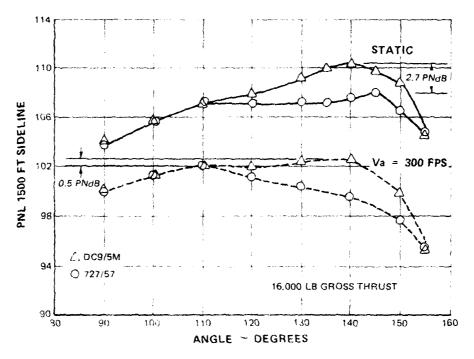
Figure 3.3.2-15 Velocity as a Function of Radial Location -- The inverted velocity characteristics produced by the 52 mixer, compared to the 5M configuration, is apparent by the data.

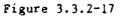
3.3.2.4 Inflight Noise Estimates -- Mod. 5Z Mixer/727 Tailpipe

The same procedure described in Section 3.3.2.2 was also employed to estimate the inflight noise reduction characteristics. In using this procedure, estimated flight PNL time history curves were determined for both a standard engine and with the 5Z mixer at static thrusts of 16,000 and 12,000 pounds. The estimates of noise reduction are presented in Figure 3.3.2-16.




Figure 3.3.2-16 Estimated Inflight PNL Time Histories -- The estimated noise suppression levels with the 5Z mixer are significant at both thrust settings relative to a standard JT8D engine.


The reduction in EPNL produced by the 52 mixer relative to a standard engine at 16,000 pounds thrust was estimated at 4.3 EPNdB. This value is 1.6 EPNdB greater than the 2.7 EPNdB estimated for the 5M/DC-9 configuration. However, although the differential EPNL reduction for the 5M/DC-9 configuration was 0.7 dB greater than the static differential peak PNL, the differential reduction for the 5Z/727 configuration was less than the static differential peak PNL by 0.4 dB.


Table 3.3.2-I summarizes the static peak PNL reduction as well as the estimated in-flight EPNL reduction for the 5M/DC9 and the 5Z/727 configurations relative to their respective baselines at three gross thrust levels: 16,000 and 14,500 pounds, JT8D-17 and -9 full takeoff power, respectively; and 12,000 pounds, a typical value of takeoff cutback thrust. The table shows that the large reduction in peak PNL at static full power takeoff conditions is somewhat reduced in terms of EPNL reduction under flight conditions.

The explanation for the dissimilarity in static-to-flight effectiveness of the two mixer configurations is related to the large differences in the static PNL directivity patterns and the result of applying the jet effects corrections to these directivity patterns to arrive at inflight PNL time histories. Static and flight PNL characteristics at 16,000 pounds thrust for both mixers are shown in Figure 3.3.2-17. The static data in this figure show that the differences in peak PNL is 2.5 PNdB between the two mixer configurations. In flight, however, the difference is predicted to be 0.5 PNdB.

	Mixer 5M (Flat Profile)	Mixer (Inverted Profile)
Static Test Results		· · · · · · · · · · · · · · · · · · ·
(Peak PNL Reduction)		
D-17 Takeoff Thrust (16,000 lb.)	2.0	4.7
D-9 Takeoff Thrust (14,500 lb.)	2.2	4.5
Takeoff Cutback (12,000 lb.)	2.3	3.0
Analytical Flyover Predictions (EPNL Reduction)		
D-17 Takeoff Thrust	2.7	4.3
D-9 Takeoff Thrust	2.6	4.2
Takeoff Cutback	2.4	3.2

Static and Estimated Inflight PNL Versus Noise Radiation Angle — Static results indicate a difference in peak PNL of 2.7 PNdB with the two mixer configurations, while the inflight difference is predicted to be 0.5 PNdB. This change in noise characteristics from static to flight resulted because the application of flight effects reduced the peak PNL of the 5M mixer more than the 5Z. This results because (1) the flight correction increases with increasing angle (up to angles of about 150 degrees), which is beyond the peak in the static PNL directivity pattern of both mixers and (2) the 5M mixer had more of a pronounced peak occuring at approximately 140 degrees in comparison to the 5Z configuration which had a relatively flat directivity pattern. Since the peak PNL in flight is the dominant factor in the determination of EPNL, the differential EPNL reflect the peak inflight PNL differences.

At a thrust of 12,000 pounds, it was estimated that the 5Z mixer reduced the EPNL by 3.2 PNdB in relation to a standard engine, compared to a reduction of 2.4 PNdB estimated with the 5M mixer.

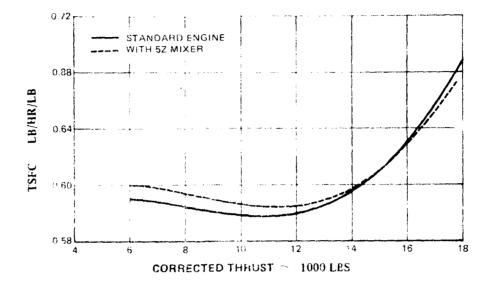
The estimates for the 5M and 5Z configurations must be viewed with a certain degree of caution since the static-to-flight corrections for the mixers were assumed to be a function only of jet velocity and air speed. Exit velocity profile shape differences are not accounted for in the flight correction procedure. In addition, although a limited amount of data on fully inverted velocity profiles were obtained in simulated flight testing in wind tunnels, there are no data available for the partially inverted profile characteristic of the 52/727 configuration.

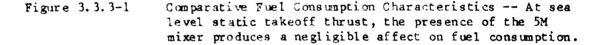
3.3.2.5 Jet Crackle Observations

The introduction of the increased thrust JT8D-15 and -17 models also introduced an aspect of jet noise not easily discernable on earlier lower thrust versions of the engine. This noise called "crackle" is characterized by a rapid and irregular series of cracks and bangs.

The presence of crackle has been noticed preivously on high jet velocity turbojets, and a thorough study on the subject can be found in: J.E. Ffowcs Williams et. al. "'Crackle': An Annoying Component of Jet Noise", J. Fluid Mechanics (1975) Volume 71, Part 2, Pages 251-271.

Although audibly important in high velocity jets, crackle does not influence the spectral character of jet noise and its presence can only be discerned by ear.

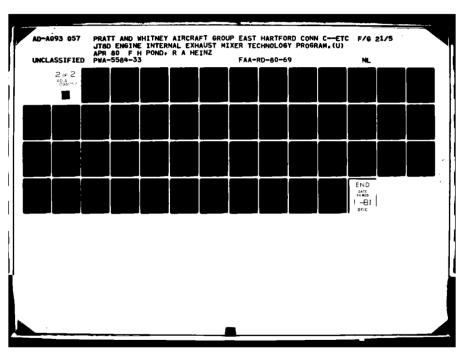

During the testing of the JT8D engines at jet velocities equal to the net in-flight jet velocity of the JT8D-17 engine, a significant decrease in the crackle was observed when the mixers were installed.


Thus, in addition to the sizable reductions in measured jet mixing noise from the mixer in terms of the perceived noise level and spectra, an additional benefit was obtained by the significant reduction in crackle.

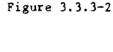
3.3.3 Fuel Consumption Characteristics

In comparison to a standard JT8D-17 engine, testing with the Mod. 5M/DC-9 tailpipe mixer resulted in a 0.3 percent improvement in thrust specific fuel consumption (TSFC). Figure 3.3.3-1 shows a comparison of engine fuel

consumption characteristics throughout the operating range. As indicated, fuel consumption with the mixer is higher at lower power settings than a standard engine configuration. At takeoff power, however, there is a 0.3 percent improvement between a mixer and a standard engine.

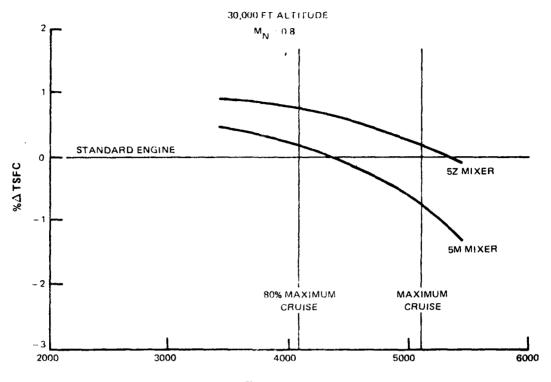


Test results with the Mod. 52 mixer/727 tailpipe configuration show a TSFC penalty of 1.3 percent at sea level static takeoff thrust with no change in exhaust gas temperature. Figure 3.3.3-2 shows the fuel consumption characteristics with the Mod. 52 mixer compared to a standard engine configuration. Typically, fuel consumption levels with the mixer are higher throughout the operating range.


The comparison of other measured engine parameters such as thrust, pressure ratios and rotor speeds showed that changes in these operating parameters relative to a standard JT8D engine imparted a negligible fan to primary area ratio change. Consequently, the penalty associated with the mixer is probably attributable to an increase in pressure loss resulting from the hot gases scrubbing on the internal surface of the tailpipe. Results acquired in other acoustic and performance testing support the high fuel consumption levels with the Mod. 52 mixer/727 tailpipe configuration. However, because of a problem with the test facility, it was not possible to confirm the magnitude of increase.

Predictions of altitude performance with both mixer configurations were made using trade factors generated for computer simulation of related mixers in which test data were available. The flight conditions consis-

ted of an altitude of 30,000 feet and a flight Mach number of 0.8. Comparative predicted fuel consumption trends of the 5M and 5Z mixers are presented in Figure 3.3.3-3.



Comparative Fuel Consumption Characteristics --Incorporation of the 5Z mixer configuration results in a fuel consumption penalty of 1.3 percent at sea level static takeoff thrust.

As shown, altitude performance predictions for the 5M mixer indicate a 0.75 percent improvement in fuel consumption at the maximum cruise condition, but a 0.2 percent penalty at 80 percent of the maximum cruise condition. With the 5Z configuration, fuel consumption increases are predicted at both the maximum cruise condition (0.2 percent) and 80 percent of maximum cruise (0.8 percent). These results are based on the fact that the pressure loss at altitude is reduced at high nozzle expansion ratios, while mixing gains are essentially the same relative to sea level static operation.

3.3.4 STRUCTURAL INTEGRITY

Testing was successful in substantiating the structural integrity of the mixer component as well as verifying that the mixer does not impart any adverse effects on the interactive behavior of other engine components. Steady stress levels measured on the mixer were below the defined limit for an acceptable low cycle fatigue life. The combination of measured vibratory stress levels of + 5000 psi or less and measured steady stress levels falls within the allowable high frequency fatigue limits.

THRUST, LBS

Figure 3.3.3-3

Predicted Fuel Consumption Characteristics at Altitude -- The 5M mixer improves fuel consumption at the maximum cruise condition, while the 52 configuration shows an estimated performance deficit.

Surface metal temperatures were also within limits established for this type of construction, materials and service expectations. Post test visual inspections of the different mixer configurations throughout the test program showed no evidence of cracking or other indications of thermal distress such as lobe distortion or buckling. On the basis of these results and observations, it is con- cluded that the mixer has the structural capability to meet requirements for flight test.

The presence of the mixer did not impart any adverse effects on the stress levels of other engine components, although tailpipe wall temperature levels with the DC-9 installation presented an unique situation. Comparative strain gage measurement, both with and without the mixer, showed essentially no differences in fan and low-pressure turbine vibratory stress characteristics, verifying that the presence of the mixer produces no aerodynamic excitations to upstream components. Tailpipe wall temperature levels in the DC-9 application were a particular concern because of the potential reduction in the durability of the acoustic material lining the tailpipe when temperatures exceeded approximately 500°F. To monitor temperatures behind the centerline of the mixer lobes and valleys, thermocouples were installed at the trailing edge of the honeycomb-preforated sheet panels lining the tailpipe. Since the cant of the tailpipe was not considered in the placement of the thermocouples, the locations of actual peak temperatures, as determined by metal discoloration, were slightly displaced from the expected locations.

Figure 3.3.4-1 presents a circumferential profile of tailpipe wall temperatures of standard JT8D engine and with the incorporation of several different mixer configurations. Profile shapes for the circumferential temperature graident were based on measured temperatures and the locations of the discolored regions of the tailpipe wall. Data were acquired at takeoff conditions and all temperatures were corrected to standard day conditions.

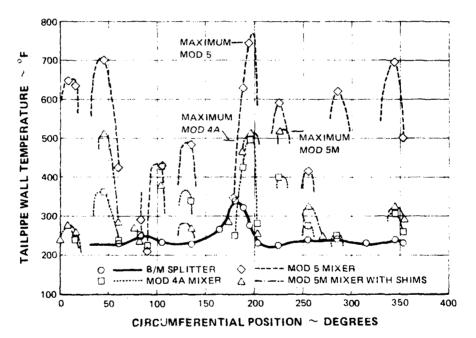


Figure 3.3.4-1

Circumferential Profile of Tailpipe Temperatures --As shown, the maximum tailpipe wall temperatures with the Mod. 5M mixer are maintained within acceptable levels. As shown in Figure 3.3.4-1, tailpipe temperatures with the standard engine configuration were essentially at the fan stream temperature level, except for an approximate 40-degree segment between the 160 to 200-degree circumferential position. The elevated temperature level in this area is believed related to the upward cant of the tailpipe which allows core gases to penetrate through the lower temperature fan stream air, thus heating the tailpipe.

The peak temperature measured with the Mod.4A configuraition was 495°F and occurred behind one of the bottom mixer lobes. Mixer lobe deflections associated with the the basic Mod. 5 configuration, which incorporated a different retension scheme, resulted in a higher peak temperature of 745°F -- a level well above the defined limit. The configurational changes made to the Mod. 5M design were successful in reducing the peak temperature to an acceptable level.

SECTION 4.0

CONCLUSIONS AND CONCLUDING REMARKS

4.1 CONCLUSIONS

The overall conclusion derived from this program is that noise reduction benefits associated with internal exhaust mixing technology have been substantiated by full scale engine tests. Specific conlcusions with respect to the aero/acoustic performance of the different mixer configurations are presented below.

- On the basis of static engine performance and acoustic tests with the Mod. 5M mixer/DC-9 configuration, the following conclusions have been made:
 - (1) The Mod. 5M configuration is a viable design for the DC-9 installation.
 - (2) An appreciable reduction in static jet noise has been demonstrated (over 2 PNdB at takeoff power) throughout the operating range with no serious compromises in engine performance. Predictions of inflight noise levels indicate that reductions in EPNL will be larger than the reductions in static peak PNL.
 - (3) The design meets the installation requirements and wall temperature limits unique to the DC-9 tailpipe. Also, major modifications are not necessary to install the mixer.
 - (4) The structural integrity of the mixer has been demonstrated.
- Conclusions made for the Mod. 5Z/727 configuration include the following:
 - (1) The Mod. 52 mixer represents a preliminary design configuration for the 727 installation.
 - (2) A reduction in jet noise of 4.7 PNdB at takeoff power has been attained. However, the presence of the mixer produces undesirable performance effects, indicating that compromises are necessary between acoustic and aerothermodynamic performance. Predictions of inflight noise levels, like with the Mod. 5M configuration, show reductions in EPNL will be larger than the reductions in static peak PNL.

- (3) The design meets the installation requirements, although operation in the thrust reverse mode has not been demonstrated.
- (4) The structural integrity of the mixer has been demonstrated.

4.2 CONCLUDING REMARKS

The emphasis on jet noise reduction has presented new demands for the next generation of gas turbine engines and technical challenges for current aircraft engines. In dealing with current service engines, the challenge of suppressing exhaust noise is complicated by the effects imposed on performance, system weight and life cycle cost.

The results acquired from this program have demonstrated the feasibility of internal exhaust mixing for current JT8D-powered aircraft. In addition, this work has identified areas where additional refinement or development is necessary. Such areas should be thoroughly investigated as part of a similar experimental engine test program. Mixer configurations considered suitable for introduction into service should be flight tested to verify structural and environmental performance under flight conditions.

This program has made a substantial contribution in furthering the technology readiness of exhaust mixing. As a result, it will be possible to capitalize on the benefits that this technology offers within the near future.

ACKNOWLEDGEMENTS

The authors wish to express appreciation to Donald Eiler, Melvin Feldman, and Allen Packman for their constructive suggestions and guidance during the performance of this contract.

ł

APPENDIX A

. .

TABULATED ACOUSTIC DATA

92 3.60

INLET TEMP = TIME OF DAY = BAARN DEFECTOR	ER CT.	AE FOLD	ANIUS = 150.0 FT.																						
30.0F	78.0 PE	62 65 64 47	DB = RJ																						117.75 123.29 130.57
11	H	H H	SPL IN F	DEGREES	155	05.7	108 3	08.3 08.3	1-10	98.5	98.9 98.7	6.5	00	12.9	91.7 90.8	19.2	18. Z	15.2	2.9	84.0 83.5	6.0	19.3 5.91	24	0.0	11 II II
		л Л	Ð	21	150 1	104.4 10				•										86.0 85.5 9	_	r 20 4	54	0•0	SPL PNL EGRATED)
EMPERATURE	011V	UBSERVED RPM CORRECTED RP	DAY CURRECT	ANGLE	145	103.0 1			108.1	104.2	102.4	9.66	96.96	95.1	5°66 6°16	90.4	89.6 88.7	86.6	4 4 4 4	1.	16.7		2 t	0.0	COMPOSITE COMPOSITE PNLT {INTE
TEMP	HUMIDII	UBSE Corr	RENCE D		140	101.8	106.3	107.8	107.2	105.0	103.6	101.0	6.79 0.79	9.96	94°99 97°99	92.2	9.64 89.8	88.0	0 r	87.8 87.5	116.1	121-5	5	0.0	COMP COMP PNL T
			6 REFE		135	102.	101	106.	106.	105.	104.	101.	99.	97.	95. 94.	93.	- 26	89.	87.	88.9	115.	121.6		ò	
			PART 3		130	-		104	105	104	104	102	101	87	9 9 9 9	46	5 6 5 6	6	60 60 60 60	90.8	114	121.8	2	•	
80 -1 00037	x-314		FAA		120	6 6 5	8.	0 0 7 7	100	101	102	101	001	98	6 6	33	5 5	3	888	42.1 43.6	112	121-0		•	116.87 121.82 121.82 121.82 104.89
и н и н											~*									95.5	_	120.3	2	•	
MUDEL NUM.ER	L				-	60.37	. 9- 0	7 0-	••	o	••	0	, 0	3	a e	σ.	<i>x</i>	·	a o	97.3	10	119.4	•	0.0	MASPL PNLT PNL UBA
ENG 25 M ENG 28 N C 21 - EVE	50			r	ን ረ	~ J I I	1.02		- 4 0	۰	00	\$	5 3	in i	~ ~		ລວ	5.1	r v	92 . 5 90.6	0	117.4)	0.0	MUMIXAM MUMIXAM MUMIXAM MUMIXAM
- •	-			- 1 - 1 - 1		50	0.00	.125	.160	.250	-115 . -400	.500	050. 008.	1.00	1.60	2.00	3.15	4.00	5.00	8.00 10.0	DASPL			g	

Mark = 0.1 × 0.1 Mark (10) = 0.0 × 0.1 Mark (10) Mark	Million Exc. Proto Million				000372 24-0 DB-			TEMPE	TEMPERATURE		u	96	ц. 1		INLET TEMP TIME OF DAY BARM, PRESS	URE	= 30.00 F = 820 = 30.02 IN. HG.	
CONSECTED CONSECTED <thconsected< th=""> CONSECTED <thconsected< th=""> CONSECTED <thc< th=""><th>District District District</th><th>· · · · · ·</th><th></th><th>= 027</th><th>キーターメーション</th><th></th><th></th><th>DIMUH</th><th>ITY</th><th></th><th>u</th><th>78</th><th>.0 PER CT.</th><th></th><th>WIND DIRECT</th><th>NOI</th><th>2 MD</th><th></th></thc<></thconsected<></thconsected<>	District	· · · · · ·		= 027	キーターメーション			DIMUH	ITY		u	78	.0 PER CT.		WIND DIRECT	NOI	2 MD	
FAA PAPT 36 REFERENCE DAY CORRECTED 5PL IN DB RADLE TY DEGREFS MARCE 90< 100 110 120 135 140 155 MARCE 00 110 120 130 135 140 155 150 155 MARCE 00 100 120 130 135 140 155 150 155 MARCE 005 91.2 001.2 001.2 100.2	ALA DART JA REFERENCE TAY CORRECTED SPL IN DB - RADIUS = 190.0 F1. Ancle in Decares Ancle in Dial (10) (10) (10) (10) (10) (10) (10) (10)	÷						OH SER CORRE	<u>م</u> ۳	N d	и »		34 57					
Ancle IN DEGREFS Ancle IN DEG	ANGLE IN DEGREFS 90. 100 110 120 130 135 1-0 145 150 155 91.7 90.2 90.2 99.2 100.4 100.5 100.5 100.5 100.5 91.7 90.4 90.1 99.1 100.1 100.7 100.2 100.5 100.5 91.7 90.1 91.1 100.1 100.7 100.2 100.7 100.5 100.5 91.7 95.6 91.7 100.1 100.7 100.7 100.5 100.7 100.5 100.7 91.6 91.6 100.7 10				۲	81	EFER	NCE	U U	RECTED	ลี	DB	RADIUS	150.0	-			
40 100 110 120 130 130 15 15 410 47.3 89.4 90.5 93.8 91.1 100.4 105.1 105.9 155.7 107.0 155.7 107.0 155.7 107.0 155.7 107.0 105.1 106.7 108.1 107.7 109.7<	9. 100 110 120 130 15 1-0 145 150 155 9.0 9.12 9.21 9.32 9.32 100.4 100.7 105.7 <td>0.6 • 6 • 6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A NC</td> <td>ملي</td> <td><u>u</u>u</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.6 • 6 • 6							A NC	ملي	<u>u</u> u							
<pre>2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1</pre>	010 01.3 01.4 00.4 01.4 00.4 01.4 00.4	67.		-	~	ŝ	- m	-4	4	\$	ŝ							
91.3 99.4 99.5 99.4 100	7.3 97.3 96.4 97.3 97.4 96.4 105.4 109.5 105.4 109.5 105.4 105.4 109.5 105.4 105.4 105.4 105.5<	• 1 P		•	1					6								
0000 0000	0.1 0		50 30 00	5.06	~ ~		4.00	203	4 0	0.5	105.6							
37.4 94.5 98.7 103.7 105.8 107.8 109.7 109.5 106.7 107.8 109.5 106.7 107.8 109.5 106.7 107.8 109.5 106.7 107.8 109.5 106.7 107.8 109.5 106.7 107.8 109.5 106.7 107.8 109.5 106.7 107.8 109.7 106.5 106.7 107.8 109.5 100.7 107.6 100.7 107.6 100.7 107.6 100.7 107.6 100.7 107.6 100.7 10	0.1 24.4 94.5 94.7 105.7 105.6 107.5 105.7 107.7 107.7 107.			93.8	ŗ	01.94	-	06.7 1	08.31		08.5							
25 93.9 95.6 97.0 100.1 106.6 105.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 106.4 106.5 101.4 106.4 106.5 100.5 98.7 99.7 99.7 99.7 99.7 99.7 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.7	12 91.9 95.6 97.0 100.1 100.4 100.5 100.4 100.5 100.4 100.5 100.4		4		~	03.7 1	00	07.3 1	08.8		09.60							
09.0 99.0 99.0 101.2 105.1 106.5 105.2 106.4 106.5 101.4 90.2 90.1 90.2 90.1 90.5 90.1 90.5 <td>0 97-0 96-4 96-5 106-5<</td> <td>93.</td> <td>5.</td> <td></td> <td>-</td> <td>04.6 1</td> <td>5</td> <td>07.8 1</td> <td>60</td> <td></td> <td>108.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0 97-0 96-4 96-5 106-5<	93.	5.		-	04.6 1	5	07.8 1	60		108.7							
Y:M Y	W. W. W. Solar Molechi 106-5 106-4 106-5 106-3 101-5 W. W. W. Solar Molechi 106-5 106-3 106-5 106-5 106-3 101-5 W. W. W. W. Solar Molechi 106-5 106-3 106-5 106-5 106-3 09-5 W. W. W. W. Solar Molechi 106-5 106-3 106-5 106-5 106-5 00-5 W. W. W. W. Solar Molechi 106-5 106-3 106-5 106-5 106-5 00-5 W. W	95.	96 0		N	05.1 1	0	07.3 1	ö									
7.5 7.5 7.5 105.5 105.5 105.5 105.5 105.5 99.5	17. 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.7 0.0.5 0.0.4 0.0 0.4.7 0.7.7 0.6.5 101.3 101.7 101.7 101.5 0.0.5		52		ົ້		~ "	06-4	83		101							
47.3 96.6 100.2 102.3 101.8 100.9 94.9 96.5 90.1 47.2 98.6 100.3 101.8 100.9 94.6 94.6 90.1 47.7 98.1 97.1 96.5 97.1 96.5 94.1 90.1 45.7 96.1 97.6 97.6 97.6 94.7 94.2 94.1 90.1 45.6 96.1 97.6 95.1 96.5 94.1 94.2 94.1 91.1 94.1 94.6 95.5 95.4 94.7 94.2 94.2 95.1 94.1 94.2 95.4 94.2 94.2 94.2 94.2 91.1 94.2 94.2 94.2 94.2 94.2 94.2 94.2 94.2 94.2 94.4 94.2	vr.1	310 40		0.00	r ar		n in		58	102.4	C.99							
00.1 97.2 90.5 101.1 102.3 101.8 100.9 90.0 96.5 95.4 94.5 95.4 94.5	00.0 00.1 07.2 07.1 00.5 00.1 00.5		. 6 8 6 8 6	00.2		1 9.60		02.4 1	50	100.5	98.4							
9.5.2 97.2 98.8 100.3 101.3 100.7 99.7 97.6 98.0 94.4 00 94.1 96.5 95.4 96.5 95.4 94.2 94.1 00 94.1 94.5 96.4 96.1 94.6 95.5 94.1 94.5 94.1 01 94.1 94.6 95.4 94.6 95.1 93.7 92.5 94.6 01 94.1 94.6 95.3 94.6 93.7 92.2 91.5 91.6 94.7 94.9 95.9 94.6 94.7 94.	910 54.1 94.8 94.0 94.0 94.0 910 94.1 94.1 94.0 94.0 94.0 94.1 94.0 100 94.1 94.0 94.0 94.0 94.0 94.0 94.1 94.0 100 94.1 94.0 94	500 96	5	99.5	~		01.8	6.00	90	0.99	96.5							
00 44.7 96.1 99.3 106.1 99.4 98.0 97.1 96.5 97.4 98.0 97.1 95.4 94.2 93.7 92.0 92.0 05 91.1 94.0 95.5 96.0 95.1 93.7 92.0 90.3 92.0 05 91.1 94.0 95.3 94.6 93.5 92.0 90.7 89.8 92.0 06 91.2 91.3 94.6 93.2 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 88.1 88.1 88.1 88.5 84.7 84.5 84.9<	000 4-1 90.3 106.1 90.4 90.5 96.4 94.1 96.2 94.1 000 9-1 96.4 96.4 96.4 96.4 96.4 96.4 96.4 101 94.1 94.5 96.4 96.4 95.4 96.1 96.4 96.5 96.4 96.4 96.5 96.4 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 86.7 88.7 8	630 45	1 47		m		8	~	98.6	9 A.O	9.46							
91.1 81.1 88.1	0 911 7.1 97.5 96.0 95.1 97.5 96.0 95.1 97.5 96.0 95.1 97.5 96.0 95.1 97.5 96.0 95.1 97.5 96.0 95.1 97.5 96.0 95.1 97.5 96.0 95.1 95.7 97.5 96.0 95.1 96.1 96.1 96.1 96.1 96.1 96.3 97.5 96.0 97.5 96.0 97.5 97.5 91.5 97.5 91.5 97.5 91.5 96.3 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 91.5 97.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5	100 A	2 c		m.	1.001	10°	0	97.1	96.2	94.1							
5: 7:1 81:3 81:4 81:3 81:	0:0 24:0 95:1 95:7 95:2 91:5 95.2 1:0 0:1 94:2 95:3 94:6 93:5 92:0 90:7 92:5 90:0 1:0 0:1 94:2 94:5 93:5 92:4 93:5 92:5 92:5 90:5 94:6 98:5 0:0 97:7 92:1 94:5 94:5 94:5 94:6 94:5 94:6 0:0 97:7 92:1 91:1 91:3 90:3 84:1 84:5 84:4 0:0 97:3 91:1 94:5 94:1 84:5 84:4 84:5 0:0 97:7 97:5 91:1 84:7 84:3 84:1 84:5 0:0 97:4 97:5 91:1 84:1 84:1 84:5 84:4 0:0 97:4 97:5 95:2 81:7 85:2 85:7 83:1 0:0 97:4 91:4 117:1 115:1 112:1 112:1 110:4 1 104:5 100:5 101:4 121:4		5 7		s u	6° 40	C - 40		40.40 0.00	4.00	4.00							
7: 11.4 94.1 94.6 95.3 94.6 93.5 92.0 90.7 89.6 88.6 6: 11.2 43.1 92.9 92.5 92.5 92.4 90.3 88.6 88.6 88.6 11: 92.0 91.0 91.0 91.0 91.0 91.0 88.7 88.6 88.6 88.6 88.7 84.7 84.9 84	7: 11: 94:1 94:0 95:3 94:6 95:8 96:3 5: 11:2 73:1 92:5 91:5 91:5 91:5 91:5 81:3 11: 87:7 91:0 91:0 91:3 92:5 91:5 81:3 81:3 11: 87:7 87:7 81:1 86:5 84:7 84:3 85:4 84:4 10: 87:7 87:5 81:1 86:5 84:7 85:5 85:3 83:3 10: 87:3 92:5 91:1 89:0 81:1 86:5 84:7 84:3 85:3 10: 92:5 92:1 92:6 92:6 92:6 81:7 85:1 85:7 83:3 10: 92:6 92:6 92:6 92:6 91:7 85:1 85:7 85:1 85:7 117:8 110:4 120:7 121:4 121:7 121:7 120:7 119:4 117:8 110:4 120:7 121:4 121:7 120:7 119:4 117:8 110:4 10:1 120:7 121:4 121:7 120:7 119:4 117:8 110:4 120:7 121:4 121:7 120:7		;;			96.0	95.1		92.2	91.5	6.06							
<pre>56</pre>	<pre>55</pre>	1. 00.	56		m	4.45	93.5	0	50.7	89.8	89.3							
10. 00.6 02.7 110.6 112.7 112.6 112.6 112.6 112.6 120.7 110.6 120.7 110.6 120.7 121.6 121.7 121.6 121.7 121.7 120.7 100.7 100.6 100.7 100.7 100.7 100.6 100.7	11: 0.0: 9.1:	5	5		m i	43.6	93.2	ŝ	89.6	88.6	88.6							
30 97.7 84.9 94.4 64.5 88.7 88.1 88.5 84.7 84.3 82.4 30 97.4 97.5 91.1 69.6 88.7 84.1 86.5 85.5 85.3 83.3 30 97.4 95.9 97.6 97.6 88.7 84.1 86.5 85.7 83.7 30 97.4 95.6 97.6 97.6 97.4 97.5 86.1 85.2 83.1 40.0 96.6 94.0 91.4 89.5 87.3 86.1 85.2 83.1 10 46.6 94.0 91.4 115.8 116.4 121.4 114.7 115.6 112.7 119.4 117.8 119.9 120.7 121.4 121.4 121.7 120.7 119.4 117.8 119.4 121.4	00 37.7 84.9 84.4 66.5 64.7 64.3 82.4 83.3 83.3 30 92.4 92.5 91.1 69.5 87.6 87.5 85.3 83.3 83.3 00 92.4 95.9 92.6 90.7 89.5 87.5 85.3 85.3 83.3 00 92.4 95.9 92.6 90.7 114.4 115.8 116.5 116.9 116.6 112.3 114.4 115.8 116.5 81.1 85.2 83.1 11 1117.8 119.9 120.7 121.4 121.9 122.6 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 107.6 109.2 102.7 107.6 107.6 104.2 1 104.5 106.5 107.5 108.7 107.8 107.0 100.6 40.4.2 1 104.5 106.5 107.5 108.7 107.8 107.0 106.4 104.2 1 104.5 106.5 107.5 107.8 107.6		20		7 ^	C• 76	4 0 0 H	n	84.4 86.0	0 . 7 R	6.18							
30 94.8 92.5 91.1 69.6 88.7 87.5 85.3 83.7 30 92.4 95.9 92.6 90.1 89.5 87.3 85.7 83.7 30 92.4 95.9 92.6 90.1 89.5 87.3 86.1 85.7 83.7 40 95.9 92.6 90.1 89.5 87.3 86.1 85.2 83.1 10 4 107.4 179.4 116.9 116.1 116.9 116.0 1 111.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 127.0 107.0 104.2 104.2 1 104.5 107.0 108.7	300 99.9 92.5 91.1 69.6 88.7 85.5 85.3 83.7 0.0 92.6 92.6 92.6 99.7 89.5 87.6 85.3 83.7 0.0 92.6 94.0 91.4 89.5 87.6 87.6 85.3 83.7 83.7 0.0 92.6 94.0 91.4 89.5 87.6 87.5 85.1 85.3 83.7 1 107.4 179.4 112.9 116.2 116.9 116.0 116.0 1 117.8 119.9 120.7 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.9 127.0 108.7 107.6 107.4 104.2 1 117.8 119.9 120.7 121.9 107.6 107.6 104.2 1 104.5 100.5 107.6 107.0 106.4 104.2 1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1	5 5			<u>.</u>	88.7	E Ha	• •	84 . 7		82.4							
00 32.4 95.9 95.6 90.1 89.0 87.3 86.1 85.7 83.7 .0 40.6 94.7 96.6 94.0 91.4 89.5 87.3 86.1 85.2 83.1 .0 40.6 94.7 96.6 94.0 91.4 89.5 87.3 86.1 85.2 83.1 1 107.4 109.4 116.7 115.8 116.2 119.9 116.0 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 104.5 106.4 109.0 108.7 107.6 104.2 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24	00 72.4 95.9 95.6 90.1 89.0 87.9 86.1 85.2 83.1 0.0 96.6 94.7 96.6 94.0 91.4 89.5 87.3 86.1 85.2 83.1 1 107.4 179.2 110.6 112.3 114.7 115.8 116.2 116.9 116.0 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 41 104.5 100.5 107.5 108.7 107.0 106.4 104.2 40 24 24 24 24 24 24 24 24 41 0.0<	- 3- 0	. 6 . 6		ę	68.2	87.6	-	85.5	85.3	• •							
<pre>.0 46.6 94.7 96.6 44.0 91.4 89.5 87.3 86.1 85.2 83.1 107.4 179.2 110.6 112.3 114.7 115.8 116.2 116.9 116.0 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 104.5 106.5 107.5 108.4 109.0 108.7 107.8 107.0 106.4 104.2 D 24 24 24 24 24 24 24 24 24 24 24 24 24</pre>	0.0 40.6 94.7 96.6 44.0 91.4 89.5 87.3 86.1 85.2 83.1 1 107.4 109.2 110.6 112.3 114.7 115.8 116.2 116.9 116.0 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 1 104.5 106.5 107.5 108.4 109.0 108.7 107.8 107.0 106.4 104.2 10 24 24 24 24 24 24 24 24 24 24 24 24 24	32	95		9	1.09	0.69	6		85.7	ŝ							
IO7.4 159.2 110.6 112.3 114.7 115.8 116.0 116.0 II17.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 II17.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 II17.8 119.9 120.7 121.4 121.9 122.0 121.5 121.1 120.7 119.4 II17.8 119.9 120.7 121.4 121.9 122.0 119.4 104.2 II17.8 119.9 107.0 108.7 107.0 106.4 104.2 II04.5 106.5 107.4 108.7 107.0 106.4 24	1 107.4 159.2 110.6 112.3 114.7 115.8 116.0 116.0 1 117.8 119.9 120.7 121.4 121.9 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 120.7 119.4 1 117.8 119.9 120.7 121.4 121.9 120.7 119.4 1 104.5 106.5 107.5 108.7 107.0 108.7 107.0 109.4 10 24	5	46		0	41.4	89.5	ņ		85.2	n -							
117.8 119.9 120.7 121.4 121.4 121.4 121.4 121.4 120.4 119.4 117.8 119.9 120.7 121.4 121.4 121.4 121.4 121.4 121.4 117.8 119.9 120.7 108.4 109.0 108.7 107.6 104.5 104.4 104.5 106.5 107.5 108.4 109.0 108.7 107.6 104.2 24	117.8 117.8 117.8 117.8 117.4 <td< td=""><td>107</td><td>100.</td><td>10.6</td><td>12.3</td><td>14.7</td><td>15.8</td><td>16.2</td><td>16.9</td><td>16.9</td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	107	100.	10.6	12.3	14.7	15.8	16.2	16.9	16.9	16							
A 104.5 106.5 107.5 108.7 107.8 107.6 106.4 104.2 D 24	 IO4.5 ID6.5 IO7.5 IO8.4 IO9.0 IO8.7 IO7.8 IO7.0 IO6.4 IO4.2 ID 24 24 24 24 24 24 24 24 24 24 24 24 24		119.	20.7	21.4	21.4	22.0	21.5	21.1	20.7	2 6							
D 24 </td <td>UD 24<</td> <td>A 104</td> <td>106.</td> <td>61.5</td> <td>08.4</td> <td>0.00</td> <td>08.7</td> <td>07.8</td> <td>01.0</td> <td>06.4</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	UD 24<	A 104	106.	61.5	08.4	0.00	08.7	07.8	01.0	06.4	5							
MAXIMUM DASPL = 116.93 COMPOSITE SPL = 11 MAXIMUM PNLT = 121.97 COMPOSITE PNL = 12 MAXIMUM PNL = 121.97 PNLT (INTEGRATED) = 13 MAXIMUM DBA = 102.00	MAXIMUM DASPL = 116.93 COMPOSITE SPL = 117.80 MAXIMUM PNLT = 121.97 COMPOSITE PNL = 123.54 MAXIMUM PNL = 121.97 PNLT (INTEGRATED) = 130.80 MAXIMUM DBA = 109.00 FULLDWING CONDITION HAS BEEN ADDED TO THE WOOT DATA BASE ID LD DATE ENG HUP ENG NO STND C OBS CORR TEMP HUM TTI TIME BARM WD WV RUN	6.2	~ 0	N -	~	\sim	N ·	~	N 1	44	5 5 5 7							
XIMUM DASPL = 116.93 COMPOSITE SPL = 1 XIMUM PNLT = 121.97 COMPOSITE PNL = 12 XIMUM PNL = 121.97 PNLT (INTEGRATED) = 13 XIMUM DBA = 109.00	MAXIMUM DASPL = 116.93 COMPOSITE SPL = 117.80 MAXIMUM PNLT = 121.97 COMPOSITE PNL = 123.54 MAXIMUM PNL = 121.97 PNLT (INTEGRATED) = 130.80 MAXIMUM D6A = 109.00 FULLDWING CONDITION HAS BEEN ADDFD 10 THE W601 DATA BASE ID LD DATE ENG MUD ENG NO STMD C 085 CORR TEMP HUM TTI TIME BARM WD WV RUN	:	•		•	•	•	•	•									
X1MUM DBA = 109.00	MAXIMUM DBA = 109.00 FOLLDWING CONDITION HAS BEEN ADDFD 10 THE W601 DATA BASE ID LD DATE ENG MUD ENG NO STND C OBS CORR TEMP HUM TTI TIME BARM WD WV RUN			~~~	16.93 21.97 21.97			COMPC COMPC PNLT	ISTE ISTE INTE	SI PNI EGRATEC		121	80 540					
	^c ullowing condition has been added to the w601 data base In LD date eng mup eng ng stnd C OBS CORR temp hum iti time barm wd wv Run	Ξ.		~	00-00													

GP150RA150.1740 2351 H Q1423 JT80+17 REF SPLITTER H/L,DC9 REV 5DFG CANT NORTH

i

·····

· · · · · ł

١

1

1

ţ

CONDITION = 6467

ALTITUDE = 1500. FT STDELINE

.

2								2	ANGLE IN	DE GR EE S
	6.6	001	110	120	130	135	140	145	150	155
020			÷		5	-	~	8	÷	
-0	· •		1	4	~	÷				•
0.8		•	ë.	\$	•	-	~		:	•
10			4	1.		2.	ч.		m.	-
12	•		\$:	'n.	m	÷		•
16	•	•	~	;	2.	ë.	3	2.	:	\$
0			•		-	2.	4	•	÷	~
ŝ	75.9	70.4	78.6	60.09	61.3	81.6	40.4	78.5	77.1	69.7
~			•	•		•	8	÷,	4	÷.
\$	•	•	8.	•	•		ř	5	\sim	8
50	•		÷	ŝ	в.	-	5	Ň	•	÷
6			ŝ	~	~	ŝ	ň	2	8	m
80	•	•	\$	\$	s.	e.	-	.	•	
਼	•	•	÷	4	÷.		ŝ	\$	<i>m</i>	ŝ
N.			Ň	Ň	•	8	\$	ň	់	÷
÷	•	٠	:		8	÷	m	•	÷	.
٩		٠	•	÷.	\$	÷.	ð	ŝ	e.	÷
÷ 2		٠	1	\$	'n		1	÷.	\$	5
	٠		÷	N.	5	~	e.	•	4.	÷
•	٠	٠	•	÷	÷	-	~	.	в.	÷
٩.			÷.	+	:	8	'n	÷	÷	\$
ŗ,			÷	;	ŝ	è,	•	'n	~	8
਼			e.	÷	-	÷	-	\$	~	\$
:	٠	٠	÷	;	-	è.	æ	0		٠
DASPL	ŝ	•	90		4		4	i		~
PNL T	v	•	5	÷.	ŝ	ب		~	0	~
JNd	7.26	44.2	95.0	45.7	95.6	95.1	9.69	92.4	9.06	87.3
D8 A	-	•	÷	3	-	m.	1	•	~	
BAND	24						24	2	24	24
TCORR	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

= 103.83

PNL ((INTEGRATED)

Image: Second Secon	= x-314 = 02/28/79 095ERVE CORRECT FAA PART 30 REFERENCE DAY	(4.0 P	R CT.	DIRECTION	
DISCRIE L RM DISCRIE L RM E 000 FAI MAT JO WEHRENCE DY CORRECTED RH = 000 FAI MAT JO WEHRENCE DY CORRECTED SPL IN DECREES • 000 CENTER • 0 100 110 120 130 135 140 145 150.0 F1 CENTER • 0 100 110 120 130 135 140 145 155 140 CENTER • 0 100 110 120 130 135 140 145 155 140 145 155 140 145 155 140 145 155 140 145 155	DUSERVE CORRECT Faa Pakt 30 keference Day		•		-
FAA MART 36 METERING DAY CORRECTED SPL IN Dr RADIUS = 150.0 FT ANGLE IN DECREES ANGLE IND INCOMPANY ANGLE IND INCOMPANY ANGLE INCOMPANY ANGLE IND INCOMPANY ANGLE INCOMP	AA MAKT 36 KEFERENCE DAY				
ANGLE IND ANGLE IND Decretes RFE0. 40 100 110 120 130 135 140 145 155 0.00 92.3 94.4 93.5 100.4 110.5 110.5 110.5 0.00 92.3 94.4 93.5 100.4 110.5 110.5 110.5 110.5 0.00 92.3 94.4 93.5 100.4 103.7 103.6 100.4 110.5 110.5 112.6 110.5 110.5 110.5 112.6 113.6 <		- BU NI 14S	= 150.0 FT		
MAXIMUM (MSP) 100	ANGLE	N DEGREES			
000 00.3 01.1 00.0	0 100 110 120 130 135 140 145 15	c 15			
<pre></pre>	.3 41.4 43.2 46.5 101.9 103.9 106.3 107.1 109	109			
<pre>000 92.3 94.4 96.9 100.8 105.6 108.8 110.9 112.5 112.5 112.6 1100 94.6 98.2 102.4 102.8 104.9 111.2 113.4 114.4 110.5 97.7 99.2 101.7 102.4 105.7 112.1 114.2 114.6 114.4 110.5 2000 99.5 100.9 101.7 105.6 105.8 105.4 101.7 106.1 2010 99.5 100.9 101.4 105.6 105.5 105.4 105.5 101.7 106.1 2010 99.5 100.9 101.6 105.6 105.6 109.1 112.2 112.2 112.7 113.8 108.9 2005 99.4 101.7 103.4 105.7 109.4 107.6 107.4 105.4 2500 99.5 101.7 103.4 105.7 109.4 107.6 108.3 101.2 106.6 101.7 106.3 2400 99.5 101.7 103.4 105.7 104.0 105.5 105.4 105.4 2500 99.5 101.2 102.9 104.7 105.1 104.6 103.3 102.0 101.9 100.9 2600 97.8 106.1 101.4 103.4 104.7 101.2 100.0 100.4 96.7 27.4 99.5 101.2 102.7 104.7 101.7 101.4 101.2 100.0 100.4 96.7 27.4 99.5 101.0 104.7 101.7 101.4 101.2 100.0 100.4 96.7 27.4 99.5 101.1 105.0 102.7 101.1 105.0 91.0 90.0 94.1 93.4 4 900 97.8 95.4 94.5 94.5 94.5 94.4 93.0 95.0 95.4 96.7 27.4 99.5 101.0 102.7 101.1 105.0 91.2 91.0 90.0 90.9 96.9 96.4 27.5 101.0 97.8 95.4 94.0 94.2 94.4 93.0 95.0 91.2 96.0 94.4 4 900 97.8 95.4 94.2 97.0 97.2 94.4 93.0 95.0 91.2 94.4 4 900 97.8 95.8 95.3 97.1 97.2 95.8 94.4 98.0 94.1 97.2 105.0 100.4 97.6 95.7 94.4 4 900 97.8 95.8 95.3 97.4 94.2 97.1 95.9 95.0 97.2 94.4 95.0 95.0 97.4 95.5 97.4 94.0 95.0 97.4 97.0 97.2 95.5 97.4 94.0 97.2 95.8 95.4 94.0 95.0 97.4 97.0 97.2 97.5 97.5 97.5 97.4 97.0 97.2 97.6 99.1 97.0 97.0 97.2 97.5 97.5 97.5 97.4 10.7 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 122.6 125.4 123.4 113.5 110.7 91.0 70.0 90.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2</pre>	.4 93.6 95.0 99.4 102.7 105.8 109.5 109.8 110	2 110			
<pre>100</pre>	• 3 94.4 96.9 100.8 105.6 108.8 110.9 112.5				
77.7 99.5 101.7 174.4 112.7 113.8 106.9 2200 93.9 100.4 105.5 105.5 104.1 112.7 113.8 106.5 215 99.9 100.4 107.5 105.5 104.7 106.5 109.5 106.5 2505 99.4 101.7 103.3 105.4 107.4 107.5 109.5 100.5 2505 99.4 101.7 105.4 105.4 106.5 109.4 101.7 106.5 8505 99.5 100.4 107.4 107.6 109.5 100.4 107.4 107.5 107.4 107.4 107.5 101.7 101.2 100.6 101.7 101.2 100.6 101.7 101.2 101.2 100.6 101.7 101.2 101.2 101.7 101.2 101.7 101.7 101.2 101.7 101.7 101.2 101.7 101.2 101.7 101.2 101.7 101.2 101.7 101.2 101.7 101.7 101.7 101.7 101.7 101.7 101.7 101.7 1	• • • • • • • • • • • • • • • • • • •				
 200 93.9 100.4 105.5 105.5 104.1 116.3 112.7 113.8 108.5 250 93.5 100.4 101.7 105.5 105.7 106.5 109.7 106.5 107.5 106.5 250 93.5 101.7 103.5 105.7 105.8 105.4 105.8 107.4 107.5 105.4 560 93.6 106.7 103.5 105.7 104.0 104.5 105.4 105.4 105.4 560 93.6 106.1 161.4 103.1 104.5 105.4 105.8 104.6 107.5 103.4 103.4 101.2 100.0 104.9 105.4 105.4 105.5 103.1 101.2 100.0 100.4 97.5 104.0 100.5 101.7 101.4 101.2 100.0 104.0 97.5 100.0 100.4 101.7 101.4 101.2 100.0 100.4 97.5 100.0 100.4 101.7 101.4 101.2 100.0 100.4 97.5 100.0 100.4 101.7 101.4 101.2 100.0 100.4 97.5 100.0 100.4 101.7 101.4 101.2 100.0 100.4 97.5 100.0 100.4 97.5 100.5 103.1 101.2 100.0 100.4 97.5 100.7 101.4 101.2 100.0 100.4 97.5 100.0 100.4 97.5 100.5 103.1 101.2 100.0 100.4 97.5 94.4 97.0 94.0 95.0 97.2 94.4 97.0 94.0 95.0 97.2 94.4 97.0 94.0 95.0 97.2 94.4 97.0 94.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 94.4 97.0 95.0 97.2 97.2 97.0 97.2 95.0 97.2 97.0 97.2 94.4 97.0 95.0 97.2 97.2 97.0 97.2 95.0 97.2 97.0 97.2 97.0 97.2 97.0 97.2 97.0 97.2 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	-7 99.3 101.7 104.8 109.7 112.1 114.2 114.6				
 250 99.5 100.9 107.4 106.2 109.1 116.3 111.2 110.6 111.7 166.1 315 99.4 101.2 103.5 106.2 106.1 108.3 107.4 107.4 107.4 107.4 101.2 500 99.4 101.1 103.9 106.1 107.1 108.3 107.4 107.4 107.4 101.2 500 99.6 101.2 102.3 104.0 104.5 104.9 105.9 101.9 100.0 860 97.8 106.1 101.2 101.1 101.0 104.1 101.2 100.0 100.4 99.5 101.2 100.0 97.8 106.4 101.2 101.2 100.0 97.8 106.4 101.2 100.0 100.4 99.5 101.1 101.2 10.0 97.8 106.1 101.2 100.0 97.8 106.1 101.2 100.0 97.8 106.1 101.2 100.0 97.8 106.1 101.2 100.0 97.8 106.1 101.2 100.0 97.8 107.4 101.2 100.0 97.8 107.4 101.2 100.0 100.4 99.5 99.5 101.4 101.2 100.0 100.4 99.5 101.2 100.0 90.0 97.8 109.1 100.0 91.2 90.1 90.0 90.0 98.4 99.5 100.2 90.1 99.4 99.5 100.1 100.0 100.4 99.5 99.5 100.2 90.0 98.4 98.6 97.0 92.0 99.0 90.1 99.0 90.1 99.4 99.5 99.5 99.5 99.4 99.5 100.0 90.0 99.2 99.1 90.0 0 91.2 99.1 99.1 99.1 99.1 99.1 99.1 99.1	.9 100-4 102-6 105-5 104-8 111-2 113-3 112-7				
<pre>AXY 101: 7 103: 7 105: 1 105: 1 105: 1 105: 7 105: 4 105: 7 500 993.5 100: 4 101: 7 103: 9 105: 4 105: 8 105: 4 105: 9 101: 9 860 993.5 100: 8 105: 4 105: 8 105: 4 105: 8 105: 4 105: 9 101: 9 860 973.5 105: 1 101: 7 103: 1 102: 1 101: 7 101: 4 103: 0 102: 0 101: 9 100: 0 97.4 97.5 105: 1 101: 7 103: 1 102: 1 101: 7 101: 4 101: 7 105: 0 102: 9 101: 9 1.60 97.4 97.5 100: 0 102: 1 101: 7 101: 4 103: 0 102: 0 101: 9 100: 0 1.60 97.4 97.5 100: 0 102: 1 101: 7 101: 4 103: 0 102: 0 101: 9 100: 0 2.00 96.4 97.5 99.5 100: 7 105: 1 102: 7 96: 7 95: 5 95: 2 94: 4 2.55: 45.4 97.5 99.5 106: 2 94: 9 94: 7 95: 5 95: 2 94: 4 2.00 96.4 97.5 95: 9 95: 3 97: 9 94: 7 95: 9 95: 7 95: 5 2.55: 45.4 97: 5 95: 9 95: 3 97: 9 94: 7 95: 5 95: 2 94: 4 2.00 91: 3 94: 2 95: 8 95: 3 97: 9 94: 7 95: 5 95: 7 95: 5 2.00 91: 3 94: 2 95: 8 95: 3 97: 9 94: 7 95: 5 95: 7 95: 5 2.50 91: 9 95: 8 95: 3 97: 9 94: 7 95: 9 95: 7 95: 5 2.50 91: 9 95: 8 95: 3 97: 9 94: 7 95: 9 95: 7 95: 5 2.50 91: 9 95: 8 95: 3 97: 9 94: 7 95: 9 95: 7 95: 5 2.50 91: 9 95: 8 95: 3 97: 9 94: 7 95: 9 95: 7 95: 5 2.50 91: 9 95: 8 95: 3 97: 9 94: 7 95: 9 95: 7 95: 7 2.50 91: 9 95: 8 95: 3 97: 9 94: 7 95: 8 95: 0 94: 1 2.00 91: 7 95: 8 95: 3 97: 9 94: 7 95: 8 95: 0 94: 7 95: 5 2.50 91: 7 95: 8 95: 3 97: 9 94: 7 95: 5 12: 0 11: 7 1.50 112: 5 123: 6 114: 6 116: 4 119: 1 126: 4 122: 1 122: 3 122: 5 121: 0 0.1 121: 5 123: 6 112: 4 112: 6 112: 4 12: 1 12: 1 12: 2 12: 7 0.1 10: 0 110: 2 111: 4 112: 4 113: 4 113: 4 113: 4 113: 4 113: 4 113: 5 113: 9 113: 5 110: 7 0.1 00: 4 00: 5 0: 2 0: 2 0: 2 0: 2 0: 2 0: 2 0:</pre>	• 5 100-9 103-4 106-2 109-1 116-3 111-2 110-6	106			
<pre></pre>	99.9 101.5 103.0 105.2 105.1 109.0 109.4 108.5 A. 4 401 2 143 4 104 1 168 1 158 1 148 2 167 4				
636 93.6 U(U.8 107.2 104.5 105.4 105.3 101.4 101.2 860 93.6 100.18 107.2 104.4 103.2 101.4 101.2<	34.4 ICI.4 103.3 105.4 IC7.1 106.6 107.3 106.0	103			
 BGU 93.6 IUC.8 107.7 104.0 104.5 104.3 104.5 102.7 104.1 101.2 1.25 97.4 99.5 101.0 102.3 101.7 101.4 101.2 100.0 100.6 97.0 97.3 99.5 100.0 100.6 97.0 99.5 100.0 100.4 98.0 99.7 98.0 99.7 99.5 97.2 94.4 98.0 97.5 99.5 100.0 100.6 97.0 97.5 99.5 100.0 97.5 99.7 95.5 97.2 94.4 93.4 97.5 94.0 97.5 99.1 96.8 97.0 97.5 99.5 100.0 97.5 99.5 100.0 100.4 112.1 100.0 100.4 112.1 100.0 100.4 119.1 100.0 97.6 97.5 95.4 97.0 97.5 95.4 97.0 97.5 95.4 97.0 97.5 95.4 97.0 97.5 99.0 97.0 97.5 99.7 89.4 97.7 95.5 95.4 97.0 97.5 95.9 97.0 97.5 95.9 97.0 97.5 95.9 97.0 97.5 99.0 97.0 97.9 97.0 97.9 97.0 97.9 97.0 97.0	a 101.3 102.9 104.7 105.8 105.4 105.8 104.9 1				
1.00 97.6 16(1.4 103.0 103.0 102.0 101.4 101.2 100.0 97.5 90.5 97.6 97.5 97.6 97.5 97.6 <td>.6 100.8 107.2 104.0 104.5 104.3 104.5 103.7 1</td> <td></td> <td></td> <td></td> <td></td>	.6 100.8 107.2 104.0 104.5 104.3 104.5 103.7 1				
MAXIMIM (ASP) 23 91 101 101 101 101 101 9	.8 160.1 161.4 103.0 103.1 162.8 163.0 102.0 1				
2.50 96.0 97.0	••• ••• • ••• • ••• • • ••• • ••• • ••• •	4 4 4 4 4 4			
2.5:0 95.4 42.6 94.5 97.5 94.4 95.5 95.2 94.4 3.15 94.9 95.5 95.5 95.5 95.5 95.5 95.5 94.4 4.00 92.9 95.3 95.4 95.5 94.4 95.0 94.1 93.4 4.00 92.9 95.3 95.4 95.5 94.4 95.0 94.1 93.4 6.30 91.2 94.1 95.5 94.4 95.0 94.1 93.4 6.30 91.2 95.3 95.3 95.3 94.4 95.6 94.1 93.4 6.30 91.2 95.3 95.3 94.1 94.6 94.6 96.6 9.05 92.6 95.3 94.1 94.6 94.6 96.6 95.7 95.7 9.05 92.6 91.2 95.3 94.1 94.6 94.6 96.4 96.4 9.05 92.6 91.2 94.1 194.1 126.4 122.1 121.8 121.6 121.0 10.1 121.5 <	- 2 44** 100** 101*1 100*0 44*3 44*1 40*4 -1 98** 49.*196.2 48*6 98.6 48.0 68.0				
3.15 94.9 96.9 97.5 99.0 94.1 96.3 99.1 96.8 96.0 94.1 93.4 4.00 92.9 95.3 95.4 95.6 94.2 94.4 93.0 92.6 91.2 90.1 5.00 91.3 94.2 93.1 90.3 94.4 93.0 92.6 91.2 90.1 6.30 91.2 94.1 95.3 93.3 94.9 94.5 89.5 89.4 87.7 86.1 9.00 91.2 95.8 95.3 93.3 94.9 94.5 89.0 87.4 88.7 86.1 10.0 91.2 95.8 95.3 93.3 94.9 94.5 89.0 87.4 88.6 85.7 10.0 91.2 95.8 95.2 93.5 91.1 89.6 89.0 87.4 88.0 85.7 10.0 91.2 95.8 95.2 73.5 91.1 89.6 89.0 87.4 88.0 85.7 10.0 91.2 95.8 95.2 73.5 91.1 89.6 89.0 87.4 88.0 85.7 10.0 91.2 95.8 96.7 126.1 126.4 122.1 122.3 122.5 121.0 NLT 121.5 123.6 126.4 126.1 126.4 127.4 126.8 127.4 125.3 10.0 116.2 111.4 112.6 113.3 113.5 113.9 113.1 113.5 110.7 000 116.2 111.4 112.6 113.3 113.5 113.9 113.1 113.5 110.7 000 23 23 19 19 19 19 19 19 19 19 19 19 10 000 10.2 0.1 0.1 0.1 0.1 0.1 0.4 0.5 0.2 0.2 0.2	• • • • • • • • • • • • • • • • • • •	. 6			
4.00 92.9 95.4 95.0 94.4 93.0 92.6 91.2 90.1 5.00 91.2 94.4 93.0 92.6 91.2 97.4 87.4 5.00 91.2 94.4 93.0 92.6 91.2 94.4 95.4 87.4 87.4 5.00 91.2 94.1 93.3 92.6 91.2 95.3 93.4 96.4 9.00 92.8 95.3 93.3 90.9 90.5 89.0 88.4 87.7 86.1 9.00 91.2 95.3 94.1 89.0 88.4 87.7 86.1 9.00 91.2 95.3 94.1 89.0 87.4 88.6 95.7 10.0 91.2 95.8 94.2 129.4 126.4 127.4 125.3 127.4 125.3 PNL 121.5 123.4 126.4 126.4 127.4 125.3 110.7 PNL 121.5 129.4 126.4 126.4 127.4 126.8 177.4 127.4 125.3 106.7	.9 96.9 97.5 33.4 96.3 99.1 96.8 96.0	.1 93			
0.30 91.0 94.1 94.0 94.1 94.4 94.7 86.1 95.7 84.4 94.6 94.4 95.7 84.1 94.0 87.4 96.6 87.4 96.6 85.7 86.1 85.7 86.1 85.7 86.1 85.7 86.1 85.7	•9 95•3 95•4 95•6 94•2 94•4 93•0 92•6 91	•2 •0			
9.00 92.8 95.8 95.3 93.3 90.9 97.2 99.0 88.4 88.7 86.1 10.00 91.2 95.8 95.3 93.3 90.9 97.2 99.0 88.4 88.7 86.1 10.00 91.2 95.8 95.3 93.3 90.9 91.1 89.0 88.4 88.7 86.1 SPL 119.6 112.4 112.4 112.4 112.3 122.5 124.4 125.3 127.4 125.3 127.4 125.3 PNL 121.5 123.5 124.4 125.6 126.4 127.4 125.3 127.5 127.5 127.6 DBA 108.0 116.2 113.3 113.3 113.5 110.7 110.7 DPN 23 23 19 19 19 19 19 19 19 75.5 DPN 23 23 19 19 19 19 19 19 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5	• 3 44×7 43,1 43,0 42,0 42,0 42,4 89,7 89 • 64 1 53 7 63 1 60 6 14 0 60 5 86 3 86	20			
IC.0 91.2 95.8 96.2 93.8 91.1 89.6 89.0 87.4 88.0 85.7 PNL 119.6 112.6 114.6 116.4 119.1 126.4 122.1 122.3 122.5 121.0 NLT 121.5 123.6 124.5 125.7 126.1 126.4 127.4 126.8 127.2 125.0 PNL 121.3 123.5 124.4 125.6 126.0 127.4 126.8 127.2 125.0 DBA 108.0 116.2 111.4 112.8 113.3 113.5 113.9 113.1 113.5 110.7 AND 23 23 19 19 19 19 19 19 19 19 19 OPK 0.2 0.1 0.1 0.1 0.1 0.1 0.4 0.5 0.2 0.2 MAXIMIM (ASPI = 122.55 MAXIMIM (ASPI = 122.5	• • • • • • • • • • • • • • • • • • •	0 -9 0 -9			
SPL 110.6 112.6 114.6 116.4 119.1 126.4 122.1 122.3 122.5 121.0 NLT 121.5 123.6 124.4 125.7 126.1 124.6 125.7 126.1 124.6 125.3 127.4 125.3 127.4 125.3 PNL 121.3 123.5 124.4 125.6 126.1 124.4 125.3 127.4 125.3 DBA 108.0 110.2 111.4 126.6 126.4 13.5 113.5 110.7 DAN 23 23 19 19 113.3 113.5 110.7 AND 23 23 19 19 19 19 19 19 19 OPK 0.2 0.1 0.1 0.1 0.1 0.1 0.2	•2 95.8 46.2 43.8 41.1 89.6 89.0 87.4 88	e5 €			
PNLT 121.5 123.6 124.5 125.7 126.1 126.0 127.8 127.3 127.4 125.3 PNL 121.3 123.5 124.4 125.6 126.5 126.4 127.2 125.0 DBA 108.0 116.2 111.4 112.6 113.3 113.5 113.5 110.7 BAND 23 23 19 19 19 19 19 19 19 0.4 0.5 0.2 0.2 COPK 3.2 0.1 0.1 0.1 0.1 0.1 0.4 0.5 0.2 0.2 COPM MAXIMM MASPI = 122.55 COMPOSITE 5PI = 122.55	19.0 112.6 114.4 116.4 119.1 126.4 122.1 122.3	121			
PNL 121.3 123.5 124.4 125.6 126.0 126.4 127.4 126.8 127.2 125.0 DBA 108.0 110.2 111.4 112.4 113.3 113.5 113.9 113.1 113.5 110.7 BAND 23 23 19 19 19 19 19 19 19 19 COPK 3.2 0.1 0.1 0.1 0.1 1.1 0.4 0.5 0.2 0.2 COPK 3.2 0.1 0.1 0.1 0.1 1.1 0.4 0.5 0.2 0.2	21.5 123.6 124.5 125.7 126.1 128.0 127.8 127.3	125			
COPK 2.2 23 19 19 19 19 19 19 19 19 19 19 19 19 19	21.3 123.5 124.4 125.6 126.0 126.4 127.4 126.8 08 0 110 2 111 4 112 4 112 2 112 6 112 0 113 1	175			
BAND 23 23 19 19 19 19 19 19 19 19 19 19 0 COPK 3.2 0.1 0.1 0.1 C.1 1.1 0.4 0.5 0.2 0.2 Maxfyim haspi = 122.55 Composite SPH =	TACTI NACTI CACTI CASTE SASTE MATTI CASTE DADO				
COPK 3.2 0.1 0.1 0.1 C.1 1.1 0.4 0.5 0.2 0.2 Maxfylim (IASPI = 122.55 COMPOSITE SPI =	23 23 19 19 19 19 19 19				
AXTYLIM (JASPI = 120.55) COMPOSITE 201	-2 0.1 0.1 0.1 C.1 1.1 0.4 0.5 0				
AXIMUM PNLT = 129.02 COMPOSITE PNL = AXIMUM PNL = 127.42 PNL = 127.42	AXI4UM UASPL = 122.55 AXIMUM PNLT = 123.02 AXIMUM PNL = 123.02 AXIMUM PNL = 127.42 PNLT FINTEGR	<pre>\$PL = 122.90 \$PNL = 128.61 ATED) = 136.14</pre>			
aximum 06a = 113.91	AXIMUM DBA = 113.9				

-.....

.

•

-• . •

GP15URA150.1740

2351 H U1924 JT69-17 REF SPLITTER B/L+DC9 REV 5DFG CANT NORTH

1

i

(

ł

والأقور فالمحتمد بالتحدين بأورجا فالاستناد وكالعدمان فمنتك فسيرجعه كالكالك المحتمي

GP150RA150.174C 2351 H Q1924 JIBD-17 REF SPLITTER B/L+DC9 REV 504G CANT NORTH

1

i

ļ

•

CONDI 110N = 6964

ALTITUDE = 1500. FT SIDELINE

Š
LU I
ū
ā
3
щ
0
z
-
ш
<u> </u>
_
وب
z
-

DEGKE	155		Ň		5	-	•	•	٦.	~	\$	-	•		ŝ	e.	•	÷.	51.3	÷.	\$				٠			93.2	•		0.4	
NGLE IN	150																		56.1						3 • 2	്	~	4.1.6	\$	21	0.3	
Ň	145	~	ું	~	- - 		•	2	*	~		•	-	5		6	•	÷	¢,	•		m	•	\$			•	æ	85.7		0.6	
	140							٠					٠		٠		÷.		62.9			•					8.	100.1	87.6	i i i i i i i i i i i i i i i i i i i	0.5	
	135	•	2.	\$	•	7.	÷	~	•	. +		4	•	•	•	4	-	å	65.2	4	÷.	~	•	~	5	•	3		87.	_	0.8	
	130	;	4	ň	;	\$	3	\$	3	ŝ	3	m	:	•	~	່ຕໍ	~	÷	00.4	ň	÷	\$	8.	4		\$	00.		sc)	_	0.2	
	120	\$	~	6	•	~	÷.	+	\$	\$	m	~	. -	ំ	÷.	~	ŝ	e,	70.5	~	²	·B	4	÷	· .	e.	•	99.8	÷.		0.2	
	110	Ň	• •		-	÷	.	4	2	~	2.		•	÷	ъ.	-	5.	"	71.3	"	ň	•	\$	ë.	\$		•	٠	~		0.2	
	1 00	:		÷		-	8	÷	•	•	:	;	6	.	~	÷	\$	÷	71.6	.	÷	÷.	÷	ŝ	~	•	8	نە	•	\sim	0.2	
	96					÷.	-			•	*	•	1.	\$	ŝ	3	.	1	69.2	1.	~	•	\$	3			÷	96.1	•	23		
		.050	. 063	• C80	.100	.125	.160	• 200	.250	.315	- 400	. 500	• 6 3 0	a,	•		•	•	2.50	•	•	•	•		0	S	PNLT	PNL	UBA	BAND	TCURR	

.

= 109.02

PNLT (INTEGRATED)

Concernance of the second

DATE DATE ENTER REQ. 9	CNISTNE NUMBER CAL LEVEL	, <u>1</u>	312-54 4.0 DH.	_			ž,	u.	u 1 •		יו ני ער פי		BARM. PRESSURE	0 000	. N.
	~	0 11 11	2/23/74	• -		TIGIMUH	0117		11	64.0	.O PER CT.		WIND DIRECTION		Hdw
с. С. с.						OBSERVE CORRECT	E D R	PM RPM	11 11	7141	1.0			ı	
ۍ د			FAA	PAR1 3	36 REFER	ENCE	DAY CORI	CORRECTED	SPL IN	DB	- RADIUS -	150.0 FT	:		
х К.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							Ž	ANGLE IN	DEGREE	S					
<u>э</u>	90 100	0 110	120	061	135	140	145	150	155						
	بر بر	95.	98.	103.	1 06	108	6	0.111	2						
	ه ه ۲۰	97. 98.	0 ~	0101	111		115.0	113.0	113.1						
6		101 8	0 104.		E11	115			116.2						
8 6 6 6	• • • • • • • • • • • • • • • • • • •	.0 102.7 .2 103.8	7 106.		515		117.1	116.1	117.2						
-	. 6 10	501 6	3 108.	••	115				113.7						
	01 a.	106	109.		+1 T			116.8	112.2						
-		106 106	. 109.						111-0 10-0 110-0						
		0100	4 105.	• •••	110				108.3						
-	1 10	0 105	B 108.	- ·	1 09				106.3	-					
101		<u> </u>	106.	-	108	107.6			103.8						
.25 1.00		<u>.</u>	105.	<u>ب</u> سم 1	105		104.7	104.0	102.4						
-	010	103	104.		104		103.0	102.1	100.8						
.50 9B	- 2 I C	0.501 Y.	102.		101		100.1	1 UC .4	49.44 98.21						
	۰ م	101	101		1 00		1.99	97.5	96.5						
		53	• 6 6 •		86		96.4	95°0	93.8						
	ה א ייי	0 G 7 J	0.0		50		94 • 1 0 1 • 8		40.4 Яв л						
6.6	- m -		2 94.9	0.44		42.0			67.7						
16 O	6 5	96.	94.		92		89.8	0.0	87.0						
- N	.9 11 .9 12	117. 127.	0 119. 5 128.	122 129	124.	125.5	126.0		124.3						
123	3.8 125.0.7 112.	5.9 127. 2.8 114.	5 128		130.3	131.1	131.0	31.1	128.6						
			1		7	19	19	12	ŝ						
C,	0.1 0.	.0	1 0.1	1.0 1	0.1	0.1	0.2	0.2	0.3						
M I X M M A X I M M A X I M M A X I M M A X I M	MUM GASPL Mum PnLT Mum PnL Mum DBA		126.14 131.27 131.15 131.15			COMP COMP	COMPOSITE COMPOSITE PNLT (INTE	P	SPL = NL = ED) =	126 132 139	-55 -26 -42				

= 112.34 PNLT (INTEGRATED)

GP150RA150.1740 2351 H Q1924 JT80-17 REF SPLITTER B/L, DC9 REV 5DEG CANT NORTH

7304 IJ CONDI TION

SIDEL INE FT 1500. 0 ALTITUDE

DE GREES

33.4 23.3 9.7 0.0 95.7 97.2 96.9 84.1 84.9 85.3 88 .2 89 .0 85 .0 85 .0 210.0 80.3 77.8 75.0 85.8 83.2 82.2 40.4 155 ANGLE IN 34 .8 86 .7 99.1 101.7 101.4 101.4 88.9 210.3 150 52.8 100.2 103.1 102.7 90.3 210.4 4.1.4 39.6 29.3 14.1 145 100.7 104.1 104.1 103.9 210.2 140 100.0 104.1 103.8 91.8 21 49.6 41.1 28.6 135 99.2 103.9 103.7 92.2 210 1 30 102.9 96.6 103.1 23 120 9.101 90.9 72.0 67.5 63.8 19 84.6 83.7 82.9 4**1.8** 90**.5** 84.8 78.8 59.3 54.2 46.1 77.2 74.7 110 92.8 100.6 100.5 19.3 23 100 4.19 9.89 9.89 9.7.4 23 50 DASPL PNLT PNL DBA BAND TCORR

 C2/28/79 C0RFECTED RPM FAA PART 36 REFERENCE DAY CORRECTED ANGLE IN 100 110 120 130 135 140 145 150 95-5 97.0 101.0 106.6 109.3 110.8 112.4 113.2 1 96.7 103.5 109.5 111.9 113.9 114.7 114.9 1 98.4 100.5 105.3 111.6 114.3 116.3 117.4 117.4 1 100.9 102.7 107.4 114.2 116.0 117.8 118.7 119.2 1 	W H	31.0 F TIME OF BARN, DF BARN,		31.00 F 827 30.02 IN. HG
FAA PART 36 REFERENCE DAY CORRECTED ANGLE IN 90 100 110 120 130 135 140 145 150 93.8 95.5 97.0 101.0 106.6 109.3 110.8 112.4 113.2 1 95.6 97.7 98.7 103.5 109.5 111.9 113.9 114.7 114.9 1 96.5 98.4 100.5 105.3 111.6 114.3 116.3 116.3 117.4 117.4 1 98.5 100.9 102.7 107.4 114.2 116.0 117.8 118.7 119.2 1			LOCITY =	HAM I
ANGLE IN 90 100 110 120 130 135 140 145 150 93.8 95.5 97.0 101.0 106.6 109.3 110.8 112.4 113.2 1 95.6 97.2 98.7 103.5 109.5 111.9 113.9 114.7 114.9 1 96.5 98.4 100.5 105.3 111.6 114.3 116.3 117.4 117.4 1 98.5 100.9 102.7 107.4 114.2 116.0 117.8 118.7 119.2 1	SPL IN D			
90 100 110 120 130 135 140 145 150 1 93.8 95.5 97.0 101.0 106.6 109.3 110.8 112.4 113.2 11 95.6 97.2 96.7 103.5 109.5 111.9 113.9 15 11 95 96.5 98.4 100.5 105.3 111.6 114.9 15 96.5 98.4 100.5 105.3 111.6 114.9 15 96.5 98.4 100.5 105.4 114.6 114.6 117.4 11 96.5 100.9 102.7 107.4 14.2 116.0 117.8 119.2 11	DEGREES			
93.8 95.5 97.0 101.0 106.6 109.3 110.8 112.4 113.2 11 95.6 97.2 98.7 103.5 109.5 111.9 113.9 114.7 114.9 17 96.5 98.4 100.5 105.3 111.6 114.3 116.3 117.4 11 98.5 100.9 102.7 107.4 114.2 116.0 117.8 118.7 119.2 11	155			
•6 9/.4 98.7 103.5 109.5 111.9 113.9 114.7 114.9 15 •5 98.4 100.5 105.3 111.6 114.3 116.3 117.4 117.4 11 •5 100.9 102.7 107.4 114.2 116.0 117.8 118.7 119.2 11				
-5 100-9 102-7 107-4 114-2 116-0 117.8 118-7 119-2 11	5 - 4 5 - 7			
	18.3			
00.6 102.2 104.6 109.2 116.0 118.5 119.8 119.3 118.1] 01.5 103.4 106.0 110.6 116.4 119.6 120.0 121.0 120.2 11	0.0			
·9 104.9 107.3 111.5 1:7.0 119.3 120.3 120.6 121.3 1	1.1			
04.0 105.7 108.3 111.7 116.2 118.2 119.0 120.2 121.8	16.7			
0+.1 100+.5 108+.6 111.9 115.0 115.4 116.4 116.6 116.3 0+.7 106+.5 108+.6 111.9 115.0 115.9 116.4 116.6 116.3	16.9			
04.3 106.8 109.0 111.6 114.4 114.9 115.2 115.3 115.1	112.3			
106.7 108.3 111.0 113.5 114.3 114.3 113.9 113.5 106.2 108.0 110.3 112.4 113.3 112.4 112.4	10.3			
03.5 105.5 107.4 109.7 111.1 111.6 110.9 110.0 109.2 1	17.5			
-9 105.2 106.9 108.8 109.7 110.0 109.1 108.2 107.8 1 9 164 6 104 3 107 4 169 4 169 4 107 4 104 5 25 5	06.3			
02.1 104.6 105.6 106.7 107.2 107.4 106.1 105.1 104.4 10	0.4.6			
5 103.9 104.5 105.4 105.6 106.3 104.8 103.8 103.3 10	1.7			
00.0 101.4 101.7 101.7 102.5 102.8 101.2 100.4 00.3	99.2 06.2			
.2 100.0 99.5 100.1 100.7 100.6 99.3 98.3 97.0	93.6			
•4 98•9 98•4 98.7 99•0 98•6 98.2 96•5 95 <u>•</u> 6	12.5			
3.7 46.8 96.8 95.9 96.6 96.7 95.7 94.5 93.2 8	00			
15.4 117.5 119.3 122.3 126.2 127.9 128.7 129.1 129.4 12	7.1			
26.4 128.8 129.8 131.5 133.4 134.4 134.6 134.7 135.0 13	12.3			
31.5 133.4 134.4 134.6 134.7 135.0 13 19.1 121.0 121.8 121.7 121.5 121.6 11	12.3 18.9			
24 24 24 24 24 24 24 24 24 24	24			
0°0 0°0 0°0 0°0 0°0 0°0 0°0	0.0			
[MUM DASPL = 129,37 (DMPDS [MUM PNLT = 135,03 (DMPDS		129.85 34.11		
MUM PNL = 135.03 MUM DBA = 121.84		1424 B5		

ANGLE IN DEGREES 2¢ 0°0 87.3 86.8 87.7 87.7 87.7 887.9 887.5 887.5 774.6 774.6 67.3 887.3 714.0 67.3 887.3 714.0 67.3 887.3 714.0 63.1 58.6 51.7 42.8 36.6 27.4 12.7 0.0 98.3 100.3 100.3 88.0 155 84.3 81.3 78.2 75.5 102.2 105.2 105.2 92.9 24 0•0 68.0 64.2 58.9 51.6 46.2 38.0 25.5 8.5 71.7 150 103.3 106.3 106.3 94.1 87.3 89.6 92.3 93.4 93.4 24 91.6 95.4 6**6 6.49 74.6 67.6 44.3 33.4 18.9 88.3 80.8 77.8 71.3 63.0 86.4 63.8 **-06** 56.7 52.3 145 162.7 103.8 103.8 1 107.4 107.9 107.3 1 107.4 107.9 107.3 1 96.0 96.1 95.2 5°0 70.9 56.5 50.1 26.8 140 86.1 86.1 991.0 992.5 995.5 192.5 19 24 53.8 45.2 33.0 74.3 70.3 64.7 135 **6**0 24 0•0 130 = 115.52 99.5 105.8 94.8 79.6 24 0.0 59.9 52.4 42.0 73.2 68.4 65.1 120 97.0 104.1 104.1 104.3 76.3 2 t 0 • 0 85.0 86.3 87.1 87.0 61.8 55.6 46.4 78.0 81.9 83.8 87.1 87.1 86.2 85•4 84•3 83•2 81.6 70.1 110 66.4 <u>.</u> 79. 17. 74. PNLT (INTEGRATED) 95.4 103.4 103.4 92.1 76.9 78.1 80.5 81.7 82.9 82.9 85.0 85.0 40.8 63.0 63.5 48.9 48.9 24 0•0 100 93.4 101.3 90.0 822.3 81.8 81.1 779.0 777.1 775.1 775.2 775.2 775.2 24 0•0 60.5 55.1 45.9 65.5 600 JASPL PNLT PNL DBA BAND TCORR

2351 H Q1923 JT8D-17 REF SPLITTER B/L,DC9 REV 5DEG CANT MORTH

GP150RA150.1740

CONDITION = 7741

ALTITUDE * 1500. FT SIDELINE

CARRA CARRA CONTRA					10000000000000 m	R 1131 1141 1223 1223 1223 1223 1223 1223				ED SPL IN DEGR 155 155 117-8 117-8 1118-2 1118-2 1118-2 120-6 120-6 117-2 3 121-7 3 121-7 3 121-7 2 120-6 5 117-8 3 121-7 2 117-5 5 117-8 5 117-10 5 117-8 5 117-10 5 117-10 5 117-8 117-10 100-10 100-10 100-10 100-10 100-10 100-100-	0 N W <u>2</u> W 1	8 8 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADIUS	 • •	WIND VELOCITY	FRESSUR FLOCIIO FLOCIITY	 30.02 IN. 16 5 IN. 16 9 HPH
	00000000000000000000000000000000000000	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	, wave + wave + wa	1112.9 1112.9 11112.9 11112.9 11112.9 1112.9 1005.9 1005.9 1005.9 1005.9 1005.9 1005.9 1005.9 1005.9	*****					まままし ら ち ち ふ ひ う ひ み ち						
3933	18.4 12 30.0 13 30.0 13 17.0 11 24 6.0	20.9 11 322.8 11 322.8 11 19.6 11 0.2 4	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	125-8 136-0 136-0 125-0 0-0 24 0-0	130.1 138.3 138.3 138.3 125.6 24 0.0	132.1 139.8 139.8 139.8 127.0 24 0.0	132.9 139.9 139.9 127.1 24	133.1 139.9 139.9 126.9 126.9	133. 139. 139. 126. 2	0 130.7 7 137.3 7 137.3 6 124.0 6 0.0	rmmo 40						
X A M X A M	MAXIMUM DAS Maximum Pnl Maximum Pn Maximum Db	<u> 4</u> 		33.11 39.94 39.94 27.11			COMP COMP PNLT	00	ITE SPL ITE PNL (INTEGRATED)	SPL PNL TED)	она рил уна И И П	(33.69 40.92 41.77					

GP150RA150.1740 2351 H Q1923 JT8D-17 REF SPLITTER B/L,DC9 REV 5DEG CANT NORTH

CONDITION = 8406

ALTITUDE = 1500. FT SIDELINE

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1001							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 001		3	÷.	4	4	n	ŝ
3 78.8 80.2 84.0 89.6 91.5 92.2 92.6 91.0 90. 2 82.4 98.1 94.5 98.1 95.2 95.4 92.4 92.4 2 85.4 98.1 94.5 98.1 95.2 95.4 92.5 99.1 95.5 91.9 92.5 91.9 91.9 91.9 91.7 92.5 91.9 91.9 91.7 91.9 91.7 91.9 91.7 91.9 91.7 91.9 91.7 91.9 91.7 <td>6 76.9 78.</td> <td>٠</td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td>•</td>	6 76.9 78.	٠			•		•	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 78.8 80.		\$	•	Ň		-	
<pre>2 82.3 84.4 88.1 94.2 95.6 95.3 95.2 95.4 92. 3 85.4 89.0 92.8 97.3 98.0 99.5 99.8 98.2 97.2 91. 5 87.5 90.0 92.8 97.3 98.0 99.5 99.8 98.2 97.2 91. 9 87.8 90.2 93.0 95.5 97.5 98.0 97.8 96.7 92. 3 87.9 90.2 93.0 95.5 97.5 98.0 97.8 96.7 92. 3 87.9 90.2 93.0 95.5 95.3 95.8 95.3 93.4 89. 0 88.1 90.4 92.3 94.4 90.9 891.5 89.1 89.4 1 90.4 92.3 94.4 90.3 99.4 90.9 891.5 89.1 89. 0 88.1 90.4 92.3 94.4 90.3 99.5 99.8 89.3 73. 6 88.0 89.0 90.8 93.5 96.4 90.9 891.8 84.9 89.3 73. 6 88.0 88.2 88.2 88.2 88.2 88.0 86.8 83.3 77 9 85.4 89.0 90.4 93.3 91.4 69.9 69.1 80.7 77 9 85.1 89.0 90.4 83.4 83.4 89.4 89.4 89.4 89.3 73. 7 79.3 78.9 78.7 76.6 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.7 76.6 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.7 76.6 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.7 76.6 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.7 76.6 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.7 76.8 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 80.1 84.4 83.4 61.9 53.0 60.0 53.6 44. 7 70.6 74.8 77.6 74.8 64.3 58.4 50. 7 79.3 78.9 78.7 76.8 76.8 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 71.7 70.9 77.8 64.3 58.4 50. 7 70.9 77.3 78.9 11.7 712.5 112.2 111.0 109.4 104. 7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. 7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. 7 95.7 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	1 80.0 81.	٠			5		÷.	
<pre>2 83.6 85.8 90.2 96.2 98.0 98.3 96.6 93.7 93. 3 87.5 90.0 92.5 99.0 99.5 99.9 99.5 98.1 95.6 91. 3 87.6 90.0 92.5 98.0 97.8 96.7 97. 97. 97. 97. 3 87.9 90.2 93.0 96.5 97.5 98.0 97.8 96.7 97. 4 90.2 93.0 96.5 97.5 98.0 97.8 96.7 97. 3 87.9 89.6 91.8 93.5 94.1 93.3 91.5 89.1 83. 4 90.6 88.2 89.7 90.3 90.4 88.8 86.8 83.3 77. 6 80.6 88.2 89.7 90.3 90.4 88.8 86.8 83.3 77. 6 80.6 88.2 89.7 90.3 90.4 88.8 86.8 83.3 77. 6 80.6 88.2 89.7 90.3 90.4 88.8 86.8 83.3 77. 6 80.6 88.2 88.2 88.0 86.3 84.0 80.7 77. 7 79.3 78.9 78.1 90.4 88.8 86.9 77.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.1 81.9 89.4 83.1 80.9 77.3 73. 7 79.3 78.9 78.1 81.9 89.4 83.4 89.4 50. 7 79.3 78.9 78.1 81.9 74.4 59.9 65.1 59. 7 79.3 78.9 78.1 81.9 74.4 74.6 74.4 69.9 65.1 59. 7 79.3 78.9 78.1 70.6 68.9 67.9 63.9 60.0 53.6 44. 7 79.3 78.9 78.1 70.6 68.9 67.9 63.9 60.0 53.6 44. 7 79.3 78.9 78.1 70.6 68.9 67.9 63.9 60.0 53.6 44. 7 79.3 78.9 78.1 70.6 88.9 67.9 63.9 60.0 53.6 44. 7 79.2 89.9 89.1 10.7 107.8 107.0 105.6 101. 7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. 7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. 7 95.7 24 24 24 24 24 24 24 24 24 24 24 24 24</pre>	2 82.3 84.	٠	÷		÷		÷.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 83.6 85.		\$		•		'n	•
3 86.4 89.0 92.5 98.0 99.5 99.5 99.6 91.2 91.7 91.2 91.4 <t< td=""><td>0 84.9 87.</td><td></td><td>~</td><td></td><td>•</td><td></td><td>\$</td><td></td></t<>	0 84.9 87.		~		•		\$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 86.4 89.	٠		٠	÷	٠	-	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 87.5 90.		÷		\$		÷	•
3 87.9 90.2 92.8 95.5 96.3 95.5 96.3 93.4 99.5 99.1 86.4 81.3 0 88.1 90.4 92.3 94.4 99.3 91.5 89.1 86.4 81.3 0 88.6 89.0 90.8 92.3 94.4 99.3 91.5 89.1 81.3 0 86.6 88.2 88.0 90.4 88.8 86.8 83.3 77.3 0 85.1 89.1 90.4 88.8 86.8 89.3 77.3 73.3 0 85.1 89.4 83.1 80.9 77.6 74.4 69.9 65.1 59.4 1 79.2 88.7 88.2 88.0 89.4 81.0 77.3 73.3 73.3 1 79.2 89.4 89.4 89.4 89.4 69.9 65.1 59.4 1 79.2 89.4 77.6 74.4 57.4 59.4 50.4 1 79.2 71.7 87.4 57.4 59.4	9 87.8 90.	٠	\$				\$	٠
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 87.9 90.	٠	ŝ		ŝ		÷.	•
3 31.4 92.4 93.5 94.4 93.3 91.5 89.1 81.4 <t< td=""><td>0 88.1 90.</td><td></td><td>• •</td><td></td><td>÷.</td><td></td><td></td><td></td></t<>	0 88.1 90.		• •		÷.			
0 0	3 81.4 89. 0 87 6 90	٠	m :				÷.	
9 52.0 69.5 87.0 66.0 77.7 77.8 77.0 69.7 77.8 9 65.1 65.7 66.3 85.6 83.4 81.0 87.3 73 73 2 85.1 65.7 66.3 85.6 83.4 81.0 77.8 74.0 69.9 65.1 59.4 50.3 74.4 69.9 65.1 59.4 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 55.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1 59.9 50.1		•	ů c					•
9 85.1 86.9 85.6 83.8 81.0 77.3 73.4 1 82.2 82.1 84.4 83.4 83.1 80.9 77.6 74.4 69.9 65.1 1 79.3 78.7 76.6 76.8 83.1 80.9 77.6 74.4 69.9 65.1 59 1 79.3 78.7 76.6 76.8 76.8 74.4 69.9 65.1 59 9 75.6 74.8 74.2 72.3 71.7 67.8 64.3 56.1 59 5 72.6 74.8 61.9 58.1 53.0 46.1 35 44.5 50 5 72.0 49.9 63.9 65.0 53.6 44.2 50 44.5 50 44.5 50 44.5 10 55 51 53.0 46.1 35 51 44.5 10 55 11 55 12 51 53.0 46.1 35 52 10 46.1 55 55 10 45.1 55	9 85.8 87.	• •		• •		•	• •	•
2 83.9 84.1 84.4 83.4 83.1 80.9 77.8 74.0 69.9 65.1 7 79.3 78.7 76.6 76.8 77.6 74.4 69.9 65.1 59. 9 75.6 74.8 78.7 76.6 76.8 77.6 69.9 65.1 59. 9 75.6 74.8 74.5 76.6 76.8 71.7 67.8 69.9 65.1 59. 5 72.9 71.0 70.6 68.9 65.1 53.0 46.1 35.6 44. 9 61.1 59.6 63.9 65.1 53.0 46.1 35.2 27.9 17.5 1 9 61.1 59.6 63.9 63.9 60.0 53.6 44. 45.8 34.2 2	9 85.1 85.	•	5				5	
4 82.2 82.1 81.9 80.5 80.4 77.6 74.4 69.9 65.1 59. 7 79.3 78.7 76.6 76.8 73.4 69.9 65.1 59. 9 75.6 74.8 74.2 72.3 71.7 67.8 64.3 58.4 59. 5 72.9 71.0 70.6 69.9 65.1 59.0 65.1 59.4 50.0 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 50.6 53.6 44. 53.6 44. 50.6 53.6 44.6 13.6 101.1 35.2 27.9 17.5 101.2 101.7 107.2 101.7 107.2 104. 104. 104. 10	2 83.9 84.	• •	5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 82.2 82.		•		-			
9 75.6 74.8 74.2 72.3 71.7 67.8 64.3 58.4 50. 5 72.9 71.0 70.6 68.9 67.9 63.9 60.0 53.6 44. 1 68.6 65.9 63.4 61.9 58.1 53.6 46.1 35.6 44. 35.6 44. 35.6 44. 35.6 44. 35.6 44. 35.6 135.6 135.6 135.6 135.7 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 135.7 14.3 36.0 35.2 27.9 17.5 12.5 11.1 35.7 34.2 22.8 101.0 105.6 101. 102.7 104.9 104.7	7 79.3 78.	•	\$				5.	
.5 72.9 71.0 70.0 68.9 67.9 63.4 61.9 53.6 44. .1 68.6 65.5 65.4 61.9 58.1 53.6 46.1 35.2 22. .9 61.1 59.8 58.1 53.8 48.4 42.8 34.2 22. .9 61.1 59.8 58.1 53.8 48.4 42.8 34.2 22. .9 61.1 59.8 56.1 53.8 48.4 42.8 34.2 22. 22. .5 52.0 49.9 47.7 44.3 40.9 35.2 27.9 17.5 12.5 11.6 109.4 104. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 97.4 92.4 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 <t< td=""><td>9 75.6 74.</td><td>٠</td><td>~</td><td></td><td>1</td><td></td><td>æ</td><td></td></t<>	9 75.6 74.	٠	~		1		æ	
.1 06.6 65.9 63.4 61.9 58.1 53.0 46.1 35.2 .9 61.1 59.8 58.5 56.1 53.8 48.4 42.8 34.2 22 .5 52.0 49.9 47.7 44.3 40.9 35.2 27.9 17.5 1 .2 96.1 102.7 106.5 107.7 107.8 107.0 105.6 101. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. .7 107.2 108.0 100.3 101.0 100.3 99.1 97.4 92.4 .4 95.7 97.0 98.7 100.3 100.3 99.1 97.4 92.4 .4 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24	5 72.9 71.			÷.			m	
.9 61.1 59.8 58.5 56.1 53.8 48.4 42.8 34.2 22. .5 52.0 49.9 47.7 44.3 40.9 35.2 27.9 17.5 11.5 11.5 11.5 11.5 11.5 11.0 17.5 101. .2 98.3 100.1 102.7 106.5 101.7 112.5 111.2 111.0 109.4 104.1 .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104.1 .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104.1 .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 92.4 .4 95.7 97.0 98.7 100.3 101.0 100.3 99.1 97.4 92.4 .4 24 24 24 24 24 24 24 2 24 2 2 2 2 2 2 2 2	1 68.6 66.		3	-	÷.	٠	ŝ	۰.
·5 52.0 49.9 47.7 44.3 40.9 35.2 27.9 17.5 1. ·2 98.3 100.1 102.7 106.5 107.7 107.8 107.0 105.6 101. ·7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. ·7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. ·4 95.7 97.0 98.7 100.3 101.0 100.3 99.1 97.4 92. ·4 24 24 24 24 24 24 24 24 24 24 24 0.0	9 61.1 59.	٠	•	'n	•		\$	
.2 98.3 100.1 102.7 106.5 107.7 107.8 107.0 109.6 101. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104. .4 95.7 97.0 98.7 100.3 101.0 100.3 99.1 97.4 92. 24 24 24 24 24 24 24 2	5 52.0 49.	•	*	•	÷.		~	٠
7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104.4 .7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104.4 .4 95.7 97.0 98.7 100.3 101.0 100.3 99.1 97.4 92. 24	2 98.3 100.1	02.	06.	2.2	07.5	07.	5	10
.7 107.2 108.0 109.5 111.7 112.5 112.2 111.0 109.4 104.4 .4 95.7 97.0 98.7 100.3 101.0 100.3 99.1 97.4 92. 24 24 24 24 24 24 24 24 22 <	7 107.2 108.0	60		12.	12.	1		
.4 95.7 97.0 98.7 100.3 101.0 100.3 99.1 97.4 92. 24 24 24 24 24 24 24 24 24 24 24 2 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7 107.2 108.0	8	21-	12.			00	
24 24 24 24 24 24 24 24 24 24 24 2 •0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 95.7 97.0	98.	80.	5	8	66	97.	- 26
	4 24 2	24			24			40
	0 0.0 0		•		F •	•	1 .	

•

-

•

CENTER CENTER Freu. 90 100 (KM2) 87.2 84.1 .063 87.2 84.1	= 03/	124.2 08. 2-314 2-314			TEMPERAT HUMIDITY	<i>.</i> .				3.0 F 5.0 Per Ct.		TIME OF DAY BARN. OF DAY BARN. DIRECTION WIND VELOCITY	
t 90 10 87.2 88 89.0 89					085ERVED CORRECTE		RPM RPM		= 65 65	388 554)
(90 10 87.2 88 89		FAA PI	PART 36	REFER	ENCE DI	DAY CORI	CORR EC TED	SPL IN	N 08	- RADTUS =	150.0 FT	-	
90 10 87.2 86 89.0 89						Ň	ANGLE IN	DEGREES	ES.				
87.2 88 89.0 89	110	120	130	5 ET	140	145	150	155					
		92.9			02.0		105.1	106.1					
90.1	93.3			101.8	105.8	107.5		107.0					
92.					05.4		108.2	107.5					
0**6		99.5						102.2					
7.69		1.66						4.86					
94.2		100-2					100.8	96.6					
96.4		0 101			1001-3	100°.	0.66	96.1					
		1.99				99.0	97.3	1.56					
4.46	97.9	99.1				97.4	96.2	95.1					
4 0 F 0		1.07		0.10	5.16	96.5	R•46	6.69					
		6.96		96.0	95.9	6°*6		7.69					
94.4		96.3		95.4	4-56	94.6	93.7	93.0					
2.00 03.1 94.3 2 50 03 7 04.3				94.2	54.0	93.0	92.0	1.15					
20 L'IN				4.56	92.1	92.1	6°06	90 • 9					
16 6.09				1.00		4 1 A	1.06	90.e					
88.8 90				88.5	88 . L	87.0	86.1	86.4					
90.7 93		5		87.9	89.89	88.4	87.0	86.1					
93.9 90			6.19	90.06		89.9	88.4	~					
96 8.26		•	91.8	89.8	89.5	68.7	87.2	÷					
5					14.5			1.4.8					
118.5		21.4		21.6	21.4			119.5					
DBA 104.8 106.5	121.4	121.2 1	121.5 1	121.2 1 107.2 1	121.2	120-7 1 106-4	105.3	119.3					
23			0									-	
TCORR 0.2 0.2	0	0.2	0.3	1.0	0.2	0.2	1 0	0.3					
MAXIMUM UASPL		15.31			COMP	11150	ÿ	ā	114 20	U.			
MAXIMUM PNLT Maximum PNL Maximum DBA		121.83 121.52 107.86			COMPC	COMPOSITE PNLT (INT	ITE PNL INTEGRATED		= 123	23-56 30-84			

2359 M Q2075 JT80-IT 5M MXR W/ SHIMS, DC9 REV 5DEG. CANT NORTH 6P150RA150.1740

* • . •

1

.

11-1 × + 12

1

!

CONUTTION = 6554

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

.

•

•

_

. .

					103.06	= 10	TED)	(INTEGRATED)	PNLT II	2
0.5	0.5	••0	4.0	0.5		6.0		0•3	••0	TCORR
19	23	23	23	19	19	19	19	23	23	BAND
71.8		1.9	•		82.1	2°69	Å.	82.1	•	890
86.0	89.1	6.06	92.3	92.8	93.9	64.7	94.5	93 . 8	95.6	PNL
06.4	•	91.4	ŝ		8° 3	95.0	1	1.46	~ , .	PNLT
86.5		89.6			88.9	86 . 4	1	8.58		DASPL
	2.5			•	32.2	1.04		47.9	7.01	10.0
	20.0			37.7	42.1	- 8-		55.4	53.8	8.00
	29.4			43.0	1.14	51.9		57.8	55.7	6.30
	35.3	•		48.4	51.3	55.1	•	58.6	57.1	5.00
	0.04		•	52.1	54.9	58.4		61.2	60.0	4.00
				0 10	0.00 0.1 A	4.64	400 B	0.20	6.00 6.8.6	3.15
٠	55.6	•		63.9	6.00	6 0 .3		2.69	2.80	2.00
	59.5			66.7	66.6	10.5		11.0	70.5	1.60
	61.5			68.6	70.5	72.1		72.0	70.9	1.25
	62.9			20.5	72.0	73.4		72.9	71.1	1.00
	64.7			71.8	73.4	74.6		74.0	72.0	-800
	67.0			73.3	74.6	76-0		74.4	72.9	.630
	66.8			74.5	76.0	1.11		75.2	13.8	.500
	69.6			76.1	17.4	7.87		75.7	75.5	00+-
	71.4	•		77.1	78.4	78.9	•	75.2	74.3	.315
	73.6			78.0	78.6	78.3		74.5	73.0	.250
	75.8			79.1	79.2	9.77		74.6	73.3	-200
	E.17			79.8	79.2	17.8		74.6	T3.7	.160
	1.02			60.0	78.9	77.2		73.9	72.6	.125
	81.7	•		79.6	78.3	75.9		72.5	71.0	.100
	61.1			7.91	17.4	74.9		71.0	70.0	.080
	0.08		•	78.6	76.6	73.3		69-69	68.9	-063
	78.9			76.5	74.9	71.6		61.9	67.1	. 050
155	150	145	140	135	130	120	011	100	26	FKEU.
חבפעב		-				1				- Z I
DFGRE	ANGLE IN	Z								

CENTER FREQ. 18442) 060 980.1 0063 90.1		<pre>% 124.1 UB % 124.1 UB % 124.1 </pre>	24.1 UB. X-314				5	u		10 =	0 P E R	ct.		TIME OF DAY BARM. PRESSUKE WIND DIRECTION MIMD VELOTITY	
						085E CORR	OBSERVED RPM Corrected RPM	RPH RPH		49 49 49 49 49 49	31 17				r
			FAA PI	PART 36	ReFE	RENCE DA	≻	CORRECTED	SPL IN	N DB	- RADIUS	N	150.0 fT		
							2	ANGLE IN	DEGREES	S					
-	100	110	120	130	135	140	145	150	155						
		5.10			8.101	4.601			108.3						
	90.8	93.0				105.7	07.1		108.2						
		9.46			05.7				108.7						
		96.5	1.92		05.6	107.5	109.8	110.8	109.6						
	9.96			104.5				107.9	105.4						
					•			105.9	101.4						
		~		103.9	۵			103.9	98.7						
					<u>م</u>			102.0	98.5						
	98.3	ŝ		103.2	102.8	102.2	101-2	100.2	98°1 67 0						
					- 0	7.001	100	9. 40							
				-		4.66	98.6	97.6	96.5						
		98.0	6.46		99.5	98.5	91.6	96.9	95.5						
		91.8		5.66	98.9	98.1	97.0	96.5	95.6						
		91.6		98.7	98.4	91.6	96.6	96.4	95.2						
				0-14	1.40	4 - 10		2	47° 4						
		9.96		96.96	97.5	95.1	1-46	9.66	62.3						
		94. H		93.5	93.3	1.16	90.6	90.1	89.0						
		92.5		91.6	91.3	89.9	88 . 6	88.4	87.2						
30 90.9		92.6		51.2	0	or ∙		87.9	86.5						
		95.2		41.8	90.8	•	م	88.2	86.7						
		7.04		0-26	9.06	89.4	88.0	2.18	80.4						
	-	N	112.7		m				117.0						
	_	¢.	123.0		_		123.5	122.9	121.6						
PNL 119.7	121.5	122.6	122.7 1	123.9 1	124.2	123.3			121.2						
	•	2													
BAND 23		19	19	19	19	-	61	19	16						
•	•	0.3	0•2	••0	0.9	••0	6. 0	4.0	••0						
MAX I MUM	DASPL DALT		17.87				COMPOSITE	ŝ			60				
MUNIXAN		133 N N	10.20			PNL T	PNLT (INT	(INTEGRATED)		= 133.09	6				

- 105.10 PNLT (INTEGRATED)

0.0 6.9 6.9 88.7 89.1 89.5 74.3 88886777799999998554664 • + NII 9949716 • 1 994718 • 1 904718 • 1 9074718 • 1 2.9 91.0 91.8 78.2 61 O 81.5 610 91.8 93.9 58.0 55.4 47.0 86.6 83.5 79.5 76.5 76.5 76.5 66.6 36.8 70.3 60.4 61.7 93.2 4-40 73.1 7.17 610 67.5 58.4 51.2 47.1 33.6 91.8 94.5 61.1 41.7 0.7 74.6 73.0 71.5 66.9 64.0 62.9 38.5 91.7 96.3 95.6 83.4 53.3 51.1 69.7 ÷. 6⁷0 91.2 96.7 96.2 84.5 19 719.0 710.0 71 39.3 89.8 96.5 96.2 84.8 1.1+ £: 88.7 96.3 95.9 84.5 87.3 95.6 83.6 19 772.74 772.74 775.0 775.0 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.4 775.7 7757 5°3 68.0 770.0 777.2 777.2 777.0 777.0 777.0 777.0 777.0 777.0 777.0 777.0 777.0 777.0 777.0 70 61.4 58.3 53.7 45.1 86.2 94.5 92.5 82.5 62.5 DASPL PMLT PNLT DBA BAND

ANGLE IN DEGREES

155

150

145

2

135

130

120

110

100

80

80.5

9.91 82.0

4-61

79.7

80.3

GP150RA150.1740 2359 H Q2074 JT8D-17 5M MXR W/ SMIMS, DC9 REV 5066. CANT MDRTH

CONDITION = 6817

SIDEL INE = 1500. FT

ALTITUDE

<pre>FEG. = JED -J7 E MUDEL = JED -J7 E MUDEL = J2-LUB. MUNIDITY = J2-1149. MUNIDITY = J2-1149. MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ = J2-1140. MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ = J2-1140. MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ MUNIDITZ = J2-1140. MUNIDITZ MUNIDITZ MUNIDIZ MUNIDITZ MUNIDIZ MUNIDITZ MUNIDITZ MUNIDIZ MUNIDIZ MUNIDIZ MUNIDIZ MUNIDIZ MUNIDITZ MUNIDIZ MUNIDI</pre>	32.0 F 11ML 6	BILL DIRECTION MIND DIRECTION MIND VELOCITY	= 7041 = 7231	SPL IN D8 - RADIUS = 150.0 FT.	DEGREES	155	11.5	12.2	(3.5 5 0	1.9	16.3 5 2	104°5	13.2 5 4	1.5	10. 7 19. 9		19.2 18.0	6.7 5.2	92.9 00	90.8 89.2	88.8 88.0	1.5 6.1	5.9	ي. ه. ۵	= 123.11 = 129.13 = 136.65
60 -17 572-00 -1 X-314 X-314 X-314 106 X-314 100 120 130 99-1 100 99-1 100 101-5 101 102-6 101 103-6 104 104-7 106 105-8 107 105-9 107 105-1 105 104-1 106 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 105-1 107 107-1 107 107-1 107 107-1 107 107-1 107 107-1 107 107-1 107 107-1 107 1127-10 127 114-10 114 114-10 114 <td>۲.</td> <td>11 101 100</td> <td>OB SERVED CORECTED</td> <td>KEFERENCE DAY CORRECTED</td> <td>ž</td> <td>35 140 145 150</td> <td>5.2 106.6 108.5 109.7 1 7.4 109.5 110.9 111.3 1</td> <td>109.6 112.0 113.5 113.3</td> <td>110.0 112.8 114.0 115.3 111.2 113.2 114.3 114.2</td> <td>110.7 112.5 113.4 113.6</td> <td>109-8 111-3 110-9 112-6 108-9 109-2 108-7 100-5</td> <td>107.7 107.7 107.2 107.0</td> <td>106.8 106.3 105.3 104.5 105.4 105.2 104 2 102 2</td> <td>104.9 104.3 103.3 102.4</td> <td>104.0 103.6 102.5 101.3 1 103.3 102.6 101.6 100.9</td> <td>102.9 102.6 101.4 100.8</td> <td>101.8 101.4 100.5 99.0</td> <td>106.6 100.1 99.2 97.6 99.6 98.8 97.9 96.4</td> <td>97.5 96.2 94.9 93.8</td> <td>94.0 93.4 92.2 91.3</td> <td>93.6 92.8 91.7 90.7 92.4 91.4 90.4 85.6</td> <td>20.1 121.4 122.0 122.5 27.6 127.6 127.3 127.2</td> <td>27.7 127.6 127.1 127.0 13.9 113.7 112.9 112.5</td> <td>19 19 19 19 19 •1 0.1 0.2 0.1</td> <td>COMPOSITE SPL COMPOSITE PNL PNLT LINFEGRATED)</td>	۲.	11 101 100	OB SERVED CORECTED	KEFERENCE DAY CORRECTED	ž	35 140 145 150	5.2 106.6 108.5 109.7 1 7.4 109.5 110.9 111.3 1	109.6 112.0 113.5 113.3	110.0 112.8 114.0 115.3 111.2 113.2 114.3 114.2	110.7 112.5 113.4 113.6	109-8 111-3 110-9 112-6 108-9 109-2 108-7 100-5	107.7 107.7 107.2 107.0	106.8 106.3 105.3 104.5 105.4 105.2 104 2 102 2	104.9 104.3 103.3 102.4	104.0 103.6 102.5 101.3 1 103.3 102.6 101.6 100.9	102.9 102.6 101.4 100.8	101.8 101.4 100.5 99.0	106.6 100.1 99.2 97.6 99.6 98.8 97.9 96.4	97.5 96.2 94.9 93.8	94.0 93.4 92.2 91.3	93.6 92.8 91.7 90.7 92.4 91.4 90.4 85.6	20.1 121.4 122.0 122.5 27.6 127.6 127.3 127.2	27.7 127.6 127.1 127.0 13.9 113.7 112.9 112.5	19 19 19 19 19 •1 0.1 0.2 0.1	COMPOSITE SPL COMPOSITE PNL PNLT LINFEGRATED)
				AA PART		10 120 13	46.7 102.	101.5	104.5	104.7	105.4	105.8	1.06-0	104.7	103.8	103.4	102.1	100-2	98.0	9.54	45.1 94.4	9 110-6 118 2 127-0 127	1 126.9 127 8 113.7 114	20 19 •1 0 •1 0	

110

!

2359 M U2U7+ JI8U-I7 5M MXM W/ SHIMS, DC9 REV SDEG. CANT NURTH GPISORAISO.1740

1

CONDITION = 7231

ALTITUDE = 1500. FT SIDELIME

ANGLE IN DEGREES

CENTER										
	20	100	110	120	130	135	140	145	150	155
17441	¢		•	;	(,				
	÷.	•	÷.,		\$.	\$	Ň,	•		m.
COD.	\$.		÷	1.1	-	÷	\$			4
080.	'n	•	å	79.9	ŝ	\$	-			4
.100	÷		ч.	81.0	ŝ	\$			•	ŝ
.125	ò	•	•	82.2	ŝ	ŕ	8			
.160	-		3	83.0	5	~	8			
.200	S.		:	83.2	ŝ	÷	•9	•		
.250	ź			6. Ed	÷	ŝ	4	٠	5	÷.
.315	ę,		-	83.7	÷	e.	~	•	•	5
00+-	:		~	83.7	÷.	1	:	۰.		, m
.500	ъ.		Ň	82.7	\sim	•		۵.		2
.630	÷		۲.	61.7	-	ò		•		0
.806	ŝ	•	•	80.5	3		•	t		
1.00	\$		6	19.4	ŵ	•	4		•	
1.25	ċ		ġ.	78.6	~	5	ч.			-
1.60	\$	•	-	70.9	ŝ	m,	Ň	•		-
2.00	÷.	•	ŝ	75.1	\sim	-	è.			8
2.50	-		m.	12.7	\$	"	÷			m
3.15	*			64 . 6	5	ŝ	~			~
4-00	*		-	1.40	-	•	\$			•
5 ° 00	4.20	64.1	63.7	61.3	57.6	55.5	51.4	46.6	41.4	
6.30	ສໍ		•	57.1	Ň	\$	ň			÷
8.00	'n.		÷	50.3	\$	1	ŝ			0
10.0	ċ		;	41.1	÷	-	3.			0.0
UASPL	ŝ	d	~		5		ģ		5	~
PNL T	-	8	•	g	00				1	
PNL	4.19	98.7	6*66	100.3	100.4	99.8	4.66	98.1		93.7
084	å	2.	8		66.		•		÷	19.4
BAND	23	61	14	19	23		23	23		
TLURK	0.2	2.0	0.2	2.0	0.2		6.0			0
TCURK	~ 0	4 4	0	0	2.0	0.3	6°0		6. 0.3	v •

* 109.02

PNLT (INTEGRATED)

.....

1.1

<pre>FAND = X-314 HUMIDITY ATE = 03/1779 Post 100 110 120 130 135 140 145 150 1 90 100 110 120 130 135 140 145 150 1 90 970 9847 102-8 108-6 112-0 113-9 175-5 115-4 11 9657 9842 10055 104-6 1105 145-0 117-7 119-4 119-7 119-4 11 9657 9842 10055 104-6 1105 145-0 117-7 119-4 119-7 119-4 11 9657 9842 10055 104-6 1105 145-0 117-7 119-4 119-7 119-4 11 9657 9842 10055 104-6 1105 145-0 117-7 119-4 119-7 119-4 11 9657 9842 10055 104-5 1107-3 115-0 117-7 119-4 119-7 119-4 11 9657 9842 10055 104-5 1107-3 115-2 116-5 148-0 117-7 119-4 11 9657 105-1 107-3 109-5 111-0 116-2 116-5 118-9 11 9052 103-7 105-1 107-3 113-2 116-2 118-3 118-2 118-2 118 102-8 103-5 107-7 109-4 110-7 114-2 115-5 107-5 107-5 107-1 11 102-8 103-5 107-7 109-4 110-7 119-4 111-112-9 11 102-8 103-5 107-7 109-4 109-2 106-9 106-5 107-5</pre>
00 100 110 120 135 140 145 150 15 00 100 110 120 130 135 140 145 150 155 01 00 110 120 130 135 140 145 150 155 02 100 110 120 130 135 140 145 150 155 030 100 110 120 130 135 140 145 156 155 040 100 110 120 130 135 140 145 156
PAA PART 36 REFERENCE DAY CORRECTED SPL IND 90 100 110 120 130 140 155 150 155 90 910 110 120 130 111.2 115.5
90 100 120 130 135 140 155 155 94.7 94.7 94.7 94.7 96.7 100 120 130 135 150 155 156 156 156 156 156 156 156 156 <
90 100 110 120 130 135 140 145 150 94.7 94.7 94.7 94.7 100.4 100.7 109.1 117.5 118
Y3.4 94.7 96.7 100.4 100.4 100.5 112.6 115.5 115.5 115.4 96.7 98.2 100.5 104.6 110.5 114.1 115.5 115.5 115.4 96.7 98.2 100.5 104.6 110.5 114.1 117.7 119.7 119.7 96.7 98.2 100.5 107.5 107.5 1117.7 119.7 119.7 96.7 100.5 107.5 107.5 1117.7 119.7 119.7 100.2 101.5 107.5 107.5 1117.7 119.7 119.7 100.2 101.5 107.5 107.5 1117.2 109.5 111.6 111.7 119.2 118.6 170.2 102.6 107.5 107.5 111.6 111.7 118.6 170.2 118.7 118.6 170.2 102.6 107.5 111.6 111.6 111.7 118.6 170.2 118.7 118.6 170.2 102.6 107.5 111.6 111.6 111.7 118.6 118.6 17
96.0 97.0 98.7 102.8 108.6 112.0 113.9 15.5 115.4 96.7 98.2 100.5 107.5 110.5 117.2 119.6 117.7 119.6 117.4 100.2 101.6 102.5 104.6 110.5 113.7 119.6 117.7 119.6 119.7 100.9 102.7 105.3 109.5 113.7 117.2 118.6 120.9 102.8 103.5 106.3 109.5 113.4 113.2 116.5 117.2 118.9 102.8 103.5 107.7 109.5 113.4 113.7 116.5 117.2 118.9 103.6 103.5 107.7 109.4 110.3 109.9 116.5 117.7 118.6 103.6 100.5 107.7 109.4 110.3 109.9 110.6 110.7 118.6 103.6 100.5 107.7 109.4 110.3 109.9 110.6 110.7 118.6 102.6 100.5 107.7 109.4 110.3 109.9 110.6 110.7 118.6 102.6 100.5 107.7 109.4 110.3 109.9 110.6 110.7 118.6 102.6 100.5 107.7 109.4 110.3 109.9 110.6 100.3 109.6 102.6 100.5 107.7 109.4 110.3 109.9 100.6 109.5 107.5 109.6 102.6 100.5 107.7 109.4 100.3 109.5 107.5 105.0 100.5 107.5
96.2 100.0 101.5 100.5 111.6 111.6 111.6 111.5 111.6 111.5 111.5 111.6 111.5 111.5 111.5 111.6 111.5
100.2 101.5 104.1 107.3 113.7 117.2 119.1 119.7 119.2 100.8 120.6 120.0 100.8 103.5 106.3 409.5 113.1 114.2 116.2 116.5 117.2 118.9 102.8 104.5 107.2 109.4 113.2 114.2 116.5 117.2 118.9 102.8 104.5 107.7 109.4 110.2 110.7 111.6 113.1 114.2 114.6 113.9 100.1 102.6 107.5 107.7 109.4 110.2 109.9 100.7 111.6 113.9 100.5 107.1 107.4 107.2 109.9 100.5 107.5 107.5 107.5 107.6 107.8 107.6 107.8 107.6 107.8 107.5
<pre>10.6 103.5 105.5 109.5 113.4 115.2 116.5 117.5 120.0 102.8 103.5 106.5 109.5 113.4 113.2 116.5 117.5 116.5 102.8 104.5 107.7 109.4 110.3 114.2 116.5 117.5 116.2 103.5 105.5 107.7 109.4 110.3 109.9 110.6 113.0 113.9 103.6 105.5 107.7 109.4 110.3 109.9 110.6 113.7 118.4 102.6 105.5 107.7 109.4 109.5 105.9 110.7 118.4 102.6 105.5 107.7 109.4 109.5 107.9 107.6 107.8 102.6 104.5 107.7 109.4 109.5 107.9 107.6 107.8 102.6 104.5 107.7 109.4 100.9 106.6 107.8 107.5 107.6 102.9 104.6 106.9 107.4 107.4 107.2 107.6 108.5 107.5 107.6 102.9 104.6 106.9 107.4 107.4 107.2 107.6 108.5 107.5 107.2 102.4 104.1 105.7 106.4 100.9 106.6 107.8 107.5 107.5 107.2 102.4 104.1 105.7 106.1 105.4 105.5 105.7 100.5 102.8 104.4 106.9 107.4 105.9 105.6 105.5 107.5 107.5 102.1 104.1 105.7 106.1 105.4 105.5 107.6 108.5 100.5 102.1 104.1 105.7 106.1 105.4 105.6 105.5 107.5 107.5 102.1 104.1 105.7 106.1 105.4 105.6 105.5 107.5 100.5 99.6 101.0 100.5 101.1 100.2 99.8 99.6 97.6 97.6 97.6 97.4 101.0 100.5 101.1 100.2 98.5 98.6 97.6 97.6 97.6</pre>
102.2 103.4 107.5 109.4 109.5 113.2 114.2 115.5 105.5 <td< td=""></td<>
102.8 104.5 107.2 109.9 112.4 113.2 114.2 115.3 116.2 10.4.1 105.4 108.6 109.4 111.6 111.7 112.6 113.0 113.5 107.5 107.9 109.4 110.2 109.4 110.7 111.4 113.4 113.4 113.4 113.5 107.5 107.7 109.4 109.5 106.9 106.6 107.7 109.4 109.5 106.5 106.7 111.4 112.9 102.6 107.5 107.5 109.8 104.6 107.4 107.6 108.5 108.3 104.6 107.4 107.2 107.6 108.5 108.3 104.6 107.4 107.2 107.6 108.5 108.3 104.6 107.4 107.4 107.2 107.6 108.5 108.3 104.6 107.5 107.5 107.5 107.5 102.4 102.5 107.5 109.4 100.2 104.4 100.4 100.4 100.4 105.4 105.6 105.6 105.7 105.0 100.2 104.0 100.4 100.4 100.4 105.4 105.6 105.6 105.7 105.3 104.0 100.2 104.6 107.4 107.4 107.2 103.9 100.4 100.2 104.6 100.5 101.4 101.7 100.4 100.5 101.4 101.2 103.9 100.4 100.7 100.4 100.5 103.9 100.4 100.2 98.6 99.6 97.6 97.6 97.6 97.6 97.6 97.6 97
101 105.4 108.0 109.7 111.8 111.7 116 113.0 113.9 103.0 105.5 107.9 109.4 110.2 109.7 111.4 111 112.9 102.6 105.5 107.7 109.4 110.2 109.6 106.5 106.3 111.4 102.6 104.5 106.9 107.4 109.5 107.6 106.5 109.5 109.6 102.4 104.4 106.9 107.4 107.4 107.2 107.6 108.3 108.6 102.4 104.4 106.9 107.4 107.4 107.2 107.6 108.5 107.5 102.4 104.3 106.4 105.4 105.4 105.6 105.5 107.5 107.5 102.4 104.3 106.4 105.4 105.4 105.6 105.5 104.2 104.0 102.4 104.3 104.5 105.4 105.4 105.5 105.7 105.0 102.4 104.3 104.5 104.4 105.4 105.5 103.9 102.3 106.2 104.0 102.4 104.3 104.5 105.4 105.4 105.5 103.5 104.2 104.0 102.1 103.3 104.5 104.5 104.4 102.4 105.5 102.3 100.4 100.5 99.6 101.0 101.4 101.7 100.9 100.5 100.5 103.3 98.5 98.6 97.6 97.4 101.0 100.5 101.1 100.2 98.5 98.5 97.6 97.6 97.6
03.0 105.5 107.7 109.4 110.3 109.9 110.6 110.7 111.4 102.6 109.5 107.7 109.4 100.3 106.9 109.6 109.5 109.8 102.6 109.5 106.9 107.9 108.6 107.8 108.3 108.6 102.4 104.4 106.9 107.9 108.6 107.8 108.2 107.5 107.5 102.4 104.3 106.4 405.8 106.9 106.6 106.5 105.7 105.0 102.4 104.3 106.4 405.8 106.9 106.6 106.5 105.7 105.0 102.2 103.3 104.6 105.9 105.4 105.5 103.9 102.4 102.3 101.2 103.3 104.6 100.8 102.4 102.6 103.5 102.3 104.0 100.2 102.2 103.4 102.8 102.4 102.5 103.9 102.4 102.3 100.2 102.2 103.4 102.8 102.4 100.5 100.3 98.5 98.6 97.6 97.4 101.0 100.5 101.1 100.2 98.8 99.6 97.6 97.6 97.6
102.6 102.1 107.0 09.4 109.5 106.9 109.6 109.5 109.8 108.6 107.6 104.5 104.6 105.4 108.6 107.8 108.5 108.3 108.6 102.4 104.4 106.9 107.4 107.4 107.2 107.6 105.5 107.5 1
107.6 104.5 105.9 105.4 108.6 107.3 108.5 108.3 108.6 102.4 104.4 105.9 107.4 108.6 107.8 168.2 107.5 107.5 102.4 104.4 105.4 105.4 107.4 107.2 107.6 105.5 105.2 102.4 104.3 105.4 105.9 105.4 105.5 104.2 104.0 101.2 103.3 104.6 107.3 104.5 105.5 104.2 104.0 100.2 102.2 103.4 102.8 102.4 102.5 103.9 102.4 102.3 100.2 102.2 103.4 102.8 102.4 102.5 100.3 98.3 98.4 97.4 101.0 101.5 101.1 100.2 98.8 99.6 97.6 97.6 97.8 100.0 105.1 100.1 99.8 98.5 99.6 97.6 97.6
102.9 504.6 106.6 107.4 107.4 107.2 107.6 105.5 105.5 105.2 102.4 104.3 106.4 107.4 107.4 107.5 106.5 105.5 105.2 105.0 102.1 104.1 105.4 105.9 105.4 105.0 102.1 104.1 105.7 106.4 107.5 106.5 100.5
102.4 104.3 106.4 105.8 106.9 106.4 106.5 105.7 105.0 102.1 104.1 105.7 106.1 105.9 105.4 105.5 104.2 104.0 101.2 103.3 104.5 104.6 104.3 104.2 103.9 102.4 102.3 100.2 102.2 103.4 102.8 102.4 102.4 102.4 102.3 100.4 100.5 94.6 101.0 101.4 101.7 100.9 100.5 100.3 98.3 98.4 97.8 100.0 100.5 101.1 100.2 98.8 99.5 98.8 97.6 97.6
loc.i [04.1]05.7]uc.1 [05.9]05.6]05.5]04.2 [04.0 L01.2 103.3]04.6 104.6 [04.3]04.2 [03.9]02.4]02.3 100.2 102.2]03.4]02.8]92.4 [02.4]02.5]00.4]00.5 98.6]01.0 [01.4]01.7]00.9]00.5]00.3 98.3 98.4 97.4]01.0 [00.5]01.1]00.2 98.8 99.6 97.6 97.4 97.8]00.0]00.1]00.1 99.8 98.5 98.8 97.3 96.9
100.2 10.2 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.4 100.5 100.2 10.2 10.3 10.4 10.7 10.4 10.5 100.3 100.4 100.5 98.6 101.0 101.4 101.7 100.2 98.8 99.6 97.6 97.6 97.4 101.0 100.5 101.1 100.2 98.8 99.5 98.8 97.3 96.9
98.6 101.0 101.4 101.7 100.9 100.5 100.3 98.8 98.4 96 97.4 101.0 100.5 101.1 100.2 98.8 99.6 97.6 97.4 94
97.4 101.0 100.5 101.1 100.2 98.8 99.6 97.6 97.4 95. 97.8 100.0 100.1 100.1 99.8 98.5 98.8 97.3 96.9 94
97.8 100.0 10(.1 100.1 99.8 98.5 98.6 97.3 96.9 94
56 5°54 1°54 7°14 1°14 5°94 0°44 5°44 0°44 8°64
115.0 116.9 119.0 120.9 123.7 125.5 127.2 128.2 128.7
126.9 128.9 130.5 131.5 132.4 132.8 13 126.8 128.8 130.4 131.6 132.4 132.7 13
13.4 115.4 117.2 118.4 118.4 119.0 119.7 119.6 120.2
54ND 10 16 20 12 17 5 5 6 4 5 Curr 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2
MAXIMUM DASPL = 128.69 COMPOSITE SPL = 129.06 Maximum PNLT = 134.42 COMPOSITE PNL = 135.02 Maximum PNL = 134.24 PNLT (INTEGRATED) = 142.14 Maximum DBA = 120.20

.

•

GP150RA150.1740 H ULUTS JIBD-IT SM MXR W/ SHIMS, DC9 REV 5066. CANT NORTH 2359

CONDITION = 7600

ALTITUDE = 1500. FT SIDELINE

DEGREES

ANGLE IN

98.5 100.5 100.0 87.3 210.5 155 101.6 104.6 104.2 91.2 23 87.9 150 102.5 105.1 104.7 91.8 92.9 92.9 74.6 68.0 23 84.6 71.4 87.5 4.06 94 . 2 95.1 91.3 89.1 86.5 83.1 81.2 79.1 77.2 56.8 52.1 45.4 35.6 20.1 63.1 145 102.5 106.0 105.7 92.7 23 140 101.5 105.7 105.4 92.7 23 64.4 60.4 53.9 33.5 135 100-1 105-3 105-1 93-3 23 130 97.8 104.5 93.4 62.3 55.3 45.2 210 66.1 120 96.3 104.5 93.0 78.0 63.9 58.0 81.9 80.6 78.5 75.6 71.9 6.80 23 **1.**58 49.2 76.1 110 94.4 103.2 103.1 91.3 22 0.2 100 92.7 101.5 101.5 89.6 60.9 02.4 44.0 23 8 CCENT FFRG (050 CFNT (050 CFNT) (050 CFNT (050 CFNT) (050 CF BAND TLORR DASPL PNLT PNL UBA

= 114.41

PNLT (INTEGRATED)

DDFL = 124.2 DH HUMIDITY = - 124.2 DH HUMIDITY = 03/1779 DBSERVED RPM = - 124.2 DH DBSERVED RPM EGRECTED SPL IN HUMIDITY = - 100 110 120 130 135 140 145 150 151 100 110 120 130 130 135 140 145 150 155 99.2 99.0 1002.2 110 120 130 133.3 155.0 150.3 151.4 99.2 100-9 110.4 120 130 150.7 114.6 114.7 120.3 114.6 114.7 120.4 118.6 11	= 140.19 COMPUSITE PNL = 140.00 = 120.85 = 120.85
---	--

• •

. ... ----

T

CENTER								Ā	ANGLE IN	I DEGREES	
FREQ.	8	100	110	770	130	5E1	140	145	150	155	
.050	75.7	77.0	78.4	E.18	ŝ Ŝ	88.7	69.3	90.6		90-8	
•063	P. LT. 9	78.7		83.6		91.2	92.7	92.9	91.8	90.3	
.080	76.8	60.6		86.1			96.1	96.3		90.9	
-100	79.8	81.9		88.3			47.2	97.6	46.4	93.6	
.125	82.0	63.7		89.5			99.2	98.1	95.9	95.5	
.160	82.9	84 . 4		90°.			99.4	69.3	97.1	92.7	
.200	83.7	85.3		90.9		98.1	4.94	98.6	98.6	92.6	
.250	84.3	85.4		91.3			9.19	91.9	48.1	8-19	
.315	84.6	85 c 2		91-2		94.8	95.9	96.7	95.4	4 10	
.400	85.7	86.8		C.19			94.0	94.3	43.4	40.2	
.500	65 . l	87.1		90.9			92.4	92 .	92.1	2 - 9 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
.630	84.7	80.6		40.4			90.9	90.5	8.9.8	8.5	
.800	84.2	86.2		89.3			89.1	88.4	80.9	83.5	
1.00	83.9	85.3		88.6		87	86.9	85.8	4.48	80° 5	
1.25	6-68	84.7		87.4			85.1	83.4	81.4	77.9	
1.60	82.4	83.B		1.68		83	82.3	80.2	74.1	6.67	
2.00	80.9	82.7		64.0	82.3		79.5	77.1	74.7	70.0	
2.50	79.4	61.1	82°0	81.9	79.6	78.1	76.2	73.7	7.07		
3.15	11.1	78.4		78.6	76.3		72.4	69.3	0.00	59.9	
4.00	8.ET	75.0	75.1	74.0	71.4	69.3	67.0	63.3	59.4	52.7	
5.00	70.1	72.4	71.8	70.8	67.9		63.0	58.4	54.6	6.6.9	
6.30	65.0	0°69	67.2	00.7	63.1		57.3	52.0	E. C. 4	5.75	
8.00	60.7	62.2	61.1	8.94	9.36		48.4	42.6	36.2	24.3	
10.0	1.16	53.0	51.8	I-64	44.2	38.9	34.5	27.1	18.6	3.7	
DASPL	95.6	97.2		101.5			7 204				
PNLT	104.8	100.4		108 B							
PNL	104.6	106.2		108.6				110.5			
N8 A	6.26	6.4 6	96.2	91.5	9.19	98.1	98.8	98.4	1.16	93.6	
BAND	23	22	23	23	23	12	50	F C	5.0		
TCORR	0.2	2.0	0.2	0.2	0.2	0.3	0.9	0.3	.4	, 4 , 0	
0.	PNLT 11	INTEGRATED)	TEDI	1	01.911						

2359 H Q2075 JT8D-LT 5M MXR W/ SHIMS, DC9 REV 5DEG. CANT MONTH GP150RA150.1740

CONDITION * 8489

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

GP150RA 2360 H 93034 JT60-17,REF SPLTR B/L,8727 T/P,3.50EG CANT NORTH

ł

z 24.00 F z 838	: = 30.25 IN. HG. I = NM	HOH 2 =
INLET TEMP TIME OF DAY	BARM. PRESSURE WIND DIRECTION	WIND VELOCITY
24.0 F	= 74.0 PER CT.	6354
H	"	"
TENPERATURE	HUHIDITY	CONDITION
100EL = JT80 -17 NHBER = 372-05	= 124.1 06. = X-314	= 01/09/80
ENGINE N ENGINE N	CAL LEVEI. Stand	DATE

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT.

ANGLE IN DEGREES

.

2360 H Q3034 JT60-17,REF SPLTR B/L, B727 T/P, 3.50EG CANT NORTH 6P150RA150.1740

1

CONDITION = 6354

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

l55	•							72.5						•			•									•	86.9		18	1.3	
150 150	77.5		•	•			•	74.6	•		· .	•			•	•	•	•	•		•	•			с	6		ŝ	18	0.5	
145	78.2				۰.			77.3								•			•				•			•	91.5	•	18	0.5	
140	77.7	•		•				78.8	•	•					•		•			٠			•				92.6	•		1.1	
135	77.1	•		٠			•	79.9							•	•			· •	•		٠	٠		•	•	93.6	•	18	0.9	
130	75.4	٠	•	٠				79.8	•		•	٠				•			٠	•							94.0		18	0.5	
120	٠	•	•	•		•		78.8	•	•			٠	•	•			٠		•	•	•	٠		•		94.4			0.9	
110		•						77.3		•		· •									•	•					9.46	٠		0.5	
100	67.7	•	•					75.7		•							•			•	•				•	•	93.9	•		0.5	
96		٠	٠		•	•	•	74.2	•	•		•		•	•	•			•		•	•	•	•		m	93.0	<u>.</u>	18	4.0	
CENTER FREQ. (KHZ)	.050	.063	.000	.100	.125	.160	.200	.250	.315	.400	.500	.630	.800	1.00	1.25	1.60	2.00	2.50	3.15	4.00	5.00	6.30	8.00	10.0	OASPL	PHLT	PNL	DBA	DATED	TCORR	

= 103.57

PHLT (INTEGRATED)

2360 H Q3034 JT60-17,REF SPLTR B/L,8727 T/P,3.5DEG CANT HORTH 6P150RA150.1740

1

INLET TEMP = 28.00 F	TIME OF DAY = 1012	BARM. PRESSURE = 30.25 IN. MG.	WIND DIRECTION = NW	MIND VELOCITY = 7 MPH	
	= 28.0 F		= 55.0 PER CT.		= 6913
	TEMPERATURE		HUMIDITY		CONDITION
± JT80 -17	= 378-05	= 124.1 DB.	= X-314	= 01/09/80	
ENGINE MODEL	ENGINE NUTBER	CAL LEVEL = 124.1 DB.	STAND	DATE	

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT.

ANGLE IN DEGREES

																																121.84	27.40	34.90	
2																																	 11		
150 155		109.3	110.3	110.6	112.9	113.2	109.7	110.5	107.8	107.2	104.8	103.0	101.2	9.66	97.6	95.8	94.1	91.9	90.8	91.3	89.5	88.8	89.4	90.4	90.7	120.5	124.7	124.5	110.0	19	0.3	_		_	
150			109.8	111.8	113.7	112.8	113.2	111.1	108.1	105.9	104.4	102.9	102.1	100.5	98.5	96.6	95.0	92.8	91.8	2.16	89.8	89.0	89.4	90.5	90.7	121.0	ŝ	ŝ	110.5	19	0.2	σ,	Pri la	INTEGRATED	
16 2	•		109.	112	113	113	113	111	108	107	105	104	103		6	97	96.2	46	92	<u>е</u>	91.0	°.		91.8	92.0	121	126.1	125	111	19	0.4	COMPOSITE	ISC	-	
140		105.9	108.5								106.0									93.5	91.2	90.5	4.19	93.2					111.4	19	0.3	Ē	EOU CO	PNLT	
1 75		104.0	106	103	109	111		110			106.5									50		16	92	63		119	125	125		19	0 .4				
0130		-	-		-	-	108.8															92.8				118.1	125.4	125.2	112.2	19	0.2				
021		95.3	98.7	100.2	102.0	103.4					104.7							97.3	96.2	95.7	93.7	93.7	94.3	96.3	98.4				11.	19	0.2	121.34	126.08	125.69	112.19
011		92.8			98.0	44.			102.1					100.9		9.69	98.9	97.8	96.9	97.1	95.6	95.7	96.1	98.2	99.5		124.	124	110.	19	0.2	11	11		"
100		90.6				97.2	98.1	99.5		100.4	100.4	99.9	99.3	98.5	97.6	1.79	96.6	96.1	•		96.5	•		99.3	99.2		123.5	23.		19	0.2		n .		DBA
8	2	89.5	92.0	92.4	93.9	96.2	97.8	98.2	98.9	99.3	99.3	98.8	98.1	97.6	97.0	96.6	96.0	95.3	95.6	96.8	95.0	93.8	95.0	97.6	98.0	110.6	122.7	122.3	80	19	0.3	MAXIMUM	MAXIMUM		MAXIMUM
CENTER FRFA	(ZHZ)	.050	.063	. 080	.100	.125	.160	.200	.250	.315	.400	.500	.630	.800	1.00	1.25	1.60	2.00	2.50	3.15	4.00	5.00	6.30	8.00	10.0	OASPL	PNLT	PNL	DBA	BAND	TCORR	-	•		-

- ----

a de la construction de

2360 H 93034 JT80-17,REF SPLTR B/L,B727 T/P,3.50EG CANT NORTH 6P150RA150.1740

CONDITION = 6913

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

64.1 556.8 756.8 756.8 756.8 756.8 756.8 756.1 757.1 756.1 757.1 7 19 ~ ~ ~ ~ 155 28.86 ~ * • • • 23 0.4 150 95.95 10 8888888884 8888884 888848 88884 888444 88844 88844 888444 888444 888444 888444 888444 8884444 95.7 97.6 97.1 84.1 19 145 20 \$ 95.8 98.3 98.0 85.1 19 140 19 95.7 99.3 98.8 86.5 135 94.8 99.2 98.9 87.2 19 130 19 92.7 98.7 98.5 87.1 120 778. 778. 778. 778. 777. 778. 777. 778. 778. 778. 778. 778. 778. 778. 778. 778. 778. 778. 778. 777. 778. 777. 778. 777. 90.9 98.1 97.9 86.4 19 110 89.1 97.2 96.9 84.9 23 001 88.2 96.5 96.1 19 8 DBA PNLT PNL DBA BAND

= 107.67

(INTEGRATED)

PNLT

GP150RA150.1740 2360 H Q3032 JT60-17,REF SPLTR B/L,8727 T/P,3.50EG CANT NORTH

	BARM. PRESSURE = 30.21 IN. MG. Wind Direction = Na	
= 26.0 F	= 46.0 PER CT.	= 7301
TEMPERATURE	- HUMIDITY	COMPITION
0 0	п н	0
ENGINE MODEL ENGINE MUMBER	CAL LEVEL STAND	DATE

بب م

:

i

1

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT.

ANGLE IN DEGREES

.

.

0 100 4 92.7
96.2 99.9 102.5 97.9 101.1 104.7 99.6 102.9 106.5 100.8 104.4 107.5
00.6 102.0 105.2 108.0 1 01.5 103.1 105.9 107.8 1 01.9 102.6 106.0 108.2 1 02.2 103.6 106.5 107.8 1 01.7 103.2 106.0 107.3 1 01.5 103.2 105.8 106.5 1 01.5 103.2 105.8 106.5 1
102.3 105.1 101.4 104.4 101.4 104.4 99.7 102.1 99.4 98.6 97.4 97.6 99.6 98.4 111.0 101.1 112.2 114.4 126.0 127.5 1126.0 127.5 1122.2 114.4 10 0.3 0.3 0.2
MAXIMUM DASPL = 125.38 MAXIMUM PNLT = 130.22 MAXIMUM PNL = 130.07 MAXIMUM DBA = 116.27

2360 H 93032 JT80-17,REF SPLTR B/L,B727 T/P,3.50EG CANT NORTH 6P150RA150.1740

CONDITION = 7301

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

95.1 97.4 96.9 84.6 210.5 155 210.5 0 N N 0 øφ 150 97. 99. 86. 5.5 99.7 102.0 101.7 89.0 21 0.3 ф ф 145 * 2 99.6 102.6 102.3 89.7 23 83.7 140 99.3 102.8 1 102.6 1 90.3 19 135 98.3 102.7 102.4 90.6 81.2 83.9 210.2 0130 95.7 101.8 101.6 90.3 210.2 120 94.6 101.9 101.6 90.5 0.3 110 92.1 100.2 99.8 88.3 0.4 00 91.0 99.3 98.9 87.4 0.19 4.0 8 OASPL PNLT PNL DBA BAND CORR

= 111.38

PNLT (INTEGRATED)

2360 H 93034 JT80-17,REF SPLTR B/L,B727 T/P,3.5DEE CANT NORTH 6P150RA150.1740

1

× 20.00 F = 1033	E 30.25 IN. HG.	3	How ~ =	
INLET TEMP TIME OF DAY	BARM. PRESSURE	WIND DIRECTION	WIND VELOCITY	
28.0 F		= 55.0 PER CT.		7946
ti		n		11
TEMPERATURE		HUMIDITY		CONDITION
EL = JTAO -17 Ber = 378-05	= 124.1 08.	= X-314	= 01/09/80	
ENGINE MODEL ENGINE NUMBER	CAL LEVEL	STAND	DATE	

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT.

ANGLE IN DEGREES

•																															96 111	137.62	144.54	
j.																															1	11	#	
155		116.3			80.	117.9	121.3	25.	•	.7.	ц,	•	÷	<u>0</u> 8.	106.9		m.		160.8	99.1	97.1	95.8	95.1	96.5	129.9		35.	122.0	Ø	0.2	Ĭav	<u>ب</u>	(0	
ISO 155	114.5	16.		•		121.4	122.6	122.4	119.0	117.0	115.1	113.8	112.1	110.2	108.4	106.8	105.0	103.7	102.1	100.2	93.4	÷	96.1	95.7		136.0			6	0.2	v	PNL N	INTEGRATED	
145	114.0	116.	119.	120.	120.	122.3	122.	121.	119.	117.8	116.	114.	113.	111.	109.	107.9		104.8		٠	٠	98.7	•	97.3	130.7	136.3	136.2	122.8	Ø	0.1	T SUGHOU	COMPOSITE	-	
140		12	117.9	119.1	121.2	121.5	122.0	120.7	118.8	118.0	116.9	115.7	114.1	112.2	110.7	109.6	108.0	106.4	105.3	103.6	m	102.1	•	÷	਼	5	÷.	123.4	ŝ	0.1	CHO7	COMP	PNLT	
135	111.0	114.0	116.1	117.8	120.1	121.0	120.9	119.7	118.5	117.5	116.8	116.1	114.9	113.0	111.3	109.9	00	107.1	105.4	103.7	\$	101.3		101.3	129.5	136.1	136.0	123.4	ŝ	0.1				
130		0.111	112.8	115.2	117.2	118.4	118.3	i17.6		116.3		115.0	113.7	112.3	111.1	109.5	108.5	•	105.4	104.0	102.6	101.8	100.6		107.5	134.9	134.8	122.4	12	0.1				
120	5	104.3	106.4	108.5	110.0			5	٩.	ø	112.6	111.9	111.2	110.3	109.5	108.6	107.3	106.3	105.1	103.3	2	101.3	100.7	100.4	Ň	2.7	5.6		61	0.1	04 UF	2.5	З. В	23.37
110	98 2	99.5	101.5	6	105.8	107.5	108.4	¢	s.	6.901	109.5	109.3	108.8	108.2	107.5	~	106.0	105.0	104.1	102.4	100.9	100.3	99.7	9.66	120.3	130.8	130.7	117.9	19	0.1	- н	• -• • +	-	-
100	95.8	97.4	ŝ	101	102	104	105.6		106.6			•	106.2	•			104.4	•	٠	102.1		100.4	100.4	100.6	•	è.	è.	116.0	19	0.1	19240	PNLT -	DNL	DBA
° ~	94.2	97.0	97.5	99.0	101.7	103.5	104.3		105.3		105.5	-	0	104.7	104.2		•	•	102.9	101.2	9.65	98.6	99.4	100.3	116.8	128.6	128.4		61	0.2	MAYTMEN	MAXIMUM	MAXIMUM	HAXIMUM
CENTER FREQ.	.050	.063	.030	.100	.125	.160	.200	. 250	.315	.400	500	.630	.800	1.00	1.25	1.60	2.00	2.50	3.15	4.00	5.00	6.30	8.00	10.0	OASPL	PHLT	PNL	DBA	BAND	TCORR	4		-	-

2360 H 93034 JT60-17,REF SPLTR B/L,B727 T/P,3.50E6 CANT NORTH CP150RA150.1740

1

CONDITION = 7946

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

.

155	88.1		•									•					•		•		•		•		01.	104.3	03.	4	21	4.0	
150	68.2	•	•	•		•																٠	•	•	03.	106.4	05.	m	21	0.4	
145	88.9		•						•		•		•					· .				•		٠	04.	109.1	07.		21	9.0	
140	88.5		÷	4	ġ.	1.	~	Ś	m	ci.	4	ō.	~	4	~	0		с і	ъ.	r.	5	4	ġ.	ŝ	05.	109.4	.60	ۍ.	21	4.0	
135	87.8					•	•		•	•	•	•			•			•	•			•	•		05.	109.7	09.	1.		0,3	
130	65.8				•							•										•	•		04.	109.0	08.	~	21	0.2	
120	80.2	٠	•			•	•	•	•	۰.			•			÷.		•	٠	•	•	•	•		. 00	107.0	. 90	ы. 1	21	0.2	
110	77.5	ó		m	4	÷	~	÷	ω.	e.	Ň	7.	÷	<u>د</u>	ъ.	Ň	с.	2.	م	0.	~	m	\sim	è.		02			19	0.2	
100	75.5			•	•			•			•		•				•	•		•						5		•	19	0.2	
D 6	1.95	à	1	ъ.		'n.	m	+		.+	4	m	×.	$\dot{\alpha}$	<u>.</u>	÷	å	2	÷	ċ	~	÷	0	ໍ່	•		•		19	0.3	
CENTER FREQ. (KHZ)	.050	.063	.080	.100	.125	.160	.200	. 250	.315	.400	.500	.630	.800	1.00	1.25	1.60	2.00	2.50	3.15	4.00	5.00	6.30	8.00	10.0	OASPL	PNLT	PNL	DBA	D1428	TCORR	

= 117.18

PNLT (INTEGRATED)

2360 H Q3034 J160-17,REF SPLIP B/L.6727 T/P.3.5DEG CANT NURTH GP15CPA150.1740

1

1

1

t

			N = N		
INLET TEMP	TIME OF DAY	BARM. FRESSUR	WIND DIRECTION	HIND VELOCITY	
	= 25.0 F		= 75.0 PER CT.		8333
	н		11		18
	TEMPERATURE		HUMIDITY		CONDITION
			= X-314		
LACOM ANICHA	CHSTRE NUMBER	CAL LEVEL	STAND	DATE	

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT.

AGLE IN DEGREES

																															133.55 140.61 147.67
																															пци
155	117.2	118.0	119.7	121.9	121.2	119.5	123.8	ক	_±		5	~	ın.	m.	^	2	109.1	108.2	106.9	•	103.5	102.5	101.8	- i -	132.6	39.	m	ن	7	0.3	SPL BL
150	115.4	117.9				123.6		124.9										109.1			•	103.3	102.6		132.6	139.3	39.		æ	0.2	ITE SPL ITE PHL INTECRATED
145	114.9		120.9			•	•	124.8			119.6	118.2	116.9	115.2	113.8	112.4	111.0	110.1	109.0		105.8	104.4	103.8	102.5	133.1	5	139.7	126.4	7	0.1	S S
140	113.2		119.3		122.4	123.2		123.7		٢.	و	118.4		115.6	•	112.9			109.9		107.1	107.7	107.8	108.6	132.5	139.7	139.6	126.5	7	0.1	COMPC COMPC
135	111.5	115.0	117.4	119.5	121.4	122.8	123.3	122.3	121.1	120.2	119.3	118.5	117.2	115.7	114.2	112.9	111.9	110.7	109.4	107.6	106.1	105.5	105.2	105.7	131.7	138.8	139.7	126.1	7	0.1	
130	108.7	111.9	•	117.2	118.6	120.4	120.7	120.1	119.5		-	ŝ			113.9	112.5	111.4	110.3	108.7	107.0	105.7	105.1	104.4	102.9	129.8	137.7	137.6	125.1	9	0.1	
120	103.2	105.7	108.1	110.4	112.0	113.6	114.3	114.8	115.3	115.0		114.5						109.2	107.9	106.1	104.7	104.0	103.1	٠	ŝ	135.3	~	÷	11	0.1	33.13 139.77 39.68
110	9.90	101.2	103.6	105.7	107.5	109.4	110.3	111.1	111.8	112.1	112.3	~	ø.	1.1	<u>ه.</u>	10.3		°.	7.8	e	¢.	°.	103.2	C.J	122.9	3	m	121.0	19	0.1	
100	1.79	98.7	100.6	~	104.5	105.	106.	108.	•			108.J			•	•	•	106.9	è.	•	103.5	103.0	102.8	102.0	120.0	31.	31.	118.4	19	0.1	DASPL PNLT PNL
06	95.8	98.1	98.7	100.3	102.9	104.3	105.2	106.3			107.3	07.	107.1	107.1	106.8		105.9	105.3	÷	103.7	101.7	100.2	100.0	100.2	118.6	130.3		117.1	20	0.1	MAXINUM MAXINUM MAXINUM
FREQ.	.050	.063	.030.	.100	.125	.160	.200	.250	.315	.400	.500	.630	.800	1.00	1.25	1.60	•	2.50	3.15	•	5.00	6.30	8.00		OASPL	PHLT	PNL	DBA	BAND	TCORR	

Ĵ.

- -----

_ 2360 H Q3034 JT8D-17,REF SPLTR B/L.B727 T/P,3.5DE6 CANT NORTH 6P150RA150.1740

1

ţ

CONDITION = 8333

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

.

I DEGRET	i .	è.	ö	-	m	m		س	ц,	มา	~:	è.	÷	м.	ö	~	ń	è.	<u>بە</u>		51.9	\$	~	m		03.	2.	5	ŝ		0.4	
ANGLE IN 150			•	•		•		٠,	•	•	•	•	,		•	•	•		٠	•	58.6	•	•	•		05.	99.	108.8	ړ	21	0.4	
AN 145					· •																63.9		•			07.	н.	110.9	εġ.		0.3	
140			•			•	•								•						67.7					07.	п.		•		0.2	
135	1			•																	69.6					07.	12.	12.		21	0.2	
130	1		٠		•	•			•			•		•			٠	•			70.9		•			06.	4	111.2	ŏ.	23	0.2	
120	1	•	•		•			•				•	•		•	•	•	•	•	•	72.8	•	•		•	05.	۴.	ŝ	e.	23	0.2	
110	1 1 9	è.	ö	~	÷	\$	ė.	6	<u>.</u>	<u>.</u>	ö	ö	<u>.</u>	é	ė.	÷.	ŝ	m	÷	÷	74.4	4	~	4	ຸ່	00.	ц.	108.0	~		0.1	
100			•		•	•		•	•		•			•					•	٠	74.3	٠	•			~	06.	106.1	4	23	0.2	
0 6		٠					•								•						73.4					•		104.8		21	0.1	
CENTER Freg.	(ZHX)	.050	.063	.080	.100	.125	.160	.200	.250	.315	609.	.500	.630	80	٩.	~	è.	٩.	ŝ	7	4.00	°.	ņ	0	ö	OASPL	PIILT	PNL	DBA	BAND	TCORR	

= 119.79

FNLT (INTEGRATED)

.

.

WV RUN 6 2361 H 93036 JT8D-17, HOD 52 HXR, B727 T/P, 3.5 DEG CANT NORTH GPISORAIS0.1740 9 z THE FOLLOWING CONDITION HAS BEEN ADDED TO THE W601 DATA BASE Base ID LD Cate Eng mod eng no STMD C obs corr temp hum tti time barn 92 8 250 01/14/80 JT8D -17 378-05 X314 0 6403 6403 77.0 70.0 35.0 1114 30.22

PNL

112.77 124.25 130.20 ANGLE IN DEGREES 116.2 115.9 100.8 87.3 84.9 18 0.3 101.9 100.4 97.9 94.8 0 102.1 1.66 155 109. COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED) 101.7 101.4 101.4 101.7 101.7 109.7 116.9 116.6 101.4 98.5 96.9 18 0.3 95.0 150 99.8 100.9 87.3 110.5 118.1 117.9 102.9 102.0 102.0 100.9 180.3 88.2 89.2 89.1 98.4 97.0 145 109.3 109.9 1 119.2 118.8 1 118.9 118.4 1 118.5 103.7 1 97.9 0°66 97.6 96.5 95.3 90.1 38.0 99.5 1.001 18 0.4 100.4 100.1 89.5 87.8 90.1 140 95.9 91.0 90.0 90.0 89.0 89.0 18 0.4 135 1 110.0 109.5 109.3 1 1 124.3 121.7 119.7 1 1 123.2 121.4 119.5 1 1 123.0 107.3 105.4 1 20 130 110.46 124.28 123.23 108.98 20 4 92.3 93.3 120 ĝ 88.0 89.9 0 ŝ 1.1 91.1 10 86. 96. а н в я 108.0 121.3 120.8 106.8 92.3 94.5 94.5 94.5 94.5 94.5 93.1 92.8 92.4 92.6 93.2 95.1 96.8 98.6 98.6 98.7 98.7 18 0.5 83.0 89.3 9.05 9.19 OASPL PNL T σ 100 85. MAXIMUM C MAXIMUM F MAXIMUM MAXIMUM 105.8 119.5 118.6 104.5 18 84.1 36.6 8 CENTER FREQ. (KHZ) 6.30 8.00 10.0 .050 .063 .080 .100 .125 PNL DASPL PNLT BAND TCOPR

- RADIUS = 150.0 FT FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

Щ.

H ÷

ии

= 35.00 F = 1114 = 30.22 IN. H = N

INLET TEMP TIME OF DAY BARM, PRESSURE MIND DIRECTION WIND VELOCITY

۲.

75.0 PER

6403

CONDITION

YTIDIHUH

= 124.1 DB. = X-314

ENGINE MODEL Engine Number Cal Level = Stand Date

01/14/80

u

JT60 -17 376-05

רי ו וו

35.0 F

ŧ 11 н

TEMPERATURE

GP150RA150.1740

2361 H 93036 JTCD-17, MOD 52 MXR, 8727 T/P, 3.5 DEG CANT NORTH

2361 H 93036 JT60-17,HOD 52 MXR,8727 T/P,3.5 DEG CANT NORTH 6P150RA150.1740

CONDITION = 6403

ALTITUDE = 1500. FT SIDELINE

CENTER								AN	ANGLE IN	DEGREES
FREQ.	06	100	110	120	130	135	140	145	150	155
.050	•		•							
.063	•		•		•		•	•	•	
.080	•						•			
.100										
.125							•			
.160										
.200	•				•	•	•		•	
. 250	71.2	73.1	74.3	75.4	74.9	74.1	72.8	71.1	67.7	64.7
.315	•			•		•		•		•
.400			•						•	
.500	•		•			•	•		•	•
.630	•		•		•	•				
.800	•		٠.				•			
1.00			٠	•	٠		•			
1.25	•			•	٠		•			
1.60				٠	٠	•		•	•	•
2.03	•			•	•	•		•		
2.50							•	•	•	
3.15						•	•			
4.00					•	•		•		
5.00							•			
6.30							•	•		
8.00							•	_		
10.0				•			•	•		
OASPL	~	m	•	<u>ب</u>		্ৰ ক	•			
PNLT	ň		•	m	•	<i>с</i> .	•	•	m	
Phil	92.3	93.9	96.0	93.0	90.6	89.2	87.9	86.1	83.1	79.2
DBA	÷.	ä		.		~		•		~
BAND	18	18	18	23	23	18	18	23	18	18
TCORR		0.5	1.1	0.3	0.3	4.0	0.4	9.0	0.4	0.5

1.18

•

127

PNET (INTEGRATED)

= 101.98

INLET TEMP = 40.00 F TIME OF DAY = 1504 BARM: PRESSURE = 30.22 IN. HG. WIND DIRECTION = N MIND VELOCITY = 6 MPH			JT&D-17,MOD 52 MXR,8727 T/P,3.5 CANT NORTH GPI50RA150.1740
3º.0 F 72.0 PER CT.	- RADIUS = 150.0 FT.		116.79 127.43 133.83 133.53 133.83 133.53 13
H 45 H	ORRECTED SPL IN DB ANGLE IN DEGREES ISO IS5 104.4 105.8 7 104.4 105.8 7 104.4 105.8 7 105.4 107.5 105.1 7 105.4 107.5 105.1 7 105.5 100.7 7 105.5 100.7 8 92.0 92.5 9 92.0 92.1 8 99.0 92.1 8 99.0 92.1 8 99.0 91.4 8 99.0 91.4 8 99.0 91.4 8 99.0 91.4 8 99.0 91.4 8 90.0 95.0 1 90.1 8 89.0 87.0 8 37.0 35.0 8 37.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35	1 120.2 9 104.8 9 19 5 0.9	5PL = 4L = (D) = 7TI T1 711 T1 0.40.0 L5
TEMPEPATURE Humidity Condition	Itence DAY Complexity 140 145 102.1 103.1 1062.1 103.1 1062.4 103.1 104.8 103.1 104.8 103.1 104.8 103.1 104.8 103.1 104.8 103.1 105.4 105.3 105.5 104.4 99.6 99.1 95.1 99.1 95.3 94.4 95.4 93.1 95.4 94.4 95.4 94.4 95.4 94.4 91.4 94.4 91.4 94.4 91.4 94.4 91.4 94.4 91.4 94.4 114.5 115. 112.2 122.1	3.2 122.5 122.4 121.1 8.8 108.1 107.5 105.9 19 19 19 19 0.4 0.4 0.4 0.5	COMPOSITE Composite Composite PNLT (INTEGRA PNLT (INTEGRA FNLT (INTEGRA PNC 6970 77.0 70
JT80 -17 ,* 376-35 24.1 06. X-314 01/14/80	FAA F.37 36 120 130 93.7 97.7 93.7 97.7 93.7 97.7 93.7 97.7 93.7 100.5 190.3 102.7 100.3 102.7 100.4 101.5 100.4 102.7 100.4 102.7 100.4 102.7 100.4 102.7 100.4 102.7 100.4 102.7 100.4 102.7 100.4 102.7 99.6 98.7 99.6 98.7 98.2 95.1 98.2 95.1 96.5 95.1 95.0 95.3 95.0 95.3 95.1 92.3 124.7 123.8 1	124.4 123.6 110.5 109.6 19 19 0.3 0.2	.33 .23 .21 .64 .64 .64 .64 .64 .64 .64 .64 .05 .378-05
ENGINE MODEL = JT80 ENGINE NUMBER = 37 CAL LEVEL = 124.1 STAND = 01/1 DATE = 01/1	96.0 97.0	122.3 123.9 126.2 107.9 109.5 111.6 19 19 19 0.5 0.4 1.0	MAXIMUM OASPL = 115 MAXIMUM PNLT = 127 MAXIMUM PNL = 126 MAXIMUM PNL = 126 MAXIMUM PNL = 126 MAXIMUM PRA = 111 MAXIMUM DBA = 111 MAXIMUM DBA = 111 MAXIMUM DBA = 111 BASE ID LO DATE ENG MOD BASE ID LO DATE ENG MOD 93 2 250 01/14/80 JT80 -1780
E C C C C C C C C C C C C C C C C C C C		~ ~	HAX HAXX HAXX HAXX HAXY HAX HAX HAX FOLLOUI BASE ID LOU BASE ID LOU 93 2 25

GP150RA150.1740

and the second secon

والمتعاقبة فالمتحدة والمتحدية

2361 H Q3036 JT80-17,MOD 52 MXR,B727 T/P,3.5 DEG CANT NORTH

2361 H 93036 JT60-17, MOD 52 HXR, 8727 T/P, 3.5 DEG CANT NORTH GPISORAIS0.1740

CONDITION = 6970

TITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES 500 0.9 155 2665 ALTITUDE 0.6 0.6 0 10 0 11 150 00 87. 75. 89.6 91.9 91.4 78.4 19 145 89.6 93.2 92.7 80.3 19.0 140 89.4 94.3 93.8 81.7 19 135 89.5 95.3 95.0 83.3 61 0.3 130 = 105.53 89.5 96.9 96.5 85.1 19.0 120 1.1 PNLT (INTEGRATED) 110 37.4 97.5 97.1 84.2 19 100 **85.9** 96.3 95.7 82.7 21 0.6 8 BAND TCORR DASPL PNLT PNL DBA

R R 1 1 1 <th>HUMIC CONDI 5 REFERENCE ON 135 140 135 140 102.7 105.4 1 107.4 109.6 1 107.4 109.6 1 107.6 108.2 1 107.6 108.2 1 107.6 108.2 1 107.6 108.2 1 107.6 108.2 1 106.8 106.9 1 106.8 106.9 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 105.2 105.2 105.2 1 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 100.2</th> <th>TEMPERATURE = 37.0 Humidity = 73.0</th> <th>110N = 7310</th> <th>= 731</th> <th>11 2</th>	HUMIC CONDI 5 REFERENCE ON 135 140 135 140 102.7 105.4 1 107.4 109.6 1 107.4 109.6 1 107.6 108.2 1 107.6 108.2 1 107.6 108.2 1 107.6 108.2 1 107.6 108.2 1 106.8 106.9 1 106.8 106.9 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 106.2 105.2 1 105.2 105.2 105.2 1 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 100.2	TEMPERATURE = 37.0 Humidity = 73.0	110N = 7310	= 731	11 2
		HUMIDITY	CONDITION	CONDIT	CONDIT

and the state of the second

2361 H 43036 JT60-17,M00 5Z M08,B727 T/P,3.5 DEG CANT NORTH 6P150RA150.1740

CONDITION = 7310

ALTITUDE = 1500. FT SIDELINE

			-7	,				AN	ANGLE IN	DEGREES
FREQ.	• 6	100	10	120	130	135	140	145	150	155
(KHZ)										
.050	•		•	٠			٠			81.6
.063	•		٠	•	٠	٠	٠			82.8
.080	•			•	•	•	•			82.4
.100	•				•	•				83.0
.125					•		•			62.8
.160			•		•					78.9
.200			•				· •			75.9
.250			•	•	•		•			74.9
.315	•			÷.,	•					73.7
.400										71.7
.500										70.1
.630				•		•				67.9
.800			•	•	٠		٠			65.5
1.00								· •		63.7
1.25			•		٠	٠	٠			61.3
1.60					٠	•				59.0
2.00	73.1	74.2	76.3	74.2	73.1	71.2	69.8	66.7	61.1	55.7
2.50			•			•	•			51.8
3.15					r.					47.6
4.00			•		2		٠			39.3
5.00				•	è.					34.8
6.30			Ň		•	•				24.9
8.00			56.6		ທີ			•		1.11
10.0			~		÷	٠	٠			0.0
OASPL			91.7	92.		93.8	54.3	4.46		
PRILT		è.	100.9	99.		98.7				
P;4L	97.6	1.65	100.4	660	99.2	98.3	97.7	96.5	93.8	90.7
084		à	5.90	88.		86.5	٠	•		
0 VVD	19	19	19	21	21	21	19	21	21	21
1000	0 0	0	0	r C	~ ~	5	2	4	c	-
	•	•	÷	•	•			•	•	•
		TNTECOATED	TEDI	-	108 42					
•	•									

: *

à

ļ

T

6 2361 H 43036 JT80-17,M00 52 MXR,8727 T/P,3.5 DEG CANT NORTH GP1502A150.1740 = 30.22 IN. HG. Ŧ = 3.0.00 F 1243 ٩ z INLET TEMP TIME OF DAY BARM. PRESSURE MIND DIRECTION MIND VELOCITY GP150RA150.1740 FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150.0 FT. 252 2361 H Q3036 JT6D-17, HOD 52 MXR, B727 T/P, 3.5 DEG CANT NORTH ₹ ت THE FOLLOWING COMDITION HAS BEEN ADDED TO THE W601 DATA BASE Base ID LD DA.E ENG MOD ENG NO STND C OBS CORR TEMP HUM TIT TIME BARM WD 92 12 250 01/14/30 JT8D -17 378-05 X314 0 7977 777.0 70.0 38.0 1243 30.22 N 73.0 PER 37.0 F = 127.38 = 134.07 = 141.63 7977 ANGLE IN DEGREES " u -117.9 117.1 114.8 118.7 119.1 116.8 118.1 118.2 118.6 118.1 116.8 117.3 115.8 111.8 114.0 110.6 112.6 108.5 111.0 107.9 108.9 126.2 132.1 131.9 118.1 115.8 106.3 105.5 104.8 103.7 97.8 0 20 20 114.6 115.0 102.6 96.1 93.9 197.3 101.3 9.66 155 COMPOSITE SPL COMPOSITE PHL PHLT (INTEGRATED) 126.6 132.0 131.8 117.4 114.5 06.8 106.0 104.4 103.9 103.0 114.3 0.2 0.2 0 113.2 100.6 ø 150 .65 5 5 ŝ

 116.0
 117.9

 116.0
 117.9

 115.6
 118.1

 115.6
 118.1

 115.6
 118.1

 115.6
 118.4

 117.4
 115.6

 117.4
 112.4

 111.4
 112.6

 111.4
 112.6

 111.4
 112.6

 111.4
 112.6

 111.5
 102.3

 111.6
 102.5

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.6
 102.6

 111.7
 102.6

 111.7
 102.6

 111.7
 102.6

 111.7
 102.6

 111.8
 102.6

 11 TEMPERATURE 112.6 116.7 119.1 120.8 122.9 123.7 125.0 126.5 129.5 131.1 131.5 132.6 132.7 132.3 132.4 129.2 130.9 131.4 132.5 132.6 132.3 132.2 115.3 117.4 118.4 119.1 118.7 118.0 117.8 6 6.2 98.0 CONDITION 145 HUMIDITY . وو , 110.3 109.4 3 110.1 109.3 103.5 5 110.1 109.3 103.5 5.7 103.8 103.1 107.7 3.7 103.8 103.1 107.0 78.2 103.5 103.1 105.0 105.7 107.3 107.0 105 105.8 105.5 105.3 10 7 105.0 105.6 105.3 1 7 105.0 105.6 105.3 1 7 105.1 102.6 102.7 7 101.3 101.4 101.1 7 101.3 101.6 102.7 7 101.3 101.6 102.7 7 101.3 101.6 102.7 7 101.3 101.6 102.7 7 101.3 101.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.7 102.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.6 102.7 7 105.7 105.6 105.7 7 105.7 105.6 105.7 7 105.7 10 110.5 0.1 0.1 99.0 N 140 52

 6
 102.6
 105.5
 105.5
 105.5
 105.5
 105.5
 105.5
 111.7
 112.0
 114.2
 11

 1
 105.5
 108.5
 112.0
 114.2
 11

 1
 107.5
 109.5
 111.7
 112.0
 114.2
 11

 1
 107.5
 109.5
 111.7
 112.0
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 11
 2
 1
 11
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1< 0.1 105.5 108.1 108.4 111.1 110.1 113.1 135 12 0.1 130 = JT6D -17 = 378-05 = 124.1 DB. 101.1 104.9 126.58 132.68 132.62 132.62 119.05 102.7 0.1 100.1 X-314 = 01/14/80 120 97.5 98.8 19 110 # 11 4 8 8 ENGINE MODEL ENGINE NUMBER 19 OASPL PNLT PNL DBA 100 CAL LEVEL Stand Date MAXIMUN C NAXIMUN F MAXIMUN NAXIMUN 101.6 101.6 102.5 102.5 103.0 102.7 102.6 102.7 102.6 102.5 102.5 102.5 102.5 102.5 102.5 102.5 102.5 102.5 102.5 102.5 103.5 105.5 1005.5 1005.5 1005.5 1005.5 1005.5 1005.5 1005.5 1005.5 1005.5 100 115.1 127.9 127.7 113.8 98.3 97.9 97.4 190.2 93.2 97.6 100.1 95.7 8 96.1 CENTER FREQ. (KHZ) .050 .063 . 080 .100 .125 10.0 BAND TCCRR DASPL PNLT PNL

6,

¢

2351 H 43036 JT8D-17,MOD 52 MXR,B727 T/P,3.5 DEG CANT NORTH 6P150RA150.1740

1

CONDITION = 7977

ALTITUDE = 1500. FT SIDELINE

ANGLE IN DEGREES

155	o	~	ف	e.		"	~	86.7		~	à	~		~	÷	~	, inite	~		~	~	~		ä				86.7	21	0.5
150	•	•	•	•		•		87.0	•	•	•	•	•						•						٠. •	01.	101.4	87.		0.5
145	•							87.8																	80°.	m.	102.8	÷.	21	4.0
140	<u>ه</u>	•			~		÷	87.6	<u>ن</u>					÷	÷		4	_	~	~	÷	~		Å.	0	m	Ю	6	23	
135	4	~	\$	a.		5	÷	88.1	~	<u>ئ</u>	÷.	÷	~		-	ŝ		4	<u>.</u>			3	~	÷	°.	5.	103.8	÷	21	0.3
130	m		~	÷.	÷.	d'	4	88.6	~	~				÷.	~		÷.			÷.	4	<u>,</u>	~	÷.	. 6	94.	104.5	Ň	21	
120	•	•						87.3																	~	÷	5	m.	21	
110	•	•	٠	•				85.4	•						•										0	÷	3	à	19	
100	•	•	•	•				83.5	•			•	•													ń	ų.	ó	61	ē.0
0 6	•	•						81.4																	~. ``	4	101.6	¢.	19	5.0
CENTER FREG.		.063	. 380	2	.125	2	3	.250	.315	.400	.500	.630	8	٩.	<u>е</u> і	è.	ę	ŝ	7	4.00	0		0	<u>.</u>	OASPL	PNLT	PNL	Vac	BAND	TCORR

= 113.43

PNLT (INTEGRATED)

.

133

......

36.00 F 1330	= 30.22 IN. HG. = N - 4 MBU	D																											
INLET TEMP TIME OF DAY	BARN. PRESSURE WIND DIRECTION UIND VELOCITY		.0 FT.																										
= 38.0 F	= 73.0 PER CT.	= 8474	N DB - RADIUS = 150.0	ES																								= 131.79 = 138.47 = 145.90	
w			CORRECTED SPL IN	ANGLE IN DEGREE	150 155	m		121.7 119.9	120.8 121.9		120.9 121.7	118.8 121.2	116.5 118.6	115.6 116.5	114.4 114.5 0 1 1 1 1 1 1	112.4 112.1	111.5 111.0	109.6 109.0	-		4		0.171		137.7		0.2 0.2	SITE SPL SITE PNL (INTEGRATED)	2
TEMPERATUR	HUMIDITY	CONDITION	REFERENCE DAY COR	W	5 140 145	112.6	116.4	118.6 123.5 118.9 121.5	120.3 121.3	120.0 122.5 119.3 121.2	117.4 119.3	116.0 118.3	114.2 116.0	113.6 115.2	112 2 114.4	111.8 112.6	111.6 112.0	109.9 110.6	109.0 109.5	107.5 108.3	105.2	104.1	129.0	.2 136.9 138.0	126.3	u	0.1 0.1 0.1	COMPOSITE Composite PNLT (INT	HE W601 DATA C DBS CODD
			A PART 36 REI		130 135	107.4 11	11 6.011	112.3	115.0 117.6	115.2	114.7	14.6	13.3	113.2	111 A	111.4	110.7	2 109.6 109.9	103.4	106.3	104.7	0 103.2 103.7 9 101.2 101.7	125.8	135.6	5 135.5 136.1 2 122.0 122.3		0.1	01 IC 75	EN ADDED TO TI
= JT60 -17 = 378-05 06 1 20	= 124.1 56. = X-314 = 01/16/40		FAA		110 120	6	22			33	1		17	11	22	17	11	30	2		29	102.8 103.0 100.0 100.9	21.5 123	33.4 134	135.2 134.3	-	0.1 0.1	= 131.02 = 138.05 = 137.91 = 124.63	DN HAS BEEN ENG MOD EN
ENGINE MODEL ENGINE NUMBER					5 0 100	96.7	98.3	99.8 101.8	103.5	104.5	196.3	106.5	107.3	107.3	1.101	106.6	106.7	106.8	107.1	106.7	104.1	99.5 102.7 98.4 100.6	2.911	29.5 131.9	29.5 131.8 15.7 118.0	00 06	0.1 0.2	MAXIMUM OASPL Maximum Pnlt Maximum Phl Maximum DBA	THE FOLLOWING CCNDI/ION HAS BEE BASE TO ID DATE FUE MOD
BNG ENG	STAL			CENTED	FREQ.	.050	.063	080	.125 1	.160 1.	.250 1	.315 I	- 205.	.630 1	1.00	1.25 1	1.60 1	2.50 1	3.15 1	5 00 1	6.30 1	8.03 10.0			PNL		TCORR	МАХ МАХ МАХ	E FOLLOWI

•

.

.

× .

.

t

Ì

ł

1

i ;

ī

2361 H 93036 JT6D-17,400 52 MXR,8727 T/P,3.5 DEG CANT NORTH 6P150RA150.1740

.

÷ 1

÷

CONDITION = 8474

ALTITUDE = 1500. FT SIDELINE

DEGREES

ANGLE IN

101.9 105.4 104.9 93.2 21 155 103.7 107.3 107.0 94.4 2.4.0 150 104.8 108.4 108.1 95.5 21 0.3 145 104.0 108.1 107.8 95.1 23 0.3 140 102.8 107.7 107.4 107.4 23 0.3 135 102.0 107.8 107.6 95.9 210.3 130 100.1 107.5 107.3 96.2 23 120 98.7 107.2 107.0 95.6 23 0.2 110 96.4 105.8 105.6 93.6 $\begin{array}{c} \mathbf{0} \\ \mathbf{$ 23 0.2 40 100 94.4 103.7 103.5 91.6 21 0.2 8 DASPL PNLT PNL DBA BAND

= 117.09

PHLT (INTEGRATED)

APPENDIX B

ACOUSTIC CORRECTION PROCEDURE TO ACCOUNT FOR ABSENCE OF FAN DUCT ACOUSTIC TREATMENT IN 727 TAILPIPE

Tests involving the DC-9 tailpipe were conducted with an engine having the standard production double-wall fan duct acoustic treatment. This duct treatment provides a significant reduction in the aft radiated fan noise. However, when tests were performed with the 727 tailpipe the engine used did not incorporate the duct treatment. This allowed fan noise to have higher levels than would be the case if the acoustic treatment was present.

To provide 727/52 mixer results more representative of this installation on JT8D engine with fan duct treatment as well as to allow direct comparison data acquired with the DC-9/5M mixer, the extra fan noise resulting from the absence of the treatment was analytically removed from the noise spectra and the perceived noise levels were recalculated.

The magnitude of the corrections are shown in Figure B-1, plotted against thrust level for each angle from 90 degrees to 140 degrees. The correction was negligible at high thrusts, and increased in a fairly regular manner as the thrust decreased. Figure B-2 shows the measured and corrected peak PML versus thrust curves for the tests of the standard engine configuration and with the 52 mixer installed. It is noted that the correction at the peak PML angles does not reach 0.2 PMdB until the thrust decreased to 9000 pounds for the standard configuration and to about 13,000 pounds with the mixer installed.

The noise data, corrected as described above, were used to define the PNLs at a series of constant thrust settings for the 727 tailpipe in the standard and 52 mixer configurations for a JT8D engine having the BG-19 duct acoustic treatment. These PNL values are listed in Tables VIII and IX in Section 2.2.2.2.

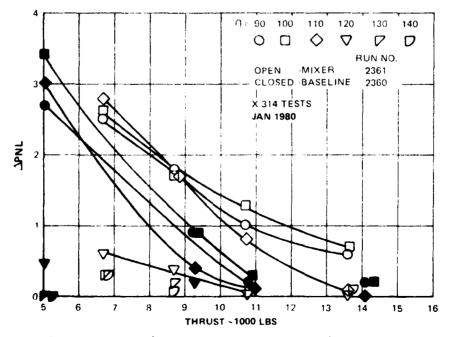


Figure B-1 PNL Corrections for Fan Duct Acoustic Treatment

36.

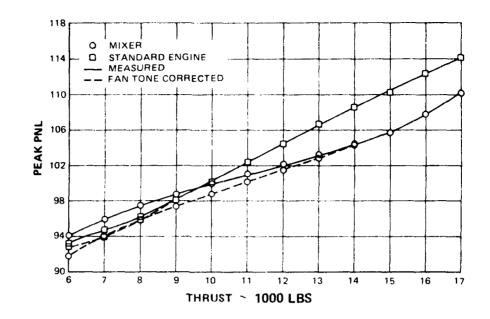


Figure B-2 Effect of Fan Tone Correction on Peak PNL Versus Thrust for Standard and Mixed Engines, 727 Tailpipe

