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I. INTRODUCTION

The object of this study is to produce a function, R, for

a given station which models all near-receiver contributions
to observed waveforms, including crustal reverberations,

acoustic impedance amplification effects, laterally-refracted

arrivals, and variations (8t*) in attenuation from an average
earth model. Clearly R must be a function of back azimuth to
the source and incidence angle for any but the simplest receiver

region structures. Thus R must be re-evaluated for each source

region under consideration.
As a first step toward a true receiver function, we have X

computed relative receiver functions, RRF's, for three types ?

of arrays. The method uses spectral ratios to isolate the

near receiver part of the total propagation filter. What is

it s R AR A

actually obtained is the ratio, Rs/Ro’ of the response of a ;
secondary station to the response at a reference station. Because ]
any (frequency dependent) factor common to both stations will

divide out, we obtain only rs/ro, the ratio of relative receiver

functions. Resolution of the absolute individual receiver responses,

Ro and Rs will require careful calibration of the reference

station.

From an array of stations, we can compute dj = rj/ro,

from which we may synthesize the seismogram at station j using

e

the seismogram at the reference station. The final step is to

recover r, and thus rj; so that we may compute the synthetic

seismogram at station j, j =0, 1, ...n, using theoretical
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sources. The recovery of r, from the dj requires the
imposition of an additional constraint, and we have chosen to
require the rj(t) to be as simple or "delta-like" as possible.
The technique used for this simplicity criterion is known as
Minimum Entropy Deconvolution, or MED (Wiggins, 1978).

The total procedure has been applied with varying amounts
of success to three different array concepts. The first is the
Yucca Flats array of maximum dimension about 4 km. The second
"array" is the "Western U.S. Array," or WUSA, made up of all
of the WWSSN stations west of about 105° w longitude in the
United States. The third array concept is that of a global
array which includes any seismograph or array of seismometers
in the distance range 30-90° from an explosion source region.
Clearly, each array concept is different; hence the results will

be discussed separately.
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II., TECHNICAL DISCUSSION

2.1 Trace Deconvolution

Success in obtaining relative receiver functions requires
that the near-receiver response be isolated. 1In general this

is done by dividing a reference trace spectrum of the form
to(w) = S(m,e,h)-cs(w,e,i,h)-G(w,A)-Q(w,A)-CR(m,e,e)-I(w) (1)

into a secondary trace spectrum of the same form. In equation
(1), S is the source spectrum; Cs and CR are source and receiver
crustal responses; G is geometric spreading; Q represents the
anelastic attenuation and I is the instrument. Functional
dependencies are on frequency, w, the azimuth, 6, incidence
angles i and e at source and receiver, respectively, and source
depth, h.

If the two stations in the deconvolution are close, then
all terms except CR in the ratio of forms like (1) will divide
out, independent of source type or teleseismic path length.
(Deconvolution of the instruments may be handled separately if
necessary.) This type of deconvolution was done successfully
by Hart et al. (1979) for the YF and OB arrays at NTS. 1In
that study, the variance of individual estimates of each

deconvolved trace

ct
.

dy = (2)

o”l

was reduced using a log-spectral stack, and the resulting
average transfer functions between the reference and various
secondary stations could be used to interpret lateral variations

in geology across the sedimentary basin beneath Yucca Flats.
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If the stations in the array are not proximate, then more
care must be taken in the choice of sources and paths. 1In
order to get sources at a common back azimuth from stations in
the Western U.S. Array, earthquake sources were used from
South America (southeastern azimuth) and the Aleutian-Kurile-
Japan arc (northwestern azimuth). The sampling of focal
mechanism diagrams from the southeast azimuth shown in Figure 1
demonstrates that, even though the array is continental in
size, the rays sample only a very small part of the focal
mechanism. If care is taken to avoid nodal lines, then the
source term in (1) will divide out.

By the same arguments, the source crustal response cannot
chahge much when the azimuth changes by less than 15°.and the
ray parameter changes by less than .02 sec/km. The variation
which does exist within these limits will be additive noise in the
deconvolution traces. 1Insofar as that noise is incoherent from
trace to trace, it will be minimized by the log~spectral stack
and the MED process.

If care is taken to avoid caustics, the geometric attenua-
tion filter is frequency independent and reduces to a simple
gain factor. In the work done here, each trace is corrected to
a common distance so that G(A) divides out during deconvolution.

The Q filter is a more difficult problem because the upper
mantle may not be the same beneath all stations. The Q filter

may be written in the form

- 5 (E*+8t¥) (3)

e
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6
where t* is the complex anelastic attenuation operator for an
average earth, and 8t* represents the variation from average.
Fortunately, there is good evidence that t* is nearly constant
with distance for 30°<A<90° (Mellman and Hart, 1980). Even
when a frequency dependent Q is considered, Lundquist (1979)
showed that t* (w) is expected to be nearly constant with
distance for any frequency. Thus the first factor in (3) will
divide out during deconvolution, leaving

- $(str-st?) (4)
e

This factor will remain in the receiver function to represent
the difference in anelastic attenuation in the crust and upper
mantle beneath the two stations. In many applications, such as
yield estimation or ™y this relative &t* measure will be a very
desirable part of the receiver function.

An example of the deconvolution of two traces with signifi-
cantly different §t* is shown in Figure 2. If the low frequency
({large 6t*) trace is used for the reference trace, then (4)
becomes a rising exponential and the deconvolution becomes
unstable (third trace). Thus it is reasonable to choose the
station with the highest apparent frequency content to be the
reference station, because the difference in Q filters will tend
to stabilize the deconvolution (fourth trace).

To extend this procedure from continental arrays using
sources over narrow azimuths to global arrays using stations at
any azimuth about a confined source region requires the use of

explosion data to minimize asymmetries of the source. There
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will almost certainly be residual source crust factors, 6Cs,

even with the absence of focal mechanism and directivity effects.

Thus it is more important than before to average over several
events for noise reduction. Any consistent azimuthal variation
in the source radiation cannot be distinguished from a receiver

effect; so the best average will include sources in different

geologies and different structures of any given test site. Once

receiver functions are determined, of course, then asymmetric
source radiation may be studied at the stations of the global
array.

In summary, the differences between deconvolution for the
different array types may be visualized in terms of the log

spectral domain.

1 1 Cr §Cg
D, (w,8,i) = =Y log d . = =3 log[ "k \w (6t *-8t_) .+log k
k n4 kj n — I3 k (= T
3 3 C 6C
R /. So 3

o7]

small array
g
continental array
™

global array
In each case, relaxation of constraints on spatial dimension of
the array adds potential complexity to the receiver function.
Of course microseismic and recording system noise form an
additive term to each type.

2,2 Minimum Entropy Deconvolution

Trace deconvolution provides n pieces of information,

d

= ri/ro, about the n+l unknown receiver functions ro,ri,...tn.

(5)

—
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In order to recover ro and thus the rj, Hart et al, (1979)
adapted the Minimum Entropy Deconvolution technique (Wiggins,
1978). The process attempts to find a linear operator which,
when convolved with each trace in the set, maximizes the order
(or minimizes the entropy) of the set as a whole. The new
constraint on the problem is thus to find r, such that all of
the receiver functions are as simple or "delta-like" as possible.
A useful measure of simplicity (Wiggins, 1978) is the

weighted varimax norm.

Y
v =Z: wjvj = Z w. !rj (t)de (6)
3 3 3 (fr;7(erae)”

Hart et al. (1979) showed that maximization of V in the

frequency domain is equivalent to solving the system of non-

linear simultaneous equations:
]

w.
3 *
?G% 93. (W) a2 (w) (7)
£* (w) =}:V-',Wj
o *
3 uj dj (w) dj(w)

where (") implies an estimated value as opposed to a known value,
and (*) implies complex conjugate. In that dj = rj/ro, then

fj = fbdj; and uy = JYj(t)dt is simply the.energy in each
filtered trace. 1In general, the first guess for fo is a

delayed delta function, Nt-to), and three to five iterations

through (7) will determine a local maximum in variance (minimum

in entropy).
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A few observations on (7) may be made. First, note that
the denominator is a weighted sum of power spectra; so the
division tends to emphasize low amplitude spectral content and
flatten the spectrum of ro. Second, the numerator is a cross
spectral product between a given trace and the cube of the
estimated receiver function., This is equivalent to shaping
the spectrum to that of a time domain function made up of a few
large spikes.

Under most configurations, the MED process converges to
a maximum of the varimax norm, but the position of the maximum
varies with choice of reference station, choice of weight
functions and use of causal truncations. 1In that the filter is
initialized as a spike, the most reasonable, and, indeed, generally
most successful, choice for reference station is the simplest and
highest frequency station. The primary importanée of the
weight functions is to prevent MED from reaching a spike
configuration for any rj. Thus, the reference station is
generally underweighted by w= .0l and other simple stations

by smaller amounts.

The effect of MED processing is to take a set of n relatively
complex trace deconvolutions and output n+l receiver functions.
Note again that any factor common to all of the stations in the
array will have been lost during the processing; so that the rj
are still relative receiver functions in that they cannot predict
absolute amplitude. Calibration of one station in the array,

however, will permit calculations of absolute amplitudes for all

stations.
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2.3 Estimated Relative Receiver Functions

In this section results will be presented for both trace
deconvolution and FMED processing for each of the array concepts.
The small array data have been presented earlier by Hart et al.
(1979) and are only briefly reviewed here.

2.3.1 YF and OB Arrays at NTS

Figure 3 is an example of the input data and the quality of
the trace deconvolution for a study done on the SDCS stations at
Yucca Flats, NTS. The traces on the left are the reference traces
from station OB2NV located at Climax Stock. The dashed line
tracee at the right are the secondary station data, in this case,
station YF2NV. The solid line traces are reconvolutions of the
reference trace with the average deconvolved signal shown at the

bottom. That is,
¢. =t 4,

where (") again implies estimated or synthesized quantity. It

is quite clear that the trace deconvolutions stack well enough

to predict the seismogram at the secondary station. The implica-
tion is that the deconvolution has indeed isolated receiver
effects from the other path effects.

Figure 4 shows the estimated RRF's for the 5 stations in
this test. Note that station OB2 on granite has a much simpler
response than the YF stations located on a sedimentary basin.

The effect of the more complex responses is demonstrated in
Figure 5 in which the RRF's have been convolved with a typical

explosion source-time function. Although the source term tends
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to smooth out the details in each RRF, some distortion of the
main arrival may be seen, and later arrivals are received in the
sedimentary basin that do not appear in the granite stock.

. Perhaps the most significant result relates to amplitude
measurements such as m - The RRF's predict that signals seen
through the sediments will have up to twice the amplitude of

signals seen through the igneous stock. Note that the same

relative amplification would be predicted if the acoustic impedance

in both rock types were varied by any common factor, demonstrating
again why these receiver responses must be considered relative
to each other,.

.2.3.2 Western United States Array

The stations in the Western U.S. Array, Or WUSA are shown
relative to their geologic province in Figure 6. All of the
WWSSN stations west of the Rocky Mountain front were éonsidered,
but MSO and 807 were excluded due to insufficient data for the

events used. This left an 8 station array of maximum aperture of

about 18°, representing a variety of geologic and tectonic settings.

Station TUC was used as the reference station for trace deconvolution

both because of its quality and the simple fact that it had more

usable records than any of the other station.

The events used for computation of RRF's from a southeastern
azimuth are listed in Table 1. These events were carefully sel-
ected for consistency in first motion across the array, and events
with obviously complex source time functions were omitted. Also
given is the data availability. The number of traces in the log
spectral averages varied from 4 to 7.

Figures 7 to 13 show the results of the trace deconvolutions.

The data are arranged in pairs, with the reference trace on top
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TABLE 1. SOUTH AMERICAN EVENT LIST

DATE TIME LOCATION  ALQ BKS COR DUG GOL GSC LON TUC §

4/25/67 10:26:14 32.65 69.0W X X X X X X 8

11/15/67 21:35:51 28.7S 71.2Ww X X X X X X y

: 2/6/68 11:19:23 28.55 71.0W X X X X X X X Ll

r; 4/21/68 9:23:35 23.45 70.5W X X :
3 4/30/68 23:51:18 138.4S 71.1W X X X X X
: 9/30/76 8:04:11 24.2S 68.2W X X X X X X
12/3/76 5:37:34 21.0S 69.0W X X X X X X
| 3/13/77 4:55:55 2.0S  58.0W X X X
6/8/77 13:25:16 22.1S 67.3W X X X X
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i
servation with the log-spectral average of ALQ/TUC deconvol- 4
utions. i
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and the secondary trace shown as the dashed line below. The
solid line in the lower figure of each pair is the reconvolution :

of the reference trace with the frequency domain stacked deconvolu- "

tion. In each case, a 6 second reference record was deconvolved ;

from a 12 second secondary trace. Thus the resulting deconvolution

operator will correctly predict only the first 6 seconds of. |

the impulse response. The event of 12/3/76 in the deconvolution

of DUG (Figure 10) shows what happens when an arrival exists on

s

the secondary trace but not on the primary; while the event of

4/25/67 shows that the correct response is predicted if the

RN A i

reference station also receives the impulse. 1In spite of the

v s

problems always associated with hand-digitized data, the quality 3

of the fits between observed and synthesized waveforms is quite

[N

respectable.

- R

Figure 14 gives the estimated RRF's for two choices of
reference station. The column on the left is referenced to
TUC; while the column on the right is referenced to GSC. The §

changing of reference stations is accomplished simply by |

r. r r

d =_l —Q = P
i r *or, r.
o J J

and the former reference station is handled by defining do =

1

ro/ro = 1.0. !

Though a glance at the two estimates of RRF's shows apparently i
significant differences, a better comparison is done in the

context of synthetic seismograms. Figure 15 gives such a comparison

for synthetics of a shallow event with the third focal mechanism

in Figure 1. A little study of Figure 15 shows more similarity
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as a function of recording station than as a function of

referencing station. Clearly the two estimates of the RRF's

are smoothed by convolution with the other propagation filters
in such a way that the important information is nearly identical.
This is an important confirmation that the MED process is
converging to a stable and useful maximum.

The event list and data availability for events from the
northwest azimuth are given in Tablé 2, and the data are given
in Pigures 16-21. Although 12 events were checked, usable data
pairs are rare. Indeed, COR had to be excluded from this part
of the study, and ALQ and LON were tentatively included with
only 3 events each.

Figure 22 shows the MED estimated RRF's using station DUG
for reference. The RRF's referenced to TUC were very similar,
and gave nearly identical synthetic seismograms. The right hand
column in Figure 22 shows the results of MED when the limited
data stations ALQ and LON were excluded. Again, the two MED
runs result in equivalent RRF's for the common stations in spite
of the different starting configurations. The synthetic seis-
mograms in Figure 23 confirm the stability of the estimated RRF's.
Apparently the addition of two questionable stations to the MED
data set does not decrade the results.

An interesting comparison may now be made between the RRF's
in Figures 14 and 22 and between the synthetics in Figures 15
and 23. Some stations (ALQ and BKS) have very similar responses

to arrivals from northwest and southeast azimuths; while others

(GOL and GSC) have noticeably different responses. The arrival

T




TABLE 2. NORTHWEST AZIMUTH EVENT LIST

DATE TIME LOCATION ALQ BKS DUG GOL GSC LON TUC

r
5
11/22/66 6:29:52 48.0N 146.8E X X X X X F

r 8/10/67 11:21:22 45.4N 150.3E X X X X X X
2/10/68 10:00:05 46.0N 152.3F X X X X X X X
7/25/68 10:50:31 45.7N 146.7E X X X
10/22/76 18:35:24 75.0N 134.9E X X
12/5/76 1:01:42 23.0N 140.0E X X X i
4/22/77 0:58:56 52.5N 138,8E X X X ﬁ
4/23/77 14:49:06 75.0N 134.9E X X
6/12/77 8:48:05 43.0N 142.3E X X X

AN oo,

amees
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Figure 19. As Figure 11, but for GOL/TUC at a northwest azimuth.
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?

Estimated MED relative receiver functions appropriate for
a northwest azimuth. The RRF's at the right were com-
puted without stations ALQ and LON.
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at 3 seconds after P on the LON syntheéics at both azimuths is a

clear example of similar receiver function response predicted by
entirely independent data sets. With enough data from enough
azimuths, RRF's could be used to interpret crustal structure.

2.3.3 Eastern Kazakh Global Array

A receiver function study has been started for a global
array about the Eastern Kazakh test site in the Soviet Union.
Table 3 shows the data currently available at SGI for SRO,
ASRO and several arrays in the distance range 30 - 95° about
21 presumed nuclear explosions. In spite of the number of
events and the number of stations, very few useable trace
pairs are available for deconvolution.

Based upon frequency content, CHTO was chosen for the ref-
erence station. Figure 2, in which tl is CHTO and t, is CTAO,
demonstrates the problems involved with using a low frequency
reference station. Figures 25 - 27 show the only possible
deconvolutions with this SRO data set using CTAO as reference.
Note that the waveforms at the four stations involved are very
consistent, suggesting that it may be possible to generate
additional CHTO reference traces by reconvolution of observed
ANMO or CTAO traces with the inverse of the CHTO referenced
deconvolution. This possibility will be examined during the
next few months. |

It should be noted that ANMO, CTAO and NWAO are at 95°, 92°
and 909, respectively, from the source region, and that their
P body waves penetrate to within 100 to 150 km of the core
mantle boundary. 1If a low Q zone exists there, as modeled by

Anderson and Hart (1978), then a §t* not associated with upper

i
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mantle behavior will be included in receiver functions computed
with data from these stations. 1In some applications, such as
predicting CHTO seismograms from ANMO data, this presents only
the technical difficulty of working with inverse Q filters.
The extra §t* term does mean, however, that RRF's for ALQ (north-
west azimuth) and ANMO (Eastern Kazakh) will not necessarily be com-
parable, and that the WUSA array cannot be tied to the Eastern Kazakh
Global Array by this means.

MED outputs are not shown at this time for the global array;
because of the lack of data. The data base is currently being expand-
ed to enable both deconvolutions of the smaller arrays (KSRS, etc.)

and the tying of these arrays into the global array.

III. CONCLUSIONS

The validity and practical applicability of the relative
receiver function concept has been demonstrated for three types
of arrays: the small array typified by the YF array at NTS;
the continental array tested on the western United States, and
the global array including all stations in a useable distance
range about a given source region. 1In each case, reconvolutions
proved that the average transfer functions can accurately pre-
dict seismogram behavior at one station based upon observed
motion at another.

Several tests of the Maximum Entropy Deconvolution method have
shown that it does produce stable and useful relative receiver

functions. The method converges to the same practical result

for different choices of reference station and for different

T~
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starting configurations, including different numbers of stations.

Much work remains to be done, especially with regard to

tying together the different array concepts. 1In particular, V h
if sufficient trace pairs can be developed between small arrays,
such as KSRS and NORSAR, and the SRO network, then relative

receiver functions within small arrays may be related to global ]

; networks.
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