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I. Introduction

In this paper, a proof of the Borsuk-Ulam Antipodal Point

Theorem is presented by means of a constructive algorithm that

computes an approximate solution by means of a simplicial sub-

division and integer labels.

II. Main Results
]n  .

For xE R, let |x denote the L norm. Let

Sn  (x c e n : 61 1}. By an odd function, we mean a function

such that f(-x) = - f(x). The Borsuk-Ulam Antipodal Point Theorem

[1] can be stated as follows:

Theorem: Let f : Sn - ]Rn - 1 be an odd continuous function. Then

there exists a point x e S such that f(x*) - 0.

Let T be any syimetric triangulation of Sn such that its

restriction to Sn (I {xlxi = 0 1 e U) for any U is also a triangu-

lation, with grid size 6. For example, consider a scaling of j1 [2]

restricted to Sn. Let T denote the vertices of the triangulation.

Consider the following labeling function on 
TO0

i if i is the smallest index such thatJf(x)I - fi(x) and f.(x) > 0

1(x)-

-i if i is the smallest index such that
lf(x)l - fi(x) and fi(x) < 0

Note I(x) -- L(-x).

---



Fix c > 0 and choose 5 such that Ix- y[ < 6 implies

Jf(x) - f(y)| < C.

Lemma 1: Suppose Z(x) i > 0 and X(y) - - i and Ix - yR < S.

Then If(x)I < 3c.

Proof: fi(x) > 0

f i(y) < 0

f 1 (x) - fi(y) < C

fi(x) < + fi(y) < C

f i(y) > fi (x) - C > - C

Therefore

fi(x) I < £ and If (y)I < C

also

f (x) < fi(x) for any j - 1, ... , n

f (y).> fi(y) for any J - 1, ... , n

Therefore

f (x) - 2c < f (y) - C f (y) - < fj(x) < f (x).

Therefore

if(x) - fi(x)I < 2c

hence

If(x)J < 3c • 13
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In the next section, we will prove constructively:

Lemma 2: For a given T and induced labeling 1(.) as above, there

exists a pair of adjacent vertices x and y e Sn such that

Z(x) - i and 1(y) -i.

Combining Lemmas 1 and 2 and taking a limiting subsequence of

xis as c + 0, we obtain the main theorem.

3. An Algorithm for Computing Oppositely Labeled Adjacent Vertices

The algorithm of this section is a modification of that of Reiser

i[3]. Let T denote the collection of i-dimensional simplices of T.

We shall define a simplex a c T to be oppositely labeled if there are

two vertices x, y of a such that t(x) - i and 1(y) - - i. The

algorithm will terminate with an oppositely labeled simplex. Let

R C {1, ..., n-,- 1, ... , -n+ 1) such that i C R implies

- i + R. Define

n
A(R)- {x eS : x i > 0 for 0 < i e R,

x < 0 for 0 < - i e R,

xi " 0 otherwise )

The following algorithm, analogous to that of Reiser, will

produce an oppositely labeled simplex. d is the dimension of the
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A-

simplex under question. q is the index of the newly added vertex.

1 R is the index set of the orthant of Enl1 under consideration,

and X is the set of vertices of the simplex under question.

StepO0: R*-0.v'-enX - 1d 4-O0. q -l

Step 1: Let I _ Z(v q). If there is a vertex v E X with Z(v) - ,

stop. If there is a vertex v ke X, k # q with L(v k L'I go to

Step 2, otherwise go to Step 3.

Step 2: vk is replaced by the unique vertex ;k in A(R) for which

we have a d-dimensional simplex of T in A(R), if such a v exists.

k -k
In this case set v - v , set q 4- k and go to Step 1. Otherwise, go

to Step 4.

Step 3: R - R UML, d - d + 1. Define vd2 to be the unique vertex

1d+l dd+2v eA(R) such that (v, ..., v ,v) 6 Td. X - XU{v Jq - d + 2.

Go to Step 1.

Step 4: X -KX \(v k). There now is a unique index i E R such that

v i . 0 for all v r= X. Set R - R \(i). d 4- d -1. q 4- that index

S.t. v r X and X(,q) _ i. Set k * q and go to Step 2.

-4-



*Note that upon returning to Step 1, we have X -{v' ... Vdl)

each v E r A(R), and R has d elements. The algorithm cannot cycle,

* and must terminate with either an oppositely-labeled subsimplex (y, or

the simplex {-e nl. The fact that I(x) L (-x) quarantees that

(-e n, cannot be the terminal simplex.

x)

Figure 1. Sample path of algorithm
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