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I. Introduction

In this paper, a proof of the Borsuk-Ulam Antipodal Point
Theorem 1s presented by means of a constructive algorithm that
computes an approximate solution by means of a simplicial sub-

division and integer labels.

I1I. Main Results
n [ ]
For xe IR, let Ix! denote the L norm. Let
s" = {x e R" : Ixl =1}, By an odd function, we mean a function
such that f(-x) = - f(x). The Borsuk-Ulam Antipodal Point Theorem
[1] can be stated as follows:
Theorem: Let f : Sn - Rn_l be an odd continuous function. Then

* *
there exists a point x € s® such that f(x ) = 0. £

Let T be any symmetric triangulation of S® such that its
restriction to S" N {xlx1 =01ieU} for any U is also a triangu-

lation, with grid size 6. For example, consider a scaling of Jl

(2]
restricted to s”. Let 'l‘o denote the vertices of the triangulation.

Consider the following labeling function on '1‘0:

i if 1 1is the smallest index such that
f(x)l = fi(x) and fi(x) >0

L(x) =

-1 if 1 1is the smallest index such that
ME(x)l = f£,(x) and f,(x) <0

Note A&(x) = - L(-x).
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Fix € > 0 and choose & such that Ix ~ yl < & implies

I£(x) - f(y)l < €.

Lemma 1: Suppose £(x) =1 >0 and &(y) = -1i and W¥x -yl <&,

Then JE(x)} < 3e.

Proof: £,(0) >0
£,(0 <0
£,x) - £,(y) <€
fi(x) ce+f(y) <e

fi(y) > fi(x) -€>=-€ .

Therefore
Ifi(x)l < ¢ and Ifi(y)l <e,
also
fj(x) < fi(x) forany j =1, ..., n
fj(y)‘z fi(y) for any 3 =1, ..., n .,
Therefore
£,(x) - 2¢ < £,(y) - €< fj(y) -€e< fj(x) <f,(x .
Therefore
Ifj(x) - fi(x)l < 2 ,
hence

e(x) < 3¢ .
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In the next section, we will prove comstructively:

Lemma 2: For a given T and induced labeling £2(+) as above, there

‘ g
[ N,

exists a pair of adjacent vertices x and y € s® such that

} 2(x) =i and 2(y) = - {.

Combining Lemmas 1 and 2 and taking a limiting subsequence of

. x's as € > 0, we obtain the main theorem.

3. An Algorithm for Computing Oppositely Labeled Adjacent Vertices

The algorithm of this section is a modification of that of Reiser

(3]. Let '1‘i denote the collection of i-dimensional simplices of T.
We shall define a simplex o€ T to be oppositely labeled if there are
two vertices x, y of o such that 2(x) =1 and 2(y) = - i. The

algorithm will terminate with an oppositely labeled simplex. Let

RC{1, ..., n~1,-1, ..., —n+ 1} such that i1 € R implies

- 1 ¢ R. Define

AR) = {xe€s" : x, >0 for 0<1eR,
x < 0 for 0<-1e€R,

‘ ‘ x; = 0 otherwise } .

The following algorithm, analogous to that of Reiser, will

produce an oppositely labeled simplex. d 1{is the dimension of the
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;; simplex under question. q is the index of the newly added vertex. ;
A - :
#i R is the index set of the orthant of R" 1 under consideration, :
i i lt
' and X 1is the set of vertices of the simplex under question. ,
i

tl Step 0: R+« @ , v' « e, X« (v}, d« 0, q<«1.

3 ; Step 1: Let 2 = £(vl). If there 1s a vertex Ve X with &(v) = - 2,
stop. If there is a vertex vk €X, k ¥ q with l(vk) = 4, g0 to

Step 2, otherwise go to Step 3.

Step 2: vk is replaced by the unique vertex ;k in A(R) for which
we have a d-dimensional simplex of T in A(R), if such a ;k exists.
In this case set V5 « ;k, set q+« k and go to Step 1. Otherwise, go

to Step 4.

Step 3: R+« RU{R}, d «d + 1. Define vd+2 to be the unique vertex

da+1 d+2}

v € A(R) such that (vl, ceey V , V€ Td. X « X U{v s Q¢ d+ 2.

Go to Step 1.

Step 4: X « X \{vk}. There now i8 a unique index 1 € R such that

v, =0 for all veX. Set R=R \{1}. d+« d - 1. q + that index

E .
' s.t. vlex and z(vq) = {, Set k + q and go to Step 2.




Note that upon returning to Step 1, we have X = {vl. cees vd+1},

each v1 € A(R), and R has d elements. The algorithm cannot cycle,

and must terminate with either an oppositely-labeled subsimplex o, or
the simplex {-e"}. The fact that &(x) = - £(-x) quarantees that

{-e®} cannot be the terminal simplex.

Figure 1. Sample path of algorithm
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