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MULTIDIMENSIONAL INFINITELY DIVISIBLE VARIABLES
AND PROCESSES. PART I: STABLE CASE

By

Raoul LePage

1. Introduction.

Series decompositions, involving the arrival times of a Poisson
process, have been given by Ferguson and Klass [1] for the non-Gaussian
component of an arbitrary (real-valued) independent increments random
function on the unit interval. LePage and Woodroofe and Zinn [4] have
rediscovered a variant of this decomposition in connection with their
study, via order statistics, of the limit distribution for self-normalized
sums (e.g. Students'-t), when sampling from a distribution in the domain
of attraction of an arbitrary stable law of index o < 2.

The present paper obtains a characterization of stable laws on

spaces of dimension greater than one. This characterization is formally
like that of Ferguson-Klass for dimension one, but with 1.1.d. vector
multipliers on the Poisson terms. The law of these coefficients may be
chosen proportional to the Lévy measure, although this is not necessary.
These results take a particularly elegant form in the case of symmetric
stable laws, where something of a calculus is developed showing:

(1) which Lévy measure associates with vector coefficients other than
the aforementioned ones, (i1) what happens when independent stables are

linearly combined as in a weighted sum, (iii) how to construct an arbi-

trary multidimensional independent-increments symmetric stable set




function, and (iv) how to construct an arbitrary harmonizable stationary

symmetric stable random function having multidimensional domain and/or

range. Symmetric stable laws are shown to be mixtures of Gaussian laws.
Partly because of the self-contained character of Kuelbs' paper

[31, in which the characterization of the log-characteristic function

of a stable law is extended to real separable Hilbert space, the

Hilbert space level of generality has been chosen for this paper.

Later extensions of Kuelbs' result to Banach and more general spaces

support a corresponding generalization of these results. In addition

to Kuelbs' result we need a method employed by Ferguson and Klags to

transform certain dependent series into eventually identical indepen-

dent ones. We also require standard results giving conditions under

which an independent series in Hilbert space converges almost surely

(e.g. [2], Theorem 5.3). The rest of the paper is basically self-

contained and affords a surprisingly accessible and clear view of a < 2

stable laws, and random functions, based on elementary series constructions.
Part II of this paper will generalize these results to the infinitely

divisible case.




2.

this

(2.1)

Notation.

The following symbols and conventions will be in force throughout

paper.

"is asymptotic with"

4 "equals by definition”

D "has the same distribution as"

» "converges in distribution to"

o 0 < a < 2, an index of stability

fFj,j > 1} arrival times of a Poisson process

with unit rate

H a real separable Hilbert space

The material of the next section is drawn from [4].

. 4




3. Motivation.

Limit theorems are not the subject of this paper. However, we
should not proceed without benefit of the following example, which
exposes some connections between o < 2 stable r.v. and the Poisson
process.

Let {ej,j > 1} be independent of the sequence I and i.i.d.
with P(e, = 1) = B(e, =-1) = 3, and define G(x) & x™, wx > 1.

Think of G(x) = P(IXI.3 X) ¥x > 1, where X 1is a r.v. symmetrically
distributed about zero. We will construct particular r.v. xl,...,xn,
1.i.d. as X, whose normalized sums converge in distribution to the
symmetric stable law of index a. To do this, use the arrival times of a
Poisson process to generate uniform order statistics, apply G—1 to these,

multiply by the signs €, and permute. As constructed, the normalized
1/a

-]

sums will actually converge almost surely to Zl eij- (see (3.1)
below), a series possessing the symmetric stable law of index a.

0 -1/a
In fact, a direct proof of the stability of I, €.T follows
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easily from the observation that the arrival times of several (say
K > 1) independent unit rate Poisson processes (run simultaneously)
constitute K-1 times the arrival times of a unit rate Poisson process.
This argument works just as well for € replaced by any vector sequence
(provided the series converges) and suggests the multivariate extensions
of sections 4 and 5.

For each n > 1 let U(

1 5~U(2) < oo g_U(n) denote the

order statistics of i.i.d. random variables Ul,...,Un which are




uniformly distributed on [0,1]. Then for each fixed n > 1, letting

x, 8 e, ¢ (U, ¥ 2 1,
(3.1) n e Z; €%, 2 Ve Z? eJG_l(U(j))
—— Z: ejvz;;a
RN N W dd
- z; ejrj-lla(r“+1/n)1/a
L Ia.s.;' 18.3.(;LLN)
i ejrgva 1

It is convenient to refer to ejrj, j > 1 as the residual order statistics,
keeping in mind that the ordering is on decreasing absolute values.

The same example suggests an invariance principle (proved in [4])
for self-normgd sums such as 2: Xj jgi;z which, regardless of o ,
converge in distribution to a limit law depending only on the stable

attracting X For the r.v. constructed above, ¥n > 1,

10

1. Use I', vjJ and 2: j-Z/a < » a,s., and apply the 3-series theorem

3

conditional on the sequence T.




e i A

That is, the limit law of the t-statisticz' is that of the t-statistic

calculated on the residual order statistics (see also [6]).

Even the construction of stable independent-increments processes
can be motivated by means of the same example. We restrict our atten-
tion to the homogeneous increments case. Let [Tj?j > 1] ) [Uj,j > 1],
and suppose the sequences T, €, I' are mutually independent. The

partial sum processes Zint] Xj, 0<t<1l, ¥n>1 can be effected by

independent selections of X,,...,X into subsets of sizes [nt] using
1 n

multiplication by indicators:

(3.3) Iin)(t) 4 1(r, <

(n) A
1M () = 1ty < TETC]

Then for each n > 1,

|
i
(3.4) M gk, eeto,) R0 1P ) ey 1y Vo, /e, eelo,1n) f

b

¥ a.s. in D[0,1]

r-l/a

(z; 1(x < e,y "7, eelo,11} . N

3

Details of this argument are unpublished.

2. The square of this t-statistic is simply related to the square of

Students'-t, and both have the same limit law.

6




4. Stable Laws on H.

Suppose {X,,j > 1} are i.i.d. random vectors in a real separable

3

Hilbert space H and that the sequences X, I' are independent. For

each n > 1 denote by K the number of arrival times T in the

A on o -1

interval [O,an], a le . This choice of a is from [1]. 1Its

n
advantages will be apparent in what follows.

Remark. Sums of the kind Eln are for each n > 1 defined to zero on
the event Kn=0. Use ( , ), ||ll, to denote H inner product and norm.

For each n > 1, xeH, ¢ > 0, (see also [1], pg. 1639),

Xn, -1/ X 1
106,eZ "X IV R gen Mo, X )T /o
(4.1) Ee 33 = EE "e 373
-1/a
a ic(x,X,)t K
= E(a-lf D re 1 dt) n
nJo
a ic(x,Xl)t-I/a
E fo e -1)dt
= g
® i(x,X)r
Q 1 dr
Ec a ]ca-lla (e -1) Tia
= e n r °

Kuelbs ([3], lemma 2.2) has proved that the log-characteristic
function of a (non-Gaussian) stable probability measure on H 1is

necessarily of the following form, for a unique BeH and finite

Borel measure 0 on S & {erl]IxII = 1},




; (4.2)  1(x,B) + ]sfo (ei("’s”-l-i;:;)”) rfja o(ds) , ¥xcH .

It is convenient to refer to:
(4.3) expression (4.2) with B8=0.

Define & éo‘(S), u 4 ¢/8, and

[e+]
A sr dr
B '—'f[_ _ o(ds), vn > 1 .
n s Ja 1/0 5 1l/a a-l/a l+r2 r1+a i
n E
Lemma 4.4 If (4.3) is the characteristic function of a stable law on §'

H and if the sequence {Xj »J > 1} 1is i.i.d. u and independent of the

sequence [ , define

K
n y p~l/a

(n) A -1l/o.1l/a
X = Q () 1 5T

z -8, ¥n >1.
a kd

Then ¥xeH, E exp i(x,xn) converges to (4.3).

Remark. This result is not altogether satisfactory since convergence of
the series s N > 8 through stochastic times , 0> ,
h tes {x™, n> 1)} is through hastic times {K , n > 1}
and is not yet a.s. in H. These defects are remedied in Theorem 4.8

below.

Proof. For each x€H, n > 1, by (4.1),




(n) i( ’ )
(4.5) loge Eei(x’x ) X xl r

-1(x,8 ) +ES fa_l Jagilo 1/a® -1y S5

n

® i(x,s)r i(x,s)r, dr
= - (e ’ -1- ) K C(dS)
Lfa-llaallaanlla VIR T

+

(4.3) O

From ([1], lemma 2), we conclude that

K
[, n+1 X, T-l/a

o ds ﬂ>l
lKn b

are independent. Furthermore, using an argument drawn from [4], ¥n > 1,

n+1 -lla —Z/a 2 2
(4.6) El ZK ” ER K v < 7o
n(loge n)
which is summable in n. Therefore,
K K
~1l/a n -1/0
.t x P eEn x0T AL
1 % 1 %Iy AD

converges in probability in H. A short calculation gives




K oo
A -l/al/o o n ,.-1/a f r dr
4.7) A (0,8) = Eaq § L (T. Al) - 6§ —_—
. n 1 j a—l/asllaaglla 142 1O
3./
- -1/a
-1/a llaf 2 -1/a t
= Q 8 ((t Al) - ) dt
0 1+a'2/a62/a t-2/a

+ finite limit & A(a,8) as n > o,

(n)

Therefore X converges in probability.

Theorem 4.8. If (4.3) is the log characteristic function of a stable

law on H then the series

k! t-l/a
“2/ag2la 275 de}

a‘l/%l/o‘z;‘ .o (ex ) [
i3 '

1 /j-1 l4a
converges a.s. in H to a random vector with log characteristic

function (4.3).

Remark. Centering 1s not needed for the case a < 1, nor is it
needed for the symmetric case which will appear in [4].

(n) (n)

Proof. Since X is an inde-

(n)

converges in probability and X
pendent series, we conclude by ([2], Theorem 5.3(6)) that X
converges a.s. in H. Recall that with probability one :3 finite
M such that (n > M)=¢'(:3 smallest N(n) with n = KN(n))' Then

¥n >m,

3. The first term equals the first term above. For the second term

use t = o ter®

10




2N(n)
.9y  xN@) a‘l’%l’“{z'{ xjrgl/“ ~(EX)) f & Yon1)ae} +
0

(EX,)A_(a,8) +oQ) .

Since for n 2> M, (n =Ky )=>(ayey 3 < T <agy),

1 «S.

f3Nm) )
i 1 <@t 4 0.

% A1yae

(4.10)

T
n

By the law of the iterated logarithm, a.s. eventually as n + «

r rT
(4.11) ,{ n (c‘l’“/\l)dtl =1 eV g ¢ P | ATy MO
“n # n n n
< 2y/nloglogn (n + o(n))—lla +0.
Therefore,
s N

.12y W@ | otegtlagen g e gy y 10 @M% n1yaed -

179 A

A(a,a)(Exl) +0(1) ,

which converges a.s. in H to a random vector with log characteristic

function (4.3).

Remark. The centerings used above also have an interpretation involving

-1/a
]

(Exl) E(T A1), which will not be given here.




5. Symmetric Case, Multiple Representations.

In this section we do not assume that Xl is distributed according

to the measure U , or even restrict its distribution to S. Suppose
X, €, ' are mutually independent sequences, with € , T as in section
3, and {xj, 3 >1} 4i.i.d. in H with E[lxln"‘ < o,

/o

Remark. Series of form I e.X I

1 &5%4Ty will be termed symmetric.

n -1/c
e X T
1 7333
H and the log characteristic function of its limit is El(x,Xl)laB(a),

dr
1+
r

Lemma 5.1. The symmetric series converges a.s. in

0
¥xe H, where B(a) '—4/0 a(cos(r)-1)

Proof. The arguments needed are similar to those of theorem 4.8, but

easier in the symmetric case. For each x € H,

K
. -1/
i(x,I Be X.T ) o ie | (x,X,) |r
(5.2) 1log Ee 1 13 (4.1 anr-llcx O
an r
/m ie)r 1l/a o dr
= aE I (e * -LI((x,X))] < ra )I(x,xl)] ;TIE
!
= |
- aE[ (cos(r)-1TC| (e, X | < rat/®)x,x)|* SE |
0 r i
i

dr
rl+a

+ a /' (cos(r)-1) El(x,xl)lOl .
0

From ([3], corollary 2.1), the limit in (5.2) is the characteristic




function of a (symmetric) stable law on H. Since the sums

K
n+1€ XT 1/o

ZK %37y are independent and symmetric, we have from ([2],
n
K
theorem 5.3(1)) that Zln ejxjrsllu converges a.s. in H. Since
11 K < K+ n+o we conclude IT €,X P-lla
eventually a.s. K ., < K as ’ 1 €%y

converges a.s. in H.

Several series may represent the same stable law.
Theorem 5.2. 1If EHX1|F1< © then for every x € H,

El(x,x1)|a = dIXIIPEI(x,xI)[a where XI is distributed on §

according to the measure:

[¢]
N X I, 1
P(X, € A) = EI( € Ay ———— .
1 E T

Proof. For every x € H,

"

1 = B e, ko (@ [k
E‘ (x,Xl X, m 1

%*
- gx ) BlaD® . g

As an example of the above, every symmetric stable law on H has

a construction Z: Z, X P-I/a

37373

sequence 2 of 1.1i.d. standard normal r.v.. Conditional on the sequences

/E(Izlla)lla in terms of an independent

I' and X the symmetric stable is Gaussian. That is, symmetric stable
laws are particular mixtures of Gaussian laws with zero means and differing
covariance kernels. The latter will not in general differ only by scale,

though this is necessarily true for H = Rl'

13
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6. Symmetric Stable Random Set Functions.

Let {Tj, j > 1} be i.i.d. taking values in a measurable space
with measurable sets generically denoted A. Suppose T, €, X, T
are mutually independent, where the latter three sequences are as in

section 5. Define

eA)X. € F’lla VA .

A >
(6.1) X(A) = I) Ity eM)Xe, T,

Theorem 6.2. The series (6.1) is a.s. convergent for each 4, is

jointly symmetric stable for finitely many A at a time, and
X(Al) se ey X(Ah) are for each n > 1 mutually independent if

Ah are mutually disjoint.

Proof. For each n > 1, x€eH, real numbers TiseeesT s and measur-

able gets Al,...,An,

i(x,Z? rkx(Ak)) 11, {0 r It sAk)}(x X.,)e, T, 1/a

(6.3) loge Ee - loge Ee j =1 kﬁl "k 33

(5.1)
= B(Q)E|(x, xl)l"‘nlzk_1 r I(t, eAk)Ia

If Al""’Ah are mutually disjoint then

n [+ ] n a
(6.4) ElZ,., rkI(TleA.k)l =T |rk| P(T,eA) . @

14




Remark. The simplicity of this construction is interesting, as is the
way in which o~dependence, dimensional structure, and functional
dependence are identified with mutually independent coefficient

sequences F-llu

, X, I.

Remark. Schilder [8] and Kuelbs [3] have explored a representation of
multidimensional symmetric stable r,v. by means of a stochastic integral
with respect to a one-dimensional stable independent increments process.
Theorem (4.8) and lemma (5.1) sharpen and extend such representations

by connecting them with the Ferguson-Klass representation, making
explicit the choice of coefficients required to obtain each stable

1auﬁ', and establishing H convergence of the indicated series.

o -1/a
Remark. Suppose K > 1 and Yk 21 gkjrkj

independently constructed (as per (5.1)) symmetric stable r.v. taking

» 1 <k <K, are

values in H. Then for an arbitrary choice of real numbers rl....,rK

o ~-1/a
the sum Z‘l( rkYk is representable Zl Ej I‘j where {Ej, i >1}
are 1.1.d, and El 2 an equiprobable random selection from Kllutlill,
...,Kllarninl. This uses the property (discussed in section 3) of K

Polsson processes run simultaneously.

Including the non-symmetric stable laws,




7. Harmonizable Stationary Symmetric Stable Random Functions.

Basically, we seek to construct the stable analogues of Gaussian
stationary random functions having a harmonic decomposition. The
characteristic function of such a Gaussian random function involves

2
n j'(/\1’t’k)o

zlzk_l r, e .

where t 1is generic for a point of the domain, and (/\1, )o is

a random linear function on the domain. The stable analogues of

these Gaussian random functions have characteristic functions that
th

employ an a -power in this integral instead of the 2, but are

otherwise the same. Define ¥t,

a0

(7.1) x(e) 2 ™ cos((A ) + 0K ¢ pl/e

1 3 1737173
where A are i{.i.d., O are i.i.d. uniforms on [-I,N], {e,X,T}
are as in section 6, and A, 0O, €, X, ' are mutually independent
sequences. The series (7.1) is a.s. convergent in H for each t
by lemma 5.1, The random function X( ) 1is clearly stationary
because O are uniform on [-[I,], but this will also be a simple
consequence of the form of the characteristic function which we now
compute.

1(x,2yy TX(E))
(7.2) loge Ee

[ n -1/0.
i 23-1{%:-1 r, cos((/\j,tk)o +Gj)}ej(x,x )37

= log, Ee b M

G p@re 1) Blzp, 7y costly,e,) +01%

16
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The final term in the right side of (7.2) reduces as follows, with

(7.3) EIZ? T, c:os((/\l,tk)o +G)1)|°‘ = zz‘“lze + ze

« E|z|%2 %% [1+2" 2 1|

= E|z|* 2% (a)

where

m rm - o
C(a) = f |1+em[adn-j [1+e¥-210 %y
J =T =T

for all real V. We have therefore proved,

Theorem 7.4. The random function defined by (7.1) converges a.s. in

H for each t, and has log characteristic function

n 1(A1!tk)° o

-a
2 l!(cat)c(oz)lzlz:k_1 r.e

for all n > 1, rl,...,rn, tl""’tn s

Corollary 7.5. The random function (7.1) is non-ergodic for each a < 2.

Proof. By using (7.2) the construction (7.1) remains valid if t»:'1 are
replaced by ZJ/(E|21|°')1/°', J 21, where Z 1s an independent {.1.d.

standard normal sequence. Conditional on the sequences A, X, [, the

17




! process (7.1) is a.s. statlonary Gaussian with discrete spectrum,

‘ therefore conditionally non-ergodic a.s..




8. Operator Stable and Infinitely Divisible Multidimensional Laws.

Infinitely divisible laws, of which the operator stable laws are a
special case with particularly interesting structure, are treated in
Part II. 1In brief, this is what happens: A construction of infinitely

j,X.j)—Yj}, in which the real

function H is monotone decreasing and positive for each value X,, and is deter-

3

mined from the Lévy measure. A construction of full operator stable random

divisible random vectors is given by Z{XJH(F

-1
3%

which the vectors Y are non-stochastic centerings, {A(t) = exp(Blog t),t > O}

vectors in a finite dimensional real vector space Rd is Z{A(T }, in

is the group of linear transformations figuring in the definition of operator
stability (e.g. Sharpe [9]), and the vectors X are i.i.d. from a probability
measure (a factor of the Lévy measure) on a set of generators of the subgroups
induced by A. The methods of sections 4 and 5 carry over, as will now be in-
dicated. If X is any i.i.d. sequence in Rd, and X is independent of [, then

VxGRd, n>1,

K

n -1 o«
(8.1) log  E (I AT DX | ,[-1 (el (AR ) d_; .
t

a
n

As usual, the symmetric case is simplest. If we examine Sharpe's Theorem 5,
we discover that the limit of (8.1) is precisely the form taken by the oper-
ator stable in this case, provided we choose for the distribution of Xl the
probability measure figuring in Sharpe's representation of the Lévy measure
as a mixture, this measure being placed on (Sharpe's notation) generators

0 characterized by s Me{tBB :t>g } = s-l. ¥ 8 > 0. Arguing as in section

h| h|
tic function which is the limit of (8.1).

5, we conclude ZT ArThHx converges a.s. in R? and has the log-characteris-

19




9, Priority of P. Lévy.

P. Lévy has anticipated the series constructions of one dimensional

stable r.v. with o < 2. For the case of a positive stable with o < 1,

o
up to scale and location, this construction is z r with
j=1

{Pj, j > 1} being the arrival times of a Poisson process (on rH having

~-1/a
j s

unit intensity function. Lévy writes the series in the form z Ux’ where
X

(9.1) {Ux, x > 0} are independent r.v. and

adx
1+0
X

(9.2) P(Ux =x) = =1-P(U _=0) .

Here is my abstract of the key parts of Lévy's (1935) arguments for the

above case:

o0
(9.3) [I ag:a = xaa < »] & [{Ux: U, #0, x> xo} is finite for X, > o] ,
X, X
0
and also,
¥ adx o _(1-0) :
(9.4) [ JO = " I= %o +0l» [E ) U ¥ Ol(as x5+ 0) . :
X x< X

0

> 0 (defining 2=+ % and taking

Therefore, for arbitrary ¢ys € 3 1 2

2

independent copies),




Dist.

1 2 1 2
(9.5) ) ) Ui ) 4 c, ¥ Ui ) . ) Yi ) 4 ZYi )
X x x
Di?t. X Y(x)
. ¥
Dist.
= c, z Ux (» stable),

where (Yik), x > 0} have respective intensities ci a dx/x1+a, k=1,2,3,

and are independent for k = 1,2,

The above arguments do yield a proof of the representation if we
apply them to the independent sub-sums .Z{Ux: X€ [bn+1‘ bn]}, n>1,
where b;a = log n. This is essentially the argument of Ferguson-Klass
(1972). The particular choice of bn’ n > 1 4is one which ensures that
eventually as n * ® each sub-sum contains at most one summand, so it
really is (almost) as though one could add indep?ndent U  one at a time
toward x + 0, A quite different justification is to interpret X Ux
as a generalized process driven by "white noise" {Ux, x > 0}. )

Lévy's observations are easily overlooked. Ferguson-Klass, Vervaat
(1979), LePage-Woodroofe-Zinn (1979) (in manuscript form), rediscover
the Lévy construction as byproducts of the following independent pursuits
respectively: (FP-K) - representing the positive non-Gaussian part of an
independent increments random function as the sum of its ordered jumps.
(V)-examining a shot-noise associated with the asymptotic behavior of the
solution of a stochastic difference equation as time is increased,

(L-W-2)-studying the limit behavior of the normalized order statistics

21
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from a distribution attracted to a stable. Resnick (1976) reconciles the
Ferguson-Klass construction with the Ito representation, meaning by the
latter Ito's generalization of Lévy's stochastic integral construction

by a Poisson random measure.
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