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MULTIDIMENSIONAL INFINITELY DIVISIBLE VARIABLES

AND PROCESSES. PART I: STABLE CASE

By

Raoul LePage

1. Introduction.

Series decompositions, involving the arrival times of a Poisson

process, have been given by Ferguson and Klass (1] for the non-Gaussian

component of an arbitrary (real-valued) independent increments random

function on the unit interval. LePage and Woodroofe and Zinn [4] have

rediscovered a variant of this decomposition in connection with their

study, via order statistics, of the limit distribution for self-normalized

sums (e.g. Students'-t), when sampling from a distribution in the domain

of attraction of an arbitrary stable law of index a < 2.

The present paper obtains a characterization of stable laws on

spaces of dimension greater than one. This characterization is formally

like that of Ferguson-Klass for dimension one, but with i.i.d. vector

multipliers on the Poisson terms. The law of these coefficients may be

chosen proportional to the L~vy measure, although this is not necessary.

These results take a particularly elegant form in the case of syumetric

stable laws, where something of a calculus is developed showing:

(i) which Levy measure associates with vector coefficients other than

the aforementioned ones, (ii) what happens when independent stables are

linearly combined as in a weighted sum, (iii) how to construct an arbi-

trary multidimensional independent-increments symetric stable set

IL



function, and (iv) how to construct an arbitrary harmonizable stationary

symmetric stable random function having multidimensional domain and/or

range. Symmetric stable laws are shown to be mixtures of Gaussian laws.

Partly because of the self-contained character of Kuelbs' paper

[31, in which the characterization of the log-characteristic function

of a stable law is extended to real separable Hilbert space, the

Hilbert space level of generality has been chosen for this paper.

Later extensions of Kuelbs' result to Banach and more general spaces

support a corresponding generalization of these results. In addition

to Kuelbs' result we need a method employed by Ferguson and Klass to

transform certain dependent series into eventually identical indepen-

dent ones. We also require standard results giving conditions under

which an independent series in Hilbert space converges almost surely

(e.g. [2], Theorem 5.3). The rest of the paper is basically self-

contained and affords a surprisingly accessible and clear view of a < 2

stable laws, and random functions, based on elementary series constructions.

Part II of this paper will generalize these results to the infinitely

divisible case.
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2. Notation.

The following symbols and conventions will be in force throughout

this paper.

(2.1) "A "is asymptotic with"

A
- "equals by definition"

D "has the same distribution as"

* "converges in distribution to"

0 < a < 2, an index of stability

{r j > 1) arrival times of a Poisson process
with unit rate

H a real separable Hilbert space

The material of the next section is drawn from [4].
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3. Motivation.

Limit theorems are not the subject of this paper. However, we

should not proceed without benefit of the following example, which

exposes some connections between a < 2 stable r.v. and the Poisson

process.

Let {j, j > 1} be independent of the sequence r and i.i.d.

with P(e1 = 1)- P(e1 =-1) - , and define G(x) =x , Vx> i.

Think of G(x) = P(jXj > x) Yx > 1, where X is a r.v. symmetrically

distributed about zero. We will construct particular r.v. XI , ...,Xn

i.i.d. as X, whose normalized sums converge in distribution to the

symmetric stable law of index a. To do this, use the arrival times of a

Poisson process to generate uniform order statistics, apply G to these,

multiply by the signs C, and permute. As constructed, the normalized

sums will actually converge almost surely to EC r - 1/a (see (3.1)

below), a series possessing the symmetric stable law of index a.

In fact, a direct proof of the stability of E 1/a follows

easily from the observation that the arrival times of several (say

K > 1) independent unit rate Poisson processes (run simultaneously)

constitute K-1 times the arrival times of a unit rate Poisson process.

This argument works just as well for £ replaced by any vector sequence

(provided the series converges) and suggests the multivariate extensions

of sections 4 and 5.

For each n > 1 let U <U <...<U denote the(1) -U (2)- U (n)

order statistics of i.i.d. random variables UI,...,U which are
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uniformly distributed on [0,1]. Then for each fixed n > 1, letting

x A C i-.1u ), vi > 1,

(3.1) n-1/Oa En CjXj D n -1/a En CG-1I(uj)
1e J >11,0

n-i/t n ,.-1/M

1 0J(j)

D n-1/a n: -(jIa 1 /l a

E:1 C rj (,+j/n) 1/a

18.8.1' 4a.s.(SLLN)

1 jr1

It is convenient to refer to j > 1 as the residual order statistics,

keeping in mind that the ordering is on decreasing absolute values.

The same example suggests an invariance principle (proved in [4])

for self-nomd ums such as EX X which, regardless of z
1 in

converge in distribution to a limit law depending only on the stable

attracting X1. For the r.v. constructed above, Vn > 1,

Use r .j and 1 j-2/a < o a.s., and apply the 3-series theorem

conditional on the sequence r.
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(.n -1/) r1x Dr 1/a

(3.2) D r leJ a s.
-j -3

That is, the limit law of the t-statistic 2 . is that of the t-statistic

calculated on the residual order statistics (see also [6]).

Even the construction of stable independent-increments processes

can be motivated by means of the same example. We restrict our atten-

tion to the homogeneous increments case. Let [T ij > 1] _= [U ,j > 1],

and suppose the sequences T, e, r are mutually independent. The

parialsumproesss E[nt] Xj 0 < t < 1, Vn > 1 can be effected b
partial1 su r c s e i t ' - -- -- b

independent selections of X1,...,'Xn  into subsets of sizes [nt] using

multiplication by indicators:

(3.3) 1(n) (t) _AI(T I <i in )

1 2 n

[nt]-_E i  I (n ) ( t )

I_(n) (t ) =AI(Tj< i < j i < j <n

Then for each n > 1,

(3.4) {n-I/a E [ntlX te[O'l]] R {En I(n) (t) Cjrj:V'(rn /n)'/O', tc[O,1l}Sli J nlj

a.s. in D[0,11

{E*I I(Tj 0 tC ir-1/a , tC[O,l}

Details of this argument are unpublished.

22.

The square of this t-statistic is simply related to the square of
Students'-t, and both have the same limit law.
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4. Stable Laws on H.

Suppose {X ,j > 1D are i.i.d. random vectors in a real separable

Hilbert space H and that the sequences X, r are independent. For

each n > 1 denote by K the number of arrival times r in the-- nA n -sfol[] t
interval [0,a 1, a E1 j-1. This choice of a is from [1]. Its

n n 1 n

advantages will be apparent in what follows.

K
Remark. Sums of the kind E1n are for each n >1 defined to zero on

the event K -0. Use ( , ), 11 If, to denote H inner product and norm.n

For each n > 1, xEH, c > 0, (see also [1], pg. 1639),

K K

i(x,cE nx rl c1/ K icn (xx )pl/a
(4.1) Ee I wEE n e 1 1J

1 fa ic(xX 1 )t K= E(anl an Ee dt)

nn

f an ic(x,X1 )t - 1ct

E Jo (e -l)dt
= e

Ec a -1/at (e -1,i~_) 14c
can r

-e

Kuelbs ([3], lemma 2.2) has proved that the log-characteristic

function of a (non-Gaussian) stable probability measure on H is

necessarily of the following form, for a unique O €H and finite

orel measure a on S A {xellx1il- 11,
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(4.2) i(x,a) + f (f i(xs)r -1- i(x~s)r) dra d) x6H(e fr i (ds) , VxH .

It is convenient to refer to:

(4.3) expression (4.2) with B=O.

Define 6 - a(S), 4 - a16, and

s -yj a (ds), VnI
n fS f-I/a S-i1/a a-i/a l+r 2  r a

n

Lemma 4.4 If (4.3) is the characteristic function of a stable law on

H and if the sequence {X , j > 1} is i.i.d. P and independent of the

sequence r , define

(n) 0-ct"% 1/cZ K n Vn1/ax 11 i rl 3 n > 1

Then YxeH, E exp i(x,Xn) converges to (4.3).

Remark. This result is not altogether satisfactory since convergence of

the series {x(n), n > 1) is through stochastic times {K , n > i

and is not yet a.s. in H. These defects are remedied in Theorem 4.8

below.

Proof. For each xc H, n > 1, by (4.1),
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iI~ (n 00 i(x,Xl)r_, dr

(4.5) loge Ee= -i(x, ) n+ ES J 1/axal/a(e -1)
n

- ((x,s)rl_ i(x~s)r, dr a(ds)

Js J-l/al/a-/Le~x ~ 2 rlIctsl+r 2  "rl
n

- (4.3)

From ([I], lemma 2), we conclude that

K '~ -1/ J
are independent. Furthermore, using an argument drawn from [4], Yn > 1,

(4.6) EI:K n_,_ x4 r-l/t 2 < a-2 /a E(K -K) 2  It < 2 2c
K n 4 j - n n4l n n(loge n) 2/a

which is summable in n. Therefore,

K n K (r-I/a1? x1 / -E 1n Xj i )

converges in probability in H. A short calculation gives

9



(4.7) AA(,6) E -1/c/i K 1/-1 /a1/ ) f:-/ i/ /a-i/ r 2  r
S1r r

n

3./ -/% l 1 at 1 o
_--/tl/ftan (Ct-l/cAl) - +_2/ 6 2/(x t_2/a) dt

finite limit= A(a,6) as n + o

Therefore X(n )  converges in probability.

Theorem 4.8. If (4.3) is the log characteristic function of a stable

law on H then the series

L-l/a 6l1/a En fx 1 -1/ct (EX : ____________1 3 1 -j-i i+a-2/ 6 2/a t - 2 1/o dr

converges a.s. in H to a random vector with log characteristic

function (4.3).

Remark. Centering is not needed for the case a < 1, nor is it

needed for the symmetric case which will appear in [4].

Proof. Since X(n )  converges in probability and X(n )  is an inde-

pendent series, we conclude by ([2], Theorem 5.3(6)) that X(n )

converges a.s. in H. Recall that with probability one 3 finite

M such that (n > M)= (3 smallest N(n) with n %(n)). Then

Vn >m,

The first term equals the first term above. For the second term

use t - -r
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(4.9) X ( N ( n ) ) = a-l/a 1/a{n xjr- / a -(EX 1 ) (t- /aAl)dt} +

(EX )A n(c,S) + o(1)

Since for n> M, (n = KN(n))=> (aN(n)-l < n < aN(n))

a~s
r N (n) i/ t-1a. s.

(4.10) j(tA)dtI < (N(n))- 0

n

By the law of the iterated logarithm, a.s. eventually as n

r n  t-'Adla =r n 1/ai/a

(4.11) 1' rn t -  dt < Irn-nI(n A l/
n I . nnn

< 2 /nloglogn (n + o(n)) 0

Therefore,

(4.12) x(N(n)) c l/Otf{ xjr 1 /a - ( (t 1 'ctAl)dt} -30
A(,)X(EX ) +o(1)

which converges a.s. in H to a random vector with log characteristic

function (4.3). L

Remark. The centerings used above also have an interpretation involving

(EXl) E(l/a Al), which will not be given here.
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5. Symmetric Case, Multiple Representations.

In this section we do not assume that X1  is distributed according

to the measure V , or even restrict its distribution to S. Suppose

X, e, r are mutually independent sequences, with e , r as in section

3, and {Xj, j > i} i.i.d. in H with E [11 <

Remark. Series of form E X r will be termed symmetric.

Lemma 5.1. The symmetric series E n E X V/a converges a.s. in

H and the log characteristic function of its limit is EI(x,X I )IB(a),

xE H, where B(a) a f (cos(r)-l) dr
r

Proof. The arguments needed are similar to those of theorem 4.8, but

easier in the symmetric case. For each x E H,

i(xr in C xj r~/)41 rco icl I (X'X)Ir d

(5.2) log e Ee X J a E ja-1/a (e -1)rl~c

n

- aE C(e _l)I(I(X,X)I < raI )(X,X ),a dr

10 n rl+a

- aE 0(cos(r)-l)I(Ia)X 1 )j -r
fo r

4+ a (cos(r)-l) rl E(x,Xl )I

From ([3], corollary 2.1), the limit in (5.2) is the characteristic
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function of a (symmetric) stable law on H. Since the sums

n +l _ -1/a
K C X r are independent and symmetric, we have from (2],
n K

theorem 5.3(1)) that x r converges a.s. in H. Since

eventually a.s. Kn+l < Kn+l as n -o , we conclude X LX

converges a.s. in H. 1

Several series may represent the same stable law.

Theorem 5.2. If EIXII< c then for every x c H,

EI(x,Xz> - [IXIrEI(x,)Ia where X is distributed on S

according to the measure:

,* _____

P(X c A) - EcA) EIX 1II

Proof. For every x C H,

EI(x,X1)I - E I (x, ffjx) I~ 1 III

- EjIIxa EI(x,X*)I . [3

As an example of the above, every symmetric stable law on H has

a construction ZG z1 x1 r;l/a/E(Iz f()l/a in terms of an independent

sequence Z of i.i.d. standard normal r.v.. Conditional on the sequences

r and X the symmetric stable is Gaussian. That is, symmetric stable

laws are particular mixtures of Gaussian laws with zero means and differing

covariance kernels. The latter will not in general differ only by scale,

though this is necessarily true for H - R1.
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6. Symmetric Stable Random Set Functions.

Let {Tj, j > 1} be i.i.d. taking values in a measurable space

with measurable sets generically denoted A. Suppose T, C, X, r

are mutually independent, where the latter three sequences are as in

section 5. Define

(6.1) X(A) - T0 1(-r PA)X c r VA
1 ~ 1 ~~ 1AX F J VA

Theorem 6.2. The series (6.1) is a.s. convergent for each A, is

jointly symmetric stable for finitely many A at a time, and

X(Al) ,..., X(A ) are for each n > 1 mutually independent if
n

Al,...,A are mutually disjoint.

Proof. For each n > 1, xCH, real numbers r,. .. ,r n , and measur-

able sets A,,...,An,

1(,Z r X(k) ilj kl Ekj{ rITEk jjj, c -/
(6.3) loge E e 1 loge E e

(5.1)

B(C)E(x,X)I'E n r

If Al,...,An are mutually disjoint then

(6.4) El n rkl(1lE Ak)1  - kin l IrkI P(TlC Ak) . o

14



Remark. The simplicity of this construction is interesting, as is the

way in which c-dependence, dimensional structure, and functional

dependence are identified with mutually independent coefficient

sequences r - / , x, i.

Remark. Schilder [8] and Kuelbs [31 have explored a representation of

multidimensional symetric stable r.v. by means of a stochastic integral

with respect to a one-dimensional stable independent increments process.

Theorem (4.8) and lemma (5.1) sharpen and extend such representations

by connecting them with the Ferguson-Klass representation, making

explicit the choice of coefficients required to obtain each stable

4.
law , and establishing H convergence of the indicated series.

Go -1/a
Remark. Suppose K > 1 and Yk - E 1jlkrkj , 1 < k < K, are

independently constructed (as per (5.1)) symmetric stable r.v. taking

values in H. Then for an arbitrary choice of real numbers rl,..., rK

the sum EI rkY is representable EI  rj I / a where {(E, J > 11

are i.i.d. and l D an equiprobable random selection from K1/arl1ll ,

... ,K r/a rnl This uses the property (discussed in section 3) of K

Poisson processes run simultaneously.

Including the non-symetric stable laws.

15

...



7. Harmonizable Stationary Symmetric Stable Random Functions.

Basically, we seek to construct the stable analogues of Gaussian

stationary random functions having a harmonic decomposition. The

characteristic function of such a Gaussian random function involves

I k. 1r k I

where t is generic for a point of the domain, and (Al.)o is

a random linear function on the domain. The stable analogues of

these Gaussian random functions have characteristic functions that
th

employ an a -power in this integral instead of the 2, but are

otherwise the same. Define Vt,

(7.1) X(t) Z cos((A ,t) + 0 )X c rj 1f
j 0 j 1j j

where A are i.i.d., 0 are i.i.d. uniforms on [-,n], {c,X,F}

are as in section 6, and A, 0, £, X, r are mutually independent

sequences. The series (7.1) is a.s. convergent in H for each t

by lama 5.1. The random function X( ) is clearly stationary

because e are uniform on [-n,1], but this will also be a simple

consequence of the form of the characteristic function which we now

compute.

n
i(xEn k 1 rkX(tk)

(7.2) loge E e k-i k

i {, ohA t)+ c x r-1/01
- log Be j-1 k-l k coso j i

16) k  ( ,tk) + 1

16



The final term in the right side of (7.2) reduces as follows, with

i(Al't )

zlrk e

(7.3) EjlE rk cos((Al,tk)o +Gt) j - E2-l-zel + ie-0l0Lc

ft EjzI2-zzJl +z-lZe -21l0

- EjzI' 2-C(t)

where

C(a) -T 1+ d . -2in dn

Jiladm -lrefd7r

for all real i. We have therefore proved,

Theorem 7.4. The random function defined by (7.1) converges a.s. in

H for each t, and has log characteristic function

2-B(a)C(a)EIE rke ittk)oI
k- k

for all n > 1, rl,...,rn, tl,...,t .0

Corollary 7.5. The random function (7.1) is non-ergodic for each a < 2.

Proof. By using (7.2) the construction (7.1) ramains valid if CE are

replaced by Zi/(EIZlVa)l/a , j > 1, where Z is an independent i.i.d.

standard normal sequence. Conditional on the sequences A, x, r, the

17



process (7.1) is a.s. stationary Gaussian with discrete spectrum,

therefore conditionally non-ergodic a.s..

18



8. Operator Stable and Infinitely Divisible Multidimensional Laws.

Infinitely divisible laws, of which the operator stable laws are a

special case with particularly interesting structure, are treated in

Part II. In brief, this is what happens: A construction of infinitely

divisible random vectors is given by E{X H(rj,X )-y }, in which the real

function H is monotone decreasing and positive for each value Xj, and is deter-

mined from the L~vy measure. A construction of full operator stable random

vectors in a finite dimensional real vector space Rd is E{A(rI )X -Y }, in

which the vectors y are non-stochastic centerings, {A(t) - exp(Blog t),t > 01

is the group of linear transformations tiguring in the definition of operator

stability (e.g. Sharpe 191), and the vectors X are i.i.d. from a probability

measure (a factor of the Levy measure) on a set of generators of the subgroups

induced by A. The methods of sections 4 and 5 carry over, as will now be in-

ddicated. If X is any i.i.d. sequence in R , and X is independent of r, then

VxCRd, n > 1,

(8.1) log e E ei(xEln A(r'1 )Xj) f E(i(x'A(t)Xl) I) d

a t
n

As usual, the symmetric case is simplest. If we examine Sharpe's Theorem 5,

we discover that the limit of (8.1) is precisely the form taken by the oper-

ator stable in this case, provided we choose for the distribution of X1 the

probability measure figuring in Sharpe's representation of the L~vy measure

as a mixture, this measure being placed on (Sharpe's notation) generators

8 characterized by a M=e > } - ,V s > 0. Arguing as in section

5, we conclude E A(r-l)x converges a.s. in Rd and has the log-characteris-

tic function which is the limit of (8.1).
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9. Priority of P. Lev

P. L'vy has anticipated the series constructions of one dimensional

stable r.v. with a < 2. For the case of a positive stable with a < 1,
00

up to scale and location, this construction is I j with
J=l +

fr, J > i being the arrival times of a Poisson process (on R ) having

unit intensity function. Levy writes the series in the form I ux , where
x

(9.1) {U x, x > 0) are independent r.v. and

ctdx

(9.2) P(U x _ x) _ l _ - P(U = 0)
x

Here is my abstract of the key parts of Levy's (1935) arguments for the

above case:

(9.3) [U X0-a < F [ : U 0, x > x0) is finite for x > 0]

and also,

(9.4) 1 r 0 adx .a-x 1 a1  O] E U O](as x0 + 0)

Jo x a 1  -a 0 x< x 0

Therefore, for arbitrary cI, c2 > 0 (defining c -ca + ca and taking

independent copies),

20



(9.5) Cl ut' + u Dt. + 7 l + (

Dist.
x

x

Dist.i c 3 1 Ux  (* stable),

x

(k) Ot 1+where (Y x , x > 01 have respective intensities ck a dx/x + , k- 1,2,3,

and are independent for k - 1,2.

The above arguments do yield a proof of the representation if we

apply them to the independent sub-sums f{Ux: xE (bn+I , bni}, n > 1,

where b-a = log n. This is essentially the argument of Ferguson-Klass
n

(1972). The particular choice of bn, n > I is one which ensures that

eventually as n - - each sub-sum contains at most one summand, so it

really is (almost) as though one could add independent U one at a time

toward x - 0. A quite different justification is to interpret ). U
xx

as a generalized process driven by "white noise" {Ux, x > o.

Levy's observations are easily overlooked. Ferguson-Klass, Vervaat

(1979), LePage-Woodroofe-Zinn (1979) (in manuscript form), rediscover

the Le.vy construction as byproducts of the following independent pursuits

respectively: (F-K)- representing the positive non-Gaussian part of an

independent increments random function as the sum of its ordered jumps.

(V)-examining a shot-noise associated with the asymptotic behavior of the

solution of a stochastic difference equation as time is increased,

(L-w-Z)-atudying the limit behavior of the normalized order statistics

21



from a distribution attracted to a stable. Resnick (1976) reconciles the

Ferguson-Klass construction with the Ito representation, meaning by the

latter Ito's generalization of Levy's stochastic integral construction

by a Poisson random measure.
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