

NDW-DTNSRDC 5602-30 (2.80) (aupersedes 3960-46)

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

.

7

1

₫,

UNCLASSIFIED	
ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
DTNSRDC/SPD-0965-01 $AD-A092$	454
DOCUMENTATION FOR THE SHIP HYDROSTATICS COMPUTE	5 TYPE OF REPORT & PERIOD COVERED
PROGRAM HYDRO	FINAL
	DTNSRDC/SPD-0965-01
AUTHOR(S)	8 CONTRACT ON GRANT NUMBER(*)
STEVEN C. FISHER	
DERFORMING ORGANIZATION NAME AND ADDRESS DAVID W. TAYLOR NAVAL SHIP R&D CENTER	10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS P. F. 62543N
SHIP PERFORMANCE DEPT.	Subprogram No. 43-421-001
BETHESDA, MD. 20004	Work Unit 1500-104-32
NAVAL MATERIAL COMMAND (NAVMAT)	//) OCTOBER 1980
Code 08D17 Washington D. C. 20360	13. NUMPER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15. DECLASSIFICATION DOWNGRADING SCHEDULE
6 DISTRIBUTION STATEMENT (of this Report)	
7 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different in	om Report)
IS SUPPLEMENTARY NOTES	
9 KEY WORDS (Continue on reverse eide il necessary and identify by block number)
HYDROSTATICS CUBIC PARAMETRIC SPLINES	
ABSTRACT (Continue on reverse elde il necessery and identify by block number) The computer program HYDRO, a hydrostatics splines for curve fitting, is presented. Progr instructions on program usage are included.	program using cubic parametric am documentation and the
D + ORM 1473 EDITION OF I NOV 68 IS OBSOLETE	

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered i

TABLE OF CONTENTS

LIST OF FIGURES	iv
LIST OF TABLES	iv
NOMENCLATURE	v
ABSTRACT	1
ADMINI STRATI VE INFORMATION	1
INTRODUCTION	1
OVERVIEW OF THE PROGRAM HYDRO	1
INPUT INFORMATION	2
OUTPUT INFORMATION	3
APPENDIX A - DETAILED DESCRIPTIONS OF THE SUBROUTINES AND COMMON BLOCKS	34

Accession For TILS COLDI P1 TO 325 u annormad Ĺ Ju differention____ -----By______ Distribution/ . - -Avail bility Codes Threat end/or Dist Special

Page

iii

LIST OF FIGURES

	Page
1 - Block Diagram of the Program HYDRO	4
2 - Hull Offset Coordinate System	5

LIST OF TABLES

	Page
1 - Required Input Information for Running HYDRO	6
2 - Sample Input for Program HYDRO	10
3 - Variable Values for Sample Input	11
4 - Sample Output for Program HYDRO with Output Tabl English and SI Units	les in 13
5 - Sample Output Tables for Program HYDRO in Englis	sh Units 30
6 - Sample Output Tables for Program HYDRO in SI Uni	its 32

NOMENCLATURE

SYMBOL	CC SYMBOL	1	DESCRIPTION
Α	A		Sectional area
A _M	AM		Midships sectional area
A _{WA}	AWA		Waterplane area of afterbody
A _{WF}	AWF		Waterplane area of forebody
AWI	AWT		Waterplane area
A _X	AX		Maximum transverse Sectional area
В	В		Beam
B	CIRCB	$\mathbb{B}_{M'} \nabla_{T}^{1/3}$	R.E. Froude's breadth coefficient
^в м	BM		Beam at amidships
^B x	BX		Beam, measured on the waterline at the maximum area section
с _в	СВ	$\nabla_{T}/(L_{WL} B_{X} T_{X})$	Block coefficient
с _м	СМ	A _M /(B _M T _M)	Midship section coefficient
с _р	СР	$V_T^{(L_{WL} A_X)}$	Longitudinal prismatic coefficient
C _{PA}	СРА	$\nabla_A / (L_A A_M)$	Longitudinal prismatic coefficient of afterbody
C _{PE}	CPE	$\nabla_{E}/(L_{E} A_{X})$	Longitudinal prismatic coefficient of entrance
C _{PF}	CPF	$V_F / (L_F A_M)$	Longitudinal prismatic coefficient of forebody
C _{PR}	CPR	$V_{\rm R}/(L_{\rm R}^{\rm A})$	Longitudinal prismatic coefficient of run
°s	CS	s/(V _T L _{WL}) ^{1/2}	Wetted surface coefficient in non- dimensional form
с _{vp}	CVP	$V_T^{(A_{WT} T_X)}$	Vertical prismatic coefficient
^С vpa	CVPA	VA/(AWA TMA)	Vertical prismatic coefficient of afterbody

V

~ -

ł

SYMBOL	CC SYMBO	<u>DL</u>	DESCRIPTION
°. VPF	CVPF	∇ _F /(A _{WF} ^T _{MF})	Vertical prismatic coefficient of forebody
C _{WP}	CWP	A _{WT} /(L _{WL} B _X)	Waterplane coefficient
C _{WPA}	CWPA	A _{WA} /(L _A B _M)	Waterplane coefficient of afterbody
C _{WPF}	CWPF	A _{WF} /(L _F B _M)	Waterplane coefficient of forebody
C _{WS}	CWS	$s/(\Delta_T L_{WL})^{1/2}$	Taylors wetted surface coefficient in dimensional form
с _х	сх	$A_{\chi}^{(B_{\chi} T_{\chi})}$	Maximum transverse section coefficient
c^{Δ}	CVOL	$\nabla_{\rm T}/{\rm L}_{\rm WL}^3$	Volumetric coefficient
D-L	D-L	$\Delta_{\rm T}^{(0.01L)^3}$	Displacement - length ratio
f _E	FTE		Taylor's "f" at forward perpendicular
FB	XFB		Longitudinal center of bouyancy from F.P. or forward end of WL (formerly LCB)
FF	XFF		Distance of center of flotation from F.P. or forward end of WL (formerly LCF)
(K)	CIRCK	0.5833 <u>V</u> Δ _T 1/6	R.E. Froude's speed-displacement coeffi- cient, ratio of ship speed of a wave having its length proportional to cube root of volume of displacement for design condition of ship.
L	L		Length, in general
L _E	ΓE		Length of entrance, from FP to forward end of parallel middlebody or maximum section
I P	LP		Length of parallel middlebody
LPP	LPP		Length between perpendiculars

v1

SYMBOL	CC SYMBOL	DESCRIPTION
L _R	LR	Length of run, from section of maximum area or after end of parallel middle- body to waterline termination or other designated point
L _{WL}	LWL	Length on waterline
M	CIRCM $L_{PP} / \nabla^{1/3}$	R.E. Froudes' length coefficient or length-displacement ratio
P	CIRCP 0.746 <u>V</u> (L _W	L Cp) 1/2 L Cp) Baker's speed constant on basis of which ships of equal wave-making length can be compared.
T _M	TM	Draft at amidships
T _{MA}	TMA	Draft of afterbody at 0.75 L
^T MF	TMF	Draft of forebody at 0.25 L
S	S	Wetted Surface
S	circs $s/\nabla^{2/3}$	R.E. Froudes' wetted surface coefficient
^t E	TTE	Taylor tangent to area curve- intercept of tangent to curve at the bow on the midship ordinate, expressed as a ratio of the midship ordinate
T	circi $T_M / \nabla^{1/2}$	3 R.E. Froudes' draft coefficient
т _х	TX	Draft at maximum area section
Δт	DIS	Displacement of the ship in tons of 2240 lbs usually given for the design condition in salt water at 59°. Conversion from model displacement in fresh water in- volves.matio of densities of salt and and fresh water. The displacement volume of the model is converted to displacement using 35.970 cu ft/ton and the displacement volume for the ship is converted to "isplacement using 34.977 cu, ft/ton, (continued on next page)

vii

GLOSSARY (Continued)

SYMBOL	CC SYMBOL	DESCRIPTION
∆T (cont)	DIS	The ratio of the displacement, model to ship, used is $(35.970/34.977)^3 =$ $(1.0284)^3$. Standard usage in NSRDC is for a model temperature of 68°F or 20°C and latitude of Washington D.C., and a ship temperature of 59°F or 15°C, 3.5 percent salinity, 45° north latitude.
v	V	Speed of ship, knots
$\nabla_{\mathbf{A}}$		Volume of afterbody
₽ _E		Volume of entrance
$\nabla_{\mathbf{F}}$		Volume of forebody

♡ _R	Volume of run
∇ _T	Total volume

ENGLISH/SI EQUIVALENTS

1 degree (angle)	= 0.01745 rad (radians)
1 foot	= 0.3048 m (meters)
1 foot per second	= 0.3048 m/sec (meters per second)
1 inch	= 25.40 mm (millimeters)
1 knot	= 0.5144 m/s (meters per second)
l lb (force)	= 4.448 N (Newtons)
1 lb (force) - inch	= 0.1130 N·m (Newton-meter)
1 long ton (2240 1b)	= 1.016 metric tons, or 1016 kilograms
1 horsepower	= 0.746 kW (kilowatts)

.....

ABSTRACT

The computer program HYDRO, a hydrostatics program using cubic parametric splines for curve fitting, is presented. Program documentation and the instructions on program usage are included.

ADMINISTRATIVE INFORMATION

This Project was authorized and funded by the Naval Material Command (NAVMAT) Ship Performance and Hydromechanics Program under Program Element 62543N, Subproject Number 43-421-001, Work Unit Number 1500-104-32.

INTRODUCTION

Previously at DTNSRDC, a complete hydrostatic analysis of a given hull form required the execution of three separate computer programs. In an effort to consolidate and improve these programs, a new computer program, HYDRO, was written. Because the number of programs has been reduced to one, the time required to complete the analysis has been shortened. The original programs used the trapazoidal rule for calculating the sectional areas and volumes. HYDRO uses parametric splines to define the hull shape to allow exact integration, which improves the accuracy of the results. Accurate

Program documentation is included below. Instructions on program usage and a sample output are also given.

OVERVIEW OF THE PROGRAM HYDRO

The computer program HYDRO defines the stations and curves using a cubic parametric spline to fit the offsets. Each pair of parametric splines (x(t), y(t)) define a segment between two consecutive points. The equations are:

$$x = a_{x}t^{3} + b_{x}t^{2} + c_{x}t + d_{x}$$

$$y = a_{y}t^{3} + b_{y}t^{2} + c_{y}t + d_{y}$$

$$0 \le t \le 1$$

(1X

The sectional areas are obtained by integrating the splines. The volume, waterplane area, and wetted surface are obtained by integrating parametric splines that are fitted to the sectional area, waterplane, and wetted surface curves. However, the station girths cannot be found through integration of the splines. The girths are calculated by taking evenly spaced points that are interpolated between the original offsets, and integrated using Simpson's rule.

The endpoints of the sectional area, waterplane, and wetted surface curves are at the furthest forward and furthest aft stations with non-zero sectional area, if no bow or stern profile has been entered. If the bow or stern profile has been included, the endpoints are taken at the intersection of the waterline with the bow or stern. If the bow has a bulb, the tip of the bulb is used as the forward endpoint instead of the bow waterline intersection.

HYDRO consists of 12 subprograms, and uses 4 common blocks. A block diagram of the program HYDRO is shown in Figure 1, and a brief description of each subprogram and common block is given in Appendix A. The core requirement for loading and running the program is approximately 65,000 octal words. The amount of time required to run the program depends upon the number of stations, points per station, and drafts, but normally does not exceed 20 seconds.

INPUT INFORMATION

Table 1 contains a list of the required input information and the respective format needed to run the program. An example input deck is shown in Table 2, and the corresponding input values are shown in Table 3.

The offsets of the model can either be input in the form required by the earlier hydrostatics programs, (IPROG = 0) or in the form used by the NAVSEA lines generation programs and the TEKTRONICS computer program DIGITIZE (IPROG = 1). The stations must be in order, from the bow to the stern, and the offsets for each station must be in order of increasing waterline height. A maximum of 40 stations and 40 points per station are allowed. The coordinate system for the model offsets is shown in Figure 2.

Taylors' f and t, and the half angle of entrance can either be input or calculated, depending on the value of the variable ICALC. The calculated values may not be accurate if the bow sections have an unusual shape.

2

HYDRO allows additional sectional area and wetted surface to be input. This feature adjusts the results to reflect the additional volume and wetted surface due to items that might not be indicated by the station offsets, such as skeg. The additional volume is added indirectly by increasing the sectional area of certain stations, so that the LCB will be shifted accordingly.

Up to six drafts can be used. The drafts are input at the bow and the stern so the model can be trimmed. The drafts are given at distances from the waterline to the baseline.

OUTPUT INFORMATION

The output, shown in Table 4, is given in English and SI units (MET = 1). The output tables are taken directly from the earlier hydrostatics programs. It should be noted that the L_{WL} coefficients are calculated using the waterline length input into the program. The program output consists of an echo of station offsets, control variables, station areas and girths, tables of hull coefficients, and non-dimensionalized beams and section areas. The printing of the station offsets is supressed if the value of the variable INSTAT is greater than zero.

The output tables are given in English, SI, and English and SI units, depending upon the value of the variable MET. Table 4 shows the output tables in English and SI units (MET = 1). Tables 5 and 6 show the output tables in English (MET = 0) and in SI (MET = 2) units.

TABLE 1

Required Input Information for Running HYDRO

CARD	FORMAT	COL	NAME	DESCRIPTION
1	A10	1-10	MODEL	Model number
2	8A10	1-80	TITLE	The title for the output
3	F10.5	110	XLAM	Ship to model scale
	F10.5	11-20	v	Model speed (knots)
	F10.5	21-30	XLWL	L _{XL} , ft (model)
	F10.5	31-40	XLPP	L _{PP} , ft (model)
	F10.5	41– 50	SS	Station spacing ft (model)
4	F10.5	1-10	XX	X axis scaling factor
	F10.5	11-20	YY	Y axis scaling factor
	F10 .5	21-30	22	Z axis scaling factor
	F10.5	31-40	XBS	X axís scaling factor for bow and stern profiles
	F10.5	41-50	YBS	Z axis scaling factor for bow and stern profiles
5	F10.5	1-10	M	Distance from bow to amidships, ft (model)
	F10.5	11-20	WATDEN	Water density, lbs/ft ³ (usually 62.4)
	15	21-25	MET	Output Index MET=J English Units MET=1 English and Metric units MET=2 Metric Units
	15	26-30	ISTAT	Print control for station offsets. If ISTAT > 0, suppress printing

6

CARD	FORMAT	COL	NAME	DESCRIPTION
6	F10.5	1-10	XLP	Length of parallel middlebody
	F10.5	11-20	ENTA	Half angle of entrance, degrees
	F10.5	21-30	FTE	Taylors' f
	F10.5	31-40	TTE	Taylors' t
	15	41-45	ICALC	If not zero, ENTA, FTE, & TTE will be calculated
7	15	1-5	N	Number of stations
	15	6-10	NDRAFT	Number of drafts
	15	11-15	IPROG	=0 if offsets are in the old format =1 if offsets are in the new format
	15	16-20	I BOW	<pre>=0 if no bow or stern profile is entered =1 if only a bow profile is entered =2 if only a stern profile is entered =3 if both a bow and a stern profile are entered</pre>
8	15	1-5	NSTAT	Number of stations that have extra sectional area that are not indicated by the offsets
	F10.5	6-15	EXWET	Additional wetted surface not indicated by the offsets
8a	F10.5	1-10	XXL	Station number with extra sectional area
	F10.5	11-20	EXVOL	Extra sectional area, ft ² (model scale)

Table 1 - Required Input Information for Running HYDRO (Cont)

7

-

. -- . .

CARD	FORMAT	COL	NAME	DESCRIPTION
9	F10.5	1-10	SF	Forward station where the draft is taken.
	F10.5	11-20	SA	Aft station where the draft is taken.
	F10.5	21-30	TF	Forward draft, ft. (model scale)
	F10.5	31-40	TA	Aft draft, ft (model scale)
	15	41-45	IPRINT	If not zero, large output table will be printed.
10	F10.5	21-30	х	Station offset distance from F.P. (positive aft)
	F 1 0.5	31-40	Y	Beam ·
	F10.5	41-50	Z	height above baseline
10 a	The card at arting	tollowing the in column 21.	last card 10	must have 99999, or greater
11	(ignore	d if no bow pro	ofile is ente	red)
	F10.5	21-30	ХВ	Bow offset distance from FP (positive aft)
	F10.5	31-40	ΥB	Height above baseline
11a	The card Starting	following the in column 21.	last card ll	must have 99999. or greater
12	(ignored	if no stern p	rofile is ent	ered)
	F10.5	21-30	XS	Stern offset Distance from FP (positive aft)
	F10.5	31-40	YS	Height above baseline
12a	The card starting	following the in column 21.	last card 12	must have 99999. or greater

Table 1 - Required Input Information for Running HYDRO (Cont)

8

Table 1 - Required Input Information for Running HYDRO (Cont)

.

NOTE - Cards 10 and 10a are the input cards for the offsets in the new format. The corresponding cards for the old format are:

CARD	FORMAT	COLS	NAME	DESCRIPTION
10	8F10.5	1-80	x	Station distance from forward perpendicular
10a	15	1-5	ММ	Number of offsets in a given station
10ь	8F10.5	1-80	Y	Beam offsets at a Biven station
10 c	8F10.5	1-80	Z	Height offsets at a given station.

The series of cards 10a - c repeat N times.

9876				
31.435	4.637	27.358) 27.358	1.368
.08333333 13.673	.08333333 62.4	•08333 33	0833333	.0833333
.0	.0	.0	0	1
25 1	1	3		
16.	.02			
17.	.06			
17. 18. 0.0	.06 .1 19.0	$\begin{array}{c} 1.098\\ 0.0\\ 0.000000\\ 0.000000\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 8.207413\\ 16.41482\\ 16.4188\\ 16.4188\\ 16.4188\\ 16.4188\\ 16.4188\\ 16$	$\begin{array}{c} 1.098\\ 0.0\\ 0.095436\\ 0.5430\\ 0.5430\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.724331\\ 0.751451\\ 0.614069\\ 0.614069\\ 0.614069\\ 0.614069\\ 0.614069\\ 1.73761^{+}\\ 1.87^{+} - 0^{+}\\ 1.$	$\begin{array}{c} 1\\ 11.4522\\ 13.17003\\ 15.21400\\ 1.678300\\ 1.908701\\ 2.863051\\ 3.817402\\ 5.726102\\ 7.634803\\ 9.543503\\ 11.45220\\ 13.17003\\ 15.26400\\ 0.954351\\ 1.908701\\ 2.86193\\ 13.78322\\ 13.68318\\ 13.98324\\ 14.09195\\ 14.22009\\ 14.36429\\ 14.61164\\ 14.93028\\ 0.000000\\ 0.954351\\ 1.908701\\ 2.86305\\ 1.908701\\ 1.908701\\ 2.86305\\ 1.908701\\ 1$
		2.213633		9.543503
		0.000000		13.17003
		-2.71332		15.26960 17.17830
		-4.14649 -5.68381		19.08701
		-7.32941		22.90441
		-10.8430		26.72181
		-12,8299 -15,2696		28.63051 30.73008
		99449999. 246.2224		1 373
		262.6372		3.241
		295.4668		5.441 7.86
		311.8817 328.2965		10.488
		999999999		13.189

Table 2 - Sample Input for Program HYDRO

· -- - ----

TABLE 3				
VARIABLE	VALUES	FOR	SAMPLE	INPUT

CARD NO.	VARIABLE	VALUES
1	MODEL	9765
2	TITLE	EXAMPLE RUN FOR PROGRAM HYDRO
3	XLAM V XLWL XLPP SS	31.435 4.637 knots 27.358 ft 27.358 ft 1.368 ft
4	XX YY ZZ XBS YBS	0.08333 ft/inch 0.08333 0.08333 0.08333 0.08333 0.08333
5	XM Watden Met Istat	13.679 ft 62.4 lbs/ft ³ 1 0
6	XLP ENTA FTE TTE ICALC	0.0 0.0 0.0 0.0 1
7	N NDRAFT IPROG IBOW	25 1 1 3
8	NSTAT Exwet	3 1.6 ft ²
8a i	XXL(1) EXVOL(1)	16. 0.02 ft^2
ii	XXL(2) EXVOL(2)	17 0.06 ft ²
iii	XXL(3) EXVOL(3)	18 0.10 ft ²

Table 3 - Variable Values for Sample Input (Cont)

VARIABLE VALUES FOR SAMPLE INPUT

CARD NO.	VARIABLE	VALUES
9	SF SA TF TA IPRINT	0.0 19.0 1.1 ft 1.1 ft 1
10, 10 a	STATION OFFSETS	5
11, 11a	BOW OFFSETS	
12, 12a	STERN OFFSETS	

12

INPUT DATA

5

¥

\$

×

¥

z

Ŧ

*

-

=

Ŧ

2

=

.

±

ж

*

=

#

. 7

.

z

31.435

4,637

27,358

27.358

1.368

.083

.083

.083

.083

.083

13.679

62.400

1 0.000

0.000

0.000

0.000

•

1

25

t

1

з

1.600

3

EXAMPLE RUN FOR PROGRAM HYDRO

SCALE RATIO

MODEL SPEED LWL

STATION SPACING

X AXIS SCALING FACTOR

Y AXIS SCALING FACTOR

Z AXIS SCALING FACTOR X AXIS SCALING FACTOR

FOR BOW AND STERN Y AXIS SCALING FACTOR

FOR BOW AND STERN BOW TO MIDSHIPS

WATER DENSITY

PARALLEL MIDDLEBODY LENGTH

HALF ANGLE OF ENTRANCE

TAYLOR"S F

ICALC

ND. OF STATIONS

NO. OF DRAFTS

INPUT STYLE (IPROG)

ADDED WETTED SURFACE

NSTAT

-

IBOW

TAYLOR"S T

MET (DUTPUT UNIT INDEX) =

LBP

13

_ . . .

16.00 17.00 .0600 .1000 DRAFT INFORMATION AFT FWD AFT NO. FWD STATION DRAFT STATION DRAFT 1.10 19.00 0.00 1.10 1

Table 4 - Sample Output for Program HYDRO with Output Tables in English and SI Units

STATION AREA .0200

ADDED STATION AREA

STATION 0.00 X = 0.00 HEIGHT ABOVE HALF BREADTH BASELINE 0.000 .954 .00B 1.098 .045 1.272 STATION .50 .68 X = HALF HEIGHT ABOVE BREADTH BASELINE .05**2** .140 .159 .054 .239 .060 .066 .318 .477 .073 .076 .636 .795 .078 .085 .954 .101 1.098 .146 1.272 STATION 1.00 1.37 X ± HEIGHT ABOVE HALF BASELINE BREADTH .054 0.000 .081 .080 . 100 .159 .115 .239 .318 .145 .477 .156 .636 .795 .166 .954 . 180 1.098 . 203 . 253 1.272

-

STATION 1.50

x = 2.05

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000 .080	.070 .123
. 159 . 239	.158
. 477 . 636	.236
.795	. 274
1.098 1.272	.321
STATION	2.00

X = 2.74

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.085
.034	.132
.080	.176
. 159	. 228
. 198	.248
.239	.267
.318	.298
. 446	.335
.477	. 342
.636	. 37 3
.732	. 389
. 795	.39 8
.954	. 425
.967	. 427
1.098	.455
1.132	. 464
1.253	.502

STATION 2.50

x = 3.42

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.094
.010	. 134
.080	.248
.090	. 260
. 159	.319
. 239	.367
. 240	. 368
.318	. 402

- - - ----

.452 .477 .636 .668 .795 .863 .954 1.023 1.098 1.272	.448 .456 .500 .536 .552 .573 .590 .613 .677	
STATION X =	4.10	
HEIGHT ABOVE BASELINE	HALF BREADTH	
0.000 .001 .001 .032 .080 .120 .159 .239 .267 .318 .436 .477 .605 .636 .769 .795 .916 .954 1.040 1.098 1.149 1.246	.095 .131 .134 .266 .344 .387 .420 .472 .488 .514 .569 .587 .635 .646 .688 .695 .732 .745 .775 .796 .815 .854	
X z	5.47	
MEIGHT ABOVE BASELINE	HALF BREADTH	
0.000 .001 .004 .005 .024 .075 .153 .252 .368	.095 .134 .269 .279 .402 .528 .645 .750 .842	

....

.528 .645 .750 .842 .920 .987 1.043

.494 .623 .754

Table 4 - Sample Output	for	Program HYDPO with subject Tables
in Englis!	and	SI Units (Cont)

•

. 795	1.058
. 881	1.091
.954	1.1:4
1.003	1,131
1.098	1,162
1.118	1.168
1.225	1.203
1.272	1.217

STATION 5.00

×≖ **6.**84

HEIGHT ABOVE	HALF
BASELINE	BREADTH
0.000	.095
.001	.134
.004	.269
.008	.408
.010	.478
.014	.541
.039	.676
.087	.804
.154	.924
.240	1.033
.340	1.131
.454	1.216
.577	1.298
.707	1.347
.795	1.379
.837	1.379
.954	1.393
1.085	1.433
1.098	1.476
1.202	1.479
1.272	1.507
STATION	6.00
X =	8.21

HEIGHT ABOVE	HALF
BASELINE	BRÉADTH
0.000 .001 .004 .008 .011 .015 .016 .022 .049 .049 .049 .049 .049 .156 .256	.095 .134 .269 .404 .542 .682 .736 .825 .964 1.097 1.220 1.331
.362	1.428
.483	1.510
.612	1.578

Table 4 -	Sample Output	for	Program HYDRO with Output Tables
	ín Englísh	and	SI Units (Cont)

.746	1.634
.795	1.647
.881	1.680
.954	1.698
1.014	1.718
1.098	1.739
1.143	1.751
1.268	1.78 0

STATION 7.00

X = 9.58

HEIGHT ABOVE	HALF
BASELINE	BREADTH
	60 5
0.000	.095
. 001	.134
.004	.269
.008	,404
.011	,542
.015	.682
.018	,826
.022	.975
.023	1.017
.031	1.126
.066	1.271
.129	1.404
.216	1.523
. 324	1.625
. 449	1.710
.586	1.778
.731	1.830
.795	1.844
.878	1,809
.954	1.882
1.023	1,899
1.098	1.912
1.164	1.923
1.272	1.936

STATION 8.00

x = 10.94

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.004	.269
.008	.542
.015 .018	,682 ,826
.022 .026	,975 1,129
.029	1,271 1,289
.058	1,445

-

i

.119	1.586
.212	1.707
. 333	1.804
. 475	1 878
.629	1 012
740	1.934
.750	1.960
. / 95	1.967
. 952	1.987
.954	1.987
1.098	1.997
1.109	1.998
1.260	2.003
STATION	9.00
X = 1	12.31
HEIGHT ABOVE	HALF
BASELINE	BREADTH
0.000	.095
.001	134
.004	107
009	. 209
	. 404
.011	.542
.015	.682
.018	.826
.022	.975
.026	1,129
.030	1,290
.034	1 446
034	1.440
.034	1.459
	1.621
.141	1.758
. 257	1.865
. 404	1.942
. 575	1.986
.758	2.003
.795	2 004
.864	2.004
009	2.004
• 730	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

Table 4 - Sample Output for Program HYDRO with Output Tables in English and SI Units (Cont)

STATION 10.00

X = 13.68

HEIGHT ABOVE	HALF
BASELINE	BREADTH
0.000	.095
.001	.134
.004	269
.008	. 40.4
.011	.542
.015	.682
.018	.826
.022	.975
.026	1,129
.030	1.290
.034	1.459
.035	1.504
.054	1.628
.121	1.773
.228	1.889
.373	1.970
.558	2.003
.606	2.004
.756	2.004
.795	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1+272	2.004

STATION 11.00

X = 15.05

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000 .001	.095
.004 .008	.269 .404
.015	.542 .682
.022	.975
.030 .034	1,290 1,443
.034 .061	1,459
.239	1.881 1.960
.559 .617	2.001

.756	2.004
.795	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

STATION 12.00

X = 16.41

HEIGHT ABOVE	HALF
BASELINE	BREADTH
0.000	.095
.001	, 134
.004	,269
.008	. 404
.011	.542
.015	,682
.018	,826
.022	.975
.026	1.129
.030	1,290
.030	1.302
.046	1.452
.091	1.604
.166	1.740
.271	1.854
. 407	1,939
.573	1.988
.757	2.003
.795	2.004
.862	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

STATION 13.00

× = 17.78

HEIGHT ABOVE	HALF
BASELINE	BREADTH
0 000	0.05
0.000	.095
.001	. 134
.004	.269
.008	. 404
.011	.542
.015	.682
.018	.826
.022	.975
.024	1.075
.026	1.128

	Jampie Output	tor	Program HYDRO with	Output	Table
	in English	and	SI Units (Cont)	•	-
.041	1 204				
.074	1 4 4				
.130	1 579				
.215	1.375				
. 326	1.703				
.460	1 907				
.614	1 947				
.779	1.347				
.795	1 993				
.946	1 904				
.954	1 995				
1,098	2 000				
1,107	2.001				
1.259	2.004				
1.272	2.004				
STATI					
STATE	UN 14.00				
χ =	19.15				
HEIGHT ABOVE					
BASELINE	ADEANTH				
	UNCAUTO				
.021	0.000				
.030	.133				
.039	. 265				
.047	. 398				
.056	. 532				
.065	.669				
.074	.808				
.084	. 95 1				
.099	1.096				
.121	1,243				
.154	1.390				
.208	1.528				
. 291	1.649				
.401	1.749				
· 332	1.827				
745	1.893				
.831	1.912				
.954	1,921				
.984	1.931				
1.098	1.947				
1,133	1 965				
1.272	1,974				

Table 4 - Sample Output for P es

and the second sec

- -

. .

STATION 15.00

X = 20.52

	BREADTH
.114 .129 .142 .155 .168 .180 .193 .206 .222 .243 .273 .322 .398 .500 .621 .754 .795 .894 .954 1.034 1.038 1.171 1.272	BREADTH 0.000 .127 .254 .351 .509 .638 .769 .904 1.041 1.181 1.321 1.454 1.571 1.669 1.747 1.807 1.807 1.822 1.862 1.886 1.898 1.912 1.926
	1.520
STATION	16.00
Χ #	21.89
HEIGHT ABOVE BASELINE	HALF Breadth
. 270 . 283 . 296 . 308 . 321 . 335	0.000 .119 .238 .357 .476 .596 .719

- -~

23

-

1.272 1.855

STATION 17.00

X = 23.25

BASELINE	BREADIN
. 453	0.000
.465	.110
,477	3219
. 400	.438
.512	.549
. 525	.662
.536	.777
.549	1 017
.590	1.138
.627	1.256
. 682	1.365
.756	1.461
. 795	1.544
.947	1.614
.954	1.615
1.056	1.671
1.098	1.690
1.272	1.752
STATION	18.00
X #	24.62
HEIGHT ABOVE	HALF
BASELINE	BREADTH
655	0.000
.666	.099
.676	. 198
.687	.297
	205
.698	.396
.709 .720	.396 .496 .598
. 898 . 709 . 720 . 731	.396 .496 .598 .702
. 898 . 709 . 720 . 731 . 743	.396 .496 .598 .702 .809
. 698 . 709 . 720 . 731 . 743 . 758 . 77	.396 .496 .598 .702 .809 .919
. 698 . 709 . 720 . 731 . 743 . 758 . 777 . 795	.396 .496 .598 .702 .809 .919 1.030 1.105
. 698 . 709 . 720 . 731 . 743 . 758 . 758 . 777 . 795 . 806	.396 .496 .598 .702 .809 .919 1.030 1.105 1.139
. 698 . 709 . 720 . 731 . 743 . 758 . 758 . 777 . 795 . 806 . 849	.396 .496 .598 .702 .809 .919 1.030 1.105 1.139 1.244
. 698 . 709 . 720 . 731 . 743 . 758 . 758 . 777 . 795 . 806 . 849 . 906	.396 .496 .598 .702 .809 .919 1.030 1.105 1.139 1.244 1.340
. 698 . 709 . 720 . 731 . 743 . 758 . 777 . 795 . 806 . 849 . 906 . 954 . 979	.396 .496 .598 .702 .809 .919 1.030 1.105 1.139 1.244 1.340 1.396 1.425
. 698 . 709 . 720 . 731 . 743 . 758 . 777 . 795 . 806 . 849 . 906 . 954 . 979 1.063	.396 .496 .598 .702 .809 .919 1.030 1.105 1.139 1.244 1.340 1.396 1.425 1.498
. 698 . 709 . 720 . 731 . 743 . 758 . 777 . 795 . 806 . 849 . 906 . 954 . 979 1.063 1.098	.396 .496 .598 .702 .809 .919 1.030 1.105 1.139 1.244 1.340 1.340 1.425 1.495 1.495

1

1.272 1.613

STATION 19.00

X = 25.99

HEIGHT ABOVE	HALF					
BASELINE	BREADTH					
BASELINE	0.000					
.874	.088					
.884	.175					
.901	.263					
.911	.351					
.920	.440					
.930	.530					
.940	.622					
.950	.717					
.954	.750					
.962	.814					
.978	.914					
.948	1.015					
1.028	1.113					
1.070	1.207					
1.098	1.255					
1.125	1.293					
1.191	1.370					
1.270	1.433					
1.272	1.437					
STATION 20.00 X = 27.36						

HEIGHT HOUTE	1 MALES
BASELINE	BREADTH
1.099	0.000
1.107	.076
1.116	.152
1.124	.228
1.132	. 304
1,140	.381
1.149	. 459
1.157	.539
1.165	.621
1.174	.706
1,185	.794
1,199	.885
1.218	.976
1.244	1.066

25

÷ • ·

BOW PROFILE

HEIGHT ABOVE	LONGITUDINAL
BASELINE	DISTANCE
0.000	1.113
.080	. 781
. 159	.659
. 239	. 573
. 318	. 499
. 477	. 381
636	. 281
. 795	. 184
.954	. 088
1.098	0.000
1.272	114
1.432	226
1.591	346
1.750	- 474
1.909	611
2.068	756
2.227	908
2.386	-1.069
5 561	-1 272
4.301	

STERN PROFILE

HEIGHT ABOVE	LONGITUDINAL
BASELINE	DISTANCE
. 1 1 4	20.519
. 270	21.886
. 453	23.254
.655	24.622
.874	25.990
1.099	27,358

۰.

EXAMPLE RUN FOR PROGRAM HYDRO

		DRAFTS		
MID5HIP5 DRAFT	FWD Station	FWD DRAFT	AFT STATION	AFT DRAFT
1.10	0.00	1.10	19.00	1.10
	VOLUME	-	69 788	
	DISPLACEMENT	-	4354.798	
	WATERPLANE	3	82.427	
	AREA			
	WETTED	=	116.299	
	SURFACE			
	GOMPUTED			
	WATERLINE	3	27.352	
	LENGTH			
	STATION	*	10.00	
	AFAX			
x	BEAM	GI	RIH	AREA
0.000	.016		. 288	. 00 1
. 684	. 203	2	.024	. 144
1.368	. 407	2	. 331	. 314
2.052	. 642	2	.415	.508
2.736	.910	2	.544	.735
3.420	1.220	∠	975	.992
6.104 E 470	1.001	2	548	1 974
5.472 6.840	2 959	4	146	2 641
B 207	3.479	4	.685	3,230
9,575	3.825	5	. 110	3.687
10.943	3,993	5	. 418	3.999
12.311	4.008	5	.616	4.156
13.679	4.008	5	. 689	4.201
15.047	4.008	5	.660	4.185
16.415	4.009	5	. 567	4.127
17.783	4.000	5	420	4.007
19,151	3.920	5	101. 101	3.050
20,519	3.191	4	367	3.097 3 430
21.000	3.024		.869	1 764
24 622	3.046	3	.284	1,102
25.990	2.512	2	. 569	. 370
27,358	0.000	Ō	.000	0.000

SHIP AND MODEL DATA MODEL 9876

EXAMPLE RUN FOR DESCRIPTION	PROGR	RAM HYD	RO SH	IP	MOD	ΕI		
	ENG.	METRIC	ENG.	METRIC	ENG.	METRIC		
WE LENGTH (LWL)	 FT	 M	860.0	262.1	27.36	8.34	LINEAR RATIO =	3 1.435
LENGTH BP (LPP)	FT (M	860.0	262.1	27.36	8.34	V SORTILWL) =	.897
BEAM AT AX (BX)) FT	M	126.0	38.4	4.01	1.22	FROUDE NO. =	. 264
DRAFT AT AX (TX)) FT	M	34.5	10.5	1.10	. 33	CIRCLE K =	2.410
DISPLACEMENT (DIS	SITON	TONNE	621045W	63100SW	1.94FW	1.98FW	XFB/LWL =	. 515
	LBS				4354.8		XFB/LPP =	. 5 15
WETTED SURF. (S)	SQ FT	M SQ	114922.0	10676.6	116.30	10.80	XFF/LWL =	. 574
DESIGN SPEED(V)	KTS	M/S	26.0	13.4	4.64	2.39	1/2 ENT.ANGLE:	3.3 DEG
							1/2 ENT.ANGLE=	050RAD
		LWL	COEFFIC			LPP COEFFI	CIENTS	

CB = . CP = . CX = . CWP = . CPF = . CPA = .	580 607 954 752 57 64		= . E = . E = . 7 = . 7	57 54 77 71 36 54 37	LE/L LP,L LR/L L/BX BX/T)	= .5 = 0.0 = .5 = 6.8 (= 3.6	50 50 50 53 55	D-L = C√DL= CwS = CS = FTE = TTE =	97.6 3.4 15.7 2.6	4 1E-3 3 6 2 8	CB CP L,BX D-L CVOL	= .550 = .607 = 6.83 = 97.64 = 3.41E~3
					* * * * *	*****						
FAD STA 0.00 A AX .000 B BX .004	.034 .051	1 00 .075 .102	1.50 .121 .160	2.00 .175 .227	2.50 .236 .306	3.00 .307 .397	4.00 .470 .580	5.00 .629 .738	6.00 .769 .868	7.00 .878 .954	8.00 .952 .996	9.00 10.00 .989 1.000 1.000 1.000
11.00	12.00	13 00	14.00	15.00	16.00	17.00	18.00	19 .00	20.00			
.996	.982	.954	.871	.737	.581	. 420	.262	.088	0.000			
8/8X 1.000	1.000	.998	.978	.947	.904	. 843	.760	.627	0.000			

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C) The model displacement is calculated for fresh water at 73 degrees F (22.8 Degrees C)

SHIP AND MODEL DATA MODEL 9876

EXAMPLE RUN FOR DESCRIPTION	PROGRA	AM HYDRO	S H I P	,		
	ENG.	METRIC E	NG. ME	TRIC E	IG. METRIC	
WL LENGTH (LWL LENGTH BP (LPP BEAM AT AX (B) DRAFT AT AX (T) DISPLACEMENT(D) WETTED SURF.(S) DESIGN SPEED(V)) FT) FT () FT () FT () FT () FT LBS) SQ FT) KTS	M 8 M 8 M 1 M 1 TONNE 621 M SQ 1149 M/S	60.0 21 60.0 21 26.0 3 34.5 045w 631 22.0 106 26.0	62.1 27 62.1 27 62.1 4 10.5 1 005W 1 4354 76.6 116 13.4 4	358 8.339 358 8.339 008 1.222 098 .335 944FW 1.975FW 8	LINEAR RATIO = 31.435 V/SQRT(LWL) = .887 FROUDE NO. = .264 CIRCLE K = 2.410 XFB/LWL = .515 XFB/LPP = .515 XFF/LWL = .574 1 2 ENT.ANGLE = .058RAD LPP COFFFICIFNTS
CB = .580 CP = .607 CX = .954 CWP = .752 CPF = .575 CPA = .640	CPE CPR CVP CVPA CVPF CWPF CWPA	= .575 = .640 = .771 = .706 = .860 = .638 = .865	LE/L LP/L LR/L L/BX BX/TX	<pre>≈ .500 = 0.000 x .500 = 6.825 = 3.651</pre>	D-L = 97.640 CVOL= 3.408E CWS = 15.725 CS = 2.662 FTE = .017 TTE = .685	CB = .580 -3 CP = .607 L/BX = 6.825 D-L = 97.640 CVOL = 3.408E-3
			ITTC	COEFFICIE	NTS	
CI C	W IRCLE T	= .954 = .267 STATIC	CIRC CIRC N	LE M = 6. LE S = 6. A/AX	545 CIRCLE 361 B∕BX 	B = . 974
		0.00 .50 1.00 2.00 2.50 3.00 4.00	1	.000 .034 .075 .121 .175 .236 .307 .470	.004 .051 .102 .160 .227 .306 .397 .580 .738	
		5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00		. 629 . 769 . 878 . 952 . 989 1. 000 . 996 . 982 . 954 . 871 . 737	.736 .868 .954 .996 1.000 1.000 1.000 1.000 .998 .978 .947	
		16.00 17.00 18.00 19.00 20.00)))	.581 .420 .262 .088 0.000	.904 .843 .760 .627 0.000	

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C) The model displacement is calculated for fresh water at 73 degrees F (22.8 degrees C)

.

Table 5 - Sample Output Tables for Program HYDRO in English Units

				SH	IP AND MODE	MODEL L 9876	DATA						
EXAMPL	E RUN	FOR PR	OGRAM	HYDRO									
				SHI	P	MOD	ΕL						
WE LEN	GTH (LWL) F	т	860	- . 0	27.	 36		1	INFAR F		- 31 6	. 5
LENGTH	BP (LPP) F	Ŧ	860	. 0	27.	36		v	S 7 P * . 1		- 01.4 - 6	1
BEAM A	TAX	(BX) F	т	126	. 0	4	01		ć				
DRAFT	AT AX	(TX) F	Ť	34	.5	1	10		c c	IFCLE E	, ,	- 2 .4	10
DISPLA	CEMENT	(DIS)T	ONS	62104	. Sw	1.	94FW		×	FR LAI		c 	49 15
		L	BS			4354	8		Ŷ			0 - E	• 5
WETTED	SURF.	(S) SQ	FT	114922		116.	30		Ŷ	FF IWL		j - 5	7 0
DESIGN	SPEED	(V) K	TS	26	. 0	4.	64		î.	2 ENT.	ANGLE	 = 3.3	DEG
			LWL CO	EFFICI	ENTS					L P F	COEF	FICIEN	٢S
СВ =	.580		CPE	= .5	 7			 50				 E C.	
(P =	.60		CPR	= .6	4	I P	1 =	0 00		C 0	-	. 25.	U 7
(* =	.954		CVP	= .7	7	. R/	. =	50			B¥ -	, OU 6 0 0	/
C#P =	.752		CVPA	= .7	1	L/B	x = 1	6 83		D-		07 64	
CPF.=	. 57		CVPF	= .8	6	BX /	тх =	3 65		Ű	L -	97.04	
CPA =	. 64		CWPF	* .6	4	D-1	= 9	7 64		E T	F -	~ ~	
			CWPA	= .8	7	Cws	= 19	5.73		11	£ =	.68	
				**	******	******							
FWD STI	ATIONS												
0.00	. 50	1.00	1.50	2.00	2.50	3.00	4.00	5 00	6 00	7 00	e 00	0 00	10.00
A/AX								5.00	0.00		0.00	9.00	10.00
.000	.034	.075	.121	.175	.236	.307	.470	.629	.769	878	952	683	1 000
8′8x												. 209	1.000
.004	.051	.102	.160	.227	.306	.397	.580	.738	.868	.954	.996	1.000	1.000
				* * 1	******	******	****						
11 00	ALLUNS												
A / A ¥	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00				
	000	054	074										
.990 B/8x	.90%	. 954	.8/1	.737	.581	.420	. 262	.088	0.000				
1.000	1.000	. 998	.978	.947	. 904	.843	.760	. 627	0.000				

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C) THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

30

Table 5 - Sample Output Tables for Program HYDRO in

English Units (Continued)

	SHIP AN Moe	ND MODEL DATA Del 9876		
EXAMPLE RUN FOR PRO	GRAM HYDRO Ship	MODE L		
WL LENGTH (LWL) FT LENGTH BP (LPP) FT BEAM AT AX (BX) FT DRAFT AT AX (TX) FT DISPLACEMENT(DIS)TO LB WETTED SURF, (S)SQ DESIGN SPEED (V) KT	B60.0 B60.0 126.0 34.5 NS 62104.5W S FT 114922. S 26.0	27.358 27.358 4.008 1.098 1.944FW 4354.8 116.299 4.637	LINEAR RAT V.SORTILWL CIRCLE K CIRCLE P XFB LWL XFB LPP XFF,LWL 1/2 ENT.AN	ID = 31.435) = .887 = 2.410 = .849 = .515 = .515 = .574 GLE= 3.3 DEG
LWL COEF	FICIENTS		LPP COEFFICIENTS	ITTC COEFFICIENTS
CB = .580 CPE = CF = .607 CPR = CX = .954 CVP = CWP = .752 CVPA = CPF = .575 CVPF = CPA = .640 CWPF = CWPA =	.575 LE/L .640 LP/L .771 LR/L .706 L/BX .860 BX/TX .638 D-L .865 CWS .50 1.00 1.50 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	<pre>= .500 = 0.000 = .500 = 6.825 (= 3.651 = 97.64 = 15.73 A/AX .000 .034 .075 .121 .175 .236 .307 .470 .629 .769 .878 .952 .989 1.000 .996 .982 .954 .871 .737</pre>	CB = .580 CP = .607 L/BX = 6.825 D-1 = 97.64 FTE = .02 TTE = .68 B/BX .004 .051 .102 .160 .227 .306 .397 .580 .738 .868 .954 .996 1.000 1.000 1.000 1.000 .998 .978 .947	CM = .954 CIRCLE M = 6.645 CIRCLE B = .974 CIRCLE T = .267 CIRCLE S = 6.861
	16.00 17.00 18.00 19.00	.581 .420 .262 .088	.904 .843 .760 .627	
	20.00	0.000	0.000	

,

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C) The model displacement is calculated for fresh water at 73 degrees F (22.8 Degrees C) Table 6 - Sample Output Tables for Program HYDRO in SI Units

				SHI	P AND MODEL	MODEL . 9876	DATA						
EXAMP. F				YDRO									
		0	-	SHIP	I.	MODE	1						
							-						
WE LENG	TH (1	WE) M		860.	σ	27.3	36		LI	NEAR R	ATIO =	31.4	35
LENGTH	BP (L	PP) M		860.	0	27.3	36		FR	OUDE N	0. =	.21	13
BEAM AT	AX (BX) M		126.	0	4.0) 1		C I	PCLE K	. 3	2.58	37
DRAFT A	T AX (TX) M		34.	5	1.1	0		XF	3/LWL	=	.5	15
DISPLAC	EMENT	DISITO	INNE 22	223882	SW	69.6	52 F W		XF	B/LPP	=	.51	5
WETTED	SURF.	(5) M	SQ 1	14922.		116.3	30		XF	F/LWL	=	. 57	14
DESIGN	SPEED	(V) M/	S	26.	0	4.6	54		1/	2 ENT.	ANGLE =	0.00	ORAD
		LL	WL COE	FFICIE	NTS					LPP	COEFF	ICIEN	5
ra =	580		CPF	= 57	,	LE / I	-	50		CB	=	.580)
CP =	607		CPR	= .64	ı	IP I		0.00		Č P	=	6.5	7
(X =	.954		CVP	= .77	,	LR/L	_	.50		Ē/	8x =	6.83	
CWP =	.752		CVPA	= .71	l	L/B/	(=)	6.83		CV	DL =	3.416	- 3
CPF =	.57		CVPF	= .86	;	BX/T	X =	3.65					
CPA =	.64		CWPF	± .64	ł	cva	. =	3.41E-3	3	FT	E =	.02	
-	-		CWPA	= .87	,	CS	= '	2.66		TT	E =	. 6 8	
				***	*****								
FWD STA	TIONS												
0.00	, 50	1.00	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
A/AX													
.000	.034	.075	.121	. 175	.236	.307	. 470	.629	.769	.878	.952	. 9 89	1.000
B∕BX													
.004	.051	.102	.160	.227	.306	.397	.580	.738	.868	.954	.996	1.000	1.000
				***	*****	******	****						
AFT STA	TIONS								20.00				
11.00	12.00	13.00	14.00	15.00	10.00	17.00	18.00	19.00	20.00				
A/AX		054	074	7 3 7	Ea.	420	262	000	0 000				
. 990	.982	. 954	.0/1	./3/	. 561	.420	.202	.088	0.000				
1.000	1.000	. 998	.978	.947	.904	.843	.760	.627	0.000				

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C) The Model displacement is calculated for fresh water at 73 degrees f (22.8 degrees C)

+ |

32

Table 6 - Sample Output Tables for Program HYDRO

in SI Units (Continued)

SHIP AND MODEL DATA MODEL 9876

EXAMPLE RUN FOR PROGRAM HYDRO	MONEL	
SHIP		
	27.358	LINEAR RATIO = 31.435
LENGTH BP (LPP) M 860.0	27.358	FROUDE NOV = .243
REAM AT AN LBX) M 126.0	4.008	CIRCLE K = 2.547
DEAL AT AT (TX) M 34.5	1.098	XFB/LWL = .515
DISPLACEMENTIDISITONNE 2223882 SW	69.616FW	XFB/LPP = .515
WETTED SURF. (5) M 50 114922.	116.299	XFF/LWL = .574
DESIGN SPEED (V) M/S 26.0	4.637	1/2 ENT.ANGLE= 0.COURAD
LWL COEFFICIENTS		LPP COEFFICIENTS
		CB = 580
CB = .580 $CPE = .575$		CP = .607
CP = .607 $CPR = .640$		1.8X = 6.825
CX = .954 $CVP = .771$		CVOL = 3.408E-3
CWP = .752 CVPA = .700	BX/TX = 3.6	51
CPF 1,575 CVPF 1,000	CVDI = 3.4	108F-3 FTE = .017
CWPA = .040 CWPA = .000	CS = 2.6	62 TTE = .685
	COEFFICIENTS	
CM ≠ .954 CIR	CLE M = 6.645	CIRCLE B = .974
CIRCLE T = .267 CIR	CLE S = 6.861	
STATION	A / A X	B, BX
		004
0.00	.000	051
1 00	075	. 102
1.50	121	. 160
2 00	175	. 227
2.50	.236	. 306
3.00	.307	. 397
4.00	.470	.580
5.00	.629	.738
6.00	.769	.868
7.00	.878	.954
8.00	.952	.996
9.00	.989	1.000
10.00	1.000	1.000
11.00	.996	1.000
12.00	.982	
13.00	.954	1 2 2 0 0 7 0
14.00	.0/1	947
15.00	./J/ 501	904
16.00	420	943
17.00	262	760
	088	. 627
20.00	0.000	0.000

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C) THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

•

..

.

...

APPENDIX A

ł

DETAILED DESCRIPTIONS OF THE SUBROUTINES AND COMMON BLOCKS

-

t

PROGRAM HYDRO

Purpose: To perform a series of hydrostatic calculations on a given model,

Calling Sequence

MAIN PROGRAM

Common Blocks

ADVOL, CONST, FANDT, STOW

Subroutines Called

APPEND, FTCALC, GIRTH, INPUT, MAX, OUTPUT, SINTEG, SPLNT2, SPPLY2

SUBROUTINE APPEND

Purpose: To calculate the waterline intersection with the bow or stern profiles.

Calling Sequence

APPEND (X,Y,N,X1, DRAFT, ND, POINT)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
DRAFT	Real	*~~~=	Input	Drafts of Ship
N	Integer		Input	Number of points in the bow or stern profile
ND	Integer		Input	Number of drafts
POINT	Real	(7)	Output	Longitudinal distance to profile waterline intersection
x	Real		Input	Longitudinal profile offset
X1	Real		Output	Longitudinal distance to furthest forward underwater projection (bow only)
Y	Real		Input	Vertical profile offset

Common Blocks

None,

Subprograms Called. SPLNT2, SPPLY 2

Detailed Description

This subroutine calculates the intersection of the bow or stern profile with the waterline(s). Also, a check is made to find the furthest forward underwater projection (i.e., a bulbous bow). These values are used as endpoints on the sectional area curves.

SUBROUTINE CUBCO2

Purpose: To calculate the coefficients of a parametric spline using endpointtangent information from SPLNT2.

Calling Sequence

Call CUBCO2 (SEG,CC)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
SEG	Real	(8,1)	Input	Array containing endpoint-tangent form data from SPLNT2
CC	Real	(14)	Output	Polynomial coefficients of the parametric spline

Subroutines called

None

Common Blocks

None

SUBROUTINE FTCALC

<u>Purpose</u>: To calculate Taylors' f and t and the half angle of entrance.

Calling Sequence

FTCALC (PSEG, SEG, AX, N, BOWPT, XM)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
AX	Real		Input	Maximum Sectional area
N	Integer		Input	Number of stations
BOWPT	Real		Input	Intersection of water- line and bow
PSEG	Real	(8,N)	Input	Parametric spline information for the sectional area curve
SEG	Real	(8,N)	Input	Parametric spline information for the waterplane area curve
XM	Real		Input	Distance from FP to midships

Common Blocks

FANDT

Subroutines Called

CUBCO2, SPPLY2

Detailed Description

Subroutine FTCALC calculates Taylors' f and t, and the half angle of entrance if the input variable ICALC is not zero. This subroutine may not give correct answers if the bow has an unusual shape.

SUBROUTINE GIRTH

Purpose: To calculate the wetted surface.

Calling Sequence

GIRTH (SEG, NS, TE, N, SPAN)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
SEG	Real	(8,40)	Input	Array containing the spline information
NS	Integer		Input	Array containing the number of segments to integrate for each draft
TE	Real		Input	Array containing the t value for the last segment for each draft
N	Integer		Input	Number of drafts
SPAN	Integer		Output	Array containing the girth values

Common Blocks None

Subprograms Called CUBCO2, SIMSON

Detailed Description

Finds the wetted perimeter of each station for multiple drafts. It interpolates points using the parametric spline data, and then calculates the segment lengths by using simpsons rule to solve the integral equations.

39

SUBROUTINE INPUT

Purpose: To read in the data

Calling sequence

Call INPUT

Common Blecks

ADVOL, CONST, FANDT, STOW

Subroutines Called

None

Detailed description

This subroutine reads in all of the data, and scales the model offsets.

• - -

SUBROUTINE MAX

<u>Purpose</u>: To find the station with the maximum sectional area.

Calling Sequence MAX (SEG, NPT, YVAL, XVAL)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
NPT	Integer		Input	Number of points in array
SEG	Real	(8,NPT)	Input	Parametric spline information of the sectional area curve
YVAL	Real	*	Output	Maximum sectional area
XVAL	Real		Output	Longitudinal position of the maximum sectional area value

Common Blocks None

Subroutines called CUBCO2

. . .

SUBROUTINE OUTPUT

Purpose: To write out the results of the hydrostatic analysis on a ship model.

Calling Sequence

Call Output (VOL, S, WP, AX, BX, TX, AM, BM, TM, TMF, TMA, STA, BEAMS, SECAR, XPT, XFB, XFF)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
AM	REAL		Input	Sectional area at midships
AX	REAL		Input	Maximum sectional area
BEAMS	REAL	(40)	Input	Waterline beam offsets
BM	REAL		Input	Beam at midships
BX	REAL		Input	Beam at the station with the maximum sectional area
TM	REAL		Input	Draft at midships
TMF	REAL		Input	Draft at 0.25 LWL
TMA	REAL		Input	Draft at 0.75 LWL
TX	REAL		Input	Draft at the station with the maximum sec- tional area
VOL	REAL	(3)	Input	<pre>VOL (1)-Volume forward of amidships VOL (2)-Volume aft of amidships VOL (3)-Volume forward of the station with the maximum sectional area</pre>

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
SECAR	Real	(40)	Input	The station sectional areas
WP	Rea1	(2)	Input	WP (1)-Waterplane area forward of mid- ships WP (2)-Waterplane area aft of midships
S	Real		Input	Wetted surface
XFB	Real		Input	Distance from the FP to the LCB
XFF	Real		Input	Distance from the FP to the LCF
XP T	Real		Input	Distance from the FP to the station of maximum sectional area
STA	Real	(40)	Input	Stations distance from FP

Common Blocks

ADVOL, CONST, FANDT

Subroutines Called

None

Detailed description

The results of the hydrostatic analysis are printed in English and/or metric units depending on the value of the variable "MET". Both ship and model scale data are presented, and the water densities are assumed to be 62.4 lbs/ft for the model, and 64.17 lbs/ft for the ship.

-- --

SUBROUTINE SIMSON

Purpose: To integrate using Simpsons rule.

Calling Sequence

SIMSON (DIST, VEC, N, VAL)

VAL	Real		Ou tput	Value of the integral
N	Integer		Input	Number of elements in VEC
VEC	Real	(N)	Input	Array of values to integrate
DIST	Real		Input	Interval distance
VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION

Subroutines Called

None

Common Blocks

None

. _ .. .

SUBROUTINE SINTEG

Purpose: To integrate a parametrically defined curve,

Calling Sequence SINTEG (SEG, NS, TE, N AREA)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
SEG	Real	(8,1)	Input	Array containing the parametric spline information.
N	Integer		Input	Number of integrations to perform
NS	Integer	(N)	Input	Array containing the last segment to inte- grate to for each integration.
TE	Real	(N)	Input	Array containing the t value for the last segment to integrate to for each integration
AREA	Real	(N)	Output	Array containing the results of the integra- tion

Subroutines Called

CUBCO2

Common Blocks

None

			^y 1
Detailed description			ſ
This subroutine	evaluates	the Integral J	f dy where
f = f(x(t), y(t)), a	series of	parametric spl	ines.

-

4

45

SUBROUTINE SPLNT2

<u>Purpose</u>: To fit cubic parametric splines segments through a set of data points.

Calling Sequences

Call SPLNT (SEGS, P, NP, NDI, ENDI)

VARIABLES	TYPE	DIMENSION	USE	DESCRIPTION
Р	Real	(2,NP)	Input	Array of (x,y) points
NP	Integer		Input	Number of points
NDI	Integer	(2)	Input	Indicates whether slope at first or last point is specified NDI (1)>1 slope at first point is specified NDI (2)>1 slope at last point is specified
ENDI	R e al	(2,2)	Input	<pre>Slope at first or last point (if NDI>1) ENDI (2,1) - DX/DT at first point ENDI (2,1) - DY/DT at first point ENDI (1,2) - DX/DT at last point ENDI (2,2) - DY/DT at last point</pre>
SEGS	Real	(8,NP-1)	Output	Array containing the parametric spline information in endpoint tangent form

Common Blocks None

Subroutines Called None

Detailed Description

The subroutine returns the spine information in endpointtangent form. It can be changed to a polynomial coefficient form by using subroutine CUBCO2.

SUBROUTINE SPPLY 2

Purpose: To find the intersection between a curve defined by a parametric spline and y = constant line

Calling Sequence Call SPPLY2, (Y, SEGS, NSEGS, PT, NINT, TINT, INT)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
Y	Real		Input	Y value intersecting curve
SEGS	Real	(8, NSEGS)	Input	Array containing the parametric spline information
NSEGS	Integer		Input	Number of segments
PT (1)	Real		Output	X coordinate of the intersection
PT (2)	Real		Output	Y coordinate of the intersection
NINT	Integer		Output	Index of segment in which intersection occurs.
TINT	Real		Output	Value of t parameter at the intersection
INT	Integer		Output	Error return = 1 Intersection found = 3 no intersection

Common Blocks None

Subroutines Called CUBCO2

Detailed Description

The t value corresponding to a given Y value is found, and is then used to calculate the X value corresponding to the Y value.

COMMON BLOCK ADVOL

FORTRAN SYMBOL	MATH SYMBOL	TYPE	DESCRIPTION
х		Real	Longitudinal distance of the stations from the FP
SS		Real	Station spacing
XM		Real	Distance from FP to midships
EXVOL		Real	Extra volume to be added to certain stations
XXL		Real	Station numbers to add extra volume to
NSTAT		Real	Numb er of st ati ons to add extra volume to
EXWET		Real	Added wetted surface

• ••

COMMON BLOCK CONST

FORTRAN SYMBOL	MATH SYMBOL	TYPE	DESCRIPTION
XLAM	λ	REAL	Ship to model scale ratio
XLPP	Lpp	REAL	Length between perpendiculars
XLWL	LWL	Real	Waterline length
DENMOD	ρg	REAL	Model water density
V		REAL	Model speed, knots
MET		Integer	Printout control for english or metric units
XLP		Real	length of parallel middlebody
N		Integer	Number of stations
MODEL		Character	Model number
TITLE		Character string	Title for output

. . .

COMMON BLOCK FANDT

FORTRAN SYMBOL	MATH SYMBOL	TYPE	DESCRIPTION
ENTA		Real	Half angle of entrance, degrees
FTE		Real	Taylors' f
TTE		Rea1	Taylors' t

.

.

- --

COMMON BLOCK STOW

FORTRAN	MATH	TVDE	DECODIDATION
STABOL	STMBUL	TIPE	DESCRIPTION
Y		Real	Half beam offsets
Z		Real	Waterline offsets corresponding to Y
ICALC		Integer	Control for calculating the Half angle of entrance and Taylors f and t
IBOW		Integer	Control to indicate if bow and/or stern profiles are input
SF		Real	Forward station where draft is taken
SA		Real	Aft station where draft is taken
TF		Real	Forward draft at SF
TA		Rea1	Aft draft at SA
IPRINT		Integer	Print Control Variable
XB		Real	X axis offsets for the bow profile (longitudinal)
ΥB		Real	Z axis offsets (vertical) for the bow profile
XS		Real	X axis offsets for the bow profile (longitudinal)
YS		Rea1	Z axis offsets (vertical) for the bow profile
MM		Integer	Array containing the number of points per station.

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTUSROC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN. TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTUSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

