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Preface

This report is a sumary of discussions and reading undertaken by O.L. Weaver

and D.H. Sattinger during Cetober-November, 1979. During that period Professors

Weaver and Sattinger attempted to understand in what way spontaneous symmetry

breaking arose in the context of gauge field theories of elementary particles.

They were interested in knowing whether techniques of bifurcation theory could be

applied to the problem of spontaneous symmetry breaking in gauge field theories.

It was their feeling, after some discussions, that the symmctry breaking used by the

phyalciuts (a procedure known as the Higgs mechanism) is not precisely a bifurcation

problem in the usual sense of the term, but more a matter of fixing a gauge and

thereby reducing the amount of symetry of the problem. In other words, it is

not really a matter of "spontaneous" syrmetry breaking. Sattin~er and Weaver

felt that it would be useful to compile the results of their discussions in the

present form for possible future reference.

They thank the U.S. Army research office for their support in these studies.

Minneapolis, Minresota
November 1980
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Electrodynamics and Abelian Gauge Field Theories.

0. Units of measurement.

In mechanics there are three fundamental quantities, mass (m), length (4),

and time (,) , in terms of which all other quantities may be measured.

For example, velocity Is 4A " * , energy is mtl?, 2 , action is mr " .

In quantum electrodynamics there are two characteristic quantities,

namely c , the velocity of light, and h , Plancks constant, which has

the units of action (energy X time). There is no third characteristic

quantity, as is often the case in fluid dynamics, so the equations of

electrodynamics cannot be written in a completely non-dimensional form.

But if we choose c as a characteristic velocity and h as a characteristic

action, then h and c disappear from the equations of quantum field

theory, and all quantities can be measured in terms of one unit, for example

time. Since h has dimensions of energy X time, setting h -1 in effect

makes the dimensions of energy r-1. Similarly setting c - 1 gives

length and time equivalent dimensions. From E = me2  (or E - I w2 )

2
we see that, with a - I , mass has the dimensions of energy. Recalling

that e2 /hc is a pure number (the fine structure constant when e is

the charge of an electron) we see that charge is a pure number in these

units.

Finally, in this choice of units the energy and momentum operators are

1 Pi

The h-vector xz is x° t X1  x ? -yX 3  s.

AMA-



1. Euler-Ligrange equations

The equations of motion of field theory are derived from a principle

of least action

where L " iS'.rJ' d$a'bt*a)dtdldx2dx3

a w ,..., O, 0,1,2,3, and b& - . 2he Lqranian density It

has dimensions EC" 3 , so that L has the dimensions of action. b

transforms as a covariant 4-vector under a Lorentz transformation. The

Euler-Logrange equations 8L a 0 are

M -b (h )  = o (2)

2. Currents and Conservation Laws

Consider a variation in the Zagrang a due to a continuous trans-

&
formation group acting on the fields 9 . Differentiating at the identity

w get

IE 8 6 +Is ML 5 J (3)
a 50 P a) l

If the transformation group Is spatiallyr independent (i.e.* a gauge
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transformation of the first kind). then 5, a 6 84a . Furthermore, if
lb

a Is a solution of the Euler-Lagrange equations, then (2) holds, a d

M-Eb +-~.- be*

Defining J -: 8 £ ve get
a

b jb JP ()E

If ve is invariant under the gLiven transformation group then 4 = 0

and we obtain the conservation law

This is a special case of Noether's theorem.

3. Mass term

Quadratic terms in the Jegrangian density e correspond phyicall

to mas terms. To see this let

me bpb 4 4u(4)(

-]'~,.
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ha thb form kinetic minus potential energy. (Actually, energr/unit

volume). The Euler-Lagrange equations for are

Q24 (7)0

where

Q2 2

ip xI

Now look at a plane wave 4=Ae ,

S. -
Pjh -pox+1 i

(pO (E,') p)

We find

[I4 (_E2 +p) . (8)

The equations (7) describe a free, relativistic particle. Comparing

(7) and (8) ye see

bU

For a free relativistic particle - 2 2 , and therefore



bU. 3 2 4  2f
N" m 2

where m 13 the rest mass of the particle.

In this heuristic argument we have tacitly assumed that a free particle

my be formed as a superposition of plane waves; hence the equation (7)

is linear and U is quadratic.

ii Carce

To describe charged particles we use a complex scalar field. The

Lagrangian density is

The equations of motion are then

and for a free particle UV m,*•

This Lagrangian density is invariant under the gauge group

U(M: 4- e 5 , 4*ee e where w is real. Let's compute the cons'erved

current JO Taini an = 2 * we obtain

t Nua



(-s* + olh4*4) 
0i

In particular = 2 I% is the charge density. Note that ift

is to have dimensions F/,3  must have dimensions , ; then

JO has dimensions r-3 , -3.

5. HFtiiltonian formaulatlon

The Hamiltonian density is obtained from as follows:

Define a a a Then( ,a)

=E x a(,o'a) -i
n

In our case, i=, =b o t* 04 Therefore

b ~4 M 04b
6. M. + "4 + Theror

*x 4 + u 0

"Quantixition" means interpreting ff, as self-adjoint operators that obey

[R(x'),b(x)J) --. (x-x

'a. . .. Umm t
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The space on which they operate is left for later. For now we look at

the current, specifically, at jo

Because i j .°(x)d 3x . 0 * fo(x)d3x is a constant operator.

6. Gauge transformations and electromanetism.

Classical electrodynamics is invariant under the gauge transformation

A (x) A lb) + b A(x)

for the only observable quantities are the field strengths

F =b A - bA . In quantum mechanics we must determine the correspond-

Iug gauge transformation of the wave function. Consider the case where

the scalar (electric) potential is shifted by a constant: A - A + X
0 0

Then the energy of a particle of charge e is increased by el . If

that particle is described by a wave function 4 , what operation must

we perform on * to increase the energy by ek ? Recalling that the

energy operator in quantum mechanics is we see that the trans-

formation e 4 e t is the required gauge transformation. In general,

then, we should like our theory to be invariant under gauge transformations

of the second kind

-MOM- *-, -



*a(z) -i e A(x) a(z)

(9)

A k(x) -A is+ 61 A

Note that * then transforms an

9a .41.e A(X)"

In our example above this suggests that a particle described by the field

might be one of opposite charge, since its energy is decreased by

e. However, it is not quite correct to interpret * and f as

representing oppositely charged particles when viewed as quantum fields.

7. Structure of gaue invariant Lagrangtans.

The variation 8Z of Z under a gauge transformation (9) is

i - ~~ a  & A- * a a ) + -bZ .a( iea,( a )

a -b(b *

O kIL

Here BA u A; bvA .bvA -*0 bt -le iA*a and

~.
8b I & b- ie l a)

' ..,
4' - . . . . .-. - , ~ .-....- I..
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cut=a E -- '(-iea Als) + --- --(la)(-iea Ab ,ta )

b#~ ~ ALOba)

+* b (-ieaq )blb A+ - b1 A
b(o.a) b ̂

Nov ass ae is an extremal; then

V - bl U a 0

and

'AI A ^ E~ - -ea a' I

+(b')( E -iea + ,
a bbOpts

b(b,{ A oP.
V

Since A in an arbitrsry function of space time we may draw the following

conclusions:

1) Fra the choice A - eonst. we derive the conservation law

- . ' - 4
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5p Etea - a Ia = 0,

a

or (o)
61 J& 0~

2) The coefficient of 6 A must also vanish, which leads to the

relationship

= a (11)

where J' = ea bL 8a b(b 9 a)

3) The tern (b1 bvA)
T((vA ) must vanish, so

(12)

must be anti-symetric in 9 and v This means that the dependence-of

on b A is of the form I=-zOVAj - 5b1Av)

From

E i lea ,.0 t

we get that a depends on Ap Oa and bpt a  only through the quantities

D fa 6 9a + Lea A0a

....... ...... ----

Wii
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These ar.i caled the gauge covariant derivatives of * . The Ap's are

U "-. 'ailed the gauge potentials, and the four-curl

I T = bA v - bvA to called the field strength. Under gauge transformations

of the second kind these quantities transform as follovs

t ' a -e&A * a

A' A +bA

(D )' .e-i D a

I

The gauge covariance of D means (D 9 a) '  D' #*a

8. Charged scalar field coupled to the electromagnetic potential.

The Lagrangian = b * - U(s. In nov replaced by the gauge

covariant Lagrangian

D4*D - U( .4 *) + S(F)

vhere D1' = bl ie A O The equations of motion are derived by taking

variations of Z relative to , and A . To determine 4(F_)
1A&

note that our equations must read

bi, b~bli U A

The left hand side of this equation should be b FO . £(F ) is the

a &
Lagrangiah of the field equations in a vacuum. In the electromagnetic

case V F .

SkV PV
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II - Non-Abelian Gauge Theories.

Suppose we wish to describe a system of spinless particle fields

which we denote by a vector field : V4 -V where V is an

n-dimensional vector space. We assume the Lagrangian is invariant under

a gauge group . so that 4. ,b-p) = ;(t V9') where p'= gy,.gE A

By analogy with the electromagnetic case we suppose that these particles

interact with a force field in a gauge covariant way, that is, so that

the complete LA~rangian is invariant with respect to gauge transformations

of the second kind. In order to achieve this we must replace the partial

derivatives b by gauge covariant derivatives D given by

where the Q are matrices. In fact, if the infinitesimal generators

of the gauge groupare .k , k=l...,m we may take Q in the form

a

Gauge covw1tance then requires the relationship

(D' (D

or

QIJ U.

--
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This leads to the transformation law

1ha la --1 0

Remark: Let us verify that g b g is an element of the Lie algebra of

S . Writing

g(x) - eal(x)T1 +d2 (x)r2 +. .+ M(x).r

we have

- o -•

NfOw for any matrix A(t) , *A(t) d *-A(t) -f(AdA)A , where

f(z)= = . + Tr " Thus f(AdA)i -A+41A A] +-L [A,[Ai]]+...

Applying this relationship to the case at hand we have

g -b~ot -f(AdA) "

vhere 1 . tor+O • Since A belongs to the Lie algebra,

£ AL also belongs to the Lie algebra.

The 4-potetials Q are the analogs of the electromagnetic -potential

AI . The analogs of the electromagnetic field strengths are obtained

by con3idering the commutation (D *D] operating on C . In the
vL



electrOWAVCetIc case D1  + e and

(D ,D ]p-eF pe(b A -6 A)
lV PbV 1h V VP

The left side is clearly gauge covariant so therefore

(F eO -a F P #F e i~c and F*=e 1 0 F e- 0 =F .That is,&W A

the F are gauge invariant in the Abelian case.

In the non-Abelian case, however, the commutator is

[D D =e(bN b

+ e' Q? -r,

e* a a O
-~~~ e Q K eQ .C'~

where CCO Y  are the structure constants of the Lie algebra. The field

strengths are given by

S -" b Q a l V' Copy

These field strengths transform according to the law

F 'a g g .
pyv PLV



In the electromagnetic case the quantity F 14 is quadratic in

the derivatives 0 A and invariant under gauge transformations. In
P V

the non-Abelian case the quantity

Tru

is also quadratic in the derivatives. (Of course, there are other

invariants as well; if we write

a F cx

then the matrix transforms as F = gF £ 1 and det F is equally

an invariant under gauge transformations.)

Equations of Motion

The equations of motion for the free Yang-Mills fields are derived

in this section. We first summarize the notation we have already intro-

duced.

The gauge potentials Q (x) take values in the Lie algebra of the

structural group G , and we write them

(x)u (X)

The field strengths F (x) are obtained from the potentials:
IhV

L -



W - s WxT
0 14V s,

F~(X) a bt&QSNx) .b Q(x) + e[ q$ (x) (x) a
,,' V

It is often convenient to write instead

f Q,,(x= Qb(xx)I&(=) 0abc

where Ca be  are the structure constants of the Lie algebra of G

Remember that vhile Q (x) and Qv(x) do not ccmute. Q and

do: they are ordinary (real) functions.

The Lagrantgan density for the free fields is

3.= A lS()jIpL(X)

- - Tr Fx)€(z) -

From It we obtain the field equations in the standard way:

b -M a 0'.

Now

11eve

b qb

- -.. ____.2* l'



The calculation of Is a bit l=6er, g vg'vg

Thus the equations of motion are

or, rearranging indices,

bhiNO + a Qr r.4p C a r s 0

These are the equations we sought. In matrix form they are

6 lk F + , 14,01j . o

or

lDFO'0m

'I - *"O I 0



III. Masaless particles in gage invariant theories.

We have seen that quadratic terms in the Lgrangian are interpreted

as mass terms for a relatistic particle. If qa are a set of particle

a
fields and V(q.) is the potential, then, shifting the (P to a critical

pobt of V and recombining the cpa. so that the Hecsian is
by bi

diagonal, the eigenvalues of this Hessian act as the squares of the

masses in this theory:

?V 2 12 2 2 2
a b .L,'y) m2"r

In order that all the masses be real, we must cperate at a local minimum

of V.

Goldstone Bosons. If the Lagranglan d(ia,b qAi) is invariant under an

N-parameter gauge group 1 - that is qa = T(g)i for elements g
a a

of a Lie group g , then V(Tg a) = V(ca) is an invariant function

under the group action. Consequently we must expect that in general

some of the eigenvalues of the Hessian of V at the critical point are

going to vanish. This can be seen as follows.

Let the group parameters be ul'''" and suppose

is the group action. Then

q j.-... . 4.. .. ..... . . .



Differentiating once with respect to the variables 41we get

or

IV- Tijl,... I

parameters g V...,gS We get

At a critical orbit W a 0 so this reduces to

2v b*r 2 4

at the Identity, where L , is the Lie derivative

4,
Lr's181 .. g1 0

i7"



-20-

2

sterefore the Dull vectors of the Hessian b(Pi are the vectors

Lrs cps; but these vectors span the tangent space to the orbit of critical

points of V under the group action. The dimension of this tangent space

is v - din J- dimJ , were J is the Isotropy subgroup of the

critical point, and dim J is counted as zero if the isotropy subgroup

is discrete.

If we choose as a new set of basis vectors in q-space the eigenvectors

of the normal form of V is

VO,2 2 j2 2

and the fields 1 " -,v have no mas terms. They therefore describe

massless particles, called Goldstone Bosons. They are extraneous because

they do not really occur in nature.

Massless Vector Mesons

Massless particles also arise in quite another context when one

tries to couple vector force fields to scalar fields in a gauge -

invariant way.

S upose we are trying to construct & theory for a set of particles
1 n

C.. , hIch is Invariant wider some gauge group k of dimension N

By analogy with the electroagnetic field, we couple force fields Qa

a-i.N to the 4.."p In a gauge-invlariant way- that is, so

that the total Lagrsnan

MINIMUM'



-21-

I&'D

Is Invariant under gauge transforumations of the second kind

where the w are functions of the space-time variables x and the

,rare the generators of the gauge group.

As In ill this In accomplished by introducinS the gauge covariant

derivatives

D P P +e q;

where the Qare the gauge potentials. The Lagrangian

- 49 ~ ~D qc) ,is then invariant under gauge transzformtios

of the second kind provided the Q transform according to the rule

q gq hg1 +66 -1 (Q Q 1 )

If the dependence of se on D k pin of the form D 1kaV Dlkcp&

then, expanding owt, one sees that there are no quadratic terms In the

Q.The particles associated with these fields are thus massless-

called massless vector mesons.
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These massless vector mesons are equally undesirable. for they
1

signify long-range forces (forces that decay like -) rather than the

short range forces that decay like e which are typical of nuclear
r

forces. That is, we expect that the force fields which describe the

interactio, of the p-prticles to be transmitted by massive particles.

We thus see that massless particles are inherent in any gauge-

invariant theory. Massless particles occur both as vector mesons of the

fields and as Goldstone bosons of the particles. These massless particles

can be eleminated (or at least reduced in number) by a procedure due to

Higgs which is usually called "spontaneous symetry breakdown". What

is involved is to break the gauge-invariance of the theory by fixing the

gauge in an appropriate way so as to eliminate the Lassless terms. In

fact, It should really come as no surprise that in the end we do not wait

that arbitrary choice of gauge. If the gauge were in fact arbitrary,

then the distinction between the particles described by the 9's would

be lost: Max would see a proton where Sam sees a neutron. The nature of

the particles of the theory would simply be an artifact of the choice

of gauge - that is, of the way in which they were measured.

So the building of a gauge Invariant Lagrangian is only a preliminary

first step, not an ultimate goal. The next step is to fix the gauge in

a way that eliminates the unwanted massless particles of the theory.

If the field theory is to include the electromagnetic interaction then at

the end we still want the theory to be Invariant under a one-parameter

gauge group. On the other hand, If no massless particles are to occur, the

final gauge group should be trivial (or at least discrete).
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IV

Symmetry breakin and

Elimination of Nassless Particles

In this section ve discuss a method, generally ascribed to

Higgs for eliminating sane or all of the massless Goldstone bosons and

giving mas to the massless vector mesons. The procedure may be outlined

as follows. If U(y) is the potential for the boson fields * , let us

first minimize U(y) . Suppose U takes its minimum at a point

C] 3n (c now is regarded as a vector In 31P) . Due to the gauge

Invariance of the theo.ry U(Tg ) - U(4) fw q y, so the action

of the gauge group on a generates an orbit (Tg a) - • As we

observed In the previous sections, the tawgent directions to 6a give

the Goldstone bosons.

Let us first suppose the gauge group acts transitve4 on the

rspace, so that Ga - .P Then we can fix the gauge so that the

miniam has the form

For example, suppose the gauge group is SU(2) and that it acts on

2R via the representation D' . Then we choose the gauge (i.e. we

fix a particular gauge) so that the particle field as the form

everywhere in space-time.
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Then

Dcn= ( ) e Qa& (r 0

o ( 00 0 -1~ (0 1 0
S 0 1 "2  00 r3  -1 0 0

-1 0j0 00 0 0 0

IeAI 23
D e A

3 tI3 222 1 1) q)

(D 9) + (D~'p (P b 3 b, 3) +e(~QI.+ QQ 1 (p

Nov the Lagrangian takes the form

I1p V 2. OT3 (e~Tp3)

,22 2 1 23 2 2+e ((Q )+ (Q))((F) + U(q(

where eans Q- ; etc. Now in thifo*rm, where the gauge

has been fixed, we minimize U(;) where (P y assumption this

occured at cp 3 a So write q=a +p where p sa function of x



Then w ha the form

- +1 )2

+e2 a 2 Q2 )2 +. (q) 2) + (ap

+ (p2 +*2ap ) 4?(() 9

From this form of the Larangian we see that there are no massless

bosons and that two of the three vector mesons have acquired a mass

22
2e a

The final Lagrangian still possesses a gauge invariance of the second

kind, but where now the gauge group is $0(2) - the rotations about

the 3-axis. This group is in fact the isotropy subgroup of the minimum

(0)of U For these transformations p' =p and p' = 60p is

therefore gauge invariant. Let us see how the Qa transform under this

restricted gauge invariance. The Q s originally transformed according

to the rule

-1 G-1 + g-1

or

We ? g a? £ 91 - (0 gwgl
a o

Now restrict g to a gauge transformation of rotations about the 3-axis:

MOM""
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g (x) e

Then bg e 3 (b ).;(e ea 3(b O)r e-(r 3 (a)r

Now note that

e 3Te ~Cosar + sin a T

e 3 'r e 3 sin a + Co0a012

a~ Or13
e

33

Therefore

q I a q1 (Cos a1.. + sin ai)

Q2 (-sin a -r+ Cos a -r2)

Q313 + (b)' ,

and

1' 1 2q -Cosa Q - sin aq

2' sn + Cos aq

Q 3 -Q3 +b a
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Therefore under the restricted gauge transformations the p-field

is invariant, q and Q transform as a rotation, and Q3 transforms

as the electromagnetic potential. Note that Q3 is the field component

associated with the massless particle.

In sumary, we have eliminated the massless Goldstone bosons

and given a mass to two of the vector mesons by breaking the gauge

invariance of the theory - that is, by fixing a gauge. The resulting

theory then possesses the gauge invariance of the isotropy subgroup of

the minimum of the potential U

2.°
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Spinor Analysis and Covariant Wave Equations

Notation.

Points In space-time are denoted by x , coordinates x'(0=0,l,2,3).

The vector between two such points, s - x - y , defines a relativistcaly

invariant metric denoted by (s,s) :

(s,0 ga' 81s (80) 2  a a

The mtric gm (l1 1- . There are four classes of intervals:

(a) (s.s) > 0 Time-like

(b) (s,) < 0 Spacelike

(c) (s,s) = 0 Lightlike (s ' 0)

(d) s = 0 Null vector.

Classes (a) and (c) have two pieces: 80 > 0 and s<0 The set

of points equipped with the above metric is called Minkowski space,

or space-tim.

i1. The Poincare group 0 is the set of linear transformations

of Mbnovskt gece into itself such that the distance between any two

points is preserved. Thus

0: M -M

X'¥ .- xo ty

and ,N-y' - ( .x-y)
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An element of 9 is written (a,A) and its action on a

xe X is

(a.A): x-x, - a x

Thus 'a' is a translation in space-time a4 A is a It X real matrix.

Exercise: Show (a.A)(a'.A') - (a+Aa'),AA') . Important subgroups of

0 are the translations, T - (a., I)I with I the unit matrix, and

the Worentz group, L w ((0,A)l . Exercise: Show that T4 Go

2. The Lorens group Is also the subgroup of GL(4 ,R) whose elements

A obey

AT 9 =g.

Exercise: Show this. Written out .zplicity it is

AP V T ' ° ° ' ' ' T), - " Ao A *°TU -a

Exercise: Show tha 3A) ) 2

Exercise: Sbow that det A + I

r-.
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The last two exercises and the observation that A00  and det A

are continuous functions of A show that L is split into four disconnected

0 ,parts: L;+ A a o I- e

-A <-1 det A-1+ 0-

Ifweput P - 0 T ( 1  0) then we can write

LTL, + M p + PTj7 The cocponent 1, Iscontinulously

L t  LS

connected to the identity and in called the proper (det A =+1) ortho-

chronous (A0
0 > 1) Lorentz group. It is connected but it is not

simply connected, as we will see below.

The Lorentz group L + is a homomorphic image of SL(2,C).

We establish this result In this section. We first map Minkoski

space into the set of Hamltian 2 X2 matrices:

-x Z x - l.;
x" x+i X0o-- /
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(*) x- ~

where 0 1 0 )) = ( 1 1) Using the
,,,01. 10o o1, 0, 0 1o

metric ge" we ciun raise the index on 0 : = (I 44) . We can find
IJ

the set (I ,-a) another way which will prove useful later:

let = (0 ) =- € • Define 1 = a -0 and
10L

a =(i,4 IS(Io . owe have

I.4

Now Tr 0 o = ov = 2 6 ' TrOg = 2 0 2 . Thus the mapping *)

can be inverted:

1

The inner product (x.x) is captured easily:

• 3) (x,x) - dot x

tFinally, we associate AE L; with AE SL(2,C) as pwromised in the

apening sentence:

~~1
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xv A XA* ,AE SL(2,C)

Is linear and preserves the inner product because det A =+1 (We

could allow det A -ew , but this gains us nothing, for

e ia2 I map x - x.1 Thus, if

A: X-X1' AX

we bave

x~=Tr A xA* ~
- 2 -

XV (ITr AG a*

2 V&

Xt AvO

Exercise: Find A for AE SON3

Exercise: Find A for A = boost along z-axis.

Exercise: Show that the mapping A - AA is a homomorphism with kernel

Exercise: Prove that A~ Lt (and not, saLY,# L,

0".ar 1r3 ~. The iroup SL(2,C) acts naturally on a two dimtinsional

comue vector apace v - ((): v ec) via
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A: V-'V =Av

= 0 , C and =1,2.

If AE 8U(2) then v transforms according to the two-dimensional

representation D2 of SU(2) , so we say v carries spin ift . it is
t

a two-valued representation of L; , for - AA T Thus

A: v-.V' - + AV , although A: v. Av

Consider the piroduct va 2 = a a This transforms like
'12 2

A: w AAw

12 311 V~2 502

Notice that w is xymti in its indices. On restricti~ng A to 50(2)

we see that w is the symtric product of two spin-! objects, so

co carries rpin 1 . Frther, this is a single-valued representation of

L; This object m belongs to V 0 V . More generally we construct

objects belonging to V V ... V, i.e. %I %0totally symmetric

In the k-indices ~a 1 a =1,2 . These are called sUinors 'with k

undotted Indices. (We will get to dotted indices below.) Using the

mtrlx a Introduced In F3 we can raise and lower Indices

01

V- 0* v2 a C 2
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(To keep signs straight we reed a convention for c with upper and

lower indices.)

..5. Spinors II. There is another "natural" action of SL(2,C) on av1

two dimensional complex vector space V - ): v cJ:
v2

A: v -v

V. -' ve v
a a

Uhen restricted to SU(2) this is equivalent (though not equal) to the

action discussed in the preceding section.

AE SU(2) A= = i)  A [-01= [- 0 1A

so D1/2 w In fact AE = E A for AE SU(2)

E AE -= (At)- when det A = 1 As before we can construct

cpinors with 4 dotted indices belonging to VeV ... V that satisfy

L-factors

A: w -w W

Again, we masy use e to raise Indices

v=C V. * +1L
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We stress: as far as SU(2) is concerned, spinors with t dotted or

t undotted indices carry spin t/2

46. SPInors III. The general case is a spinor with k undotted and

4 dotted indices, symmetric in each class separately. An example is

x itself:

A: x -x'= A x A

x t A ' ,, AA of ,.,(A) .

Here (k,t) = (1,1) . Under SU(2) it splits into a spin 1 04)

and cpin O(x o ) part. That is,

(k.,t)SU(2) -(k)e(t) . (k) is the k+l dimensional

unitary rep of SU(2) . Thus

(k.'O 1 61(2) - (k+0 9 (k +t,- 2) 40... 0(1k-tj)

Again we mi raise indices with c . It is often convenient to use

epinors with all udotted indices lowered, all dotted ones raised:

al... ck
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The transformation properties are

A: v -v'

-A " gl '
11 ... az

whereAmaAa * *

Exercise: If A* = A-1  how is A related to A ? Hint: A is

.iqv'2 o i
unitary, so work this out for A a 0 e-I /2I and

A (c:/2 a0/2• Then all unitary matrices may be found by-80/2 c 0/2

composition of these. In fact, e is precisely

the matrix P such that AP = PA for AE SU(2)

.1
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VI. 2he Relativistic Gauge Oroup wan it Lie Algebra.

We begin byr reviewing the results of §2, this time with somewhat

greater precision. The gauge group 41 consists of finite transformations

in the Ide algebra g of the structural group. The -raare a basis

for the Lie algebra of the structural group.

The gauge group acts on fields * through a representation D

of j as follow:

g: 9-U V= -D(g)$

($')&- D s(g)# (6-1)

The mnatrixz D'g) a(~x)Ta , where T. are generators of the

representation of g associated with the rep D of #j . We take Ta

to be skew-Hernitian and wa(x) real, so that D is a unitary rep.

The elements of .9are therefore the g valued functions on

V4 The comutator of two elements co, e .0 is thus

a b abc
10.01 - p - 0 (x). We c y

Vhr 0 abo are the structure constants of g *We call .0 the gauge

algebra.
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I

In general the *'S my also transform non-trivially under the

Lorentz group, as discussed in 65. For example, in §2,3,4 we dealt

with fields * that transformed merely as scalars under the Poincare

group 0:

A -
a

M.ore generally the fields a may transform as a spinor under the
a

Poincare transformations

(UA ) =Sla~x (6-2)7

where S(A) is a representation of L if A is a Lorentz transformation,

and S(A)= I if A is a translation. A'7x is x-a if A is a

translation.

aIn the notation 00the Greek indices are the spinor indices a'nd the

Roman indices are the gauge indices. Lorentz transformations act only

on the a-index and gauge transformations act only on the a-index.

Defiuition: The full group of gauge and Poincare trarh3formations is called

the relativistic gauge group. We denote it by pi,

Below we use the notation gA to mean gA(X) g(A1x)A A
Pro.sition, 6.1. ) U, U U U U

_I S1A-

_____A_____
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ii) The gauge group J is a normal subgroup of QJ'

iii) GA' is a semi-direct product of 5 and •

Proof. To prove () we proceed directly:

(U _U .u u )o (x)

(U v (U -1 U)(. U  ,,,bSA gA 0

= Dab(g'l(_x))(U 1U U)b(1)
A 9 A 0

eD(g 9-(1))S".,( (X1tUU*)b.(i,

=D#(g '())S YO, (A71)D (g(AX))S a *,A)

- D8~~(x-g(M),0(x)

=(U -1 *
g SX-1

is invariant under inner automorphisms of Pk (invariance under inner

automorphisms by .0 itself is trivial). Consequently J is a normal

subgroup of Vk . To show that it is a semi-direct product let (g.A)

represent the transformation UgU • The product of two Cuch trans-

formations is then

. . . .. . . . . ... . .
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(g.A) (g',,') U UU U

U U U DU LUAU I
- A7AA

U U ,U U ,U

9 (g' AA)M
A g

Proposition 6.2. Let aoE b , let m belong to the Li.e algebra of
the Lorentz group Lt , and M the infinitesimal generator of the action

(6-2) corresponding to m . (We will compute M below). Let P generate

the translations. Then

(1) [wa] = P p(x) -a ,a(x)c 'rd

(ii) (P..J -QD J c I M

Equations (Li) and (iiI) show that the commutators of infinitesimal gauge

and Poincar4 transformations are in the gauge algebra. This means that

5 is an ideal in v ,. which we should expect, since j is a normal

subgroup of 0.1.

We do not need X but for completeness we compute it. Let

(U^9)(_.) ,(A)t,,(X"

A I+tU 8 - t '

U =I +u t •
A
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We have

(( + t)a(x) - (I + WCO to, (x - tm)

Couiaing coefficients of t we find

0# -aaXbP#a

Proof of (6.2). (1) has already been done. Pran (6.1)(i) ve have

(e.W9 le a$/) (z) = - em

where e(x)- 'm (x)T. Io replace by e" ,u, by t

and A by et a expand both loaes In power series; and collect the

coefficients of at . Keeping only lowest terms, we have

(I - NOXI- ti) (I + u) (1 t1)

- (X-am)(I +ams)
A

(I -st[m.w) (I - BM() (I + M(ze+ to_))#

- (Z,+t(b 0 o)UP Vx40

ThereF (N.m] I an Infinitesimal gauge transformation, nnely
-(b up)30j)  art (ii) is even easier to

IL 'x ). Prt I eaier prove.

• 4



Action of the relativistc Lon ' t-Lbg

potentials Q and the covariant 4wt' Gives

An we saw in 12 the gauge potentials Q tranform according to

the lay

Ob T% lb ** 4I

This action is not linear, though It is a group action. In fact

°o .: % ,--,,,% ,,( . ,,(C- )
a*l. b o P..-O + lb a

. +
+ e 0 (e' e" ).

fTe Suftintesimal generator of Ulms (nolnear) action U found by

relaing to by tw and.expandi n topoers at t . The coefficient

of t to then the Infinitesima genertor of the action and to

b+-.
x q [b~ ba

We my foreally think of the s acorle fielda. In that cue their

welaig b o n epadD npan tt. Te oefcin



cimutator is fonel2 obtained by the methods of proof of proposition

6.2(i) end (Ili). ftat isa vd torn the product

and compute the coefficient of 8t • The result to that

7he covariant derivatives D bowever, transfom under a linear

aiction of the suie group; nuelm

D -edab •

and the inlitesimal generator of tie action to

* . ,,J- - 1m.. ,).

Note On tUs action is Ume m the D but nonlinear on the Q

Uhaer the ation of the P1U ,ar1 grow', the D trafom a a
I1I&-eot.u (also the Q,).

'Ij

+ , , . . ...* .. .. . + + +. + - .....


