1 080 SIFIED	NAVA TRAS	L POSTE ONIC CA BO K A	SCADE I	E SCHOO WIND TU ND	L MONT NNEL MO	EREY CA	TION AND	INITI	AL TEST	F/G 'S.(U) NI_	14/2	
	3											
		Ť										
						\Box						
			L 060 NAVAL POST TRASONIC C/ JUN 80 K F SIFIED	L 080 NAVAL POSTGRADUAT TRASONIC CASCADE JUN 80 K F VOLLA SIFIED	L 080 NAVAL POSTGRADUATE SCHOO TRASONIC CASCADE WIND TU JUN 80 K F VOLLAND	L 060 NAVAL POSTGRADUATE SCHOOL MONT TRASONIC CASCADE WIND TUNNEL HO JIFIED	L 060 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TRASONIC CASCADE WIND TUNNEL MODIFICAT JUN 80 K F VOLLAND	L 080 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TRASONIC CASCADE WIND TUNNEL MODIFICATION ANI JUN 80 K F VOLLAND IFIED	L 080 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TRASONIC CASCADE WIND TUNNEL MODIFICATION AND INITI SIFIED	L 080 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TRASONIC CASCADE WIND TUNNEL MODIFICATION AND INITIAL TEST JUN 80 K F VOLLAND SIFIED	L 080 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TRASONIC CASCADE WIND TUNNEL MODIFICATION AND INITIAL TESTS. (U) JUN 80 K F VOLLAND NI COMPARING CASCADE WIND TUNNEL MODIFICATION AND INITIAL TESTS. (U) NI COMPARING CASCADE WIND TUNNEL MODIFICATION AND INITIAL TESTS. (U)	L 080 NAVAL POSTGRADUATE SCHOOL MONTEREY CA TRASONIC CASCADE WIND TUNNEL MODIFICATION AND INITIAL TESTS.(U) JUN 80 K F VOLLAND INI INI INI INI INI INI INI I

LEVELI

NAVAL POSTGRADUATE SCHOOL Monterey, California

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TRANSONIC CASCADE WIND TUNNEL MODIFICATION AND INITIAL TESTS

by

Karl Ferdinand Volland, Jr.

June 1980

LILE FILE

Thesis Advisor:R. P. ShreeveApproved for public release; distribution unlimited.

80

10 21

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
AD-A09108	
A. TITLE (and Subtitio)	AL TYPE OF REPORT & PERIOD COVERED
Transonic Cascade Wind Tunnel Modifica-	Tune' 1980
tion and initial Tests.	6. PERFORMING ORG. REPORT NUMBER
7. ALITMOR(e)	S. CONTRACT OR GRANT NUMBER(0)
Rarl Ferdinand Volland Jr.	
Mari Parathand Volland, Ul	
. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Naval Postgraduate School	AREA & WORK UNIT NUMBERS
Monterey, California 93940	
11. CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
Naval Postgraduate School	(1) Jun - 86
Monterey, California 93940	105
14. MONITORING AGENCY NAME & ADDRESS(I dillorent from Controlling Office)	15. SECURITY CLASS. (of this report)
Naval Postgraduate School	Unclassified
Monterey, California 93948 $\pm \phi'/$	Se. DECLASSIFICATION DOWNGRADING
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr	en Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr	en Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr	m Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different fro 18. SUPPLEMENTARY NOTES	en Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in 18. SUPPLEMENTARY NOTES	m Roportj
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if neceseary and identify by block number	an Roport)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number cascade, transonic compressor, perforated W tunnel, shock wave cancellation	an Report)
17. DISTRIBUTION STATEMENT (of the obsitract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse olde if necessary and identify by block number, cascade, transonic compressor, perforated W tunnel, shock wave cancellation 20. ASTRACT (Continue on reverse side if necessary and identify by block number) The transonic cascade wind tunnel at Laboratory was modified by incorporting a p the upper nozzle block. The purpose of thi cancel the oblique shock waves from the cas	all, transonic wind the Turbomachinery erforated wall section is modification was to cade blades and to aid i
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by Nock number, cascade, transonic compressor, perforated W tunnel, shock wave cancellation 20. AMITRACT (Continue on reverse side if necessary and identify by block number). The transonic cascade wind tunnel at Laboratory was modified by incorporting a p the upper nozzle block. The purpose of thi cancel the oblique shock waves from the cas starting the supersonic flow in the tunnel. that the modification performed successfull established through the cascade blading whi flow at the tip of the laboratory's transon	all, transonic wind the Turbomachinery erforated wall section is modification was to cade blades and to aid is Test results indicated y. Supersonic flow was ch models the relative ic compressor. A
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number cascade, transonic compressor, perforated W tunnel, shock wave cancellation 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The transonic cascade wind tunnel at Laboratory was modified by incorporting a p the upper nozzle block. The purpose of this cancel the oblique shock waves from the cas starting the supersonic flow in the tunnel. that the modification performed successfull established through the cascade blading whi flow at the tip of the laboratory's transon DD (JAN 72) 1473 EDITION OF INDERSON	all, transonic wind the Turbomachinery erforated wall section is modification was to cade blades and to aid is Test results indicated y. Supersonic flow was ch models the relative ic compressor. A UNCLASSIFIED
 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in the superconduction of the obstract entered in Block 20, if different in the superconduction of the superconduction	all, transonic wind the Turbomachinery erforated wall section is modification was to cade blades and to aid is Test results indicated y. Supersonic flow was ch models the relative ic compressor. A UNCLASSIFIED ISMAFICATION OF THIS PAGE (Therefore The SI 4450

transonic operation.	
NTIS GRAMI DDC TAB Unermounced	
Be	
Distribution/	
Availability Codes Avail and/or Dist. special	
A 23	
	·.

Approved for public release; distribution unlimited

TRANSONIC CASCADE WIND TUNNEL MODIFICATION AND INITIAL TESTS

by

Karl Ferdinand Volland, Jr. Lieutenant Commander, United States Navy B.S., U. S. Naval Academy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1980

Author <u>Kul F. Vollai</u> Approved by: <u>Raymond P. Skreene</u>. Thesis Advisor <u>Mus F. Plate</u> <u>Chairman</u>, Department of Aeronautics

Science and Engineering 01

Sec. Sec.

ABSTRACT

The transonic cascade wind tunnel at the Turbomachinery Laboratory was modified by incorporating a perforated wall section in the upper nozzle block. The purpose of this modification was to cancel the oblique shock waves from the cascade blades and to aid in starting the supersonic flow in the tunnel. Test results indicated that the modification performed successfully. Supersonic flow was established through the cascade blading which models the relative flow at the tip of the laboratory's transonic compressor. A butterfly walve must yet be installed in the cascade exhaust to produce back pressures corresponding to the compressor's transonic operation.

N. Y.

Sec. Sec.

1

1

TABLE OF CONTENTS

فالمتها فالمتلقة والمتحد ومستقامات تقميم منعي كالمقتصف ومعرف فالمتقاص والمتعاولة والقلاب والمعارية

I.	INTRO	DUCTION	••	• •	•	••	•	•	•••	•	•	•	12
II.	CASCA	DE WIND	TUNN	el M	ODEI	L AN	1D						
	Insti	RUMENTAT	ION .	• •	•	••	•	•	• •	•	٠	•	14
	A. 1	INSTALLA	TION	• •	•	• •	•	•	• •	•	•	•	14
	B. 1	test sec	'I'ION	• •	•	••	•	•	• •	•	•	•	14
	c. 1	INSTRUME	NTATI	ON	•	••	•	•	• •	•	•	•	14
III.	TEST	PROGRAM	I AND	PROC	EDUI	RES	•	•	• •	•	٠	•	16
	A. (CALIBRAI	NON 1	ests	•	••	•	•	• •	•	٠	•	16
	в. С	CASCADE	TESTS		•	••	•	•	• •	•	•	•	16
	C. V	VAVE CAN	ICELLA	TION	TE	STS		•	• •	•	•	•	17
	D. 1	TEST PRO	CEDUF	E.	•	••	•	•	• •	•	•	•	17
IV.	RESUI	LTS AND	DISCU	ISSIO	N	• •	•	•	• •	•	•	•	19
	A. 1	DATA PRE	Senta	TION	ł	• •	•	•	• •	•	•	•	19
	B. I	data ana	LYSIS	;	•	• •	٠	•	• •	•	•	•	19
	с. с	CALIBRAT	LION 1	ests	•	••	•	•	• •	•	•	•	20
	D. (CASCADE	TESTS		•	••.	•	•	• •	•	•	•	20
	E. 1	WAVE CAN	ICELL	TION	TE	sts	•	•	• •	• •	•	•	22
	F. 5	STRUCTUR	AL IN	ITEGR	ITY	•	•	•	• •	•	•	•	23
	G. (CASCADE	PERFC	RMAN	CE	•	•	٠	• •	•	٠	•	23
۷.	CONCI	LUSIONS	AND I	ECOM	Men	DAT:	CON	S	• •	•	•	•	24
APPEND	IX A:	TRANSC	NIC C	asca DNS	de i	VIIIT)_T •	UNI •	NEI •		•	•	61
	A.1	Upper	Nozzi	le Bi	.ock	Mod	lif	ic	ati	Lon		•	61
					. .		_						
	A.2	Blade Modifi	and N icatio	nount	ing		n. •		•			•	68

「「「「「「」」」をないていていているのです。

PAGE

APPENDIX B. DATA ACQUISITION SYSTEM	. 78
B.1 System Hardware	78
B.2 Data Acquisition and Reduction	70
Program	.79
APPENDIX C. TEST DATA	· 90
REFERENCES	103
INITIAL DISTRIBUTION LIST	104

ł

4

1.4

ないない ちょういい かい 御子 かいかい

LIST OF FIGURES

1.	Cascade Wind Tunnel Model Installation	28
	<pre>la. Cascade Wind Tunnel Model Installation - Laboratory View</pre>	28
	<pre>lb. Cascade Wind Tunnel Model Installation - Air Supply Valves</pre>	29
	<pre>lc. Cascade Wind Tunnel Model Installation - South (front) Side of Test Section</pre>	30
	ld. Cascade Wind Tunnel Model Installation - North (rear) Side of Test Section	31
2.	Cascade Wind Tunnel Test Section Static Pressure Tap Positions	32
3.	Cascade Wind Tunnel Test Section Configuration (Calibration Tests)	33
4.	Cascade Wind Tunnel Test Section Configuration (Cascade Tests)	34
5.	Cascade Wind Tunnel Test Section Configuration (Wave Cancellation Tests)	35
6.	Centerline and Four Diagonal Rows of Static Pressure Taps for which Data are Plotted	36
7.	Expected Test Section Wave Pattern (Calibration Tests)	37
8.	(a-e) Pressure Ratio vs. Position (Calibration Tests)	38
9.	Pressure Ratio vs. Position (Cascade Test I)	43
10.	Expected Test Section Wave Pattern (Cascade Tests) .	44
11.	(a-e) Pressure Ratio vs. Position (Cascade Test II)	45
12.	Expected Test Section Wave Pattern (Wave Cancellation Tests)	50
13.	(a-e) Pressure Ratio vs. Position (Wave Cancellation Test I)	51

PAGE

15:000

Sec. 2

5

の第三日の「あっ」またいで、おい

A REAL PROPERTY OF A REAL PROPER

ļ

and the second

.

PAGE

「「「「「「「」」」」

.

Contraction of the second

-

14.	(a-e) Pressure Ratio vs. Position (Wave Cancellation Test II)	56
A.1	Streamline Pattern for Inflow and Outflow Through a Wall with Inclined Holes	70
A.2	Perforated Plate Machine Drawing	71
A.3	Modified Upper Nozzle Block Machine Drawing	72
A.4	a. Assembled Upper Nozzle Block Modification- top rear three quarter view	73
	b. Assembled Upper Nozzle Block Modification- bottom rear three quarter view	74
	c. Assembled Upper Nozzle Block Modification- bottom view	75
A.5	a. Blades Mounting Pins	76
	b. Blade Assembly	77
B.1	Cascade Wind Tunnel Data Acquisition System	80
B.2	Cascade Wind Tunnel Data Acquisition System Block Diagram	81

.

کھارہ خرہ

All States & And

3 5

طلائقهم

į

Y 1.

LIST OF TABLES

I.	Cascade Wind Tunnel Static Pressure Tap Positions and Scanivalve Port Connections 2	26
A.1.	Perforated Plate Characteristics	56
A.2.	Cascade Blade Data	69
B.1	Basic Program "CASDAT"	92
c.1	Calibration Test Data	91
C.2	Cascade Wind Tunnel Test Data	95
C.3	Wave Cancellation Test Data	99

and the second second

NOMENCLATURE

English Letter Symbols

- a Short Side of Rectangle, in.
- E Modulus of Elasticity
- K Wall Factor (a function of wall geometry and Mach No.)
- M Mach Number
- P Pressure, lbf/in^2
- q Dynamic Pressure, lbf/in²
- R Open Area Ratio
- $S Stress, lbf/in^2$
- s Blade Spacing
- t Plate Thickness, in.
- w Deflection, in
- z Scale Factor

Greek Letter Symbols

- a Stress Coefficient
- β Deflection Coefficient
- Δ Finite Difference
- θ Flow Inclination Angle Behind Oblique Shock
- γ Stagger Angle
- ϕ Camber Angle

Subscripts

- g Tunnel Air Supply Plenum
- t Total or Stagnation

m - Maximum

ACKNOWLEDGEMENT

The work presented here was supported by significant contributions from many individuals. Their knowledge and dedication made the successful modification and testing of the Transonic Cascade Wind Tunnel possible.

Mr. Glen Middleton provided his expertise to the design and fabrication of the tunnel modification. Mr. Jim Hammer lent his competance as an experimentalist to the project, while Mr. John Morris and Mr. Steve Downey contributed to this work in the area of test set-up and configuration change. Mr. Alan McGuire dedicated his time and effort to insuring that a proper Engineering approach be adhered to in all phases of this work from modification design through the preparation of this report.

Associate Professor R. P. Shreeve offered the challenge and provided the overall guidance for this project, and created a dynamic and professional working environment. Without the efforts of each of these gentlemen this work could not have been completed.

a service a

I. INTRODUCTION

The purpose of the work reported here was to modify and perform the initial testing of the small transonic cascade wind tunnel model as one task in the Transonic Compressor Research Program at the Naval Postgraduate School (NPS), Monterey, California. The cascade wind tunnel model was constructed in 1978 [Reference 1] in Building 230 at the NPS Turbopropulsion Laboratory. Preliminary blowdown tests were made through the empty nozzle [Reference 2]. Safe operation and good pressure control at a stagnation pressure of 50 psia for test times of up to 2 mins were verified. Impact pressure probe surveys on the vertical centerline at the nozzle exit showed the flow to be uniform to with \pm 0.008 at a Mach number of 1.415.

The goals achieved in the present study were to design and install a porous wall section in the upper nozzle block, install the test blading and then to conduct the first experimental evaluation of the completed cascade model. Details of the porous-wall modification made to the nozzle are given in Appendix A. A modification made in the design of the cascade blade mounts to simplify the assembly of the cascade, is also given in Appendix A.

Following the modifications, a program of tests was run which was in three parts. First, Calibration Tests of

the empty wind tunnel were conducted to verify tunnel operating conditions, and to establish a baseline for the pressure distribution through the test section. Following the Calibration Tests the cascade blades were installed and a series of initial Cascade Tests was conducted which verified that the blades and blade mounts and the perforated wall section had adequate strength, that the cascade model would "start" with the perforated wall vented to atmosphere, and that the scoops and by-pass ducts also worked properly. Detailed data was obtained and is discussed herein. Finally, the blades but not the scoops were removed and Wave Cancellation Tests were run to evaluate the effectiveness of the porous wall.

The instrumentation used in the tests consisted mainly of 89 static pressure taps distributed over the cascade side walls. Data was recorded and immediately analyzed using a Rewlett-Packard Model HP-3052/9845A data acquisition system interfaced with two 48 port Scanivalves. Software developed for the tests is detailed in Appendix B. E.

ウジラモチキシシ

この北方大学

The body of the present document details the method and results of the three sets of tests. In Section II, the Cascade Wind Tunnel Model and instrumentation system are explained. In Section III, the test program and procedures are presented. An analysis of the results is presented in Section IV. Concluding remarks and recommendations are presented in Section V.

II. CASCADE WIND TUNNEL MODEL AND INSTRUMENTATION

A. INSTALLATION

Views of the Cascade Wind Tunnel installation are given in the four sections of Figure 1. The installation was modified from that presented in Figure 5 of Reference 1. First, the butterfly valve shown in Reference 1 was not installed. Second, during the Calibration Tests of the empty tunnel the scoop exhausts and perforated wall plenum exhaust were capped. Finally, the initial Cascade Tests, with blades installed, were conducted with scoop exhausts and perforated wall plenum vented locally to atmospheric conditions.

The design Mach number and total pressure for the cascade wind tunnel model were 1.4 and 50 psia, respectively [Reference 1].

B. TEST SECTION

The test section configuration differed from that presented in Reference 1 because instrumented aluminum plates were used in place of the proposed plexiglass windows, and the upper nozzle block was modified to include a perforated wall section. The cascade configuration for each test is given in Section III.

C. INSTRUMENTATION

To measure nozzle and test section static pressures, a series of 89 static ports were installed in the aluminum side (window) plates, 74 on the front plate and 15 on the

rear plate as seen in Figures 1c and 1d. The static tap design is shown in Figure 2 which also shows the adopted system of axes. The coordinates of the ports are given in Table I.

The plenum total pressure was measured using a static tap in the plenum sidewall. (At design conditions of 50 psia and 520° R in the plenum, the static pressure and total pressure were negligibly different). All pressures were recorded by the data acquisition system (Appendix B) through two 48 port Scanivalves. One Scanivalve was equipped with a 0-15 psig the other with a 0-50 psig transducer. Both transducers were calibrated to read in psig to an accuracy of 0.01 psia.

The Scanivalve connections to the 89 test section ports are given in Table I. Ports 1 and 2 on each valve were connected to atmosphere and to the reference side of the transducer respectively. Port 3 on Scanivalve 1 was connected to plenum pressure. When the flow through the perforated wall was measured, the plenum exhaust static pressure and impact pressures were connected to ports 46 and 47 of Scanivalve 2 respectively.

III. TEST PROGRAM AND PROCEDURES

A. CALIBRATION TESTS

Test runs were made first with the tunnel test section configuration shown in Figure 3. Data from two runs are reported. The blades and scoops were removed, and the by-pass ducts and perforated wall plenum exhaust were capped. The tests were conducted to determine a baseline static pressure distribution in the test section. The first test also served to verify the nozzle operation at design conditions, and to verify that data could be obtained within the available tunnel run time.

B. CASCADE TESTS

Runs were made next with the tunnel configured as shown in Figure 4. Data from two runs are reported. The blades and scoops were installed with the flat sides (bottoms) of the blades aligned with the tunnel axis. The by-pass ducts and perforated wall plenum were vented to atmospheric conditions. The tests were conducted to verify that the flow would fully start through the cascade model at design pressure and to obtain first measurements. The effectiveness of and flow through the perforated section of the upper nozzle block were also evaluated. An estimate of the flow rate from the porous section was obtained using measurements of the static pressure

in the perforated wall plenum exhaust pipe and of the total pressure at the exit of the pipe.

One test run was made with the same test section configuration but with the perforated wall plenum exhaust capped.

C. WAVE CANCELLATION TESTS

The final runs were made with the blades removed and the scoops installed as shown in Figure 5. Data from the two tests are reported. The by-pass ducts and perforated wall plenum were vented to atmospheric conditions for the first run and capped for the second. These runs were made to set up a condition where just one shock wave was present in the test section in order to more easily evaluate the performance of the perforated wall in reducing shock reflections.

D. TEST PROCEDURE

The procedure followed in each test was the same. First the flow was started through the tunnel by opening the manual shut-off valve, followed by the pneumatically operated control valve (Figure 1b). The stagnation supply pressure was brought rapidly to, and controlled at 50 psia. (\pm 2 psi in all tests). A single entry at the data system keyboard initiated the sequential stepping (and recording) of the Scanivalves through 96 ports. When the scan was completed, the control and shut-off valves were closed. The recorded data were first stored on magnetic

cartridge tape and then recovered by a data analysis program which generated plots of the measured pressure distributions.

IV. RESULTS AND DISCUSSION

A. DATA PRESENTATION

Fourteen tests were conducted in the present study. Six sets of experimental data, two from each of the three types of tests conducted, were analyzed and the results included herein. These data are presented in Appendix C. B. DATA ANALYSIS

The flow in the cascade wind tunnel was examined by comparing the expected shockwave patterns [References 3 and 4] in the cascade with the measured distributions of the pressure ratio (P/P_{to}) at the wall. In a flow at Mach number 1.4 an oblique shock can result in a maximum static pressure rise of approximately 23 percent. A normal shock causes the static pressure to more than double. Comparison of pressure ratio data for ports at the same position but on opposite faces of the tunnel test section indicated that there was no significant difference at the two walls. Plots of pressure ratio along the tunnel longitudinal centerline and along the four rows of pressure taps upstream of the blades at the cascade stagger angle (Figure 6) were made and used to examine the tunnel flow characteristics.

It should be noted that the following is a preliminary and limited analysis of recently obtained data. The data points on each plot have been joined by straight lines. In some cases only, the more probable distribution between

points has been indicated by broken lines.

C. CALIBRATION TESTS

The expected primary wave pattern for this test configuration is shown in Figure 7. Since the nozzle was underexpanded, an expansion fan was expected from the end of the lower nozzle block and an oblique shock might occur from the lower nozzle block and an oblique shock might occur from the lower bypass protrusion. A plot of pressure ratio vs. position along the tunnel centerline is given in Figure 8a. In this figure, the expected expansion fan appeared clearly and a small compressive disturbance might also have been present. Plots of pressure ratio along the four diagonal rows of pressure taps are given in Figures 8b to 8e. The region covered by these taps was seen to be free of strong waves, and the effect of the expansion fan from the lower nozzle could be traced. Of considerable importance is the degree of uniformity observed in all the taps which were upstream of the expansion fan. This upstream region should be unaffected by the installation of the cascade blades. The results of the two calibration runs were compared and the results were observed to be repeatable.

D. CASCADE TESTS

1. Perforated Wall Plenum Exhaust Capped

The results of the test conducted with the tunnel in its design configuration with the perforated wall plenum capped resulted in the tunnel flow not starting at the design supply plenum total pressure of 50 psia. The pressure ratio

along the tunnel longitudinal centerline is shown in Figure 9. Examination of the levels of pressure suggested that the flow was choked (pressure ratio - 0.5282 if losses are neglected) at the throat of the blade passage and that the nozzle itself was operating subsonically at the test section.

2. Perforated Wall Plenum Vented to the Atmosphere

Allowing flow through the perforated section of the upper nozzle block by uncapping the exhaust resulted in the flow being fully started at the design plenum pressure of 50 psia. The expected flow with the blades and scoops installed is shown in Figure 10. The side-wall pressure distribution is shown in Figure 11a to Figure 11e. The effect of the shock waves generated by the blades can be seen by comparing the data in Figure 11 with the corresponding sections of Figure 8. A comparison of Figure 11a with Figure 8a, and of Figure 11b with Figure 8b showed that the pressure rise from the first shock wave (labelled A in Figure 11) began measurably ahead of the position of the shock wave shown in Figure 10. Also, if the pressure drop upstream of point B on Figure 11a, which was repeated on several other runs made with this configuration, was correctly interpreted to be the expansion caused by the upper surface of the nearest blade, then the bow shock from that blade also appeared to be shifted forwards. These effects may have been the result of shock wave-boundary layer interaction on the side walls, but closer examination of the data is

needed before definite conclusions are drawn. The probable distributions of pressure indicated in Figure 11a were inferred from the comparison with Figure 8a and with data obtained in the Wave Cancellation Tests.

For the data shown, the velocity at the exhaust port from the perforated wall plenum was calculated to be about 47 ft/sec and the mass flow rate was approximately 0.1 percent of the tunnel mass flow rate.

E. WAVE CANCELLATION TESTS

1. Perforated Wall Plenum Vented to the Atmosphere

The test section configuration and expected wave pattern are shown in Figure 12. The measured pressure distributions are shown plotted in Figure 13a to 13e. In Figure 13a, the (first) oblique shock wave was clearly indicated. The reflected shock wave did not appear, probably as a result of the strong expansion of the flow over the suction surface of the lower scoop.

The velocity at the plenum nozzle exit was approximately 12 ft/sec and the mass flow rate therefore significantly less than 0.1 percent of the tunnel mass flow rate.

2. Perforated Wall Plenum Exhaust Capped

The pressure distributions when the net flow rate through the perforated wall was reduced to zero are shown in Figure 14a to 14e.

An examination of the magnitudes of the pressure ratios in comparison to corresponding sections of Figure 13 showed that the effect of capping the exhaust was felt everywhere downstream of a Mach wave emanating from the beginning of the perforated wall. The pressures were lower downstream of the Mach wave when the wall exhaust was open compared to when it was capped. It appeared therefore, that the effect of the unrestricted mass bleed was to propagate an additional expansion fan from the top wall across the test section.

F. STRUCTURAL INTEGRITY

The structural adequacy of the blades, blade mountings and upper nozzle block modification were verified at design operating conditions. No deterioration was evident after the reported program of tests was completed.

G. CASCADE PERFORMANCE

The cascade was designed as a model of the relative flow at the tip of the transonic compressor being tested at the Turbopropulsion Laboratory. The present results indicate that there was a net pressure drop rather than a pressure rise across the blade row, as occurs in the compressor. This was because the back pressure on the blades at a supply pressure of 50 psia was too low. A control on the back pressure is necessary in order to adjust the shock waves from the bottoms of the blades to become normal shocks ahead of the blade passage throats. An examination of the present data suggested that the shock waves off the bottom of the blades were, in fact, weak and oblique.

V. CONCLUSIONS AND RECOMMENDATIONS

This document reports the initial testing of the transonic cascade wind tunnel model. Detailed wall static pressure measurements were obtained both with and without test blades installed, and with and without flow from a perforated wall section newly installed in the upper nozzle wall.

All tests were at the design total pressure of 50 psia. Wave-free flow was verified at the exit of the empty nozzle, and repeatable reference data were established against which to evaluate the effect of installing the blades. With blades installed, expected bow shock waves and suction-side expansion fans were detected from the blading. However, lack of control on the back pressure allowed the flow to remain supersonic throughout the blade passages. The incorporation of the perforated wall in the upper nozzle block was found to be required in order for the flow in the tunnel to start when the blades were installed. The complete cascade wind tunnel model was structurally sound at design operating conditions.

Two modifications are recommended before testing is resumed. First, the butterfly-valve called for in the original design [Reference 1] should be installed in the cascade exhaust duct. The valve will allow the cascade back pressure to be varied over the range to be expected in

the flow through the compressor rotor, of which the cascade is a two-dimensional model. Second, an optical window sould either replace or be incorporated into the present aluminum window plates. The flow visualization by Schlieren which the windows would allow, would greatly simplify the problem of evaluating effects of back pressure and perforated wall bleed rates on the wave structure in the cascade. This could greatly simplify the problem of optimizing the wave cancellation function of the perforated wall, and of selecting conditions at which detailed pressure, and possibly probe data, should be recorded.

TO ANIMALVE NO. 1

FRONT FROE

ŀ

S. Color

Section of the section of the section of

< 10	E	11.0	•	Duastin	T a	A L				510		<u>v</u> _	a	
2 /	r ur v	1926	2	rressure	(ap	NO.	4	<u>^</u>		. 310	inche s	1 -	0.000	Inches
	Fort	110.	4	Phessune	1 ab	No.	- 2	×	=-2	.905	Inches	Y=	0.000	inche:
• • •	Port	No.	5	Pressure	Тар	HO.	3	X	=-2	.618	inches	\ =	0.000	tricke /
1 M	Port	No.	5	Pressure	Tap	No.	4	<u>:</u> :	=-4	.246	inches	'r=-	1.344	1165842
< Q.	Fort	do.	7	Pressure	Tap	No.	5		=-3	.032	Inches	Υ≠	672	The bear
	Fort	No.	8	Pressure	Tap	No.	6	5	z -2	. 306	Inches	Ý=	024	1 81. 1.4
	Fine +	No		Pressure	Tan	No				112	inches		- 117	
	D	bi.e.	10	"Dear tura	Tem	N.S.		v v	1	<u>a</u> 10	a marite a		6 636	
, v	E GE F	110.4		Er waarde e			ő			- 710 - 704	friches for all as		0.000	
	P OF T	14Q.	11	rressure	i ap	- CIQ •			=-1	. (24	inches	(= 		1000 NOS 2
	- 967	NO.	12	Pressure	- Lap	No.	10	- A	=-1	.530	inches	Y =	.224	TT: TE
	Fort	No.	13	Pressure	Тар	No.	11	×	- 2	.754	inches	γ≓	.672	100 12
1	Fru t	He.	14	Pressure	Тар	No.	12	\times	2	.410	inches	Y۳	1.344	1 ri 18 +
. '	Fort	He.,	15	Pressure	Tap	No.	13		=-3	.546	inches	7=-	1.344	1 - 1 -
٩,	Fort	110.	16	Pressure	Tap	No.	14	8	=-2	.382	inches	<i>,</i> `=	672	100101
. v	Fort	No.	17	Pressure	Tap	No.	15	×	= - 1	.606	inches	Y=	224	and ea
	Fort	11.	18	Pressure	Tan	No.	16	X	=-1	.412	inches	Ý=	- 117	1111 114 -
	E	110	10	Fraedura	Tao	No	17		= - 1	219	inches	N =		1
	C	11.5	- 10	n teasure Restaure	Тър	No.	10	rn 		004	inches.		1.1	
	F OF F		2.0	Fressure Ducie	Tap:	140.	10	•••		· 924	Inches	1	• • • •	Trop r - a
	POPT	1402	2 H -	Fressure	iap T	110.	17	A	— —	.330	irchea	1 -		200 B 180
•	- F P 7	NO.	<u> </u>	Fressure	Tap	No.	20	X		.054	inche:	. =	• • •	1.66.5
	F 34 F	40.	23	Pressure	Тар	No.	21		= 1	.110	inches	Y=	1. 44	1815.8
	Fort	He 🖬	24	Pressure	Tap	No.	22	.	=~2	.846	inches	γ=	-1. 44	1936 B
	Fort	n.,	25	Pressure	Тар	No.	23		=-1	.682	inchea	'r =	672	1 F 1 F 1
	S OF T	tio.	26	Pressure	Tap	No.	24			.905	inches	'i'≃	~.224	Arichie a
:	Fort	No.	27	Pressure	Tap	No.	25	X	= -	.712	Inches	Y≠	Z	inches
•	Port	No.	28	Pressure	Тар	No.	26	X	± -	.518	inches	Y=	0.000	inches
51	Port	No.	29	Pressure	Tan	No.	27	X	= -	. 324	Inches	Y≈	.117	Inches
•	Fort	Him	ิริต	Pressure	Tan	No.	28	y.	-	130	inches	ý.	214	1.1.1.1.1.1.1
	£	N.S.	21	Prezente	Тър	No.	20		-	242	a north or	V =		
•	r or e	110.	- 00	Fressure Dussione	Tan	110.	47			.040	Triurie 3	1 M		
	- Que C	1992 -	24	n ressure Du sessure	Tap Tap	FOD -	- 3-0			.010	THENER			
	FORT	110.		Pressure	jap	NO.	31		=-2	. 394	Inches	î -	1 14	t time
•	Hort	no.	34	Pressure	Тар	NO.	32	••	= - 1	.430	1 nches	, =		· ·
Υ.	Fort	No.	35	Pressure	Тар	No.	-33	×		.654	inches	·		
· · · ·	Flort	No.	36	Pressure	Тар	ho.	-34	2		.460	n nche 🗉	Υ -	. : ! .	17 - 2
$\sim - \Omega$	iort	No.	37	Pressure	Tap	No.	35	2	= -	.265	inches	'ı -	0.000	1 1 14
	Port	No.	38	Pressure	Tap	no.	36	18	= -	.052	Inches			:
÷. 1	Fort	No.	39	Pressure	Tap	NO.	37	23	Ŧ	.122	inches	· .		14
	Fort	No.	40	Pressure	Tan	No.	38		=	.898	inche-	•		
: .	F	N.S.	41	Pressuna	Tan	14.5	Šă		- 7	040	inchas			
		MA.	4 3	Disasure	Tas-	N.S.	47 40	· · · · · · · · · · · · · · · · · · ·	- 4	200	inches inches	· · ·		
	E to a second	1192.	- 74 20	E1.63201.6	1.000 (P) 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- 11U -	49				17167182	+ -	• • • •	4 T 4
• •	- OF T	- HQ .	- 4 S - 2 - 2	Pressure Durre	iap ∓-	MQ.	41	× .	्र 	. 174	Inches	. =		3
	rort	NO.	44	rressure -	qæ i	NQ.	42		= Q	. 000	inches) =	M. 1.00	
	Park	He.	45	Freisure	Тар	NO.	43		T	.194	inches	`i`=	• 1 1 1	t the top
·-	Fort	NQ.	46	Pressure	Тар	No.	44	<u>*.</u>	3	. 388	1nches	Υ=	• 1.	•••
	Port	No.	47	Pressure	Тар	ho.	45	X	#	.050	inches	¥ = ۲		1
	Fort	No.	49	Pressure	Тар	No.	46	X	=	.224	inches	Y ≠	ា, ភភ្ជា	ete m

Table I. Cascade Wind Tunnel Static Pressure TapPositions and Scanivale Port Connections

and the second of the second second

Sec. A

140.2

COHNIVALVE NO. 2

A DESCRIPTION OF A DESC

S V Fort No. 3	Pressure Tap No. 47	X = .050 inches	Y=112 inches
S V Port No. 4	Pressure Tap No. 48	X = .224 inches	Y= 0.000 inches
S.V.Port No. 5	Pressure Tap No. 49	X = .438 inches	Y# .112 inches
S 7 Port No. 6	Pressure Tap No. 50	X = .632 inches	Y= .224 inches
SV Port No. 7	Pressure Tan No. 51	X = .138 inches	Y = -224 inches
SZV Port No. 8	Pressure Tap No. 52	Y = 320 inches	$Y_{\pi} = 110$ inches
S & Pont No. 9	Pressure Tap No. 52	V = 504 inches	V= 0.000 inches
S V Dawe Ma 10	Pressure Tap No. 55	$\alpha = -324 \text{ inches}$	
5 0 POPU NO. 10 C 10 Dece No. 11	Pressure Tap No. 34	x = 100 inches	1 .112 Inches
STY FORT NO. 11	Pressure Tap No. 55	X = .388 inches	T =224 inches
Sty Fort No. 12	Pressure Tap No. 56	X = .382 inches	Y =112 inches
5 V Port No. 13	Pressure Tap No. 57	X = .776 inches	Y≖ 0.000 inches
5 V Port No. 14	Fressure Tap No. 58	X = .970 inches	Y= .112 inches
5 V Port No. 15	Pressure Tap No. 59	X = .856 inches	Y=112 inches
CRV Port No. 16	Pressure Tap No. 60	X = 1.050 inches	7≠ 0.000 inches
3 "" Fort No. 17	Pressure Tap No. 61	X = 1.244 inches	Y= .112 inches
S M Port No. 18	Pressure Tap No. 62	X = 1.438 inches	Y= .224 inches
S V Port No. 19	Pressure Tap No. 63	X = 1.194 inches	Y=224 inches
3-V Port No. 20	Pressure Tap No. 64	X = 1.388 inches	Y=112 inches
S V Port No. 21	Pressure Tap No. 65	X = 1.582 inches	7= 0.000 inches
O W Port No. 22	Pressure Tap No. 66	X = 1.776 inches	Y= .112 inches
S/V Port No. 23	Pressure Tap No. 67	X = .022 inches	Y=-1.344 inches
S-V Port No. 24	Pressure Tap No. 68	X = 1.126 inches	Y =672 inches
S M Port No. 25	Pressure Tap No. 69	X = 2.350 inches	Y= 0.000 inches
V Port No. 26	Pressure Tan No. 70	X = 3.574 inches	Y = -672 inches
STY Port No. 27	Pressure Tan No. 71	Y = 4.679 inches	$V = 1 7d4 \dots ehes$
S V Part No. 29	Prageura Tan No. 72	X = 4.010 fictes $Y = 3.005 inches$	V= 1 400
East No. 20	Pressure Tap No. 12 Pressure Tap No. 72	V ==2.900 inches	Valt OED issues
5 19 Dane Ma 20	Pressure lap no. 75	A 2.703 Inches V - 2.005 inches	1=-1.000 inches
3 C FORT NO. 30	Fressure Lap NU. 14	A = 2.700 Inches	T= 1.020 Inches
DEND FACE			
FEAF FALE			
1 1/ 1/			
5 5 Fort No. 29	Pressure Tap No. 70	8 =-3.360 inches	7= 0.000 inches
V Port No. 30	Pressure Tap No. 76	X =-2.905 inches	Y= 0.000 inches
S V Port No. 31	Pressure Tap No. 77	% =-2.594 inches	Y=-1.244 Nother
3 V Fart No. 32	Pressure Tap No. 78	\times =-1.430 inches	Y= +.670 (Mod.).
5 V Port No. 33	Pressure Tap Ho. 79	X =266 inches	Y≡ Q.000 intre≥
% V Port No. 34	Fressure Tap No. 80	X = .899 inches	Y≓ 1672 ()).
: V Port No. 35	Pressure Tap No. 81	X = 2.062 inches	Y≠ 1.344 inches
5-7 Port No. 36	Pressure Tap No. 82	% ≠ .022 inches	Y=-1.244 Andress
V Port No. 37	Pressure Tap No. 83	X = 1.126 inches	YE H. REC HOLLES
: V Port No. 38	Pressure Tap No. 84	X = 2.350 inches	Y= 0.000 incles
s - Port No. 39	Pressure Tap No. 85	X = 3.574 inches	Y= 1672 there.
3 V Port No. 40	Pressure Tap No. 86	X = 4.678 inches	Y= 1.044 (MCH) :
5 M Fort No. 41			
	Pressure Tap No. 87	× =-2.905 inches	Y= 1.630 inclas
S " Port No. 42	Pressure Tap No. 87 Pressure Tap No. 88	X =-2.905 inches X =-2.905 inches	Y= 1.630 incles Y=-1.850 incles

يسود به العدد

Table 1. (Continued)

Figure la Cascade Wind Tunnel Model Installation Laboratory View

776

26

. . .

-

ŗ

ŗ

. Lin

Figure 1b Cascade Wind Tunnel Model Installation Air Supply Valves

C. Salarto

Figure 1c Cascade Wind Tunnel Model Installation South side of Test Section

The state

the doe to

1.00

Cascade Wind Tunnel Model Installation North Side of Test Section Figure 1d

Statist.

1

A CAR AND A

٠,

۰,

Centerline and Four Diagonal Rows of Static Pressure Taps for Which Data are Plotted

XX VY

1:1

Startes and a sea

and the second sec

39

御殿を作るいたいを、たいしいしい いいしい とうしょう ほう

Figure 8d. Pressure Ratio vs. Position (Calibration Tests)

41

Selat Minister

 \mathcal{C}

「日本」の「日本の

61.44

A TRUE , PARTA

こうちょうちょう ひょうぼう かいしょうちょう ちょういいい 見る

48

.5

.49

Figure 13a. Pressure Ratio vs. Position (Wave Cancellation Test I)

in the states

.....

2. 6. C. C.

Autoris

······

the second second second second

11 - 14 - 14 B

APPENDIX A

TRANSONIC CASCADE WIND TUNNEL MODIFICATIONS

A1. UPPER NOZZLE BLOCK MODIFICATION

The performance of the cascade wind tunnel would be enhanced in two ways by incorporation of a perforated wall section in the upper nozzle block in the original tunnel test section [Reference 1]. First, a properly designed perforated wall would minimize the reflected disturbances caused by the shock waves generated by the blades and scoops. Second, the perforated wall, due to the air bleeding through it, would also assist in starting the transonic flow through the cascade.

a. Wave Cancellation Principles

In the transonic cascade wind tunnel operating at design conditions of Mach number equal to 1.4 at the nozzle exit, the blades will produce compression and expansion waves which will be reflected at the tunnel boundaries. Solid walls reflect shock waves as compression waves and expansion waves (generated as the flow follows the blade curvature) as expansion waves. An open boundary requires that a condition of constant static pressure be met along the boundary. A compression wave meeting an open boundary reflects as an expansion wave and an expansion wave reflects as a compression wave. The

reflected waves in both the above conditions, in the case of the test cascade, would result in undesirable conditions that are not representative of the flow in an operating compressor. Since the open and solid boundaries produce wave reflections having opposite characteristics there is a possibility of eliminating the reflections by the proper mixture of open and solid boundaries. The ideal condition for shock wave cancellation would exist if the inclined flow behind the oblique shock produced a pressure drop as it flowed through the wall equal to the pressure rise through the incident oblique shock wave. This would result in equilibrium between the static pressure in the flow and in the plenum and no reflection would occur. Linearized theory of wave cancellation in perforated wind tunnels [Reference 5], resulted in the following equation for the open area ratio, R, , for no reflection.

 $\frac{\Delta p}{q} = \frac{2}{\left(M^2 - 1\right)^{\frac{1}{2}}} \left(\frac{1}{R} - 1\right)\theta = K\theta$

This equation implied that the required open area ratio is independent of Mach number and shock intensity and for the present case would be have a value of R = 0.5.

In actuality the flow is not isentropic and does not follow linearized Prandtl-Glauert theory and in the transonic Mach number range the perforated wall open area ratio required for wave cancellation is significantly reduced from that predicted by linearized theory.

b. Perforated Plate Design

The design of the perforated plate required that the following parameters be considered; plate size, hole size, hole inclination, open area ratio, plate thickness and hole pattern.

- (1) The size of the section of the upper nozzle block to be replaced by the perforated plate was determined by the expected shock wave pattern caused by the blades and scoops at design operating conditions. The shock wave pattern was determined over the full range of blade incidence angle available (<u>+</u> 3 deg) in the cascade. The plate was designed to insure that the forward-most shock would impinge on the plate downstream of the first row of perforations.
- (2) The determination of the hole size, that is, the diameter measured perpendicular to the axis of the hole, was based on two criteria. Experimental results presented in Reference 6 indicated that the hole diameter was optimized when it was approximately 1/80 of the tunnel height. These

experiments also determined that the displacement thickness of the boundary layer should not exceed 15 per cent of the hole diameter in order to avoid irregularities in the flow over the perforated plate.

- (3) The determination of the best inclination of the holes for the present cascade wind tunnel was based on linearized theory and experimental results as presented in References 5 and 6. Holes inclined in the direction of flow drastically reduced out-flow resistance and increased inflow resistance (Figure A.1). The inclined holes also resulted in characteristic curves of wall pressure differential vs. mass flow ratio having significantly steeper slopes at small and negative flow ratios. Using inclined holes avoided the irregular characteristic produced by straight holes.
- (4) Experimental results reported in References 5 and 6 were used in selecting the proper open area ratio for the perforated wall section.

Experiments indicated that the open ratio required for wave cancellation with inclined holes was approximately 25 percent of that required for normal holes. The requirement for fewer holes greatly eased the problem of fabricating the perforated plate and reduced the risk of structural weakness.

- (5) When the above plate design parameters were selected the plate thickness was considered. The effectiveness of the inclined hole configuration to guide inflow against test section flow requires that the lengths of the inclined holes are sufficient to produce this counter flow effect. Experimental data [Reference 5] indicated consistent. nearly linear characteristics when the hole diameter was between the plate thickness and twice the plate thickness. A plate thickness very nearly equal to the hole diameter was selected to insure the maximum plate bending strength without degrading the design with respect to wave cancellation.
- (6) The perforation pattern was selected to give an even hole distribution over the

entire width of the upper nozzle block in the area covered by the perforated plate. The hole stagger angle, holeto-hole and row-to-row separations were calculated to insure that the plenum plate support ribs would not be restrictive.

Data resulting from the design of the perforated plate are given in Table A-1 and the machine drawing of the plate is given in Figure A2.

Table A-1. Perforated Plate Characteristics

Open Area Ratio (R)	6%
Plate Thickness	0.040
Hole Diameter, in. (perpendicular to hole axis)	0.047
Hole Inclination	60 deg
Plate length, in	4.375
Plate width, in	1.880
Hole Stagger Angle	15.16 deg
Hole-to-Hole Separation (in rows), in	0.167
Row Separation, in	0.167
Material	7075-T6 Aluminum

c. Perforated Wall Plenum Design

The perforated wall plenum was designed to provide an evenly distributed pressure on the plenum side and to provide the required structural support for the perforated wall. The even pressure distribution on the plenum side of the wall was essential to create an even mass outflow over the entire perforated plate area.

The design required that when the plate was installed the dimensions of the upper nozzle block matched those of the original design [Reference 1] under all anticipated tunnel operating conditions. The plenum ribbed mounting structure was designed so that the stresses in the plate did not exceed the tensile strength or cause a bending deflection greater than 0.0005 inches with a pressure differential of 3 atmospheres across the plate. The stress (S) and deflection (W) were determined in accordance with Reference 7 using the equations:

$$S_{m} = \beta \frac{qa^{2}}{t^{2}}$$
$$W_{m} = a \frac{qa^{2}}{t^{3}}$$

Since it was difficult to predict accurately the degree of weakening of the plate caused by the perforations, the worst case conditions were used. The stress coefficient (β) was taken for the case where all the edges of the plate

sections analyzed were clamped, and the deflection coefficient,(a), was taken for the case where the section analyzed had all edges pinned.

The plenum exit was sized so that at the anticipated wall mass flow rate of less than 0.4 percent of the tunnel mass flow [Reference 5], by continuity, the exit velocity would be approximately 50 ft/sec.

The "O" ring on the upper nozzle block was rerouted around the perforated wall plenum. The machine drawing for the upper nozzle block modification is given in Figure A3.

d. Final Assembly

Views of the nozzle modification are given in Figure A4. The perforated plate was attached to the modified upper nozzle block with two screws on each end of the plate and Conley Weld Epoxy along the edges of the mounting ribs. The reassembled nozzle was reinstalled in the cascade wind tunnel.

A.2. BLADE AND MOUNTING PINS MODIFICATION

Revised [from Reference 1] machine drawings for the cascade blades and blade mounts are given in Figure A5. The revisions were required in order to show required blade dimension tolerances and surface smoothness, and to change the blade mounting pin design to make assembly easier. Cascade blade data are presented in Table A-2. The blades were manufactured by Experimental Engineering, Inc. of Irvine, California.
Table A-2 Cascade Blade Data

0.7 Scale Factor (z) Stagger Angle (γ) 59 deg, 44 min, 35 sec Camber Angle (ϕ) 4.7 deg Blade Spacing (s), in 1.344 Blade Chord (c), in 1.822 Leading Edge and Trailing Edge .007 Radii, in Suction Side 11.431 Radius, in Maximum Thickness, in .045

Flow Into Test Section

Figure A.1 Streamline Pattern for Inflow and Outflow Through a Wall with Inclined Holes

error repairer on at

ATON			_		SHEET	ž	5
DHATE SCHOOL TURDMOPULSON LABO CALIF. 93940	eans Breit Punt	TOLEMANCES	FRACTIONS - 2 X4	DECIMALS	01-4 M	200- 2 - 11/0 200- 4 - 11/0	*******
NAVAL POSTCIAAL DEPARTNENT OF AEROMAUTICS 1 MONTEREY, C	Pearseares Unter A	DRAWN BY ALL VODAL	DATE 20 JAN 1980	SCALE 1" -1"	DIMENSIONS ARE IN INCHES	DRAWING NO.	5116

Figure A3 Modified Upper Nozzle Block Machine Drawing

あんのうなななななない しょうしょう

1

.-

AULA --- MULE -

A State

and the second

ş

and the second se

o Anna an Anna an Anna Anna Anna an Anna an Anna an Anna an Anna A

うたけいと考えるのでは

Figure A.4b Assembled Upper Nozzle Block Modification Botton-rear Three-Quarter View

والمستحد الأقارب الأراسية

ころう しょうちょう あいたいたい ちちょうちょう

...

•.

ALL PROPERTY.

.

ALCONOMIC IN A

Figure A.4c Assembled Upper Nozzle Block Modification Bottom View

is the

Cash

 「「」」、「」」というないないないで、「ない」のないで、「ない」」、ないないないないないで、」、」、

い

i

State and the state of the stat

A STATE OF A

ALC: NOTION

A second s

2

	-		_		13345	- 2		
ALIF 93940	SSEMBLY	TOLERANCES	FRACTIONS - 2	DECHANALS	¥ • ¥0	9 - 170 9 - 1710	ANGLES	
MONIEREY, C	BLADE A	DRAWN BY & & AT & W	DATE 26 JULY 1979	SCALE AS SHOWN	DIMENSIONS ARE IN INCHES	DRUMMG NO.	51080	

ABORATORY.

DEFENSION OF ACTIONALITICS

NOTES

- L MOUNTING PINS SHOULD BE BONDED TO THE BLADES USING SOCIOTAVELD BRAND STRUCTIVAL ADRESIVE 2214 HI-FLEX ON SHMALAR MATERIAL PROVIDING MIGH FLEXMAN STIRRIGHT
 - 2. CONTOURD BLADE SURFACE. TOP AND BOTTOM. WITHIN 1.062 DIMENSIONS SHOULD BE FREE OF BONDING MATERIAL.
- 3. FINISHED PART SHOULD BE WITHIN TOLERANCES SHOWN.
- 4. CENTERLINES OF COMPESSONDING RUGS SHOULD BE CONSIDENT TO 40,0005 AF EITHER END. 5. CENTERLINES OF RUGS SHOULD LE WITHIN THE SAME RAME, 20,0005.

APPENDIX B

DATA ACQUISITION SYSTEM

B1. SYSTEM HARDWARE

The Hewlett Packard model 3052A/9845A Automatic Data Acquisition System was used for both data acquisition and reduction. The system was augmented with the HG-78K Scanivalve Controller [Reference 8] and two 48 port Scanivalves¹. The components of the HP 3052A data acquisition system are:

- (1) HP-9845A Desk Top Computer/Controller,
- (2) HP-3455A High Resolution/High Accuracy Digital Voltmeter,
- (3) HP-3437A System Voltmeter,
- (4) HP-3495A Scanner
- (5) 98035A Real Time Clock
- (6) $HP-IB^2$

The integrated data acquisition system (Figure B.1) is shown schematically in Figure B.2

¹"Scanivalve" is the registered trademark for a mechanical pneumatic selector switch manufactured by Scanivalve Corporation, P.O. Box 20005, San Diego, California 92120.

^{92120.} ²The HP-IB is the Hewlett-Packard implementation of IEEE Standard 488-1975, "Digital Interface for Programmable Instrumentation".

B2. DATA ACQUISITION AND REDUCTION PROGRAM

The modified BASIC Program "CASDAT" was written to acquire, store, and reduce data using the Hewlett-Packard HP 9845A computer and peripherials described above. The program is interactive with the operator and as such can be used for either data acquisition and storage or data reduction and storage, or both. The HP 3052A Data Acquisition System Software Package contains a large number of subprograms to simplify and expedite the data acquisition process, and several have been merged into Program "CASDAT".

The program listing provided in Table B-1 is self explanatory in that neumonic variable names are used. The program also contains remark (REM) statements to aid interpretation.

A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF

Figure B.1 Cascade Wind Tunnel Data Acquisition System

States of the second second

Street Street

Carlos and the second

•

DIM Measurements(51),Filename\$(6),Fileresults\$(6),Pressure:46),Mach(46),Fre PER DESURTFILONI THIS FROGRAM PERFORMS SEQUENTIAL SCARAINED OF LIATION E NUMBER ADDRESSES SFECTFIEDLIT RECORTS, STARES Rem And reduces data." P= PRESENT SCANIVALVE PORT S= STEP SIZE ! As the program is now s=1 only can be used DISF "IF TOU DESLAE TO REDUCE DATA ENTER 1"; FILE NAME: "CASDAT" COM Tra,Sen.Dem,Sem,Bus,Error **"= DESIRED SCANIVALVE** VOLLAND AD= HIGH PORT : 91 = LOW PORT seurenatio(46). Porti 46) "Scanivalve* CHEIABLES: CALL DUM(1,7,0,0) REM AUTHUR: K.F. Fem 1 THEN 260 FRINTER IS 16 OPTION BASE 1 GOT0 1100 CALL Init INPUT C IF C **1210** . **.**, REN F.E.H REM 1. 11 11 11 £ E M REN ž E E ŔЕM REM FEN F REA REM REM REN HÚ VĨH ି ଶିକ୍ତି -. 01-1 Û LÛ 5 940 940 260 011 0.00 0.00 0.00 0.00 0.0 050 396 310 ŝ 150 290 5 7 9 90 ្ល 3 4 2 00 P **9** 00 Ę

BASIC PROGRAM "CASDAT" Table B-1. States And

REM THIS PART OF THE PROGRAM ASSIGNS THE REQUIRED SCHAMER CHAMBLE TO THATE CALL Chan(1,Reset) ' Pesets selected scanivalve to port 1 FUNCTIONS FOR THE SCANIVALVE SELECTED. DISP "STEP SIZE"; DISP "Low, High"; IF V=3 THEN 430 IF V=4 THEN 520 1F V=1 THEN 400 V=2 THEN 440 IF V=5 THEN 560 INPUT A1, A2 Advance1=40 Advance1=42 Rdvance1=43 Advance I=44 14=10000000 Dat ar ead=2 Dat are ad=3 Dat areadad Datareadaú 1=D=> .= .=0 RESEI Scn Reset = 45 GOTO 590 Reset=47 6010 598 Reserat6 6010 590 Fese1=48 6010 598 Peses = 49 INPUT V Rem **MRIT 20** Ŀ 4760 476 488 500 510 99900 94007 77777 456 520 568 550 380 390 538 940 550 590 600 619 628 638 648 9999 9799 9799 9799 350 360 370

•

and an early a state

FOR K=A1 TO A2 I This loop takes readings on the desired sequential scanna FOF I=1 TO AI-1 1 This loop advances the acanivalue to the first port to de 310 Ourput: IMAGE "Scanivalue Port Number ",DDD,15%,"Pressure = ",DDDDD,DDDDD, Ne asur energenistion (name asur energy) a "hizt (name asur REN LAPUT NON-SCHALVALVE REPUTEEL DATA CALL Time ' This dates all dara sheers PRINT USING Output;K, Measurements(K) 83ñ Neasurements(K)=Measurements(K)+1000 DISP "Total Temperature"; INPUT Measurements(A2+3) PRINI "Ecanivalve No.";V DISP "Amblent Freedure"; INFUT Measurements(M2+2) INFUT Messurements.A2+1> **BISP "Total Pressure";** Measurements(K)=FNRdum Slø CALL Chan I.Advancel· (ALL (han'l.Dataread) 320 (ALL Chan(1,Advancel) IF H1=1 THEN 850 scamed in the run PRINTER 15 0 REM WAIT 10 RESET SUR (5) WAIT 40 NEXT I FRINT PRINT INPUT ports F 6124 906 7.00 7.10 2 500 3 0.1 222 1 1 1 20 9 0.0 95 350 660 653 9.19 ා ් (1 1 1 1 •••• 0 0.00

ş

ころう うちゃう ちゅうけん ちんかんない ちょうちん

:

•: 1040 DISP "ENTER 1 IF ANDTHER DATA RUM DESTRED"; 1 GIVES THE CHOICE OF CALIFY REM PPINT "Total Pressure=",Measurements(A2+1)+Measurements(3),"P₃₁₃" re data or going on to the data reduction part of the program 1050 INPUT D DISP "INPUT DATA NAME OF DATA FILE & BE REDUCED"; PPINT "Feduced data from data file ";Filename# DISP "humber of Pressure TAPS THIS PUN"; CREATE Filenames,2 ! Creares a raw dara file FRINT "Data Saved in File ", Filenands PRINT "Total Pressures 50.729 psia" DISP "Insert Bata File Name"; PPINI #1;Negauraments.*> READ #3;Measurements(*) ASSIGN #1 10 Filenames ASSIGN #3 TO Filenames REN OPTION BASE 1 INPUT Filenames IF I=: THEN 260 INPUT FILENAMES 1038 PRINTER IS & PRINT PAGE RESET Ser CALL TIME INPUT A2 OT LINN NEXT -FRINT PRINT REN REM REM REN REM PEN 0.00 1010 1020 1000 010 989 100 119 1120 1130 1150 169 180 200 <u>.10</u> č ≤ ĝ 1258 090 170 130 08.7 1240 Ott 050 940 ロルナ 0 9:1 9 . . .

.

ちんち どうほうかい かけいちょう

÷ •

The state of

1. N.

14 Ú. Pressures", 5355.11011. (410 FFINI USING Peduceddata;Pont(J),Pressure/JA,Pressureration J (Mach J) чн . 250 Frissinne Joansaurenents(J+2)-Measurenentsol -+Measurenentsol "Toral Temperature", Measurements A2+24, Degrees F. istól REM Friessumemetstor JimeMeessumemente/A2+1°+Meesumenerse S (488 PRINT #2;Port(**,Pressure(*),Mach(*),Pressureration+* "Andreat Frassure=",Messurements A2+1+,"Fsra 1436 FFINT "Geduced Data Stored In File ", Fileresults DISP "ENTER 1 IF YOU DESIRE TO FEDUCE MORE DATA"; 410 Peducadara: IMAGE "Static Pressure Port", DDD." Macr J = 5+(Pressureratio(J) (1 3.5)-1.0 .5 . F. F. Ø="DD. DDDED, ' Mach=", DDD. DDDD 1440 DISP Inpur Peduced Data File Name"; 400 Freesumeration/st/Pressureracion/) Frees weration J. = 50, 729. Pressurer J. Sed COM Thr. Sun, Dum, Sum, Bus, Error **ASSIGN #2 TO Fileresults\$** JEB CRENTE Filerezultss,8 1570 DATA 9.709.722.724.7 1450 INPUT Fileresultst IF 2=1 THEN 1150 FOR J=1 TO 46 SOB PRINT PHGE (- (- 1 -) -) 1550 SUB Inte INPUT 2 423 NE T FF 1 : T 10153 FEINT INTER OF 5 F I 1 1 SU FPINT FRING END **ر**. . 010 ت. د ز 5.0 510 9751 040 ÷ 5.30 ن^{..} 0.111

Contraction of the local division of the loc

i

الملأ مادها مراودها كالملاء بقتهم

S SINGS 170 IF NOT Error AND (Channel) =∂× THEN OUTSUT Err+Offeet (1250 é v OUTFUT D'A USING FALIFUNCTION,PANGe,MigR_rei=1,5ara,rei=1 100 Fari IMAGE "F".D,"P",D,"M".D, D'.D,"TS" Errors: Function 1) OR (Function)6+)+2++(Range,1+ 3F , iù Ţ IF NOT Error AND (Clear=1 - THEN FESET Schrüfiget IF BINAND' DIG.48 HEL DHEN DUTRUT Tar DELNE Sub I v function.Kange,High res,Data_rqs JOM Thr.Srn,Dvh.Srn,Bus,Erior 750 Errorstöcn M0D 100+0ffset 2000 140 SUB vran-Clear.Channel) 160 COM Tr.Str.Drw,Svw,Bus,Error 140 Cffset=ABS+Channel) DIV 80 COM Twr. Scr. Dum, Sum, Bus, Error COM Tar, Sec. Des. Sem, Bus, Err un ENTER D & USING "F"; Peading SAC FENL TO STAL HOUSE STAL BUS UJTPUT 9;"Pequest time" IF 1 - A1 THEN 1840 FERD 10 TMr. 5:519 RETURN Panding übüfilü buz SIN TPIGGEP Dow DEF FILLS IN PENUTE BUS LEG RESET DOW RESET BUE WAIT 180 SUB TIME 09 1 THH CABUUS 651 SUBERL SULEN. 122110005 FHEND 0:21 9.9 i cùù 6161 0231 9491 0.5-1 9. 16 06. 000 9881 ジードー 000 910 00° 628 940 850 BÉR 619 9601 999

. '4'

No. 28 1. 1.

-

1 Acres

..

..... . . .

÷, R souge "TO IF HUT EVER AND (CHANNE! =0. THEN CUTPUT EINEDFEED TING OUTEUT Die USING FartFunction,Range,Htgh_nesel,Data_rosel Frit ImAGE "F",D,"P",D,"H",D, D",D,"TS" SUB E v Function,Fange,High_res.Data_ris COM Thr.Son,Dom.Som.Bus,Error Errors: Function112 OR (Function 6-2+2+0:Range.1- 0F 644 IF NOT Error AND (Clear=1) THEN FESET Schröfflagt . -T IF BINAND'SIG.48'=31 THEN OUTPUT THE USING 750 Errorstein MOD 100+0ffset 20) Tie COM Ter Str. Dum, Sum, Bus, Error 740 Officer=ABS-Charnel > DIV 80 COM Ter Stor Dec. Sem, Bus, Error (UM Thr.Scn, Dum, Sum, Bus, Error ENTER D. . USING "F"; Peading is an FEML Thanks and Bus SUE unamolicar, Cnannell UUTPUT 9:"Pequest time" 328 IF 1 . AL THEN 1848 FEAD ID Twr.5; Sig RETURN Feading nkürilü buz SID TPIGGEP Des FEMUTE BUR DEF FINE 2 -in PESET Buil 610 Erster F WAIT 100 SUB TIRE MALT SO **CHERD** SUBENT. SUBERL 1----FNEND 2 10 F. F. e û û 619 079 0+2 0, P 010 юT, 1 1 1 1 . €0 . 4 Đ 9.99 10 16 1 000 5.20 8ee 020 9 - 3 8 - 3 838 9601

í.

į

いいろう とうちょう ちょうちょう しんない ちんちょうちょう ちょうちょうちょう

and the second sec

5. M. 18

in in the second

89

•

Ass and

A STATE OF THE STA

3

1

APPENDIX C

TEST DATA

The results of the Calibration Tests, Initial Cascade Tests, and perforated wall Wave Cancellation Tests are given in Tables C-1, C-2 and C-3 respectively.

Sector Fr

Total Pressure = 52.274 psia Plenum Total Temperature = 52 deg F Amblent Pressure = 14.823 psia

	eratic Pressure= 52.274	P/Pt0=1.0000	Mach= 0.000
Tap No. I	C Pressure= 17.320	P/Pt0 = .3313	Mach= 1.301
Tap No. 4	Contic Pressure= 17.192	P/P:0= .3289	Mach= 1.35/
Tap No. 3	Statte Pressure= 17.560	P/Pt0= .3359	Mach= 1.302
Tap No. 4	5tatic Pressure= 17.359	P/Pt0= .3321	Mach=1.351
(ap No. 🤉	Static Pressures 17.763	P/Pt0= .3398	Mach= 1.044
Tap No. 6	Static Pressures 17.337	P/P:0= .3317	Mach= 1.301
Cap No. 7	Static Pressures 17.493	P/Pt0= .3346	Mach= 1.300
Cap No. 8	Static Pressures 17.061	P/Pt0= .3264	Mach= 1.373
Tap No. 9	Static Pressures 17.336	P/Pt0= .3316	Mach= 1.361
Tap No. 10	Static Pressures 17.229	P/Pt0= .3296	Mach= 1.360
Tap No. 11	Static Pressures 17,190	P/Pt0= .3288	Mach= 1.368
Ho. 12	Static Pressures 16.602	P/Pt0= .3176	Mach=1.392
1 ap No. 13	Static Fressures 15.763	P/Pt0= .3015	Mach= 1.427
ap No. 14	Static Pressure= 17.248	P/Pt0= .3300	Mach= 1.367
Тар Но. 15	Static Pressures 16.992	P/Pt0= .3251	Mach=1.370
Tap No. 16	Static Pressures 16.701	P/Pt0= .3195	Mach=1.388
Tap No. 17	Static Pressure= 16.572	P/Pt0= .3170	Mach= 1.394
1 ap No. 18	Static Pressures 16.732	P/Pt0 = .3201	Mach= 1.387
Tap No. 19	Static Pressures 16,308	P∕Pt0= .3120	Mach= 1.405
"ap No. 20	Static Pressures 17.435	P∕Pt0≠ .3335	Macn= 1.30
Tap No. 21	Static Pressure= 14.794	P/Pt0= .2830	Mach= 1.474
Tap No. 22	Static Pressure= 13.603	P/Pt0≈ .2602	Mach=1.031
Tap No. 23	Static Pressure= 17.909	P/Pt0= .3426	Mach= 1.338
Гар Но. 24	Static Frequeres 15.853	P/FtØ≈ .3033	Mach= 1.420
Tap No. 20	Contin Pressure= 14.736	P/Pt0 = .2819	Mach= 1.470
Tap No. 20	Statte Pressure= 14.410	P/Pt0= .2757	Mach= 1.472
Tap No. 2/	Contin Pressure= 14.040	P/Pt0= .2686	Mach= 1.010
Tap No. 40	contro Pressure= 13.966	P/P10= .2672	Mach= 1.010
1 ar 110. 23	contro Pressure= 13.806	P/Pt0= .2641	Mach= 1.041
ĩap No. St	contro Pressure= 12.990	P/P+0= .2485	Mach= 1.000
ap No. 31	Contro Pressure= 12.285	P/P10= .2350	Macn= 1.001
1 4 p 110 - 24	Contin Pressure= 16.476	P/Pt0= .3152	Mach= 1.020
Tap No. 3	static Pressure= 14.358	P/Pt0= .2747	Mach= 1 801
(s _i) ((0 + ∞)	eratic Pressure= 13.759	p/pt0= .2632	Mache 1 539 Mache 1 539
10. VO. 3	Static Pressure= 13.445	P/Pt0= .2572	
, <u>s</u> β 40. 3 Σ. sta 2	- Static Pressure= 13.413	p/Pt0= .2565	Mach- 1.553
(A) NO. 3	Static Pressure= 13.187	P/Pt0= .2523	Mach= 1.559
150 NO. 0 150 No. 0	a Static Pressure= 13.072	P/Pt0= .2501	Mach- 1.590
130 HO 4	a Static Pressure= 12.482	2 P/Pt0= .2388	Mach= 1.609
•зр по• т "ыс 4	1 Static Pressure= 12.144	P/Pt0= .2323	Macha 1,547
- 10 1931 - 7 - 11 2	2 Static Pressure= 13.304	1 P/Pt0= .2040	Mach= 1.571
∼ ودينين ور له رجران -	Static Pressure= 12.831	1 P/Pt0= .2400	Macha 1.475
· · · · · · · · · · · · · · · · · · ·	4 Static Pressure= 14.76	1 P/PtU= .2024	Mach# 1.572
tp not 7	5 Static Pressure= 12.81	1 p/ptu= .2401	Mach= 1.586
ap no.	6 Static Pressure= 12.56	3 P/Pt0= .4403	
120 101 -			

Table C-1. Calibration Test Data,

- SCHOOL ST

CALIBRATION TEST 1 CONTINUED

.

ร้างร้างสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถ

Tap No. 47	Static Pressure=	12.919	P/Pt0= .2	471	Mach=	1.567
Tap No. 48	Static Pressure=	12.468	P/Pt0= .2	385	Mach=	1.591
Tap No. 49	Static Pressure=	12.235	P/Pt0= .2	341	Mach=	1.603
Tap No. 50	Static Pressure=	12.413	P/Pt0= .2	375	Mach≠	1.594
Tap No. 51	Static Pressure=	11.907	P/Pt0= .2	278	Mach=	1.622
Tap No. 52	Static Pressure=	11.905	P/Pt0= .2	277	Mach=	1.622
Tap No. 53	Static Pressure=	11.888	P/Pt0= .2	274	Mach=	1.623
Tap No. 54	Static Pressure=	11.954	P/Pt0= .2	287	Mach=	1.619
Tap No. 55	Static Pressure=	11.690	P/Pt0= .2	236	Mach=	1.634
Tap No. 56	Static Pressure=	11.683	P/Pt0= .2	235	Mach=	1.635
Tap No. 57	Static Pressure=	11.773	P/Pt0= .2	252	Mach=	1.629
Tap No. 58	Static Pressure=	11.700	P/Pt0= .2	238	Mach≠	1.634
Tap No. 59	Static Pressure=	14.735	P/Pt0= .2	819	Mach=	1.476
Tap No. 60	Static Pressure=	12.099	P/Pt0= .2	315	Mach=	1.611
Tap No. 61	Static Pressure=	12.087	P/Pt0= .2	312	Mach=	1.612
Lap No. 62	Static Pressure=	11.720	P/Pt0= .2	242	Mach=	1.632
Fap No. 63	Static Pressure=	11.817	P/Pt0= .2	261	Mach=	1.627
Tap No. 64	Static Pressure=	11.981	P/Pt0= .2	292	Mach=	1.618
Tap No. 65	Static Pressure=	11.726	P/Pt0= .2	243	Mach=	1.632
Tap No. 66	Static Pressure≠	11.806	P/Pt0= .2	259	Mach=	1.628
fap No. 67	Static Pressure=	11.909	P/Pt0= .2	:278	Mach=	1.622
Tap No. 68	Static Pressure=	12.756	P/Pt0= .2	:440	Mach≓	1.575
1ap No. 69	Static Pressure=	11.847	P/Pt0= .2	266	Mach=	1.625
Tap No. 70	Static Pressure=	11.287	P/Pt0= .2	159	Mach≖	1.658
Tap No. 71	Static Pressure≠	12.016	P/Pt0= .2	299	Mach=	1.616
Тар Но. 72	Static Pressure=	17.005	P/Pt0= .3	253	Mach≠	1.375
Tap No. 73	Static Pressure=	15.207	P/Pt0= .2	909	Mach=	1.454
Тар Но. 74	Static Pressure=	10.930	P/Pt0= .2	091	Mach≡	1.679
Tap No. 75	Static Pressure=	17.142	P/Pt0= .3	279	Mach=	1.370
Tap No. 76	Static Pressure=	17.132	P/Pt0= .3	277	Mach=	1.370
Tap No. 77	Static Pressure=	14.832	P/P10= .2	837	Mach≓	1.472
Tap No. 78	Static Pressure=	14.802	P/Pt0=.2	832	Mach=	1.473
Cap No. 79	Static Pressure=	13.398	P/Pt0 = .2	563	Mach≡	1.542
Tup No. 80	Static Pressure=	14.754	P/Pt0=.2	822	Mach≓	1.475
'ap No. 81	Static Pressure=	14.790	P/Pt0 = .2	829	Mach=	1.474
Tap No. 82	Static Pressure=	14.789	P/Pt0= .2	829	Mach=	1.474
Tap No. 83	Static Pressure=	14.781	P/Pt0= .2	2828	Mach=	1.474
Fap No. 84	Static Pressure=	11.969	P/Pt0= .2	290	Mach=	1.618
Tap No. 85	Static Pressure=	14.709	P/Pt0= .2	814	Mach=	1.478
Tap No. 86	Static Pressure=	14.822	P/Pt0= .2	2835	Mach=	1.472
Fap No. 87	Static Pressure=	17.189	P/Pt0= .3	288	Mach=	1.368
Fap No. 88	Static Pressure=	15.294	P/Ft0= .2	926	Mach=	1.450
Tap No. 89	Static Pressure=	10.921	P/Pt0= .2	2089	Mach=	1.680

and a second of the second sec

3.4.7.7

ありたい

;

Table C-1. (Continued)

92

and the start product of the start start for the start start start and the start of the start start start start

********************* CALIBRATION TEST 2 ***************************

1

~ ころうろう ないていていてい

Total Pressure = 49.500 psia Plenum Total Temperature = 61 deg F Ambient Pressure = 14.774 psia

ALC: ALC: NO.

Тар	No.	1	Static	Pressure≈	49.482	P∕Pt0=	.9996	Mach=	.023
lap	No.	2	Static	Pressure ≠	16.299	P/Pt0=	.3293	Mach=	1.367
Тар	No.	3	Static	Pressure=	16.193	P/Pt0=	.3271	Mach=	1.371
Tap	No.	4	Static	Pressure=	16.423	P/Pt0=	.3318	Mach=	1.361
Tap	No.	5	Static	Pressure=	16.394	P/Pt0=	.3312	Mach=	1.362
Тар	No.	6	Static	Pressure=	16.791	P∕PtØ≠	.3392	Mach=	1.345
Tap	No.	7	Static	Pressure=	16.414	P/Pt0=	.3316	Mach=	1.362
Тар	No.	S	Static	Pressure=	16.562	P/Pt0=	.3346	Mach=	1.355
Tap	No.	9	Static	Pressure=	16.158	P/Pt0=	.3264	Mach=	1.373
Тар	No.	10	Static	Pressure=	16.209	P/Pt0=	.3275	Mach=	1.371
Тар	No.	11	Static	Pressure≖	16.284	P∕Pt0=	.3290	Mach=	1.367
Tap	No.	12	Static	Pressure⇒	16.250	P/9tØ=	.3283	Mach=	1.369
Гар	No.	13	Static	Pressure=	15.592	P/Pt0=	.3150	Mach≠	1.398
Тар	No.	14	Static	Pressure=	14.847	P/Pt0=	.2999	Mach=	1.433
Tap	No.	15	Static	Pressure=	16.360	P/Pt0=	.3305	Mach=	1.364
Tap	Ho.	16	Static	Pressure=	16.160	P/Pt0=	.3265	Mach=	1.373
Тар	No.	17	Static	Pressure=	15.837	P/Pt0=	.3199	Mach=	1.387
Tap	No.	18	Static	Pressure≠	15.693	P/Pt0=	.3170	Mach=	1.394
fap	No.	19	Static	Pressure=	15.922	P/Pt0=	.3217	Mach=	1.383
Тар	No.	20	Static	Pressure=	15.510	P/Pt0=	.3133	Mach=	1.402
Тар	No.	21	Static	Pressure=	15.138	P/Pt0=	.3058	Mach=	1.419
Тар	No.	22	Static	Pressure=	14.090	P/Pt0=	.2846	Mach=	1.470
Tap	No.	23	Static	Pressure=	12.976	P/Pt0=	.2621	Mach=	1.526
Tap	No.	24	Static	Pressure=	16.657	P/Pt0=	.3365	Mach=	1.351
Тар	No.	25	Static	Pressure=	15.141	P∕Pt0=	.3059	Nach=	1.419
Тар	No.	26	Static	Pressure=	13.979	P/Pt0=	.2824	Mach=	1.475
Тар	No.	27	Static	Pressure=	13.780	P/Pt0=	.2784	Mach=	1.485
Тар	No.	28	Static	Pressure=	13.352	P/Pt0=	.2697	Mach=	1.507
Tap	No.	29	Static	Pressure=	13.336	P/Pt0=	.2694	Mach=	1.508
Тар	No.	30	Static	Pressure=	13.171	P/Pt0=	.2661	Mach=	1.516
Тар	No.	31	Static	Pressure≖	12.589	P/Pt0=	.2543	Mach=	1.547
Тар	No.	32	Static	Pressure=	11.947	P/Pt0=	.2414	Mach=	1.583
Tap	No.	33	Static	Pressure=	15.603	P/Pt0=	.3152	Mach=	1.398
Гар	No.	34	Static	Pressure=	13.662	P/Pt0=	.2760	Mach=	1.491
Тар	No.	35	Static	Pressure=	13.247	P/Pt0=	.2676	Mach=	1.512
Tap	Ne.	36	Static	Pressure=	12.884	P/Pt0=	.2603	Mach=	1.531
Тар	No.	37	Static	Pressure=	12.908	P/Pt0=	.2608	Mach=	1.530
Тар	No.	38	Static	Pressure=	12.681	P/Pt0=	.2562	Mach*	1.542
Tap	No.	39	Static	Pressure=	12.639	P/Pt0=	.2553	Mach=	1.544
Тар	No.	40	Static	Pressure=	12.151	P/Pt0=	.2455	Mach≈	1.571
Тыр	No.	41	Static	Pressure=	11.875	P/Pt0=	.2399	Mach=	1.587
Tap	No.	42	Static	Pressure≈	12.990	P/Pt0=	.2624	Mach=	1.526
Тар	No.	43	Static	Pressure=	12.535	P∕Pt0≠	.2532	Mach=	1.550
Tap	No.	44	Static	Pressure=	12.699	P∕Pt0=	.2565	Mach=	1.541
Тар	No.	45	Static	Pressure=	12.451	P/Pt0=	.2515	Mach=	1.555
Тар	No.	46	Static	Pressure=	12.349	P/Pt0=	.2495	Mach≈	1.560

Table C-1. (Continued)

CALIBRATION TEST 2 CONTINUED

Tap No	. 47	Static	Pressure≃	12.621	P∕Pt0= .2550	Mach= 1.545
Tap No	. 48	Static	Pressure=	12.249	P/P%0= .2475	Mach= 1.566
Тар Но	. 49	Static	Pressure=	12.124	P/Pt0= .2449	Mach= 1,573
Tap No	. 50	Static	Pressure=	12.131	P/Pt0= .2451	Mach= 1.572
Tap No	. 51	Static	Pressure=	11.699	P∕Pt0= .2363	Mach= 1.597
Tap No	. 52	Static	Pressure≖	11.906	P∕Pt0= .2405	Mach= 1.585
Tap No	53	Static	Pressure≖	11.807	P∕Pt0= .2385	Mach= 1.591
Tap No	. 54	Static	Pressure=	11.928	P/Pt0= .2410	Mach= 1.584
Тар Но	. 55	Static	Pressure≠	11.758	P∕Pt0= .2375	Mach= 1.594
Tap No	. 56	Static	Pressure=	11.792	P∕Pt0= .2382	Mach= 1.592
Тар Но	. 57	Static	Pressure=	12.105	P∕Pt0= .2445	Mach= 1.574
Tap No	. 58	Static	Pressure=	12.093	P∕Pt0= .2443	Mach= 1.575
Тар Мо	. 59	Static	Pressure=	12.613	P/Pt0= .2549	Mach= 1.546
Тар Мо	. 60	Static	Pressure=	12.556	P∕Pt0= .2537	Mach= 1.549
Тар Но	. 61	Static	Pressure=	12.141	P∕Pt0= .2453	Mach= 1.572
Тар Мо	. 62 .	Static	Pressure=	11.940	P/Pt0= .2412	Mach= 1.583
Tap No	. 63	Static	Pressure≠	12.226	P/Pt0= .2470	Mach= 1.567
Тар Но	. 64	Static	Pressure=	12.033	P∕Pt0= .2431	Mach= 1.578
Тар Но	. 65	Static	Pressure≖	11.823	P∕Pt0= .2389	Mach= 1.590
Тар Но	. 66	Static	Pressure=	11.781	P/Pt0= .2380	Mach= 1.592
Tap No	. 67	Static	Pressure≖	12.281	P/Pt0= .2481	Mach= 1.564
Tap No	. 68	Static	Pressure=	12.741	P/Pt0= .2574	Mach= 1.539
Тар Мо	. 69	Static	Pressure=	11.826	P∕Pt0= .2389	Mach= 1.590
Tap No	. 70	Static	Pressure=	11.444	P∕Pt0= .2312	Mach= 1.612
Tap No	. 71	Static	Fressure=	12.223	P/Pt0= .2469	Mach= 1.567
Тар No	. 72	Static	Pressure=	16.067	P/Pt0= .3246	Mach= 1.377
Тар Мо	. 73	Static	Pressure=	14.363	P/Pt0= .2902	Mach= 1.456
Тар Мо	. 74	Static	Pressure=	11.498	P/Pt0= .2323	Mach= 1.609
Тар Но	. 75	Static	Pressure=	16.193	P/Pt0= .3271	Mach= 1.371
Tap No	. 76	Static	Pressure≖	16.060	P/Pt0= .3244	Mach= 1.377
Тар Мо	. 77	Static	Pressure=	14.771	P∕Pt0= .2984	Mach= 1.437
Тар Мо	. 78	Static	Pressure=	14.803	P/Pt0= .2991	Mach= 1.435
Тар Но	. 79	Static	Pressure=	12.856	P/Pt0= .2597	Mach= 1.533
Тар Но	. 80	Static	Pressure=	14.697	P/Pt0= .2969	Mach= 1.440
Tap No	. 81	Static	Pressure=	14.749	P/Pt0= .2980	Mach= 1.438
Tap No	. 82	Static	Pressure=	14.744	P/Pt0= .2979	Mach= 1.438
Tap No	. 83	Static	Pressure=	14.745	P/Pt0≈ .2979	Mach= 1.438
Тар Мо	. 84	Static	Pressure=	11.817	P/Pt0≈ .2387	Mach= 1.590
Тар Но	. 85	Static	Pressure≖	14.686	P/Pt0= .2967	Mach= 1.441
Tap No	. 86	Static	Pressure=	14.836	P/Pt0= .2997	Mach= 1.433
Tap No	. 87	Static	Pressure=	16.235	P/Pt0= .3280	Mach= 1.369
Tap No	. 88	Static	Pressure=	14.667	P/Pt0= .2963	Mach= 1.441
Тар Мо	. 89	Static	Pressure=	11.579	P/Pt0= .2339	Mach= 1.604

;

Table C-1. (Continued)

A STATE AND A CONTRACT OF A STATE OF A STATE

Contraction of the second

<u>ia</u> 7

.94

•••**••******* UHSUHDE WIND IUNNEL IEST 1 ********************************

lotal Pressure = 50.728 psia Plenum Total Temperature = 62 deg F Ambient Pressure = 14.749 psia

Tap No. 1	Static	Pressure	=	50.729	psia –	P∕Pt0=1	.0000
Fap No. 2	Static	Pressure	*	33.355	psia	P∕Pt0=	.6575
Tap No. 3	Static	Pressure		33.863	psia	P/Pt0=	.6675
Tap No. 4	Static	Pressure	*	33.928	psia	P/Pt0=	.6688
Tap No. 5	Static	Pressure	=	33.970	psia	P/Pt0=	.6696
Tap No. 6	Static	Pressure	=	33.449	psia	P/Pt0=	.6594
Tan No. 7	Static	Pressure	=	33.977	psia	P/Pt0=	.6698
Tap No. 8	Static	Pressure		34.040	psia	P∕Pt0=	.6710
Tap No. 9	Static	Pressure	=	34.066	psia	P/Pt0=	.6715
Tan No. 10	Static	Pressure	=	34.075	nsia.	P/Pt0=	.6717
Tap No. 11	Static	Pressure		33.900	nsia	P/Pt0=	.6683
Tap No. 12	Static	Preseure	=	33.847	nsia	P/Pt0=	.6672
Tap No. 12	Gtatic	Proceuro	-	33.721	nsia	P/PL0=	.6647
Tap No. 13	Gtatic Static	Preseure	-	33 578	041a	P/PtR=	.6619
Tap No. 17	Ciatic Ciatic	Phageuna	-	22 595	ncia	P/Pt0=	.6622
Tap No. 10 Tap No. 16	Static Static	Disagauna	-	33 986	nsia	P/Pt0=	. 6699
1 ap 110. 10	Static	Pressure	-	33.900	naia	P/Pt A=	6703
Tap No. 17	Static	Pressure	-	37.002	ngia	P/Pt0=	6655
1ap No. 18	Static	Fressure Decession	_	33.701	NSIA.	P/P+0=	2544
13p No. 19	Static	Fressure	_	33.700	haia.	P/P+0=	6644
1ap No. 20	Static	Pressure	-	33.700	p 20 1 40.	P/P+0-	2220
Tap No. 21	Static	Pressure	-	33.840	para	F/FUU-	.0000
Tap No. 22	Static	Pressure	-	33.408	psia	F/FUU=	.0300
Tap No. 23	Static	Pressure	Ξ	33.034	psia	F/Ft0=	.0310
Tap No. 24	Static	Pressure	=	34.652	psia	F/FtU=	.0031
Tap No. 25	Static	Pressure	-	34.395	psia	F/Ft0=	.0(00
Tap No. 26	Static	Pressure	-	33.497	psia	P/Pt0=	.0003
Tap No. 27	Static	Pressure	3	33.968	psia		.0070
Tap No. 28	Static	Pressure	*	33.941	psia	P/P10=	.0071
Tap No. 29	Static	Pressure	-	33.494	psia	P/Pt0=	.6603
Tap No. 30	Static	Pressure	*	33.180	psia	P/Pt0=	.6041
Tap No. 31	Static	Pressure		33.862	psia	P/PtU=	.6670
Tap No. 32	Static	Pressure	=	32.642	psia	P/Pt0=	.6435
Tap No. 33	Static	Pressure	=	34.206	psia	P/PtU=	.6/43
Tap No. 34	Static	Pressure	=	33.751	psia	P/Pt0=	.6653
Tap No. 35	Static	Pressure	=	34.487	psia	P/Pt0=	.6798
Tap No. 36	Static	Pressure	=	34.031	psia	P/Pt0=	.6708
Tap No. 37	Static	Pressure	=	33.360	psia	P/Pt0=	.6576
Tap No. 38	Static	Pressure	=	32.817	psia	P/Pt0=	.6469
Tap No. 39	Static	Pressure	-	32.866	psia	P/Pt0=	.6479
Tap No. 40	Static	Pressure	=	33.141	psia	P/Pt0=	.6533
Tap No. 41	Static	Pressure	=	31.082	psia	P/Pt0=	.6127
Tap No. 42	Static	Pressure	=	33.469	psia	P/Pt0=	.6598
Tap No. 43	Static	Pressure	=	33.031	psia	P/Pt0=	.6511
Tap No. 44	Static	Pressure	=	32.508	psia	P/Pt0=	.6408
Tap No. 45	Static	Pressure	-	32.453	psia	P/Pt0=	.6397
Tap No. 46	Static	Pressure		32.444	psia	P/Pt0=	.6396

Table C-2. Cascade Wind Tunnel Test Data

95

या करेक्सकी के की प्रक्रिय के

AND REAL OF

The second second

CASCADE WIND TUNNEL TEST 1 CONTINUED

Tap No.	47	Static	Pressure	*	32.148	psia	P/Pt0=	.6337
Tap No.	48	Static	Pressure	=	32.068	psia	P/Pt0=	.6321
Tap No.	49	Static	Pressure		31.239	psia	P/Pt0=	.6158
Tap No.	50	Static	Pressure	=	23.478	psia	P/Pt0=	.4628
Tap No.	51	Static	Pressure	-	31.811	psia	P/Pt0=	.6271
Tap No.	52	Static	Pressure		31.204	psia	P/Pt0=	.6151
Tap No.	53	Static	Pressure	*	29.516	psia	P/Pt0=	.5818
Tap No.	54	Static	Pressure		22.630	psia	P/Pt0=	.4461
Tap No.	55	Static	Pressure	*	30.574	psia	P/Pt0=	.6027
Tap No.	56	Static	Pressure	=	28.336	psia	P/Pt0=	.5586
Tap No.	57	Static	Pressure		22.831	psia	P/Pt0=	.4500
Тар Но.	58	Static	Pressure	*	21.312	psia	P/Pt0=	.4201
Tap No.	59	Static	Pressure	=	21.453	psia	P/Pt0=	.4229
Tap No.	60	Static	Pressure	=	20.225	psia	P/Pt0=	.3987
Tap No.	61	Static	Pressure		19.392	psia	P/Pt0=	.3823
Tap No.	62	Static	Pressure		16.789	psia	P/Pt0=	.3309
Tap No.	63	Static	Pressure	*	17.474	psia	P/Pt0=	.3444
Tap No.	64	Static	Pressure	*	16.948	psia	P/Pt0=	.3341
Tap No.	65	Static	Pressure	3	14.785	psia	P/Pt0=	.2914
Tap No.	66	Static	Pressure	*	13.038	psia	P/Pt0=	.2570
Tap No.	67	Static	Pressure	*	10.107	psia	P/Pt0=	.1992
Tap No.	63	Static	Pressure	3	10.601	psia	P/Pt0=	.2090
Tap No.	69	Static	Pressure	×	11.257	psia	P/Pt0=	.2219
Tap No.	70	Static	Pressure	*	11.883	psia	P/Pt0=	.2342
Tap No.	71	Static	Pressure	2	11.600	psia	P/Pt0=	.2287
Tap Ho.	72	Static	Pressure	×	33.404	psia	P∕Pt0=	.6585
Tap No.	73	Static	Pressure	*	25,629	psia	P∕Pt0=	.5052
Tap No.	74	Static	Pressure	*	22.918	psia	P/Pt0=	.4518
Tap No.	75	Static	Pressure	3	32.392	psia	P/PtØ=	.6385
Tap No.	76	Static	Pressure		33.525	psia	P/Pt0=	.6609
Tap No.	77	Static	Pressure	3	15.089	psia	P/Pt0=	.2974
Tap No.	78	Static	Pressure	3	14.766	psia	P/Pt0=	.2911
Tap No.	79	Static	Pressure	*	32.923	psia	P/Pt0=	.6490
Tap No.	80	Static	Pressure	3	15.268	psia	P/Pt0=	.3010
Tap No.	81	Static	Pressure	*	14.783	psia	P/Pt0=	.2914
Tap No.	32	Static	Pressure	*	14.762	psia	P/Pt0=	.2910
Tap No.	83	Static	Pressure	=	10.260	psia	P/Pt0=	.2022
Tap No.	84	Static	Pressure	-	11.137	psia	P/Pt0=	.2195
Tap No.	85	Static	Pressure	*	14.610	psta	P/Pt0=	.2880
Tap No.	85	Static	Pressure	*	14.800	psia	P/Pt0=	.2917
Tap No.	87	Static	Pressure	=	33.539	psia	P/Pt0=	.6611
Tap No.	88	Static	Pressure	=	26.185	psia	P/Pt0=	.5162
Tap No.	89	Static	Pressure	=	23.609	psia	P/P10=	.4654

Table C-2. (Continued)

-

96

S. Simonal and a

Total Pressure = 49.565 psia Plenum Total Temperature = 65 deg F Ambient Pressure = 14.789 psia

Tap No.	1	Static	Pressure	=	49.561	psia	P/Pt8=	.9999
Tap No.	2	Static	Pressure		16.261	psia	P/Pt0=	.3281
Tap No.	3	Static	Pressure		15.999	psia	P/Pt0=	.3228
Tap No.	4	Static	Pressure		16.202	psia	P/P10=	.3269
Tap No.	5	Static	Pressure	=	16.416	psia	P/Pt0=	.3312
Tap No.	6	Static	Pressure	=	16.930	psia	P/Pt0=	.3416
Tap No.	7	Static	Pressure	=	16.244	osia	P/Pt0=	. 3277
Tap No.	8	Static	Pressure	-	16.811	psia	P/Pt0=	.3392
Tap No.	9	Static	Pressure	=	16.694	osia	P/Pt0=	.3368
Tap No.	10	Static	Pressure		16.960	psia	P/Pt0=	.3422
Tap No.	11	Static	Pressure		17.656	osia	P/Pt0=	.3562
Tap No.	12	Static	Pressure	=	18.297	osia	P/P10=	.3691
Tap No.	13	Static	Pressure	=	19.156	nsia	P/Pt0=	.3865
Tap No.	14	Static	Pressure	=	19.792	nsia	P/Pt0=	.3993
Tap No.	15	Static	Pressure		16.109	nsia	P/Pt0=	.3250
Tap No.	16	Static	Pressure		17.211	nsia	P/Pt0=	.3472
Tap No.	17	Static	Pressure	=	18.849	nsia	P/PL8=	.3803
Tap No.	18	Static	Pressure	-	19.248	nsia	P/PLO#	.3883
Tap No.	19	Static	Pressure		19,190	nsia	P/Pt9=	.3872
Tan No.	20	Static	Pressure		19.432	nsia	P/Pt D=	. 3920
Tap No.	21	Static	Pressure	=	19,137	nsia	P/Pt0=	.3861
Tap No.	22	Static	Pressure		28.316	nsia	P/Pt0=	. 4099
Tan No.	23	Static	Pressure		20.610	nsia	P/Pt R=	.4158
Tap No.	24	Static	Pressure	-	18.101	nsia	P/Pt0=	.3652
Tap No.	25	Static	Pressure		18.899	osia	P/PLO=	.3813
Tap No.	26	Static	Pressure		18.669	psia	P/Pt0=	.3767
Tap No.	27	Static	Pressure		19.383	psia	P/Pt0=	.3911
Tap No.	28	Static	Pressure		20.322	psia	P/Pt0=	.4100
Tap No.	29	Static	Pressure	=	19.683	psia	P/Pt0=	. 3971
Tap No.	30	Static	Pressure	Ŧ	19.555	psia	P/Pt0=	. 3945
Tap No.	31	Static	Pressure	=	20.279	psia	P/Pt0=	. 4091
Tap No.	32	Static	Pressure	=	22.014	psia	P/Pt0=	. 4441
Tap No.	33	Static	Pressure	=	18.676	iosia	P/P10=	.3768
Tap No.	34	Static	Pressure		19.151	DSIA	P/Pt0=	.3864
Tap No.	35	Static	Pressure	=	20.436	psia	P/Pt0=	.4123
Tar No.	36	Static	Pressure	=	19.817	psia	P/Pt0=	3998
Tap No.	37	Static	Pressure		19.448	psia	P/Pt0=	.3924
Tap No.	38	Static	Pressure	=	19.118	psia	P/Pt0=	.3857
Tap No.	39	Static	Pressure		19.083	psia	P/Pt0=	.3850
Tap Ho.	40	Static	Pressure	=	19.985	psia	P/Pt0=	.4032
Tap No.	41	Static	Pressure	=	22.030	psia	P/Pt0=	.4445
Tap No.	42	Static	Pressure	=	19.273	psia	P/Pt0=	. 3888
Tap No.	43	Static	Pressure	-	19.035	psia	P/Pt0=	. 3840
Tap No.	44	Static	Pressure	=	18.746	psia	P/Pt0=	. 3782
Tap No.	45	Static	Pressure		18.524	psia	P/Pt0=	.3737
Tap No.	46	Static	Pressure		18.859	psia	P/Pt0=	.3805

Table C-2. (Continued)

97

N.

المنافع أسعيا فرغلة

CASCADE WIND TUNNEL TEST 2 CONTINUED

Tap No. 47	Static Pressure = 18.618 psia	P/Pt0= .3756
Tap No. 48	Static Pressure = 18,492 psia	P/Pt0= .3731
Tap No. 49	Static Pressure = 19.298 psia	P/Pt0= .3893
Tap No. 50	Static Pressure = 19.478 psia	P/Pt0= .3930
Tap No. 51	Static Pressure = 18.080 psia	P/Pt0= .3648
Tap No. 52	Static Pressure = 18.528 psia	P/Pt0= .3738
Tap No. 53	Static Pressure = 19.142 psia	P/Pt0= .3862
Tap No. 54	Static Pressure = 18.556 psia	P/Pt0= .3744
Tap No. 55	Static Pressure = 18.843 psia	P/Pt0= .3802
Tap No. 56	Static Pressure = 18.621 psia	P/Pt0= .3757
Tap No. 57	Static Pressure = 17.979 psia	P/Pt0= .3627
Tap No. 58	Static Pressure = 16.939 psia	P/Pt0= .3417
Tap No. 59	Static Pressure = 17.539 psia	P/Pt0= .3539
Tap No. 60	Static Pressure = 16.677 psia	P/Pt0= .3365
Tap No. 61	Static Pressure = 16.408 psia	P/Pt0= .3310
Tap No. 62	Static Pressure = 15.377 psia	P/Pt0= .3102
Tap No. 63	Static Pressure = 15.528 psia	P/Pt0= .3133
Tap No. 64	Static Pressure = 14.600 psia	P/Pt0= .2946
Tap No. 65	Static Pressure = 13.326 psia	P/Pt0= .2689
Tap No. 66	Static Pressure = 12.496 psia	P/Pt0= .2521
Tap No. 67	Static Pressure = 11.523 psia	P/Pt0= .2325
Tap No. 63	Static Pressure = 12,335 psia	P/Pt0= .2439
Tap No. 69	Static Pressure = 12.217 psia	P/Pt0= .2465
Tap No. 70	Static Pressure = 12.111 psia	P/Pt0= .2443
Tap No. 71	Static Pressure = 11.579 psia	P/Pt0= .2336
Tap No. 72	Static Pressure = 16.502 psia	P/Pt0= .3329
Тар Но. 73	Static Pressure = 15.816 psia	P/Pt0= .3191
Tap No. 74	Static Pressure = 20.636 psia	P/Pt0= .4163
Tap No. 75	Static Pressure = 16.569 psia	P/Pt0= .3343
Tap No. 76	Static Pressure = 16.753 psia	P/Pt0= .3380
Tap No. 77	Static Pressure = 14,802 psia	P/Pt0= .2986
Tap No. 78	Static Pressure = 14.792 psia	P/Pt0= .2984
Tap No. 79	Static Pressure = 19.494 psia	P/Pt0= .3933
Tap No. 80	Static Pressure = 14.921 psia	P/Pt0= .3010
Tap No. 81	Static Pressure = 14.766 psia	P/Pt0= .2979
Tap No. 82	Static Pressure = 14.777 psia	P/Pt0= .2981
Tap No. 83	Static Pressure = 11.870 psia	P/Pt0= .2395
Tap No. 84	Static Pressure = 12.035 psia	P/Pt0= .2428
130 NO. 83	Static Pressure = 14.678 psia	P/Pt0= .2961
130 HO. 85	Static Pressure = 14.918 psia	P/PLU= .3010
120 HQ. 87 Tao Ng. 90	p_{tatic} rressure = 16.376 psia	P/PTU= .3348
1840 NO. 88	Static pressure = 16.377 ps12 Charles Pressure = 01.608 ms1-	P/Pt0= .3308
1347 110. 07 Tan Na 00	Static Pressure = 21.600 0512 Nall Extange Cantin Processor	15 017
1 SP NO. 70	Mail Exhaust Static Fressure =	13.017 psia
1.SP 110. 71	wali sxnaust lotal prejsure = 1	0.770 psia

Table C-2. (Continued)

inter in section to the section

and the state of the state of the state of the

in the second second

Total Pressure = 50.171 psia Plenum Total Temperature = 60 deg F Ambient Pressure = 14.705 psia

24.1

\$

Tap No.	1	Static	Pressure	*	50.155	psia	P/Pt0=	. 9997
Tap No.	2	Static	Pressure	-	16.664	neia	P/P+0=	3334
Tan No.	3	Static	Pressine	-	16 449	para .	P/P/0-	10021
Tan No.	4	Static		_			F/F104	• 3219
Tap No.		Static Chankin	Pressure	-	10.731	psia	P/PtU=	.3339
Tap No.	5	544610	Pressure	-	16.683	psia	P/Pt0=	.3325
Tap No.	6	Static	Pressure	-	17.155	psia	P/Pt0=	.3419
Tap No.	7	Static	Pressure	*	16.615	psia	P/Pt0=	.3312
Tap No.	8	Static	Pressure	*	17.065	psia	P/P10=	.3401
Tap No.	9	Static	Pressure	-	17.053	psia	P/Pt0=	.3399
Tap No.	10	Static	Pressure	-	17.727	nsia	P/P+A=	3522
Tap No.	11	Static	Pressure	-	19 142	nain	P/P+0-	0.0000
Tan No.	12	C+		_	10.176	1921 6	F/F10=	.3010
Tap No.	10		ressure	-	18.776	psia	P/Pt0=	.3742
Tap No.	13	STATIC	ressure	*	18.358	psia	P/P10=	.3659
ish No.	14	Static	Pressure		17.049	psia	P/Pt0=	.3398
Tap No.	15	Static	Pressure	*	16.644	psia	P/Pt0=	.3317
Tap No.	16	Static	Pressure	-	17.734	psia	P/Pt0=	.3535
Tap No.	17	Static	Pressure	-	18.945	psia	P/P10=	.3776
Tap No.	18	Static	Pressure	3	18.824	psia	P/Pt0=	3752
Tap No.	19	Static	Pressure	-	18.590	neia	P/P+0-	3708
Tan lio.	20	Static	Praceura	_	10 264	para.	F/FU04	.3/03
Tan No	21	Ct at in	Pressure	_	10.204	haia	P/Pt0=	.3640
Tap Ho.		Static	ressure	-	11.043	psia	P/P%8=	.3525
Tap No.	66	Static	ressure	-	17.039	psia	P/Pt0=	.3396
Tap No.	23	Static	Pressure	3	15.517	psia	P/Pt0=	.3093
Tap No.	24	Static	Pressure	3	18.756	psia	P∕Pt0≠	.3738
Tap No.	25	Static	Pressure	88	18.487	PSIA	P/Pt0=	.3685
Tap No.	26	Static	Pressure	=	17.385	Dsia	P/Pt A=	3465
Tap No.	27	Static	Pressure		16.840	neia	P/P+0=	3367
Tap No.	28	Static	Pressure	-	16 725	nein		- 33Jr
Tap No.	29	Static	Pressure	-	16 484	para	P/PL0=	.3334
Tan No.	20	Ctatic Ctatic	Pressure	_	10.434	psia	P/Pt0=	.3280
Tap No.	31	Static Static	Fressure	-	15.344	psia	P/P10=	.3298
Tap No.	31	STATIC	rressure	-	15.517	psia	P/P10=	.3093
Tap Ho.	34	Static	Pressure	*	14.453	psia	P/Pt0=	.2881
Tap No.	33	Static	Pressure	=	19.093	psia	P/Pt0=	.3806
Tap No.	34	Static	Pressure		17.812	psia	P/Pt0=	.3550
Tap No.	35	Static	Pressure	=	16.537	psia	P/Pt.0=	.3296
Tap No.	36	Static	Pressure		16.315	DSIA	P/Pta=	.3252
Tap No.	37	Static	Pressure	*	16.092	nais	D/D·0-	3007
Tap No.	38	Static	Preseuna	-	16.000	neis		10607
Tap No.	39	Static	Presente.	-	18 844	N 2 1 4	F / F V V	.3208
Tan No.	40	Ct at in	Pressure	-	13.363	psia	P/P18#	.3106
Tan Me	44	00451C	rressure	-	13.193	psia	P/Pt0=	.3028
Tap No.	71	313616	rressure	=	13.884	psia	P/Pt0=	.2767
Tap No.	42	Static	Pressure	=	15.614	psia	P/Pt0=	.3112
Tap No.	43	Static	Pressure		15.853	psia	P/Pt0=	.3160
Tap No.	44	Static	Pressure		15.639	psia	P/Pt0=	.3117
Tap No.	45	Static	Pressure	=	15.432	psia	P/P10=	.3076
Tap No.	46	Static	Pressure	=	15.284	DSÍA	P/P1.0=	3046
-								

Table C-3. Wave Cancellation Test Data

- 33

. ЭЮ

WAVE CANCELLATION TEST 1 CONTINUED

4. 2. 100

Tap No. 47	Static	Pressure	= 15.570 p	sia P/PtØ	= .3103
Tap No. 48	Static	Pressure	= 15.085 p	sia P/Pt0	.3007
Tap No. 49	Static	Pressure	= 14.899 p	sia P/Pt0	= .2970
Tap No. 50	Static	Pressure	= 14.580 p	sia P/Pt0	= .2906
Tap No. 51	Static	Pressure	= 14.599 p	sia P/Pt0	= .2910
Tap No. 52	Static	Pressure	= 14.492 p	sia P/Pt0	= .2889
Tap No. 53	Static	Pressure	= 14.555 p	sia P/Pt0	= .2901
Tap No. 54	Static	Pressure	= 14.243 p	sia P/Pt0	= .2839
Tap No. 55	Static	Pressure	= 14.335 p	sia P/Pt0	= .2857
Tap No. 56	Static	Pressure	= 14.245 p	sia P/Pt0	= .2839
Tap No. 57	Static	Pressure	= 14.020 p	sia F/Pt0	= .2795
Tap No. 58	Static	Pressure	= 14.182 p	sia P/Pt0	= .2827
Tap No. 59	Static	Pressure	= 13.864 p	sia P/Pt0	.2763
Tap No. 60	Static	Pressure	= 13.773 p	sia P/Pt0	.2745
Tap No. 61	Static	Pressure	= 13.416 p	sia P/Pt0	.2674
Tap No. 62	Static	Pressure	= 13.113 p	sia P/Pte	= .2614
Tap No. 63	Static	Pressure	= 12.470 p	sia P/Pt0	= .2486
Tap No. 64	Static	Pressure	= 12.745 p	sia P/Pte	= .2540
Tap No. 65	Static	Pressure	= 12.574 p	sia P/Pte	= .2506
Tap No. 66	Static	Pressure	= 12.887 p	sia P/Pte	= .2569
Tap No. 67	Static	Pressure	= 12.829 p	sia P/Pt0	.2557
Tap No. 68	Static	Pressure	= 12.550 p	sia P/Pt0	.2502
Tap No. 69	Static	Pressure	= 12.114 p	isia P/Pt0	.2415
Tap No. 70	Static	Pressure	= 11.676 p	sia P/Pt0	= .2327
Tap No. 71	Static	Pressure	= 9.998 p	sia P/Pt0	.1993
Tap No. 72	Static	Pressure	= 16.368 p	sia P/Pt8	.3263
Tap No. 73	Static	Pressure	= 15.767 p	sia P/Pt0	.3143
Tap No. 74	Static	Pressure	= 13.778 p	isia P/Pt0	= .2746
Tap No. 75	Static	Pressure	= 16.514 p	isia P/Pt0	= .3292
Tap No. 76	Static	Pressure	= 16.422 p	sia P/Pt0	.3273
Tap No. 77	Static	Pressure	= 14.709 p	sia P/Pté	.2932
Tap No. 78	Static	Pressure	= 14.764 p	sia P/Pt0)= .2943
Tap No. 79	Static	Pressure	= 16.071 p	osia P/Pt0	.3203
Tap No. 80	Static	Pressure	= 14.792 p	sia P/Pt0	= .2948
Tap No. 81	Static	Pressure	= 14.720 p	sia P/Pt0	= .2934
Tap No. 82	Static	Pressure	= 14.733 p	osia P/Pt0	.2937
Tap No. 83	Static	Pressure	= 11.830 p	sia P/Pte	.2358
Tap No. 84	Static	Pressure	= 12.269 p	osia P/Pté	= .2446
Tap No. 85	Static	Pressure	= 14.632 p	sia P/Pte	.2916
Tap No. 86	Static	Pressure	= 14.835 p	sia P/Pte	= .2957
1 ap No. 87	Static	Pressure	= 16.368 p	sta P/Pte	.3263
130 NO. 88	Static	rressure	= 16.315 p	SIA P/Pte	.3252
1 ap No. 89	Static	rressure	= 14.034 p	DS1A P/Pt0	J= .2797
140 No. 90	WATI E	xnaust St	atic Pressu	$re = 14.707 \mu$	951a
1ap No. 91	NELL E	xnaust To	tal Pressur	e = 12.200 pi	61 b

Table C-3. (Continued)

100

kard

1.11

Total Pressure = 50.336 psia - Plenum Total Temperature = 61 deg F Ambient Pressure = 14.676 psia

Tap No. 1	Static	Pressure	-	50.349	psia –	P/Pt0=1.0003
Tap No. 2	Static	Pressure		16.752	psia	P/Pt0= .3328
Tap No. 3	Static	Pressure	=	16.560	psia	P/Pt0= .3290
Tap No. 4	Static	Pressure	=	17.162	psia	P/Pt0= .3409
Tap No. 5	Static	Pressure	-	16.824	psia	P/Pt0= .3342
Tap No. 6	Static	Pressure	=	17.170	osia	P/Pt0= .3411
Tap No. 7	Static	Pressure	=	16.758	DSIA	P/Pt0= .3329
Tap No. 8	Static	Pressure		17.198	DSIA	P/Pt0= .3417
Tan No. 9	Static	Pressure		17.173	nsia	P/Pt0= .3412
Tan No. 10	Static	Pressure		17.900	nsia	P/Pt0= .3556
Tan No. 11	Static	Pressure	-	18.385	nsia	P/Pt0= 3652
Tan No. 12	Static	Pressure	-	19 033	neis	P/P+0= 2721
Tap No. 12	Static	Pressure	-	19 514	neis	P/P+0= 2670
Tap No. 10	Static Static	Pressure	-	17 773	para .	P/P+0= 2521
Tap No. 14	Static Static	Pressure	-	16 704	nais	P/P+0= 2001
Tap No. 15	Static	Pressure	_	10.124	nais	P/P+0= 3579
Tap No. 15	Static Cratic	Pressure	-	19.007	para	F/FUU= .3010 B/D.D= 3004
Tap No. 17	Static	Pressure	-	17.140	para	P/P/0- 3759
тар но. 18 Тар Но. 10	Static	Pressure	-	18.720	psia	P/Ft0= .3/37
1ap No. 17	Static	Pressure		18.743	psia	P/Pt0= .3/24
1 ap No. 20	Static	Pressure	-	18.275	psia	P/Pt0= .3631
Tap No. 21	Static	Pressure		17.848	psia.	P/Pt0= .3546
Tap No. 22	Static	Pressure	=	18.091	psia	P/Pt0= .3594
Tap No. 23	Static	Pressure	-	16.828	psia	P/Pt0= .3343
Tap No. 24	Static	Pressure		18.899	psia	P/Pt0= .3755
Tap No. 25	Static	Pressure		18.785	psia	P/Pt0= .3732
Тар Но. 26	Static	Pressure	-	17.424	psia	P/Pt0= .3462
Tap No. 27	Static	Pressure	=	16.978	psia	P/Pt0= .3373
Tap No. 28	Static	Pressure	3	16.851	psia	P/Pt0= .3348
Тэр Но. 29	Static	Pressure	=	16.760	psia	P/Pt0= .3330
Tap No. 30	Static	Pressure		16,951	psia	P/Pt0= .3368
Tap No. 31	Static	Pressure	=	15.866	psia	P/Pt0= .3152
Tap No. 32	Static	Pressure		15.695	psia	P/Pt0= .3118
Tap No. 33	Static	Pressure	-	19.442	psia	P/Pt0= .3362
Tap No. 34	Static	Pressure	=	17.935	psia	P/Pt0= .3563
Tap No. 35 -	Static	Pressure		16.684	psia	P/Pt0= .3315
Tap No. 36	Static	Pressure		16.444	psia	P/Pt0= .3267
Tap No. 37	Static	Pressure	=	16.535	psia	P/Pt0= .3285
Tap No. 38	Static	Pressure		16.483	psia	P/Pt0= .3275
Tap No. 39	Static	Pressure	-	16.644	psia	P/Pt0= .3307
Tap No. 40	Static	Pressure		15.738	psia	P/Pt0= .3127
Tap No. 41	Static	Pressure	=	15.335	psia	P/Pt0= .3047
Tap No. 42	Static	Pressure		15.728	psia	P/Pt0= .3125
Tap No. 43	Static	Pressure	=	16.211	psia	P/Pt0= .3221
Tap No. 44	Static	Pressure	=	16.026	psia	P/Pt0= .3184
Tap No. 45	Static	Pressure	=	16.446	psia	P/Pt0= .3267
Tap No. 46	Static	Pressure		16.124	psia	P/P10= .3203

Table C-3. (Continued)

いっというなのとうち

WAVE CANCELLATION TEST 2 CONTINUED

		B (B) 0- 0140
Tap No. 47	Static Pressure = 15.848 psia	P/Pt0= .3140
Tap No. 48	Static Pressure = 15.859 psia	P/Pt0= .3151
Tap No. 49	Static Pressure = 15.710 psia	P/PtU= .3121
Tap No. 50	Static Pressure = 15.425 psia	P/Pt0= .3064
Tap No. 51	Static Pressure = 14.896 psia	P/Pt0= .2959
Tap No. 52	Static Pressure = 15,249 psia	P/Pt0= .3029
Tap No. 53	Static Pressure = 15.246 psia	P/Pt0= .3029
Tap No. 54	Static Pressure = 15.099 psia	P/Pt0 = .3000
Tap No. 55	Static Pressure = 15.028 psia	P/Pt0= .2986
Tap No. 56	Static Pressure = 14.890 psia	P/Pt0= .2958
Tap Ho. 57	Static Pressure = 14.843 psia	P/Pt0= .2949
Tao No. 58	Static Pressure = 14.459 psia	P/Pt0= .2873
Tap No. 59	Static Pressure = 14.608 psia	P/Pt0= .2902
Tan No. 60	Static Pressure = 14.004 psia	P/Pt0= .2782
Tap No. 61	Static Pressure = 13.721 psia	P/Pt0= .2726
Tao No. 62	Static Pressure = 13.776 psia	P/Pt0= .2737
Two No 63	Static Pressure = 12.873 psia	P/Pt0= .2557
Tan Ho. 64	Static Pressure = 12.900 psia	P/Pt0= .2563
Tap No. 04 Tap No. 65	Static Pressure = 13.171 psia	P/Pt0= .2617
Tap No. 65	Static Pressure = 13.469 psia	P/Pt0= .2676
130 NO. 00 Tau Na 67	Static Pressure = 12.649 psia	P/Pt0= .2513
1 ap No. 67	Static Pressure = 12.940 psia	P/Pt0= .2571
Tap 110, 60	Chatic Pressure # 12,815 psia	P/Pt0= .2546
Tap H0. 07	Contic Pressure a 11.841 DSTA	P/Pt0= .2352
(ap no. ru	CULLIC Pressure # 9.579 DSia	P/Pt0= .1903
Tap No. 71	Static Pressure = 16,434 psia	P/P10= .3265
tap No. CC Tap No. 70	Contic Pressure # 15.814 psia	P/Pt0= .3142
Tap No. 75	Contin Pressure = 14.184 psia	P/Pt0= .2818
1 ap No. 74 7 No. 75	Static Pressure = 16.604 psia	P/Pt0= .3299
tap no. 70	$C_{1,1} = C_{1,1} = C_{1$	P/Pt0= .3306
13p No. (6	Static Pressure = 14.679 nsia	P/Pt0= .2916
Тар но. ((Т. н. 70	Static Pressure = 14.679 nsia	P/Pt0= .2916
1 ap No. (8	$\frac{364616}{6} Pressure = 16.368 0513$	P/PL0= .3252
13p No. 79	Static Pressure = 14.712 hsia	P/P10= .2923
Tap No. 30	Static Pressure - Itilic point	P/Pt0= .2912
Tap No. 81	Static Pressure = 14.663 paia	P/P10= .2913
Tap No. 82	Static Pressure - 17:000 para Chatic Pressure - 19 950 neis	P/Pt0= .2435
Tap Ho. 83	Static pressure = 12.600 para	P/Pt0# .2551
Tap No. 84	Static Pressure - 14 619 mais	P/Pt0= .2904
Tap No. 85	$\frac{1}{2}$	P/Pt 0# . 2933
Tap No. 86	Static Pressure - 14 for main	P/Pt0# .3285
Tap No. 87	Static Pressure = $10,000$ paid	P/Pt 0= 10200
Tap No. 88	Static pressure = 10.070 psie	P/Pt0= .2793
Tap No. 89	Static Pressure = 14,000 psia	F7FV0- 16170

Table C-3. (Continued)

1.0

102

the state of the second state and the second state of the second s

No and

W. COR. CONTRACTOR

T. North

A Frister

ÉCC.

2.47
LIST OF REFERENCES

Contraction of the second s

- 1. Demo, W. F., <u>Cascade Wind Tunnel for Transonic</u> <u>Compressor Blading Studies</u>, <u>MSNE Thesis</u>, <u>Naval</u> Postgraduate School, Monterey, CA, June 1978
- 2. Arnold, M. J., and Fjelde, J. A., <u>Preliminary</u> <u>Calibration of a Cascade Wind Tunnel</u>, AE 3815 <u>Laboratory Report</u>, Department of Aeronautics, Naval Postgraduate School, Sept. 23, 1978.
- 3. Zucker, R. D., Fundamentals of Gas Dynamics, Matrix Publishers, Inc., 1977.
- North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development Report AGARD-LS-39-70, <u>Supersonic Cascade Performance</u>, by H. Starken and H. Lichtfuss, August 1970.
- 5. Goethert, B. H., <u>Transonic Wind Tunnel Testing</u>, Pergamon Press, 1961.
- 6. Arnold Engineering Development Center Report AEDC-TR-60-9, A Summary of Perforated Wall Wind Tunnel Studies at the Arnold Engineering Development Center, by M. Pindzola and W. L. Chew, August 1960.
- 7. Bruhn, E. F., and others, <u>Analysis and Design of</u> <u>Flight Structures</u>, Tri State Offset Company, 1965.
- 8. Geopfarth, R. N., <u>Development of a Device for the</u> <u>Incorporation of Multiple Scanivalves into a</u> <u>Computer-Controlled Data System</u>, MSAE Thesis, Naval Postgraduate School, Monterey, CA, March 1979.

103

INITIAL DISTRIBUTION LIST

10 m

25-202

10 miles

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandra, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1
4.	Associate Professor R. P. Shreeve Code 67Sf Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1
5.	Mr. J. E. Hammer, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1
6.	Lieutenant Commander K. F. Volland, Jr. Code 1133 Pacific Missile Test Center Pt. Mugu, California 93042		1
7.	Lieutenant W. J. Demo, Jr. c/o Supervisor of Shipbuilding Conversion and Repair, USN Long Beach Naval Shipyard Long Beach, California 90201		1
8.	Turbopropulsion Laboratory, Code 67 Naval Postgraduate School Monterey, California 93940		8
9.	Mr. Karl H. Guttmann Naval Air Systems Command, Code 330C Department of the Navy Washington, DC 20361		1

104

S.E.S.

لأستانت

Service Service

State in

10. Dr. H. J. Mueller Naval Air Systems Command Department of the Navy Washington, DC 20361

ł

1

というないのないである

WANT PAR