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FOREWORD

Ada is the result of a collective effort to design a common language for programming large scale snd
real-time defense systems.

The common high order lanauage program began in 1974, The DoD requirements were formalized

in a series of documents which were extensively reviewed by the Services, industrial organizations,
umversities, and foreign military departments. The culmination of that process was the Steelman Report
to which the Ada language has been designed,

Tl{e Ada design team was led by Jean D. Ichbiah and has included Bernd Krieg-Brueckner Brisn A,
Wichmann, Henry F. Ledgard, Jean-Claude Heliard, Jean-Raymond Abrial, John G.P. Barrix, Mike
Woodger, Olivier Roubine, Paul N. Hilfinger and Robert Firth.

At various stages of the project, several people closely associated with the design team made major
contributions. They include J.B. Goodenough, M.W, Davis, G. Ferran, L. MacLaren, E. Morel, |.R. Nassi,
1.C. Pyle, S.A. Schuman, and S.C. Vestal.

Two parallel efforts that were started in the second phase of this design had a deep influence on the
language. One is the development of a formal definition using denotational semantics, with the
participation of V. Donzeau-Gouge, G. Kahn, B. Lang, and P, Cadiou. The other is the design of a

test translator witn the participation of K. Ripken, P, Boullier, J. Holden, J, F. Hueras, R.G. Lange,
and D.T, Cornhill. The entire effort benefitted from the dedicated assistance of Lyn Churchill and
Marion Myers, and the effeciive technical support of B. Gravem and W.L. Heimerdinger. H.G. Schmitz
served as program manager.

Over the three years spent on this project, five intense one-week design reviews were conducted with
the participatior of H. Harte, A.L. Hisgen, P.M. Knueven, M. Kronental, G. Seegmueller, V. Stenning,
F. Belz, P. Cohen, R. Converse, K. Correll, R. Dewar, A. Evans, N, Habermann. J. Sammet, S. Squires,
J. Teller, P. Wegner, and P.R. Wetheral/.

Several persons had a constructive influence with their comments, criticisms, and suggestions. They
include P. Srinch Hansen, G. Goos, C.A.R. Hoare, Mark Rain, W.A. Wulf, P. Belmont, E. Boebert,

P. Bonnard, R. Brender, 8. Brosgol, H. Clausen, M. Cux, T, Frogatt, H. Ganzinger, C. Hewitt, S. Kamin,
JL. Mansion, F. Minel, T. Phinney, /. Roehrich, V. Schneider, A. Singer, D. Slosberg, 1.C. Wand, the
reviewers of the group Ada-Europe, and the reviewers of the Tokyo study group assembled by

N. Yoneda and K. Kakehi,

These reviews and comments, the numerous evaluation reports received at the end of the first and
second phases, the more than nine hundred language issue reports, comments, and test and evaluation
reports received from fifteen different countries during the third phase of the project, and the on-going
work of the |IFIP Working Group 2.4 on system implementation languages and that of LTPL-E of
Purdue Europe all had a substantial influence on the final definition of Ada,

The Military Departments and Agencies have pr.vided a broad base of support ircluding funding,
extensive reviews, and countless individual contributions by the members of the High Order Language
Working Group and other interested personnel. In particular, William A. Whitaker provided leader-
ship for the prograr during the formative stages. David A. Fisher was responsible for the successful
development and iteration of language requirements documents, leading to the Steelman specification.

This language definition was developed by Cii Honeywell Bull and Honeywell Systems and Research

Center under contract to the United States Department of Defense, William E. Carlsor: served as the
technical representative of the Government and effectively coordinated the efforts of all participants
in the Ada program.
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This reference manual was prepared with a formatter specialized for Ada texts. It was developed by
Jon F, Hueras for Multics and adapted by Paul Knueven for the CMU Scribe photocomposition system,
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1. Introduction

Thus report describes the programming language Ada, designed in accordance with the Steelman
requirements of the United States Department of Defense. Overall, the Steeiman requirements call for
a language with considerable expressive power covering a wide application domain. As a result the
language includes facilities offered by classical languages such as Pascal as well as facilities often
found only in specialized languages. Thus the language is a modern algorithmic language with the
usuai control structures, and the ability to define types and subprograms. It also serves the need for
modularity, whereby data, types, and subprograms can be packaged. It treats modularity in the
physical sense as well, with a facility to support separate compilation.

In addition to these aspects, the language covers real time programming, with facilities to model
parallel tasks and to handie exceptions. It also covers systems program applications. This requires
access to system dependent parameters and precise control over the representation of data. Finally,
both application tevel and machine level input-output are defined.

1.1 Design Goals

Ada was designed with three overriding concerns: a recognition of the importance of program
reliability and maintenance, a concern for programming as a human activity, and efficiency.

The need for languages that promote reliability and simplify mzintenance is well established. Hence
emphasis was placed on program readsbility over ease of writing. For example, the rules of the
language require that program variables be explicitly declared and that their type be specified. Since
the type of a variable is invariant. compilers can ensure that operations on variables are compatible
with the properties intended for objects of the type. Furthermaore, error prone notations have been
aviided. and the syntax of the language avoids the use of encoded forms in favor of more English-like
coastructs. Finally, the language offers support for separate compilation of program units in a way
that facilitates program development and maintenance, and which provides the same degree of
checking as within a unit.

Ccncern for the human programmer was also stressed during the design. Above all, an attempt was
mzde to keep the language as small as possible, given the ambitious nature of tt e application domain.
We have attempted to cover this domain with a small number of underlying concepts integrated in a
coasistent and sysiematic way. Nevertheless we have tried to avoid the pitfalls of excessive
imolution, and in the constant search for simpler designs we have tried to provide language
coistructs with an intuitive mapping on wat the user will normally expect

Like many other human activities, the development of programs is becoming more and more
de :entralized and distributed. Consequently the ability to assemble a program from independently
pruduced software components has beer. a central idea in this design. The cor.cepts of packages, of
private types. and of generic program uni:s are directly related to this idea. which has ramifications in
mé ny other aspects of the language.

Design Goals 1.1
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No language can avoid the problem of efficiency. Languages that require overly elaborate compilers
or that lead to the inefficient use of storage or execution time force these inefficiencies on all
machines and on all programs. Every construct of the language was examined in the light of present
implementation techniques. Any proposed construct whose implementation was unclear or required
excessive machine resources was rejected.

Perhaps most importantly, none of the above goals was considered something that could be achieved
after the fact. The design goals drove the entire design process from the beginning.

1.2 Language Summary

An Ada program is composed of one or more program units, which can be compiled separately.
Program units may be subprograms (which define executable algorithms), packages (which define
collections of entities), or tasks (which define concurrent computations). Each unit normally consists
of two parts: a specification, containing the information that must be visible to other units, and a
body. containing the implementation details, which need not be visible to other units.

This distinction of the specification and body, and the ability to compile units separately allow a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. To allow accurate
control of program maintenance, the text of a separately compiled program unit must name the library
units it requires.

Program units.

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the logical counterpart to a series of zctions. For example,
it may read in data, update variables, or produce some output. It may have parameters, to provide a
controlled means of passing information between the procedure and the point of call. A function is
the logical counterpart to the computation of a value. It is similar to a procedure, but in addition will
return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a common pool of data and types, a collection of related subprograms,
or a set of type declarations and associatled operations. Portions of a package can be hidden from
the user, thus allowing access only to the logical properties expressed by the package specification.

A task is the basic unit for defining a sequence of actions that may be executed in parallel with other
simitar units. Parallel tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executiny task
object or a task type defining similar task objects.

Declarations and Statements
The body of a program unit generally contains two parts: a declarative part, which defines the logical

entities to be used in tive program unit, and a sequence of statements, which de'ines the execution of
the program unit.

1.2 Language Summary
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The declarative part associates names with declared entities. For exarhple. a name may denote a
type, a constant, a variable, or an -exception. A declarative part also introduces the names and
parameters of other nested subprograms, packages, and tasks to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The
statements are executed in succession (unless an exit, return, or goto statement, or the raising of an
exception causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any arguments provided at the call with the corresponding formal
parameters of the subprogram.

Case statements and if statements allow the selection of an enclosed sequence of statements based
on the value of an expression or on the value of a condition.

The basic iterative mechanism in the language is the loop statement. A loop statement specifies that
a sequence of statements is to be executed repeatedly until an iteration clause is completed or an exit
statement is encountered.

A block comprises & sequence of statements preceded by the declaration of local entities used by the
statements.

Certain statements are only applicable to tasks. A delay statement delays the execution of a task for a
specifiad duration. An entry call is written as a procedure call; it specifies that the task issuing the call
is ready for a rendezvous with ancther task that has this entry. The called task is ready to accept the
entry call when its execution reaches a corresponding accept statement, which specifies the actions
than to be performed. After completion of the rendezvous, both the calling task and the task having
tne entry may continue their execution in parallel. A select statement aliows a se ective wait for one of
several alternative rendezvous. Other forms of the select statement allow conditional or timed entry
calls.

Execution of a program unit may lead to exceptional situations in which normzi program execution
cannot continue. For example, an arithmetic computation may exceed the maxiraum aliowed value of
a number, or an attempt may be made t) access an array component by using an incorrect index
value. To deal with these situations, the statements of a program unit can be textually followed by
exception handlers describing the actions to be taken when the excepticnal situation arises.
E>ceptions can be raised explicitly by a raise statement.

Data Types

Every object in the language has a type which characterizes a set of values and a set of applicable
operations. There are four classes of t/pes: scalar types (comprising enumreration and numeric
types), composite types, access types, and private types.

An enumeration type defines an ordered s2t of distinct enumeration literals, for e cample a list of states
or an alphabet of characters. The enumeration types BOOLEAN and CHARACTER are predefined.

Numeric types provide a means of rerforming exact or approximate computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate
computations use either fixed point types, with absolute bound on the error, o1 floating point types,
with relative bound on the error. The numeric types INTEGER and DURATION are predetined.

Language Summary 1.2
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Composite types allow definitions of structured objects with related components. The composite
types in the language provide for arrays and records. An array is an object with indexed components
of the same type. A record is an object with named components of possibly different types.

A record may have distinguished components called discriminants. Alternative record structures that
depend on the values of discrirninants can be defined within a record type.

Access types allow the construction of linked data structures created by the execution of allocators.
They allow several variables of an access type to designate the same object, and components of one
object to designate the same or other objects. Both the elements in such a linked data structure and
their relation to other elements can be altered during program execution.

Private types can be defined in a package that conceals irrelevant structural details. Only the logically
necessary properties (including any discriminants) are made visible to the users of such types.

The concept of a type is refined by the concept of a subtype, whereby a user can constrain the set of
allowed values in a type. Subtypes can be used to deline subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Representation specifications can be used to specify the mapping between data types and features of
an underlying machine. For example, the user can specify that objects of a given type must be
represented with a specified number of bits, or that the components of a record are to be represented
in a specified storage layout. Other features allow the controlled use of low level, non portable, or
implementation dependent aspects, including the direct insertion of machine code.

Input - output is defined in the language by means of predefined library packages. Facilities are
provided for input — cutput of valites of user — defined as well as of predefined types. Standard means
of representing values in display form are also provided.

Finally the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects) and so
allow general algorithms to be applied to all types of a given class.

1.3 Sources

A continual difficulty in language design s that one must both identify the capabilities required by the
application domzin and design language features that provide these capabilities.

The difficulty existed in this design, although to a much lesser degree than usual because of the
Steelman requirements. These requirements otten simplified the design process by permitting us to
concentrate on the design of a given syst2m satisfying a well defined set of capabilities, rather than on
th= definition of the capabilities themselves.

1. Sources
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Another significant simpliification of our design work resulted from earlier experience acquired by
several successful Pascal derivatives developed with similar goais. These are the languages Euclid,
Lis, Mesa, Moduta. and Sue. Many of the key ideas and syntactic torms developed in these languages
have a counterpart in Ada. We may say that whereas these previous designs could be considered as
genuine research efforts, the language Ada is the result of a project in language design engineering,
in an attempt to develop a product that represents the current state of the art.

Several existing languages such as Algol 68 and Simula and also recent research languages such as
Alphard and Clu, influenced this languageé in several respects, although to a lesser degree than the
Pascal family.

Finally, the evaluation reports received on the initial formulation of the Green fanguage, the Red, Blue
and Yellow language proposals, the language reviews that took place at different stages of this
project, and the more than nine hundred reports received from fifteen different countries on the
preliminary definition of Ada, all had a significant impact on the final definition of the language.

1.4 Syntax Notation
The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular,

(a) Lower case words, some containing embedded underscores, denote syntactic categories, for
example

agding_opsrator

(b} Boldface words denote reserved words, for example
array

{c) Square brackets enclose optional it2ms, for example
end [identifier];

id) Braces enclose a repeated item. The item may appear zero or more timas. Thus an identifier
list is defined by

identifier_list :: = identitier {, identifisr)

(e» A vertical bar separates alternative items, unless it occurs immediately after an opening brace,
in which case it stands for itself:

letter_or_digit :: = letter | digit
component_association :: = [ choice: {| choice} => ] expression

(f)  Any syntactic category prefixed by an italicized word and an undersco-e is equivalent to the
unprefixed corresponding category name. The prelix is intended to convey some semantic
intormation. For example type_nanie and task_name are both equivalent to the category name.

Syntax Nowtion 1.4
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L In addition, the syntax rules describing structured constructs are presented in a form that
‘ corresponds to the recommended paragraphing. For example, an if statement is defined as

it_statement :: =

3 if condition then

] sequence_of_statements

{ elsit condition then
sequence_of_statements}

[ else
sequence_of_statements]

end if;

1.5 Structure of the Reference Manual

This reference manual contains fourteen chapters, six appendices and an index. Each chapter is
divided into sections that have a cammon structure. Each section introduces its subject, gives any
necessary syntax equations. and describes the semantics of the corresponding language constructs.
Examples, notes. and references, when present, follow in this order.

Examples are meant to illustrate the possible forms of the constructs described. Notes are to
emphasize consequences of the rules described in the section or elsewhere. References refer to
related sections. Neither exampies, not notes. nor references are part of the standarc definition of the

Ada language. In addition the appendices D (glossary), F (implementation dependent
characteristics). and any section whose title starts by "example” do not form part of the standard
definition.

1 6 Classification of Errors

The language recognize three categories of errors.

(1) Errors that must be detected at' compilation time by every Ada corapiler. These errors
correspond to any violation of a ryle of the language, other than those corresponding to {2) or
(3) below. Any rule that uses the terms iegal, allowed, must, or may only belongs to this
category.

() Errors that must be detected at run time. These are called exceptions In certain situations
compilers may give warning during compilation that an exception is certain to occur in every
execution of the program.

{?) Finally the language snecifies certain rules that must be obeyed by Ada programs, although Ada
compilers are not required to check that such rules are not viclated. For any error belonging to
this category. the reterence manual uses the word erroneous to qualfy the cciresponding
programs. It an erroneous program is executed. its effect is unpredictable.

1.6 Classificaton of Freors
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2. Lexical Elements
This chapter defines the lexical elements of the language. fﬁ

2.1 Character Set

All language constructs may be represented with a basic graphic character set, which is subdivided
as follows: ‘

‘(a). upper case letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ

(b) digits
0123456789

(c) special characters
"H%& () + -/ <=0 _]

(d) the space character

The character set may be extended to include further characters from the 95 character ASC//
graphics set. These are:

(e} lower case letters
abcdefghijkimnopqrstuvwxyz

fH other special characters St

1$2@ [N}~ ()~
Evary program may be converted into an equivalent program which uses only the basic character set.
Any lower case letter is equivalent to the corresponding upper case letter, except within character
strings and character literals; rules for the transliteration of strings into the basic :haracter set appear
in section 2.10.

References:

ascii package C, character literal 2.5, charactar string 2.6. transliteration 2.10.

Character Set 2.1 i
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2.2 Lexical Units and Spacing Conventions

A program is a sequence of lexical units; the partitioning of the sequence into lines and the spacing
between lexical units does not affect the meaning of the program. The lexical units are identifiers
(including reserved words), numeric literals, character literals, strings, delimiters and comments. A
dzlimiter is either one of the following special characters in the basic character set

&' ()s+,~-./7:;€C =}
or one of the following compound symbols

2> L e = /= D= L= K D O
Adjacent lexical units may be separated by spaces or by passage to a new line. An identifier or
numeric literal must be separated in this way from an adjacent identifier or numeric literal. Spaces

must not occur within lexical units, excepting strings, comments, and the space character literal.
Each lexical unit must fit on one line.

Control characters of the ASC// set are used to effect this layout.

Any of carriage return, line feed, vertical tabulate, form feed, and only these, causes passage to a new
line. Horizontal tabulate is allowed in comments. Qtherwise no control character may occur within a
lexical unit. Between lexical units horizontal tabulate is equivalent to a space, backspace is not
allowed, and delete and null characters are ignored.

Note:

The number of lines produced by combinitions of control characters is not prescribed. Thus carriage
return terminates a lexical unit, whether or not a line feed follows it. Note that the double quote,
double hyphen, and sharp sign are not delimiters; they are part of other lexical units.

References:

asuii package C, character literal 2.5, comment 2.7, identifier 2.3, numeric literal 2.4, reserved word 2.9,
string 2.6.

2.3 ldentifiers i
Identifiers are used as names (also as reserved words). Isolated underscore characters may be
included. All characters, including under:scores, are signiticant.

identifier . =
letter {[underscore] letter_or_digit})

letter_or_digit :: = letter | digit
letter :: = upper_case_letter | lower_case_letter

Ncte that identifiers differing only in the use of corresponding upper and lower case letters are
considered as the same.

2.. Ideniifiers
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Examples: 4

E

COUNT X get_symbol Ethelyn Marion §

:

SNOBOL_4 X1 PageCount STORE_NEXT_ITEM }

r

References: é

lower case letter 2.1, name 4.1, upper case letter 2.1.

2.4 Numeric Literals

There are two classes of numeric literals: integer literals and real literals. Integer literals are the
literals of the type universal_integer. Real literals are the literals of the type universal_real.

numeric_literal  ::= decimal_number | based_number

decimal_number : = integer {.integer] [exponant]

integer 1 = digit {{underscorg] digit}'

exponent ::= E [+] integer | E - integer

P S ORI IR % e, e AN D L RO

Isolated underscore characters may be inser:ad between adjacent digits of a decimal number, but are
not significant.

The conventional decimal notation is used. Real literals are distinguished by the presence of a
decimal point. An exponent indicates the power of ten by which the preceding number is to be
multiplied to obtain the value represented. An integer literal can have an exponent; the exponent
must be positive or zero.

RPN S e

Examples:

12 0 123_456 1E6 -~ integer literals t
120 0.0 0.456 3.14159_26 -~- real literals !

1.34E-12 1.0E+6 -~- real literals with exponent

oy

Note:
Tre exponent may be indicated by either an upper case E or a lower case e (see 2.1).
Reterences:

universal_integer type 3.5.4, uhiversal_real type 3.5.6 ;

B g it ko T

Numeric Literals 2.4
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2.4.1 Based Numbers :
Numbers may be represented with a base other than ten. Based numbers can have any base from 2 ~ i
to 16. :
based_number :: = :

base # based_integer [.based_integer] # [exponent] ?5

3

base ::= integer J
based_integer :: = 4
extended_digit {{underscore] extended_digit} 9
extended_digit :: = digit | letter ‘
Isolated underscore characters may be inserted between adjacent extended digits of a based number, ¥
¢

but are not significant. An exponent indicates the power of the base by which the preceding number
is to be muitiplied to obtain the value represented. The base and the exponent are in decimal
notation. For bases above ten, the extended digits include the letters A through F, with the

conventional significance 10 through 15.

Examples:
2#1111_1111 % 16 #FF# -~ integer literals of valug 256
16 #E#E1 2#1110_0000 # -~ integer literals of valiye 224
16#FFF#E+2 2#11111_1111_111#E11 -~ .real literals of value 4095.0 .
Note:

An extended digit that is a letter can be w-itten either in lower case or in upper case.

e O Pt A BT’ 3 o SRR "7 o o 1

2.5 Character Literals

A character literal is formed by enclosing one of the 95 ASC// graphic characters (including the
space) between single quote characters.

T e s gy v

Examples:
AT et ot
References:

as:ii package C, character 2.1

2.0 Character Literals
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2.8 Character Strings

A character string is a sequence of zero or more characters prefixed and terminated by the string
bracket character.

character_string :: = "{character}"

In order that arbitrary strings of characters may be represented, any included string bracket character
must be writter: twice. The length of a string is the length of the sequence represented. Catenation
must be used to represent strings longer than one line, and strings containing control characters.

Examples:

-- an empty string
-- three strings of length 1

[T} uAn nunn

"characters such as $, % and } may appear In strings”

"FIRST PART OF A STRING THAT " &
"CONTINUES ON THE NEXT LINE”

R T L e el -

S5

"String containing” & ASCH.CR & ASCIL.LF & "Control characters"
References:

catenation 3.6.3 4.5.3, character 2.1

2.7 Comments

A comment starts with two hyphens and is terminated by the end of the line. It may only appear
following a lexical unit or at the beginning or end of a program unit. Comments have no effect on the
meaning of a program; their sole purpose ‘s the enlightenment of the human reader.

Examples:

-~ the last sentence above echoes the Algol 68 report

T AT s Simnis o1 TS AT TONPEPPAIG 2 ] <. 1 IR ST

end; -~ processing of LINE is complete

-~ along comment may be split onto
-- two or more consecutive lines

---------------- the first two hyohens start the comment
References:

lexxical unit 2.2, program unit 8 7 8.

Commenis 2.7
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2.8 Pragmas

Pragmas are used to convey information to the compiler. A pragma begins with the reserved word
pragma followed by the name of the pragma, which distinguishes it from other pragmas. A pragma
not recognized by the compiler has no effect.

pragma =
pragma identifier [(argument {, argument})];

argument :: =
(identifier =>] name
} [identiier =>] static_expression

Pragmas may appear before a program unit, or wherever a declaration or a statement may appear,
depending on the pragma. Some pragmas have arguments, which may involve identifiers visible at
the place of the pragma. The extent of the effect of a pragma depends on the pragma.

A pragma may be language defined or implementation defined. All language defined pragmas are
described in Appendix B. All implementation defined pragmas must be described in Appendix F. A
pragma whose identitier is not recognized by the compiler has no effect.

Examples:

pragma LIST(OFF);

pragma OPTIMIZE(TIME);

pragma INCLUDE("COMMONTEXT");

pragma INLINE(SETMASK);

pragma SUPPRESS(RANGE_CHECK, ON => INDEX);

References:
declaration 3.1, implementation defined pragma F, language defined pragma B, program unit 6 7 9, reserved

word 2.9, statement 5, static expression 4.9, visibility rules 8

2.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for special significance in the

laiguage Declared identifiers may not be reserved words. For readability of this manual, the
reserved words appear in lower case boldface.

2.7 Reserved Words

T
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1 i abort declare generic of select
3 accept delay goto or separate g
access deita others subtype 14
all digits it out 3
and do in task , I
array is . package terminate
at pragma then -1
else private type 4
elsit limited procedure &
end loop ‘-‘i
begin entry raise use .i
body exception range
exit mod record when
rem while
new renames with
case for not return
constant function null reverse xor

2.10 Transliteration

A character string may contain characters not in the basic character set. A string containing such
characters can be converted to a string written with the basic character set by using identifiers
denoting these characters in catenated strings. Such identifiers are defined in the predafined .
package ASCIH. Thus the string "AB$CD" could be written as "AB" & ASCII.DOLLAR & "CD".

Similarly, the string "ABcd" with lower case letters could be written as "AB" & ASCI.LC_C &
ASCH.LC_D. ,

The following replacements are allowed for characters that may not be available:

e the vertical bar character I, which appears on some terminals as a broken bar, may be replaced
by the exclamation mark ! as a delimiiter.

o the sharp character # may be replaced by the colon : throughout any based number.

e the double quote character " used as string bracket may be replaced by a percent character %
at both ends of a string, provided that the string contains no double quote character. Any
percent character within the string nust then be written twice. A string which contains a Jouble . )
quote character can be represented using catenation and a name for that character.

Note:

The preferred character set is the one employed in the rest of this manual. It is recommended that
us2 of these replacements be restricted to cases where the characters replaced are not available.

References:

as:ii package C, based number 2.4.1, basi: character set 2.1, character string 2.6 choice 3.7.3, identifier
2%,

Transliteration 2.10
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3. Declarations and Types

This chapter describes the types in the language and the rules for declaring constants, variables, and
named numbers.

3.1 Declarations

The language defines several forms of named entities. A named entity can be either a number, an
enumeration literal, an object, a discriminant, a record component, a loop parameter, a type, a
subtype. an attribute, a subprogram. a package, a task, an entry, a named block, a named loop, a
labeled statement, an exception, or finally, a parameter of a subprogram, of an entry, or of a generic
subprogram or package.

A declaration associates an identifier with a declared entity. Each identifier must be explicitly
declared before it is used. excepting only labels, block identifiers, and loop identifiers; these are
declared implicitly. There are several forms of declarations.

declaration ;1 =
object_declaration | number_declaration
| type_deciaration | subtype_declaration
| subprogram_declaration | package_declaration
| task_declaration | exception_declaration
| renaming_declaration

A deciaration may declare one or more entities. Discriminant declarations, component declarations,
entry declarations. and parameter declarations occur as part of one of the above forms of
declarations. Enumeration literals are declared by an enumeration type definition. A loop parameter
is declared by an iteration clause. Attributas are predefined and cannot be declared.

The process by which a declaration achieves its effect is called the efaboratio of the declaration.
Th's process generally involves several successive actions:

o First. the identifier of a declared entity is introduced at the point of its firct occurrence; it may
hide other previously declared identifiers from then on (the rules defining visibility and hiding of
identifiers are given in section 8.3).

The second action is the claboratior of the declared entity. For ail forms of declarations, except
those of subprograms, packages. .ind tasks, an identifier can only be used as a name of a

declared entity once the elaboratior. of the entity is completed. A subprogram, package, or task -

identifier can be used as a name of the corresponding entity as soor as the identifier is
introduced, hence even within the d-:clardtion of the entity.

The last action performed by the elaboration of an object declaration may be the initialization of
the declared object (or objects).

Declarations 3.1
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The region of text over which the declaration has an effect is called the scope of the declaration; this
region always starts at the point where the declared identifier is introduced (scope rules are defined in
section 8.2). *

Object, number, type, and subtype declarations are described here. The remaining declarations are
described in later chapters.

B 2@ i s

] Notes:

BT
VR TR

The rules defining the elaboration of the different forms of declarations are such that an expression
appearing in a declaration is evaluated when the declaration is elaborated, except for certain
expressions given in generic parts and which depend on generic parameters. This rule applies to any
expression contained in a subprogram declaration but not to an expression contained in a
subprogram body (since a body is not a declaration).

e it e ol

The term elaboration also applies to use clauses, with clauses, representation specifications, and to
bodies (see section 3.9).

References:

block identifier 5.6. component declaration 3.7, discriminant declaration 3.7.1, elaboration 3.9, enumeration
literal 3.5.1. exception declaration 11.1, expression 4.4, generic package declaration 12.1, generic
subprogram declaration 12.1, hide 8.3. identifier 2.3, label 5.1, loop identifier 5.5, loop parameter 5.5, name
4.1, number declaration 3.2, object declaration 3.2, package declaration 7.1, parameter declaration 6.1 12.1,
renaming declaration 8.5, scope 8.2, subprogram body 6.3, subprogram declaration 6.1, subtype declaration
3.3, task declaration 9.1, type declaration 3.3, visibility rules 6.3.

3.2 Object and Number Declarations

An object is an entity that contains (has) a value of a given type. Objects can be introduced by object
declarations. Objects can also be components of other objects, or formal parameters of subprograms
and generic program units. Finally, an object can be designated by a value of an access type.

object_declaration :: =
identifier_list : [constant] subtype_indication [: = expression];
| identifier_list : [constant] array_type_definition [: = expression];

number_declaration :: =
identifier_list : constant .= lifcral_expression,

identitier_list :: = identifier {, identifier}

An object declaration introduces one or more named objects of a type given either by a subtype
indication, or by a constrained array type efinition. An object declaration may include an expression
specifying the initial value for the declared objects, provided that assignment is available for the type
of *he declared objects.

3.2 Object and Number Declurations
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The elaboration of an object declaration consists of the elaboration of the declared objects, followed
by their expilicit initialization, if any:

(a) For the elaboration of the declared objects, the identifiers of the list are first introduced; the
type is then established by elaborating the corresponding array type definition or by evaluating
any constraint in the subtype indication; objects of this type and named by the identifiers are
then created; these objects are subject to any constraint resulting from either the subtype
indication or the constrained array type detfinition. Finally, in the absence of an explicit
initialization, it a default initial value exists for objects of the type or for some of their
components, the corresponding default initializations are performed. In particular, for objects
of types with discriminants, the default discriminant values are assigned to the corresponding
discriminants uniless the objects are constrained, in which case the discriminant values
specified by the constraints are assigned.

(b) If an explicit initialization is specified in «.a object declaration, the corresponding expression is
then evaluated and its value is assigned to each of the declared objects. This value must satisfy
ary constraint on the objects as for assignment statements. An explicit initialization overrides a
default initialization (but of course an explicit initialization cannot modify a discriminant value of
an object with a discriminant constraint).

An object is a constant if the reserved word constant appears in the object declaration or if it is a
component of a constant array or of a constant record. . The initial value of a constant cannot be
modified; this value must be given in the constant deciaration except in the case of a deferred
constant (that is, a constant declared in the visible part of a package and whose type is a private type
declared in the same visible part, as explained in section 7.4).

Objects that are not constant are called variables. The value of a variable is undefined after
elaboration of the corresponding object deciaration unless either the latter contains an explicit
initialization, or a default initial value exists for objects of the type. A program whose result depends
upon an undefined value is erroneous.

A number declaration introduces one or more identifiers naming a number defined by a literal
exoression, which involves only numeric literals, names of numeric literals. cals of the predefined
function ABS, parenthesized literal expressions, and the predefined arithmetic operators (see section
4.10 for literal expression). A named number is of the type universal_integer if every numeric literal
(or name of a numeric literal) contained in the literal expression is of this type; otherwise it is of the
tyre universal_real.

Elaboration of an object declaration with either an explicit or a default ininalization raises the
exception CONSTRAINT_ERROR if the initial value fails to satisfy some constraint on the object.

Examples of variable declarations:

COUNT, SUM : INTEGER,;

SORTED . BOOLEAN := FALSE;

COLOR_TABLE : array (1 .. N) of COLOR;

OPTION : BIT_VECTOR(1 .. 1() .= (OPTION'RANGE => TRUE);

Examples of constant declarations:

LIMIT : constant INTEGER := 10_000;

LOW_LIMIT : constant INTEGER := LIMIT /7 10;
TOLERANCE : constant COEFFICIENT : = DISPERSION(1.15);
NULL_KEY . constant KEY; -~ deferred initialization

Object and Niomber Declurations 3.2
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Examples of number declarations:

] : constant := 3.14158_26536; -- a real number
TWO_P! : constant := 20 » PI; -- a real number
POWER_16 : constant 1= 24416; -- the integer 65_536

ONE, UN, EINS : constant := 1; -~ three different names for 1

Notes-

Once an object is elabcrated, its name can be used. in particular it can serve to form the names of
attributes of the object. Such attributes can even appear in the expression defining the initial value of
the object. In the above examples, the attribute OPTION'RANGE, denoting the range 1 .. 10, is used
as a choice in the aggregate initializing the array OPTION.

The expression initializing a constant object may (but need not) be a static expression {see 4.9). in
the above examples, LIMIT and LOW_LIMIT are initialized with static expressions, but TOLERANCE is
not since it is initialized with the result of the call of a user defined function.

References:

arithmetic operator 4.5, assignment statement 5.2. component 3.6 3.7, constraint 3.3, default initial value 3.7
3.8, deterred constant 7.1, discrimnant 3.7.1 7.1, discriminant constraint 3.7.2, elaboration 3.1 3.9,
expression 4.4. formal parameter 6.2, generic program unit 12, literal expression 4.10. name 4.1, numeric
literal 2.4, package visible part 7.2, private type definition 7.4 static expression 4.9, type definition definition
3.3, type defimtion mark 3.3, universal integer type 2.4 3.5.4, universal real type 2.4 3.5.8.

3.3'Type and Subtype Declarations

A type characterizes a set of values and a set of operations app‘icable to those velues. The values are
denoted either by literals or by aggregates of the type, and can be abtaired as the result of
operations.

There exist several classes of types. Sca ar types are types whose values have no components; they
comprise types defined by enumeration of theii values, integer types, and real types. Array and
reord types are composite: their values consist ot several component values. An access type is a
type whose values provide access to othar otjects. Finally, there are private types where the set of
possibie values is well defined. but not known to the users of suct types.

Record and private types may have special components called discriminants whose values
distinguish alternative forms of values of one of these types. Discriminan’s are defined by a
discrinnaant part. The possible discriminants of a private type are known to its usiers. Hence a private
type 1s only known by its name. its discriminants if any, and the set of operat ons applicable to its
values.

The set of possible values for an object cf a given type can be restricted without changing the set of
applicable operations. Such a restricticn is called a constraint (the case of 0 restriction is also
inzluded) A value i1s said to betong to a s 1btype of a given type if it obeys such a constraint; the given
tyoe is called the base type of the subtype. A type s a subtype cf itself; the base type of a type is the
type itselt.

Cenrtain types may have default initial vilues defined for objects of the type or for some of their
components.

3.3 Type and Subtype Declarunons
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Certain characteristics of types and subtypes, such as certain specific values and operations, are
called attributes of the types and subtypes. Attributes are denoted by the form of names described in
section 4.1.4.

type_declaration :: =
type identifier [discriminant_part] is type_definition;
| incomplete_type_deciaration

type_definition :: =
enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition | private_type_definition

subtype_declaration :: =
subtype identifier is subtype_indication;

subtype_indication :: = type_mark [constraint]

type_mark :: = type_name | subtype_name

constraint :; =
range_constraint | accuracy_constraint
| index_constraint | discriminant_constraint

The elaboration of a type definiticn always produces a distinct type. For the elaboration of a type
declaration, the type identifier is first introduced; elaboration of any discriminant part and of the type
definition follow in this order. The type identifier can then serve as a name of the type resulting from
the elaboration of the type definition and of the optional discriminant part.

The elaboration of certain forms of the type definitions for derived types, numeric types, and array
types has the effect of specifying a const-aint for a type defined by an underlying unconstrained type
definition. The identifier introduced by a type declaration containing such a type definition is the
name of a subtype of the (anonymous) unconstrained type.

For the elaboration of a subtype declaration the subtype identifier is first introduced; if there is a
constraint in the subtype indication it is then evaluated, that is, any contained expression is evaluated.
The subtype identifier can thei serve ¢s a name of the declared subtype. In the absence of a
constraint in the subtype declaration, the subtype name is an alternative name tn the type mark. if the
subtype declaration includes a constraint, the subtype name is an abbreviaticn for the name of the
base type of the type mark together with the constraint, with the meanings that they both have at the
subtype declaration.

Whenever a constraint appears after a type mark in a subtype indication. the constraint imposed on
the type mark must be compatible with any constrairt already imposed by the type mark; the
exseption CONSTRAINT _ERROR is raise 3 if this condition is not satisfied. Compatibility is defined for
each torm of constraint in the correspontling saction (see 3.5, 3.5.7, 3.5.9, 3.6.1, 3.7.2, 3.8). An index
censtraint (or a discriminant constraint) may only be imposed on a type mark that does not already
imose an index constraint (or a discrimir ant ccnstraint).

incomplete type declarations are used fer the cefinition of recursive and mutually dependent access
types. Recursion in type definitions is not allowed uniess an irtermediate access tyoe is used (see
3.4).

Tyvpe and Yubnp Declarations 3.3
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Attribute:
For any type or subtype T, the following attribute is defined

T'BASE The base type of T. This attribute can only be used to form the names of other attributes,
for example T'BASE FIRST.

Examples of type declarations:
type COLOR is (WHITE. RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type COL_NUM is range 1 .. 72;
type TABLE is array (1 .. 10) ot INTEGER;
Examples of subtype declarations:
subtype RAINBOW is COLOR range RED .. BLUE;

subtype RED_BLUE is RAINBOW;
subtype SMALL_INT is INTEGER range -10 .. 10;

subtype ZONE is COL_NUM range 1 .. 6;

subtype SQUARE is MATRIX(1 .. 10, 1 .. 10);

subtype MALE is PERSON(SEX => M);
Notes:

Two type definitions always introduce two distinct types, even if they are textually identical. For
example, the array type definitions given in the declarations of A and B below define distinct types.

A :array(1 .. 10) of BOOLEAN;
B : array(1 .. 10) of BOOLEAN;

On the other hand. C and D in the follo~ing declaration are of the same type, since only one type
definition is given.

C. D : array(1 .. 10) of BOOLEAN,;
A subtype deciaration does not introduce a new type.
References:
access type 3.8, array type definition 3.6, constrairt_error exception 11.1. derived type 3.4. discriminant

3.7.1. elaboration 3.1 3.9. enumeration tvpe 3.5.1. identifier 2.3. incomplete type declaration 3.8, name 4.1,
numeric type 3.5, private type definition 7.4, record type 3.7, scalar type 3.5

3.4 Derived Type Definitions

Tt.e etaboration of a derived type definitian defines an unconstrained type deriving its characteristics
from those of a parent type. it may furth 2r define a subtype obtained by imposin ) a constraint upon
th 2 unconstrained derived type. A derivad type definition is only allowed in a type declaration. The
id :ntitier introduced by such a type dzclaration can be either the name of the derived type if
ur constrained. or it can be the name of a subtype of the (anonymous) derived type.

derived_type_definition :: = new subty)e_indication

3.1 Nerived Type Definitions
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The parent type is the base type of the subtype indicated after the reserved word new. If the subtype
indication includes an explicit constraint, it is evaluated as part of the etaboration of the derived type
definition. Such explicit constraint, or in its absence any constraint already imposed by the type mark
of the parent subtype, becomes associated with the type mark introduced by the derived type
declaration (subject to the same rules of compatibility as described in section 3.3).

The characteristics of a derived type are as follows:

e The derived type belongs to the same class of types as the parent type (for example, the derived
type is a record type if the parent type is).

e The set of possible values for the derived type is a copy of the set of possible values for the
parent type. Explicit conversion of a value of the parent type into the corresponding value of
the derived type is possible and vice versa (see 4.6). If a default initial value exists for the parent
type, a corresponding initial value exists for the derived type.

s The notation for any literals or aggregates of the derived type is the same as for the parent type.
Such literals and aggregates are said to be overloaded. The notation used to denote any
component of objects of the derived type is the same as for the parent type.

e The same attributes are defined for the derived type as for the parent type. If the parent type is
an access type, the parent and the derived type share the same collection. Any representation
specification already elaborated for the parent type (consequently, not in the same declarative
part) aiso applies to the derived type (see 13.1).

e Certair subprograms applicable to the parent type, that is, subprograms that have a parameter
or result of the parent type (or of une of its subtypes) are derived by the derived type. These
derived subprograms are implicitly declared at the place of the derived type definition but may
be redefined in the same declaration list.

For a predefined type, the subprograms that are derived are the corresponding predefined
operations. The subprograms derived by a derived type can be turther derived if this type is used as
parent type in another derived type definition. If a type is declared in a package specification, the
subprograms applicable to the type and declared in the package specification are derived by any
derived type definition given after the end of the package specification.

The specification of a derived subprogram is obtained by systematic replacement of the parent type
by the unconstrained derived type in th2 specification of the subprogram applicable to the parent
type; a type conversion to the derived type is applied to the bounds of any range constraint for a
parameter of the parent type and to any Jefault value o: the parent type. Prior to this transformation
ary subtype of the parent type is first expanded into the corresponding base type (that is, the parent
type) and any associated cunstraint.

Tt e effect of a call of a derived subprogram is achieved by a call of the parent subprogram preceded
by (implicit) conversion of any in and in >ut parameters to the parent type, and followed by (implicit)
conversion of any in out parameters, out parameters, or function result to the derived type.

Fxample:

type MIDWEEK is new DAY range TULE .. THU;

Derned Type Defimttons 3.4
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Notes:
The above rules mean that a type declaration of the form

type NEW_TYPE is new OLD_TYPE constraint;

where the constraint is compatible with those of OLD_TYPE, is equivalent to the succession of
declarations:

type new_type is new dase_type_of_OLD_TYPE;
subtype NEW_TYPE is new_type constraint;

where new_type is an identifier distinct from those of the program. Hence, the values and operations
of the old type are derived by the new type, but objects of the new type must satisfy the added
constraint. For example, the name MiDWEEK is the name of a subtype of an anonymous type derived
from the type DAY.

The rule given in section 3.3, concerning the compatibility of a constraint imposed on a type mark with
any constraint already imposed by the type mark, applies to the subtype indication given in a derived
type definition. Note however that the constraint imposed on a parameter of a subprogram applicable
to the parent type may be incompatible with the constraint of the derived type. In such a case all calls
of the derived subprogram will raise the exception CONSTRAINT_ERROR.

References:

access type 3.8, aggregate 4.3, attribute 4.1.4, base type 3.3, constraint 3.3. declaration 3.1, elaboration 3.1
3.9, in parameter 6.2, in out parameter 6.2, literai 4.2, package specification 7.2, predefined operation C,
predefined type C. representation specificetion 13.1, subprogram specification 6.1, subtype 3.3, subtype
indication 3.3, type conversion 4.6, type mark 3.3

3.5 Scalar Types

Scalar types comprise discrete types and real types. All scalar types are ordered. A range constraint
specifies a subset of values of a scalar type or subtype. Discreie types are the enumeration types and
integer types, they may be used for ind2xing and iteration over loops. Each discrete value has a
position number which is an integer number. integer and real types are called numeric types.

range_constraint :: = range range
range :: = simple_expression .. simple_3axpression

Tte range L .. R describes the values from L to R inclusive. The values L and R are called,
respectively. the lower bound and unoer bound of the range. A value is said to satisfy a range
ccnstramt it it is a value of the range. A null range is a range for which the upoer bound is less than
th» lower bound. For a range constraint appearing after a type mark in a subtype indication, the type
of the simple exprassions is given by the type mark. A range constraint is said to be compatible with
ar: carlier range constraint when both bounds of the later constraint lie within the range of the earlier
ccnstraint, or when the range of the later zonstraint is null.

1 Scalar Types
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Attributes:

For any scalar type or subtype T the attributes FIRST and LAST are defined (see also Apppendix A for
the definition of the attributes IMAGE and VALUE).

TFIRST The minimum value of the type T or the lower bound of the subtype T
T'LAST The maximum value of the type T or the upper bound of the subtype T
References:

constraint 3.3, discrete range 3.6.1, loop statement 5.6, simple expression 4.4, subtype 3.3

3.5.1 Enumeration Types

An enumeration type definition defines an ordered set of distinct values that are denoted by
enumeration literals.

enumeration_type_definition :: =
(enumeration_literal {. enumeration_literai})

enumeration_literal :: = identifier | character_litera!

An enumeration value is denoted by an identifier or a character literal. Order relations between
enumeration values follow the order of listing, the first being less than the last (when more than one).

The position number of the first listed literal is zero; the oosition number of each other literal is one
more than that of its predecessor in the list.

For the elaboration of an enumeration type definition, each enumeration literal is introduced at the

point of its occurrence in the enumeration type definition; this elaboration decleres the enumeration
literals.

The same identifier or character literal can appear in ditterent enumeration ‘ypes whose scopes
overlap. Such enumeration literals are said to be overioaded. An overloaded enumeration literal may
orly appear at points of the program text where its type can be determined from ‘he context (see 6.6).

A gquahhed expression can be used to resolve the type ambiguity where ti e context does not
otherwise suffice (see 4.7).

Examples:

type DAY is (MON. TUE. WED, THLU'. FRI. SAT. SUN),

type SUIT  is (CLUBS. DIAMONDS. tEARTS, SPADES);

type LEVEL is (LOW. MEDIUM, URGENT);

type COLOR is (WHITE. RED. YELLOV/, GREEN. BLUE, BROWN, BLACK),
type LIGHT s (RED. AMBER, GREEN), -- RED and GREEN are overloaded

type HEXA is (A", 'B". 'C’.'D’. ‘D', 'E". 'F');
type MIXED is ('A’. 'B". '¢’, B. NONE),
subtype WEEKDAY is DAY range MON .. FRi;

subtype MAJOR is SUIT  range HEARTS .. SPADES;
subtype RAINBOW s COLOR range RED . BLUE; -~ the color RED, not tve light

Fouomerariom Tynps 3§51
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References:

character literal 2.5, elaboration 3.1 3.9, identitier 2.3, position number 3.5, qualified expression 4.7, scope
rules 8.1 8.2,

3.5.2 Character Types

A character type is an enumeration type that contains character literals and possibly identifiers. The
values cf the predefined type CHARACTER are the 128 characters of the ASC// character set. Each of
the 85 graphic characters of the ASCII character set can be denoted by a character literal. The
predefined package ASCIl includes the declaration of constants denoting control characters and of
constants denoting graphic characters that are not in the basic character set.
Example:

type ROMAN_DIGIT is ('I', 'V’, "X, 'L", 'C’, 'D’, 'M’);
Note:
Character literals of character types can be used in character strings.

References:

ascii package C, character literal 2.5, character string 2.6 3.6.3, identifier 2.3

3.5.3 Boolean Type

There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and
TRUE ordered with the relation FALSE < TRUE. The evaluation of a condition must deliver a result of
this predefined type.

References:

condition §.3 6.5 5.7,

3.5.4 Integer Types
The elaboration of an integer type definiti>i1 introduces a set of consecutive integers as values of the
type. .

integer_type_definition :: = range_const aint

Each bound of a range used for an intege- type definition must be an integer value defined by a static
expression of some integer type. The ranue must not be a null range; it may inciude negative values.

3.5.4 Integer Types
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Declarations and Types

A type declaration of the form

type Tis range L .. R;

is equivalent to the declaration of a type derived from one of the predefined integer types
type T is new integer_type range L .. R; 5

where the predefined integer_type is implicitly chosen so as to contain the values L through R
inclusive.

The predefined integer types include the type INTEGER. An implementation may also have

3 predefined types such as SHORT_INTEGER and LONG_INTEGER, which have respectively
! significantly shorter and longer ranges than INTEGER. The range of each of these types must be
7 symmetric about zero (excepting an extra negative value for two’s complement machines). The base
type of each of these types is the type itself. i

1 1 o eI L
PO

K Wic

The same arithmetic operators are defined for all predefined integer types and consequently for all
inteqer types (see 4.5 and appendix C). The position number of an integer number is the number
itself. :

s i WA

integer literals are the literals of the type universal_integer; there are no bounds on values of this type.
implicit conversions exist from this type to any predefined or user defined integer type, so that integer
literals can appear in expressions of these types. The exception CONSTRAINT_ERROR is raised by
such an implicit conversion if the value is not within the range of the required type.

Fhr TP T TR R

Examples:

type PAGE_NUM is range 1 .. 2_000;
type LINE_SIZE is new INTEGER range 1 .. MAX_LINE_SIZE;

subtype SMALL_INT is INTEGER range -10 .. 10;
subtype COLUMN_PTR is LINE_SIZE range 1 .. 10;

AT = o -

4

Nctes:

Tte name introduced by an integer type declaration is the name of a subtype of an anonymous type
derived from one of the predefined integer types (see 3.4). The value contained by an object of an
integar type must satisfy the constraint given in the corresponding integer type definition (an attempt
to violate this constraint will raise the exception CONSTRAINT_ERROR). On the other hand, the
orerations of an integer type deliver results whose range is defined by the parent predefined type;
such a result need not therefore lie within the range defined by the constraint {the exception
NUMERIC_ERROR may be raised by an operation whose result is not within the predefined range).

1te smallest (most negative) integer value supported by the predefined integer types of an
implementation is the integer number SYSTEM.MIN_INT and the largest (most positive) value
SVSTEM.MAX_INT (see 13.7).

. References:
arithmetic operator 4.5 C. constraint_error exception 11.1, derived tvpe 3.4, elaboration 3.1 3.9, integer literal

2.4, name 4.1, numeric_error exception 11.1, parent type 33, position number 3.5 static expression 49,
suotype 3.3, universal integer type 2.4 3.2

Integer Types 3.5.4 ﬁ
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3.5.5 Attributes of Discrete Types and Subtypes

For every discrete type T the attributes T'POS, T'SUCC, T'PRED, and T'VAL are functions defined as

follows:

T'POS(X)

T'SUCC(X)

T'PRED(X)

T'VAL(N)

The parameter X must be a value of type T; the result of the function is the position
number of X; the type of the result of this overloaded function is of an integer type
determined by the context (see 6.6).

The parameter X must be a value of iype T; the result of the function is the value of
type T whose position number is one greater than that of X. The exception
CONSTRAINT_ERROR is raised if X = T'LAST.

The parameter X must be a value of type T; the result of the function is the value of
type T whose position number is one less than that of X The exception
CONSTRAINT_ERROR is raised if X = T'FIRST.

The parameter N must be a value of an integer type; the result of the function is the
value of type T whose position number is N. The exception CCNSTRAINT_ERRCR is
raised if N is not in the range T'POS(T'FIRST) .. T'POS(T'LAST).

Faor a subtype S of a discrete type, each of these four attributes denotes the corresponding attribute of
the base type. Consequently, the results delivered by S'SUCC, S'PRED, and S'VAL need not be in the
range of S; similarly, the actual parameters of S'POS, S'SUCC, S'PRED need not be in the range of S.

Examples:

-- For the types and subtypes declar:d in section 3.5.1 we have

-- COLOR'FIRST

WHITE, CCLOR’'LAST

-- RAINBOWFIRST = RED.  RAINBOWLAST = BLUE

~- COLOR’SUCC(BLUE)
~- COLOR'POS(BLUE)

RAINBO'N'SUCC(BLUE) =
RAINBOW'POS(BLUE) = 4

nono

-- COLOR'VAL(0) RAINBO'NV'VAL(D) WHITE
Note:
The foliowing relations are satisfied {in the absence of an exception) by these four attributes of
discrete types

T'POS(T'SUCC(X)) = T'POS(X) + 1

T'POS(T'PRED(X)) = TPOS(X) - 1 y

T'VAL(T'POS(X)) =X

TPOS(T'VAL(N)) =N

Re'erences:

attibute 4.1.4, base type 3.3. constraint_error exception 11.1, discrete type 3.5, first attribute 3.5, function
6.2, last attribute 3.5, position number 3.5, subtype 3.3, type 3.3

355 Anribuies of Discrete Txpes and Subtypes
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3.5.6 Real Types

Real types provide approximations to thé real numbers, with relative bounds on errors for floating
point types, and with absolute bounds for tixed point types.

real_type_definition :: = accuracy_constraint

accuracy_constraint ;=
flcating_point_constraint | fixed_point_constraint

The elaboration of a real type definition defines a set of numbers called model/ numbers. Error
bounds on the predefined operations are defined in terms of the model numbers. An implementation
of the type must include at least these model numbers and represent them exactly.

Real literals are the literals of the type universal_real; there are no bounds on values of this type.
Implicit conversions exist from this type to any predefined or user gefined real type, so that real literals
can appear in expressions of these types. If the universal real value is a model number, the
conversion delivers the corresponding value. Otherwise, the converted value can be any value within
the range defined by the model numbers next above and below the universal real value. The
exception CONSTRAINT_ERROR is raised by such an implicit conversion if the value is not within the
range of the required type. )

Note:

An algorithm written to rely only upon the minimum numericai properties guaranteed by the type
definition will be portable without further precautions.

References:

ac:uracy of operations 4.5.8, elaboration 3.1 3.9, fixed point constraint 3.5.9, fixed point type 3.5.9, floating
po:nt constraint 3.5.7, floating point type 3.5.7, model fixed point number 3.5.9, model floating point number
3.£.7, universal real type 2.4 3.2

3.5.7 Floating Point Types

Fcr floating point types, the error bound is specified as a relative precision by giving the minimum
re Juired number of decimal digits for the decimal mantissa (that is, for the decimal value when the
pc wer of ten and leading zeros are ignorad).

floating_point_constraint :: =
digits sratc_sin.ple_expression [range_constraint)

Tt e required number D of decimal digits is specified by the value of the static ex ression following the
reserved word digits: it must be pos:tive and of some integer type. This value determines a
ccrresponding minimum number B of binary digits for the binary mantissa. :uch that the relative
pracision of the binary form is no less than that specified for the decimal form. (B is the integer next
akove DxIn(10)/In(2)).

I'lvatng: Pomt Types 3.5.7
!
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The model numbers of the type comprise zero and all numbers of the form

sign « binary_mantissa + (2.0 ss exponent)

such that

e signis +1o0r-1

HRiC ) BHICIIND MR, SO R < =

R e T

0.5 <= binary_mantissa< 1.0

binary_mantissa has exactly B digits after the point when expressed in base two

E e exponent i3 an integer in the range -4+B .. 438

! A floating point type declaration of gne of the two forms (that is, with or without a range):

type NEW_TYPE is digits D [range L .. R};

’ where L and R if present must be static expressions of some real types, is equivalent to the
’ declaration of a type derived trom one of the predefined floating point types

type NEW_TYPE is new fioating_point_type digits D [range L .. R];

where the predefined floating_point_type is chosen appropriately such that its modes numbers
include the model numbers defined by D. The predefined fioating point types include the type FLOAT.
An implementation may also have predefined types such as SHORT_FLOAT and LONG_FLOAT,
which have respectively substantially less and more precision than FLOAT.

RS R o S, 4 1 Weaigte s,

Where the range ~onstraint is present the same model numbers are used, but objects of type
NEW_TYPE must satisfy the range constraint. Thus the value of D in the type definition guarantees
specific minimal properties for the type.

ey

For a subtype or object declaration, the constraint can either be a range constraint or a floating point
ccnstraint. In either case, the expressions giving the upper and lower bounds 1aust be of the type or
subtype specified and within the range of the type or subtype. The expression following digits in the
ficating point constraint must be a static expression of an integer type and its value must not be
gr2ater than the corresponding number D ior the Hloating point type or subtype.

B T
5 ™

A subtype declaration defines a set of model numbers which is a subset of the model numbers of the
bese type. If the subtype indication includes a fioating point constraint specifying fewer decimal digits
than the base type, then the mantissa length B of the model numbers is corraspondingly reduced;
ot1erwise the model numbers for the subitype are the same as for the baso type.

The compatibility of a floating point constraint with an earlier une is defined as follows. The number
of digits of the later one must not exceed that of the earlier one; it both floating point constraints have
range constraints, the later range constraint must be compatible with the ea-lier range constraint
(within the accuracy of the carresponding real operations, see 4.5.8). A value cf a Hoating point type
satisfies a floating point constraint if it satishes any included range constraint.

3.7 I"/;)almg Point Types
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Examples:
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type COEFFICIENT is digits 12 range ~1.0 .. 1.0;

type REAL is digits 8;

type MASS is new REAL digits 7 range 0.0 .. 1.0E10;

subtype SHORT_COEFF is COEFFICIENT digits §;

Notes on the examples:

The implemented range for REAL is derived from a predefined type having: at least 8 digits of
precision. The definition for MASS is valid because REAL has more than 7 digits precision and

because

MASS'LAST < REAL'LARGE <= REAL'LAST

References:

accuracy constiaint 3.5.6, base type 3.3, bounds 3.5, integer type 3.5.4, model number 3.5.6, range
constraint 3.3, static expression 4.9, subtype 3.3, subtype indication 3.3,

3.5.8 Attributes of Floating Point Types

For every floating poirt type or subtype F the folluwing attributes are defined:

F'DIGITS

F'MANTISSA

F'EMAX

F'SMALL

F'LARGE

F'EPSILON

For a predefined type F, the equivalent number of decimal digits
precision for model numbers of the type. For other types or subtypes,
the number cf decimal digits specified by the accuracy constraint. Of
type universal_integer.

The length of the binary mantissa of model numbers of F. Of type
universal_integer. (The number B of section 3.5.7).

The number suc’ that the binary exponent range 5 model numbers of F
is -F'EMAX .. FEMAX. Of type universal_integer.

The smaliest positive model number of F. Of type universal_real.
The largest >ositive model number of F. Of type universal_real.

The absolute value of the difference between 1.0 and the next model
number abcve 1.0. Cf type universal_real.

In addition, the usual attributes of scalar types FIRST and LAST are cefined. (They need not be model

numbers).

Attributes of Fioating Point Types 3.5.8
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Notes:

The attributes EMAX, SMALL, LARGE and EPSILON are provided for convenience. They are all
related to MANTISSA, the parameter which defines the model numbers and is in tumn related to

DIGITS, by the follcwing formulas:

FEMAX = 4:FMANTISSA

F'SMALL = 2.0ss(~F'EMAX - 1)

FLARGE = 204+ EMAX ¢ (1.0 = 2.0¢¢(~F'MANTISSA))
F'EPSILON = 2.0es( - FFMANTISSA +.1)

Since F'FIRST and FLAST need not be model numbers, they may have machine dependent
properties.

Certain attributes of #oating point types are machine dependent. They are described in section
13.7.1.

References:

accurasy constraint 3.5.8. binary mantissa 3.5.7, boolean tpe 3.5.3, digits 3.5.7, exponent 3.5.7, first
attribute 3.5, fioal.ng point type 3.5.7, integer type 3.5.4, last aftribute 3.5, model number 3.5.6,
numeric_error exception 11.1, universal_integer type 2.4 3.2, universal real type 2.4 3.2

3.5.9 Fixed Point Types

For fixed point types, the error bound is specified as an absolute value, called the delta of the fixed
point type.

fixed_point_constraint :: =
delta static_simple_expression [range_constraint)

The delta is specified by the value of the static expression following the reserved word delta, it must
be positive and of some real type. The range constraint is required in a fixed point type delinition; it is

optional in a subtype indication.

Tre model numbers of a fixed point type comprise consecutive integer multiples of a certain number
called actual_delta. The multipliers comprise all integers in the range

=(2esN) + 1 .. (202N) - 1

for some positive integer N. This implemented error bound actual_delta musi be positive and not
gr-2ater than the specified delta. For a fixed point type definition with a range constraint of the form

range L .. R

3.5.9 Fixed Poimt Types
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L and R must be static expressions of some real types; the integer N must be chosen so that model
numbers of the type lie at most delta distant from each of L and R, although neither L nor R need be
model numbers. Thus the values of L and R and the delta in the type definition guarantee specific
minirral properties for the type.

For a subtype or object declaration. the constraint can be either a range constraint or a fixed point
constraint. In either case. the expressions giving the lower and upper bounds must be of the type
specified and within the range of the type or subtype. The expression in the fixed point constraint
must be a static expression of a real iype and its value must rot be less than the corresponding value
delta for the type or subtype.

A subtype declaration defines a set of model numbers which is a subset of the model numbers of the
base type. The actual delta of the subtype is @ non negative power of two, times the actual celta of the
base type, and must not be greater than the specified delta.

Multiplication and division of fixed point values deliver sesults of a fixed point type with an arbitrarily
fine accuracy, whose name cannot be used in programs and which is referred to in this text for
explanatory purposes as uriversal_fixed. The values of this type must be converted explicitly to some
numeric type.

The compatibility of a fixed point constraint with an earlier one is defined as follows. The delta of the
later che must not be less than that of the earlier one; if both fixed point constraints have range
constraints. the later constraint must be compatible with the earlier range constraint (within the
accuracy of the corresponding real operations; see 4.5.8). A value of a fixed point type satisties a
fixed point constraint if it satisties any included range constraint.

Eyxamples:

-- A pure fraction which requires all the available space in a word
-- on a two's complement machine can be declared as type FRAC:

DEL : constant := 1.0/2++(WORD_LENGTH -~ 1);
type FRAC is delta DEL range -1.0.. 1.0 - DEL;

type LONG_FRAC is delta DEL/4000 range -1.0 .. 1.0 ~ DEL:
-~ a pure fraction requiring more bits

type VOLT is delta 0.125 range 0.0 .. 285.0;
subtype S_VOLT is VOLT delta 05: -- same range as VOLT
Note:

The actual delta is ordinarily a power of two. in order to make conversions fast The actual deita may
be: specified explicitly by a representation specification (see 13.2).

Raferences:

accuracy constraint 3.5.€. bounds 3.5, integer type 3.5.4, model number 3.5.6, range canstraint 3 3. real type
3.5.6. simple expression 4.4, static expression 4.9, subtype indication 3.3,

Poved Point Types 3.5.9
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3.5.10 Attributes of Fixed Paint Types

For every fixed point type or subtype F the following attributes are defined:

F'DELTA If F is a type, or a subtype without a fixed point constraint, this is the delta of
the base type. Otherwise it is the delta specified by the fixed point
constraint. Of type universal_real.

F"ACTUAL_DELTA The actual delta of F. Of type universal_real.

F'BITS When positive values of model numbers of F are expressed as
K#F'ACTUAL_DELTA, the attribute F'BITS is the number of binary digits
used to represent the unsigned integer K. Of type universal_integer. The
attribute F'BITS is the number N of section 3.5.9.

F'LARGE The largest model number ot F,
Notes:

Machine dependent attributes of real types are described in section 13.7. The following relation is
satisfied by the attributes LARGE, BITS, and ACTUAL_DELTA:

F'LARGE = (2++F'BITS - 1) « FFACTUAL_DELTA
Relerences:

accuracy constraint 3.5.6, base type 3.3, boolean type 3.5.3, delta 3.5.9, model number 3.5.8

3.6 Array Types

An array object is a composite object cunsisting of components of the same component type. A
ccmponent of an array is designated using one or more index values belonging to specified discrete
types. The value of an array object is a composite value consisting of the values of its components.

array_tyoe_definition i1 =

array (index {, index}) ot component_subtype_indication
| array index_constraint of component_subtype_indication

index :: = type_mark range <>
index_constraimt = ({discrete_range {, discrete_range})

discrete_range type_mark [range _constraint] | range

An array object is characterized by the nimber of indices (the dimensionality cf the array), the type
and position of each index. the lower an'3 upper bounds for each index. and tive type and possible
ccnstraints of the comporients. The order of the indices is significant.

3.6 Array Types
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A one-dimensional array has a distinct component for each possible index value. A multi-dimensional
array has a distinct component for each possible sequence of index values that can be formed by
selecting one value for each index position. The possible values for an index are all values between
the lower and upper bounds. inclusive.

There are unconstrained and constrained forms of array type definitions:

(1)  Unconstrained array type definitions

These are array type definitions of the form

array (index {, index}) of component_subtype_indication
The elaboration of such a type definition includes the evaluation of any constraint in the
component subtype .indication; it defines an array type. For all objects of this array type, the
number of indices. the type and position of each index, and the subtype of the components are
as in the type detinition. (The compound symbol <> is called a box; it stands here tor an
undefined range).

For each index, the actual values of the lower and upper bounds can be different for different
objects of the array type but they must satisty any range constraint imposed by the type mark.

(2) Constrained array type definitions

These are array type definitions of the form

array index_constraint of component_subtype_indication

The elaboration of such a type definition includes the evaluation of the index constraint and of
any constraint in the component subtype indication. It defines an unconstrained array type in
which each index has the base type of the corresponding discrete range, and with the same
component subtype: it further defines the subtype obtained by imposing the index constraint
upon e unconstrained array type. Consequently all arrays of a type declared with a
constrained array type definition have the same bounds.

Ur constrained array type definitions are only allowed for type definitions used in type declarations.

Examples of unconstrained array type declarations:

type MATRIX is artay(INTEGER range <>.INTEGER range <>) of REAL;
type BIT_VECTOR is array(INTEGER range <>) of BOOLEAN;
type ROMAN is array(NATURAL range <>) of ROMAN_DIGIT;

Examples of constrained array type declarations:

type TABLE is array(1 .. 10) of INTEGER;
type SCHEDULE is array(DAY) of BOOLEAN;
type LINE is array(1 .. MAX_LINE_SIZE) of CHARACTER,;

trun Types 3.6
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Examples of array declarations including a constrained type definition:

GRID : array(1 .. 80, 1 .. 100) of BOOLEAN;
MIX : array(COLOR range RED .. GREEN) of BOOLEAN;
PAGE : array(1 .. 50) of LINE; -~ an array of arrays

Note:

For a one-dimensional array, the rule given means that a tvpe declaration with a constrained array
type definition such as

type T is array (INDEX) ot COMPONENT;
is equivalent to the succession of declarations

type unconstrained is array (INDEX range <>) of COMPONENT;
subtype T is unconstrained (INDEX);

where unccnstrained is an identifier distinct from those of the program. Similar transtormations apply
to multi-dimensional arrays.

References:

bootean type 3.5.3. character 3.5.2, discrete type 3.5, elaboration 3.1 3.9, index value 3.6.1. irteger type
3.5.4, real type 3.5.6. subtype indication 3.3, type mark 3.3

3.6.1 Index Constraints and Discrete Ranges

An index constraint specifies the possible range of each index of an array type, and thereby the
corresponding array bounds.

Ar index constraint can be imposed on an array type mark in a subtype indication, if and only if the
type mark designates an unconstrained array type. To be compatible with the type mark, the index
ccnstraint must provide a discrete range for each index; the type of each discrete range must be the
same as that of the corresponding index, the range defined by each discrete range. if not a null index
range (see below), must be compatible v/ith any range constraint already imposed by the type mark
given in the corresponding index.

i the bounds of a discrete range given by a range without a type mark are integer numbers or integer
literal expressions, the bounds are assuned to be of the predefined type !NTEGER. This rule also
applies to discrete ranges used in for loops (see 5.5) and entry declarations (see 9.5).

Tre discrete range supplied for a given index defines a null index range if its upper bound is the
pradecessor of its lower bound. If an index constraint contains a null index range. any array thus
censtrained is a null array having no comiponent. The lower bound of a null index range must satisty
any range constraint imposed by the type: mark of the index. The upper bound of a null index range
must also be a value ot the base type of the index but this value need not satisfy the range constraint
(if any). The exception CONSTRAINT_ERROR is raised for any incompatible discrete range or if the
up per bound of a discrete range is less than the predecessor of the lower bound.

3.1 Index Constraimis and Discrete Ranges
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The bounds of an array object defined by an object declaration, or as component of another object,
must be known when the corresponding declaration is elaborated. These bounds are necessarily
known if the array subtype is given in this declaration by the type mark of a constrained array type; the
corresponding index constraint defines the bounds. If the array subtype contains the type mark of an
unconstrained array type, index bounds must be specified by an explicit index constraint in variable
declarations and in the subtype of components; the index constraint can be omitted from the
declaration of a constant, in which case the bounds are those of the initial value. The bounds of an
array value satisfy an index constraint if they are equal to the bounds of the index constraint.

For an array formal parameter whose parameter declaration specifies an unccnstrained array type,
the bounds are obtained from the actual parameter. Within the body of the corresponding
subprogram, or generic unit, the formal parameter is constrained by the values of these bounds.

The bounds of any array object created by an allocator must be known upon allocation.

The expressions defining the discrete range allowed tor an index need not be static, but can depend
on computed results. Arrays. one or more of whose bounds are not static, are called dynamic arrays.
In records, dynamic arrays may only appear when the dynamic tounds are discriminants of the record

type.

Examples of array declarations including an index constraint:

BOARD : MATRIX(1 .. 8, 1. 8),

RECTANGLE : MATRIX(1 .. 20, 1 .. 30);

INVERSE :MATRIX(1 .. N, 1. N); -- N neud not be static
FILTER : BIT_VECTOR(O .. 31);

Example of array declaration with a constrained array type:
MY_TABLE : TABLE: -- all arrays cf type TABLE have the same bounds
Example of record type with a dynamic array as component:

type VAR_LINE(LENGTH : INTEGER) is

record
IMAGE : STRING(1 .. LENGTH);
end record;
NULL_LINE : VAR_LINE(D); -~ NULL_LINE.IMAGE is a null array
Relerences:

actual parameter 6.4, allocator 4.8, base tyce 3.3. compatible range canstraint 55, constant declaration 3.2,
bounds 3.5. discriminant 3.7.1, elaboration 3.1 3.8. entry declaratior 9.5, for loop 5.5. tormal parameter 6.2
6.4 121, generic program umt 12. integer type 3.5.4. initial value 3.2. parameter declaration 6.1, range
constraint 3.5. record type 3.7, subprogram body 6.3, subtype 3.3. type ruark 3.3, unconstrained array type
3.3, variable declaration 3.2

Index Constramis ar d Discrete Ranges 3.6.1
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3.6.2 Array Attributes

For an array object A (or for the type mark A of a constrained array type), the following attributes are
defined (N is an integer value given by a static expression):

A'FIRST The lower bound of the first index.

A'LAST The upper bound of the first index.

A'LENGTH The number of values of the first index (zero for a null range). This attribute is
overloaded and produces a result of an integer type determined by the context
(see 6.6).

A'RANGE The subtype defined by the range A'FIRST .. A'LAST.

A'FIRST(N) The lower bound of the N-th index.

A'LAST(N) The upper bound of the N-th index.

A'LENGTH(N) The number of values of the N-th index (zero for a null range). This attribute is
overloaded and produces a result of any integer type determined by the context
(see 6.6).

A'RANGE(N) The subtype defined by the range A'FIRST(N) .. A'LAST(N).

Esamples (using arrays declared in the examples of section 3.6.1):

-- FILTER'FIRST = 0
-- FILTER'LAST = 3
-- FILTER'LENGTH = 32
-- BOARD'LAST(1) = 8
-- RECTANGLE'LAST(2) = 30

Note:

Ttie above attributes are not defined ior unconstrained array types. The following relations are
s tistied by the above attributes if the index type is an integer type:

A'LENGTH
A'LENGTH(N)

ALAST - AFIRST  + 1
A'LAST(N) - A'FIRST(N) + 19

R:ferences:

atinbute A. bounds 3.6. constrained array type 3.6, index 3.6, integer type 3.5.4. ranje 3.5, static expression
4 3 10 6, subtype 3.3, type mark 3.3,

380 Array Attributes
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3.6.3 Strings

The predefined type STRING denotes one-dimensiunal arrays of the predefined type CHARACTER,
indexed by values of the predetfined subtype NATURAL:

subtype NATURAL is INTEGER range 1 .. INTEGER'LAST;
type STRING is array (NATURAL range <)) of CHARACTER;

Character strings (see 2.6) are a special form of positional aggregate applicable to the type STRING
and other one-dimensional arrays of characters. Catenation is a predefined operator for the type
STRING and for one-dimensional array types; itis represented as & The relational operators ¢, <=, ),
and >= are defined for strings, and correspond to lexicagraphic order (see 4.5.2).

Examples:
STARS : STR™MG(T .. 120) 1..120 => "+" ),

QUESTION : constant STRING : = "HOW MANY CHARACTERS?";
-- QUESTIONFIRST = 1, QUESTION'LAST = 20 (the number of characters)

ASK_TWICE : constant STRING :
NINETY_SIX- : constant ROMAN

QUESTION & QUESTION;
"XCVI;

References:

aggregate 4.3, character type 3.5.2, character string 2.6, catenation 3.6.3 4.5.3, subtype 3.3

3.7 Record Types

A record object is a composite object consisting of named components. which may be of different
types. The value of a record object is a composite value consisting of the values of its components.

record_type_definition :: =
record
component_list
end record

component_list :: =
{ component_declaration} [variant_gart] | null;

component_declaration :: =
identifier_list . subtype_indication : = expression);
| idenutier _list : array_type_definition {: = expression);

Tre elaboration of a record type definiticn defines a record type: it consists of the elaboration of any
included component declarations, in tte order in which they appear (including any component
de:laration in a variant part).

Record Types 3.7
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A component declaration defines one or more components of a type given either by a subtype
indication or by a constrained array type definition.

For the elaboration of a component declaration, the identifiers of the list are first introduced; the
component type is then established by elaborating the corresponding array type definition or by
evaluating any constraint in the subtype indication; the identifiers can then be used to name the
corresponding components. Finally, if a component declaration indicates an explicit initialization, the
corresponding expression is evaluated; this initial value must satisty any constraint imposed by the
subtype indication (cr by the array type definition}, otherwise the exception CONSTRAINT_ERROR is
raised.

If a component declaration indicates an explicit initialization, the value thus specified is the default

initial value for the corresponding components. In the absence of an explicit initialization ‘in a -

component declaration, a default initial value exists for the corresponding components if and only if
there is one for their type. An explicit initialization may only be given if assignment is available for the
component type (see 7.4).

Al objects of a record type that has neither a discriminant nor a variant part have the same
components. If the component list is defined by the reserved word null, the record type has no
component; all records of the type are null records.

Examples:

type DATE is
record
DAY : iINTEGER range 1 ., 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range 0 .. 4000;
end record;

type COMPLEX is
record
RE : REAL := 0.0;
iM . REAL := 0.0;
end record;

-- both components of every complex record are initialized to zero (if no explicit initialization).
Note:
If a default initial value exists for a component of a record type without a discriminant, it is the same
for all objects of the type since it is the value obtained during the elaboration of the record type
definition.

References:

array type definition 3.6, constraint 3.3, cor.straint_error exception 11.1, discriminant 3.7.1, elaboration 3.1,
enumeration type 3.5.1, expression 4.4, iden ifier 2.3, object 3.2, subtype indication 3.3, variant part 3.7.3

3.7 Record Types
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3.7.1 Discriminants

A discriminant part can be given in the type declaration for a record type; it defines the discriminants
of the type. A discriminant is a named component of any object of such a record type (appearing
befare any of the components in the type definition).

discriminant_part =
(discriminant_declaration {; discriminant_declaration})

discriminant_declaration :: = .
identifier_list . subtype_indication [: = expression)

Each discriminant must belong to a discrete type. The elaboration of a discriminant declaration
proceeds in the same way as that of a component declaration. Default initial values must be provided
either tor all or for none of the discriminants of a discriminant part.

Within a record type definition the name of a discriminant may be used either as a bound in an index
constraint, or as the discnminant name of a variant part. or to specify a discriminant value in a
discriminant specification. In each of these three cases. the discriminant name must appear by itself,
that is, not as part of a larger expression. No other dependence betwean record components is
allowed.

Each recora vatue includes a value for each discriminant declared for the record type; it also includes
a value for each record component that does not depend on a discriminant. The values of the
discriminants determine which other component values must appear in the record value.

The discriminants of a record objec! can only be changed by assigning a complete record value to the
object. .

Record types and private types implemented as record types are the only types that may have
discriminants.

Examples:

type BUFFER/(SIZE ' INTEGER range 0 .. MAX := 100) is
record
POS : INTEGER range 0 .. MAX := Q;
VALUE : STRING(1 .. SIZE);
end record,

type SQUARE(SIDE : INTEGER) is
record
MAT : array(1 .. SIDE, 1 .. SIDE) of REAL;
end record;

Discriminants 3.7.1
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type DOUBLE(NUMBER : INTEGER) is
record
LEFT : BUFFER (NUMBER);
RIGHT : SQUARE (NUMBER);
end record;

type CUBE(SIDE : INTEGER) is
record
~ VALUE : array(t .. SIDE) of SQUARE(SIDE); -- double dependency
end record;

Notes:
A discriminant need not be referred to by any record component, as shown in the example below
iype ITEM(NUMBER : NATURAL) is
record
CONTENT : INTEGER;

end record,
References:
array type detinition 3.6, bound 3.6. component 3.7, component declaration 3.7, constraint 3.3, discrete type

3.5, dynamic array 3.6.1, elaboration 3.1, p ‘vate types 7.4.1. object 3.2, record component 3.7, record type
37

3.7.2 Discriminant Constraints

The allowable discriminant values for a record object can be fixed by a discriminant constraint. A
record value satisfies a discriminant constraint if each discriminant of the record value has the value
imposed by the corresponding discriminant specification.

discriminant_constraint :: = >
{discriminant_specification {, discriminant_specification})

discriminant_specification :: =
(aiscriminant_name {| discriminant_name} => ] expression

Ezch expression specifies the value of a discriminant. The expressions can be given by position (in
th=2 order of discriminant declarations) or by naming the chosen discriminant. Named discriminant
scecifications can be given in any order, but if both notations are used in one discriminant constraint,
th 2 positional discriminant specifications must be given first. A discriminant constraint must provide a
value for every discriminant of the type.
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A discriminant constraint can be imposed on a type mark in a subtype indication if and only if the type
mark does riot already impose a discriminant constraint. The discriminant constraint is compatible

with the type mark it and only if each specified discriminant value satisfies any range constraint
imposed on the corresponding discriminant. ‘

in the absence of default initial values for the discriminants of a type, a discriminant constraint must
be supplied for every object declaration declaring an object of the type. Similarly a discriminant
constraint must be imposed on such a type if this type is used in a reccrd component declaration or as

the component type in an array type definition. The constraint can be imposed either explicitly or by
supplying the name ot a subtype that incorporates such a constraint.

If a discriminant constraint is imposed on an object declaration, a record component, or an array
component, each discriminant is initialized with the value specified in the constraint. This value
overrides any discriminant default initialization and cannot later be changed.

For a formal parameter whose parameter declaration indicates a type with discriminants, these are
initialized with the discriminants of the actual parameter (subject to any diezriminant constraint on the
formal parameter). Within the body of the corresponding subprogram, or generic unit, the value of a

discriminant of the formal parameter cannot be changed if the corresponding actual parameter is
constrained.

Attribute:
For any object A of a type with discriminants, the following boolean attribute isdefined.
A'CONSTRAINED True if and only if a discriminant constraint applies to the object A; if A is a formal

parameter. the value of this attribute is obtained from that of the actual
parameter. Of type BOOLEAN.

Examples:
LARGE : BUFFER(200); ~-- always 200 characters: LARGE'CONSTRAINED = TRUE
MESSAGE : BUFFER; -- initialy 100 characters: MESSAGE'CONSTRAINED = FALSE
BASIS : SQUARE(5): -~ constrained, always 5 by §
ILLEGAL : SQUARE; -~ llega!. a SQUARE must be constrained

Notes:

The above rules ensure that discriminants always have a value, either because they must be
constrained, or because of the existence of a default initial value.

If a subtype declaration includes a discriminant constraint, all objects of this subtyge are constrained
and their discrimiants are initialized accordingly.

References:

actual parameter 64. array type definition 3.6. component subtype 3.6. constraint_error exception 11.1,
default initial value 3.7. discriminant 3.7.1, e<pression 4.4. forma! parameter 6.2 6.4. generic program unit 12,
record component 3.7, record object 3.7, sutype declaration 3.3, type mark 3.3

Discriminant Constraints 3.7.2
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3.7.3 Variant Parts

A record type with a variant part specifies alternative lists of comnonents. Each variant defines the

components for the corresponding value (or values) of the discriminant. A variant can have an empty 3
component list, which must be specified by null. y :
variant_part : §
case d:scnm/nant _name is S

{when choice {!| choice} => g
component_list} :

end case; §

j'u‘,

choice :: = simple_expression | discrete_range | others

: ¢

A record value must contain the component values of a given variant if the discriminant value is equal ¢
to one of the values specified by the choices prefixing the corresponding component list. This rule i
applies in turn 12 any further variants which may be included in the component list of the given variant.
A choice given as a discrete range stands for all values in the corresponding range. The choice :

others stands for 1il values of the discriminant type (possibly none) that are not specified in previous
cnoices; it can only appear clone and for the last component list. Each vaiue of the discriminant
subtype if this subtype is static, otherwise each value of the discriniinant type, must be represented
once and orly once in the set of choices of a variant part. The value of a choice given in a variant part
must be determinable statically (see 4.9).

i

TS

o B

Example of record type with a varicnt part:

type DEVICE is (PRINTER, DISK, DRUM);
type STATE s (CGPEN, CLOSED);

type PERIPHERAL(UN!T DEVICE : = DISK) is
record
STATUS . STATE;
case UNIT is
when PRINTER =>
LINE_COUNT . INTEGER range 1 .. PAGE_SIZE;
when others =>
CYLINDER : CYLINDER_INDEX;
TRACK . TRACK_NUMBER;
end case;
end record,

s
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Examples of record subtypes: - -

subtype DRUM_UNIT is PERIPHERAL(DRUM); '
subtype DISK_UNIT is PERIPHERAL(DISK);

Examples of constrained record variables: ;

WRITER : PERIPHERAL(UNIT => PRINTER});
ARCHIVE : DISK_UNIT; -

3.7.3 Variant Parts
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Note:
Choices with discrete values are also used in case statements and in aggregates.
References:

aggregate 4.3, case statement 5.1, discrete range 3.6.1, discriminar®* 3.7.9, discrete type 3.5, simple
expression 4.4, subtype 3.3 :

3.8 Access Types

Objects declared in a program are accessible by their name. They exist during the lifetime of the
declarative part to which they are local. In contrast, objects may also be created by the execution of
allocators (see 4.8). Since they do not occur in an explicit object declaraticn, they cannot be deroted
by their name. Instead, access to such an object is achieved by an access value returned by an
allocator; the access value is said to designate the object.

access_type_definition :: = access subtype_ingication
incomplete_type_ceclaration :: = type identifier [discriminant_part];

The elaboratior of an access type definition causes the evaluation of any constraint given in the
subtype indication. The access type resulting from this elaboration is the type of a set of access
values. This set includes the value null aesignating no object at all. Other access values of the type
can be obtained by execution of an allocator associated with the type. Each such access value
designates an abject ot the subtype indicated after the reserved wora access. The objects created
by an allocator and designated by the valtues of an access type form a collection implicitly associated

with the typg.

g
The null value of an access type is the default initial value of the type. An access value obtained by
an allocator can be assigned to several zccess variables. Hence an object created by an allocator
may be designated by more than one variable or constant of the access type. I° an access object is

~onstant. the contained access value :zlways designates the same object but the value of the
designated object can be modified.

If tae subtype indication in the access typa definition denotes either an unconstrained array type or a
type with discriminants but without 4 discriminant constraint, the corresponding index bounds or

Jiscriminant values must be supplied for each allocator. The aliocated object is zonstrained by these _

values.

Components of an object designated by a value of an access tyne may have vadlues of the same or of
another access type. This permits recursive and mutually dependent access typ2s. Their declaration
requires a prior incomplete type declaration for one or more types. Whenever an incomplete type
declaration appears in a hist of declarative items, the full type declaration must appear later in the
same list of declarative items. Both the incomplete type declaration and the corresponding full type
declaration must have the same discrimin int part (if any) which is elaborated on y once, at the earlier
occurrence. The correspondence betwe 2n the incomplete and the full type declaration follows the
same rules as for private types (see 7.4.1) The nam= of a yet incomplutely defir ed type can be used
only as the type mark of the subtype indic: tion of an access type definition.

Access Types 3.8
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example one used in the declaration of an access variable) is either a discriminant constraint or an
index constraint. Such a constraint is imposed on any object designated by a value of the access type
(hence by any value other than null); the type of the designated objects must be a type with the
corresponding discriminants or indexes.

Examples:
tyze FRAME is access MATRIX;

type BUFFER_NAME is access BUFFER;

type CELL; -~ incomplete type declaration
type LINK is access CELL;
type CELL is
record
VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;
end record,

HEAD : LINK := new CELL(Q, null, null);

Examples of mutually dependent access types:

type PERSON(SEX : GENDER); -- incomplete type declaration
type CAR; -- incomplete type declaration
type PENRSON_NAME is access PERSON,
type CAR_NAME is access CAR;
type PERSON(SEX : GENDER) is
record
NAME : STRING(1 .. 20);
AGE 1 INTEGER range O .. 130;
VEHICLE : CAR_NAME;
case SEX is
when M => WIFE : FERSON_NAME(SEX => F);
when F => HUSBAMD : PERSON_NAME(SEX => M);
end case;
end record;
type CAR is
record

NiUMBER : INTEGER;
OWNER : PERSON_NAME;
end record;

MY_CAR, YOUR_CAR, NEXT_CAR : CAR_NAME; -- Iinitialized with null

1.0 Access Types

E The only constraint that can appear after the name of an access type in a subtype indication (for
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References:

allocator 4.8 arrav type de'irition 3.6, collection size 13.2. discriminant constraint 3.7.2, discriminant part
3.7. irdex pound 3.6, index constraint 3.7.1, sudtype indication 3.3

r'\
o
3.9 Declarative Parts ?3

- A declarative part contains declarations: and related information that apply over a region of program
y text. Declarative parts may appear in blocks, subprograms and packages. %

declarative_part :: =
{declarative_item} {representation_specification} {program_component}

declarative_item :: = declaration | use_clause

program_component = body
| package_declaration | task_declaration | body_stub

body :: = subprogram_body | package_body | task_body

For the elaboration of a declarative part. its constituents (possitly none) are successively elaborated
in the order in which they appear in the program text.

The body of a subprogram, package. or task declared in a declarative part must be provided in the
same declarative part; but if the body of one of these program units is a separately compiled subunit
(s2e 10.2). it must be represented by a body stub at the place where it would otherwise appear.

Access to any entity before its elaboration is not allowed. In particular, a subprogram must not be
culled during the elaboration of a declarative part it its subprogram bcdy appears later than the place
of the call.

The exception STORAGE_ERROR may be raised by the elaboration of a declarative part if storage
does not sulfice for the declared entities.

References:

Elatoration of declarations 3.1, discriminant d. 3.7.1, entry d. 8.5, generic d. 12.1, loop parameter d. 5.5,

number d 3.2. cbject d. 3.2, package d. 7.2, parameter d. 6.1, renaming d. 8.5. subgrogram d. 6.1, subtype
d. 33 typed 33

Elabnratinn of type detimtions 3.3, access td. 3.8, array t.d. 3.6, derivea td. 3.4, enumeration td. 35.1,
intege- t.d. 3.5.4, private t.d. 7.4, real td. 356 record td. 3.7

tiakoration of context 10.1, compilation unit 10.1 10.5, declarative part 3.9. discniminant part 3.3, generic

cudy 12.2. generic formal parameter 12.1. hbrary unit 10.5, package body 7.3. repr¢sentation specification
15.1. subprogram body 6 3. subunit 10.2, tesk body 9.1, task object 9.2, task specification 9.1, use clause
B 4. with clause 1011

erception during elaboration 11.4.2, order of elaboration 10.5

A
1 ‘ Declarative Parts 3.9 ﬁ
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4. Names and Expressions

4.1 Names

Names can denote declared entities. These are objects. numbers, types and subtypes, subprograms,
packages, tasks and their entries, and exceptions. Names can also be labels, block names, or loop
names. Particular forms of names denote attributes, operators, and components of objects. Finally, a
name can denote the result returned by a function call.

name :: = identifier
| indexed_component | slice
| selected_component | attribute
| function_call | operator_symbol

The simplest form for the name of an entity is the identifier given in its declaration. Function calls and
operator symbols are described in Chapter 6.4. The remaining forms of names are described here.

Examples of simple names:

Pl -~ the name of a number

LIMIT -~ the name of a constant

COUNT -~ the name of a scalar variable

BOARD -- the name of an array variable

MATRIX -- the name of a type

SQRT -- the name of a function

ERROR -- the name of an exception
References:

array type definition 3.8, boolean type 3.5.3, bound 3.6, component 3.2, identifier 2.3, index value 3.6.1,
function call 6.4, numeric tyoe 3.5, numeric_error exception 4.5.8 11.1, operator symbol 6.1, range 3.5, type
declaration 3.3

4 1.1 Indexed Components

An indexed component denotes either a component of an array or an entry in a fumily ot entries.

indexed_component :: = name(expressiin {, expression})

Incexed Components 4.1.1
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In the case of a component of an array, the name denotes an array object {(or an access object whose
value designates an array object). Alternatively, the name can be‘a function call delivering an array
(or delivering an access value that designates an array). The expressions specify the index values for
the component; there must be one such expression for each index position of the array type.

In the case of an entry in a family of entries, the name denotes an entry family and the expression
(onty one can be given) specifies the index value for the individual entry.

Each expression must be of the type of the corresponding index. If evaluation of an expression gives
an index value that is outside the range specified for the index, the exception CONSTRAINT_ERROR
is raised. This exception is also raised if the name denotes an access object whose value is null.

Examples of indexed components:

MY_TABLE(5) -~ a component of a one dimensional array

PAGE(10) -- acomponent of a one dimensional array

BOARD(M, J + 1) -~ a component of a two dimensional array

PAGE(10)(20) -- a component of a component

REQUEST(MEDIUM) -~ an entry of the family REQUEST

NEXT_FRAME(F)}(M, N} -~ an indexed component of the function call NEXT_FRAME(F)

Notes on the examples:

Distinct notations are used for components of multidimensional arrays (such as BOARD) and arrays of
arrays (such as PAGE). The components of an array of arrays are arrays and can therefore be
indexed. Thus PAGE(10)(20) denotes the 20th component of PAGE(10).

Note:

The language does not define the order of evaluation of the differen* expressions of an indexed
componen' of a muiti-dimensional array. Hence programs that rely on a particular order are
erroneous.

Referencs:

access valse 3.8, array type definition 3.6, array component 3.6, constraint_error exception 11.1, entry 9.5,
entry family 4.5, expression 4.4, function 6.5. function call 6.4, index value 3.6.1, name 4.1 range 3.5

4.1.2 Slices
A slice is a one dimensional array denoting a sequence of consecutive components of a one
dimensional array.

slice :: = name (discrete_range)

The name given in a slice denotes an array object (or an access object whose value designates an
array object). The name can be a functicn call delivering an array (or deliverin 3 an access value that
designates an array).

4.'.2 Slices &
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The tyne of a slice is the base type of the named array. The bounds of the slice are given by the
discrete range; the slice is a null slice denoting a null array if the discrete range is a null range (see
3.6.1).

If a slice is not null, the index values of its discrete range must be possible index values for the named
array, otherwise the exception CONSTRAINT_ERROR is raised. This exception is also raised if the
name denotes an access object whose value is null.

Examples of slices:

STARS(1 .. 15) -~ aslice of 15 characters
PAGE(10 .. 10 + SIZE) -- aslice of 1 + SIZE components
PAGE(LXA .. B) -- aslice of the array PAGE(L)
STARS(1 .. 0) -- anull slice
MY_SCHEDULE(WEEKDAY) -- bounds given by subtype
STARS(S .. 15)(9) -- same as STARS(9)

Note:

For a one dimensional array A, the name A(N .. N) is a slice of one component; its type is the base type
of A. On the other t:and A(N) is a component of the array A and has the corresponding component

type.

References:
access object 3.8. access value 3.8, array type definition 3.6, base type 3.3 bound 36, 36.1,

constraint_error exception 11.1, discrete range 3.6.1, function 6.5, function call 6.4, index 3.6, name 4.1, null
array 3.6.1, null range 3.6.1, type definition 3.3

4.1.3 Selected Components

Selected components are used to denote record components. They are also used for objects
designated by access values. Finally, selected components are used to form names of declared
entities.

selected_component :: =
name.identitier | name.all | name.operator_symbol

A selected component can denote either

(a) A component of arecord:
The name denotes a record (or an access object whose value designates a record) and the
identifier specifies the record component. The name can be a function call delivering a record
(or delivering an access value that designates a record).

(t) An object designated by an access value:

The name denotes an access objezt and is followed by a dot and the re:.erved word all. The
name can be a function call delivering an access value.




4-4

()

(d)

(e)

Ada Reference Manual

!

An entity declared in the visible part of a package:

The name denotes a package and the identifier specifies the declared entity. For an operator,
the corresponding operator symbol (that is, the operator enciosed by double quotes) follows the
name of the package and the dot.

An entry (or entry family) of a task:

The name denotes a task object (or if the selected component occurs in a task body, this
program unit) and the identifier specifies one of its entries (one of its entry families).

An entity declared in an enclosing subprogram body, package body, task body, block, or loop:

The name denotes this (immediately) enclosing unit and the identifier (or the operator symbol)
specifies the declared entity. This notation is only allowed within the named enclosing unit. If
there is more than one visible enclosing overloaded subprogram of the given name, the
selected component is ambiguous, independently of the identifier (see section 8.2 on visibility
rules).

For variant records, a component identifier can denote a component in a variant part. In such a case,
the component must be one of those that must be present for the existing discriminant value (or
values), otherwise the exception CONSTRAINT_ERROR is raised. This exception is also raised if the
name has the access value null in the above cases (a) and (b).

Examples of selected components:

APPOINTMENT.DAY -- arecord component
NEXT_CAR.OWNER -- arecord component
NEXT_CAR.OWNER.AGE -- arecord component
WRITER.UNIT -~ arecord component (a discriminant)
MIN_CELL(H).VALUE -- a selected component of the function call MIN_CELL(H)
NEXT_CAR.ali -- the object designated by the access variable NEXT_CAR
TABLE_MANAGER.INSERT -- a procedure in the package TABLE_MANAGER
APPLICATION."+" -- an operator in the package APPLICATION
CONTROL.SEIZE -- an entry of the task CONTROL
POOL(K).WRITE -- an entry of the task POOL(K)
MAIN.ITEM_COUNT -~ averiable declared in the procedure MAIN

Notes:

Every parameterless function call must use empty parentheses (see 6.4). Hence F().C can only be a
selected component of the function result and, within the body of F, F.L. can oni; be used to denote a
locally declared entity L. For a record with components that are other records, the identifier of each
le'rel must be given to name a niested component.

4.'.3 Sclected Components
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References:
access object 3.8, access value 3.8. constraint_error exception 11.1, discriminant value 3.7.1, entity 3.1,
iunction call 6.4, identifier 2.3. name 4.1, operator 4.5, operator symbol 6.1. ovarloading a subprogram 6.6,

package 7. package body 7.3. record type 3.7, record component 3.7, subprogram body 6.3, task 9, task
body 2.1. variant part 3.7.3, visible part 7.2

4.1.4 Attributes

Attributes denote certain predefined characteristics of named entities.
attribute :: = name’identifier
An attribute identifier is always prefixed by an apostrophe; such an identifier is not reserved (unless it

is already reserved for another reason). An attribute can be a value. a function, or a type or subtype.
Specific attributes are described with the language constructs associated with their use.

Appendix A gives a list of all the language defined attributes. Additional attributes may exist for an
implementation. ’

Examples of attributes:

COLOR'FIRST -- minimum value of the enumeration type COLOR
RAINBOW'BASE'FIRST -- same as COLOR'FIRST
REAL'DIGITS -- precision of the type REAL
BOARD'LAST(2) -~ upper bound of the second dimension of BOARD
BOARD'RANGE(1) -- subtype of index range of the first dimension of BOARD
POOL(K) TERMINATED -- TRUE if task POOL(K) is terminated
DATE'SIZE -~ number ¢f bits tor records of type DATE
CARD'ADDRESS -~ address of the record variable CARD

References

enumes ation type 3.5.1. function 6.5, identif-er 2.3. real type 3.5.6. record variable 3.7, subtype declaration
3.5. task 9, type declaration 3.3, upper bound 3.6 3.6.1, value 3.2 3.3

4.2 Literals

A literal denotes an explicit value of a give n type.

teral o =
numeric_iteral | enumeration_hiteral | character _stnng | null

Numeric hiterals are the hterals of the type s universal_mteger and umiversal_real. Enumeration literals
inc iude character hterals and denote va ues of the corresponding enumerahcen types. A character
strng denotes a one dimensional array ol characters  The teral null stands for the null access value
wtich designates no object at ali.

Hiuerals 4.0
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Examples:
3.14159_26536 -~- a real literal
1_345 -~ an integer literal
CLUBS -~ an enumeration literal
A -~ an enumeration literal that is a character literal
"SOME TEXT" -~ a character string
References:

array type definition 3.6. character literal 2.5, character string 2.6, enumeration literal 3.5.1. null access value
3.8. numeric literal 2.4 3.2 4.10, universal_integer type 2.4 3.2 3.5.4 4.10, universal_real type 2.4 3.2 356
4.10

4.3 Aggregates Y

\
An aggregate denotes a record or an array value constructed from component values.

aggregate :: =
{component_association {, component_association})

component_association :: =
[choice {| choice} => ] expression

The expressions define the values to be associated with components. An aggregate must be
compiete. that is, a value must be provided for each component of the composits value. Component
associations can be given by position (in textual order for record components) or by naming the
chosen components. Choices have the same syntax as in variant parts (see 3.7 3); they are
cemponent identifiers in the case of record aggregates. index values or ranges of index values in the
case of array aggregates. Each value. or each component identifier must be re presented once and
only cnce in the set of choices of an aggregate. The choice others can only apnear aione and in the
last component association; it stands for all remaining components, if any.

For named components, the component associations can be given in any order (2xcept for the choice
others), but if both notations are used in one aggregate. all positional compone nt associations must
be given first. Aggregates contamning a single component association must always be given in named
nctation. Specific rules concerning component associations exist for record cggregates and array
ag gregates.

An expression given in a component association must satisfy any constrairt associated with a
cerresponding component, otherwise the exception CONSTRAINT_ERROR s raised.

Note:

The language does not define the order of evaluation of the expressions of the different component
assoctations. Hence programs relying on 1 particular order are erroneous.

Aggregates may be overjoaded, that is, ¢ given aggregate may be an aggrega‘e for more than one
array or record type. its interpretation dep :nding on the context.

4.8 tevregates
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References:
array type definition 3.8, array aggregate 4.3.2, composite value 3.3, constraint 3.3, constraint_error

exception 11.1, expression 4.4, index value 3.6, others 3.7.3, record 3.7, record aggregate 4.3.1, value 3.3,
variant 3.7.3

4.3.1 Record Aggregates

A record aggregate denotes a record value and must specify an explicit value for each component
(including discriminants) of the record value, whether or nat a default initial value exists for the
component. A component association with more than one choice is only allowed if the denoted
components are of the same type. The same rule applies for the choice others representing all other
components.

- The value specified for a discriminant governing a variant part must be given by a static expression.
Examples of positional record aggregate:
(4, JULY, 1776)
Examples of record aggregates with named components:
(DAY => 4, MONTH => JULY, YEAR => 1776)
(MONTH => JULY. DAY => 4 YEAR => 1776)
(UNIT => DISK, STATUS => CLOSED. CYLINDER => 9, TRACK => 1)
(DISK, CLOSED, TRACK => 5, CYLINDER => 12)
Note:

For positional aggregates, discriminant values appear first since the discriminant part is given first;
they must be in the same order as in the discriminant part.

References:

component association 4.3, default initial value 3.3 3.7, discriminant 3.7.1. discriminant part 3.7.1,
discriminant value 3.7.1, record value 3.3 3.7, static expression 4.9, variant part 3.7.3

4.3.2 Array Aggregates

An array aggregate denotes an array value.

Fcr aggregates in named notation, a choice given by a simple expression stands for the
ccrresponding index value; a choice given by a discrete range stands for all possible index values in
th: range. The value of each chaoice (excepting others) must be determinabl2 statically unless the
aggregate consists of a single component association, including a single choice

Tre bounds of a named aggregate that does not contain the choice others are determined by the
smiallest and largest choices given.

Array Aggregates 4.3.2
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The bounds of any aggregate containing the choice others are defined by the context. The only
allowable contexts for such an aggregate are as follows:

The aggregate is an actual parameter corresponding to a formal parameter of a constrained
array subtype.

(a)

(b) The aggregate appears in a return statement as the expression specifying the value returned by

a function whose result is of a constrained array subtype.

(c) The aggregate is either qualified by a constrained array subtype, or used in an allocator for a

constrained array subtype.

(d) The aggregate is used to specify the value of a component of an enclcsing aggregate, and the
enclosing aggregate is itself in one of these four contexts.

CH T IR

In each of these four cases the bounds are defined by the applicable index constraint.

[T R

The bounds of a positional aggregate not containing the choice others are similarly defined by the
applicable index constraint, if the aggregate appears in one of the above four contexts. Otherwise,
the lower bound is given by S'FIRST. where S is the index subtype; the upper bound is determined by
the number of components.

ey MhA

An aggregate for an n-dimensional array is written as a one-dimensional aggregate of components
-that are (n-1)-dimensional array values. If an array aggregate contains positional component
-associations, the only named association it may contain is a component association with the choice
others.

AR o AT B4

The exception CONSTRAINT_ERROR is raised if the number of components of the aggregate is
incompatible with the context.

Examples of positional array aggregates:

(7.9,

£.1.3.2.4,8.6,0)
TABLE'(S. 8. 4

., 1, others => Q)

Examples of array aggregates in named riotation:

(1.5=>(1.8=>00)

= oy e e = R

TABLE'(2}4 110 => 1. others => 0) -- qualified by TABLE, see 4.7
SCHEDULE'(MON .. FR! => TRUE, others => FALSE)
SCHEDULE(WED )| SUN => FALSE, others => TRUE)

Examples of aggregates as initial values:

.TABLE := (7. 9.5.1,3,2. 4,8, 86, J); A1) = 7, A(10) = 0
. TABLE := TABLE'(214110 => 1,athers => 0); -- B(1) = 0. B(10) = 1
: constant MATRIX := (1 .. 8 => (1..8 => 0.0) C'FIRST(1) = 1. C'LAST(2) = 8

BIT_VECTOR(M . N) = (M. N  => TRUE);
.BIT_VECTORMM .. N} .= (E'RANGE => TRUE);
STR'NG(1 )= (1 = FY):

mmo

-~ a one component aggregate: same as "F"

4.2 Aray Aggregaltes




Names and Expressions

References:

actual parameter 6.4, bound 3.6 3.6.1, component association 4.3, constrained array 3.6, discrete range |

3.6.1, first attribute 3.6.2, formal parameter 6.2, functicn 6.5, index constraint 3.7.1, index valus 3.6, others ’ 14
l 3.7.3, qualified expression 4.7, simple expression 4.4 =
4.4 Expressions / :

An expression is a tormula that defines the computation of a value.

—

expression I = /
relation {and relation} ' /.
| relation {or relation} ;
| relation {xor relation} :
| retation {and then relation}
| relation {or else relation} /

/
relation :: | /

/
snmple expression [relational_operator s:mpke expression]

| simple_expression [not] in range

| simple_expression [not] in subtype_indicatioh /

-~ ~.
ey O R WP VT S

4

simple_expression :: = [unary_operator] term {addihg_nperator term} /

e S M

term :: = factor {multiplying_operatnr factor} ‘/
factor :: = primary [ss primary} /

/.
primary i =
literal | aggregate | name | allocator | function_call ) /
| type_conversion | qualitied_expression | (expression)

Each primary has a value and a type. The only names allowed as primaries are attributes (thcse which
have a value) and names denoting objects (the value of such a primary is the value of the object). The
type of an expression depends only on the type of its constituents and on the operators applied; for an
overloaded constituent or operator. the determination of the constituent type. or the identification of
tha appropriate operator, may depend on the context. The rules defining the allowed operand types
and the corresponding result types for all predefined operators are given in section 4.5 below.

Examples of primaries:

40 --
(1..10 => 0) --
VOLUME --
DATE'SIZE --
SINE(X) -
COLOR'(BLUE) --
REAL(MsN) --
(LINE_LCOUNT + 10) =--

real literal

aggregate array value
value of a \ariable
attribute

function cal

qualified expression
conversion

parenthesizad expression

Fapressions 4.4
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Examples of expressions:

VOLUME ~-- primary
Bes2 ~~ factor
LINE_COUNT mod PAGE_SIZE -- term

-40 -- simple exprassion
not DESTROYED -- simple expression
Bss2 - 4.0:AsC -- simple expression

PASSWORD(1 .. 5) = "JAMES" - relation

Nnotin1 . 10 -~ relation

INDEX = 0 or ITEM_HIT --  @xpression

(COLD and SUNNY) or WARM  -- expression, the parentheses are required

As+(BssC) -- expression, the parentheses are required
Reterences:

adding operator 4.5.3, aggregate 4.3, allocator 4.8, array aggregate 4.3.2, attribute 4.1.4, function call 6.4,
literal 2.5 4.2. multiplying operator 4.5.5, name 4.1, object 3.2, overloading 3.5.1 6.6 6.7. qualitied expression
4.7, range 3.5, subtype indication 3.3, type 3, type conversion 4.6, unary operator 4.5.4, value 5.3, variable
3241

4.5 Operators and Expression Evaluation

Tte following operators, divided into six classes, have a predefined meaning in the language. These
orerators, and only these, may be overloaded for user defined types and, excepting equality and
inequality, may be redefined (see 6.7). They are given in the order of increasing precedence.

logical_operator w= and |or | xor
relational_operator = o= /= | < ] <= | > | >=
adding_operator = o+ |- |&

unary_operator = + | - |not

"
-
~

multiplying_operator | mod | rem

exponentiating_operator

T) e short circuit control forms and then and or else have the same precedenc as logical operators.
Tt e membership tests in and not in have the same precedence as relational opcrators.

Al operands of a factor, term. simple expression, or relation. and the operands of an expression that
dces not contain a short circuit control form, are evaluated (in an undefined orger) before application
of the corresponding operator. The rigat operand of a short circuit control fo:m is evaluated if and
or ly if the left operand has a certain value (see 4.5.1).

4.7 Opcrators and Expression Fyaluation
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.

For a term, simple expression, relation, or expression, operators of higher precedence are applied
first. In this case, for a sequence of operators of the same precedence level, the cperators are
applied in textual order trom left to right (or in any order giving the same result); parentheses can be
used to impose a specific order.

The execution of some operations may raise an exception for certain values of the operands. Real
expressions are not necessarily evaluated with exactly the specified accuracy (precision or delta), but
the accuracy wiil be at least as good as that specified.

Examples of precedence:

not SUNNY or WARM -- same as (not SUNNY) or WARM

X>40andY > 00 -- sameas(X > 4.0} and (Y > 0.0)

-4.0sA%02 -- same as - (4.0 » (As+2))

Ysu(-3) -- parentheses are necessary

A/BsC -~ same as (A/B)sC

A+ (B + Q) -~ evaluate B + C before adding it to A
. Note:

The language does not define the order of evaluation of the two operands of an operator {excepting
short circuit control forms). A program that reiies on a specific order (for example because of mutual
side effects) is therefore erroneous.

References:

accuracy of operations with real operands 4.5.8, adding operator 4.5.3. delta 3.5.9. exception 11, expression
4.4, factor 4.4, logical operator 4.5.1. memership operator 4.5.2, name 4.1, overloading an operator 6.7,
precision 3.5.6, real type detinition 3.5.6, r2lation 4.4, relational operator 4.5.2, short circuit control form
4.5.1, simple expression 4.4, term 4.4, type 3

4.5.1 Logical Operators and Short Ci-cuit Control Forms

The predefined logical operators are applicable to BOOLEAN values and to one dimensional arrays of
BOOLEAN values having the same number of components.

Operator  Operation Operand Type Result Typ2

and conjunction BOOLEAN BOOLEAN
array of BOOLEAN components same array type

or inclusive disjunction BOQOLEAN BOOLEAN
array of BOOLEAN components same array type

xor exclusive disjunction BOQOLEAN BOOLEAN
array of BOOLEAN components same array type

The operations on (non null) arrays are pzrformed on a component by component basis on matching
connonents (as for equality. see 4.5.2). The lower bound of the index of the resulting array is the
lower bound of the index subtype of the a-ray type.

Lovical Opcrators and Stort Circuit Conrol Fonns 4.5.1
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The operands..need not have the same bounds, but must have the same number of components,
otherwise the exception CONSTRAINT_ERROR is raised.

The short circuit control forms and then and or else are applied to operands of the predefined type
BOOLEAN and deliver a value of this type. If the left operand of an expression with the control form
and then evaluates to FALSE, the right operand is not evaluated and the value of the expression is
FALSE. {f the left operand of an expression with the control form or else evaluates to TRUE, the right
operand is not evaluated and the value of the expression is TRUE. If both operands are evaluated,
and then delivers the same result as and, and or else delivers the same result as or.

Examples of logical operators:

SUNNY or WARM
FILTER(1 .. 10) and FILTER(15 .. 24)

Examples of short circuit control forms:

NEXT_CAR.OWNER /= null and then NEXT_CAR.OWNER.AGE > 25
N = O or else A(N) = HIT_VALUE

References:

array type definition 3.6, boolean type 3.5.3. boolean value 3.5.3. bound 3.6.1, component 3.6,
constrairt_error exception 11.1, equality 4.5.2, expression 4.4, false 3.5.3, index 3.6, true 3.5.3

4.5.2 Relational and Membership Operators

The predefined relational operators have operands of the same type and return values of the
predefined type BOOLEAN. Equality and inequality are predefined for any twc objects of the same
type, excepting limited private types and composite types having components of imited private types.

Operator Operation Operand Type Result Type
= /= equality and inequality any type BOOLEAN
< £= > = test for ordering any scalar type BOOLEAN

discrete array type BOOLEAN

Equality for the discrete types is equality of the values. For rea! operands whose values are nearly
equal. the results of the predefined relational operators are given in section 4.5.8. Two access values
are equal either if they designate the same object. or if both are equal to null.

The values of two non null arrays or two non null records, of the same type. are equal if and only if
their matching components are equal. as given by the predefined equality opera‘or for the component
type. Two null arrays of the same type are always equal; two null records of tive same type are always
equal. it equality is explicitly defined for a limited private type. it does not exter d to composite types
having components of the limited private type. Equality can be defined explicitiy for such composite
types.

4.3.2 R Junonal und Mombersiup Operators
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For comparing two non nuil records of the same type, matching compoenents are those which have the
same component identifier.

For comparing two non null one dimensional arrays of the same type, matching components are those
whose index values match in the foliowing sense: the lower bounds of the index ranges are defined to
match, and the successors of matching indices are defined to match. For multidimensional arrays,
matching components are those whose index values match in successive index positions. If any <
component of an array has no matching component in the other array, the two arrays are not equal.

The inequality operator gives the complementary result to the equality operator.

The ordering operators £, <=, >, and >= are defined for one dimensional arrays of an array type
whose components are of a discrete type. These Operators correspond to lexicographic order using
the order relation of the component type for corresponding components. A null array is less than any
array having at least one component.

ST T

‘ The membership tests in and not in test whether a value is within a corresponding range, or whether
it satisfies any constraint imposed by a subtype indication. The value must be of the same type as the
bounds of the ranqge or as the base type of the subtype. These operators return a value of the
predefined type BOOLEAN. A test for an accuracy constrzint always yields the result TRUE.

o e T T S

Examples:
X/=Y -- with real X and Y. is implementation dependunt
"t "A" and A" < "AA” -- TRUE "
"AAII ( NB" - TRUE -
MY_CAR = null -~ true it MY_CAR has been set to null
MY_CAR = YOUR_CAR -~ true if we both share the same car
MY_CAR.all = YOUR_CAR.all -- trye if the two cars are identical t
N notin 1. 10 -~ range check %
TODAY in WEEKDAY -~ subtype check ‘
TODAY in DAY range MON .. FRI -~ same subtype check
ARCHIVE in DISK_UNIT -- Ssubtype check

References:

ac>ess value 38, accuracy constraint 3.5 6. accuracy of operations with real operands 4.5.8, array type
gefinition 3.6, bovlean type 3.5.3, bounds 3.6, component 3.3, composite type 3.6 3.7, constraint 3.3, delta
atiribute 3.5.10. discrete type 3.5, fixed point type 3.5.9. floating point type 3.5.7. index range 3.6, index
vaue 3.6. limited private type 7.4.2. range 3.5, real type 3.5.6, record value 3.7, s:alar type 3.5, subtype
deczlaration 3.3, small attribute 3.5.8, type declaration &

g e
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4.5.3 Adding Operators

The predefined adding operators + and - return a result of the same type as the operands.

Operator  Operation Operand Type Result Type

+ addition numeric type same numeric type

- subtraction numeric type same numeric type

& catenation  one dimensional same array type
array type

For real types. the accuracy of the result is determined by the operand type. For all numeric types the
exception NUMERIC_ERROR is raised it the result of addition or subtraction does not lie within the
implemented range of the type (for real operands see 4.5.8).

The adding operator & (catenation) is applied to two operands of a one dimensional array type.
Catenation is also defined for a left operand of a one dimensional array type and a right operand of
the corresponding component type and vice versa. The result is an array of the same type. For any
one-dimensional array type T whose component type is C and whose index is specified as

INDEX range O
the effect of catenation is defined by the three following functions
LOW : constant INDEX : = INDEX'FIRST;

function "&" (X, Y:T) return T is
RESULT : T(LOW .. INDEX'VAL(INDEX'POS(LOW) + (X’LENGTH + Y'LENGTH - 1))
begin
RESULT(LOW .. INDEX'VAL(INDEX'POS(LOW) + (X'LENGTH - 1))} := X;
RESULT(INDEX'VAL({INDEX'POS(LO'N) + X'LENGTH) .. RESULT'LAST) := Y,
return RESULT,
end;

function "&" (X: C,Y : T) return T is
begin

return (LOW => X) & Y;

end;

function "&" (X: T; Y : C) return T is
begin

return X & (LOW => Y);
end;

Tte exception CONSTRAINT_ERROR is raised if the upper bound of the result exceeds the range of
th:: index subtype.

Examples:
Z + 041 -~ 2 must be of a re¢! type
"A" & "BCD" -- catenation of two strings

i 4.:.3 Adding Operators
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References:

accuracy of operations 4.5.8, array type 3.6, catenation 3.6.3, numeric type 3.5, numeric_error exception
11.1, real type 3.5.6, string 2.6 3.6.3, type declaration 3

4.5.4 Unary Operators

The predefined unary operators are applied to a single operand and return a result of the same type.

Operator  Operation Operand Type Result Type

+ identity numeric type same numeric type
- negation numeric type same numeric type
not logical negation BOOLEAN BOOLEAN

array of BOOLEAN componenis same array type

The operator not may be applied to a one dimensional array of BOOLEAN components. The result is
a one dimensional boolean array with the same bounds; each compcnent of the result is obtained by
logical negation of the corresponding component of the operand (that is, the component which has
the same index vaiue).

For a numeric operand, tive exception NUMERIC_ERROR is raised if the result does not lie within the
implemented range of the type (for real operands see 4.5.8).

References:

accuracy of operations with real operands 4.5.8, array type 3.6, numeric type 3.5, numeric_error exception
1.1

4.5.5 Multiplying Operators

The predefined operators * and / for integer and floating point values and the predefined operators
mud and rem for integer values return a result of the same type as the operands.

Operator  Operation Operand Type  Result Type
. multiplication integer same integer type
floating same floating point type
/ integer division  intager same integer type
floating division floating same floating point type
mod modulus integer same integer type
rem remainder integer same integer type

Mult plving Operators 4.5.5
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Integer division and remainder are defined by the relation
A = (A/B)sB + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer
division satisfies the identity

(-A)/B = -(A/B) = A/(-B)

- The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value
jess than the absolute value of B; in addition this result must satisfy the relation

A = BsN + (A mod B)

for some integer value of N.

For fixed point values, the following multiplication and division operations are provided. The types of
the left and right operands are denoted by L and R.

Qperator  Operation Operand Type Result Type
L R
» muttiplication  fixed integer same as L
integer  fixed same as R
fixed fixed umiversal_tixed
division fixed integer same as L
fixed fixed unversal_fixed

Integer multiplication of fixed point values is equivalent to repeated addition and hence is an accurate
operation. Division of a fixed point value by an integer does not involve a change in type but is
approximate.

Multiplication of operands of the same or of ditferent fixed point types is exact a.xd delivers a result of
the type universal_fixed whose delta is arbitrarily small. The result of any such muRtiplication must
al'vays be explicitly converted to some numeric type. This ensures explicit control of the accuracy of
th.: computation. The same considerations apply to division of a fixed point value by another fixed
pcint value.

Tt e exception NUMERIC_ERROR is raised by any multiplying operator it the result does not lie within
th:: implemented range of the type (for real operands see 4.5.8). In particular it is raised by integer
dirision, rem, and mod it the second operand is zero.

Examples:

I :INTEGER := 1;

J " INTEGER := 2,

K . INTEGER := 3;

X : MY_FLOAT digits 6 := 10;
Y - MY_FLOAT digits 6 := 2.0;
F : FRAC delta 00001 := 0.1,
G - FRAC delta 0.0001 := 0.1

4.8 Muluphong Operators
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Expression

lsd
K/J
K mod J

Xy
F/2

3«F
F«G

FRAC(F+G)
MY_FLOAT(J)sY

Notes:

Value

05

03
0.01
0.01
40

Result Type

same as | and J, that is, INTEGER
same as K and J, that is, INTEGER
same as K and J, that is, INTEGER

same as X and Y, that is, MY_FLOAT
same as F, that is, FRAC

same as F, that is, FRAC

unmversal_fixed, conversion needed

FRAC, as stated by the conversion

MY_FLOAT, the type of both operands after conversion of J

For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The
following relations are satisfied by the rem operator:

A rem (-B)
(- A) rem B

AremB
-(A rem B)

For any integer K the following identity holds

A mod B =

(A + KeB) mod B

The relations between integer division, remainder and modulus are illustrated by the following table

A 8 A/B AremB AmodB A B A/€E AremB A modB
10 5 2 (o] 0 -10 § -2 (o] 0
1 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 =2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 ) 2 4 4 - 14 5 -2 -4 1
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
122 -5 =2 2 -2 -12 -5 2 -2 -2
13 -5 =2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 - 14 -5 2 -4 -4
References:

ac:uracy of operations 4.5.8, addition 4.5.0. fixed point type 3.5.8, floating point type 3.5.7. integer type
3.£.4, numeric type 3.5, numeric_error excegtion 4.5.8 11.1, relation 4.4, type definition 3.3

Mu'nplving Operators 4.5.5
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4.5.6 Exponentiating Operator

The predetined exponentiating operator s is used for exponentiation.

Operator Operaticn Operand Type Result Type
L R

. exponentiation integer non - negative integer same as L
floating  integer same as L

Exponentiation of an operand by a positive exponent is equivalent to repeated multiplication (as
indicated by the exponent) of the operand by itself. For a floating operand, the exponent can be
negative, in which case the value is the reciprocal of the value with the positive exponent.
Exponentiation by a zero exponent delivers the value one.

Exponentiation of an integer raises the exception CONSTRAINT_ERROR for a negative exponent.
Exponentation raises the exception NUMERIC_ERROR it the result does not lie within the
imptemented range of the type (for real operands see 4.5.8).

References:

constraint_error exception 11.1, fioating point type 3.5.7, multiplication 4.5.5, numeric type 3.5, numeric_error
exception 11.1

4.5.7 The Function Abs

The predefined function ABS returns the absolute value of its operand.
Function Operation Operand type Result type

ABS absolute value numeric type same numeric type

The exception NUMERIC_ERROR is raised if the result does not lie within the implemented range of
th:2 type (for a real argument see 4.5.8).

Examples:
ABS(J - K)
References:

accuracy of operaticns with real operands 4.5.8, numeric_error exception 11.1

4.5.7 The Function Abs
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4.5.8 Accuracy of Operations with Real Operands

A real type or subtype specifies a set of model numbers. Both the accuracy to be expected from any
operation giving a real result, and the result ¢f any relation between real operands are defined in
terms of these model numbers.

Given a real value of a type or subtype T there (normally) exists a smallest interval whose bounds are
mndel numbers and which encloses the given real value. This interval is called the model interval
associated with the real value. This model interval is not defined where the absolute value of the
given value exceeds the largest model number, that is. T'LARGE, the model interval is then said to ‘
overflow. :

The model interval associated with a model number is an interval consisting of the number alone. The
model interval associated with a real interval (that is, a range of rea: values) is the smallest interval
whose bounds are model numbers and which encloses the values of the real interval.

The bounds on a real value resulting from a predefined operation are defined by the three following
steps:

o B AT

(1) A model interval of the appropriate type or subtype is associated with the value of each
operand.

T e AW

(2) A new interval is tormed by applying the (exact) mathematical operation to operands from the
model intervals produced in step {1); for one operand the new intervat consists of the range of
results produced for all operands in the model interval: for two operands the new interval
consists of the range of results produced for ail pairs of operands selected from the
corresponding model intervals.

(3) A model interval of the type of the result of the operation is associated with the interval
produced in step (2).

Step (3) gives the required bounds on the result of the machine operation, exzept when one of the
madel intervals in step (1) or (3) overflows. The exception NUMERIC_ERROR can only (but need not)
be raised in the case of interval overflow.

The result of a relation between two real operands (which need not be of the same subtype) is defined
by associating a model interval of the appropriate type or subtype with each operand, and then
ac cording to the cases which follow:

-
e RIS AT T SR A TN SRR N . o TSI R T

(a) The intervals are disjoint (no real value is in both): the result is the (exact) mathematical result.

(t) Each interval is a single model number, and they are equal, the result is the (exact)
mathematica! result.

(¢) The intervals have onty a single number in common (this number can onl:’ be a model number): ‘
the result is the {exact) mathematica! result either of comparing the jiven operands or of ;
comparing the first operand with itself. “

(@) Either the intervals have more than one value in common, or one of tie intervals (at least)
overflows: the result 1s implementation defined.

1he exception NUMERIC_ERROR can only (but need not) be raised in the case >f interval overflow.

fccrrict of Operotzans vth Keal Operands 4.8.8
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Notes:

Given X/Y where X = 15.0 and Y = 3.0 which are both model numbers, then the result is exactly 5.0
provided this is a model number of the resulting type. In the general case, division does not yield
model numbers and in consequence one cannot assume that (1.0/3.0)»3.0 = 1.0

Reterences:
bound 3.5. large attribute 3.5.8. model number 3.5.6. numeric_error exception 11.1, predefined operator 4.5, Y
range 3.5, real type 3.5.6, relational operator 4.5.2. subtype declaration 3.3 ,‘
bi ) I”
4.6 Type Conversions é
¢
Explicit type conversions are allowed between closely related types as defined below: %
i
type_conversion :: = type_mark (expression) ;
*
" The only allowed type conversions correspond to the following three cases: ,

(a) Numeric types

The expression can be of any numeric type: the value of the expression is converted to the base
type of the type mark; this base type must also be a numeric type. For conversions involving
real types, the result is within the accuracy of the specified type. Conversion of a real value into
an integer type involves rounding.

(b)  Array types

The conversion is allowed when for both array types (the operand type. and the base type of the
type mark) the index types tor each dimension are the same or one is derived from the other,
and the component types are the same or one is derived from the other. If the type mark
denotes an unconstrained array t pe, the bounds of the result are the same as those of the
operand. If the type mark denotes a constrained array (sub)type. for each component of either
array there must be a matching conponent of the other array; the bounds of the result are then
those imposed by the type mark. in either case the value ot each comporent of the result is the
same as that of the matching component of the operand (see 4.5.2 tor the detinitior of matching
components).

T

25 TP TP

(c)  Derived types

The conversion is aliowed when he type of the operand is (directly) derived from the type
denoted by the type mark, or vice versa. The conversion may result in a change of
representation (see 13.6).

Tt e exception CONSTRAINT_ERROR is raised by a type conversion if the value of the operand fails
to satisty a constraint imposed by the tyne mark. For array type conversions :his includes any index
constraint.
!
k- o Type Conersions g !
3 : T e w K
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It a conversion is allowed from one type to another, the reverse conversion is also allowed. This
reverse conversion is used where an actual parameter of mode in out or out is a type conversion of a
(variable) name. For a parameter of mode in out the value of the named object is converted before
the call and the converted value is passed as actual parameter; for parameters of modes in out or

out, the value of the formal parameter is converted back to the operand type upon return from the
subprogram.

Examples of numeric type conversion:

REAL(2:J) -- value is converted to floating point
INTEGER(1.6) -= value is 2
INTEGER(-0.4) -- valueis 0

Examples of conversions between array types:
type SEQUENCE is array (INTEGER range <>) of INTEGER;
subtype DOZEN is SEQUENCE(? .. 12);
LEDGER : array(1 .. 100) of INTEGER;
SEQUENCE(LEDGER) -- bounds are those of LEDGER
SEQUENCE(LEDGER(31 .. 42)) -~ bounds are 31 and 42
DOZEN(LEDGER(31 .. 42)) -- bounds are those of DOZEN
Example of conversion between derived types:

type A_FORM is new B_FORM;

X : A_FORM;
Y : B_FORM;

X 1= A_FORM(Y);
Y := B_FORM(X); ~- the reverse conversion

References:

actual parameter 6.4, array type definition 3.6, base type 3.3. bounds 3.6.1, component 3.2, constrained array
3.6. constraint 3.3, constraint_errur exception 11.1, derived type 3.4. expression 4.4, fisating point type 3.5.7,
formal parameter 6.2. in out parameter 6.2, index constraint 3.6.1. integer type 3.5.4, name 3.1 4.1, numeric
type 3.5. out parameter 6.2. rear type 3.5.6, type definition 3.3, type mark 3.3, unconstrained array type 3.6,
variable 3.2 4.1

4.7 Qualified Expressions
A qualified expression is used to state explicitly the type, and possibly the subtype, of an expression
or aggregate.

qualified_expression :: =
type_mark’(expression) | type_mark'aggregate

The expression (or the aggregate) must have the same type as the base type of the type mark. In

addition it must satisly any constraint imposed by the type mark, othe-wise the exception
CONSTRAINT_ERROR is raised.

Qualificd Expressions 4.7
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Examples:

type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE is (FIX, CLA, DEC, TNZ, SUB);

PRINT (MASK'(DEC)); -~ DEC is of rype MASK
PRINT (CODE'(DEC)); -- DEC is of type CODE
for | in CODE’(FIX) .. CODE’(DEC) loop ... -~ qualification needed for either FIX or DEC

tor 1 in CODE range FIX .. DEC loop ... -
tor | in CODE’(FIX) .. DEC loop ... -

qualification unnecessary
qualification unnecessary for DEC

DOZEN(11315617 => 2 others => 0)

Notes:

The same enumeration literal may appear in several types; it is then said to be overloaded. In these
cases and whenever the type of a enumeration literal or aggregate is not known from the context, a
qualified expression may be used to state the type explicitly. In particular, an overloaded enumeration
literal must be qualified in a subprogram call to an overloaded subprogram that cannot be identified
when given as a parameter on the basis of remaining parameter or result types, in a relational
expression where both operands are overloaded enumeration literals, or in an array or loop parameter
range where both bounds are overioaded enumeration literals. Explicit qualification is also used to

specify which one of a set of overloaded parameterless functions is meant, or to constrain a valueto a
given subtype.

References:

aggregate 4.3. base type 3.3. constraint 3.3. constraint_error exception 11.1, enumeration literal 3.5.1,
exoression 4.4, literal 4.2, loap parameter 5.5, overioaded literal 3.4 3.5.1. overicaded subprogram .9,

parameter 6.2, relational expression 4.4, subprogram call 6.4, subtype declaration 3.3, type declaration 3.3,
type mark 3.3

4.3 Allocators

The execution of an allocator creates an object and delivers as result an access value that designates
th 2 object.

allocator :: =
new type_mark [(expression)]
| new tyce_mark aggregate
| new type_mark discriminant_constraint
| new type_mark index_constraint

The type mark given in an allocator denotes the type of the object created, the type of the access
value returned by the allocator is defined by the context.

4.! AMocators
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For the execution of an allocator, any expression, aggregate, discriminant constraint or index
constraint is first evaluated; a new object of the type given by the type mark is then created. if the type
mark denotes an unconstrained array type or an unconstrained type with discriminants, the allocator
must contain either an explicit initial value (an expression or an aggregate), or an index or
discriminant constraint; this is the only case in which an index or discriminant constraint 1s perinitted.

The created object is constrained by such an explicit constraint, or by the bounds or discriminants of
the initial value.

It a default initia! value exists for objects of the type or for some of their components. excepting
discriminants, then the corresponding default initializations are performed. Finally any explicitly given
initial value is assigned to the object, subject to the constraint of the type mark, and an access value
designating the created object is returned.

The exception CONSTRAINT_ERROR is raised if either the initial value, or the discriminant or bound
values impased by the constraint, tail to satisfy any censtraint imposed by the type mark.

An object created by the execution of an ailocator remains allocated for as long as this object is
accessible directly or indirectly, that is, as long as it can be designated by some name. When such an
object becomes inaccessible, the storage it occupies can be reclaimed (but need not be), depending
on the implementation.

When an application needs closer control over storage allocation for objects of an access type, such
control may be achieved by ane or more of the following means.

(a) The total amount of storage available for the collection of objects of an access type can be set
by means of a length specification (see 13.2).

{b) The pragma CONTROLLED intorms the implementation that automatic storage reclamation

should not be performed except upon leaving the scope of the access type definition. The form
of this pragma is as tollows

pragma CONTROLLED (access_tyce_name); *

The position ot a CONTROLLED pragma is governed by the same rules as for a representation
specification (see 13.1). This pragria cannot be used for a derived type.

(c)  Explicit deallocation of individual access objects may be done by calling a procedure obtained
by instantiation of the predefined generic library procedure UNCHECIKED_DEALI.OCATION
(see 13.10.1).

The exception STORAGE_ERRCR is raisid by an allocator if there is not enough storage.
Examples:

new CELL(C. null, null)
new CELL(VALUE => 0. SUCC =»> m i}, PRED => null)

new MATRIX(1 .. 10 1 .. 20) -~ not initialized
new MATRIX(1 .. 10 => (1 .. 20 => 0))) -- initialized
new BUFFER(1Cuv) -~ constrained

new BUFFER(SIZE => 100, POS => (), VALUE => (1 .. 100 => 'A"))

Allocatars 4.8 i
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Refterences:

access value 3.8, aggregate 4.3, bounds 3.6.1, component 3.2, discriminant constraint 3.7.2, expression 4.4,
index constraint 3.7.1, type declaration 3.3, type mark 3.3, unconstrained array type 3.8

4.9 Static Expressions
Static expressions are defined in terms of their possible constituents. Every constituent of a static
expression must be one of the following:

(a) aliteral or a literal expression

(b) an aggregate whose components and choices are static expressions; if the choice others
occurs it must correspond to a static range

(c) aconstant initialized by a static expression

(d) a predefined operator, a membership test, the predefined function ABS, or a short circuit
control form

(e) an attribute whose value is static; for attributes that are function names, the arguments must
also be static expressions

0] a qualified static expression or the result of a type conversion applied to a static expression,
provided that any constraint imposed by the type mark is static

(g) aselected component of a record constant initialized by a static expression

(h) an indexed componen: of an array constant initialized by a static expression, where the indices
are static expressions

Static expressions must be evaluated at compilation time when they appear in a construct in which a
static expression is required by the rules of the language. f compile time analvsis of such a static
expression shows that its evatuation will raise an exception then the static expression must be
replaced by code that raises the exception.

References:

aggregate 4.3. attribute 3.3, component 3.2, constant 3.2, constraint 3.3, exception 11, function 6.1 6.4 6.5,
indexed component 4.1.1, literal 2.4 3.2 4.2, operator 4.5, qualified exprussion 4.7, type conversion 4.8

4.9 Siwatic Fxpressions
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4.10 Literal Expressions

Literal expressions are defined in terms of their possible primary constituents and operators. A
primary in a literal expression must be either a numeric literal, a name of a numeric literal, a call of the
predefined function ABS, or a literal expression enclosed in parentheses. The value of a literal
expression is of the type universal_integer if all its primaries are of this type, otherwise it is of the type
universal_real.

The only operators allowed in a universal integer literal expression are the predefined operators
which take operands of integer type.

The only operators allowed in a universal real literal expression are as follows:

e The unary operators +, and -, the function ABS. and the binary operators +, -, *, and /, for
universal real operands

e Multiplication of a universal real value by a universal integer value and vice versa.

e Division and exponent:ation with a universal rea! first operand and universal integer second
operand

The relational operators are also available with universal real operands and deliver a BOOLEAN
result.

The evaluation of a literal expression must deliver a result that is at least as accurate as the most
accurate numeric type supported by the implementation.

Examples
1+ 1 -- 2
ABS(-10)s3 -- 30
KILO : constant := 1000;
MEGA : constant : = KILOsKILO;

LONG : constant .= FLOAT' DIGITSs2:

HALF_PI . constant 1= PI/2;

DEG_TO_RAD - ~onstant = HALF_PI/180;

RAD_TO_DEG : constant := 1.0/DEG_TO_RAD; -~ equivalent to (1.0/(((3.14159_26536)/2)/180))

References:
abs function 45.7. expression 44, integer type 354, name of numeric literal 3.2. numeric literal 2.4,

operator 4.5, primary 4 4, relational operator 4.5.2, universa! integer type 2.4 3.2 3.5.4. universal real type 2.4
32356

Literal Expressions 4.10
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5. Statements

The execution of statements causes actions to be performed.

This section describes the general rules applicable to all statements. Some specific statements are
discussed in later chapters: Procedure calls are described in Chapter 6 on subprograms. Entry calls,
delay, accept, select, and abort statements are described in Chapter 9 on tasks. Raise statements are

described in Chapter 11 on exceptions and code statements in Chapter 13. The remaining forms of
statements are preserited here.

References:

abort statement 9.10, accept statement 95, code statement 13.8, delay statement 9.6, entry call 9.5,
procedure call 6.4, raise statement 11.3

5.1 Simple and Compound Statements - Sequences of Statements

A statement may be simple or compound. A simple statement contains no other statement. A
compound statement may contain simple statements and other compound statements.

sequence_of_statements :: = statement {statement}

statement :: =
{label} simple_statement | {label} compound_statement

simple_statement :: = null_statement
| assignment_statement | exit_staiemnent

| return_statement | goto_statement

| procedure_call | entry _call

| delay_statement | abort_sta ement
| raise_statement | code_statement

compound_statement :: =

if_statement | case_statament
| loop_statement | block
| accept_statement | select_st: tement

label :: = << identifier >>

nuli_statement :: = null;

A :tatement may be labeled with an ident fier enclosed by double angle brackets. Labels are implicitly
declared at the end of the declarative fart of the innermost enclosing subprogram body, package
bcdy, or task body. Consequently, within the sequence of statements ot a subprogram, package, or

task body, any two labels given for the se me statement or for different statements must have ditferent
identifiers.

Simple and Compound Statements - Sequences of Statements 5.1
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The implicit declarations for different labels, loop identifiers and block identifiers are assumed to
occur in the same order as the beginnings of the labeled statements, loop statements and blocks
themselves.

Execution of a null statement has no other effect than to pass to the next action.

The statements in a Sequence of statements are executed in succession unless an exception is raised
or an exit, return, or goto statement is executed.

Examples of labeled statements:

<CAFTER>> nuil;
{CTHERE »> <CLAD>> <KDORT>> null;

References:

abort statement 9.10, accept statement 9.5, assignment statement 5.2, block 5.6. case statement 5.4, code
statement 13.8. delay statement 9.6, exception 11, exit statement 5.7, goto statement 5.9, if statement 5.3,
loop statement 5.5. package body 7.1 7.3, procedgure 6, raise statement 11.3, return statement 5.8, select
statement 9.7, subprogram body 6.3, task body 9.1

5.2 Assignment Statement

An assignment statement replaces the current value of a variable with a new value specified by an
expression. The named variable and the right hand side expression must be of th2 same type.

assignment_statement :: =
variable_name : = expression;

For the execution of an assignment statement, the expression of the right hand side, and any
expression used in the specification of the variable name are first evaluated. The value of the
exnression must satisfy any range, index, or discriminant constraint applicable to the variab'e; then
the value of the expression is assigned to the variable. Otherwise the exception
CONSTRAINT_ERROR is raised.

Examples:
VALUE .= MAX_VAMLUE - 1;
SHADE := BLUE;

NEXT_FRAME(F}M, N) := 2.5;
U := DOT_PRODUCT(V, W),

WRITER
NEXT_CAR.all

(STATUS -=> OPEN, UNIT => PRINTER, LINE_COUNT => 60);
(72074, null);

5.0 Assignment Sratement




Statements

Examples of constraint chechks:

I. J | INTEGER range 1 .. 10;
K : INTEGER range t .. 20;

J; -~ identical ranges
J; =~ compatible ranges
K; -- will raise the exception CCNSTRAINT_ERROR if K > 10

|
K :
J

noaou

Notes:

The language does not define whether evaluation of the expression on the right hand side precedes,
follows, or is concurrent with that of any expression used in the specification of the variable name. A
program that relies on a specific order is therefore erroneous..

The discriminants of an object designated by an access value cannot be altered (even by a complete
object assignment) since such objects, created by allocators, are always constrained (see 4.8).

References:

access value 3.8, allocator 4.8, constraint_error exception 11.1, discriminant 3.7.1, discriminant constraint
3.7.2, expression 4.4, index constraint 3.6, name 4.1, range constraint 3.5, variable 3.2

5.2.1 Array Assignments

For an assignment to an array variable (including assignment to a slice), each component of the array
value is assigned to the matching component of the array variable. For each component of either the
array value or the array variable, there must be a matching component in the other array. Otherwise,
no assignment is performed and the exception CONSTRAINT_ERROR is raised.

Examples:

A : STRING(1 .. 31};
B : STRING(3 .. 33);

A := B, -- same number of components

A(1 ..9) := "tar sauce";
A4 ..12) := A1 ..9);, -- A(1. 12) = "tartar sauce”

Nctes:

Array assignment is defined even in the case of overlapping slices. because the expression on the
richt hand side is evaluated before performing any component assignment. In the above example, an
implementation yielding A(1 .. 12) = "tartartartar” would be incorrent.

References:

array component 3.6, array value 3.6, array variable 3.2 3.6, assignment statement 5.2, constraint_error
exeption 11.1, expression 4.4, matching comporients 4.5.2, slice 4.1.2

Array Assignments 5.2.1
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5.3 If Statements

An if statement selects for execution one or none of a number of sequences of statements, depending
on the truth vatue of one or more corresponding conditions. The expressions specifying conditions
must be of the predefined type BOOLEAN.

it_statement :: =
if condition then
sequence_of_statements
{ elsif condition then
sequence_of_statements}
[ else
sequence_of_statements]
end if;

i Ay

IEN s

condition :: = boolean_expression

For the execution of an if statement the condition specified after if and any conditions specified after
elsif are evaluated in succession (treating a final else as elsif TRUE then), until one evaluates to
TRUE; then the corresponding sequence of statements is executed. [|f none of the conditions
evaluates to TRUE, none of the sequences of statements is executed.

R e e Y

Examples:

it MONTH = DECEMBER and DAY = 31 then ¥
MONTH := JANUARY;
DAY = 1,

YEAR = YEAR + 1,
end if,

if INDENT then
CHECK_LEFT_MARGIN;
LEFT_SHIFT;

elsif OUTDENT then
RIGHT_SHIFT;

eise
CARRIAGE_RETURN;
CONTINUE_SCAN;

end if;

el o T

2 o

if MY_CAR.OWNER.VEHICLE /= MY_CAR then ;

FAIL ("INCORRECT RECORD"); :

end if; ;
References:

boolean type 3.5.3, boolean « «pression 3.5.3 4.4, sequence of statements 5.1, true 3.5.3, truth value 3.5.3

5. If Starements
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5.4 Case Statements

A case statement selects for execution one of a number of alternative sequences of statements,
depending on the value of an expression. The expression must be of a discrete type.

case_statement :: =
case expression is
{when choice {] choice} =) sequence_of_statements}
end case;

Each alternative sequence of statements is preceded oy a list of choices (see 3.7.3) specifying the
values for which the alternative is selected. The type of the expression must be known independently
of the context (for example, it cannot be an overloaded literal). Each value of the subtype of the
expression, if this subtype is static, otherwise each value of the type cf the expression, must be
represented once and only once in the set of choices nf a case statement. The choice others may
only be given as the choice for the last alternative, to cover all values (possibly none) not given in
previous choices. The values specified by choices given in a case statement must bz determinable
statically.

Examples:

case SENSOR is
when ELEVATION => RECORD_ELEVATION (SENSOR_VALUE),
when AZIMUTH => RECORD_AZIMUTH  (SENSOR_VALUE),
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
when others => null;

end case;

case TODAY is
when MON => COMPUTE_INITIAL_BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE .. THU => GENERATE_REPORT(TODAY);
when SAT .. SUN => null;

end case;

case BIN_NUMBER(COUNT) is
when 1 => UPDATE_BIN(1);
when 2 => UPDATE_BIN(2);
when 3|4 =>
EMPTY_BIN(1);
EMPTY_BIN(2);
when others => raise ERROR,;
end case;

Notes:

The execution of a case statement will choose one ard only one aiternative, since the choices are
exhaustive and mutually exclusive. It is always possible to use a qualitiec expression for the
expression of the case statement to limit the number of choices that need be given explicitly.

References:

discrete type 3.5, expression 4.4, literal 2.5 3.2.5 2, overloading a subprogram 6.6. snquence of statements
5.1, static determination 4.

Case Statements 5.4
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5.5 Loop Statements

A loop stateinent specifies that a sequence of statements in a basic loop is to be executed repeatedly
zero or more times.

loop_statement :: =
[/oop_identifier:] | iteration_ctause] basic_loop [ /oop_identitier];

basic_loop :: =
loop
sequence_of_statements
end loop

iteration_clause :: =
tor loop_parameter in [reverse] discrete_range
| while condition

loop_paramete: :: = identifier

If a loop identifier appears in a loop statement, the identifier must be given both at the beginning and
at the end. A locp identifier is implicitly declared at the end of the declarative part of the innermost
enclosing block, subprogram body, package body, or task body; where this block has no declarative
part, an implicit declarative part (and preceding declare) is assumed.

A loop statement without an iteration clause specifies repeated execution of the basic loop. The basic
loop may be left as the result of an exit or return statement; as the result of selecting a terminate
alternative of a select statement; or also as the result of a goto statement, or as the result of an
exception.

In a loop statement with a while iteration clause, the condition is evaluated and tested betore each
exacution of the basic loop. If the while condition is TRUE the sequence of statements of the basic
loop is executed, if FALSE the execution of the lonp statement is terminated.

Tte execution of a loop statement with a for iteration clause starts with the elabaration of tnis clause,
which acts as the deciaration of the loop parameter. The identifier of the loop parameter is first
in'roduced and the discrete range is then evaluated: the loop parameter is declared as a variable,
loc:al to the loop statement, whose type i3 that of the elements in the discrete range and whose range
censtraint is given by the discrete range. If the discrete range is a range whose bounds are integer
literals or integer literal expressions, the type is assumed to be the predefined type INTEGER.

If he discrete range of a for loop is null. the basic loop is not executed. Otherwise. the sequence of
staitements of the basic loop is executed once for each value of the discrete range (subject to the
be sic loop not being left as described above). Prior te each such iteration, the c rresponding value of
th = discrete range is assigned to the locp parameter. These vaiues are assigned in increasing order
ur less the reserved word reverse is present, in which case the values are a:signed in decreasing
order.

W thin the basic loop, the loop parameter acts as a constant. Hence the loop parameter may not be

ctanged by an assignment statemen:, nor may the loop parameter be yiven as an out or in out
pz rameter ot a procedure or entry call.

S5 Loop Statements
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Examples:

while BID(N).PRICE < CUT_OFF.PRICE loop
RECORUD_BID(BID(N).PRICE);
N:= N+ 1;

end loop;

SUMMATION:
while NEXT /= HEAD loop
SUM := SUM + NEXT.VALUE;
NEXT := NEXT.SUCC;
end loop SUMMATION;

for J in BUFFER'RANGE loop -- valid even with empty range
if BUFFER(J) /= SPACE then
PUT(BUFFER(J));
end if,
end loop;

Notes:

The discrete range of a for loop 1s evaluated just once. Loop names can be referred to by exit
statements.

References:

assignment statement 5.2, biock 5.6, bounds 3.6, condition 5.3, discrete range 3.6, elaboration 3.1 3.9, entry
cali 9.5, exception 11, exit statement 5.7, false 3.5.3, goto statement 5.9, identifier 2.3, in out parameter 6.2,
integer literal 2.4, integer type 3.5.4, name 4.1, null range 3.6.1, out parameler 6.2. package body 7.1 7.3,

procedure 6.1, range attribute 3.6.2, return statement 5.8, sequence of statements 5.1, subnrogram body 6.3,
task body 9.1, terminate alternative 9.7.1, tru2 3.5.3, variable 4.1

5.6 Blocks

A block introduces a sequence of statements optionally preceded by a governing declarative part.

block :: =
[block_identifier:)
[deciare
declarative_part)
begin R
seguence_of_statements
[exception

{exception_handler})
end [block_identitier];-

If a block identitier is given for a biock, it must be given both at the beginning and at the end. A block
identiier is implicitly declared at the en3 of the declarative part of the innermost enclosing block,
suaprogram body, package body. or task body; where this enclosing block has no declarative part, an
imalicit declarative part (and preceding daclare) is assumed.

T e execution of a block results in the el aboration of its declarative part iallowad by the execution of

the sequence of statements. A bioek rvay also contain exception handlers to service exceptions
occurring during the execution of the sequence of statements (see 11.2).

Rlocks 5.6
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Example:
SWAP:
deciare
TEMP : INTEGER;
begin
TEMP := V; V.= U, U := TEMP;
end SWAP;
Notes:

Within a block, the block name can be used in selected components denoting local entities such as
SWAP.TEMP in the above example (se2 4.1.3 (e)).

References:

declarative part 3.9, elaboration 3.1 3.9, exception 11, exception handler 11.2, name 4.1, package body 7.1
7.3. sequence of statements 5.1, subprogram body 6.3, task body 8.1

5.7 Exit Statements

An exit statement may cause the term.ination of an enclosing loop, depending on the truth value of a
condition.

exit_statement :: =
exit [loop_name] [when condition);

The loop exited is the innermost loop unless the exit statement specifies the name of an enclosing
lonp, in which case the named loop s exited (together with any enclosing loop inner to the named
loop). If an exit statement contains a condition, this condition is evaluated iind loop termination
occurs it and only if its value is TRUE.

An exit statement may only appear within a loop (a named exit statement only within the named loop).
An exit statement must not transfer control out of a subprogram body, package body, task body, or
accept statement.

Examples:

for ! in 1 .. MAX_NUM_ITEMS loop
GET_NEW_ITEM(NEW_ITEM),
MERGE_ITEM(NEW_ITEM, STORAGE_FILE);
exit when NEW_ITEM = TERMINAI _ITEM;
end loop;

MAIN_CYCLE:
loop
-~ initial stateinents
exit MAIN_CYCLE when FOUNC;
-=- final s'atements
end ioop MAIN_CYCLE;

ST It Statements
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References:

condition 5.3, loop statement 5.5, name 4.1, true 3.5.3, truth value 3.5.3

5.8 Return Statements

A return statement terminates the execution of a function, procedure, or accept statement.
return_statement :: = return [expression};

A return statement may only appear within a function body, procedure body, or accept statement. A
return statement for a procedure body or for an accept statement must not include an expression.

A return statement for a function must include an expression whose value is the result returned by the
function. The expression must be of tne type specified in the return clause of the function
specification, and must satisfy any constraint imposed by the return clause. Otherwise, the execution
of the function is not terminated and the exception CONSTRAINT_ERROR is raised at the place of the
return statement.

A return statement must not transfer control out of a package body or task body.
Examples:

return,
return KEY_VALUE(LAST_INDEX);

References:
aczept statement 9.5. constraint 3.3, constraint_error exception 11.1, expression 4.4, function 6.1, function

bedy 8.3, function specification 6.1, package body 7.1 7.3, procedure 6.1, procedure body 6.3, sequence of
statements 5.1, task body 9.1

5.9 Goto Statements

The execution of a goto statement results in an explicit transfei of control to another statement
sgpecified by a label.

goto_statement :: = goto /abe/_name;

A goto statement must not transfer control from outside into a compound statement or exception
handler, nor from one of the sequences of statements of an if statement, cas2 statement, or select
statement to another. A goto statement must not transter control from one exception handler to
another, nor from an exception handler back to the statements of the corresponding block,
st bprogram body. package body, or task hody.

A goto statement must not transfer control out of a subprogram body. package body, task body, or
ac cept statement.

Goto Statements 5.9
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Example:

<< COMPARE >>
it A(l) < ELEMENT then
if LEFT(l) /= O then

1= LEFT(l); ;

goto COMPARE; i

end if;

-- some statements 3

end if,; 3

] Notes: :‘
It follows from the scope rules that a goto statement cannot transfer control from outside into the ‘
body of a subprogram, package, or task (see 5.1 and 8.1), i
¢

References: ¢
accept statement 9.5, block 5.6, case statement 5.4, compound statement 5.1, exception handler 11.2, if *
statement 5.3, label 5.1, package body 7.1 7.3, scope rules 8, select statement 9.7, sequence of statements ¥
5.1, subprogram body 6.3, task body 9.1
¥
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6. Subprograms

A subprogram is an executable program urit that is invoked by a subprogram call. Its definition can
he given in two parts: a subprogram declaration defining its calling convention, and a subprogram
body defining its execution. There are two forms of subprograms: procedures and functions. A
procedure call is a statement; a function call returns a value.

Subprograms are one of the three forms of progiam units of which programs can be composed. The
other forms are packages and tasks.

Reterences:

function 6.1 6.5, tunction cali 6.4, procedure € .1, procedure call 6.4, subprogram bocy 6.3. subprogram call
6.4, subprogram declaration 6.1

6.1 Subprogram Declarations

A subprogram declaration declares a procedure or a function.

subprogram_declaration :: = subprogram_specification;
| generic_ subprogram_decluration
| generic_subprogran_instantiation

subprogram_specification :: =
procedure identifier |forma)_part]
I function designator [fcrmal_part] return subtype_indication
designator :: = identitier | operator_symbol
operator_symbol :: = character_string

formal_part = = (parameter_declaration {; parameter_declaration})

parameter_declaration =
identifier_list : mode subtype_indicat:on [: = expression]

mode = [in] | out } in out

The specification of a procedure specii es its identifier and its formal parareters (if any). The
specification of a function specifics its d.:signator. its formal parameters (if any) and the subtype of
th2 returned value. A designator that is ¢ n operator symbol is used for overloa Jing operators of the
language. The sequence of characters represented by an operator symbol inust be an operator
belonging to one of the six classes of over oadable operators dehined in section 4.5.

Subprogram Declaranions 6,1
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For the elaboration of a subprogram declaration (other than a generic subprogram declaration or a
generic subprogram instantiation), the subprogram identifier (or operator symbol) is first introduced
and can from them on be used as a name of the corresponding subprogram. Elaboration of
parameter declarations and result subtype follow in the order in which they are written.

For the elaboration of a parameter declaration, the identifiers of the list are first introduced; then the E
mode and parameter subtype are established; the identifiers then name the corresponding 3
parameters. |f the parameter declaration has the mode in, and only then, it may include an
initialization. In that case, the corresponding expression is next evaluated. Its value is the default
initial value of the parameter; it must satisfy any constraint imposed by the subtype indication, i
otherwise the exception CONSTRAINT_ERROR is raised. ¥

Neither the name of a variable, nor a call to a user-defined operator, function, or allocator, may
appear in any expression occurring in a formal part. A parameter declaration, or a constraint on the
result of a tunction, may not mention the name of a parameter declared in another parameter
declaration of the same formal part.

A generic subprogram declaration defines a template for several subprograms obtained by generic
subprogram instantiation (see 12.1 and 12.3).

Examples of subprogram declarations:
procedure TRAVERSE_TREE;

procedure RIGHT_INDENT(MARGIN : out LINE_POSITION);
procedure INCREMENT(X : in out INTEGER);

function RANDOM return REAL range -1.0 .. 1.0;

function COMMON_PRIME (M\N : INTEGER) return INTEGER;
function DOT_PRODUCT (XY : VECTOR) return REAL;
function "+ (XY : MATRIX) return MATRIX;

Examples of in parameters with default values:
procedure PRINT_HEADER( PAGES : in INTEGER;

HEADER : in LINE
CENTER : in BOOLEAN :

BLANK_LINE;
TRUE),

Ncte: P
Al subprograms can be called recursively and are reentrant.

References:

constraint 3.3, constraint_error exception 11.1, expression 4.4, formal parameter 6.2, function 6.5, function

call 6.4, generic part 12.1, operator 4.5, overloading an operator 6.7, procedure call t..4, subtype declaration
3.4, variable name 3.2 4.1

. 6.. Subprogram Declarations
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6.2 Formal Parameters

The formal parameters of a subprogram are considered local to the subprogram. A parameter has
one of three modes:

in The parameter acts as a local constant whose value is piovidzd by the
corresponding actual parameter.

out The parameter acts as a local variable whose value is assigned to the
corresponding actual parameter as a resuit of the execution of the
subprogram.

in out The parameter acts as a local variable and permits access and assignment
to the corresponding actual parameter.

I no mode is explicitly given, the mode in is assumed. If a parameter of mode in is an array or a
record, none of its components may be changed by the subprogram. For parameters of a scalar or
access type, at the start of each call, the value of each actual parameter which corresponds to a
formal parameter of mode in or in out is copied into the corresponding formal parameter; upon return
from the subprogram, the value of each formal parameter of mode in out or out is copied-back into
the corresponding actual parameter.

For parameters of an array, record, or private iyne, the values may be copied as in the above case;
alternatively, the formal parameter may provide access to the corresponding actual throughout the
execution of the subprogram. The language does riot define which of these two mechanisms is used
for parameter passing. A program that relies on one particular mechanism is therefore erroneous.

Within the body of a subprogram, a formal parameter is subject to any constraint given in its
parameter declaration. For a formal parameter of an unconstrained array type, the bounds are
obtained from the actual parameter. For a formal parameter whose declaration specifies an
unconstrained (private or record) type w'th discriminants, the discriminants of the formal parameter
are initialized with the values of the correspondingy discriminants of the actual parameter; if the actual
parameter is constrained by these discriminant values then so also is the formai.

Notes:

For parameters of array, record, or private types, the parameter passing rules have these
consequences:

e If the execution of a subprogram is abnormally terminated by an exception, the final value of an
actual parameter of such a type can be either its value before the call or a value assigned to the
formal parameter during the execution of the subprogram.

e If no actual parameter of such a type is accessible by more than one path, then the effect of a
(normally terminating) subprogram call is the same whether or not the implementation uses
copying for parameter passing. Hf l.owever there are multiple access paths to such a parameter
(for example, it a global variable or another tormal parameter. reters to the same actual
parameter). then alter an assignm: :nt to the actual other than via the formal, the value of the
formal is undefined. A program using such an undefined value is errcneous.

Lormal Parameters 6.2
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3 References:

access type 3.8, actual parameter association 8.4.1, array type definition 3.6, bounds 3.6.1, component 3.2,
constant 3.2, constraint 3.3, discriminant 3.7.1, discriminant constraint 3.7.2, exception 11, global variable
8.3. private type 7.4, record type 3.7, scalar type 3.5, subprogram body 6.3, subprogram call 6.4,
unconstrained array type 3.6 '

6.3 Subprogram Bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body :: =

subprogram_specitication is
declarative_part

begin
sequence_of_statements

[exception
{excention_bhandler}]

end [designator);

If both a subprogram declaration and a subprogram body are given, the subprogram specification
provided in the body must be the same as that giveu in the corresponding subprogram declaration:
the parameter names, the subtype indications, and the expressions specifying any default values must
be the same and in the same order. The only variation allowed is that names can be written
differently, provided that they denote the same entity.

A subprogram declaration must be given if the subprogram is declared in the visible part of a
package. or if it is called by other subprogram, package, or task bodies that appear before its own
body. Otherwise, the declaration can be omitted and the specification appearing ir the subprogram
body acts as the declaration. The elaboration of a subprogram body consists of the elaboration of its
specification if that has not already been done; the elfect is to establish the subprogram body as
detining the execution of the correspondir.g subprogram.

The execution of a subprogram body is invoked by a subprogram call {see 6.4) For this execution,
(a‘ter estabiishing the association between tormal parameters and actual param-ters) the declarative
part of the body is elaborated, and the sequence of statements of the body is then executed. Upon
ccmpletion of the body. return is made to the caller (and any necessary copyiig back of formal to
actual parameters occurs (see 6.2)}. A subprogram body may contain exceptio1 handlers to service
any exceptions that occur during the execution of its sequence of statements (se:z 11). 1

The optional designator at the end of a subprogram body must repeat the designator of the
subprogram specification.

A subprogram body may be expanded in line at each call if this is requested by th2 pragma INLINE:
pragma INLINE(subprogram_name{,sut program_name,,,

This pragma (if given) must appear in the same declarative part as the named subprograms (a single

subprogram name may :ztand for several overlcaded subprograms); for subprcgrams declared in a

package specification the pragma must also be in this package specification The meaning of a
subprogram is not changed by the pragma INLINE.

]
H

' ~ 6.3 Subp.ogram Bodies
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Example ot subprogram body:

procedure PUSH(E : in ELEMENT_TYPE; S : in out STACK) is ;
] begin ' :
3 if S.INDEX = S.SIZE then
raise STACK_QOVERFLOW,; .
else ;

S.INDEX := S.INDEX + 1;
S.SPACE(S.INDEX) : = E;
end if;
end PUSH;

Note:
As stated above, where a subprogram specification is repeated, the second occurrence is never

elaborated. Therefore there is no question of expressions in the second occurrence delivering a
different value. '

References:

actual parameter association 6.4.1, declarative part 3.9, default parameter value 6.1, designator 6.1,
exception 11, formal parameter 6.2, mode 6.2, package body 7.1 7.3, package specification 7.2, package
visible part 7.2, parameter association 6.4.1, parameter name 6.2, pragma 2.8, statement 5, subprogram
declaration 6.1, subprogram specification 6.1, subtype indication 3.3, task body 9.1

6.4 Subprogram Calls E

A subprogram call is either a procedure call or a function call. It invokes the execution of the
co responding subprogram body. The call specifies the association of any actual parameters with
formal parameters of the subprogram. An actual parameter is either a variable or the value of an X
ex)oression,

pre

procedure_call :: =
procedure_name [actual_parameter_part}];

function_call :: =
function_name actual_parameter_rart | function_name ()

actual_parameter_part :: =
(parameter_association {, parameter_association})

parameter_association :: =
[formal_parameter =>] actual_parameter

formal_parameter :: = identifier

actual_parameter ::

it

expression

Subprogram Calls 6.4
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Actual parameters may be passed in positional order (positional parameters) or by explicitly naming
the corresponding formal parameters (named parameters). For positional parameters, the actual
parameter corresponds to the formal parameter with the same position in the formal parameter list.
For named parameters, the corresponding formal parameter is explicitly given in the call. Named
parameters may be given in any order.

Positional parameters and named parameters may be used in the same call provided that positional
parameters occur first at their normal position, that is, once a named parameter is used, the rest of the
call must use only named parameters.

The call of a parameterless function is written as the function name followed by empty parentheses.
This is also done for a function call in which default initial values are used for all parameters. The call
of a parameterless procedure is written as the procedure name followed by a sr zicolon.

Examples of procedure calls:

RIGHT_SHIFT;
TABLE_MANAGER.INSERT(E);
SEARCH_STRING(STRING, CURRENT_POSITION, NEW_POSITION);

PRINT_HEADER(PAGES => 128. HEADER => TITLE, CENTER => TRUE),
SWITCH(FROM => X, TO => NEXT);
REORDER_KEYS(NUMBER_OF_ITEMS, KEY_ARRAY => RESULT_TABLE):

Examples of function calls:

DOT_PRODUCT(U, V)
CLOCK()

References:

detauit parameter value 6.1, expression 44, function 6.1 6.5, identifier 2.3, name 4.1, procedure 6.1,
subprogram body 8.3, variable 3.2 4.1

6.4.1 Actual Parameter Associations

An expression used as an actual parameter of mode in out or out must be a variable name or a type
conversion of a variable name (see 4.6). An expression used as an actual parameter of mode in is
evaluated before the call. If a variable given as an actual parameter of mode in out or out is a
se ected component or an indexed component, its identity is established before the call.

For a parameter of a scalar type. if the mode is in or in out, any range constraint on the formal
pa-ameter must be satisfied by the value of the actual parameter before each call. if the mode is in
out or out, any range constraint on the zctual parameter must be satisfied by the value of the formal
pa-ameter upon return from the subprogram.

For a parameter of an access type the only possible constraints are index and discriminant
constraints applying to the objects desijnated by the access values. These constraints must be
sa istied (that is, are checked) before the call (for the modes in and in out) and upon return (for the
modes in out and out).

6.4.1 Actual Paramcter Associations

o

L Qi 2
RN T




Subprograms 6-7 )

o

‘ For a parameter of an array type, or of a record or private type with discriminants, any constraint
: specified for the formai parameter must be satisfied by the corresponding actual parameter before the
call for all parameter modes.

The exception CONSTRAINT_ERROR is raised at the place of the subprogram call if any ot the above- [
mentioned constraints is not satisfied.

Notes:
L For array types, and for record and private types with discriminants, the language rules guarantee that
if the actual parameter satisfies the constraint of the formal parameter before the call, then the formal

parameter satisties the constraint of the actual parameter upon return. Hence no constraint check is
needed upon return.

The language does not define in which order different parameter associations are evaluated. A
program relying on some specific order is therefore erroneous.

References:
access type 3.8. access value 3.8, array type definition 3.6, constraint_error exception 11.1, discriminant
3.7.1. discriminant constraint 3.7.2. expression 4.4, indexed component 4.1.1, mode 6.2, object 3.2, private

type definition 7.4, range constraint 3.5, record type 3.7, scalar type 3.5, selected component 4.1.3, variable
name 3.2 4.1

6.4.2 Default Actual Parameters

It a subprogram declaration specifies a default value tor an in parameter, then the corresponding
parameter may be omitted from a call. In such a case the rest of the call, following any initial
pcsitional parameters, must use only named parameters.

Example of procedure with default values:

procedure ACTIVATE(PROCESS : in PROCESS_NAME;

AFTER  : in PROCESS_NAME := NO_PROCESS: |
WAIT . in DURATION := 0.0; ‘
PRIOR  :in BOOLEAN := FALSE);

Examples of its call:

ACTIVATE(X),

ACTIVATE(X, AFTER => Y);

ACTIVATE(X, WAIT => 60.0, PRIOR => TRUE),
ACTIVATE(X, Y. 10.0, FALSE);

Note:

The default value for an in parameter is evaluated when the subprogram speci‘ication is elaborated
and is thus not reevaluated at each call. I-ence the same default value is used for all calls.

Default Actual Parameters 6.4.2
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References:

default parameter value 6.1, named parameter 6.4, subprogram specification 8.1,

S i}

o

6.5 Function Subprograms

A function is a subprogram that returns a value. The specification of a function starts with the
reserved word function. A function may only have parameters of the mode in. The sequence of
statements in the function body (excluding statements in nested bodies) must include one or more
return statements specifying the returned value. If the body of a function is left by reaching the end,
the value returned by the function call is undefined. A program that relies upon such an undefined
value is erroneous.

Tore W T L.

Example:

function DOT_PRODUCT(X, Y : VECTOR) return REAL is
SUM : REAL := 0.0;
begin
CHECK(X'FIRST = Y'FIRST and X'LAST = Y'LAST);
for J in X’RANGE loop
SUM = SUM + X(J)sY(J);
end loop; :
return SUM; 3
end DOT_PRODUCT,;

(Al o o LR SR A
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References:

exepticn 11, function body 6.3, function cal! 6.4, function specification 6.1, mode 6.2. parameter 6.2, return
stetement 5.8

6.3 Overloading of Subprograms

Tte same subprogram identifier can be used in several otherwise Cdifferent subprogram
specifications: it is then said to be ovzricaded. The declaration of an overloaded subprogram
iduentitier does not hide another subprogram declaration made in an outer declarative part unless, in
th.» two declarations, the order. the names. and the types of the parameters ar2 the same, the same
parameters have default values, and (for tunctions) the result type is the same. When this condition
fo. hiding is satisfied. the two subprogram specifications are said to be equivalent. On the other hand
th.2 default values themselves. the constraints, and the parameter modes are not taken into account to
determine it one subprogram hides another.

Overloaded subprogram declarations may occur in the same declarative part, but they must then
ditfer by more than just the parameter names.

A :all to an overloaded subprogram is ambiguous (and theretore illegal) if the t/pes and the order of !
th 2 actual parameters. the names of the formal parameters (if named associaticns are used), and the
result type (for functions) are not sufficient to identify exactly one (overloaded) subprogram
sf.ecification. '

6.t Overloading of Subprograms .
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Exampies of overloaded subprograms:

procedure PUT(X : INTEGER);
procedure PUT(X : STRING);

procedure SET(TINT : COLOR);
procedure SET(SIGNAL : LiGHT);

Example of calls,

PUT(28);
PUT("no possible ambiguity here");

SET(TINT => RED);
SET(SIGNAL => RED),
SET(COLOR'(RED)):

~-- SET(RED) would be ambiguous since RED may
-- denote a value of type either COLOR or LIGHT

Notes:’

Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogram
are themselves overioaded function calls, literals or aggregates. Ambiguities may also arise when
several overloaded subprograms belonging to different packages are applicable. These ambiguities
can usually be resolved in several ways: qualified expressions can be used for some or all actual
parameters and tor any resulf; the name of the subprogram can be expressed more explicitly as a
selected component (prefixing the subprogram identifier by the package name); finally the
subprogram can be renamed.

References:

actual parameter 6.4, constraints on parameters 6.4.1, declarative part 3.9. default parameter value 6.1,
tunction 6.5. hide 8.3. named parameter association 6.4, overloaded aggregate 4.3. overioaded literal 3.5.1
4.7, package 7. parameter type 6.1 qualified expression 4.7, renaming declaration 8.5, result type 6.1,
seacted component 4.1.3, subprogram ca‘'l 6.4, subprogram declaration 6.1, subprogram identifier 6.1,
suaprogram specification 6.1

6.7 Overloading of Operators

A function deciaration whose designator is an operator symbol is used to define an additional
overloading for an operator. The sequence of characters of the operator symbol must be either a
louical. a relational, an adding, a unary, a multiplying. or an exponentiating operator (see 4.5). Neither
membership operators nor the short circiit control torms are allowed.

Tte declaration of an overloaded operator hides the declaration of another operator, with the same
designator. made in an outer declarative part, if for both declarations the types of the parameters are
th:: same, and the result type is the same; the names of the parameters are not taken into account.

Overloading of Operators 6.7
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The declaration of a unary operator must be a function declaration with a single parameter. The
declaration of any other operator must be a function declaration with two parameters; for each use of
this operator, the first parameter takes the left operand as actual parameter, the second parameter
takes the right operand. Default values for parameters are not allowed in operator declarations. The
operators " + " and "-" may be overloaded both as unary and as binary operators.

The equality operator " = " can only be overloaded for two parameters of the same limited private type
or of a composite type that has one or more components (or components of components, and so on)
of a limited private type. An overloading of equalty must deliver a result of the predefined type
BOOLEAN; it also implicitly overloads the inequality operator "/=" so that this still gives the
complementary result to the equality operator. Explicit overloading of the inequality operator is not

allowed.
Examples:

function "+" (X, Y : MATRIX) return MATRIX;
function "s" (X, Y : VECTOR) return VECTOR,;

Note:

Overloading of relational operators does not affect basic comparisons in the language such as testing
for membership in a range or the choices in a case statement.

References:

actual parameter 6.4, adding operator 4.5.3. boolean type 3.5.3. case statement 5.4, composite type 3.3,
declarative part 3.9. default parameter value 6.1, designator 6 1, equality operator 4.5.2, function declaration
6.1, hide 8.3. limited private type 7.4.2, mode 6.2 operator symbol 6.1, paramete: type 6.1, range 3.5,
relational operator 4.5.2, resuit type 6.1, unary operator 4.5.4

6.7 Overloading of Operators
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‘ 7. Packages )
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Packages allow the specification of groups of logically related entities. iIn their simplest form
packages can represent pools of common data and type declarations. More generally, packages can
be used to describe groups of related entities such as types, objects, and subprograms, whose inner
workings are concealed and protected from their users.

Packages are one of the three forms of program units, of which programs can be composed. The
other forms are subprograms and tasks.

References:

object 3.2. subprogram 6, task 9, type declaration 3.3

7.1 Package Structure

A package is generally provided in two parts: a package specification and a package body. The
simplest form of package, that representing a pool of data and types, does not require a package
body.

package_declaration :: = package_specification;
| generic_package_declaration
| generic_package_instantiation

package_specification :: =
package identifier is
{declarative_item}
[private
{declarative_item} -
{representation_specification}] ki
end [identitier] e

package_body :: =

package body identifier is
declarative_part

[begin
sequence_of_statements

[exception
{exception_handler}]]

end [dentifier];

A package specification and the corresponding package body have the samre identifier; only this
id 2ntifier may appear as the optional icentifier at the end of the package spe:ification or body (or
both).

Puckage Structure 7.1 ‘
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With respect to visibility and redeclaration rules (see 8.1), the declarative items and representation

specifications in a package specification and the declarative part of the corresponding package body

(it any) are considered as forming a single declarative part. A package declaration may be separately
| compiled (see 10.1) or it may appear within a declarative part. In the latter case the corresponding
; body (if any) must appear later in the same declarative part. &
Package specifications and package bodies may contain further package declarations. The body of L3
any program unit (that is, any subprogram, package, or task) declared in a package specification must
appear in the corresponding package body (unless the unit declared is obtained by genenc
instantiation or is a subprogram for which an INTERFACE pragma is given, see 13.9).

T st R
—

A generic package declaration defines a template for several packages obtained by generic package
instantiation (see 12.1 and 12.3).

1 | References:

: declarative item 3.9, declarative part 3.9. generic instantiation 12.3, generic part 12.1, identifier 2.3, program
E unit 6 7 9, redeclaration rules 8.2, representation specificaton 13.1, subprogram 6, task 9, visibility 8.1

7.2 Package Specifications and Declarations

The first list of declarative items of a package specification is called the visible part of the package. -4
The entities declared in the visible part can be referred to from other program units by means of 3
selected components: they can be made directly visible to other program units by means of use
clauses (see 4.1.3 and 8.4). The visible part contamns all the information that another program unit is
able to know about the package. The optional lists of declarative items and representation
specifications after the reserved word private torm the private part of the package.

For the elaboration of a package declaration (other than a generic package declaration or a generic
package mstantiation). the package identifier is first introduced and can trom then on be used as a
name of the corresponding package; elaboration of the visible part, and of any declarative items and
reresentation specifications appearing after the reserved word private follow in this order.

A package consisting of only a package specification (that is, without a package body) can be used to
represent a group of common constants or variables, or a common pool of data and types.

Example of a group of common variables. r

package PLOTTING_DATA is
PEN_UP : BOOLEAN;

CONVERSION_FACTOR,
X_OFFSET, Y_OFFSET,
X_MIN, X_MAX,

Y_MIN, Y_MAX : REAL;

e

X_VALUE, Y_VALUE : array (1 .. 500) of REAL; L
end PLOTTING_DATA;

7..' Package Specifications and Declarations
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Example of a common pool of data and types:

package WORK_DATA is
type DAY is (MON. TUE, WED, THU, FRI, SAT, SUN);
type HOURS_SPENT is delta 0.01 range 0.0 .. 24.0
type TIME_TABLE is array (DAY) of HOURS_SPENT;

WORK_HOURS - TIME_TABLE;
NORMAL_HOURS : constant TIME_TABLE :=
(MON .. THU => 825, FRI => 7.0, SAT | SUN => 0.0);
end WORK_DATA;

Reterences:

constant 3.2. declarative item 3.9, elaboration 3.1, generic package instantiation 12.3, generic part 12.1,
package specification 7.1, program unit 6 7 9, representation specification 13.1, selected component 4.1.3,
separate compilation 10.1, type declaration 3.3, use clause 8.4, variable 3.2

7.3 Package Bodies

The specification of a package, in particular the visible part, may contain the specifications of
subprograms. tasks and other packages. In such cases, the bodies of the specified program units
must appear within the declarative part of the package body (unless a pragma INTERFACE is given,
see 13.9). This declarative part may also include local declarations and local program units needed to
implement the visible items.

fn contrast to the entities deciared in the visible part, the entities declared in the package body are not
accessible outside the package. As a conseguence, a package with a package hody can be used for
th= construction of a group of related subprograms (a package in the usual sensie), where the logical
operations accessible to the users are clearly isolated from the internal entities.

For the elaboration of a package body, 'ts declarative part is elaborated first, and its sequence of
statements (if any) is then executed. Any entity declared in this deciarative part remains in existence
for as long as the package itself.

The optional exception handlers at the end of a package body handle excepticns raised during the
execution of its sequence of statements.

Example of a package:

. package RATIONAL _NUMBERS is
§e type RATIONAL is
record
NUMERATOR : INTEGER;
DENOMINATOR : INTEGER ringe 1 .. INTEGER'LAST,
end record;

function EQUAL(X.Y . RATIONAL] ‘eturn BOOLEAN;

function "+ " (X.Y : RATIONAL) ‘eturn RATIONAL,;

function "«” (X.Y : RATIONAL) eturn RATIONAL;
end,;

Package Bodies 7.3
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package body RATIONAL_NUMBERS is

procedure SAME_DENOMINATOR (XY : in out RATIONAL) is
begin

~- reduces X and Y to the same denominator
end;

-
ja-t g

function EQUAL(X,Y : RATIONAL) return BOOLEAN is
U,V : RATIONAL;
begin
U:= X
V:=Y;
SAME_DENOMINATOR (U,V);
return U.NUMERATOR = V.NUMERATOR; A
end EQUAL;

™
LY

tfunction "+ " (XY : RATIONAL) return RATIONAL is ... end "+ ";
tunction "»” (XY : RATIONAL) return RATIONAL is ... end "s";

end RATIONAL_NUMBERS;
Notes:

A variable declared in a package specification or body retains its value between calls to subprograms
declared in the visible part. Such a variable is said to be an cwn variable of the package.

If a package body contains the declarations of subprograms specified in the visible part then it is only
atter the elaboration of the package body that these subprograms can be called from outside the
peckage (see 3.9 and 10.5).

References:

deciarative part 3.9, elaboration 3.1, exception handier 11.2. exception 11, package specification 7.1,
sejuence of statements 5.1, subprogram 6, task 9, variable 3.2, visible part 7.2

7.4 Private Type Definitions

Thie structural details of some declared type may be irrelevant to the use of its logical properties
outside a package, and one may wich to protect them from external influence. This can be
accomplished by declaring such a type with a private type definition in the visible part of a package
sg ecification.

private_type_definition :: = [limited] private

A private type definition may only occur in a type declaration given in the visibl:: part of a package or
in a generic part (see 12.1.2). The corresponding types are called (limited) private types. The only
effect of the elaboration of a private type declaration is to introduce the name of a (limited) private
tyde, and to elaborate its discriminant part, if any.

It a package specitication includes a private type declaration it must also incluc'e a full declaration of

the type in the private part of the package (that is, in the list of declarative items ‘ollowing the reserved
word private).

7.4 Private Type Definitions
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A constant of a private type can be declared in the visible part as a deferred constant, that is, as a
constant whose initial value is not specified in its declaration. The initial value must be specified in :
the private part by redeclaring the constant in full. %

References:

constant 3.2. declarative item 3.9, discriminant part 3.3 3.7.1. elaboration 3.1, generic part 12.1, limited
private type 7.4.2, name 4.1, package specification 7.1, private part 7.2, type declaration 3.3, visible part 7.2
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7.4.1 Private Types

For a private type not designated as limited. the only information available to other external program
units is that given in the visible part of the defining package. Thus the name of th=~ type is available.

In addition, any subprogram specified within the visible part with a parameter or result of the private 4
type defines an available operation for objects of the private type. Finally, assignment and the ¥
predefined comparison for equality or inequality are available. '

These are the only externally available operations on objects of a private type. External units can
declare objects of the private type and apply available operations to the objects; in contrast, they
cannot directly access the structural details of objects of private types.

For each private type declaration given in the visible part of a package specification, a corresponding
type declaration (with the same name) must be given in full in the private part, that is, with a type
definition other than a private type definition. Assignment and equality must be available for this type.

If the private type declaration has cliscriminants, the full declaration must have the same
discriminants: the discriminant names, the subtype indications, angd any default values must be the
same and in the same order. The only variation allowed is that names may be written differently,
provided that they denote the same entity. The elaboration of the full type declaration consists only of
the elaboration of the corresponding type definition (since the type name has already been introduced
ard any discriminant part has already been elaborated). The full type declaration cannot include a
discriminant part if the private type declaration does not have one; it cannot declare an unconstrained
array type.

Within the private part and the body of z package. the operations available or objects of the private
type are those defined in both the visible part and the private part. If the full declaration is in terms of
a derived type definition, an inherited operation may be redefined (and thereby hidden) by an
operation declared in the visible part.

Example:

package KEY_MANAGER is
type KEY is private;
NULL_KEY : constant KEY;
procedure GET_KEY(K : out KEY); _;
function "< " (X, Y : KEY) return BOOLEAN,; }r

private
type KEY is new INTEGER range 0 .. INTEGER'LAST,;
NULL_KEY : constant KEY := O;

end;

Private Types 7.4.1
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-~ the only externally available operations of the private type KEY are assignment,
-- equality, inequality, " <", and the procedure GET_KEY returning a KEY value

package body KEY_MANAGER is
LAST_KEY : KEY : = 0;
procedure GET_KEY(K : out KEY) is

begin
LAST_KEY .= LAST_KEY + {;
K := LAST_KEY;
end GET_KEY;
function " <" (X, Y : KEY) return BOOLEAN is
begin
return INTEGER(X) < INTEGER(Y);
end "{"; .

-~ this definition of " <" hides the definition inherited from INTEGER; hence X<Y would
-- Dbe a recursive call and conversion is necessary to invoke the " <" of INTEGER
end KEY_MANAGER,; ’

Note:

Outside its defining package a private type is just a private type. The fact that it may be implemented
as a particular type class (for example, as an array type) is irrelevant. Consequently any language rule
which applies specifically to that class does not apply to that private type outside its defining package.

References:

array type definition 3.6, assignment s2atement 5.2, derived type definition 3.4, discriminant 3.7.1, elaboration
3.1, equality 45.2, inherited 34, Lkmied private type 7.4.2, name 4.1, parameter 6.2, private part 7.2,
subprogram 6. subtype indicatiar» 3.4, type class 3.3, type declaration 3.3, unconstrained array type 3.6,
visible part 7.2

7.4.2 Limited Private Types

Outside the package defining a limited private type, assignment and the comparisons for equality or
inequality are not available for objects of the type. Moreover if a composite type has components of a
limited private type, assignment, equality and inequality are not available tor objects of the compaosite
type. outside the package defining the limited private type. The only externally available operations
on objects of a limited private type are those defined by the subprograms declared in the visible part
of the defining package.

The following are consequences of the non-availability of assignment:

e Adeclaration of a variable of a limited private type cannot include an initialization.

e Parameters of a limited private type may not have default values.
e No constant of a limited private type can be declared outside the defining package.
e An allocator for an access type designating objects of a limited private type is not allowed to

specify an initial value for the allocated object.

7.4.2 Limited Private Types
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Outside the defining package, subprograms having parameters of any mode can be dehnnd for
objects of a limited private type, provided that the above rules are satisfied.

The type definition given in the full declaration of a limited private type need not (but may) define a
type for which assignment and equality are available; the full type declaration may be the declaration

of a task type.

Example:

In the example below, an external subprogram making use of [_O_PACKAGE may obtain a file name
by calling OPEN and later use it in calls to READ and WRITE. Thus, outside the package, a file name
obtained from OPEN acts as a kind of password; its internal properties (such as containing a numeric
value) are not known and no other operations (such as addition or comparison of internal names) can

be performed on a file name.

package |_O_PACKAGE is
type FILE_NAME is limited private;

procedure OPEN (F : in out FILE_NAME);
procedure CLOSE (F : in out FILE_NAME);
procedure READ (F : in FILE_NAME; ITEM : out INTEGER),
procedure WRITE (F : in FILE_NAME; ITEM : in INTEGER);
private
type FILE_NAME is
record
INTERNAL_NAME : INTEGER := 0;
end record;
end I_O_PACKAGE;

package body I_O_PACKAGE is
LIMIT : constant := 200;
type FILE_DESCRIPTOR is record ... end record;
DIRECTORY : array (1 .. LIMIT) of FILE_DESCRIPTOR,;

procedure OPEN (F : in out FILE_NAME) is ... end;

procedure CLOSE (F : in out FILE_NAME) is .. end;

procedure READ (F : in FILE_NAME: ITEM : out INTEGER) is ... end;

procedure WRITE (F : in FILE_NAME; ITEM : in INTEGER) is ... end;
begin

end |_O_PACKAGE:

Tris example is characteristic of any case where complete controf over the operations of a type is
desired. Such packages serve a dual purpose. They prevent a user from making use of the internal
structure of the type. They also implement the notion of an encapsulated data type where the only
operations on the type are those given in the package specification.

References:
access type 3.8, allocator 4.8, assignment statement 5.2, composite type 3.6 3.7, constant 3.2, equality 4.5.2,

inrialization 3.2, inequality 4.5.2, mode 6.2, name 4.1, package specification 7.1, subprogram 6, task type 9,
tyre definition 3.3, variable 3.2, visible part 7.2

Lin ited Private Types 7.4.2
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7.5 Example of a Table Management.Package - -

The following example illustrates the use of packages in providing high level procedures with a simple
interface to the user.

The problem is to define a table management package for inserting and retrieving items. The items 3
are inserted into the table as they are supplied. Each inserted item has an order number. The items
are retrieved according to their order number, where the item with the lowest order number is
retrieved first.

From the user’s point of view, the package is quite simple. There is a type called ITEM designating b
table items, a procedure INSERT for inserting items, and a procedure RETRIEVE for obtaining the M
item with the lowest order number. There is a special item NULL_ITEM that is returned when the table
is empty. and an exception TABLE_FULL that may be raised by INSERT.

A sketch of such a package is given below. Only the specification of the package is exposed to the
user.

package TABLF_MANAGER is

type ITEM is
record
ORDER_NUM : INTEGER;
ITEM_CODE : INTEGER,
QUANTITY . INTEGER;
ITEM_TYPE . CHARACTER;
end record;

NULL_ITEM : constant ITEM : =
(ORDER_NUM | ITEM_CODE | QUANTITY => 0, ITEM_TYPE => " "),

e

procedure INSERT (NEW_ITEM :in ITEM),
procedure RETRIEVE (FIRST_ITEM : out ITEM);

TABLE_FULL : exception; -- may be raised by INSERT
end;

The details of implementing such packages can be quite complex; in this case they involve a two way
lirked table of internal items. A local housekeeping procedure EXCHANGE is used to move an
in‘ernal item between the busy and the free lists. The initial table linkages are established by the
imtialization part. The package body need not be shown to the users of the pack ige.

7.5 Example of a Table Management Package .
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package body TABLE_MANAGER is-
SIZE : constant : = 2000; :
subtype INDEX is INTEGER range O .. SIZE;

3 e S G TN R 3

type INTERNAL_ITEM is
record
CONTENT : ITEM; ,
SUCC  : INDEX; i
PRED . INDEX;
end record;

TABLE : array (INDEX) of INTERNAL_ITEM;
FIRST_BUSY_ITEM :INDEX:= O;
FIRST_FREE_ITEM : INDEX := 1; q

tunction FREE_LIST_EMPTY return BOOLEAN is ... end;
function BUSY_LIST_EMPTY return BOOLEAN is ... end; )
procedure EXCHANGE (FROM : in INDEX; TO : in INDEX) is ... end;

procedure INSERT (NEW_ITEM : in {TEM) is k
begin
it FREE_L:3T_EMPTY() then i
raise TABLE_FULL; 1
end if;
-~ remaining code for INSERT
end INSERT;

procedure RETRIEVE (FIRST_ITEM : out ITEM) is ... end;

begin
-~ initialization of the table linkages
end TABLE_MANAGER;

References:

exception 11, procedure 6, package body 7.3 visible part 7.2,

7.3 Example of a Text Handling Package

This example illustrates a simple text-handling package. The user only has access to the visible part;
the implementation is hidden from him in the private part and the package body (r ot shown).

f
From the user's point of view, a TEXT is a variable length string. Each text otject has a maximum
lerigth. which must be given when the otject is declared, and a current value, which is a string of
some length between zero and the maxirium. The maximum possible length «f a text object is an
imolementation-defined constant.

b Example of a Text Handling Package 7.6 i
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The package defines first the necessary types. then functions that return some characteristics of
objects of the type, then the conversion functions between texts and the predefined CHARACTER and
STRING types. and finally some of the standard operations on varying strings. Most operations are
overioaded on strings and characters as well as on texts, in order 1o minimize the number of exptlicit
conversions the user has to write.

package TEXT_HANDLER is
MAXIMUM : constant INTEGER : = SOME_VALUE;, -- implementation defined
subtype INDEX is INTEGER range 0 .. MAXIMUM;

type TEXT(MAXIMUM_LENGTH : INDEX) is limited private;
function LENGTH(T : TEXT) return INDEX;

function VALUE (T : TEXT) return STRING;
function EMPTY (T : TEXT) return BOOLEAN;

tunction TO_TEXT (S : STRING: MAX : INDEX) return TEXT. -~ maximum length MAX
function TO_TEXT (C : CHARACTER: MAX : INDEX) return TEXT; ’
function TO_TEXT (S : STRING) return TEXT: -~ maximum length S'LENGTH
tunction TO_TEXT (C . CHARACTER) return TEXT;

function "&" (LEFT : TEXT, RIGHT : TEXT) return TEXT,

tunction "&" (LEFT : TEXT; RIGHT : STRING) return TEXT;

function "&” (LEFT : STRING: RIGHT  TEXT) return TEXT;

tunction "&" (LEFT : TEXT: RIGHT « CHARACTER) return TEXT;

function "&" (LEFT - CHARACTER: RIGHT : TEXT) return TEXT;

procedure SET(OBJECT : in out TEXT: VALUE : in TEXT);
procedure SET(OBJECT :in out TEXT: VALUE 1n STRING);
procedure SET{OBJUCT . 1n out TEXT, VALUE n CHARACTER);

procedure APPEND(TAIL :in TEX™: TO " tn out TEXT):
procedure APPEND(TAIL 1 in STR NG FO i out TEXT):
procedure APPEND(TAIL : i CHARACTER: TO :in out TEXT):
proccdure AMEND(OBJECT in out TEXT. BY - TEXT: POSITION i INDEX),
procedurc AMEND(OBJLCT - in out TEXT: BY in STRING. POSITION : in INDEX),

procedure AMEND(OBJECT in ont TEXT. BY in CHARACTER. POSITION . in INDEX);

-- amend replaces part of the ob ect by the given toxdt. string. or character
-- starting at the given position in the object

tunction LOCATE(FRAGMUNT : TEXT; WITHIN  TEXT) return INDEX;
function LOCATE(FRAGMENT @ STRING. WITHIN - TEXT) return INDEX;
function LOCATE(FRAGMENT . CHARACTER: WITHIN TEXT) return INDEX;

-~ all return 014t the fragment 1s rot 'ocated

prnivate
type TEXT(MAXIMUM [ CNGTH . IMDEX) is
record
POS CINDEX - = 0
VALUE : STRING(1 .. MAXIM JM LENGTHY),
end record,
end TEXT _HANDLER;

2o Fvample of a Text Handion: Package
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Example of use of the text handling package:

A program opens an output file, whose name is supplied by the string NAME. This string has the form
[DEVICE :) [FILENAME [.EXTENSION]]

There are standard defaults for device, filename, and extension. The user-supplied name is passed to

EXPAND_FILE_NAME as a parameter, and the resuit in the expanded version, with any necessary

detfaults added.

function EXPAND_FILE_NAME(NAME : STRING) return STRING is
use TEXT_HANDLER;

DEFAULT_DEVICE . constant STRING : = "SY:";
DEFAULT_FILE_NAME : constant STRING .= "RESULTS";
DEFAULT_EXTENSION : constant STRING := ".DAT",

MAXIMUM_FILE_NAME_LENGTH : constant INDEX : = SOME_APPROPRIATE_VALUE;
FILE_NAME : TEXT(MAXIMUM_FILE_NAME_LENGTH);

begin
SET(FILE_NAME, NAME);
it EMPTY(FILE_NAME) then
SET(FILE_NAME, DEFAULT_FILE_NAME);
end if; :
i LOCATE(":", FILE_NAME) = 0 then
SET(FILE_NAME, DEFAULT_DEVICE & FILE_NAME);
end if,
it LOCATE(" ". FILE_NAME) = O then
APPEND(DEFAULT_EXTENSION, TO => FILE_NAME);
end if;

return VALUE(FILE_NAME);

end EXPAND_FILE_NAME;

Example of a Text Handling Package 7.6 i




8. Visibility Rules

The rules defining the scope of declarations and the rules defining which identifiers are visible at
various points in the text of the program are described in this chapter. These rules are stated here as
applying to identifiers. They apply equally to character strings used as function designators and to
character literals used as enumeration literals.

References:

character literal 2.5, character string 2.6, enumeration literal 3.5.1, function designator 6.1, identifier 2.3

8.1 Definitions of Terms

Scope of a declaration:

A deciaration associates an identifier with a program entity(see 3.1) such as a variable, a type, a
subprogram, a formal parameter, a record component. The region of text over which a declaration
has an eftect is called the scope of the declaration. This region starts at the point where the declared
identifier is introduced (within a compilation unit).

The same identifier may be introduced by different declarations in the text of a program and may thus
be associated with different entities. The scopes of several declarations with the same identifier may
even overlap.

Overlapping scopes of declarations with the same identifier can result from overloading of
subprograms and of enumeration literals (see 6.6 and 3.5.1). They can also occur for record
components, entities declared in packace visible parts, and for formal parameters, where there is
overlap of the scopes of the enclosing record type definitions, packages, subprograms, entries, or
generic program units. Finally, overlapping scopes can result from nesting. In particular,
subprograms, packages, tasks, and blocis can be nested within each other, a\d can contain record
type definitions or (possibly nested) loop :statements. ‘

Visibility of a declaration - visibility of an identitier:

Tre declaration of an entity with a certain identifier is said to be visible at (or from) a given point in the
te.«t when an occurrence of the identifier at this point can refer to the entity, that is, when the entity is -
ar acceptable meaning for this occurrence. Some suitable context may be required to realize this
vi¢ ibility, as explained in section 8.3.

Fcr overioaded identifiers, there may be several meanings acceptable at a given point, and the
anibiguity must be resolved by the rules of overioading (see 4.6 and 6.6). For identifiers that are not
overloaded (the usual case) there can be at most one acceptable meaning.

Definitions of Terms 8.1 s
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Whenever the declaration of an entity with a certain identifier is visible from a given point, the
identifier and the entity are also said to be visible from that point. The visibility rules ar2 the rules
defining which identifiers are visible from various points of the text.

References:

block 5.6, compilation unit 10.1, declaration 3.1. enumeration literal 3.5.1, formal parameter 6.2, identifier 2.3,
loop statement 5.5, overloaded literal 3.4 3.5.1 4.7, overloading a subprogram 6.6, package 7, record
component 3.7, record type 3.7, subprogram 6, task 9, type 3.3, variable 3.2

8.2 Scope of Declarations

Entities can be declared in various ways. An entity can be declared in the declarative part of a block
or in the declarative part of the body of a subprogram, package, or task; alternatively, an entity can be
declared in the specification of a package or task. A separately compiled subprogram or package,
other than a subunit, is effectively declared by its presence in a compilation.

An entity can be declared, alternatively, as a record component, as a discriminant, or as a fcrmal
parameter of a subprogram, entry or generic program unit. A loop parameter is deciared by its
occurrence in an iteration clause, an enumeration literal by its occurrence in an enumeration type
definition. Finally, the declaration of a label, block identifier, or loop identifier is implicit.

The scope of each form of declaration (that is, the region of text over which the declaration has an

effect) is defined below. Whenever the scope of an entity is said to extend from its declaration, this
means that the scope extends from the point where the declared identifier is introduced.

(a) The scope of a declaration given in the declarative part of a block or in the declarative part of
the body of a subprogram, package, or task extends from the declaration to the end of the
block, subprogram, package, or task.

(b) The scope of a declaration given in the visible part of a package extends from the declaration to
the end of the scope of the package declaration itself. It therefore includes the corresponding
package body.

(c) The scope of a declaration given in the private part of a package extends from the declaration
to the end of the package specification; it also extends over the corresponding package body.

(d) The scope of an entry declaration given in a task specification extends from the declaration to
the end of the scope of the task declaration. It therefore includes the corresponding task body.

{e) The scope of a separately compiled subprogram or package, other than a subunit, comprises
that compilation unit, its subunits ( f any), any other compilation unit that mentions the name of
the subprogram or package in a wi.h clause, and the body of this subprogram or package. (See
Chapter 10 for compilation units, suibunits and with clauses).

8. Scope of Declarations
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The scope ol record components, discriminants, formal parameters, loop parameters, and
enumeration literals is defined by the following rules:

U

(9

(h)

(i)

Note:

The scope of a record component extends from the component declaration to the end of the
scope of the record type declaration itself.

The scope of a discriminant extends from the discriminant declaration to the end of the scope
of the corresponding type declaration.

The scope of a formal parameter of a subprogram, entry, or generic program unit extends from
the parameter declaration to the end of the scope of the declaration of the subprogram, entry,
or generic program unit itself. It therefore includes the body of the corresponding subprogram
or generic program unit, and, for an entry, the corresponding accept statements.

The scope of a loop parameter extends from its occurrence in an iteration clause to the end of
the corresponding loop.

The scope of an enumeration literal extends from its occurrence in the corresponding
enumeration type declaration to the end of the scope of the enumeration type declaration itself.

The usual rules (a), (b), and {c) apply to subunits since they are declared in the deciarative part of
another compilation unit (see 10.2). Rule (a) also applies to the implicit declaration of a label, block
identifier, or loop identifier, inserted at the end of a declarative part (see 5.1, 5.5, 5.6). For rule (e),
note that the subprogram specification given only in the subprogram body acts as the subprogram
declaration (see 6.3).

References:

accent statement 9.5. block 56, block identifier 5.6, compilation unit 10.1, component declaration 3.7,
declarative part 3.9. discriminant 3.7.1, entry 9.5, entry declaration 9.5, enumeration litaral 3.5.1, enumeration
type definition 3.5.1, enumeration type declaration 3.5.1, tormal parameter 6.2, generic program unit 12,
iteration clause 6.5. label declaration 5.1, loop 5.5, loop identifier 5.5, loop paramneter §5, package 7,
package body 7.1, package specification 7.1, parameter declaration 6.1, private parr .= record component
3.7. scope 8.1, separate compilation 10. subprogram 6, subprogram body 6, subwn® 10 2, task 9, task body
9.1, task specification 9.1, type declaration 3, with clause 10.1.1

8.3 Visibility of Identifiers and Declarations

The scope of the declaration of an identifier, as defined in the previous section, is the region of text
over which the declaration has an effect. For each declaration, there exists a subset of this region
where the declared entity can be named simply by its identifier; the entity, its declaration, and its
idantifier are then said to be directly visib.e from this subset Where it is noi dire stly visible (but within
its scope). some suitable context may be required to make the entity visible. Tris context can be the
prefix of a selected component. the place of a choice in a named record aggregate. the place of a
discriminant name in a named discriminant constraint, or the place of a formal parameter name in a
named parameter association.

Visibility of Identificrs and Declarations 8.3
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An entity for which overioading is not possible and that is declared within a given construct is said to
be n ¢oen within an inner construct when the inner construct contains another declaration with the
same identifier. Within the inner construct the hidden outer entity is not directly visible.

A subprogram declaration hides another subprogram declaration only if their specifications are
eqJnalent with respect to the rules of subprogram overloading (see 6.6). Otherwise a subprogram
identifier (also an enumeration literal) overioads. but does not hide. another subprogram (or
enumeration hteral) vath the same identifier. A character iiteral may overload but cannot hide another
character literal. The inner declaration of a subprogram or enumeration literal hides the declaration
ot any other non overloadable outer entity with the same identifier.

The name of an entity declared immediately within a subprogram. package, or task, or immediately
within a named biocx or loop can always be written as a selected component within this unit, whether
th= entity 1s directly visible or hidden (a declaration is said to be immediately within a construct it it is
within that construct but not within an inner one) The name of the unit is used as a pretix (possibly
also usting component selection): the unit must be visible and the name unambiguous (even for an
overloaded subprogram). Component selection thus provides the necessary context for realizing
visibility of the selected entity from the point where the identifier occurs (after the dot).

This torm of selected component is avaitable for an identifier denoting an enumeration literal but is
not avaiighie tor record components or discriminants (since they are not declared immediately within
one of the above units). For formai parameters of subprograms and generic program units, this
notatinn 1s only avarlable with.n the unit of which they are parameters (since the parameters are
declared for that unit and not immediately within the unit in which the subprogram or generic program
unit 1s tselt declared). For formal parameters ot an entry this notation is only available within an
accapt statement for the entry.

An entity declared immediately within a unit is said to be /oca/ to the unit; an en.ity visible within but
declared outside the unit is said to be global to the unit.

For each icrm of declaration (within its scope). the region ot text in which a declared identifier is
visible {(and directly visible unless hidden by an inner declaration) 1s detined as foliows:

{a; Anidentufer declared in the declarative part‘of a block or in that of the body of a subprogram,
package. or task 1s directly visible within this block or body.

(b, Andentfier declared .n the visible part of a package 1s directly visible within the package
specification and body.

Outside the package. but within its scope. such an identifier i1s made ‘isitie by a selected
component whose prefix names the package. The identifier can also be mi de directly visible by
means of a use clause (see section §.4).

(¢} An identifier declared in the privat: part of a package is directly visible within the package
private part and body.

(d: An (entry) identifier declared in a task specificalion is directly visidole within the task
specification and body.

Outside the task. but within its sco»e. the identifier is made visible by a selected component
whose prefix names the task or a task object of the task type.

K. Visdhduy of Ldenufiers and Declarations
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(e)

(f)

(9)

(h)

0
1)

The identifier of a separately compiled subprogram or package, is directly visible within the
compilation unit itself and its subunits, and within any other compilation unit that has a with
clause which mentions the identifier.

The identifier of a record component is directly visible within the record type definition that
declares the component, and within a record type representation specification for the record

type.

Outside the record type definition, but within the scope of that definition, a record component is
made visible by a selected component whose prefix names a record of the type of which it is a
component. It is also visible as a choice in a component association of an aggregate of the
record type.

The identifier of a discriminant is directly visible within the discriminant part that declares the
discriminant and within the associated record type definition.

Where it is not directly visible, but within the scope of the type, a discriminant is made visible by

being in a selected component or in an aggregate. as for any other record component. Itis also
visible at the place of a discriminant name in a named discriminant specification of a
discriminant constraint.

The identifier of a formal parameter of a subprogram is directly visible within the formal part
where the parameter is declared and within the subprogram body. The identifier of a formal
parameter of an entry is directly visible within the formal part where the parameter is declared
and within any accept statement for the entry. The identifier of a generic formal parameter is
directly visible within the generic part where the parameter is declared and within the
specification and body of the generic subprogram or package.

Where it is not directly visible, but within its scope, a formal parameter of a subprogram, entry,
or generic program unit is visible al the place of a formal parameter name in a named parameter
association of a corresponding subprogram call, entry call, or generic instantiation.

The identifier of a loop parameter is. directly visible within the loop where it is declared.

An enumeration literal is directly visible within the scope of the enumeration type that declares
the literal.

A declaration must not hide another declaration in the same declarative part (that is, at the same level,
not in a nested declarative part). For this rule a generic part, a formal part of a subprogram, and the
declarative part of the subprogram body ire considered as comprising one declarative part. Similarly,
a generic part. a package specification, and the declarative part of a package body are considered as
comprising a single declarative part.

Visibility of Identifiers and Declarations 8.3
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Example:

procedure P is

A : BOOLEAN;
B8 : BOOLEAN,;
procedure Q is
C : BOOLEAN;
B : BOOLEAN; -~ an inner redeclaration of 8
begin
B:=A -- means QB := P.A
C:=PB, -- means QC := P.B;
end;
begin
;A':= B: -- means P.A:= PB:
end;
Note:

An enumeration literal may overioad but cannot hide another enumeration literal since enumeration
literals are declared by their occurrence in an enumeration type declaration, and since two type
declarations introduce distinct types.

References:

accept statement 9.5, aggregate 4.3, block 5.6, character literal 25, compiation unit 10.1, declaration 3.1,
declarative part 3.9. discriminant 3.7.1, discriminant constraint 3.7.2, entry 9.5, entry call 9.5, enumeration
literal 3.5.1, enumeration type 3.5.1, formal parameter 6.2, formal part 6.1, generic ‘ormal parameter 12.1,
gereric wnstantiation 12.3, generic package 12.1, generic part 12.1, generic orogram unit 12, generic
subprogram 12.1, identifier 2.3. 1oop 5.5. ioop parameter 5.5, name 4.1, overloacing 3.4 3.5.1 46 6.6,
package 7. package body 7.1, package specification 7.1, private part 7 4. record component 3.7, record type
debnition 3.7, record type representation 13.4. scope 8.1, selected component 4.1.3, subprogram 6,
subprogram body 6. subprogram call 6.4, subprogram declaration 6. subprogram overloading 6.6,
subprogram specification 6 1, subunit 10.2. task 9, task body 9.1, task object 9.2, task specification 9.1, task
type 9.2, use clause 8.4, visible 8.1, visible part 7.2, with clause 10.1.1

8.4 Use Clauses

If the name of a package is visible at a given point of the text, the entities declared within the visible
part of the package can be denoted by selected components. In addition. direct visibility of such
entities can be achieved by means of use clauses.

use_clause :: = use package_name {, package_name};
A use clause is a declarative item. The effect of the elaboration of a use clause is 10 cause certain

idantifiers of the visible parts of the named packages to become directly visible from the text subject
to the use clause. This effect takes place only on completion of this elaboration.

8.4 Use Clauses
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In order to define the set of identifiers (and entities) that are made directly visible by use clauses at a
given point of the text, consider the set of package names appearing in the use clauses of all (nested)
d units enclosing this point, up to the compilation unit itself.

e An identifier is made directly visibie by a use clause if it is declared in the visible part of one and 1
only one package of the set and if the same identifier declared eisewhere is not already directly
visible otherwise (that is in the absence of any use clause).

e An enumeration literal declared in the visible part of a package of the set is made directly visible
if and only if the corresponding identifier is not otherwise directly visible, and in any case if it is
a character literal.

e A subprogram declared in the visible part of a package of the set is made directly visible if and
only if the two following conditions are satisfied. First, the specification of the subprogram must ¥
not be equivalent (see 6.6) to that of another subprogram in the set or to that of a subprogram
that is otherwise directly visible. Second, an entity other than a subprogram or an enumeration
literal and with the same identifier must not be declared in the visible part of any of the 3
packages of the set, nor may such an entity be otherwise directly visible. §

Thus an identifier made directly visible by a use clause can never hide another identifier although it - i
may overload it. If an entity declared in the visible part of a package cannot be made visible by a use '
clause (because of one of the above conflicts), the name of the entity must take the form of a selected
component.

For overloading resolution within an expression, identifiers made visible by a use clause are only
considered if an interpretation of the complete expression cannot otherwise be found (that is, if the
exoression would be undefined without the use clause). Similarly. for overloading resolution of a
procedure or entry call, identifiers made visible by a use clause are oniy considered it an
interpretation of the complete procedure or entry call cannot otherwise be found An ambiguity exists
if there is more than ore interpretation without the use clauses or if there is no interpretation without
the use clauses but more than one can be given in their presence.

Exampie of conflicting names in two packsges:

procedure R is
use TRAFFIC, WATER_COLORS;
-- subtypes used to resolve the conflicting type name COLOR
subtype T_COLOR s TRAFFIC.COLOR,;
subtype W_COLOR 1s WATER_COLORS.COLOR;

SIGNAL : T_COLOR;
PAINT : W_COLOR;

begin - .
SIGNAL := GREEN; -- that of TF AFFIC i
PAINT = GREEN: -- that of WATER_COLORS 1

end R; )

=B
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Example of name identification with a use clause:

package D is
T, U, V- BOOLEAN;
end D;

procedure P is

package E is
B, W, V : INTEGER;
end E;

procedure Q is

T T, X: REAL;

begin

- declare
) use D, E;
begin

-- thename T means Q.T, not D.T
-- the name U means D.U
-- the name B -means E.B
-- the name W means EW
-~ the name X means Q.X

Ada Reference Manual

-~ the name V s illegal : either D.V or E.V must be used
end;
end Q;
begin
en('!”P;
Example of overloading resolution with a use clause:
procedure MAIN is
'r;ackage Pis
function F (X : REAL) return TARGET; -- PF
function G(X : SOURCE) return REAL; -- PG
function K (X : SOURCE) return BOOLEAN; -- P.K
end P,
function F (X : BOOLEAN) return TARGET; -~ MAIN.F
tuhction G(X : SOURCE) return BOOLEAN; -- MAIN.G
function H(X : SOURCE) return REAL; -~ MAIN.H
function K (X : SOURCE) return REAL; -~ MAIN.K
S : SOURCE,
T : TARGET,;
use P;
begi.n
T:= F(G(S)): -- MAIN.F(MAIN.G(S)), interpreted without considering use clause
T:= F(H(S)): -- P.F(MAIN.H(S))
-- T:= F(K(S)) would be ambigu-us
-=- it could mean either MAIN.F(P.<(S)) or P.F(MAIN.K(S))

end;

8.4 Use Clauses
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Note:

Renaming declarations and subtype declarations may help to avoid excessive use of selected
components.

References:

character literal 2.5, compilation unit 10.1, declarative item 3.9, direct visibility 8.3, elaboration 3.1, entry call
9.5, enumeration literal 3.5.1. expression 4.4, identifier 2.3, hidden 8.3, name 4.1, overloading 3.4 3.5.1 46
6.6, package 7. procedure call 6.4, renaming declaration 8.5, selected component 4.1.3, subprogram 6,
subprogram specification 6.1, subtype declaration 3.3, type 3.3, visible 8.1, visible part 7.2

8.5 Renaming Declarations N

A renaming declaration declares another name for an entity.

renaming_declaration :: =
identifier : type_mark renames name;
| identifier : exception renames nhame;
| package identifier renames name;
| task identifier renames name,
| subprogram_specification renames name;

For the elaboration of a renaming declaration, the identifier is first introduced, or the subprogram
specification is elaborated, and then the identity of the entity following the reserved word renames is
established. The identifier < an be used as the name of this entity from then on.

The first form is used for renaming objects. The newly declared identifier is constant if the renamed
entity is.

The type mark given in the renaming declaration must express the same constraints as those of the
renamed entity. A component of an unconstrained object of a type with discriminants cannot be
renamed if the existence of the component depends on the value of a discriminant.

The last form is used for renaming a subprogram (or entry) whose specification matches the one
given in the renaming declaration in the following sense. The renamed subprogram and this
specification must have parameters in the same order, of the same mode and with the same types and
constraints. For functions the result type and constraints must be the same. Parameter names, the
presence or absence of detaults, and the values of any defauits, are ignored for this matching; hence
a renaming declaration can introduce different default parameters.

A function can be renamed as an operator and vice versa (renaming cannot, of course, declare an
operator with default parameters, see 6.7). An entry can only be renamed as a procedure.

A renaming declaration is ambiguous, and therefore illegal, if more than one visible subprogram (or
entry) matches the subprogram specificztion. The exception CONSTRAINT_ERROR is raised if the
constraints of the parameters or results of the two subprograms (or entries) are r.ot the same.

T
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Examples:

procedure TMR (ELEM : out ITEM) renames TABLE_MANAGER.RETRIEVE;
procedure SORT (X : in out LIST) renames QUICKSORT2;

task T renames POOL(6);

FULL : exception renames TABLE_MANAGER.TABLE_FULL,

declare

L : PERSON renames LEFTMOST_PERSON;
begin

L.AGE := L.AGE + 1;
end,

function REAL_PLUS (XY : REAL ) return REAL renames " +";
tunction INT_PLUS (XY : INTEGER) return INTEGER renames "+ ";
function "+" (X,Y : VECTOR) return REAL renames DOT_PRODUCT;

Notes:

Renaming may be used to resolve name conflicts, to achieve partial evaluation and to act as a
shorthand. Renaming does not hide the oid name. Neither a label, nor a block or loop identitier may
ke renamed. A subtype can effectively be used to rename a type as in

subtype INPUT is TEXT_IO.IN_FILE;
References:

block identifier 5.6, constant 3.2, constraint 3.3, constraint on parameters 6.4.1, constraint_error exception
11.1, declaration 3, elaboration 3.1, entry 9.5, function 6.1 8.5, identifier 2.3, label 5.1, loop identifier 5.5,
mode 6.2, name 4.1, operator 4.5, parameter 6.1, parameter name 6.2, parameter type 6.1, subprogram 6,
suoprogram specification 6.1, subtype 3.3, type 3.3, type mark 3.3, unconstrained record type 3.7, variant
record 3.7.1

8.6 Predefined Environment

AY predefined identifiers, for example those of built in types such as INTEGER, BOOLEAN, and
CHARACTER. operators and the predefined function ABS, are assumed to be declared in the
pradefined package STANDARD given in Appendix C. All identifiers declared in the visible part of the
pcckage STANDARD are assumed to be declared at the outermost level of every program. In
acdition, the separately compiled subprograms and packages named in a with clause are assumed to
be implicitly declared in STANDARD.

Note:

If all blocks of a program are named, the name of any program unit can always be written as a
selected component starting with STANDARD (unless this name is itself hidden by a redeclaration).
Apart from the lccal package SYSTEM and the definitions of predefined numeric types and subtypes,
th 2 package STANDARD must be the same for all implementations of the language.

Re fer2nces:

abs function C, block 5.8, boolean type 3.5.3, character type 3.5.2, identitier 2.3, integer type 3.5.4, hame

4.7, operator 4.5. package 7, program unit 7, selected component 4.1.3, standard package C, subprogram 8,
type 3.3, visible part 7.2, with clause 10.1.1

&6 Predefined I'nvironment




9. Tasks

Tasks are entities that may operate in parallel. Parallel tasks may be implemented on multicomputers,
multiprocessors. or with interleaved execution on a single processor. Tasks may have entries which
may be called by other tasks. Synchronization is achieved by rendezvous between a task issuing an
entry call and a task accepting the call. Entries are also the principal means of communication
between tasks.

Tasks are one of the three forms of program units, of which programs can be composed. The other
forms are subprograms and packages. The properties of tasks and entries, and the statements
specific to tasking (that is, accept statements and selective waits) are described in this chapter.

9.1 Task Specifications and Task Bodies

A task specification which starts with the reserved words task type defines a task type. An object of
a task type denotes a task having the entries. if any, that are declared in the task specification. The
task specification theretore specifies the interface between tasks of the type and other tasks of the
same or of different types.

The execution of a task is defined by a task body. A task specification and the: corresponding task
body have the same identifier and must occur in the same declarative part, the spacification first.

task_declaration :: = task_specification

task_specification : =
task [type] identifier [is
{entry_declaration}
{representation_specification}
end {identifier]};

task_body :: =

task body identifier is
[declarative_part)

begin
sequence_of_statements

[exception
{exception_handler}]

end [identifier];

A task specification without the reserved word type defines a single task. A task declaration of this
fo'm introduces a task name (rather than he name of a task type) and is equival:2nt to the declaration
of an anonymous task type immediately f dllowed by the declaration of an object of the type. In the
remainder of this chapter, explanatiors are given in terms of task type specifications; the
ccrresponding explanations for single tasi. declarations follow from the stated equivalence.

Task Specificaticqs and Task Bodies 9.1
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For the elaboration of a task specification the task type (or task) identifier is first introduced and can
from then on be used as the name of the corresponding task type (or task). Entry declarations and
representation specifications. if any, are then elaborated in the given order. Such representation
specifications only apply 10 the entries declared in the task specification, or to the task type (or task)
itself (see 13.2 and 13.5).

The elaboration of a task body has no other effect than to establish the body as defining the execution
of tasks of the corresponding type.

Examples of specitications of task types:

task type RESOURCE is
entry SEIZE;
entry RELEASE;

end RESOURCE:;

task type KEYBOARD_DRIVER is
entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);
end KEYBOARD_DRIVER;

Examples of specifications of single tasks:

task PRODUCER_CONSUMER is
entry READ (V : out ELEM);
entry WRITE(E :in ELEM);
end,

task CONTROLLER is |
entry REQUEST(LEVEL)(D : DATA); -- a tamily of entries 4
end CONTROLLER; ‘

task USER; -- bhas no entry
Example of task specification and corresgonding body:

task PROTECTED_ARRAY is
-~ INDEX and ELEM are global ty»es
entry READ (N : in INDEX; V : out ELEM);
entry WRITE(N : in INDEX; E : in ELEM);
end,;

1 task body PROTECTED_ARRAY is
i TABLE : array(INDEX) of ELEM : = (INDEX => 0);
begin
loop
select
accept READ (N : in INDEX; V : out ELEM) do
V := TABLE(N);
end READ;
or
accept WRITE(N : in INDEX; E : in ELEM) do
TABLE(N) : = E;
end WRITE;
and select;
end loop;
end PROTECTED_ARRAY;

E 9.1 Task Specificutions and Task Bodies
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References:

accept statement 9.5, declarative part 3.9, elaboration 3.1, entry 9.5, entry representation specification 13.1,
length specification 13.2, selective wait 9.7.1

9.2 Task Objects and Task Types

Objects of a task type are defined by object declarations where the type indicated is the task type.
Task objects can also be components of records and arrays. Finally, objects of a task type can be the
objects (or components of the objects) designated by the values of an access type.

The value of an object of a task type denotes a task of the type (this task has the corresponding
entries). This value is defined either by the elaboration of the corresponding object or by its creation
by an allocatar. Entries of the corresponding task can be called once this value is defined.

Neither assignment nor comparison for equality or inequality are defined for objects of task types. In
this respect. a task type has the properties of a limited private type: it can appear as the definition of a
limitea private type given in a private part. and as a generic actual parameter associated with a formal
parameter that s a limited private type.

In subprogram calls and generic instantiations, a task object can be passed as an actual parameter
associated with a formal in parameter of the same task type. Since the value of a task object denotes
a task, both the formal parameter and the actual parameter denote the same task. The in out and out
parameter modes are not allowed for parameters of a task type.

Examples:

CONTROL : RESOURCE;

TELETYPE : KEYBOARD_DRIVER;

POOL s array(1 .. 10) of KEYBOARD_DRIVER;

-- see also examples of declarations of single tasks in 9.1
Example of access type designating task cbjects:

type KEYBOARD is access KEYBOARD_DRIVER,;

TERMINAL : KEYBOARD : = new KEYBOARD_DRIVER;
Notes:
Task objects behave as constants since their values are implicitly defined and no assignment is
available. !f an application needs to stor.z and exchange task identities, it can do so by defining an
access type designating the correspondirg task objects and by using access va ues for identification

pLrposes (see above example). Assignment is available for such an access tyne as for any access
type.

There are no constraints applicable to tasl: types.
References:

access type 3.8, allocator 4.8. entry 9.5, gen sric parameter 12.1, limited private type 7 4 2, object declaration
3.2

Task Objccts and Task Types 9.2

o
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9.3 Task Execution

A task body defines the execution of the tasks of the corresponding type. The activation of a task
object consists of the elaboration of the declarative part, if any, of the corresponding task body. After
activation the statements of the task body are executed.

Task objects declared immediately within a declarative part (that is, not within a nested declarative
part), and task objects that are components of other objects declared immediately within a declarative
part, are all activated before evecution of the first statement following the declarative part. Each task
can continue its execution as a parallel entity once its activation is completed.

Shouid an exception occur during the activation of one of these tasks, that task and any other of
these tasks that are not yet activated become terminated tasks (see 9.4); already activated tasks are
unaffected. Such an exception is treated as if raised within the statements following the declarative
part in question. Should an exception occur within the declarative part itself, all of the declared tasks
so far elaborated become terminated tasks.

For the above rules, in a package body without statements, a null statement is assumed; in the
absence of a package body, one containing a single null statement is assumed to occur not earlier
than the task body.

The creation of a task object by an allocator is followed by its activation and execution. Execution of
the allocator is complete when all created task objects have been activated. Each task can continue
its execution as a parallel entity as soon as its activation is completed. Should an exception occur
during the activation of one of these tasks, that task and any other of these tasks that are not yet
activated become terminated tasks.

A task must not be activated before the elaboration of the corresponding task body is complete. An
entry of a task can be called before the task has been activated. If the called task terminates before
accepting an entry call, the exception TASKING_ERROR is raised in the calling task (see 11.4).

Example:
procedure P is
A, B : RESOURCE; -- elaborate A, B
C : RESOURCE; -~ elaborate C
begin
-- A, B, C are activated in any order
end,
Notes:

The language does not specify the order in which tasks declared within a declarative part are
activated.

0.> Task Execution

 saSanach.
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References:

allocator 4.8, declarative part 3.9, elaboration 3.1, entry 9.5, exception 11, handling an exception 11,
package body 7.3. statement 5, task body 9.1, task termination 9.4, task object 9.2, task type 9.2,
tasking_error exception 11.6

9.4 Normal Termination of Tasks

Each task depends either on a block, a subprogram body, a task body, or on a library package (no
task depends on a package declared within another unit). For each of these units a dependent task is
one of:

(@) A task object that is an object (or a component of an object) declared within the unit
considered, including within an inner package, but excluding within any inner block,
subprogram body, or task tody.

(b) A task object that is the object (or a component of the object) designated by the value of an
access type, if this access type is declared within the unit considered, including within an inner
package, but excluding within any inner biock, subprogram body, or package body.

A block, subprogram body, or task body is not left until all dependent tasks have terminated their
execution (including the case where the end of this block or body is reached as the result of an
unhandied exception).

Normal termination of a task occurs when its execution reaches the end of its task body and all
dependent tasks, if any, have terminated. Normal termination also occurs on selection of a terminate
alternative in a selective wait statement (see 9.7.1). After its termination, a task is said to be
terminated.

Example:
declare

type GLOBAL is access RESOURCE;
A, B : RESOURCE;

G : GLOBAL;
begin

-- activation of A and B

declare
type LOCAL is access RESOURCE;
X : GLOBAL := new RESOURCE; -~ activation of X.all
L : LOCAL := new RESOURCE; -~ activation of L.all
C : RESOURCE; '

begin

-~ activation of C
end;, ~- await termination of C and L.all but not X.all

end; -- await termination of A, B, G all and X.all




————
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Notes:

The usual rules apply to the main program. Consequently, termination of the main program awaits
termination of any dependent task even if the corresponding task type is declared in a library
package. On the other hand, termination of the main program does not await termination of tasks
denoted by task objects declared in library packages; the language does not define whether such
tasks are required to terminate.

References:

access type 3.8. block 5.6, component 3.2 3 3.6 3.7 4.1, library package 10.1, main program 10.1, object 3.2,
selective wait 9.7.1, task type 9.2, terminate alternative 9.7

9.5 Entries and Accept Statements

An entry declaration is similar to a subprogram declaration and can be given only in a task
specification. An entry of a task can be calied by another task. The actions to be performed when an
entry is called are specified by corresponding accept statements. Entry call and accept statements
are the primary means of communication between tasks and of synchronization of tasks.

entry_declaration :: =
entry identifier [(discrete_range)] [formal_part];

entry_call :: = entry_name [(actual_parameter_part}];

accept_statement :: =
accept entry_name [formal_part] [do
sequence_of_statements
end [identitier]];

For the elaboration of an entry declaration the entry identifier is first introduced; any discrete range is
then evaluated; finally, any formal part is claborated as for a subprogram declar:tion. From then on,
the entry identifier can be used as a name of the corresponding entry (or entry family). An entry
declaration including a discrete range declares a family of distinct entries having the same formal part
(if any); that is, one such entry for each va'ue of the discrete range.

E: ch task of a task type has the entries declared in the specification of the task t/pe. Within the body
of a task, each of its entries (or entry famil.es) can be named by the correspondin 3 identifier; the name
of an entry of a family takes the form of ar indexed component, the family name being followed by the
indéx in parentheses. Outside the body of a task an entry name has the form of a selected
ccmponent, with the name of the task object prefixing the identifier of one of ts entries. Selected
component notation may also be used within a task body, with the name of the task or task type as the
prafix.

The syntax of an entry call is similar to tha of a procedure call. The semantics is as follows.
An accept statement specities the actions to be performed at a call of a named entry (it can be an
ertry of a family). The formal part given in the accept statement must match that given in the

corresponding entiy declaration: the meatching rules are the same as for the match between the
tormal part of a subprogram body and the tormal part of the corresponding subpr ogram declaration.

9.5 Lutries and Accept Statements
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An accept statement for an entry of a given task may only appear within the sequence of statements of
the corresponding task body. The consequence of this rule is that a task can execute accept
statements only for its own entries. A task body may contain more than one accept statement for the ]
same entry.

Execution of an accept statement starts with the evaluation of any entry index (in the case of an entry "j‘
of a family). Execution of an entry call also starts with the evaluation of any entry index, folowed by
the evaluation ot any expression in the actual parameter list. Further execution of the accept
statement and of a corresponding entry call are synchronized. There are two possibilities:

e |If a calling task issues an entry call before a corresponding accept statement is reached by the
task owning the entry, the execution of the calling task is suspended.

o |f a task reaches an accept statement prior to any call of that entry, the execution of the task is
suspended until such a call occurs.

When an entry has been called and a corresponding accept statement is reached, the sequence of
1 statements, if any, of the accept statement is executed by the called task (while the calling task
) remains suspended). This interaction is called a rendezvous. Thereafter, the calling task and the task
owning the entry can continue their execution in parallel.

If several tasks call the same entry before a corresponding accept statement is reached, the calls are
queued; there is one queue associated with each entry. Each execution of an accept statement
removes one call from the queue. The calls are processed in order of arrival.
Entries may be overloaded both with each other and with procedures with the same identifier. An
entry may be renamed as a procedure.
Ar attempt to call an entry of a terminated task raises the exception TASKING_ERROR. The :
exception CONSTRAINT_ERROR is raised by the evaluation of the name of an entry of a family if the i
index is not within the specified discrete range. '1
Examples of entry declarations: :
entry READ(V : out ELEM), '
entry SEIZE; ‘;
entry REQUEST(RANK)(D : DATA); --- a family of entries :
Example of entry calls:
CONTROL.RELEASE;
PRODUCER_CONSUMER WRITE(E),
POOL(5).READ(NEXT_CHAR);
CONTROLLER REQUEST(LOW)XSOME _DATA);
E>ample of accept statements:
accept SEIZE;
accept READ(V : out ELEM) do
V.= LOCAL_ELEM;
end READ;
accept REQUEST(LOW)(D : DATA) do ... end REQUEST,;
Entries an'd Accept Statements 9.5 i '

T e —— e
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Notes:

An accept statement may contain other accept statements (possibly for the same entry) and may call
subprograms issuing entry calls. An accept statement need not have a sequence of statements even
if the corresponding entry has parameters. Equally, it may have a sequence of statements even if the
corresponding entry has no parameters. A task may call its own entries but it will, of course,
deadiock. The language permits conditional and timed entry calls (see 9.7.2 and 9.7.3). The
language rules ensure that a task can only be in one queue at a given time.

If the bounds of the discrete range of an entry family are integer numbers, the indexes must be of the
predefined type INTEGER (see 3.6.1).

References:

actual parameter 6.4, conditional entry call 9.7.2, constraint_error exception 11.1, discrete range 36.1,
elaboration 3.1 3.9, formal part 6.2, indexed component 4.1.1, name 4.1, overloading a subprogram 6.8,
procedure call 6.4, renaming 8.5. selected component 4.1.3. sequence of statements 5.1, subprogram call
6.4, subprogram declaration 6.1, subprogram body 6.3, task body 9.1, task specification 8.1, task type 9.2,
tasking_error exception 11.5, timed entry call 8.7.3

9.6 Delay Statements, Duration and Time
A delay statement suspends further execution of the task that executes it for at least the given time
interval.

delay_statement :: = delay simple_expression;

The argument of the delay statement is cf the predefined fixed point type DURATION and is given in
seconds. A delay statement with a non-positive argument has no effect.

The type DURATION aliows representation of durations (both positive and negative) up to at least
86400 seconds (one day). The definition of the type TIME is provided in the predefined library
package CALENDAR. The function CLO ZK returns the current value of TIME at the time it is called.

The operators " + " and "-" for addition and subtraction of times and durations have a conventional -

meaning.

package CALENDAR is
type TIME is
record
YEAR . INTEGER range 1901 .. 2099,
MONTH : INTEGER range 1 .. 12;

DAY : INTEGER range 1 .. 31;
SECOND : DURATION;
end record;

function CLOCK return TIME;

function "+ " (A : TIME; B : DURATION) return TIME;
function "+ " (A : DURATION; B : "IME) return TIME;
function " - " (A : TIME; B : DURATION) return TIME;
function " -"(A : TIME; B : "IME) return DURATION;

end CALENDAR;

9.4 Delay Statements, Duration and Time
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Examples: : '

delay 3.0, -~ delay 3.0 seconds

declare
INTERVAL : constant DURATION := 60.0; -,
NEXT_TIME : CALENDAR.TIME := CALENDAR.CLOCK() + INTERVAL;
begin
loop
delay NEXT_TIME - CALENDAR.CLOCK();
-~ some actions

NEXT_TIME := NEXT_TIME + INTERVAL;
end ioop;
end;

Notes:

The second example causes the loop to be repeated every 60 seconds on the average. This interval
between two successive iterations is only approximate. However there will be no cumulative drift as
long as the duration of each iteration is (sufficiently) less than INTERVAL.

Reterences:

fixed point type 3.5.9, library package 10.1

9.7 Select Statements

There are three forms of select statements. One form provides a selective wait for one or more
alternatives. The other two provide conditional and timed entry calls

select_statement :: = selective_wait
Jconditional_entry_call | timed_entry_call

9.7.1 Selective Wait Statements

Tris torm of the select statement allows a combination of waiting for, and selection of, one or more

allernatives. The selection may depend on conditions associated with each alternative of the
selective wait statement.

selective_wait :: =
select
(when condition =>]
select_alternative
{or[when condition =>]
select_alternative}
[ eise

sequence_of_statements]
end select;

*, Selective Wait Statements 9.7.1




hmr o P bR Cha i e o -y "RETRCTE " o " Galamen.

{ 9-10 Ada Reference Manual 4

L

select_alternative :: =
accept_statement [sequence_of_statements]
| delay_statement [sequence_of_statements]
\ | terminate;

A select alternative is said to be open if there is no preceding when clause or if the corresponding &
condition is true. It is said to be closed otherwise. 3

A selective wait can contain at most one terminate alternative; it cannot contain both a terminate
] alternative and an alternative starting with a delay statement. Each of these possibilities excludes the 4
presence of an else part. A selective wait must contain at least one alternative commencing with an 4
accept statement. 3
I
Execution of a selective wait statement proceeds as follows: 3
¢
(a) All conditions are evaluated to determine which alternatives are open. For an open alternative i‘i
starting with a delay statement, the delay expression is evaluated immediately after the z
evaluation of the corresponding condition. Similarly, if an open alternative starts with an-accept
statement for an entry of a family, the entry index is evaluated immediately after the evaluation E
of the condition. tt
{b) An open alternative starting with an accept statement may be selected if a corresponding ,{:
rendezvous is possible (that is, when a corresponding entry call has been issued by another 4
task). When such an alternative is selected, the corresponding accept statement and possible 3
subsequent statements are executed.
{c) An open alternative starting with a delay statement will be selected if no other alternative has
been selected belore the specified duration has elapsed. Any subsequent statements of the
alternative are then executed.
(d} An open alternative with the resz2rved word te;r&hinate may be selected only if the task
containing the selective wait belon s to the set of dependent tasks of a block, subprogram, or
task, and either the end of this block, subprogram body or task body has been reached (see
9.4), or in the case of a task boly, a terminate alternative has been reached. This (first
mentioned) alternative will be selected if and only if all other tasks of the set, also any task
, depending on a task of the set, and so on, are either terminated or waiting at a selective wait
with a terminate alternative. electicn of a terminate alternative causes normal termination of the
task. A terminate alternative may not appear in an inner block that declares task objects. t
]
I
(e) If no alternative can be immediately selected, and there is an else part, the else part is executed. :
lf there is no else part, the task waits until an open alternative can be selected. ' ;
‘ 1
. . . . t
(f) If all alternatives are closed and there is an else part, the else part is executed. if all alternatives i
are closed and there is no else part the exception SELECT_ERROR is raised. ;
In general, several entries of a task may rave been called betore a selective wait is encountered. As a E
result. several alternative rendezvous are possible. Similarly. several open alternatives may start with !
an accept statement for the same entry. In such cases one of these alternatives is selected arbitrarily. j
?

9.7.1 Selective Wait Statements i




oy TN

Tasks 9-11

Example:

task body RESOURCE is
BUSY : BOOLEAN := FALSE;
begin
loop
select
when not BUSY =>
accept SEIZE do
BUSY := TRUE;
end;
or
accept RELEASE do
BUSY := FALSE;
end;
or
when not BUSY =) terminate;
end select;
end loop;
end RESOURCE;

Notes:

Selection among open alternatives starting with accept statements is performed arbitrarily. This
means that the selection algorithm is not defined by the language and that any program relying on a
particular selection algorithm is therefore erroneous. Several open alternatives may start with a delay
statement. A consequence of the above rules is that only the alternative with the shortest duration
can be selected (a negative duration being shorter than a positive one).

The language does not define in which order to evaluate the conditions of a select statement. A
program that relies on a specific order is therefore erroneous.

References:

accept statement 9.5, condition 5.3, delay statement 9.6, dependent task 9.4, duration 9.8, entry call 9.5,
eniry family 9.5, rendezvous 9.5, sequence of statements 5.1, task 9.2 task termination 9.4

9.7.2 Conditional Entry Calls

A conditional entry call issues an entry ca!l if and only if a rendezvous is immediately possible.

conditional_entry_call :: =
select
entry_call [sequence_of_statemenits)]
else
sequence_of_statements
end select;

Conditional Fairy Calls 9.7.2 g
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For the execution of a conditional entry call an entry index (in the case of an entry of a family) is first
evaluated. This is followed by the evaluation of any expression occurring in the actual parameters. If
a rendezvous with the called task is immediately possible, it is perfermed and the optional sequence | §
of statements after the entry call is then executed. Otherwise the else part is executed. ¢

Example

procedure SPIN(R : RESOURCE) is E
begin :
loop
select
R.SEIZE;
return;
else
null; -- busy waiting
end select;
end. loop;
end;

T A T

References:

3 accept 9.5. actual parameter 6.4, entry call 9.5, entry family 9.5, rendezvous 9.5, sequence of statements 5.1

9.7.3 Timed Entry Calls

e B O S i, M IBEE

A timed entry call issues an entry call if and only if this entry call can be accepted within a given delay.

timed_entry_call :: =
select
entry_call [sequence_of_statements]
or

delay_statement [sequence_of_statements]
end select,;

For the execution of a timed entry call an entry index (in the case of an entry of a family) is first
eviluated. This is followed by the evaluution of any expression occurring in tte actual parameters
anJ by the evaluation of the expression stating the delay. ;

If 2 rendezvous can be started within the specified duration, it is performed and the optional sequence E

of statements after the entry call is then executed. Otherwise the optional seque nce of statements of
the deiay alternative is executed.

e T

9.%.3 Timed Eniry Calls
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Example:
select .
CONTROLLER.REQUEST(URGENT)(SOME_DATA);
or
delay 45.0;
F -- controller too busy, try something else
’ end select;
References:
actual parameter 6.4, accept statement 9.5. delay statement 9.6, duration 9.6, entry call 9.5, entry family 9.5,
expression 4.4, rendezvous 9.5, sequence of statements 5.1,

9.8 Priorities

Each task may (but need not) have a priority, which is an integer vaiue of the predefined subtype
PRIORITY. A lower value indicates a lower degree of urgency; the range of priorities is
implementation defined. A priority is associated with a task if a pragma

pragma PRIORITY (static_expression);

appears in the corresponding task specification; the priority is given by the value of the expression. A
priority is associated with the main program if such a pragma appears in its outermost declarative
part. At most one such pragma can appear within a given task specification (or for the main program).

The specification of a priority is an indication given to the compiler, to assist in the allocation of
processing resources to parallel tasks when there are more tasks eligible for execution than can be
suoported simultaneously by the available processing resources. The effect of priorities on
scaeduling is defined by the following rule:

it two tasks with different priorities are both eligible for exeqution and could sensibly be
executed using the same processing resources then it cannot be the case that the task with the
lower priority is executing while the task with the higher priority is not.

Fcr tasks of the same priority, the scheduling order is not defined by the language. For tasks without
explicit priority, the scheduling rules are not defined, except when such tasks are engaged in
re.adezvous. |f the priorities of both tasks engaged in a rendezvous are defin.2d, the rendezvous is
exacuted with the higher of the two priorities. If only ofle of the two priorities is defined, the
rendezvous is executed with at least that priority. (f neuther i§ éji.ned, the priority of the rendezvous is
undefined. S

L
o

Notes:

Tte priority of a task is static and theretore fixed. Priorities should be used or ly to indicate relative
degrees of urgency; they should not be used for task synchronization.

References:

de"laratave part 3.9, main program 10.1, pragma 2.8, rendezvous 9.5, static expressiin 4.9, synchronizatlon
5, task 9.2, task specification 9.1

TV IR

Priorities 9.8
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9.9 Task and Entry Attributes

For a task object or for a task type T the following attributes are defined:

T'TERMINATED Of type BOOLEAN. This attribute is initially equal to FALSE when the task T
is declared (or allocated) and becomes TRUE when the task is terminated,

TPRIORITY Of the subtype PRIORITY. The value of this attribute is the priority of the task
T if one is defined; use of this attribute is otherwise not allowed.

T'STORAGE_SIZE This attribute indicates the number of storage units allocated for the task
T. Of type universal_integer.

For an entry E of a task T the following attribute may be used within the body of the task T:

E'COUNT The number of entry calls presently on the queue associated with the entry E. Of
type INTEGER.

Note:

Algorithms interrogating the attribute E'COUNT should take precautions to allow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed entry calls.
Within an accept statement for an entry, the count does not include the calling task.

References:

attribute '4.1.4. entry call 9.5, entry queue 9.£. integer number 2.4, integer type 3.5.4, priority 9.8, storage unit
13 2, task body 9.1, task termination 9.4

9.10 Abort Statements

Ab:normal termination of one or several tasks is achieved by an abort statement.

abort_statement :: = abort task_name [, task_name};

An abort statement causes the unconditiinal asynchronous termination of the named tasks. If a task
is already terminated there is no effect: if a task has not yet been activated it is t2rminated and there is
nc other effect.

Al normal termination of a task causes the abnormal termination of any task dependent on it. |t
fu ther causes the abnormal termination of any task dependent on any subprcgram (or block) being
called directly or indirectly by the task. ©On completion of the abort statement each of these tasks is
te: minated.

9..0 Abort S1atements
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If a task calling an entry is abnormally terminated it is removed from the entry queue; if the rendezvous
is already in progress the calling task i, terminated but the task executing the accept statement is
allowed to complete the rendezvous normally. if there are pending entry calls (possibly timed) for the
entries of a task that is abnormally terminated, an exception TASKING_ERROR is raised for each
calling task at the point where it calls the entry (including for the task presently engaged in a
rendezvous, if any); for a timed entry call, such an exception cancels the delay.

Example:
abort USER, TERMINAL . all, POOL(3);
Notes:

An abort statement should be used only in extremely severe situations requiring unconditional
termination. In less extreme cases (where the task to be terminated can be given the possibility of
executing some cleanup actions before termination), the exception FAILURE could be raised for the
task (see 11.5). A task may abort any task, including itself.

References:

accept statement 9.5, block 5.6, dependent task 9.4, entry call 8.5, entry queue 9.5, name 4.1, rendezvous
9.5. subprogram 6, task 9.2, task activation 9.3, task elaboration 9.1, task termination 9.4, tasking_error
exception 11.4, timed entry call 9.7.3

9.11 Shared Variables

The normal means of communication between tasks is via entry calls.

If two tasks operate on common global variables, then neither of them may assume anything about the
order in which the other performs its operations except at the points where they synchronize. Two
tasks are synchronized at the start and at the end of their rendezvous. At the time of its activation a
task is synchronized with the task that causes this activation.

if shared variables are used, it is the programmer's responsibility to ensure that two tasks do not
sitaultaneously modify the same shared variable.

Compilers will normally assume all variables not to be shared and may conseque tly maintain some of
them in local registers. Whenever one must ensure that a shared variable has heen updated with its
latest value, this can be achieved by calling a procedure obtained by instantiat on of the predefined
generic library procedure SHARED_VARIABLE_UPDATE, for the type of the shared variable.

generic
type SHARED is limited private;
procedure SHARED_VARIABLE_UPDATE(X : in out SHARED);

A call to such a procedure will generate no code, other than any code needed to update the shared
variable with its latest value (for example, f this value is in a register).

Ruferences:

entry call 9.5, generic procedure 12.1, rende:vous 9.5, task 9.2, task activation 9.3

Shared Variables 9.11
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9.12 Example of Tasking

The following example defines a buffering task to smooth variations between the speed of output of a
producing task and the speed of input of some consuming task. For instance, the producing task may
contain the statements

loop .
-- produce the next character CHAR
BUFFER.WRITE(CHAR);
exit when CHAR = END_OF_TRANSMISSION;
end loop;

and the consuming task may contain the statements

loop

BUFFER.READ(CHARY);

-- consume the character CHAR

exit when CHAR = END_OF_TRANSMISSION;
end loop.

The buffering task contains an internal pool of characters processed in a round-robin fashion. The
pool has two indices, an IN_INDEX denoting the space for the next input character and an
OUT_INDEX denoting the space for the next output character.

task BUFFER is
entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);
end;

task body BUFFER is
POOL_SIZE : constant INTEGER := 100;

POOL :array(1 .. POOL_SIZE) of CHARACTER,;
COUNT . INTEGER range C .. POOL_SIZE := 0;
IN_INDEX. OUT_INDEX : INTEGER range 1 .. POOL_SIZE := 1;
begin
loop
select

when COUNT < POOL_SIZZ =)
accept WRITE(C : in CHARACTER) do
POOL(IN_INDEX) := C;

end;
IN_INDEX := IN_INDEX mod POOL_SIZE + 1;
COUNT = COUNT + 1;

or when COUNT > 0 =>
accept READ(C : out CHARACTER) do
C := POOL(OUT_INDEX);
end;
OUT_INDEX
COUNT

OUT_INDEX mod POOL_SIZE + 1{;
COUNT - 1,

or
terminate
end select;
end loop;
end BUFFER;

9.12 Example of Tasking




10. Program Structure and Compilation Issues

The overall structure of programs and the facilities for separate compilation are described in this
chapter. A program is a collection of one or more compilation units submitted to a compiler in one or
more compilations. A compilation unit can be a subprogram declaration or body, a package
declaration or body, a generic declaration, or a subunit, that is, the body of a subprogram, package,
or task declared within another compilation unit.

Relerences:

package body 7.1, package declaration 7.1, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2,
task body 9.1

10.1 Compilation Units - Library Units

The text of a program can be submitted to the compiler in one or more compilations. Each
compilation is a succession of one or more compilation unit. A simple program may consist of a
single compilation unit.

compilation :: = {compilation_unit}

compilation_unit =
context_specification subprogram_declaration
| context_specification subprogram_body
| context_specification package_dsclaration
| context_specification package_body
| context_specitication subunit

context_specification :: = {with_clause {use_clause]}

with_clause :: = with unit_name {, uni!_name};

The compilation units of a program are siid to belong to a program library. A compilation unit that is
nct a subunit of another unit is called a / brary unit. Within a program library the names of a!l library
urits must be distinct (except, of course, that a body has the same name as the corresponding
declaration). :

Tre compilation units of a compilation :.re compiled in the given order. The effect of compiling a
susprogram or package declaration is to define (or redefine) the corresponding unit as one of the
library units. The effect of compiling a suibunit, or the body of a subprogram o- package, is to define
th.tt body. The declaration of a subprogr 1m that is not generic need not be supplied in a compilation,
in wrich case compilation ot the body serves as both the declaration and the body.

Compilation Unirts - 1.ibrary Units 10.1
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A compilation unit is effectively declared by its presence in a compilation. For the elaboration of a
compilation unit, its context is first elaborated; the following subprogram declaration or body,
package declaration or body, or subunit is then elaborated. The order of elaboration of compilation
units need not be the order in which they appear in a compilation; this order of etaboration is defined
in section 10.5.

The elaboration of a context specification consists of the elaboration of its constituent with clauses
and use clauses. The only identifiers that are visible within a with clause are names of library units.
The only package names that can be listed in the use clause of a context are those declared in the
package STANDARD and those made visible by previous with clauses and previous use clauses. Any
with clause and any use clause given in the context specification ot a subprogram, package, or
generic declaration applies also to the corresponding subprogram or package body (whether
repeated or not). Any with clause and any use clause given for a compilation unit also applies to its
subunits (if any).

The designator of a separately compiled subprogram must be an identifier (not an operator symbol).
However, a separately compiled functio» may be renamed as an operator.

A library unit that is a subprogram can be a main program in the usual sense. The means by which
the execution of a main program is initiaced are not prescribed within the language definition.

Example 1: A main program:

The following is an example of a program consisting of a single compilation unit, a procedure printing
the real roots of a quadratic equation. The predefined package TEXT_IO and the package
REAL_OPERATIONS (containing the definition of the type REAL and of the packages REAL_IO and
REAL_FUNCTIONS) are assumed to be already present in the program library. Such packages may
be used by different main programs.

with TEXT_{O, REAL_OPERATIONS; use REAL_OPERATIONS;
procedure QUADRATIC_EQUATION is
A, B, C, D: REAL;

use REAL_!O, -- defines GET and PUT for REAL
TEXT_IO, ~- defires PUT for strings and NEW_LINE
REAL_FUNCTIONS; -- defires SQRT
begin

GET(A): GET(B); GET(C);
D= B2 - 40+AC;
it D < 0.0 then

PUT("imaginary Roots.");

‘else
PUT("Real Roots : X1 = "),
PUT({(-B - SQRT(D))/(2.0¢A)); 2UT(" X2 = ");
PUT((-B + SQRT{(D))/(2.0sA));

end if;

NEW_LINE;

end QUADRATIC_EQUATION;

Notes:

A compilation unit may be a generic package or a generic subprogram; alterr atively, it may be an
instantiation of a generic subprogram or g ackage.

1.1 Compilatzon Units - Librarny Units
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References:

elaboration 3.1. function 6.1, generic package 12.1. generic instantiation 12.3, generic subprogram 12.1,
identifier 2.3, operator 4.5, operator symbol 6.1, package body 7.1, package declaration 7.1, real type 3.5.8,
subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, use clause 8.4

10.1.1 With Clauses

The names that appear in a with clause must be the names of library units. The effect of the
elaboration of a with clause is to create an implicit declaration of the named library units at the end of
the package STANDARD; the order of these implicit declarations does not necessarily correspond to
the order in which the units are named in a with clause (see 10.3 and 10.5). If the name of a library
unit occurs in more than one with clause of a given context, only the first occurrence is considered.

The names of library units mentioned in with clauses are directly visible (except where hidden) within
the corresponding compilation unit. In particular, the names of these library units can be used as
follows:

e If the name of a generic subprogram or package is mentioned in a with clause of a compilation
unit, instances of this generic program unit can be declared within the compilation unit.

o If the name of a (non generic) subprogram is mentioned in a with clause of a compilation unit,
this subprogram can be called within the compilation unit.

o If the name of a (non @éric) package is mentioned in a with clause of a compilation unit, this
name can be used to form the names of selected components and may app 2ar in use clauses.

With clauses define dependences among compilation units; that is, a compilaticn unit that mentions

other library units in its with clauses depends on those library units. These dependences between
units have an influence on the order of compilation (and recompilation) of compilation units, as
explained in section 10.3.

Notes:

The with clauses of a compilation unit need only mention the names of those libriiry subprograms and
packages whose visibility is actually necessary within the unit. They need rot (and should not)
mention other library units that are used in turn by some of the units named in tt e with clause unless
these other library units are also used directly by the compilation unit prefixed by the with clauses.
For example. the impiementation of the package REAL_OPERATIONS may need the operations
provided by other more basic packages. The latter should not appear in the with clause of
QUADRATIC_EQUATION since these basic operations are not directly called witlin its body.

The name of a library unit C can be wrilten as the selected component STANDARD.C (unless the
name STANDARD is hidden) since library .inits are implicitly declared in the pack age STANDARD.

References:
declaration 3. directly visible 8.3, elaboration 3.1, generic package 12.1, generic suhprogram 12.1, hidden

8.3. name 3.1 4.1, package 7, package staniard, program unit 7, selected componenrt 4.1.3, subprogram 8,
us2 clause 8.4, visibility 8

With Clauses .IO. 11
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10.1.2 Examples of Compilation Units.

A compilation unit can be split into a number of compilation units. For example consider the foliowing
program.

procedure PROCESSOR is

package D is :

LIMIT : constant := 1000; , . E

TABLE : array (1 .. LIMIT) of INTEGER; ;
procedure RESTART,

end D; E

package body D is
procedure RESTART is
begin
for Nin 1 .. LIMIT loop
TABLE(N) : = N;
end loop;
end;
begin
RESTART,;
end D;

" procedure Q(X : INTEGER) is
use D;
begin ]
TABLE(X) : = TABLE(X) + 1: !
em.!"Q:
begin
D.RESTART: ~- remitializes TABLE

;

ent.s“PROCESSOR;

The following three compilation units define a program with an equivalent effect (the broken lines
between compilation units serve to remind the reader that these units need not be contiguous texts).

Example 2 : Several compilation units:

package D is
LIMIT : constant : = 1000;
TABLE : array (1 .. LIMIT) of INTEGER,;
procedure RESTART;

end D;

10 1.2 Fxamples of Compilation Units.
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package body D is
procedure RESTART is
begin
for Nin 1 .. LIMIT loop
TABLE(N) := N;
end loop;
end;
begin
RESTART,;
end D;

with D;
procedure PROCESSOR is
procedure Q(X : INTEGER) is
use D,
begin

TABLE(X) .= TABLE(X) + 1;

end Q;
begin

D.RESTART; -- reinitializes TABLE
end PROCESSOR:

Note that in the latter version, the package D has no visibility of outer identfiers other than the
predetined identifiers (of the package STANDARD). In particular, D does not degend on any identifier
declared in PROCESSOR,; otherwise D could not have been extracted from PROCESSOR in the above
manner. The procedure PROCESSOR, on the other hand, depends on D and mantions this package
in a with clause. This permits the inner occurrences of D in a use clause and in a selected
component.

These three compilation units can be submitted in one or more compilations. For example, it is
possible to submit the package specification and the package body together in a single compilation.

References:

identitier 2.3, package 7, package body 7.1, package specification 7.1, procedure €, selected component
4.1.3, standard package C, use clause 8.4, visibility 8, with clause 10.1.1

.

FExamples of Conpilation Units. 10.1.2
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10.2 Subunits of Compilation Units

The body of a subprogram, package, or task decfared in the outermost declarative part of another
compilation unit (either a library unit or a subunit) can be separately compiled and is then said to be a
subunit of that compilation unit. Within the subprogram, package, or task where a subunit is
declared, its body is represented by a body stub at the place where the body would otherwise appear.
This method of splitting a program permits hierarchical program development.

subunit ;=
separate (unit_name) body

body_stub i:=
subprogram_specification is separate,
| package body identifier is separate;
| task body identifier is separate;

Each subunit mentions the name of its parent unit, that is, the compilation unit where the
corresponding stub is given. If the parent unit is itself a subunit, this name must be given in full as a
selected component, starting with the ancestor library unit. The names of all subunits of a given
library unit and the names of all subunits of these subunits, ana so on, must all be distinct. A generic
subprogram or package can be a subunit.

Visibility within a subunit is as at the corresponding body stub; hence the name of a fibrary unit that is
named in a with clause of a parent unit is also directly visible within a subunit (except if it is hidden).
The context of the subunit may mention additionat library units; these names are directly visible within
the subunit (except where they are hidden). For the elaboration of a subunit, this visibility is first
established, then the subprogram body is elaborated.

Elaboration of a body stub_has no other effect than to establish that the corresponding body is
senarately compiled as a subunit and to elaborate the body of the subunit.

Ncte:

The name of a library unit mentioned in the with clause of a subunit may b:: hidden if the same
identifier is declared within the subunit, or even within one of its parents (since library units are
implicitly declared in STANDARD). In such cases this does not affect the interpretation of the with
clauses, themselves, since only names oi library units can appear in with clauses.

Tvio subunits of different library units in the same program library need not have distinct identifiers.
Tt eir full names are distinct, in any case, since the names of library units are distinct and since the
names of all subunits of a given library unit are aiso distinct. By means of renaming declarations,
overloaded subprogram names that rename (distinct) subunits can be introduced.

References:
compilation unit 10.1, declarative part 3.8, elaboration 3.1, generic package 12.1, geeric subprogram 12.1,
identifier 2.3, library unit 10,1, overloading a subprogram 6.8, package body 7.1, prcgram library 10.1 10.4,

renaming .declaration 8.5, selected compor ent 4.1.3, standard package C. subprogréem body 6.3, task body
9.1, visibility 8, with clause 10.1.1

10.2 Subunits of Compilation Units

—
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10.2.1 Examples of Subunits

The procedure TOP is first written as a compilation unit without subunits.

with INPUT_OUTPUT;
procedure TOP is
type REAL is digits 10;
R, §: REAL := 1.0;

r package D is

Pl : constant : = 3.14159_265386;
function F (X : REAL) return REAL;
3 procedure G(Y, Z: REAL);

f end D;

package body D is
~- some local declarations followed by
function F(X : REAL) return REAL is
begin
-- sequence of statements of F
end F;

procedure G(Y, Z: REAL) is
-~ use of INPUT_OUTPUT
begin
-~ sequence of statements of G
end G;
end D;

procedure Q(U : in out REAL) is
use D;

begin ]
U:= F); )

em.i“Q:
begin -- TOP
Q(R):

D.G(R, S);
end TOP;

The body of the package D and that of the procedure Q can be made into sepzrate subunits of TOP.
Sirnilarly the body of the procedure G can be made into a subunit of D as follows.

Fxamples of Subunits 10.2.1 i
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Example 3: AN

| procedure TOP is
;. type REAL is digits 10,
R, S:REAL := 1.0;

: package D is 7
: Pl : constant := 3.14159_26536; : ?
; function F (X : REAL) return REAL; N L(_
3 procedure G(Y, 2 : REAL); . §

end D; ]

package body D is separate; -- stubof D

procedure (U : in out REAL) is separate; -- stubot Q
begin -- TOP

Q(R);

D.G(R, S):
end TOP;

AL My

AT TR

- - —— - - - - - - - -

separate (TOP)

procedure Q(U : in out REAL) is
use D;

begin
U:= FU);

i
3
X
o
']
b
i
i

separate (TOP)
package body D is
~- some local declarations followed by
function F(X : REAL) return REAL ‘s
begin
-~ sequence of statements of F
end F;

procedure G(Y, 2 : REAL) is separzte; -~ stub of G
end D; b

------------------ - - - —— e - = - . - -

with INPUT_OUTPUT;
separate (TOP.D) -~ full name of D
procedure G(Y, Z : REAL) is
-~ use of INPUT_OUTPUT-
begin . !
-~ sequence of statements of G
end;

10.2.1 Examples of Subunits
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In the above example Q and D are subunits of TOP, and G is a subunit of D. The visibility in the split
version is the same as in the initial version except for one change: since INPUT_QUTPUT is only used
in G, the corresponding with clause appears for G instead of for TOP. Apart from this change, the
same identifiers are visible at corresponding program points in the two versions. For example, the
procedure TOP, the type REAL, the variables R and S, the package D and the contained constant P!
and subprograms F and G are visible within the subunit body of G.

References:

constant 3.2, identifier 2.3, package 7, procedure 6, real type 3.5.8, subprogram 8, visibility 8, with clause
10.11

10.3 Order of Compilation

The rules defining the order in which units can be compiled are direct consequences of the visibility
rules and, in particular, of the need for a given unit to see the identifiers listed in its with clauses. A
unit must be compiled after all units whose names appear in one of its with clauses. A subprogram or
package body must be compiled after the corresponding subprogram or package declaration. The
subunits of a unit must be compiled after the unit.

The compilation units of a program can be compiied in any order that is consistent with the partial
ordering defined by the above rules.

Similar rules apply for recompilations. Any change in a compilation unit may affect its subunits. In
addition, any change in a library unit that is a subprogram declaration or package declaration may
aftect other compilation units that mention its name in their with clauses. The potentially affected
ur.its must be recompiled. An implementation may be able to reduce the compilation costs if it can
deduce that some of the potentially affected units are not actually atfected by the change.

Tre subunits of a unit can be recompiled without affecting the unit itself. Similarly, changes in a
suoprogram or package body do not affect other compilation units (apart from the subunits of the
bcdy) since these compilation units only have access to the subprogram or package specification.
Deviations from this rule are only permitted for inline inclusions, for certain compiler optimizations,
and for certain implementations of generic program units, as described below.

If :1 pragma INLINE is applied to the declaration of a subprogram declared in a package specification,
inline inclusion will only be achieved if the package body is compiled before units calling the
subprogram. In such a case, inline inclusion creates a dependence of the calling unit on the package
bcdy and the compiler must recognize this dependence when deciding on the need for recompilation.
If a calling unit is compiled before the package body, the pragma may be ignored by the compiler for

such calls (a warning that inline ipelusion was not achieved may be issued). Similar considerations
ar ply Yo a separately compiled qu';"rxs:og,ram for which an INLINE pragma is speci ied.

Fcr optimization purposes, an implementation may compile several units of a ¢ iven compilation in a
wily that creates further dependences among these compilation units. The coinpiler must then take
thase dependences into account when deciding on the need for recomyilations. Finally an
implementation may also introduce a dependence on the body of a separatz2ly compiled generic
program unit.

Or der of Compilation 10,3
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Examples of Compilation Order:

(@) In example 2, the package body D must be compiled after the corresponding package
specification.

(b) The specification of the package D must be compiled before the procedure PROCESSOR; on
the other hand, the procedure PROCESSOR can be compiled either before or after the package
body D. .

(c) In example 1, the procedure QUADRATIC_EQUATION must be compiled after the library
packages TEXT_IO and REAL_OPERATIONS since they appear in its with clause. Similarly, in
example 3, the procedure G must be compiled after the package INPUT_OUTPUT, which
appears in its with clause. On the other hand INPUT_OUTPUT can be compiled either before or
after TOP.

(d) Inexample 3, the subunits Q and D must be compiled after the main program TOP. Similarly the
subunit G must be compiled after its parent unit D.

References:
compilation unit 10.1, generic program unit 12, inline pragma B, library unit 10.1, name 4.1, package body

7.1, package declaration 7.1, package specification 7.1, pragma 2.8, procedure 6, subprogram body 6.3,
subprogram declaration 6.1, subprogram specification 6.1, subunit 10.2, visibility rules 8, with clause 10.1.1

10.4 Program Library

Compilers must preserve the same dejree of type safety, for a program consisting of several
ccmpilation units and subunits, as for a program submitted as a single compilation unit.
Consequently a library file containing infcrmation on the compilation units of the program library must
be maintained by the compiler. This information may include symbo! tables and other information
pertaining to the order of previous compilations.

A normal submission to the compiler consists of the compilation unit(s) and the library file. The latter
is used for checks and is updated as a coisequence of the current compilation.

There should be compiler commands for creating the program library of a given program or of a given
family of programs. These commands may permit the reuse of units of other program libraries.
Finally, there should be commands for irterrogating the status ot the units of a program library. The
form of these commands is not specified by the language definition.

References:

compilation unit 10.1, library unit 10.1, subunit 10.2

164 Program Library
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10.5 Elaboration of Library Units

-

Before the execution of a main program, all library units used by the main program are elaborated.
These library units are those which are mentioned in the with clauses of the main program and its
subunits, and in the with clauses of these library units themselves, and so on, in a transitive manner.

The elaboration of these units is performed consistently with the partial ordering defined by the
dependence relations imposed by with clauses (see 10.3).

The order of elabaration of library units that are package bodies must also be consistent with any
dependence relations resulting from the actions performed during the elaboration of these bodies.
‘* Thus if a subprogram defined in a given package is called during the elaboration of the body of
anather package (that is, either during the elaboration of its declarative part or during the execution
of its sequence of statements), the body of the given package must be elaborated first.

The program is illegal if no consistent order can be found (that is, if a circularity exists in the
dependence relations). If there are several possible orders, the program is erroneous if it relies on a
specific order (among the possible orders). -

References:

compilation unit 10.1, declarative part 3.9, dependence relation 10.1.1, elaboration 3.1, library unit 10.1, main
program 10.1, package 7, package body 7.1, statement 5, subprogram 6, subunit 10.2, with clause 10.1

10.6 Program Optimization

Optimization of the elabcration of declarations and the execution of statements inay be performed by
compilers. In particular, a compiler may be able to optimize a program by evaluating certain
expressions, in addition to those that are static expressions. Should one cf these expressions
(whether static or not) be such that an exception would be raised by its evaluation, then the code in
that path of the program can be replaced Ly code to raise the exception )

A compiler may find that some statements or subprograms will never be executec, for example, if their
execution depends on a condition known to be false. The corresponding code can then be omitted.
Tkis rule permits the effect of conditional comegation within the language.

Note: .

An expression whose evaluation is known to raise an exception need not rejiresent an error it it
occurs in a statement or subprogram that is never executed. The compiler may \wvarn the programmer
of a potential error.

References:

ccndition 5.3, declaration 3, elaboration 3.1, -axception 11, expression 4.4, raise an exception 11.3, statement
5, static expression 4.9, subprogram 8

Program Optimization 10.6
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11. Exceptions

This chapter defines the facilities for dealing with errors or other exceptional situations that arise
during program execution. An exception is an event that causes suspension of normal program
execution. Drawing attention to the event is called raising the exception. Executing some actions, in
response to the occurrence of an exception, is called handling the exception.

Exception names are introduced by exception declarations. Exceptions can be raised by raise
statements, or they can be raised by subprograms. blocks, or language defined operations that
propagate the exceptions. When an exception occurs, control can be passed to a user-provided
exception handier at the end of a block or at the end of the body of a subprogram, package, or task.

References:

block 5.6, propagation of exception 11.4, raise statement 11.3, subprogram 6

11.1 Exception Declarations

An exception declaration defines one or more exceptions whose names can appear in raise
statements and in exception handlers within the scope of the declaration.

exception_declaration :: = identitier_list : exception;

The identity of the exception introduced by an exception declaration is established at compilation
time (an exception can be viewed as a constant of some predefined enumeratiun type, the constant
being initialized with a static expression). Hence the declaration of an exceptior: introduces only one
exception, even if the declaration occurs in a recursive subprogram.

The following exceptions are predefined in the language and are raised in the following situations:

CONSTRAINT_ERROR When a range constraint, an index constraint, or a discriminant constraint is
violated. This can occur in object, type, subtype, component, subprogram,
and renaming declarations; in initializations; in assignment and return
statements; in component associations of aggregates; in  qualified
expressions, type conversions, subprogram and entiy calls, and generic
instantiations. This exception is also raised when an attempt is made to
designate a con ponent that cannot exist under the apj)licable constraint, in
an indexed coriponent, a selected component, a slize, or an aggregate.
Finally, this exception is raised on an attempt to selzct from or index an
object designate d by an access value, if the access value is equal to nuil.

Excestion Declarations 11.1
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NUMERIC_ERROR When the result ot a predefined numeric operation does not lie within the
implemented range of the numeric type; division by zero is one such
situation. This exception need not be raised by an implementation.

SELECT_ERROR When all alternatives of a select statement that has no else part are closed.

STORAGE_ERROR When the dynamic storage allocated to a task is exceeded, or during the
) execution of an allocator, if the available space for the collection of
allocated objects is exhausted. ‘

TASKING_ERROR When exceptions arise during intertask communication.
Examples of user-defined exception declarations:

SINGULAR : exception;
ERROR . exception;
OVERFLOW, UNDERFLOW : exception;

References:

access value 3.8, aggregate 4.3, allocator 4.8, assignment statement 5.2, component declaration 3.7,
constraint 3.3, constraint_error exception 3.3 3.5.4 355 356 36.1 3.7 3.7.24.1.1 41241343 451 4586
46 47 52521 58 6.164.18595 123.1 123.2 12.3.4 12.35 12.3.6 14.3.5, declaration 3.1, discriminant
constraint 3.7.2, entry call 9.5, enumeration type 3.5.3, generic instantiation 12.3, index constraint 3.6.1,
indexed component 4.1.1, initialization 3.2 3.7 6.1, name 4.1, numeric_error exception 3.5.8 45.3 45.4 455
4.5.6 4.5.7 45.8, numeric operation 4.5, numeric type 3.5, object declaration 3.2, qualified expression 4.7,
raise statement 11.3, range constraint 3.5, recursive procedure 6.1, renaming declaration 8.5, return
statement 5.8, scope of a declaration 8.2, select_error exception 9.7.1, select statement 9.7, selected
component 4.1.3, slice 4.1.2, static expression 4.9, storage_error exception 3.9 4.8 13.2, subprogram call 6.4,
subprogram declaration 6.1, subtype declaré tion 3.3, tasking_error exception 9.3 9.5 9.10 11.4, task 9.1, type
conversion 4.6, type declaration 3.3

17.2 Exception Handlers

The response to one or more exceptions is specified by an exception handler. A handler may appear
at the end of a unit, which must be a biock or the body of a subprogram, package, or task. The word
urit will have this meaning in this section.

exception_handler :: =
when exception_choice {| exception_choice} =>
sequence_of_statements

exception_choice :: = exception_name | others

An exception handler of a unit handles the named exceptions when they are raised within the
seguence of statements of this unit; an e::ception name may only occur once in the exception choices
of the unit. A handler containing the choice others can only appear last anc. can only contain this
e>ception choice; it handles all exceptions not listed in previous handlers, including exceptions
wliose names are not visible within the ur.it.

11 2 Exception Handlers
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When an exception is raised during the execution of the sequence of statements of a unit, the
execution of the corresponding handler (if any) replaces the execution of the remainder of the unit:
the actions following the point where the exception is raised are skipped and the execution of the
handier terminates the execution of the unit. If no handler is provided for the exception (either
explicitly or by others), the execution of the unit is abandoned and the exception is propagated
according to the rules stated in 11.4.1.

Since a handler acts as a substitute for (the remainder of) the corresponding unit, the handler has the
same capabilities as the unit it replaces. For example, a handler within a function body has access to
the parameters of the function and may execute a return statement on its behalf.

Example:

begin
-- sequence of statements
exception
when SINGULAR | NUMERIC_ERROR =>
PUT(" MATRIX IS SINGULAR "); /
when others =>
PUT(" FATAL ERROR ");
raise ERROR,
end;

References:

block 5.6, function 6.1, package body 7.1, parameter declaration 6.1, program unit 7, return statement 5.8,
statement 5.1, subprogram body 6.3, task body 9.1, visible 8.1

11.3 Raise Statements

An exception can be raised explicitly by a raise statement.

raise_statement :: = raise [exception_nime];

Fcr the execution of a raise statement with an exception name, the identity of the exception is
established, and then the exception is raised. A raise statement without an exception name can only
appear in an exception handler (but not in a nested subprogram, package or tasl:). It raises again the
exception that caused transfer to the handler.

Examples:
raise SINGULAR;
ra!se NUMERIC_ERROR; ~- expliciliy raising a predefined exception
raise POOL(KYFAILURE: -~ see section 116

References:

name 4.1

Raise Statements 11.3
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11.4 Dynamic Association of Handlers with Exceptions

When an exception is raised, normal program execution is suspended and control is transferred to an
exception handler. The selection of this handler depends on whether the exception is raised during
the execution of statements or during the elaboration of declarations.

11.4.1 Exceptions Raised During the Execution of Statements

The handling of an exception raised during the execution of a sequence of statements depends on
the innermost block or body that encloses the statement.

(a)

(b)

(c

(d

(e

)

If an exception is raised in the sequence of statements of a subprogram body that does not
contain a handler for the exception, execution of the subprogram is abandoned and the same
exception is raised again at the point of call of the subprogram. In such a case the exception is
said to be propagated. The predefined exceptions are exceptions that can be propagated by
the language defined constructs. If the subprogram is itself the main program, the execution of
the main program is abandoned.

it an exception is raised in the sequence of statements of a block that does not contain a
handler for the exception, execution of the block is abandoned and the same exception is
raised again in the unit whose sequence of statements includes the block. In such a case, also,
the exception is said to be propagated.

If an exception is raised in the sequence of statements of a package body that does not contain
a handler for the exception, the elaboration of the package body is abandoned. If the package
appears in a declarative part (or is a subunit) the exception is raised again in the unit enclosing
the package body (or enclosing the body stub that corresponds to the subunit). If the package
is a library unit, the execution of the main program is abandoned.

If an exception is raised in the sequence of statements of a task body th it does not contain a
handler for the exception, the execution of the task is abandoned; the task is terminated. The
exception is not further propagated.

It a local handler has been provided, execution of the handler replaces the execution of the
remainder of the unit (see 11.2).

A further exception raised in the sequence of statements of a handler (but not in a nested block)
causes execution of the current unit to be abandoned; this further excention is propagated if
the current unit is a subprogram body, a block, or a package body as in ca ses (a), (b), and (c).

11.4.1 Exceprions Raised During the Ixecu’ion of Statements
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Example:
procedure P is
ERROR : exception;
procedure R; ;

procedure Q is

begin
R; .
-~ exception situation (2)
exception
when ERROR => -- handler E2
;‘ end Q;
1
4 procedure R is
begin
-- exception situation (3)
end R;
begin
-~ exception situation (1)
Q
exception
when ERROR => -- handler E1
end .P;

The following situations can arise:

(1)  If the exception ERROR is raised in the sequence of statements of the outer procedure P, the
handler E1 provided within P is use J to complete the execution of P.

(2. If the exception ERROR is raised in the sequence of statements of Q, the handler E2 provided
within Q is used to complete the ex 2cution of Q. Contral will be returned to the point of call of Q
upon completion of the handier.

(3) |fthe exception ERROR is raised in the body ol R, called by Q, the execution of R is abandoned
and the same exception is raised ir the body of Q. The handler E2 is then used to complete the
execution of Q, as in situation (2).

Ncte that in the third situation, the exception raised in R results in (indirectly) passing control to a
handler that is local to Q and hence not enclosed by R. Note also that if a handler were provided
wi hin R for the choice others, situation (3) would cause execution of this alternative, rather than
ditect termination of R.

Lastly, it ERROR had been declared in R, rather than in P, the handlers E1 and E2 could not provide
ar expilicit handler for ERROR since this identifier would not be visible within the bodies of P and Q. In
sitsation (3), the exception could however be handled in Q by providing a handler for the choice
otners.

Exceptions Raised During the Execution of Statements 11.4.1 ‘
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Example:

function FACTORIAL (N : NATURAL) return FLOAT is
begin
it N = 1then
return 1.0;
else
return FLOAT(N) s FACTORIAL(N - 1);
end if,;
exception
when NUMERIC_ERROR => return FLOAT'LARGE;
end FACTORIAL,;

If the multiplication raises NUMERIC_ERROR then FLOATLARGE is returned by the handler. This
value will cause further NUMERIC_ERROR exceptions to be raised in the remaining activations of the
function, so that for large values of N the function will ultimately return the vaiue FLOAT'LARGE.

References:

block 5.6. body 6.3 7.1, body stub 10.2, declarative part 3.9, elaboration 3.1, identifier 2.3, library unit 10.1
10.1.1, local 8.3, main program 10.1, muitiplication operation 4.5.5. overflow 458, package body 7.1,
procedure 6. statement 5.1, subprogram body 6.3, subprogram call 6.4, subunit 10.2, task body 9.1, visible
8.1

11.4.2 Exceptions Raised During the Elaboration of Declarations

It an exception occurs during the elaboration of the declarative part of a block 0 body, or during the
elaboration of a subprogram, package, or task declaration, this elaboration :1s abandoned. The
exception is propagated to the unit causing the elaboration, if there is one:

(a) An exception raised in the declarative part of a subprogram is propagated to the unit calling the
subprogram. unless the subprogram is the main program itself, in which case execution of the
program is abandoned.

(b) An exception raised in the declarative part of a block is propagated to the unit whose
statements include the block.

(c) An exception raised in the declarative part of a package body is propagated to the unit
enclosing the body (or body stub, for a subunit) unless the package is a ibrary unit, in which
case execution of the program is abandoned. -

(d) An exception raised in the declarati e part of a task body is propagated to the unit that caused
the task activation.

() An exception raised during the elaooration of a subprogram. package, cr task declaration is
propagated to the unit enclosing this declaration, unless the subp-ogram or package
declaration is the declaration of a library unit, in which case executioy of the program is
abandoned.

11 4.2 'xceptions Raised During the Flaboraiion of Declarations
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Example: ‘ : ¥
declare j

begin
declare
N INTEGER := F(); -- F may raise ERROR
begin .

exception
when ERROR =) -- handler E1
end,

exception
when ERROR => -~ handier E2
end,
-~ if the exception ERROR is raised in the declaration of N, it is handled by E£2
Reterences:
body 6.3 7.1, body stub 10.2, declaration 3.1, declarative part of block 5.6, elaboration of declaration 3.1 3.9,

library unit 10.1.1, main program 10.1, package body 7.1, package declaration 7.1, program unit 7, statement
5. subprogram declaration 6.1, subunit 10.2. task activation 9.3, task deciaration 8.1

11.5 Exceptions Raised During Task Communication 4

An exception can be propagated to a task communicating, or attempting to communicate, with
another task.

When a task calls an entry of another task, the exception TASKING_ERROR is raised in the calling i
tatk, at the place of the call. if the called task terminates before accepting the entry call or is already
terminated at the time of the call.

A 1endezvous can be terminated abnormally in two cases:

(a  When an exception is raised inside an accept statement and not handled locally. In this case,
the exception is propagated both t2 the unit containing the accept statement, and to the calling
task at the point of the entry call.

A different treatment is used for the special exception attribute FAILURE as explained in section
11.6 below.

(b When the task containing the accept statement is terminated abnormally (for example, as the
result of an abort statement). In this case, the exception TASKING_EFRROR is raised in the
calling task at the point of the entry call.

O the other hand. abnormal termination of a task issuing an entry call does not raise an exception in
the: called task. If the rendezvous has not yet started, the entry call is cancelled If the rendezvous is
in progress, it is allowed to complete, and the called task is unaffected.

Exceptions Raised During Ta k Communication 11.5
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References:

accept statement 9.5, entry 9.5, entry call 9.5, rendezvous 8.5, task 9.1, task termination 9.3 9.4

11.6 Raising the Exception Failure in Another Task

Each task has an attribute named FAILURE which is an exception. Any task can raise the FAILURE
exception of another task (say T) by the statement

raise T'FAILURE;

The execution of this statement has no direct effect on the task issuing the statement (unless, of
course, it raises FAILURE for itseif). This exception is the only exception that can be raised explicitly
by one task in another task.

For the task receiving the FAILURE exception, this exception is raised at the current point of
execution, whether the task is actually executing or suspended. If the task is suspended on a delay
statement, the corresponding wait is cancelled. If the task has issued an entry call (or a timed entry
call) the call is cancelled if the rendezvous has not yet started; alternatively the rendezvous is allowed
to complete if it has already started; in both cases the called task is unaffected. If the task is
suspended by an accept or select statement, execution of the task is scheduled (according to the
usual priority rules, see 9.8) in order to allow the exception to be handled. Finally, if the exception
FAILURE is received within an accept statement and not handled locally, the rendezvous is
terminated and the exception TASKING_ERROR is raised in the calling task at the place of the entry
call.

Within the body of a task or task type T (and only there) there may be handlers for the exception name
T'FAILURE.

Note:

Tha name FAILURE is not reserved. Hence it could be declared as any entity, including an exception,
Nc conflict can arise with the attribute FA!LURE because of the distinct notation for attributes.

References:

aczept statement 9.5, attribute 4.1.4, delay s atement 9.6, entry call 9.5, rendezvous 9.5, select statement 9.7,
stetement 5, suspended task 9.5 9.6 9.7, task 9.1, task scheduling 9.8, wait 9.7.1

11.7 Suppressing Exceptions

Tre detection of the conditions under which some predefined exceptions are raised (as a preliminary
to raising them) may be suppressed within a block or within the body of a sutprogram, package, or
task. This suppression may be achievec by the insertion of a SUPPRESS pragma in the declarative
part of such a unit. The form of this pragria is as follows:

pragma SUPPRESS (check_name [, [UN =>] name]);

117 Suppressing Exceptions
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The first name designates the check to be suppressed: the second name is optional and may be either
an object name or a type name. In the absence of the optional name, the pragma applies to all
operations within the unit considered. Otherwise its effect is restricted to operations on the named
object or to operations on objects of the named type.

The following checks correspond to situations in which the exception CONSTRAINT_ERROR may be
raised:

ACCESS_CHECK Check that an access value is not null when attempting to select from or
index the object designated by the access value.

DISCRIMINANT_CHECK  When accessing a record component, check that it exists for the current
discriminant value. Check that a value specified for a discriminant
satisfies or is compatible with a discriminant constraint.

INDEX_CHECK Check that a specified index value or range of index values satisfies an
index constraint or is compatible with an index type.

LENGTH_CHECK Check that the number of components for an index is equal to a required
number.

RANGE_CHECK Check that a value satisfies a range constraint or that an index constraint,
discriminant constraint, or range constraint is compatible with a type
mark.

The following checks correspond to situations under which the exception NUMERIC_ERROR is
raised:

DIVISION_CHECK Check that the second operand-is not zero for the of erations /, rem and
mod.
OVERFLOW_CHECK Check that the result of a numeric operation does not overfiow.

The following checks correspond to situations under which the system STORAGE_ERROR is raised:

STORAGE_CHECK Check that execution of an allocator does not require more space than is
available for a collection. Check that the space available for a task or
program unit has not been exceeded.

The SUPPRESS pragma indicates that the corresponding run time check need not be provided. The
occurrence of such a pragma within a given unit does not guarantee that the corresponding
exceptions will not arise, since the pragma is merely a recommendation to the compiler, and since the
exseptions may be propagated by called units. Should an exception situation occur when the
corresponding run time checks are suppr 2ssed, the program would be erroneous (the results would
be unpredictable).

Examples:

pragma SUPPRESS(RANGE_CHECK),
pragma SUPPRESS(INDEX_CHECK, ON => TABLE),

Suppr>ssing Exceptions 11.7
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Note:

For certain implementations, it may be impossible. or too costly to suppress certain checks. The
corresponding SUPPRESS pragmas can be ignored.

References:

access value 3.8, array component 3.6, assignment statement 5.2, block 5.6, declarative part 3.9, division
operation 45.5, index range 3.6, mod operator 455, name 4.1, object name 3.2, overflow 358 45.8,
package body 7.1, pragma 2.8, record component 3.7, record discriminant 3.7.1, rem operator 4.5.6,
subprogram body 6.3, task body 9.1, type declaration 3, type name 3.3

11.8 Exceptions and Optimization

The purpose of this section is to specify the conditions under which certain operations can be
invoked either earlier or later than indicated by the exact place in which their invocation occurs in the
program text. The operations concerned comprise any function (including operators) whose value
depends only on the values of its arguments (the actual parameters) but which raises an exception for
certain argument values (this exception depending only on the value of the arguments). Other
operations also included are the basic operations involved in array indexing, slicing, and component
selection, including the case of objects designated by access values.

It it were not for the fact that these operations may propagate exceptions, they could be invoked as
soon as the values of their arguments were known, since the value returned depends only on the
argument values. However the possible occurrence of exceptions imposes stricter limits upon the
ali>wable displacements of the points where such operations are invoked as explained below:

o Consider the statements and expressions contained in the sequence of statements of a block,
body, or accept statement (but excluding any nested inner block, body, or accept statement).
For a given operation, choose a subset of these statements and expressions such that if any
statement (or expression) in the subset is executed (or evaluated), one or more invocations of
the given operation is required (according to rules stated elsewhere than i1 this section). Then,
within the chosen subset the operation can be invoked as soon as the values of its arguments
are known, even if this invocation may cause an exception to be propayated. The operation
need not be invoked at all if its value is not needed, even if the invocaticn would raise an
exception. f the operation may raise an exception and if the value is neceded, the invocation
must occur no later than the end cf the sequence of statements of the enclosing, block, body or
accept statement.

e The rules given in section 4.5 for operators and expression evaluation feave the order of
evaluation of the arguments of such operations undefined except for short circuit control forms.
Also. in the case of a sequence of operators of the same precedence leve! (and in the absence
of parentheses imposing a specific order), these rules allow any order of evaluation that yields
the same result as the textual (left to right) order. Any reordering of evalu: tion allowed by these
rules is permitted even if some of the operations may propagate excejtions, as long as no
further exception can be introduced.

11 8 Exceptions and Optimization
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Notes:

The above rules guarantee that an operation is not moved across a return, an exit, a goto, a raise, or
an abort statement. Moreover, an optimization cannot move an operation in such a way that an
exception would be handled by a different handler. 2

Whenever the evaluation of an expression may raise an exception for an allowed order of evaluation,
it is the programmer’s responsibility to impose a specific order by explicit parentheses. in their

absence, a compiler is allowed to choose any order satisfying the above rules, even if this order ET;
removes the risk of an exception being raised. In addition, the code produced by different compilers |
may raise different exceptions for a given expression since the order of evaluation of arguments is not
defined. 2
References: .

accept statement 9.5, access value 3.8, actual parameter 6.4, array indexing 4.1.1, block 5.6, body 6.3 7.1,
expression 4.4, expression evaluation 4.5, function 6.1, operator 4.5, propagation of exception 11.4.1,
selected component 4.1.3. slice 4.1.2, statement 5
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12. Generic Program Units

Subprograms and packages can be generic. Generic program units are templates of program units
and are often parameterized. Being templates, they cannot be used directly as ordinary subprograms
or packages; for example a generic subprogram cannot be called. Instances (that is, copies) of the
template are obtained by generic instantiation. The resulting subprograms and packages are ordinary
program units, which can be used directly.

A generic subprogram or package is defined by a generic declaration. This form of declaration has a
generic part. which may include the definition of generic formal parameters. An instance of a generic
unit, with appropriate actual parameters for the generic formal parameters, is obtained as the result of
a generic subprogram instantiation or a generic package instantiation.

References:

declaration 3.1. generic actual parameter 12.3, generic declaration 12.1, generic formal parameter 12.1,
generic part 12.1, package 7, program unit 6 7 9. subprogram 8,

12.1 Generic Declarations

A generic declaration includes a generic part and declares a generic subprogram or a generic
package. The generic part may include the definition of generic parameters.

For the elaboration of a generi¢c declaration the subprogram designator or package identifier is first
introduced and can from then on be used as the name of the corresponding generic program unit.
The generic part is next elaborated. Finally, the subprogram or package specification is established
as the template for the specification of the corresponding generic program unit.

generic_subprogram_declaration :: =
generic_part subprogram_specification;

generic_package_declaration :: =
generic_part package_specification;

generic_part ©: = generic {generic_formal_parameter}

generic_formal_parameter :: =
parameter_declaration;
| type identifier [discriminant_part] is generic_type_definition;
| with subprogram_specification [is name};
| with subprogram_specification is

generic_type_definition :: =
(<) | range <> | delta <> | digits O
| array_type_definition | access_type _definition
| private_type_definition

Ge ieric Declarations 12,1
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For the elaboration of a generic part. the generic formal parameters (if any) are elaborated one by one
in the given order. A generic parameter may only be referred to by another generic parameter of the
same generic part if it (the former parameter) is a type and appears first.

Expressions appearing in a generic part are evaluated during the elaboration of the generic part,
excepting any primary referring to a type that is a generic parameter (for example, an attribute of such
a type); such primaries are evaluated during the elaboration of generic instantiations.

References to generic parameters of any form (not only types) may occur in the specification and
body of a generic subprogram or package. However neither a choice, nor an integer type definition,
nor an accuracy constraint, may depend on a generic formal parameter.

Examples of generic parts:
generic -- parameteriess

generic
SIZE : NATURAL;

generic
LENGTH : INTEGER := 200; -- default value

generic
type ENUM is (<);
with function IMAGE (E : ENUM) return STRING is ENUM'IMAGE;
with function VALUE(S : STRING) return ENUM is ENUM'VALUE;

Examples of generic subprogram declarations:

generic
type ELEM is private;
procedure EXCHANGE(U, V : in out ELEM);

generic

type ITEM is private;

with function "+"(U, V. ITEM) return ITEM is
function SQUARING(X : ITEM) return ITEM,;

Example of generic package declaration.

generic
type ITEM is private;
type VECTOR is array (INTEGER range <>) of ITEM;
with function SUM(X, Y : ITEM) return ITEM;
package ON_VECTORS is
function SUM (A, B : VECTOR) return VECTOR;
function SIGMA (A : VECTOR) return ITEM;
end;

Nate:

A subprogram or package specification given in a generic declaration is the template for the
scecifications of the corresponding subprograms or packages obtained by jeneric instantiation.
Hence the template specification is not elaborated during elaboration of the generic declaration (this
specification is merely established as being the template specification). The suoprogram or package
st.ecification obtained by instantiation of the generic program unit is elaborated as part of this
in-stantiation.

12.1 Generic Declarations
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When a template is established all names occurring within it must be identified in the context of the
generic declaration.

References:

accuracy constraint 3.5.6, attribute 4.1.4, designator 6.1, elaboration 3.1, expression 4.4, identifier 2.3,
integer type definition 3.5.4. name 4.1, object 3.2. package 7. package identifier 7.1, package spncification
7.1, primary 4.4, program unit 7, subprogram 6.1, subprogram specification 6.1, type 3.3

12.1.1 Parameter Declarations in Generic Parts

The usual forms of parameter declarations available for subprogram specifications can also appear in
generic parts. Only the modes in and in out are allowed (the mode out is not allowed for generic
parameters). If no mode is explicitly given, the mode in is assumed.

A generic parameter of mode in acts as a constant; its value is a copy of the value provided by. the
corresponding generic actual parameter in a generic instantiation.

A generic parameter of mode in out acts as an object name renaming the corresponding generic
actual parameter supplied in a generic instantiation. This actual parameter must be a variable of a
type for which assignment is available (in particular, it cannot be a limited private type). The actual
parameter cannot be a component of an unconstrained object with discriminants, if the existence of
the component depends on the value of a discriminant.

References:

assignment 5.2, constant 3.2, generic actual parameter 12.3, in mode 6.1, in out mode 6.1, object name 3.2,
out mode 6.1, parameter declaration 6.1, subprogram specification 6, type 3.3

2.1.2 Generic Type Definitions

The elaboration of a generic formal parameter containing a generic type definition proceeds
according to the same rules as that of a type declaration (see 3.3). Generic type definitions may be
array, access, or private type definitions. or one of the forms including a box (that is, the compound
symbol <).

W.thin the specification and body of a g:2neric program unit, the operations available on values of a
generic formal type are those associated with the corresponding generic type definition, together with
ary given by generic formal subprograms.

Fcr an array type definition, the usual operations on arrays (such as indexing, slicing, assignment,

ecuality, and so on), and the notation for aggregates, are available. For an access type definition, the
usual operations on access types are ava'lable; for example allocators can be used.

Generie Type Defininons 12.1.2
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For a limited private type no operation is available; for a private type, assignment, equality and

inequality are available. Additiona!l operations can be supplied as generic formal subprograms. The
“only form ¢f constraint applicable to a generic formal type that is a (limited) private type is a

discriminant constraint’in the case where the generic formal parameter includes a discriminant part.

The generic type definitions including a box-carrespond to the major forms of scalar types:

Syntactic Form Meaning

(<) any discrete type

range <> any integer type
digits O any ftoating point type -
delta O any fixed noint type ~-

Fcr each generic formal type declared with one of these forms, the predefined operators and the
function ABS of the corresponding scalar type are available (see 4.5). The attributes defined for the
corresponding scalar types (see 3.5) are also available, excepting the attributes IMAGE and VALUE
(see appendix A).

Examples of generic formal types

type ITEM is private;
type BUFFER(LENGTH : NATURAL) is limited private;

type ENUM is (O);

type INT is range O;
type ANGLE is deita <>;
type MASS is digits <;

type TABLE is array (ENUM) of ITEM;
Notes:
Since the attributes IMAGE and VALUE are not already available for the generic type definitions
including a box, extra generic formal suborograms must be supplied for these attributes where they
are needed.

Retferences:

abs function 4.5.7. access type definition 3.8. aggregate notation 4.3, allocator 4.8, ar-ay type definition 3.8.
array operations 4.5, assignment 5.2, attribute 4.1.4, constraint 3.3, discriminant constraint 3.7.2, discriminant
pa’t 3.7.1. elanoration 3.1, equality 4.5.2. formal parameter 6.4, image attribute A, ircomplete access type
predeclaration 3.8. indexing 3.6.1, inequality 4.5.2, iimited private type 7.4.2, predefined operators C, private
type definition 7.4, scalar type 3.5, slicing 4.1.2, subprogram 6.1, type declaration 3.3, value attribute A

12.1.3 Generic Formal Subprograms

A generic formal parameter that includ2s a subprogram specificatior definas a generic formal
subprogram. Such subprograms may have (non generic) parameters and resulis of any visible type,
including types that are previously declared generic formal types.

12.1.3 Generic Formul Subprograms
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If the subprogram specification is followed by the reserved word is and by either a name or a box, an
actual parameter is optional for this generic formal subprogram. If a name is used, the named
subprogram is used by default in any generic instantiation that does not contain an explicit actual
parameter for this generic formal subprogram. If a box is used, a default actual subprogram that
matches the specification of the generic formal subprogram may be selected at the point of generic
instantiation (see 12.3.6).

For the elaboration of a generic formai parameter that includes a subprogram specification, the
subprogram specification is first elaborated: this elaboration introduces the names of any parameters
and identifies the corresponding types (which may be generic types). The identity of any name that
follows the reserved word is is then established (it may be an attribute of a generic type). This
subprogram name must match the subprogram specification according to the rules given in section
12.3.6.

Examples of generic formal subprograms:

with function INCREASE(X : INTEGER) return INTEGER,;
with function SUM(X, Y : ITEM) return ITEM;

with function " +"(X, Y : ITEM) return ITEM is <

with function IMAGE(X : ENUM) return STRING is ENUM'IMAGE; Y
with procedure UPDATE is DEFAULT_UPDATE; /
References: Y

generic actual parameter 123, name 4.1, parameter 6.1, subprdgram declaration 6.1, subprogram
spacification 6.1, type 3.3, visible 8.1

2.2 Generic Bodies

Tte body of a generic subprogram or package is a template for the bodies of the corresponding
pragram units obtained by generic instantiation. The only effect of the elaboralion of a generic body
is to establish this body as the template to be used for the corresponding instantiations.

Examples of generic subprogram bodies:

procedure EXCHANGE(U, V : in out ELEM) is
T : ELEM; -- the generic formal type
begin
T:=U5U:=V;V:=T,
end EXCHANGE;

function SQUARING(X : ITEM) return ITEM is
begin

return X+X; =- the formal operat.:r "e"
end;

Generic Bodies 12.2
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1 Example of a generic package body:

package body ON_VECTORS is
function SUM(A. B : VECTOR) return VECTOR is

RESULT : VECTOR(A'RANGE); -- the formal type VECTOR
begin
for N in A'/RANGE loop
RESULT(N) : = SUM(A(N), B(N)); -- the formal function SUM
end loop;
return RESULT;
end;

function SIGMA(A : VECTOR) return ITEM is
TOTAL : ITEM : = A(A'FIRST); ~- the formal type ITEM
begin
for Nin A'FIRST + 1 .. A'LAST loop
TOTAL := SUM(TOTAL, A(N)); -~ the formal function SUM
end loop;
return TOTAL,;
end;
end;

References:

elaboration 3.1 3.9, package 7, program unit 7, subprogram 6

12.3 Generic Instantiation

An instance of a generic program unit is obtained as the result of the elaboration of a generic
subprogram instantiation or package instantiation.

generic_subprogram_instantiation :: =
procedure identifier is generic_irstantiation;
| function designator is generic_ir stantiation;

generic_package_instantiation :: =
package identifier is generic_instar tiation;

i

generic_instantiation :: =
new name [(generic_association {, jeneric_association })]

generic_association :: =
[formal_parameter => ] generic_actial_parameter

generic_actual_parameter :: =
expression | subprogram_name | suitype_indication

A generic actual parameter must be supplied for each generic formal parameter unless the
corresponding generic part allows a default to be used. Generic associations can be given in
pc-itional form or in named form as for subprogram calls (see 6.4). Each gereric actual parameter
must match the corresponding generic formal parameter. An object matches an object; a
sudprogram or an entry matches a subprogram; a type matches a type. The detailed matching rules
ar: given in subsections below.

12.3 Generic Instantiation
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For the elaboration of a generic subprogram instantiation or package instantiation, the designator of
the procedure or function, or the -identifier of the package is first introduced, and the generic
instantiation is then elaborated. The designator or identifier can be used as the name of the
instantiated unit from then on.

The elaboration of a generic instantiation first creates an instance of the template defined by the
generic program unit, by replacing every occurrence of a generic formal parameter in both the
specification and body of the unit by the corresponding generic actual parameter. This instance is a
subprogram or package whose specification and bady are then elaborated in this order according to
the usual elaboration rules applicable to such entities (see 6.1 and 6.3 for subprograms, 7.2 and 7.3
for packages). Note however, that any identiier other than a generic parameter and which occurs
within the generic declaration or body names an entity which is visible at the point where it occurs
with the generic declaration or body (not at the point of instantiation).

Examples of generic instantiations:

procedure SWAP is new EXCHANGE (ELEM => INTEGER),
procedure SWAP is new EXCHANGE (CHARACTER); ~- SWAP is overloaded

function SQUARE is new SQUARING (INTEGER); -- "s«" of INTEGER used by default
tunction SQUARE is new SQUARING (MATRIX, MATRIX_PRODUCT);

package INT_VECTORS is new ON_VECTORS(INTEGER, TABLE, "+");
Examples of uses of instantiated units:

SWAP(A, B);
A := SQUARE(A);

T : TABLE(1 .. 5) := (10, 20, 30, 40, 50);
N : INTEGER := INT_VECTORS.SIGMA(T); -- 150

use INT_VECTORS;
References:
elaboration 3.1 3.9, entry 9.5, function 6, generic actual parameter 12.3, generic formal parameter 12.1,
identifier 2.3, name 4.1, named parameter association 6.4, object 3.2, package 7, package body 7.1, package

spacification 7.1, parameter 6.1, positional garameter association 6.4, subprogram 6, subprogram body 6.1,
subprogram call 6.4, subprogram specificaticn 6.1, type 3.3

12.3.1 Matching Rules for Formal Objects

An expression of a given type matches a generic tormal parameter ot the same: type; it must satisty
ary constraint imposed on the eneric formal parameter otherwise the exception
CONSTRAINT_ERROR is raised by the generic instantiation.

Matching Rules for Formal Objects 12.3.1
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An expression used as a generic actual parameter of mode in out must be a variable name (an
expression that is a type conversion is not allowed as a generic actual parameter if the mode is in
out).

References:

constraint 3.3, constraint_error exception 11.1, expression 4.4, in out mode 6.1, type 3.3, type conversion
4.6, variable name 4

12.3.2 Matching Rules for Formal Private Types

A generic formal private type is matched by any type other than an unconstrained array type, in the
following conditions:

e If the formal type is limited, the actual type can be any type (including a task type); if the formal
type is not limited, assignment and the comparison for equality or inequality must be available
for the actual type.

o If the formal type has a discriminant part, the actual type must have the same discriminants: the
discriminant names. subtypes. and any default values must be the same and in the same order.
The exception CONSTRAINT_ERROR is raised at the place of the generic instantiation if the
constraint or defauit values differ.

References:
asuignment 5.2, constraint 3.3, constraini_error exception 11.1, discriminant part 3.7.1, equality 4.52,

inequality 4.5.2, limited generic formal type 12.1.2, subtype 3.3. task type 9.1, type 3.3, unconstrained array
tyce 3.8

12.3.3 Matching Rules for Formal Scalar Types

A jeneric formal type defined by (<>) i matched by any discrete type (that is, any enumeration or
integer type. A generic formal type defired by range <> is matched by any integer type. A generic
formal type defined by digits <> is matched by any floating point type. A gener:c formal type defined
by delta <> is matched by any fixed point type. No other matches are possible for these generic
formal types.

References:

deta 3.5.9, digits 35.7, discrete type 3.5 3.5.5, enumeration type 3.5.1, fixed point type 3.5.9, floating point
type 3.5.7. integer type 3.5.4

12.3.3 Matching Rules for I'onnal Scalar Types




i e AR

e S LTIy A v oY

Generic Program Units 12-9

12.3.4 Matching Rules for Formal Array Types

A formal array type is matched by an actual array type with the same number of indices.

If any of the index and component types of the formal array type is itself a formal type, its name is
replaced by the name of the corresponding actual type. All such substitutions having been achieved,
a formal array type is matched by an actual array type if the following conditions are satisfied:

e The component type and constraint must be the same for the formal array type as for the actual
array type.

e For each index position, the index subtype must be the same for the formal array type as for the
actual array type.

e Either both array types must be unconstrained or, tor each index position, the index constraint
must be the same for the formal array type as for the actual array type.

The exception CONSTRAINT_ERROR is raised during the elaboration of a generic instantiation if the
constraints on the component type are not the same, or if the index subtype, or the index constraint
for any given index position are not the same for the formal array type as for the actual array type.

Example
-- given the generic package
generic
type ELEM is private;
type INDEX is (O}
type VECTOR is array (INDEX range <> ) of ELEM;

type TABLE is array (INDEX) of ELEM;
package P is

Oﬂd“;.
-- and the types

type MIX is array (COLOR range <>) of BOOLEAN;
type OPTION is array (COLOR) ot BOOLEAN;

-- then MIX can match VECTOR and OPTION can match TABLE
-~ but not the other way round:

package Q is new P(ELEM => BOOLEAN, INDEX => COLOR,
VECTOR => MIX, TABLE => OPTION);

Reterences:

array 3.8, array index 3.6, component type 3.8, constraint 3.3, constraint_error exception 11.1, unconstrained
array type 3.8

Maiching Rules for Formal Array Types 12.3.4
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12.3.5 Matching Rules for Formal Access Types

If the type of the objects designated by values of the formal access type is itself a formal type, its name
is replaced by the name of the corresponding actual type. Any such substitution having been
achieved, a formal access type is matched by an actual access type it the type of the designated
objects is the same in both the formal and the actual access types.

It a constraint is specified in the generic type definition for the type of the objects designated by the
access type, the same constraint must exist for the actual access type, otherwise the exception
CONSTRAINT_ERROR is raised at the place of the generic instantiation.

Example:
-~ the formal types

generic

type NODE is private;

type LINK is access NODE;
package P is

end;
-- can be matched by the actual types

type CAR;
type CAR_NAME is access CAR;

type CAR is
record
PRED, SUCC : CAR_NAME;
NUMBER : LICENSE_NUMBER;
QOWNER : PERSON;
end record;

-~ in the generic instantiation
package R is new P(NODE => CAR, LINK => CAR_NAME);

References:

acess type 3.8, constraint 3.3, constraint_error exception 11.1, object 3.2, type 3.3

12.3.6 Matching Rules for Format Sut programs

Any occurrence of the name of a formal type in the formal subprogram specification is replaced by the
name of the corresponding actual type o subtype. Any such substitution haviyg been achieved, a
formal subprogram is matched by an actu:d subprogram that has parameters in the same order, of the
same mode and type, and with the same constraints. For functions, the resuit type and constraints
must be the same. Parameter names anc the presence or absence of detault vilues are ignored for
this matching. Should any constraint not inatch, the exception CONSTRAINT_EHROR is raised at the
place of the generic instantiation.

12.3.6 Matching Rules for Formal Subprogran is
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If a box appears after the reserved word is in the definition of the generic formal subprogram, the
corresponding actual subprogram can be omitted if a subprogram with the same designator and with
a matching specification is visible at the place ot the generic instantiation; this subprogram (there

must only be one) is then used by default.
Example:
-~ given the generic function specification
generic
type ITEM is private;
with function "s" (U, V : ITEM) return ITEM is < ;
function SQUARING(X : ITEM) return ITEM;
-~ and the function
function MATRIX_PRODUCT(A, B : MATRIX) return MATRIX;
-~ the following instantiations are possible
function SQUARE is new SQUARING(MATRIX, MATRIX_PRODUCT);
function SQUARE is new SQUARING(INTEGER, "s");
tfunction SQUARE is new SQUARING(INTEGER);
-~ the last two instantiations are equivalent
Note:

The matching rule for formal subprograms is the same as the matching rule given for subprogram
renaming declarations (see 8.5).

References:

corstraint 3.3, constraint_error exception 11.1, function 6, name 4.1, parameter 6.2, parameter mode 8.1,
reraming declaration 8.5, subprogram 6, subprogram specification 6.1, subtype 3.3, tyoe 3.3, visibility 8.1 8.

12.3.7 Matching Rules for Actual Derived Types

A ‘ormal generic type cannot be a derived type. On the other hand, an actual type may be a derived
type, in which case the matching rufes are the same as if its type were the actual type, subject to any
ccnstraints imposed on the derived type.

References:

constraint 3.3, derived type 3.4, parent type 3.4

Maiching Rules for Actu1! Derived Types 12.3.7
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12.4 Exampie of a Generic Package

The following example provides a possible formulation of stacks by means of a generic package. The
size of each stack and the type of the stack elements are provided as generic parameters.

generic
SIZE : NATURAL;
type ELEM is private;
package STACK is
procedure PUSH(E : in ELEM);
procedure POP (E : out ELEM),
OVERFLOW, UNDERFLOW : exception;
end STACK;

package body STACK is

SPACE : array (1 .. SIZE) of ELEM;
INDEX : INTEGER range O .. SIZE := 0O;

procedure PUSH(E : in ELEM) is
begin

if INDEX = SIZE then

raise OVERFLOW;

end if;

INDEX := INDEX + 1;

SPACE(INDEX) : = E;
end PUSH;

procedure POP(E : out ELEM) is
begin

if INDEX = O then

raise UNDERFLOW;

end if;

E := SPACE(INDEX);

INDEX := INDEX -~ 1;
end POP;

end STACK;
Instances of this generic package can be jbtained as follows:

package STACK_INT  is new STACK(SIZE => 200, ELEM => INTEGER);
package STACK_BOOL is new STACK(100, BOOLEAN);

Thereafter, the procedures of the instantiuted packages can be called as follows:

STACK_INT.PUSH(N);
STACK_BOOL.PUSH(TRUE);

12.4 Example of a Generic Package
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Alternatively, a generic formulation of the type STACK can be given as follows (package body
omitted): .

generic .
type ELEM is private;

package ON_STACKS is
type STACK(SIZE : NATURAL) is limited private;
procedure PUSH(S : in out STACK; E : in ELEM);
procedure POP (S :in out STACK; E : out ELEM);
OVERFLOW, UNDERFLOW : exception

private
type STACK(SIZE : NATURAL) is
record
SPACE : array(1 .. SIZE) of ELEM;
INDEX : INTEGER range 0 .. INTEGER'LAST := 0;
end record;
end;

in order to use such a package an instantiation must be created and thereafter stacks of the
corresponding type can be declared:

declare
package STACK_INT is new ON_STACKS(INTEGERY); use STACK_INT;
S : STACK(100);

begin
PUSH(S, 20);

end;

Example of «» Generic Package 12.4
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13. Representation Specifications and Implementation Dependent Features

13.1 Representation Specifications &

Representation specifications specify how the types of the language are to be mapped onto the
underlying machine. Mappings acceptable to an implementation do not alter the net effect of a
program. They can be provided to give more efficient representatior: or to interface with features that
are outside the domain of the language (for example, peripheral hardware).

representation_specification :: =
length_specification | enumeration_type_representation
| record_type_representation | address_specification

L a b i 'ngwv.vr-ﬁm‘ R os i

P Representation specifications may appear in a declarative part, after the list of declarative items, and

t can only apply to items declared in the same declarative part. A representation specification given for
| a type applies to all objects of the type. For a given type, more than one representation specification
can be given if and only if they specify different aspects of the representation. Thus for an

enumeration type, both a length specification and an enumeration type representation can be given
(but of course, at most one of each kind). 1

P e SRR A R IR

Representation specifications may also appear in package specifications and task specifications. A
reresentation specification given in the private part of a package specification may only apply to an
item declared in either the visible part or the private part of the package. A representation

g spacification given in a task specification may only apply to an entry of the task (type) or to the task
’ (type) itself.

In the absence of explicit representation specifications for a particular item, its representation is
determined by the compiler.

Tre representation specifications in a declarative part, package specification, or task specification
ar2 elaborated in the order in which they appear. The effect of the elaboration of a representation
specification is to define the correspounding representation and any consequent representation
atiribute (see 13.7). Any reference to such an attribute assumes that the choice of a representation
hes already been made, either explisitty by a specification, or by default by the compiler.
Consequently a representation specification for a given entity must not appear after an occurrence of
aiepresentation attribute of this entity, nor may the specification mention such an attribute.

Nu representation specification may be given for a type derived from an ac:ess type. The only
aliowable representation specification for a type (other than an access type) hat has derived user
de fined subprograms from its parent type is a length specification.

Representation Specifications 13.1 ;

TR
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The interpretation of some of the expressions appearing in representation specifications may be
implementation dependent. for example, expressions specifying addresses. An implementation may
limit representation specifications to those that can be handled simply by the underlying hardware.
For each implementation, the corresponding implementation dependences must be documented in
Appendix F of the reference manual.

Whereas representation specifications are used to specify a mapping completely, pragmas can be
used to provide criteria for choosing a mapping. The pragma PACK specifies that storage
minimization should be the main criterion when selecting the representation of a record or array type.
its form is as follows:

pragma PACK(type_name);

Packing means that gaps between the storage areas allocated to consecutive components shouid be
minimized. it does not, however, affect the mapping of each component onto storage. This mapping
can only be influenced {or controlled) by a pragma (or representation specification) for the
component or component type. The position of a PACK pragma is governed by the same rules as for
a representation specification; in particular, it must appear before any use of a representation
attribute of the packed entity.

Additional representation pragmas may be provided by an implementation; these must be
documented in Appendix F.

References:
access type 3.8, array type 3.6, declarative item 3.9, declarative part 3.9, derived type 3.4, elaboration 3.1,
entry 9.5, enumeration type 3.5.1, expression 4.4, object 3.2, package 7, package specification 7.1, parent

type 3.4, pragma 2.8, private part 7.2, record type 3.7, subprogram 6, task specification 9.1, type 3, visible
part 7.2

13.2 Length Specifications

A iength specification controis the amount of storage associated with an entity.
length_specification :: = for attribute use expression;

The expression must be of some integer type; it is evaluated during the elaboration of the length
specification, unless it is a static expression. The effect of the length specification depends on the
attribute given. This must be an attribute of a type (task types inciuded), or of a task, denoted here by
T:

(@,  Size specification: T'SIZE
The type T can be any type, other than a task type. The expression must be a static expression
of some integer type; its value specifies the maximum number of bits to be allocated to objects

of the type T. This number must oe at least equal to the minimum number needed for the
representation of objects of this type.

13 2 Length Specifications
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(b)

(©

(d)

A size specification for a composite type may affect the size of the gaps between the storage
areas allocated to consecutive components. On the other hand, it does not affect the size of
the storage area allocated to each component.

Size specifications are not aliowed for types whose constraints are not static.
Specification of collection size: T"STORAGE_SIZE

The type T must be an access type. The expression must be of some integer type (but need not
be static); its value specifies the number of storage units to be reserved for the collection, that
is, the storage space needed to contain all objects designated by values of the access type.

Specification of task storage: T'STORAGE_SIZE

The name T must be the name of a task type or task, introduced by a task specification. The
expression must be of some integer type (but need not be static); its value specifies the number
of storage units to be reserved for an activation of a task of the type (or for the single task). This
length specification has, of course, no effect on the size of the storage occupied by the code of
the task type.

Specification of an actual delta: T'ACTUAL_DELTA

The type T must be a fixed point type. The expression must be a literal expression expressing a
real value. This value specified as actual delta must not be greater than the delta of the type.
The effect of the length specification is to use this value of actuai delta for the representation of
values of the fixed point type.

The exception STORAGE_ERROR may be raised by an-allocator, or by the execution of a task, if the
space reserved is exceeded.

Examples:

~-- assumed declarations

type MEDIUM is range 0 .. 65000;
type SHORT is delta 0.01 range -100.0 .. 100.0;
type DEGREE is delta 0.1 range ~360.0 .. 360.0;

BYTE : constant :
PAGE : constant :

8;
2000;

-- Jength specifications
for COLOR'SIZE use 1sBYTE;
tor MEDIUM'SIZE use 2+BYTE;
for SHORT'SIZE use 15;

for CAR_NAME'STORAGE_SIZE use -~ approximately 2000 cars
2000+ {(CAR'SIZE/SYSTEN.STORAGE_UNIT) + 1),

for KEYBOARD_DRIVER'STORAGE_SI'IE use 1+PAGE;

for DEGREE’ACTUAL _DELTA use 360.0/2¢+(SYSTEM.STORAGE_UNIT - 2);
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Notes:

In the length specification for SHORT, fifteen bits is the minimum necessary, since the type definition
requires at Jeast 20100 model numbers ({2+100) + 1)+100).

Objects allocated in a collection ne€d not occupy the same amount of storage if they are records with
variants or dynamic arrays. Note also that the allocator itself may require some space for internal
tables and links. Hence a length specification for the collection of an access type does not always
give precise control over the maximum number of allocated objects.

The method of allocation for objects denoted by an access type or for tasks is not defined by a length
specification. For example, the space allocated could be on a stack; alternatively, a general allocator
or fixed storage could be used.

References:
access type 3.8, actual delta 3.5.9, allocator 4.8, coliection 3.8, delta 3.5.9, composite type 3.7, dynamic
array 3.6.1, elaboration 3.1, expression 4.4, fixed point type 3.5.9, integer type 3.5.4, literal expression 4.10,

object 3.2, real value 3.5.6, record 3.7, static expression 4.9, storage_error exception 11.1, task 9, task type
9, type 3, variant 3.7.1

13.3 Enumeration Type Representations

An enumeration type representation specifies the internal codes for the literals of an enumeration
type.

enumeration_type_representation :: = for type_name use aggregate;

The aggregate used to specify this mapping is an array aggregate of type

array (type_name) of universal_integer

All enumeration fiterals must be provided with distinct integer codes, and the aggregate must be a
static expression. The integer codes specified for the enumeration type must satisfy the ordering
relation of the type.

Example:
type MIX_CODE is (ADD, SUB, MUL, LDA, STA, ST2);

for MIX_CODE use
(ADD => 1, 8UB => 2, MUL => 3, LDA => 8, STA => 24, STZ =) 33);

Notes:

The attributes SUCC, PRED, and POS are defined even for enumeration types with a non-contiguous
representation; their definition corresponds to the (logical) type declaration ancl is not affected by the
enumeration type representation. In the example, because of the need to avcid the omitted values,
the tunctions are less efliciently implemented than they could be in the absence of representation
specification. Similar considerations apply when such types are used for indexing.

12.3 Enumeration Type Representations
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References:
type 3, type declaration 3.1 /,

13.4 Record Type Representations

t
!
|
aggregate 4.3, enumeration literal 3.5.1, enumeration type 3.5.1, function 8, index 3.6, static expression 4.9, / E
r
L
.P
A record type representation specifies the storage representation of records, that is, the order, ’
position, and size of record components (including discriminants, if any). Any expression contained f
in a record type representation must be a static expression of some integer type. l

record_type_representation :: = -4
for type_name use W

record [alignment_clause;] . ¥
{component_name location;} 5

end record; ' B
location ::= at static_simple_expression range range '.

alignment_clause :: = at mod static_simple_expression

The position of a component is specified as a location relative to the start of the record. The integer
defined by the static expression of the at clause of a location is a relative address expressed in
storage units. The range defines the bit positions of the component, relative to the storage unit. The
first storage unit of a record is numbered 0. The first bit of a storage unit is numbered 0. The ordering
of bits in a storage unit is machine dependent and may extend to adjacent storage units. For a
spacific machine, the size of bits of a storage unit is given by the configuration dependent constant
SYSTEM.STORAGE_UNIT.

Locations may be specified for some or for all components of a record, including discriminants. If no
location is specitied for a component, freedom is left to the compiler to define the location of the
component. If locations are specified for ali components. the record type representation completely
spacifies the representation of the record type and must be obeyed exactly. Locations within a record
variant must not overlap, but the storage for distinct variants may overlap. Each location must allow
for enough storage space to accommodite every allowable value of the component. Locations can
only be specified for components whose constraints are static.

An alignment clause forces each record of the given type to be allocated at a starting address which
is 3 multiple of the value of the given exgression (that is, the address modulo the expression must be
zero). An implementation may place restrictions on the allowable alignmerts. Components may
ovzrlap storage boundaries, but an implementation may place restrictions on how components may
ov 2riap storage boundaries.

Ar implementation may generate names that denote certain system dependent components (for
example, one containing the offset of anjther component that is a dynamic array). Such names can
he used in record type representations. The conventions to be followed for such names must be
documented in Appendix F.

P e

Record Type Representations 13.4 ' X

S RSN 2 e




13-6 Ada Reference Manual

Example:
WORD : constant := 4; -- storage unit is byte, 4 bytes per word

type STATE is (A, M, W, P);
type MODE is (FIX, DEC, EXP, SIGNIF);

type PROGRAM_STATUS_WORD is
record
SYSTEM_MASK s array(0 .. 7) ot BOOLEAN;
PROTECTION_KEY : INTEGER range 0 .. 3;
MACHINE_STATE : array(STATE) of BOOLEAN;
INTERRUPT_CAUSE : INTERRUPTION_CODE;

ILC : INTEGER range 0 .. 3;
cC . INTEGER range 0 .. 3;
PROGRAM_MASK : array(MODE) ot BOOLEAN;
INST_ADDRESS : ADDRESS;

end record;

tfor PROGRAM_ITATUS_WORD use

record at mod b&;
SYSTEM_MASK at 0+ WORD range 0 .. 7;
PROTECTION_KEY at 0«WORD range 10 .. 11; ~-- bits 8, 8 unused
MACHINE_STATE at 0« WORD range 12 .. 15;
INTERRUPT_CAUSE at OsWORD range 16 .. 3t;
ILC at 1+WORD range 0 .. 1; -- second word
cC at 1+WORD range 2 .. 3;
PROGRAM_MASK  at 1+WORD range 4 .. 7;
INST_ADDRESS at 1sWORD range 8 .. 31;

end record;

for PROGRAM_STATUS_WORD'SIZE use 2+sSYSTEM.STORAGE_UNIT;
Note on the example

The record type representation defines the record layout; the length specification guarantees that
exactly two storage units are used.

References:

ccmponent 3.7, constraint 3.3, discriminant 3.7.1, expression 4.4, integer type 3.5.4, name 4.1, range 3.5,
record component 3.7, record type 3.7, static expression 4.9, type 3, value 3.7.1, varient 3.7.1 3.7.3

13.5 Address Specifications

An address specification defines the loc.ation of an object in storage or the starting address of a
program unit. An address specification g:ven for an entry links the entry to a hardware interrupt.

address_specitication :: = for name us 2 at static_simple_expression;
The static expression given after the reserved word at must be of some integer type. The conventions

that define the interpretation of this intec er value as an address, as an interrupt level, or whatever it
may be, are implementation dependent. They must be documented in Appendix F.

13.5 Address Specifications
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The name must be one of the following: -

(a) Name of an object: the address is the address assigned to the object (variable or constant).

(b) Name of a subprogram, package, or task: the address is that of the machine code associated
with the body of the program unit.

(¢) Name of an entry: the address specifies a hardware interrupt to which the entry is linked. This
form of address specification cannot be used for an entry of a family.

Address specifications shouid not be used to achieve overiays of objects or overlays of program units.
Nor should a given interrupt be linked to more than one entry. Any program using address
specifications to that effect is erroneous.

Example:
for CONTROL use at 16 #0020#;
Notes:

For address specifications an implementation may allow static expressions containing terms that are
only known when /inking the program. Such terms may be written as representaticn attributes. An
implementation may provide pragmas for the specification of program overlays.

References:

constant 3.2, entry 9.5, family of entries 9.5, integer type 3.5.4, name 4.1, object 3.2, package 7, pragma 2.8,
program unit 7, static expression 4.9, subprogram 6, task 9, value 3.3, variable 3.2 4.1

13.5.1 Interrupts

An address specification given for an entry associates the entrv with an interrupt; such an entry is
relerred to in this section an an interrupt 2ntry. If control information is supplied by an interrupt, it is
passed to an associated interrupt entry as one or more in parameters.

The occurrence of an interrupt acts as an entry call issued by a task whose prior ty is higher than that
of any user-defined task. The entry call may be an ordinary entry call, a timed entry call, or a
conditional entry call, depending on the type of interrupt and on the implementation.

Example:
task INTERRUPT_HANDLER is
entry DONE;

for DONE use at 16 #40#;
end;

Interrupts 13.5.1
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Notes:

Interrupt entry calls need only have the semantics described above; they may be implemented by
having the hardware directly execute the appropriate accept statements.

Queued interrupts correspond to ordinary entry calls. Interrupts that are lost if not immediately
processed correspond to conditional entry calls. It is a consequence of the priority rules that an
accept statement executed in response to an interrupt takes precedence over ordmary, user-defined
tasks, and can be executed without first invoking a scheduling action.

One of the possible effects of an address specification for an interrupt entry is to specify the priority of
the interrupt (directly or indirectly). Direct calls to an interrupt entry are allowed.

References:

accept statement 9.5, alternative 9.7.1, conditional entry call 9.7.2, entry 9.5, in parameter 6.2, select
statement 9.7, task 9

13.6 Change of Representation

Only one representation can be defined for a given type. If therefore an alternative representation is
desired, it is necessary to declare a second type derived trom the first and to specity a ditferent
representation for the second type.

Example:

-- PACKED_DESCRIPTOR and DESCRIPTOR are two different types
-~ with identical characteristics, apart from their representation

type DESCRIPTOR is
record
-~ components of a descriptor
end;

type PACKED_DESCRIPTOR is new DESCRIPTOR;
tor PACKED_DESCRIPTOR use
record

-~ locations of all components
end record;

Change of representation can now be accomplished by assignment with explicit type conversions:

D : DESCRIPTOR;
P : PACKED_DESCRIPTOR;

P
D:

PACKED_DESCRIPTOR(D); -- pack D
DESCRIPTOR(P); -- unpack P

References:

agsignment 5.2, derived type 3.4, type 3, type conversion 4.8

13.6 Change of Representation
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13.7 Configuration and Machine Dependent Constants

For a given implementation the package SYSTEM (declared in STANDARD) will contain the
definitions of certain constants designating configuration dependent characteristics. The exact
definition of the package SYSTEM is implementation dependent and must be given in Appendix
F. The specification of this package must contain at least the following declarations.

package SYSTEM is .
type SYSTEM_NAME is -- implementation defined enumeration type

NAME : constant SYSTEM_NAME := -- the name of the system

STORAGE_UNIT : constant :

-- the number of bits per storage unit
MEMORY_SIZE : constant :

~- the number of available storage units in memory

mouwonn

MIN_INT : constant ~- the smallest integer value supported by a predefined type
MAX_INT : constant : -~ the largest integer value supported by a predefined type
end SYSTEM;

The corresponding characteristics of the configuration can be specified in the program by supplying
appropriate pragmas.

pragma SYSTEM(name); -~ to establish the name of the object machine
pragma STORAGE_UNIT(number); -- to establish the number of bits per storage unit
pragma MEMORY_SIZE(number); -~ to establish the required number ot storage units

The values corresponding to other implementation dependent characteristics of specific program
constructs, including the characteristics established by representation specifications, can be
obtained by the use of appropriate representation attributes. These include the attributes ADDRESS,

SIZE, POSITION, FIRST_BIT, LAST_BIT, and so on. The list of language defined attributes is given in
Appendix A.

An implementation may provide additior:al pragmas that influence representation, and it may also

provide corresponding representation attributes. These implementation specific pragmas and
at'ributes must be documented in Appenciix F.

Examples:
INTEGER'SIZE -- number of bits actually used for implementing INTEGER
TABLE'ADDRESS -- address of TABLE
X.COMPONENT POSITION -- position of COMPONENT in storage units
X.COMPONENT'FIRST_BIT ~- first it of bit range
X.COMPONENT'LAST_BIT -- last bit of bit range

Re¢ferences:

attribute A, constant 3.2, declaration 3.1, pa:kage 7, package specification 7.2, pragma 2.8
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13.7.1 Representation Attributes of Real Types

For every floating point type or subtype F, the following machine dependent attributes are defined /
which are not related to the model numbers. Programs using these attributes may thereby exploit §
properties that go beyond the minimal properties associated with the numeric type. Precautions must
consequently be taken when using these machine dependent attributes if portability is to be ensured.

F'MACHINE_ROUNDS True if and only if all machine operations using type F perform
rounding. Of type BOOLEAN.

F'MACHINE_RADIX The machine radix of numerical }presentation. Of type :
universal_integer. i

N
F"MACHINE_MANTISSA The number of machine radix places in the mantiéa. Of type
universal_integer.
~.
F'MACHINE_EMAX The maximum exponent of numerical representation (to the base of the ~
radix). Of type universal_integer. -
F'MACHINE_EMIN The smallest exponent of numerical representation. Of. type

universal_integer.

F'MACHINE_OVERFLOWS  True if and only if the exception NUMERIC_ERROR is raised for

computations which exceed the range of real arithmetic. Of type
BOOLEAN.

;
j
’3
|

For every fixed point type or subtype F, the following machine dependent attribute is defiﬁed. :

F'MACHINE_ROUNDS True it and only it each operation on values of the type F performs ﬁ
rounding. Of type BOOLEAN. i

Note:

The largest machine representable number is almost
(F'MACHINE_RADIX)s+(F"'MACHINE_EMAX),

ard the smallest is
F'MACHINE_RADIX ¢+ (FFMACHINE_EMIN -~ 1)

References:

accuracy of operations with real operands <.5.8, boolean type 3.5.3, exponent 3.5.7. tixed point type 3.5.9,
floating point type 3.5.7, mantissa 3.5.7, modal number 3.5.7, numeric_error exception 11.1, universal integer
type 2.4 3.2

13.7.1 Representation Attributes of Real Types .ﬁ"
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13.8 Machine Code Insertions

A machine code insertion can be achieved by a call to an inline procedure whose sequence of
statements contains only code statements. Only use clauses and pragmas may appear in the
declarative part of such a procedure. No exception handler may appear in such a procedure.

code_statement :: = qualified_expression;

Each machine instruction appears as a record aggregate of a record type that defines the
corresponding instruction. Declarations of such record types will generally be available in a
predefined package for each machine. A procedure that contains a code statement must contain only
code statements.

An implementation may provide machine dependent pragmas specifying register conventions and
calling conventions. Such pragmas must be documented in Appendix F.

Example:

M : MASK;
procedure SET_MASK; pragma INLINE(SET_MASK);

procedure SET_MASK is

use INSTRUCTION_360:;
begin

SI_FORMAT(CODE => SSM, B8 => WBASE, D => MDISP),

-- M'BASE and M'DISP are implementation specific predefined attributes
end;

Relerences:

de:larative part 3.9, exception handler 11.2, inline pragma 6.3, inline procedure 6.3, package 7, pragma 2.8,
procedure 6, qualified expression 4.7, record aggregate 4.3.1, record type detinition 3.7, statement §.1, use
cleuse 8.4

15.9 Interface to Other Languages

A subprogram written in another language can be called from an Ada program provided that all
ccmmunication is achieved via parameters and function results. A pragma of the form

pragma INTERFACE (language_name, subprogram_name),

must be given for each such subprogiam(a subprogram name may stand icr several overloaded
subprograms). This pragma must appear after the subprogram specthcation, either in the same
de clarative part or in the same package specilication. The pragma specifies the calling conventions
and informs the compiler that an object module wilt be supplied for the corres yonding subprogram.
Neither a body nor a bady stub may be g:ven lof such a subprogram.

Ttis capability need not ba provided by all compilers. An implementation may place restrictions on
th-2 aliowable forms and places of paramsaters and calls,

Inicrface o Other Languages 13.9
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Example:

package FORT_LIB is
function SQRT (X : FLOAT) return FLOAT;
function EXP (X : FLOAT) return FLOAT;
private
pragma INTERFACE(FORTRAN, SQRT);
pragma INTERFACE(FORTRAN, EXP);
end FORT_LIB;

Note: .
The conventions used by other language processors that call Ada programs are not part of the Ada
language definition. other language processors.

References:

body 6.3 7.3, body stub 10.2, declarative part 3.9, package specification 7.2, parameter 6.1, pragma 2.8,
subprogram 6, subprogram specification 6.1

13.10 Unchecked Programming

The predefined generic library subprograms  UNCHECKED_DEALLOCATION  and
UNCHECKED_CONVERSION are used for unchecked storage dealiocation and for unchecked type
conversions.

generic
type OBJECT is limited private,
type NAME  is access OBJECT;
procedure UNCHECKED_DEALLOCATION(X : in out NAME);

generic
type SOURCE is limited private;
type TARGET is limited private;
function UNCHECKED_CONVERSION(3 : SOURCE) return TARGET,

13.10.1 Unchecked Storage Dealloc::tion

Ur-checked storage deallocation of an ob ect designated by a value of an access type is achieved by a

cal of a procedure obtained by instantiation of the generic procedure
UMCHECKED_DEALLOCATION. For example.

procedure FREE is new UNCHECKEL _DEALLOCATION(objec!_type_name, ac sess_type_name),

13.10.1 Unchecked Storage Deallocation
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Such a FREE procedure has the following effect:

(a) after executing FREE(X), the value of X is nuli
(b) FREE(X), when X is already equal to null, has no effect

(c) FREE(X), when X is not equal to null, is an indication that the object denoted by X is no longer
required, and that the storage it occupies is to be reclaimed.

if two access variables X and Y designate the same object, then any reference to this object using Y is
erroneous after the call FREE(X); the effect of a program containing such a reference is
unpredictable.

It is a consequence of the visibility rules of the language that any compilation unit using unchecked
storage dealtocations must include UNCHECKED_DEALLOCATION in one of its with clauses.

References:

access type 3.8, generic function 12.1, generic instantiation 12.3, library unit 10.1, type 3.3, visibility rules 8,
with clause 10.1.1

13.10.2 Unchecked Type Conversions

Unchecked type conversions can be achieved by instantiating the generic function
UNCHECKED_CONVERSION.

Thre effect of an unchecked conversion is to return the {uninterpreted) parameter value as a value of
the target type, that is, the bit pattern defining the source value is returned uichanged as the bit
patiern defining a value of the target type. An implementation may place restrictions on unchecked
conversions, for example restrictions depanding on the respective sizes of objects of the source and
target type.

Wnenever unchecked conversions are used, it is the programmer’s responsibility to ensure that these

ccnversions maintain the properties to be expected from objects of the target type. Programs that
viclate these properties by means of unchecked conversions are erroneous.

It s a consequence of the visibility rules of the language that any compilation unit using unchecked
conversions must include UNCHECKED _CONVERSION in one of its with clauses.

References:

constraint 3.3, constraint_error exception 11.1, generic procedure 12.1, generic instantiation 12.3, library unit
10.1, type 3.3. type conversion 4.6, visibility r iles 8, with clause 10.1.1
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14. Input-Output

Input-output facilities are predefined in the language by means of two packages. The generic
package INPUT_OUTPUT defines a set of input-output primitives applicable to files containing
elements of a single type. Additional primitives for text input-output are supplied in the package
TEXT_IO. These facilities are descrihed here, together with the conventions to be used for dealing
with fow level input-output operations.

References:

generic package 12.1, input-output package 14.2, package 7, type 3,

14.1 General User Level Input-Output

The high level input-output facilities are defined in the language. A suitable package is described
here and is given explicitly in section 14.2; it defines file types and the procedures and functions that
operate on files.

Files are declared, and subsequently associated with appropriate sources and destinations (called
ex'ernal files) such as peripheral devices or data sets. Distinct file types are defined to provide either
read-only access, write-only access or read-and-write access to external files. The corresponding file
tyres are called IN_FILE, OUT_FILE, and INOUT_FILE.

External files are named by a character string, which is interpreted by individual implementations to
distinguish peripherals, access rights, physical organization, and so on.

The package defining these facilities is generic and is called INPUT_OUTPUT. Any program which
requires these facilities must instantiate the package for the appropriate element type.

A “ile can be read or written, and it can Je set to a required position; the current position for access
and the numbe; of elements in the file may be obtained.

When the term file is used in this chapter, it refers to a declared object of a file type; the term external
file is used otherwise. Whenever there is a possible ambiguity, the term internal file is used to denote
a declared file object.

References:

character siring 2.6, declaration 3.1, function 6.1, generic instantiation 12.3, generic Yackage 12.1, package
7. orocedure €, type 3
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14.1.1 Files

A file is associated with an unbounded sequence of elements, all of the same type. With each element
of the file is associated a positive integer number that is its (ordinal) position number in this sequence.
Some of the elements may be undefined, in which case they cannot be read.

The file types for a given element type, and the appropriate subprograms for dealing with it, are
produced by instantiating a generic package. For example:

package INT_IO is new INPUT_OUTPUT(ELEMENT_TYPE => INTEGER);
establishes types and procedures for files of integers, so that
RESULTS_FILE : INT_IO.OUT_FILE;

declares RESULTS_FILE as a write-only file of integers.

Before any file processing can be carried out, the internal file must first be associated with an external
file. When such an association is in effect, the file is said to be open. This operation is performed by
one of the CREATE or OPEN procedures which operate on a file and a character string used to name
an external file:

procedure CREATE(FILE : in out QUT_FILE: NAME : in STRING);
procedure CREATE(FILE : in out INOUT_FILE; NAME : in STRING);

Establishes a new external file with the given name and associates with it the given file. A
new external file established 2y a CREATE operation corresponds to a sequence of
elements all of which are initialiy undefined. If the given internal file is already open, the
exception STATUS_ERROR is raised. [f creation is prohibited for the external file (for
example, because an externil file with that name already erists), the exception
NAME_ERROR is raised.

procedure OPEN(FILE : in out IN_FILE; NAME : in STRING);
procedure OPEN(FILE : in out OUT_F'LE: NAME : in STRING);
procedure OPEN(FILE : in out INOUT FILE; NAME : in STRING);

Associates the given internal file with an existing external file having t1e given name. If the
given internal file is already ogpen. the exception STATUS_ERROR is raised. If no such
external file exists, or if this access is prohibited, the exception NAME_ERROR is raised.

Atter processing has been completed ¢n a file, the association may be severed by the CLOSE
procedure:

procedure CLOSE(FILE : in out IN_FIIE),
procedure CLOSE(FILE : in out OUT_FILE);
procedure CLOSE(FILE : in out INOUT_FILE);

Severs the association between the internal file and its associated external file. The
exception STATUS_ERROR is raised if the internal file is not open.

14.1.] Files
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The functions IS_OPEN and NAME take a file as argument:

function IS_OPEN(FILE : in IN_FILE) return BOOLEAN;
function IS_OPEN(FILE : in OUT_FILE) return BOOLEAN;
function IS_OPEN(FILE : in INOUT_FILE) return BOOLEAN;

Returns TRUE if the internal file is associated with an external file, FALSE otherwise.

function NAME(FILE : in IN_FILE) return STRING;
function NAME(FILE : in OUT_FILE) return STRING;
tunction NAME(FILE : in INOUT_FILE) return STRING;

Returns a string represerting the name of the external file currently associated with the
given internal file. If there is no external file currently associated, the exception
STATUS_ERROR is raised. The string returned is implementation dependent, but must be
sufficient to identify uniquely the corresponding external file if used subsequently, for
example, in an OPEN operation.

The following procedure operates on external files:
procedure DELETE(NAME : in STRING);

Deletes the named external file; no OPEN operation can thereafter be performed on the
external file, and the external file can cease to exist as soon as it is no longer associated
with any internal file. Raises the NAME_ERROR exception if no such external file exists, or
if this operation is otherwise prohibited.

Example: create a new external file on backing store:

CREATE(FILE => RESULTS_FILE, NAME => " ¢ ADA 2 COUNTS.1;P77000");
-~ write the file
CLOSE(RESULTS_FILE);

Example: read a paper tape:

declare
package CHAR_IO is new INPUT_OUTPUT(CHARACTER);
PT : CHAR_IO.IN_FILE;
begin
CHAR_IO.OPEN(PT, "ttyg");
-~ input the data from device ttyg
CHAR_IO.CLOSE(PT);
end;

References:

exception 11, false 3.5.3, function 6, generic parameter 12.1, name 4.1, package declaration 7.1, procedure
6, raise an exception 11.3, string 3.6.3, true [..5.3, type 3

A~
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14.1.2 File Processing

An open IN_FILE or INOUT_FILE can be read; an open OUT_FILE or INOUT_FILE can be written. A
file that can be read has a current read position, which is the position number of the element available
to the next read operation. A file that can be written has a current write position, which is the: position
number of the element available to be modified by the next write operation. The current read or write

positions can be changed. Positions in a file are expressed in the implementation defined integer type
FILE_INDEX.

A file has a current size, which is the mumber of defined elements in the file, and an end position,
which is the position number of the last defined element if any, and is otherwise zero.

When a file is opened or created, the current write position is set to 1, and the current read position is
set to the position number of the first defined element, or to 1 if no element is defined.

The operations available for file processing are described below; they apply only to open files. The
exception STATUS_ERROR is raised it one of these operations is applied to a file that is not open.
The exception DEVICE_ERROR is raised if an input-output operation cannot be completed because

of a malfunction of the underlying system. The exception USE_ERROR is raised if an operation is
incompatible with the properties of the external file.

procedure READ(FILE : in IN_FILE; ITEM : out ELEMENT_TYPE);
procedure READ(FILE : in INOUT_FILE; ITEM : out ELEMENT_TYPE);

Returns, in the ITEM parameter, the value of the element at the current read position of the
given file. Advances the current read position to the next defined element in the sequence,
if any, and otherwise increments it by one. The exception DATA_ERROR is raised if the
value is not defined and may (but need not) be raised if it is not of the required element type.
The exception END_ERROR is raised if the current read position is higher than the end
position. Any previous WRITE on the same external file must have been completed before
this READ. Note that READ is not defined for an QUT_FILE.

procedure WRITE(FILE : in OUT_FILE; ITEM : in ELEMENT_TYPE),
procedure WRITE(FILE : in INGUT_FILE; ITEM : in ELEMENT_TYPE),

Gives the specified value to the element in the current write position of the given file, and
adds 1 to the current write position. Adds 1 to the current size if the element in the current
write position was not defined, and sets the end position to the written position if the written
position exceeds the end position. Note that WRITE is not defined for an IN_FILE.

function NEXT_READ(FILE . in IN_FILE) return FILE_INDEX;
function NEXT_REAU(EE : in INOUT_FILE) return FILE_INDEX;

Returns the current read position of the given file.

procedure SET_READ(FILE : in IN_FILE; TO : in FILE_INDEX);
procedure SET_READ(FILE . in INOUT_FILE; TO : in FILE_INDEX);

Sets the current read position of the given file to the spéciﬁed index value. (The specified
value may exceed the end position).

14.1.2 File Processing
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procedure RESET_REAC(FILE : in IN_FILE);
procedure RESET_READ(FILE : in INOUT_FILE);

Sets the current read position of the given file to the position number of the first defined
element, or to 1 if no element is defined.

function NEXT_WRITE(FILE : in QUT_FILE) return FILE_INDEX;

tunction NEXT_WRITE(FILE : in INOUT_FILE) return FILE_INDEX;

Returns the current write position of the given file.

procedure SET_WRITE(FILE : in QUT_FILE; TO : in FILE_INDEX);
procedure SET_WRITE(FILE : in INOUT_FILE; TO . in FILE_INDEX);

Sets the current write position of the given file to the value specified by TO. (The specified
value may exceed the end position).

procedure RESET_WRITE(FILE : in OUT_FILE);
procedure RESET_WRITE(FILE : in INQUT_FILE);

Sets the current write position of the given file to 1.
tunction SIZE(FILE : in IN_FILE) return FILE_INDEX;
tunction SIZE{FILE : in OQUT_FILE) return FILE _INDEX;
function SIZE(FILE : in INOUT_FILE) return FILE_INDEX;

Returns the current size of the file.
function LAST(FILE : in IN_FILE) return FILE_INDEX;
function LAST(FILE : in QUT_FILE) return FILE_INDEX;
function LAST(FILE : in INOUT_FILE) return FILE_INDEX;

Returns the end position of the file.

function END_OF_FILE(FILE : in IN_FILE) return BOOLEAN;
tunction END_OF_FILE(FiLE : in INOUT_FILE) return BOOLEAN;

Returns TRUE if the current read position of the given file excecds the end position,
otherwise FALSE.

procedure TRUNCATE(FILE: in OUT_FILE;  TO: in FILE_INDEX);
procedure TRUNCATE(FILE: in INOUT_FILE; TO: in FILE_INDEX);

Sets the end position of the given file to the specified index value, if it is not larger than the
current end position, and chances the current size accordingly. Any element after the given
position becomec undefined. Raises the USE_ERROR exception if the specified index value
exceeds the current end position.

File Processing 14.1.2
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The predefined package does not restrict the physical representation of an external file, providing
only that this representation implements a sequence of elements, indexed by position. An external file
can thus be a collection of records stored on disks, tapes or other media, or a keyboard, a terminal, a

:' line-printer, a communication link or other device. The interpretation of the character string used to
name an external file depends on the implementation: this external file name can be used to specify

devices, system addresses, file organization, access rights and so on.

A hie may be implemented using various access methods. In a sequential organization, all the
elements up to the size of the file are always defined (although their value may be arbitrary), and a
successful READ operation will always increment the current read position by 1. In an ‘ndexed
organization however, the only defined elements are those whose position numbers are given by
existing key values.

Certain accesses to particular external files may be prohibited; attempts at such accesses will raise
the exception USE_ERROR. Exampies are the attempt to backspace on a paper tape, to write a
protected file, to extend a file whose size is fixed, or manipulate the current read or write position on a
communication link, or to ask for the SIZE or the LAST of an interactive device.

Example of tile processing:

-- Accumulate the values of a sequential external and append the total

declare
use INT_IO;
COUNTS : INOUT_FILE;
VALUE : INTEGER;
TOTAL : INTEGER := 0O;
begin
OPEN{COUNTS, " > udd > ada > counts”);
while not END_OF_FILE(COUNTS) loop
READ(CCUNTS, VALUE);
TOTAL := TOTAL + VALUE;
end loop;
SET_WRITE(COINTS, LAST(COUNTS) + 1),
WRITE(COUNTS, TOTAL),
CLOSE(COUNTS);
end;

Example of file positioning:

RESET_READ(COUNTS); -- could mean rewind

SET_WRITE(RESULTS_FILE, NEXT_WRITE(RESULTS_FILE) - 1); -- backspace

SET_WRITE(RESULTS_FILE, LAST(RESULTS_FILE) + 1), -- advance to end of file
References:

ctaracter string 2.6, false 3.5.3, name 4.1, ou't parameter 6.2, package 7, record 3.7, true 3.5.3, type 3

14.1.2 File Processing
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14.2 Specification of the Package Input_Output

The specification of the generic package INPUT_OUTPUT is given below.
conventions for the operations described in section 14.1.

generic

type ELEMENT_TYPE is limited private;
package INPUT_OUTPUT is

type IN_FILE
type OUT_FILE

is limited private;
is limited private;

type INQUT_FILE is limited private;

type FILE_INDEX is range O .. implementation_delined,

-~ general operations for file manipulation

procedure

procedure
procedure
procedure

procedure
procedure
procedure

function
function
function

function
function
function

procedure CREATE(FILE : in out OUT_FILE; NAME : in STRING);
CREATE(FILE : in out INOUT_FILE; NAME : in STRING);
OPEN (FILE : in out IN_FILE; NAME : in STRING);
OPEN (FILE : in out OUT_FILE; NAME : in STRING);
OPEN (FILE : in out INOUT_FILE; NAME : in STRING);
CLOSE (FILE : in out IN_FILE); .
CLOSE (FILE : in out OUT_FILE), i
CLOSE (FILE : in out INOUT_FILE); 1
IS_OPEN (FILE : in IN_FILE) return BOOLEAN;
IS_OPEN (FILE : in OUT_FILE) return BOOLEAN;
IS_OPEN (FILE : in INOUT_FILE) return BOOLEAN;
NAME  (FILE : in IN_FILE) return STRING; i
NAME.  (FILE : in OUT_FILE) return STRING; :
NAME  (FILE : in INOUT_FILE) return STRING;
DELETE (NAME : in STRING);

procedure

function
function
function

function
function
function

SIZE  (FLE:
SIZE  (FILE :
SIZE  (FILE :
LAST  (FILE :
LAST  (FILE :
LAST  (FILE:

4-7

It provides the calling

TTNE & knads

in IN_FILE)
in OUT_FILE)
in INOUT_FILE)

in IN_FILE)
in OUT_FILE)
in INCUT_FILE)

procedure TRUNCATE(FILE: in QUT_FILE,
procedure TRUNCATE(FILE: in INOUT_FILE; TO: in FILE_INDEX);

return FILE_INDEX;
return FILE_INDEX;
return FILE_INDEX;

return FILE_INDEX;
return FILE_INDEX;
return FILE_INDEX;

TO: in FILE_INDEX);

Specification of the Package Inpur_Quiput 14.2
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-- input and output operations

procedure READ (FILE : in IN_FILE: ITEM : out ELEMENT_TYPE);
procedure READ (FILE : in INOUT_FILE; ITEM : out ELEMENT_TYPE); 1
i tunction NEXT_READ (FILE : in IN_FILE) return FILE_INDEX; |

g function NEXT_READ (FILE : in INOUT_FILE) return FILE_INDEX;

oy T

procedure SET_READ (FILE : in IN_FILE: TO : in FILE_INDEX);
procedure SET_READ (FILE : in INOUT_FILE; TO : in FILE_INDEX),

procedure RESET_READ (FILE : in IN_FILE);
procedure RESET_READ (FILE : in INOUT_FILE)

procedure WRITE (FILE . in OUT_FILE; ITEM : in ELEMENT_TYPE);
procedure WRITE (FILE : in INOUT_FILE; ITEM : in ELEMENT_TYPE),

function NEXT_WRITE (FILE : in OUT_FILE)  return FILE_INDEX;
function NEXT_WRITE (FILE : in INOUT_FILE) return FILE_INDEX;

procedure SET_WRITE  (FILE : in OUT_FILE; TO : in FILE_INDEX);
procedure SET_WRITE  (FILE : in INOUT_FILE; TO : in FILE_INDEX):

procedure RESET_WRITE (FILE : in OUT_FILE);
procedure RESET_WRITE (FILE : in INOUT_FILE);

function END_OF_FILE (FILE : in IN_FILE) return BOOLEAN;
tunction END_OF_FILE (FiLE : in INOUT_FILE) return BOOLEAN;

-~ exceptions that can be raised

NAME_ERROR : exception;
USE_ERROR : exception;
STATUS_ERROR : exception;
DATA_ERROR . exception;
DEVICE_ERROR : exception;
END_ERROR : exception;

private
-~ declarations of the file private ‘ypes
end INPUT_OUTPUT,

14.3 Text Input-Output

Fécilities are available for input and output in human readable form, with the external file consisting of
ct aracters. The package defining these tacilities is called TEXT_IO; it is described here and is given
explicitly in section 14.4. It uses the genzral INPUT_OUTPUT package for files of type CHARACTER,
sc all the facilities described in section 14.1 are available. In addition to these general facilities,
pracedures are provided to GET values of suitable types from external files o* characters, and PUT
values to them, carrying out conversions between the internal values and appropriate character
stiings.

14 3 Text Input-Output
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All the GET and PUT procedures have an ITEM parameter, whose type determines the details of the
action and determines the appropriate character string in the external file. Note that the ITEM
parameter is an out parameter for GET and an in parameter for PUT. The general principle is that the
characters in the external file are composed and analyzed as lexical elements, as described in
Chapter 2. The conversions are based on the IMAGE and VALUE attributes described in Appendix A.

For all GET and PUT procedures. there are forms with and without a file specified. If a file is specified,
it must be of the correct type (IN_FILE for GET, OUT_FILE for PUT). If no file is specified, a default
input file or a default output file is used. At the beginning of program execution, the default input and
output files are the so-called standard input file and standard output file, which are open and
associated with two implementation definad external files.

Although the package TEXT_IO is defined in terms of the package INPUT_OUTPUT, the execution of
an operation of one of these packages need not have a well defined effect on the execution of
subsequent operations of the other package. For example, if the function LAST (of the package
INPUT_OUTPUT) is called immediately before and after a call of the function NEWLINE (of the
package TEXT_IQ) for a given file and with spacing one, the difference between the two values of
LAST is undefined: it could be any non negative vaiue. The eftect of the package TEXT_IO is defined
only if the characters written by a PUT operation or read by a GET operation belong to the 95 graphic
ASCII characters. The effect of a program that reads or writes any other character 1s implementation
dependent.

Note:
Text input output is not defined for files of type INOUT_FILE.
References:

character 2.6, character string 2.6, character type 3.5.2, external file 14.1, image attiibute A, in parameter
3.1, out parameter 6.1, package 7. procedure 6, type 3, value attribute A,

14.3.1 Default Input and Qutput Files

Controt of the particular default files used with the short forms of GET and PUT can be achieved by
means of the following functions and procedures:

function STANDARD_INPUT  return IN_FILE: -~ returns INITIAL default input file
function STANDARD_OUTPUT return OUT_FILE; -~ returns INITIAL default output file
function CURRENT_INPUT return IN_FILE: -~ returns CURRENT defa .t input file
function CURRENT_OUTPUT returr QUT_FILE; -~ returns CURRENT defa it output file
procedure SET_INPUT (FILE : in IN_FILE); -~ sets the defauit input tile to FILE
procedure SET_OUTPUT (FILE : in OUT_FILE); -~ sets the default output file to FILE

The exception STATUS_ERROR is raised by the functions CURRENT_INPUT and
CURRENT_OUTPUT it there is no correspronding default file, and by the procec ure SET_INPUT and
SET_OUTPUT if the parameter is not an opien file.

Default Input cnd Ouiput Files 14.3.1
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14.3.2 Layout

A text file consists of a sequence of lines, numbered from 1. The characters in each line are
considered to occupy consecutive character positions called columns, counting from 1. Each
character occupies exactly one column. A file may-have a particular /ine /length that is explicitly set by
the user. If no line length has been specified, lines can be of any length up to the size of the file. The
line length can be set or reset during execution of a program, so that the same file can be written
using both fixed line length (tor instance for the production of tables), and variable line length (for
instance during interactive dialogues). A file which is open (or simply created) has a current line
number and a current column number. These determine the starting position available for the next
GET or PUT operation.

The following subprograms provide for control of the line structure of the file given as first parameter,
or of the corresponding default file if no file parameter is supplied. Unless otherwise stated, this
default tile is the current output file. As in the general case, these subprograms may raise the
USE_ERROR exception if the request is incompatible with the associated external file.

tunction COL(FILE : in IN_FILE) return NATURAL;
function COL(FILE : in OUT_FILE) return NATURAL;
function COL return NATURAL;

Returns the current column number.

procedure SET_COL(FILE : in IN_FILE; TO : in NATURAL);
procedure SET_COL(FILE : in OUT_FILE; TO : in NATURAL);
procedure SET_COL(TO : in NATURAL);

Sets the current column number to the value specified by TO. The current line number is
unaffected. The exception LAYOUT_ERROR is raised if the line length has been specified
and is less than the specified column number.

function LINE(FILE : in IN_FILE) return NATURAL;
function LINE(FILE : in OUT_FILE) return NATURAL;
function LINE return NATURAL;

Returns the current line number

procedure NEW_LINE(FILE : in OUT_FILE; SPACING : in NATURAL := 1};
procedure NEW_LINE(SPACING : in NATURAL := 1);

Resets the current column number to 1 and increments the current line number by
SPACING. Thus a SPACING of 1 corresponds to single spacing, a SPACING of 2 to double
spacing. This terminates the current line and adds SPACING - 1 erapty lines. If the line
length is fixed, extra space characters are inserted when needed to fi | the current line and
add empty lines.

14.3.2 Lavout
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procedure SKIP_LINE(FILE : in IN_FILE; SPACING : in NATURAL : = 1),
procedure SKIP_LINE(SPACING : in NATURAL := 1),

Resets the current column number to 1 and increments the current line number by
SPACING (A value of SPACING greater than 1 causes SPACING - 1 lines to be skipped as
well as the remainder of the current line). The default file is the current input file.

function END_OF_LINE(FILE : in IN_FILE) return BOOLEAN;
tunction END_OF_LINE return BOOLEAN; 4

Returns TRUE if the line length of the specified input file is not set, and the cu:rent column
number exceeds the length of the current line {that is, if there are no more characters to be
read on the current line), otherwise FALSE. The default file is the current input file.
(END_OF_LINE is meant to be used primarily for files containing lines of different lengths).

procedure SET_LINE_LENGTH(FILE :inIN_FILE; N :in INTEGER);
procedure SET_LINE_LENGTH(FILE :in OUT_FILE; N :in INTEGERY;
procedure SET_LINE_LENGTH(N : in INTEGER);

Sets the line length of the specified file to the value specified by N. The value zero indicates
that line length is not set; it is the initial value for ary file. The exception LAYOUT_ERROR
is raised by a get operation if a line mark does not-correspond to the specified line length.

function LINE_LENGTH(FILE : in IN_FILE) return INTEGER;
tunction LINE_LENGTH(FILE : in OUT _FILE) return INTEGER;
function LINE_LENGTH return INTEGER;

Returnas the current line length cf the specified file if it is set, otherwise zero.

Examples:
SET_COL(((COL() - 1)/10 + 110 + 1), -- advance to next multiple of 10
-~ plus 1 on current output - file
it END_OF_LINE(F) then ~- advance to next line at end of current line
SKIP_LINE(F); ~- (the lire length of F is not set)
end if;

SET_LINE_LENGTH(F, 132);

References:

chiracter 2.1, exception 11, false 3.5.3, numoer 2.4, parameter 6, subprogram 8, true 3.5.3

Lavout 14.3.2 ;’E
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14.3.3 Input-Output of Characters and Strings

The GET and PUT procedures for these types work with individual characters. The current line and
column number are affected as explained below. Special line marks are used to implement the line
structure, in addition to the individual characters. “

For an ITEM of type CHARACTER

i procedure GET(FILE :in IN_FILE; ITEM : out CHARACTER);
J procedure GET(ITEM : out CHARACTER);

Returns, in the out parameter ITEM, the value of the character from the specified input file

- at the position given by the current line number and the current column number. Adds 1 to
the current column number, unless the line length is fixed and the current column number
equals the line length, in which case the current column number is set to 1 and the current
line number is increased by 1. (This case corresponds to a line mark following the character
that was read; thus line marks are always skipped when the line length is fixed). The detault
file is the current input file,

procedure PUT(FILE :in QUT_FILE; ITEM : in CHARACTER);,
procedure PUT(ITEM : in CHARACTER);

Outputs the specified character to the specified output file on the current column of the
current line. Adds 1 to the current column number, unless the line length is fixed and the
current column number equals the line length, in which case a line mark is cutput and the
current column number is set to 1 and the current line number is increased by 1. The
default file is the current output file.

When the ITEM type is a string, the fength of the string is determined and that exact number of GET or 1
PUT operations for individual characters is carried out. '

procedure GET(FILE : in IN_FILE; ITEM : out STRING); ]
procedure GET(iTEM : out STRING); £
procedure PUT (FILE :in QUT_FILE; ITEM : in STRING); ﬂ
procedure PUT (ITEM : in STRING);

In addition, the following functions and procedures are provided I

tunction GET_STRING(FILE : in IN_FILE) return STRING;
function GET_STRING return STRING;

Performs GET operations on the specified IN file, skipping any leading blanks (that is,
spaces. tabulation characters or line marks) and returns as result the next sequence of
characters up to (and not including) a blank. The default file is the current input fite.

function GET_LINE(FILE ; in IN_FILE( return STRING;
function GET_LINE ... return STRING;

Returns the next sequence of characters up to, but not including, a line mark. if the input
line is already at the end of a line, a null string is returned. The input file is advanced just
past the line mark, so successive calls of GET_LINE return successive lines. The default file
is the current input file.

14 3.3 Input-Output of Characters and Strings
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procedure PUT_LINE(FILE : in OUT_FILE; ITEM : in STRING;
procedure PUT_LINE(ITEM : in STRING);

Calls PUT to write the given STRING to the specified file, and appends a line mark. The
detault file is the current output file.

Example : variable line length

IR FTRPTUP TP PO IS ” T B, it T

PUT(F, "01234567");
NEW_LINE(F);
PUT(F, "89012345");

will output

01234567
89012345

The string can subsequently be input by

GET_STRING(G) & GET_STRING(G)

R TR Y RS R s

Alternatively, it can be obtained by

X : STRING(1 .. 16);
GET(G, X(1 .. 8));
SKIP_LINE(G);

GET(G, X(9 .. 18));

Example : fixed line length
SET_LINE_LENGTHF, 8);
PUT(F, “0123456780012345");

wi'l output

01234587
89012345

Tt.e string can subsequently be input by

T e WM T T PRI AT MR TP AT St ¢ Tl SRR &7

X : STRING(1 .. 16);
SET_LINE_LENGTH(G, 8);
GET(G, X);

N te that the double-quote marks enclosing an actual parameter of PU;I' are not output, but the string
inside is output with any doubled double-quote marks written once, thus matching the rule for
character strings (see 2.6).

References:

ac:ual parameter 8.4, character 2.1, character string 2.6, character type 3.5.2, dcuble-quote marks 2.8,
tunction 8, out parameter 8.2, space character 2.1, string 3.8.3, type 3

Input-Quitput of Charaters and Strings 14.3.3
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14.3.4 input-Output for Qther Types

All ITEM types other than CHARACTER or STRING are treated in a uniform way, in terms of lexical
units (see 2.2, 2.3, 2.4). The output is a character string having the syntax described for the
appropriate unit and the input is taken as the longest possible character string having the required
syntax. For input, any leading spaces, leading tabulation characters, and leading line marks are
ignored. A consequence is that no such units can cross a line boundary.

If the character string read is not consistent with the syntax of the required lexical unit, the exception
DATA_ERROR is raised.

The PUT procedures for numeric and enumeration types include an optional WIDTH parameter, which
specifies a minimum number of characters to be generated. If the width given is larger than the string
representation of the value, the value will be preceded (for numeric types) or followed (for
enumeration types) by the appropriate number of spaces. If the field width is smalier than the string
representation of the value, the field width is ignored. A default width of 0 is provided, thus giving the
minimum number of characters.

In each PUT operation, if the line can accommodate all the characters generated, then the characters
are placed on that line from the current column. If the line cannot accommodate all the characters,
then a new line is started and the characters are placed on the new line starting from column 1. If
however the line length is fixed and smaller than the length of the string to be output, then the
exception LAYOUT_ERROR is raised instead, and a new line is not started.

For each GET operation an IN file may be specified, and the default file is the current input file. For
each PUT operation an OUT file may be specified, and the default file is the current output file.

References:

character string 2.8, character type 3.5.2, enumeration type 3.5.1, exception 11, in_file 14.1, lexical unit 2.2,
numeric type 3.5, out_file 14.1, space character 2.1, string type 3.6.3, tabulation character 2.2

14£.3.5 Input-Output for Numeric Typas

Input for numeric types is defined by means of three generic packages; these packages must be
instantiated for the corresponding numeric types (indicated by NUM in the specifications given here).

14.3.5 Input-Output for Numeric Types
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Integer types:
The following procedures are defined in the generic package INTEGER_{O

procedure GET(FILE :in IN_FILE; ITEM : out NUM);
procedure GET(ITEM : out NUM);

Reads an optional plus or minus sign, then according to the syntax of an integer literal
(which may be a based number). The value obtained is implicitly converted to the type of
th:e out parameter ITEM (see 3.5.4), and returned in ITEM if the converted value is within the
range of this type; otherwise the exception CONSTRAINT_ERROR is raised and ITEM is
unaftected.

procedure PUT(FILE :in QUT_FILE;

ITEM :in NUM;

WIDTH : in INTEGER := 0O;

BASE :in INTEGER range 2 .. 16:
procedure PUT(ITEM :in NUM;

WIDTH : in INTEGER := O;

BASE :in INTEGER range 2 .. 16 : = 10);

10);

Expresses the value of the parameter ITEM as an integer literal, with no underscores and no
leading zeros (but a single 0 for the value zero), and a preceding minus sign for a negative
value. Uses the syntax of based number if the parameter BASE is given with a value
different from 10 (the default value), otherwise the syntax of decimal number.

Examples:

In the examples for numeric types the string quotes are shown only to reveal the layout; they are not
output. Similarly leading spaces are indicated by the lower letter b.

PUT(128), -~ "2g"
PUT(- 126, 7); -~ "bbb- 126"
PUT(126, WIDTH => 13, BASE => 2), ~= "bbb2#1111110#"

Floating point numbers:
The following procedures are defined in the generic package FLOAT_IO

procedure GET(FILE :in IN_FILE ; ITEM: out NUM);
procedure GET(iTEM : out NUM);

Reads an optional plus or minus sign, then according to the syntax ot a real literal (which
may be a based number). The \alue obtained is implicitly converted to the type of the out
parameter ITEM (see 3.5.7). and returned in ITEM if the converted valiue is within the range
of this type; otherwise the ec<ception CONSTRAINT_ERROR is raised and ITEM is
unaffected.

Input-Output for Numeric Types 14.3.5
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procedure PUT(FILE :in QUT_FILE;
ITEM : in NUM;
WIDTH . in INTEGER := 0O
MANTISSA : in INTEGER : = NUM'DIGITS;
EXPONENT : in INTEGER : = 2);
procedure PUT(ITEM 1 in NUM;
WIDTH :in INTEGER := O;
MANTISSA : in INTEGER := NUM'DIGITS;
EXPONENT : in INTEGER := 2);

Expresses the value of the parameter I(TEM as a decimal number, with no underscores, a
preceding minus sign for a negative value, a mantissa with the decimal point immediately
following the first non-zero digit and no leading zeros (but 0.0 for the value zero), and a
signed exponent part. A minimum number of digits in the mantissa (excluding sign and
point characters) can be specified (leading zeros being supplied as necessary); the default
vaiue is given by the type of ITEM: rounding is performed if fewer digits are specified than
the implemented precision. A minimum number of digits in the exponent part (excluding
sign and E) can be specified (leading zeros being supplied as necessary); the default value
is 2; if the value of ITEM needs more digits than specified for the exponent part, the exact
number of significant digits is used.

FYIR LI e S
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Examples:

package REAL_IO is new FLOAT_IO(REAL); use REAL _IO;

X : REAL := 0.001266; -- digits 8 %
PUT(X), - --  "1.2660000€E - 03"
PUT(X, WIDTH => 14, MANTISSA => 4, EXPONENT => 1); -- "bbbbbb1.268E - 3"

Fi.ced point numbers:

The tollowing procedures are defined in the generic package FIXED_{O

procedure GET(FILE :in IN_FILE; ITEM : out NUM);
procedure GET(ITEM : out NUM);

Reads an optional plus or minus sign, then according to the syntax of a real literal (which
may be a based number). The value obtained is implicitly converted to the type of the out
parameter ITEM (see 3.5.9), rctinded to the implemented deita for the type, and returned in
ITEM if the resulting value is within the range of the type; otherwise the exception
CONSTRAINT_ERROR is raised and ITEM is unaffected.

procedure PUT(FILE : in OUT_FILE;
ITEM :in NUM;
WIDTH : in INTEGER :
FRACT :in INTEGER :

procedure PUT(ITEM :in NUM,;
WIDTH : in INTEGER :
FRACT : in INTEGER :

0;
DEFAULT_DECIMALS);

o '
DEFAULT_DECIMALS),

Expresses the value of the parameter ITEM as a decimal number, w th no underscores, a
preceding minus sign for a negative value, and a mantissa but no exponent part. At least
one digit precedes the decimal point; if this requires leading zeros, ju it the number needed
are inserted. The number of digits after the point can be specified; the default value is given
by the type of ITEM; rounding is performed if fewer digiis are specified than are needed to
represent the delta of the type.

14.3.5 Input-Output for Numeric Types
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Example:

type FIX is delta 0.05 range -10 .. 10;
package FIX_IO is new FIXED_IO(FIX);
use FIX_IO;

X:FiX:= 1.25

PUT(X); -

PUT(X, WIDTH => 8, FRACT => 3); -

PUT(X-1.3); -
References:

"1.256"
"bbb1.2560"
L 1] - 0.05"
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based number 2.4.1, constraint_arror exception 11.1, decimal number 2.4, digit 2.1, exception 11, exponent
part 2.4, fixed point number 3.5.9, floating point number 3.5.7, generic package 12.1, generic package
instantiatior, 12.3, integer literal 2.4, integer type 3.5.4, layout_error exception 14.3.2, mantissa 3.5.7, minus
sign 2.4 4.5.4, numeric type 3.5, out parameter 6.2, plus sign 2.4 4.5.9, point character 2.4, precision 3.5.8,

range 3.5, real literal 2.4, sign character 4.5.4, underscore 2.3 2.4.1

14.3.6 Input-Output for Boolean Type

Note:

procedure GET(FILE : in IN_FILE ; ITEM : out BOOLEAN),

procedure GET(ITEM : out BOOLEAN);

Reads an identifier according to the syntax given in 2.3, with no distinction between
corresponding upper and lowe~ case letters. If the identifier is TRUE or FALSE, then the
boolean value is given; otherwise the exception DATA_ERROR is raised.

procedure PUT(FILE 1 in CUT_FILE ;
ITEM : in BOOLEAN;
WIDTH :in INTEGER := G,
. LOWER_CASE : in BOOLEAN : = FALSE);
procedure PUT(ITEM . in BOOLEAN;
WIDTH :in INTEGER := 0;

LOWER_CASE : in BOOLEAN

:= FALSE),

Expresses the value of the pa-ameter ITEM as the words TRUE or FALSE. An optional
parameter is used to specify upper or lower case (default is upper case). If a value of
WIDTH is given, exceeding the number of letters produced, then spaces follow to fill a field

of this width,.

Tte procedures defined in this section ar.2 directly available {that is, not by generic instantiation).

References:

boolean type 3.5.3, boolean value 3.5.3, data_error exception 14.3.4, exception 11, false 3.6.3, identitier 2.3,
sp ice character 2.1, true 3.5.3

Input-Output for Boolean Type 14.3.6
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14.3.7 Input-Output for Enumeration Types

Because each enumeration type has its own set of literals, these procedures are contained in the
generic package ENUMERATION_IO. An instantiation must specify the type, indicated here by
ENUM.

procedure GET(FILE : in IN_FILE; ITEM : out ENUM);
procedure GET(ITEM : out ENUM);

Reads an identifier (according to the syntax given in 2.3, with no distinction between
corresponding upper and lower case letters) or a character literal (according to the syntax
of 2.5, a character enclosed by single quotes). If this is one of the enumeration literals of the
type, then the enumeration value is given; otherwise the exception DATA_ERROR is raised.

procedure PUT(FILE : in OUT_FILE;
ITEM : in ENUM;
WIDTH :in INTEGER : = 0;
LOWER_CASE : in BOOLEAN := FALSE);
procedure PUT(ITEM 1 in ENUM;
WIDTH 1 in INTEGER : = 0;

LOWER_CASE : in BOOLEAN := FALSE);

Outputs the value of the parameter ITEM as an identifier or as a character literal. An
optional parameter indicates upper or lower case for identifiers (default is upper case); it
has no effect for character literals. If a field width is given, exceeding the number of
characters produced, then spaces foliow to fill a field of this width.

Note:
There is a difference between PUT defined for characters, and for enumeration vilues. Thus
TEXT_IO.PUT('A’); ~- the character A

package CHAR_IO is new TEXT_IO.EHUMERATION_IO(CHARACTER);
CHAR_IO.PUT('A’), -~ the character A’ between single quotes

References:

character literal 2.5, data_error exception 14.3.4, enumeration literal 3.5.1, enumeration type 3.5.1, generic
package 12.1, generic instantiation 12.3, literal 2.4 3.2 4.2, procedure 6, type 3
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14.4 Specification of the Package TEXT_IO

The package TEXT_!O contains the definition of all the text input-output primitives.

package TEXT_IO is
package CHARACTER_IO is new INPUT_OQUTPUT(CHARACTER};

type IN_FILE  is new CHARACTER_I|O.IN_FILE;
type OUT_FILE is new CHARACTER_IO.QUT_FILE;

-~ Character Input - Qutput

procedure GET(FILE :in IN_FILE: ITEM : out CHARACTER);
procedure GET(ITEM : nut CHARACTER),
procedure PUT(FILE :in OUT_FILE; ITEM : in CHARACTER),
procedure PUT (ITEM :in CHARACTER);

-~ String Input -~ Qutput

procedure GET(FILE :in IN_FILE: ITEM : out STRING);
procedure GET(ITEM : out STRING);
procedure PUT(FILE :in OUT_FILE; ITEM : in STRING);
procedure PUT (ITEM :in STRING);

function GET_STRING(FILE : in IN_FILE) return STRING;
function GET_STRING return STRING;

function GET_LINE (FILE : in IN_FILE) return STRING;
function GET_LINE return STRING;

procedure PUT_LINE (FILE : in QUT_FILE, ITEM : in STRING);
procedure PUT_LINE (ITEM : in STRING);

-~ Generic package for integer Input - Output

generic
type NUM is range <&;
with function IMAGE(X : NUM) return STRING is NUM'IMAGE;
with function VALUE(X : STRING) return NUM is NUM'VALUE;
package INTEGER_IO is
procedure GET(FILE :in IN_FILE; ITEM : aut NUM);
procedure GET(ITEM : out NUM);
procedure PUT(FILE :in OUT_FILE;
ITEM :in NUM;
WIDTH :in INTEGER := 0;

BASE :in INTEGER range 2 .. 18 := 10);
procedure PUT(ITEM :in NUM,

WIDTH :in INTEGER := O;

BASE :in INTEGER range 2 .. 18 := 10);

end INTEGER_|O;
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-~ Generic package for Floating Point Input - Output

generic
type NUM is digits <>;
with function IMAGE (X : NUM) return STRING is NUM'IMAGE;
with function VALUE (X : STRING) return NUM is NUM'VALUE;
package FLOAT_IO is
procedure GET(FILE :in IN_FILE ; ITEM: out NUM);
procedure GET(ITEM : out NUM);

4
1
3
P
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procedure PUT(FILE 1 in QUT_FILE; )
ITEM 1 in NUM; -,
WICTH 1 in INTEGER := 0;
MANTISSA :in INTEGER := NUM'DIGITS;
EXPONENT : in INTEGER : = 2); §
}i
procedure PUT(ITEM : in NUM; ’
WIDTH . in INTEGER : = O; <
MANTISSA : in INTEGER := NUM'DIGITS;
EXPONENT : in INTEGER := 2),

end FLOAT_IO;

- - Generic package for Fixed Point Input - Output

generic
type NUM is delta <>, \_7
with function IMAGE (X : NUM) return STRING is NUM'IMAGE;
with function VALUE (X : STRING) teturn NUM is NUM'VALUE;
package FIXED_IO is
DELTA_IMAGE : constant STRING := IMAGE(NUM'DELTA - INTEGER(NUM'DELTA));
DEFAULT_DECIMALS : constant INTEGER = DELTA_IMAGE'LENGTH -~ 2;

procedure GET(FILE cin  IN_FILE; ITEM : out NUM);
procedure GET(ITEM : out NUM),

procedure PUT(FILE rin OUT_FILE;
ITEM :in NUM;
WIDTH :in INTEGER := 0O;
FRACT :in INTEGER := DEFAULT_DECIMALS);

procedure PUT(ITEM :in NUM;
WIDTH :in INTEGER :
FRACT :in INTEGER :

o;
DEFAULT_DECIMALS);

end FIXED_IO;

14.4 Specification of the Package Texi_IO
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-~ Input - Output for Boolean

procedure GET(FILE
procedure GET (ITEM

procedure PUT (FILE
ITEM
WIDTH
LOWER_CASE

procedure PUT (ITEM
WIDTH

-an IN_FILE

14-21

; IT=M : out BOOLE AN);
: out BOOLEAN);

:in OUT_FILE ;

. in BOOLEAN;

in INTEGER := 0,

:in BOOLEAN := FALSE);

: in BOOLEAN;
1 in INTEGER := O;

LOWER_CASE : in BOOLEAN := FALSE),

-- Generic package for Enumeration Types

generic
type ENUM is (O );

with function IMAGE (X : ENUM)

return STRING is ENUM'IMAGE;

with function VALUE (X : STRING) return ENUM is ENUM'VALUE;

package ENUMERATION_IO is
procedure GET(FILE
procedure GET(ITEM

procedure PUT (FILE
ITEM
WIDTH
LOWER_CASE

procedure PUT (ITEM
WIDTH
LOWER_CASE
end ENUMERATION_IO;
-~ Layout control

function LINE(FILE : in IN_FILE)

D in IN_FILE; ITEM : out ENUM);
: out ENUM);

cin OUT_FILE ;

o in ENUM;

1 in INTEGER : = 0;

: in BOOLEAN : = FALSE);

:in ENUM;
1 in INTEGER : = 0;

: in BOOLEAN := FALSE);

return NATURAL;

function LINE(FILE : in QUT_FILE) return NATURAL;

function LINE return NATURAL,;

function COL(FILE : in IN_FILE)
tunction COL(FILE : in QUT_FILE)
function COL return NATURAL;

procedure SET_COL(FILE : in IN_FILE;

~~ for default output file
return NATURAL,;
return NATURAL;
for detault output tile

TO : in NATURAL);

procedure SET_COL(FILE : in OUT_FILE;; TO : in NATURAL);

procedure SET_COL(TO : in NATURAL)} -

for default output file

Specification of the Package Text_IO 14.4
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procedure NEW_LINE(FILE : in QUT_FILE; N : in NATURAL := 1);
procedure NEW_LINE(N : in NATURAL : = 1);

procedure SKIP_LINE(FILE : in IN_FILE; N : in NATURAL := 1);
procedure SKIP_LINE(N : in NATURAL := 1),

PR

function END_OF_LINE(FILE : in IN_FILE) return BOOLEAN;
function END_OF_LINE return BOOLEAN;

procedure SET_LINE_LENGTH(FILE :in IN_FILE; N :in INTEGER);
procedure SET_LINE_LENGTH(FILE :in OUT_FILE; N : in INTEGER);
procedure SET_LINE_LENGTH(N : in INTEGER); -- for default output file

function LINE_LENGTH(FILE : in IN_FILE) return INTEGER;
function LINE_LENGTH(FILE : in OUT_FILE) return INTEGER;
function LINE_LENGTH return INTEGER,; -~ for default output file

—-- Detauit input and output manipulation

tunction STANDARD_INPUT  return IN_FILE;
function STANDARD_OUTPUT return QUT_FILE;

function CURRENT_INPUT  return IN_FILE;
function CURRENT_OUTPUT return OUT_FILE;

procedure SET_INPUT (FILE :in IN_FILE ),
procedure SET_OUTPUT (FILE : in OUT_FILE );

-- Exceptions

NAME_ERROR : exception renames CHARACTER_IO.NAME_ERROR;
USE_ERROR : exception renames CHARACTER_IO.USE_ERROR;
STATUS_ERROR : exception renames CHARACTER_IO.STATUS_ERROR;
DATA_ERROR : exception renames CHARACTER_IO.DATA_ERROR,;
DEVICE_ERROR : exception renames CHARACTER_IO.DEVICE_ERROR;

END_ERROR : exception renames CHARACTER_IO.END_ERROR;
LAYOUT_ERROR : exception;

end TEXT_IO;

References:

boolean type input-output 14.3.8, character input-output 14.3.3, default input-output 14.3.1, enumeration type
input-output 14.3.7, exceptions for input-output 14.1.1 14.1.2 14.3.2 14.3.4, fixed point input-output 14.3.5,
floating point input-output 14.3.5, generic package 12.1. integer input-output 14.3.5, item parameter 14.3,
layout for input-output 14.3.2, package 7, string input-output 14.3.3

14.4 Specification of the Package Text_10
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14.5 Example of Text Input-Output

The following example shows the use of the text input-output primitives in a dialogue with a user at a
terminal. The user is asked to select a color, and the program output in response is the number of
items of the color available in stock. The default input and output files are used.

procedure DIALOGUE is
use TEXT_IO;
type COLOR is (WHITE, RED. ORANGE, YELLOW, GREEN, BLUE, BROWN);
INVENTORY : array (COLOR) of INTEGER := (20, 17, 43, 10, 28, 173, 87);
CHOICE : COLOR,;
package COLOR_IO is new ENUMERATION_IO(COLOR); use COLOR_IO;

s function ENTER_COLOR return COLOR is
SELECTION : COLOR;
E begin
N loop
4 begin
] x PUT("Cotor selected: ");
* GET(SELECTION);
. return SELECTION;
exception
E . when DATA_ERROR =)
E ; PUT("Invalid color, try again. ");
end;
end loop;
end;
‘ begin -- body of DIALOGUE;
o CHOICE : = ENTER_COLOR();
. NEW_LINE;
PUT(CHOICE, LOWER_CASE => TRUE);
PUT(" items available: "),
SET_COL(25);
PUT(INVENTORY(CHOICE), WIDTH => 5);
PUT(";"); ’
NEW_LINE;
end DIALOGUE;

Example of an interaction (characters typed by the user are italicized):

; Color selected: black
» invalid color, try again. Color selected: blue
v blue items available:  173;

References:

default input filte 14.3, default output file 14.3, text input-output primitives 14.4

Example of ‘“ext Input-Ouiput 14.5
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14.6 Low Level Input-Output

A low level input-output operation is an operation acting on a physical device. Such an operation is
handled by using one of the (overloaded) predefined procedures SEND_CONTRCL and
RECEIVE_CONTROL.

A procedure SEND_CONTROL may be used to send control information to a physicai Jevice. A
procedure RECEIVE_CONTROL may be used to monitor the execution of an input-output coeration
by requesting information from the physical device.

Such procedures are declared in the standard package LOW_LEVEL_!O and have two parameters
identifying the device and the data. However, the kinds and formats of the control information will
depend on the physical characteristics of the machine and the device. Hence the types of the
parameters are implementation defined. Overloaded definitions of these procedures should be
provided for the supported devices.

The visible part of the package defining these procedures is outlined as follows:

package LOW_LEVEL_IO is
-~ declaratiors of the possible types for DEVICE and DATA;
-- declarations of overloaded procedures for these types:
procedure SEND_CONTROL (DEVICE : device_type; DATA : in out data_type),

procedure RECEIVE_CONTROL (DEVICE : device_type; DATA : in out data_type);
end;

The bodies of the procedures SEND_CONTROL and RECEIVE_CONTROL for various devices can be
supplied in the body of the package LOW_LEVEL_IO. These procedure bodies may be written with
code statements.

References:

actual parameter 6.4, code statement 13.8. overloaded definition 3.4, overloaded predefined procedure 6.6,
package 7, package body 7.1 7.3, procedurse 6.1, procedure body 6.1, type 3, visible part 7.2

12.6 Low Level Input-Output
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A. Predefined Language Attributes

The following attributes are predefined in the language. They are denoted in the manner described in
4.1.4: the name of an entity is followed by a prime, and then by the identifier of an attribute
appropriate to the entity.

Attribute of any object or subprogram X

ADDRESS A number corresponding to the first storage unit occupied by X (see 13.7). Overloaded
on all predefined integer types.

Attribute ot any type or subtype T (except a task type)

BASE Applied to a subtype, yields the base type: applied to a type. yields the type itself. This
attribute may be used only to obtain further attributes of a type, e.q. TBASE'FIRST (see
3.3).

Attribute of any type or subtype (except a task type),
or any object thereot

SIZE The maximum number of bits required to hold an object of that type (see 13.3). Of type
INTEGER.

Attributes of any scalar type or subtype T

FIRST The minimum value of T (see 3.3).

LAST The maximurn value of T (see 3.3).

IMAGE If X is a value of type T, T'IMAGE(X) is a string representing the value in a standard
display form.

For an enumeration type. ‘he values are represented, in minimum width, as either the
corresponding enumeraticn literal, in upper case, or as the co responding character
literal, within quotes.

For an integer type, the va ues are represented as decimal numters of minimum width.
For a fixed point type, th: values are represented as decimal fractions of minimum
width, with sufficient decirial places just to accommodate the declared accuracy. For
a floating point type. the values are represented in exponential notation with one
significant characteristic digit, sufficient mantissa digits just to accommodate the
declared accuracy, and a signed three-digit exponent. The expanent letter is in upper
case. For ali numeric types, negative values are prefixed with a minus sign and positive
values have no prefix.
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If S is a string, T'VALUE(S) is the value in T that can be represented in display
form by the string S. If the string does not denote any possible value, the
exception DATA_ERROR is raised; if the value lies outside the range of T, the
exception CONSTRAINT_ERROR is raised. All legal lexical forms are legal
display forms (see 2.3, 2.4).

Attributes of any discrete type or subtype T

POS

VAL

PRED

succC

If X is a value of type T, T'POS(X) is the integer position of X in the ordered
sequence of values T'FIRST .. T'LAST. the position of T'FIRST being itself for
integer types and zero for enumeration types, (see 3.5.5).

If J is an integer, T'VAL(J) is the value of enumeration type T whose POS is J. If
no such value exists, the exception CONSTRAINT_ERROR is raised, (see
3.5.5).

it X is a value of type T, T'PRED(X) is the preceding value. The exception
CONSTRAINT_ERROR is raised it X = T'FIRST, (see 3.5.5).

It X is a value of type T, T'SUCC(X) is the succeeding value. The exception
CONSTRAINT_ERROR is raised if X = T'LAST, (see 3.5.5).

Attributes of any fixed point type or subtype T

DELTA

ACTUAL_DELTA

BITS

LARGE

MACHINE_ROUNDS

The delta specified in the declaration of T (see 3.5.10). Of type universal real.

The delta of the model numbers used to represent T (see 3.5.10). Of type
universal real.

The number of bits required to represent the model numt-ers of T (see 3.5.10).
Of type universal integer.

The largest model number of T (see 3.5.10). Of type universal real.

True if the machine performs true rounding (to nearest even) when computing
values of type T (see 13.7.1). Of type BOOLEAN.

Attributes of any floating point type or subtype T

DIGITS

MANTISSA

EMAX

SMALL

The number of digits specified in the declaration of T (see 3.5.8). Of type
universal integer.

The number of bits in the mantissa of the representation of model numbers of
T (see 3.5.8). Of type universal integer.

" The largest exponznt value of the representation of mocel numbers of T (see

3.5.8). The smallest exponent value is -EMAX. Of type universal integer.

The smallest positive model number of T (see 3.5.8). Of type universal real.
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LARGE

EPSILON

MACHINE_RADIX

MACHINE_MANTISSA

MACHINE_EMAX

MACHINE_EMIN

MACHINE_ROUNDS

MACHINE_OVERFLOWS

The largest model number of T (see 3.5.8). Of type universal real.

The difference between unity and the smallest model number of T greater
than unity (see 3.5.8). Both unity and T'EPSILON are madel numbers of
T. Ot type universal real.

The radix of the exponent of the underlying machine representation of T
(see 13.7.1). Of type universal integer.

The number of bits in the mantissa of the underlying machine
representation of T (see 13.7.1). Of type universal integer.

The largest exponent value of the underlying machine representation of T
(see 13.7.1). Of type universal integer.

The smallest exponent value of the underlying machine representation of T
(see 13.7.1). Of type universal integer.

True if the machine performs true rounding (to nearest even) when
computing values of type T (see 13.7.1). Of type BOOLEAN.

True if, when a computed value is too large to be represented correctly by
the wunderlying machine representation of 7T, the exception
NUMERIC_ERROR is raised (see 13.7.1). Of type BOOLEAN.

At'ributes of any array type or subtype, or object thereof

FIIsT

FIRST(J)

LAST

LAST(J)

LENGTH

LENGTH(J)

RANGE

If A is a constrained array type or subtype, or an array object, A'FIRST is
the lower bound of the first index (see 3.6.2).

Similarly, the lower bound of the J'th index, where J must be a static
integer expression (see 3.6.2).

If A is a constrained array type or subtype, or an array object, A'LAST is the
upper bound >f the first index (see 3.6.2).

Similarly, the upper bound of the J'th index, where J must be a static
integer expre:sion (see 3.6.2).

It Ais a constrained array type or subtype, or an array object, ALENGTH is
the number of elements in the first dimension of A (se2 3.6.2).

Similarly. the number of elements in the J'th dimension, where J must be a
static expression (see 3.6.2).

If A is a constrained array type or subtype, or an arr: y object, A’RANGE is
the subtype A'FIRST .. A'LAST, whose base type is tt e first index type of A
(see 3.6.2).

R
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RANGE(J)

Attribute of any record type with discriminants

CONSTRAINED

Attributes of any record component C

POSITYON

FIRST_BIT

LAST_BIT
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Similarly, the subtype A'FIRST(J) .. A'LAST(J), whose base type is the J'th
index type of A, and where J must be a static integer expression (see
3.6.2).

It R is an object of any record type with discriminants, or of any subtype thereof,
R'CONSTRAINED is true if and only if the discriminant values of R cannot be
maodified {see 3.7.2). Of type BOOLEAN.

The oftset within the record, in storage units, of the first unit of storage occupied
by C (see 13.7). Of type INTEGER.

The offset, from the start of C'POSITION, of the first bit used to hold the value of
C (see 13.7). Of type INTEGER.

The offset, from the start of C'POSITION, of the last bit used to hold the value of
C. CLAST_BIT need not lie within the same storage unit as C'FIRST_BIT {see
13.7). Of type INTEGER.

Attribute of any access iype P

STORAGE_SIZE

The total number of storage units reserved for allocation for all objects of type P
(see 13.2). Overloaded on all predefined integer types.

Attributes of any task, or object of a task type, T

TERMINATED
PRIORITY
FAILURE

STORAGE_SIZE

True when T is terminated (see 9.9). Of type BOOLEAN.
The (static) priority of T (see 9.9). Of type universal integer.
The exception that, it raised, causes FAILURE within T (see 9.9).

The number of storage units allocated for the execution of T (see 9.9).
Overloaded on all predefined integer types.

Atiribute of any entry E

COUNT

Momentarily, the number of calling tasks waiting on E (see 9.9). Of type
INTEGER.
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Pragma

CONTROLLED

INCLUDE

INLINE

INTERFACE

MEMORY_SIZE

OPTIMIZE

PACK

PRIORITY

STORAGE_UNIT

B. Predefined Language Pragmas

Meaning

Takes an access type name as argument. it must appear in the same
declarative part as the access type definition (see 4.8). It specifies that
automatic storage reclamation should not be performed for objects of the
access type except upon leaving the scope of the access type definition (see
4.8).

Takes a string as argument, which is the name of a text file. This pragma can
appear anywhere a pragma is allowed. [t specifies that the text file is to be
included where the pragma is given.

Takes a list of subprogram names as arguments. It must appear in the same
declarative part as the named subprograms. It specifies that the subprogram
bodies should be expanded inline at each call (see 6.3).

Takes a language name and subprogram name as arguments. It must appear
after the subprogram specification in the same declarative part or in the same
package specification. It specifies that the body of the subprogram is written in
the given other language, whose calling conventions are to be observed (see
13.9).

Takes ON or OFF as argument. This pragma can appear anywhere. It specifies
that listing of the program unit is to be continued or suspended until a LIST
pragma is given with the opposite argument..

Takes an integer number as argument. This pragma can only appear before a
library unit. It establishes the available number of storage units in memory (see
13.7).

Takes TIME or SPACE as argument. This pragma can only appear in a
declarative part and it applies to the block or body enclasing the declarative
part. It specifies whether time or space is the primary optimization criterion.

Takes a record or array type name as argument. The position of the pragma is
governed by the same rules as for a representation specification. It specifies
that storage minimization should be the main criterion when selecting the
representation of the given type (see 13.1).

Takes a static expression as argument. It must appear in a task (type)
specification or the outermost declarative part of a main program. It specifies
the priority of the task (or tasks of the task type) or the mair program (see 9.8).

Takes an integer number as argument. This pragma can only appear before a
library unit. It establishes the number ot bits per storage unit (see 13.7).

£
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SUPPRESS Takes a check name and-optionally also either an object name or a type name

as arguments. It must appear in the declarative part of a unit (block or body). It

L;_‘ specifies that the designated check is to be suppressed in the unit. In the

absence of the optional name, the pragma applies to all operations within the

unit. Othierwise its effect is restricted to operations on the named object or to
operations on objects of the named type (see 11.7).

SYSTEM _-"Takes a name as argument. This pragma can only appear before a library unit.
It establishes the name of the object machine (see 13.7).

T R R N




This appendix outlines the specification of the package STANDARD containing all predefined
identifiers in the language. The corresponding package body is implementation defined and is not

shown.

- package STANDARD is

C. Predefined Language Environment

type BOOLEAN is (FALSE, TRUE);

function "not” (X : BOOLEAN) return BOOLEAN;

tunction "and” (X.Y : BOOLEAN) return BOOLEAN;
"or" (XY : BOOLEAN) return BOOLEAN,
function "xor" (XY : BOOLEAN) return BOOLEAN;

function

type SHORT_INTEGER is range implementation_defined,;
type INTEGER

type LONG_INTEGER

function
function
function

tunction
tunction
function
function
function
function
function

is range nnplementation_delined,
is range implementation_delined;

"+ " (X : INTEGER) return INTEGER;
" =" (X : INTEGER) return INTEGER;
ABS (X : INTEGER) return INTEGER;

"t (XY
"Lt (XY
" (XY
"/ (XY
"rem" (X.Y
"mod" (XY :

"s2" (X INTEGER; Y : INTEGER range O .. INTEGER'LAST) return INTEGER,;

INTEGER) return INTEGER;
INTEGER) return INTEGER,;

: INTEGER) return INTEGER;

INTEGER) return INTEGER;

: INTEGER) return INTEGER;

INTEGER) return INTEGER;

-~ Similarly for SHORT_INTEGER iind LONG_INTEGER

type SHORT_FLOAT is digits imp ementation_detined range implementaticn_defined,

type FLOAT
type LONG_FLOAT

function
function
function

function
function
function
function
function

is digits imp ementation_defined range implementaticn_defined;
is digits imp emm=niation_defined range implementation_defined;

" 4" (X : FLOAT) return FLOAT;
" ="(X : FLOAT) return [ LOAT;
ABS (X : FLOAT) return f LOAT;

"4+ " (XY : FLOAT) return FLOAT;
" =" (XY : FLOAT) return FLOAT;
"+" (XY : FLOAT) returri FLOAT
"/" (XY : FLOAT) returr FLOAT;
“s¢" (X : FLOAT; Y : INTE 3ER) return FLOAT;

-~ Similarly for SHORT_FLOAT and LONG_FLOAT

-




(nul,
bs,
dle,

can,

NUL
SOH
8TX
ETX
EOT

ACK
BEL
BS
HT
LF
vT
FF
CR
so
si
DLE
DC1
DC2
DC3

type CHARACTER is

package ASCIi is

Control characters:

ENQ :

~~ The following characters comprise the standard ASCH character set. 3
~- Character literals corresponding to control characters are not identifiers; ¥
~~- They are indicated in italics in this definition: :

soh, stx, etx, eot,

ht, M, W, f,

dct, dc2, dc3, dc4,

em, sub, esc, ts,

e
3
')I' :.n' ,+:
'1!, :2:' '31'

'9" ’:'I ; L} '< ,Y

: constant CHARACTER :
. constant CHARACTER :
: constant CHARACTER :
: constant CHARACTER :=
: constant CHARACTER :
constant CHARACTER .
. constant CHARACTER :
: constant CHARACTER : =
: constant CHARACTER :
: constant CHARACTER :
. constant CHARACTER :
. constant CHARACTER :
. constant CHARACTER :
: constant CHARACTER :
: constant CHARACTER :
: constant CHARACTER :
. constant CHARACTER : =
: constant CHARACTER :
: constant CHARACTER :
: constant CHARACTER : =
: constant CHARACTER :
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enq, ack, bel, 3
cr, s0, si, )

nak, syn, etb,
gsv fs, Usl

soh; 3
Stx; 3
etx;

eot;

eng,;
ack, 3
bel, ;
bs; ;
ht;

It

vt
f; :
cr; '
so; !
si; £
dle;

det;
dc2;
de3,;
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NAK : constant CHARACTER : = nak;
SYN : constant CHARACTER := syn;
ETB : constant CHARACTER := eth;
CAN : constant CHARACTER := can; L
EM : constant CHARACTER := em; .
SUB : constant CHARACTER := sub;
ESC : constant CHARACTER := esc; j
FS : constant CHARACTER : = fs; {
GS : constant CHARACTER : = gs;
RS : constant CHARACTER : = rs;
US : constant CHARACTER : = us;
DEL : constant CHARACTER : = de/;

nwonon #
DR T SR )

n

-~ Other characters

EXCLAM ; constant CHARACTER : = ‘1"
SHARP : constant CHARACTER (= "#";
DOLLAR : constant CHARACTER : = '§';
QUERY . constant CHARACTER := '?;
AT_SIGN : constant CHARACTER : = '@";
L_BRACKET : constant CHARACTER := ‘[
BACK_SLASH : constant CHARACTER := '\";
R_BRACKET : constant CHARACTER := ']’;
CIRCUMFLEX : constant CHARACTER ;= '~";
GRAVE : constant CHARACTER := '™
L_BRACE : constant CHARACTER := *{';
BAR : constant CHARACTER : = 7|
R_BRACE : constant CHARACTER := '};
TILDE : constant CHARACTER ;= '~";

-~ Lower case letters

LC_A : constant CHARACTER := ‘a’;

.l:C_Z : constant CHARACTER : = 2",

end ASCIl;
-~ Predefined types and subtypes

subtype NATURAL is INTEGER range 1 .. INTEGER'LAST;
subtype PRIORITY is INTEGER range implementation_defined;

type STRING is array(NATURAL range <)) of CHARACTER;

type DURATION is delta impiementation_defined range impiementation_detined;

-- The predefined exceptions

CONSTRAINT_ERROR : exception;
NUMERIC_ERROR : exception;
SELECT_ERROR : exception;
STORAGE_ERROR : exception;
TASKING_ERROR : exception;
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-- The machine dependent package SYSTEM

package SYSTEM is
type SYSTEM_NAME is implementation_detined_enumeration_type;

NAME: constant SYSTEM_NAME := implementation_defined,;

STORAGE . constant 1= implementation_defined,
MEMORY_SIZE : constant 1= implementation_delined,
MIN_INT : constant 1= implementation_delined,
MAX_INT : constant 1= implementation_defined;
end SYSTEM;
for CHARACTER use -- 128 ASCIi character set without holes

0. 1.2,3 4,5, .., 125, 126, 127);
pragma PACK(STRING);

end STANDARD;

Certain aspects of the predefined entities cannot be compietely described in the language itself. For
example, although the enumeration type BOOLEAN can be written showing the two enumeration
literals FALSE and TRUE, the relationship of BOOLEAN to conditions cannot be expressed in the
language.

The language definition predefines certain library units (other than the package STANDARD). These
library units are

- The package CALENDAR (see 9.6)

- The generic procedure SHARED_VARIABLE_UPDATE (see 9.11)

- The generic procedure UNCHECKED_DEALLOCATION (see 13.10.1)
- The generic function UNCHECKED_CONVERSION (see 13.10.2)
- The generic package INPUT_OUTPUT (see 14.2)

- The package TEXT_IO (see 14.4)

- The package LOW_LEVEL_IO (see 14.6)




D. Glossary

Access type An access type is a type whose
objects are created by execution of an
allocator. An access value designates such an
object.

Aggregate An aggregate is a written form
denoting a composite value. An array
aggregate denotes a value of an array type; a
record aggregate denotes a value of a record
type. The components of an aggregate may be
specified using either positional or named
association.

Allocator An allocator creates a new object of
an access type, and returns an access value
designating the created object.

Attribute An  attribute is a predefined
characteristic of a named entity.

Bcdy A body is a program unit defining the
execution of a subprogram, package, or task.
A pody stub is a replacement for a body that is
compiled separately.

Collection A collection is the entire set of
altocated objects of an access type.

Compilation Unit A compilation unit is a
pra>gram unit presented for compilation as an
inaependent text. It is preceded by a context
specification, naming the other compilation
units on which it depends. A compilation unit
miay be the specification or body of a
subprogram or package.

Component A component denotes a part of a
ccmposite object. An indexed component is a
name containing expressions denating
indices, and names a component in an array or
ar. entry in an entry family. A sel¢cted
component is the identifier of the compoent,
prafixed by the name nt the entity of which it is
a component.

Composite type An object of a composite type
ccmprises several components. An array type
is a composite type, all of whose components
are of the same type and subtype; the

individual components are selected by their
indices. A record type is a composite type
whose components may be of different types;
the individual components are selected by
their identifiers.

Constraint A constraint is a restriction on the
set of possible values of a type. A range
constraint specifies lower and upper bounds of
the values of a scalar type. An accuracy
constraint specifies the relative or absolute
error bound of values of a real type. An index
constraint specifies lower and upper bounds of
an array index. A discriminant constraint
specifies particutar values of the discriminants
of arecord or private type.

Context specification A context specification,
prefixed to a compilation unit, defines the
other compilation units upon which it depends.

Declarative Part A declarative part is a
sequence of declaratons and related
information such as subprogram bodies and
representation specifications that apply over a
region of a program text.

Derived Type A derived type is a type whose
operations and values are taken from those of
an existing type.

Discrete Type A discrete type has an ordered
set of distinct values. Tt e discrete types are
the enumeration and inte ger types. Discrete
types may be used for iniexing and iteration,
and for choices in case statements and record
variants.

Discriminant A discriminant is a syntactically
distinguished component of a record. The
presence of some recorcl components (other
than discriminants) may «epend on the value
of a discriminant.

Elaboration Elaboration is the prncess by
which a declaration achieves its effect. For
example it can associate a name with a
program entity or initiali:.e a newly declared
variable.
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Entity An entity is anything that can be named
or denoted in a program. Objects, types,
values, program units, are all entities.

Entry An entry is used for communication
between tasks. Externally an entry is called
just as a subprogram is called; its internal
behavior is specified by one or more accept
statements specifying the actions to be
performed when the entry is called.

Enumeration type An enumeration type is a
discrete type whose values are given explicitly
in the type declaration. These values may be
either identitiers or character literals.

Exception An exception is an event that
causes suspension of normal program
execution. Bringing an exception to attention
is called raising the exception. An exception
handier is a piece of program text specifying a
response to the exception. Execution of such
a program text is called handling the
exception,

Expression An expression is a part of a
program that computes a value.

Generic program unit A generic program unit
is a subprogram or package specified with a
ge neric clause. A generic clause contains the
de claration of generic parameters. A generic
program unit may be thought of as a possibly
pcrameterized model of program units.
Instances (that is, filled-in copies) of the model
cin be obtained by generic instantiation.
Such instantiated program units define
st bprograms and packages that can be used
di-ectly in a program.

In‘roduce An identifier is introduced by its
de-claration at the point of its first occurrence.

Lexical unit A lexical unit is one of the basic
syntactic elements making up a program. A
le<ical unit is an identifier, a numoer, a
character literal, a string, a delimiter, or a
comment.

Lreral A literal denotes an explicit value of a

given type, for example a number, an
enumeration value, a character, or a string.

)
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Model number A model number is an exactly
representable value of a real numeric type.
Operations of a real type are defined in terms
of operations on the model numbers of the
type. The properties of the model numbers
and of the operations are the minimal
properties preserved by ali implementations of
the real type.

Object An object is a variable or a constant.
An object can denote any kind of data element,
whether a scalar value, a composite value, or a
value in an access type.

Overloading Overloading is the property of
literals, identifiers, and operators that can have
several alternative meanings within the same
scope. For example an overloaded
enumeration literal is a literal appearing in two
or more enumeration types, an overloaded
subprogram is a subprogram whose
designator can denote one of several
subprograms, depending upon the kind of its
parameters and returned value.

Package A package is a program unit
specifying a collection of related entities such
as constants, variables, types and
subprograms. The visible part of a package
contains the entities that may be used from
outside the package. The private part of a
package contains structural details that are
irrelevant to the user of the package but that
complete the specificietion of the visible
entities. The body of a package contains
implementations of subprograms or tasks
(possibly other packages) specified in the
visible part.

Parameter A parameter is one of the named
entities associated with a subprogram, entry,
or generic program unit. A formal pararieter is
an identifier used to denc te the named entity in
the unit body. An act.al parameter is the
particular entity as:tociated with the
corresponding formal parameter in a
subprogram call, entry call. or generic
instantiation. A paran.eter mode specifies
whether the parameter is used for input, output
or input-output of data. /. positional parameter
i1s an actual parameter passed in positional
order. A named parameter is an actual
parameter passed by naming the
corresponding formal parameter.
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Pragma A pragma is an instruction to the
compiler, and may be language defined or
implementation defined.

Private type A private type is a type whose
structure arid set of values are clearly defined,
but not known to the user of the type. A
private type is known only by its discriminants
and by the set of operations defined forit. A
private type and its applicable operations are
defined in the visible part of a package.
Assignment and comparison for equality or
inequality are also defined for private types,
uniess the private type is marked as /imited.

Qualified expression A qualified expression is
an expression qualified by the name of a type
or subtype. It can be used to state the type or
subtype of an expression, for example for an
overloaded literal.

Range A range is a contiguous set of values of
a scalar type. A range is specified by giving
the lower and upper bounds for the values.

Rendezvous A rendezvous is the interaction
that occurs between two parallel tasks when
one task has called an entry of the othe! task,
and a corresponding accept statement is
being executed by the other task on behalf of
the calling task.

Representation specification Representation
syecifications specify the mapping be.ween
data types and features of the underlying
machine that execute a program. In some
cases, they completely specify the mapping, in
other cases they provide criteria for choosing
a mapping.

Scalar types A scalar type is a type \whose
values have no components. Scalar types
cemprise discrete types (that is, enumeration
ar d integer types) and real types.

Scope The scope of a declaration is the region
of text over which the declaration his an
ef ect.

Siatic expression A static expression i3 one
whose value does not depend on any
dynamically computed values of variable:i.
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Subprograms A subprogram is an executable
program unit, possibly with parameters for
communication between the subprogram and
its point of call. A subprogram declaration
specifies the name of the subprogram and its
parameters; a subprogram body specifies its
execution. A subprogram may be a procedure,
which performs an action, or a function, which
returns a resulit.

Subtype A subtype of a type is obtained from
the type by constraining the set of possible
values of the type. The operations over a
subtype are the same as those of the type from
which the subtype is obtained.

Task A task is a program unit that may operate
in parallel with other program units. A task
specification establishes the name of the task
and the names and parameters of its entries; a
task body defines its execution. A task type is
a specification that permits the subsequent
declaration of any number of similar tasks.

Type A type characterizes a set of values and a
set of operations applicable to those values
and a set of operations applicable to those
values. A type definition is a language
construct introducing a type. A type
declaration associates a name with a type
introduced by a type definition.

Use clause A use clause opens the visibility to
declarations given in the visible part of a
package.

Variant A variant part of a record specifies
alternative record components, depending on
a discriminant of the record. Each value of the
discriminant establishes a particular
alternative of the variant part.

Visibility At a given poin! in a program text, the
declaration of an entity with a certain identifier
is said to be visible if the entity is an
acceptable meaning for an occurrence at that
point of the identifier.




E. Syntax Summary

23

tifier .=
letter {[underacore) letter_or_digit}
letter_or_digit :: = letter | digit

letter :: = upper_case_letter | W_Cm_w

24

numeric jiteral = decimal_number | based_number
decimal_number :: = integer [.integer] [exponent]
integer  :: = digit {[underscore] digit)

exponent = E [+] integer | E - integer

24.1

based_number :: =
base # based_integer [.based_integer] # {exponent]

base :: = integer

based_integer :: =
extended_cigit {{underscore] extendsd_digit)

extended_digit :: = digit | letter

28

Character_string :: = “{character}”

28

pragma =
pragma wentifier {(argument {. argi.ment})];

argument ;. =
[identifier =>] name
i identifier =>] starc_expression

a

ageclaration a2
object_declaration | number_declaration
| type_declaration | subtype_declaration
| subprogram_declaration | package_declaration
| task_declaration | exception_declaration
| renaming_deciaration

32

object_declaration :: »
identiher_list : [constant] subtype_indication [: = expression);
| identrher_iist : [constant) array_type_detmition [: = expression];

number_declaration :: =
dentitier_list | constant : = hferal_sxpression;

wentitier_list ;= identfier {. dentifier)

33

type_declarstion =
type wentifier [discriminard_oart] is type_definition;
| incomplete_type_declaration

type_definition :: =
enumeration_type_definition | integer_type_definition
| resl_type_dehnition | array_type_definition
| record_type_deftinihion | access_type_definition
| derwved_type_definition | private_type_definition

subtype_deciaration :: =
subtype identifier is subtype_indication;

subtype_indication :: = type_mark {constraint)
type_mark = type_name | sublype_name
constraint :: =

range_constraint | accuracy_corstraint
| index_constraint | discriminant_constraint

34

derived_type_definition :: = new subtype_indication

35
range_constra:nt :: = range range

range :: = Simple_expression .. simpie_expression

st

enumeration_tvpe_definition = =
(enumeratior:_literal {, enumaration_literal})

enumeration_liteial :: = identifier | character_literai

354

integer_type_definition .: = range_constraint

3se
real_type_definition ::= accuracy_constramt

accuracy_constraint =
tioating_point_constraint | fixed_point_constraint

357
fioating_point_constraint :: =
digits static_simple_expressior: [rar ge_corstraint]
359
fixed_point_constraint ;. =
della siatic_simple_expression [ran.je_constrant}
38
array_type_definition :: =
acray (index {. index}) of compcnent_subtype_indication
| array index_constraint of compenent_subtype_incication
index :: = tvpe_mark range <>

index_constraint :: = (discrete_range (. discrete_rarqe))

discrete_range = tyne_mark [ran33_constraint} | rangs

37

record_tyoe_de'inition :: =
record
t_Net
end record

component_‘ist ;. =
{ component_daciz.ation) (vansnt_part] | nuit;

companent_declaration ;=
identifier_list . subtyps_inoication | = expreasion);
| identitier_list - array_type_de*initun [ = expression):

T
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ara
diacriminant_part : =

(discriminant_declaration {; discriminant_declaration})
discriminant_declaration :: =

identifier_list : subtype_indication [: = expression)
ar2
discriminant_conateaint :: =

(discriminant_apecification {. discriminant_specification})
discriminant_specitfication :: =

[arscriminant_name (| aiscriminant_name)} => ] expreesion
ar3
variant_part . »

case discriminant_name is

{when choice {I choice} =>
component_jiat)

end case;
choice :: = simpie_expression | discrete_range | others
38
access_type_detinition ;= access subtype_indication
incomplete_type_declaration :: = type iJentitier [discriminant_part];
39
declarative_part ;. =

{deciarative_item) {representation_specification} {program_component}
declarative_item :: = declaration | use_clause
program_component :: = body

| package_declaration | task_declaration | body_stub
body :: = subprogram_body | package_body | task_body
41
name = identifier

{ ndexed_component | slice

| selected_component | attribute

| tunction_call | operator_symbol
411
indexed_component - = name{expression {, expression})
412
shice - = name (discrete_range)
413
selected_component | =

name sdentifier | name.al! | name.operator_symbol
414
aftribute = name'identifier
42

interal - =
numeric_literal | enumeration_Iiteral | character_string | null

Ada Reference Manual

43

aggregate ;=
(component_association {. component_association})

component_association ;=
{choice {1 choice) => ] expression

44

expression .=
* relation (and reiation})
| relation {or relation)
| relaton {xor relation}
| relation {and then relation}
| relation {or else relation)

relation ;=
simple_expression [relational_operator simple_expression)

| simple_expression (not) in range

| simple_expression [not) in subtype_indication
simple_expression = [unary_operator] term {adding_operator term}
term ;- = factor {multiplying_operator factor}
factor : = primary [es primary)
primary ;=

literal | aggregate | name | aliocator | function_call
| type_conversion | quahfied_expression | (expression)

45

logrcai_operator = and |or |xor
relational_operator s = | /= | <€ | €<= 1> >
adding_operator tex o+ |- | &

unary_operator = ¢ | = |not
multiplying_operator im e 17 | mod | rem

exponenhiating_operator = ee

46

type_conversion ' = type_mark (expression)

47

qualified_expression :: =
tyoe_mark'(expression) | type_mark’ aggregate

48

allocator =
new type_mark [{expression)]
| new type_mark aggregate
| new tyoe_mark discriminant_constramt
| new type_mark index_constraint

5.1

sequence_of _ s = 8t it )]

statement ;=
{label} simpie_statement | {iabel) compound_statement

simple_statement 2 null_statement

| assgnment _ " | axit_af "

| return_statement | goto_statement
| procedure_call | entry_call

| delay_statement | abort_statement

| rame_statermnant | code_statement

R
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Syntax Summary

compound_statement : =
it_statement | case_statement
| loop_statement | block
| accept_statement | seleci_siatement

label :: = ((identifier >>
null_statement :: = null;

6.2

assignment_statement :: =
variadie_name : « @xpreasion;

53

i_statement :: =
1t congition then
sequence_of_statements
{ etsit condition then
sequence_of_statements)
[ otse
sequence_of_statements)
end if;

condition :: = boolean_expression

54

case_statement ;=
case expression is
{when choice {] choice} => secuence_of_statements)

58

foop_statement :: =
[/o0p_identitier:] | iteration_clause] basic_loop | loop_identifier]:

basgic_loog :: =
Ioop
sequence_of_statements
end loop

teration_clause :: =
for loop_parameter in [reverse] discrete_range
| while condition

loop_parameter :: = identifier

58

block :: =

[bloch_identitier:)

{deciare
declarative_part]

begin
sequence_of_stalements

[exception
{exception_handier}]

end [biock_identitier];

87

exit_statement =
ennt [foop_name] {when condition);

return_statement = return [expressidn).

L X]

goto_siatement ;' = goto /abei_name,

6.1

subprogram_declaration :: = subprogram_specification;
genarC_subprogram_declaration
| generic_subprogram_instantiation

subprogram_specification ;. =
procedure Wdentiher {formal_part)
| tunction designator {formal_part] return subtype_:ndication

designato :: = identifier | operator_symbol
operator_symbol :: = character_string

tormal_part :: =
(parameter_declaration {; parameter_declaration))

parameter_deciaration :: =
identifier_list mode subtype_indication [. = expression]

mode ;= [in] | out } in out

83

subprogram_body i =

subprogram_speciication is
declarative_part

begin
ssquence_ol_statements

[exception
{exception_nandier}]

end {designator);

6.4

procedure_call .. =
procedure_name |actual_parameter_part];

tunction_call :: =
function_name actual_parameter_part | funci.on_name ()

actual_parameter_part . =
(parameter_association {. parameter_association})

parameter_association =
[tormal_parameter =) ] actual_pararieter

formal_parameter : = dentifier

actual_parameter :: = axpression

71

package_daclaration . = package_specification;
| generic_package_deciaration
| generic_package_instantiation

package_specification ;.=
package dentifier is
{declarative_item}
{private .
{declarative_item}
(representation_specification}]
ond [identitier]

package_body =

package body identitier is
declarative_part

[ begin
sequence_o!_statements

{exception
{exception_handier}])

end [dentitier];

74

private_type_detinition - « [limited) privete

i
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a4

use_clause ;= use package_name {, package_name);

renaming_declaration :: =
identifier : type_mask renames name;
| identifier : exceplion renames name;
i package identifier renames name;
! task identitier renames name;
' subp: ogram_specification renames name;

9.1
tagk_declaration :: = task_specification

task_specification :: =
task (type] identitier [is
{entry_declaration}
{representation_specitication)
end {identitiar]);

task_body =
task body identifier is
{declaratve_part)
begin
sequence_of_statements
[exception
{exceotion_handier}]
end [identifier);

entry_declaration ;. =
entry identifier [(discrete_range)] [formal_part]:

eniry_call :: = entry_name [(actual_parameter_part)});

ascceot_statement . =
accept eniry_name [lormal_part] [do
saqu+-nce_of_statements
end [identifier]];

delay_statement :: = delay simole_expression;

07

select_statement ;. = selective_wait
iconditional_entry_call | timed_entry_cal

871

selective_wad ;=
select
{when condition e))
select_siternative
{ orjwhen conttion =>]
select_atternative)
{ 013
sequence_ol_statements)
end select;

select_alternative .=
acceot_statement (sequence_of_t tatements]
| delsy_stmerment  [sequence_ot_ttatementa)
| terminate,

o772

condihonal_entry_call ;.=
select
ontry_call [sequence_of_siatements]
olse
sequence_of_sistemenn
ond satect:

Ada Reference Manual
873
timad_entry_call ;=
select
wntry_call {sequence_ot_statements)
or

delay_statement [sequence_of_statements]
ond select; .

abort_statement :: = abort task_name {, task_name)

10.1

lation :: = {{ ilation_unit)

compilation_unit :: =
context_specitication subprogram_decleration
| context_specificaton suborogram_body
| context_specification package_deciaration
{ context_specification package_body
| contaxt_spacification subunit

conext_specification :: = {with_clause (use_clause]}

with_clauee ;.= with unit_name {, uni_name);

102

cubunit i = ’
separate (unt_namo) subunit_body

subunit_body :: =
subprogram_body | package_oody | task_body

body_stub :: c
subprogram_specification is separate;
| pockage body identitier ig separate;
| task body identifier is saparete;

1"t

exception_declaration : = identifier_list : exception;

1.2
onception_handier :: s
when exception_choice (| exception_choice) =>
sequence_of_siatements

enception_choice ;. = excenton_name | others

113

raiss_stalement :: = raise {exceohon_name);

121

QONeric_subprogram_deciaration - =
Qeneric_part subprogram_specitication;

generic_packege_deciaralion :: e
peneric_part package_specification;

gereric_part .. = generic {generic_formal_parameter)

QOneric_formal_parameter e
parameter_deciaration;

| type identitier [decriminant_part) 1s generc_type_definition;

| with suborogram_specHgation [is name).
| with suborogram_snecrhcation is € ;

QENEnC_type_defintion i s
(<)) | range € | deita €O | digits <
| array_type. detnstion | access_type_definition
| private_type_odehnikon
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123
Qeneric_subprogram_instantiation i =
Procedure identitier is generic_.nstantiation;
| tunction designator is generic_instantiation;

Qeneric_package_instantiation :: =
package identifier is generic_ingtantistion;

Qeneric_instantiation :: =
new name [(generic_asaociation { generic_association }))

Qeneric_assaciation i =
[tormal_parameter => ) generic_actua!_parameter

Qeneric_actual_parameter ;i =
expression | subprogram_name | subtype_indication
131
representation_specification :: =
length_specitication | enumeration_type_representation
| record_type_representation | address_specification
132

length_specification :: = for affribute use expreseion;

133

enumeration_type_representation :: = for type_name use aggregate;

134
record_type_representation ;=

for type_name use
record (ahgnment_clause;]
{component_name location;}
end record;
location = at starnc_simple_expresaion range range

alignment_clause :: = at mod static_simple_expreesion

138

address_speciication ;= 107 name use st stanc_simple_expression;

138

code_statement ;. = qualified_expression;

E-5
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F. Implementation Dependent Characteristics

This appendix is to be supplied in the reference manual of each Ada implementation. The Ada
language definition allows for certain machine dependences in a controlled manner. No machine
dependent syntax or semantic extensions or restrictions are allowed. The only allowed
implementation dependences correspond to implementation dependent pragmas and atiributes,
certain machine dependent values and conventions as mentioned in chapter 13, and certain allowed
restrictions on representation specifications.

The appendix F for a given implementation must list in particular:

M
)
3
4
()

()

@)

The form, allowed places, and effect of every implementation dependent pragma.
The name and the type of every implementation dependent attribute.

The specification of the package SYSTEM.

the list of all restrictions on representation specifications (see 13.1)

The conventions used for any system generated name denoting system dependent components
(see 13.4).

The interpretation of expressions that appear in address specifications, including those for
interrupts, (see 13.5).

Any restriction on unchecked conversions (see 13.10.2).
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Abnormal termination 9.10

Abort statement 5.1, 9.10

Abs function 45.7,C

Accept statement 5.1, 9.5, 8.7.1

Access object 3.8

Access type 38

Access type definition 3.3, 3.8, 12.1

Access value 3.8

Access_check 11.7

Accuracy constraint 3.5.8

Accuracy of operations 4.5.8

Accuracy_constraint 3.3

! Actual delta 3.5.9, 13.2

Actual delta attribute 3.5.10

Actual parameter 6.4

Actual parameter association 6.4.1

Actual parameter part 6.4, 9.5

Adding operator 4.4, 45, 453

Addition 4.5.3

Address specification 13.1, 13.8

Aggregate 3.6.3, 4.3, 44,47

Agjregate notation 4.3

Alijnment clause 13.4

All 413

Allxcator 3.6, 44,48

Alternative 9.7.1

And operator 4.4, 45.1

And then control form 4.4, 4.5.1

Arbhitrary selection 9.7.1

Arqument 28

Ar thmetic operator 4.5

Arthmetic cperators €

Ar ay aggregate 4.3.2

Ar-ay assignment 5.2.1

Ar-ay attribute 3.6.2

Ar-ay component 3.6

Arcay formal parameter 3.8.1

Ar-ay index 3.6

Ar-ay indexing 4.1.1

Ar-ay operations 3.6

Ar-ay type conversion 4.8

Ar-ay type definition 3.3, 3.8, 3.7, 12.1

Ar-ay_type_definition 3.2

Ascii 3.5.2

Assignment 5.1

Assignment statement 6.1, 5.2

Asynchronous termination 9.10

Atrribute 3.3, 4.1, 4.1.4, 13.2

Atrribute of a task 9.9

Attribute of an entry 9.9

n Attributes of discrete types 3.5.5

i Atiributes of fixed point types 3.5.10
Atiributes of floating point types 3.5.8

Index

Base 24.1

Base attribute 3.3

Base parameter 14.3.5
Base type 3.3

Based integer 2.4.1

Based number 2.4, 24.1
Basic character set 2.1
Basic loop 5.5

Binary mantissa 3.5.7

Bits attribute 3.5.10

Blank 14.3.3

Block 5.1,586

Block identifier 5.1, 5.8
Body 39,63, 71,73, 10.2
Body stub 3.9, 10.2
Boolean expression 3.5.3
Boolean type 3.5.3
Boolean type input-output 14.3.8
Boolean value 3.5.3
Bound 3.5, 3.6, 3.6.1
Bounds of aggregate 4.3.2
Box 3.6, 12.1.2

Calendar 9.6

Calling conventions for input-output 14.2
Case statement 5.1, 54

Catenation 2.6, 3.6.3, 4.5.3

Change of representation 13.8
Character 2.1, 2.8

Character input-output 14.3.3
Character literal 2.5

Character string 2.8, 4.2

Character type 3.5.2

Choice 3.7.3,43, 54

Clock 986

Close procedure 14.1.1

Closed alternative 9.7.1

Code statement 5.1, 138

Col subprogram 14.3.2

Collection 3.8

Collection size 13.2

Colon 2.10

Comment 2.7

Communication 9.5

Compatibility of constraint 3.3
Compatibility of fixed point constraints 3.5.9
Compatible discriminant costraint 3.7.2
Compatible index constrain: 3.8.1 '
Compatible range constrairt 3.8
Compitation 10.1

Compilation order 10.3

Compilation time 4.9

Compilation unit 10, 10.1
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Compiler commands 104 Delay statement 5.1, 96, 9.7.1, 9.7.3
Component 3.6, 3.7, 4.1 Deiete procedure 14.1.1.
Component association 4.3 Delimiter 2.2

Component declaration 3.7 Delta 3.5.9

Component list 3.7, 3.7.3 Deita attribute 3.5.10

Component subtype 3.6 Dependence between units 10.1.1
Composite object 3.8, 3.7 Dependence relation 10.1.1
Composite type 3.3, 3.6, 3.7 Dependent task 9.4

Composite value 3.3
Compound statement 5.1
Compound symbol 2.2

Derived subprogram 3.4
Derived type 3.4
Derived type conversion 4.8

Condition 6.3, 5.5, 5.7, 9.7.1 Derived type definition 3.3, 3.4

Conditional compilation 10.8 Designator 6.1

Conditional entry call 9.7, 9.7.2 Device_error exception 14.1.2

Configuration 13.7 Digit 2.1, 2.3, 2.4, 2.4.1

Conjunction 4.5.1 Digits 3.5.7

Constant 3.2 Digits attribute 3.5.8

Constant declaration 3.2 Direct visibility 8.3

Constrained array 3.8 Discrete range 3.6, 3.6.1, 3.7.3, 4.1.2, 55, 9.5

Constraint 3.3 Discrete type 3.5, 3.5.6

Constraint compatibility 3.5.7 Discriminant 3.3, 3.7.1

Constraint error 3.5.4, 35.5,35.6 Discriminant constraint 3.3, 3.7.2

Constraint_error exception 3.3, 3.6.1, 3.7, 3.7.2, Discriminant declaration 3.7, 3.7.1
411, 412, 413, 43 451, Discriminant part 3.3, 3.7, 3.7.1, 38
456, 46, 4.7, 5.1, 5.2.1,58, 6.1, Discriminant specification 3.7.2
64.1, 85, 95, 111, 1231, Discriminant valug 3.7.1
123.2, 1233, 1234, 1235, Discriminant_check 11.7

e e MR S

12.3.6, 14.3.5
Constraints on parameters 86.4.1
Context 432
Context specification 10.1
Control character 2.2, 28
Control form 4.5, 4.5.1
Count attribute 9.9
Create procedure 14.1.1
Creation of object 4.8
Cu rent column  14.3.2
Current line 14.3.2
Current read position 14.1.2
Current size 14.1.2
Current time 9.8
Current write position 14.1.2
Current_input function 14.3.1
Current_output function 14.3.1

Data_error exception 14.1.2, 14,34
De:imal digits 3.5.7

De:imal number 2.4

De:laration 3.1,39

De-larative item 3.9, 7.1
De:larative part 39, 66, 6.3, 7.1, 9.1
De:larative part of a block 5.8

De ault actual parameter 6.4.2

De ault initial value 3.7

De ault input file  14.3

De‘ault output file 14.3

Deiault parameter value 8.1
Deterred constant 7.4

De ay alternative 9.7.3

Discriminant_part 12.1
Division 4.5.5

Division operator 4.5.5
Division_check 11.7
Double quote 2.6
Duration 9.6

Dynamic array 3.86.1, 3.7.1

Dynamic association of handlers with exceptions

114
Dynamic constraint 3.3

Elaboration 3.1,3.9

Elaboration of an iteration slause 5.5
Elaboration of context 10.1
Elaboration of library units  10.3
Elaboration of task body 3.1
Elaboration of task specification 9.1
Elaboration of type definition 3.3
Elaboration order 11.5

Eise part of select 97.1,9.7.2
Emax attribute 3.5.8

Emin attribute 358
Encapsulated data type 7.4.2
End position 14.1.2

End_error exception 14.1.2
End_of_file operation 14.1.2
End_of_line subprogram 143.2
Entity 3.1

Entry ©5

Entry address 135.1

Entrv call 8.1, 9.5, 8.7.2, 3.7.3
Entry declaration 9.1, 8.5




Entry family 9.5

Entry queue 9.5

Entry representation specification 13.1
Enumeration literal 3.5.1, 4.2
Enumeration type 3.5.1

Enumeration type declaration 3.5.1
Enumeration type definition 3.3, 3.5.1
Enumeration type input-output 14.3.7
Enumeration type representation 13.1, 13.3
Enumeration_io package 14.3.7

Epsilon attribute 3.5.8

Equality 4.5.2

Equality operator 4.5.2

Equivalent subprogram specifications 6.6
Error bound 3.5.6, 3.5.9

Exception 11,111

Exception choice 11.2

Exception declaration 11.1

Exception during elaboration 11.4.2
Exception handler 5.6, 6.3, 7.1, 9.1, 11.2
Exception in declarative part 9.3
Exception in task activation 9.3
Exception name 11.2

Exception raised in communicating tasks 11.5
Exception raised in declarations 11.4.2 '
Exception raised in statements 11.4.1
Exclamation mark 2,10

Exclusive disjunction 4.5.1

Exit statement 5.1, 5.7

Exoonent 24, 2.4.1, 357

Exoonent part 2.4

Exoonentiating operator 4.4, 45, 4.5.8
Exponentiaticn 4.5.6

Expression 28, 3.2, 4.4

Expression evaluation 4.5
Extended_digit 2.4.1

External file 14.1

Factor 4.4

Falure exception 11.8

Faise 35.3

Fanmily of entries 9.5

Fila layout 14.3.2

Fil2 fine length 14.3.2

Fil2 type 14.1

First attribute 3.5, 3.6.2

Fi>ed point constraint 3.5.8, 3.5.9
Fiyed point input-output 14.3.5
Fi>ed point number 3.5.9

Fi>ed point type 3.5.9

Fired_io package 14.3.5

Float type 3.5.7

Float_io package 14.3.6
Floating point constraint 3.5.8, 3.5.7
Floating point input-output 14.3.5
Floating point number 3.5.7
Floating point type 3.5.7
Forioop 5.5

Formal parameter 8.2, 8.4, 123

RISy -

Formal part €.1, 9.5
Function 6, 6.1, 8.8
Function body 6.3
Function cali 4.1, 4.4, 6.4
Function declaration 6.1
Function designator 8.1
Function specification- 6.1
Function sucprogram 6.5

Generic actual parameter 12.3
Generic association 12.3

Generic body 122

Generic declaration 12.1

Generic formal parameter 12.1
Generic formal subprogram 12.1.3
Generic formal type 12.1.2

Generic function 12.1

Generic instantiation 12

Generic instantiations 12.3

Generic package 12.1

Generic package declaration 7.1, 12.1
Generic package instanitiation 12.3
Generi¢c package instantiation 7.1
Generic parameter 12.1

Generic part 12.1

Generic procedure 12.1

Generic program unit 12

Generic program units 10.3

Generic subprogram 12.1
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Name of numeric literal 32
Name resolution 84

Name_error exception 141.1
Named component 4.3

Named parameter 6.4

Named parameter associaton 6.4
Natural subtype 3.6.3




o idy

R

Negation 4.1,4.5.4
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Raise statement 5.1, 11.3
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Subtype 3.3
Subtype declaration 3.3




P atheio L it o S R
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Suppress pragma 11.7
Suppressing exceptions 11,7
Suspend execution 9.5, 9.6
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