RD=AUIU oo

UNLLASSIFIED

AIR FORCE INST OF TECH wRIGHT=PATT
DEVELOPMENT OF a HIGH LEVEL LANGUA
JUIL 79 W w HATCHER
AFIT=Cl=T79-161T

RiS

ERSON AFB OH F/6 9/2
GE AND CROSS~COMPILFR FOR THE==ETC((.)

|

EVELOPMENT OF

e -
PN

A HIGH LEVEL LANGUAGE AN'D CROSS-COMPILER FOR
&

-

THE_INTEL 8080 mcmpnoczssoa;

' 7 /
WiI;iam Ward atcher @ 7/// j»-— e /
%]

-

ADA090623

DHFz '/ az 79 ZE 74 Q_I(!Tcé
s 0CT 21 IQWD

Certificate of Approval:

J. 8. Boland, IIl J. R. Heath, Chairman
Asgsociate Professor Associate Professor
Electrical Engineering Electrical Engineering
14
- B. D. Carroll Paul F. Parks, Dean
Associate Professor Graduate School
! >__1 Electrical Engineering
s ‘
))
i Ll
b4 ,
k 0
b AT e
i ‘f"

X
t

,WSO 10 14 167

BN
i

TRy WWAw SR il TS e

UNCLASS
© SECURITY CLASSIFICATION OF THIS PAGE (When Data‘Enterod)_
READ INSTRUCTIONS
| REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REFPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
79-161T L Ao &3
4. TITLE (and Subtitle) §. TYPE OF REPORT & PERIOD COVERED
Development of a High Level Language and Cross-
Compiler for the Intel 8080 Microprocessor Thesis
6. PERFORMING OG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

William Ward Hatcher

9. Vyﬁ\FORMlNG ORGANIZATION NAME AND ADDRESS 1C. :agﬁﬂgAlwloERLKEt iNTTN RMOBJEESST' TASK
(AFIT}Student at: Auburn University, Alabama
11. CONTROLLING OFFICE NAME AND ADDRESS 12, RFPORT DATE
7 June 1979
AFIT/NR 13 UMBER OF PAGE
WPAFB OH 45433 "N OF PAG ;5

4. MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (of thia report)

UNCLASS

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. ISTRIBU%S?EE Tdﬁ- gLRnlI%II?lock 20, if different from Report)
23 SEP 1980

|l SUPPLEMENTARY NOTES

Approved for public release: IAW AFR 190-17

Air Force institute of Technology (ATC)

Wright-Patterson AFB, OH 45433

19. KEY WORDS (Continue on reverse aside if necessary and identify by block number)

20. ABSTRACT (Continue on reverse alde If necessacy and identify by block number)

Attached

roRM
DD jan 7 1473 woimon oF 1 nov 68 13 cesoLETE UNCLASS

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

DEVELOPMENT OF

A HIGH LEVEL LANGUAGE AND CROSS-COMPILER

FOR THE INTEL 8080 MICROPROCESSOR

William Ward Hatcher

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of

Master of Science

Auburn, Alsbama

cune 7, 1979

Ancession For

IDC TAB
Unannounced

Justification
S —————-.

NTIS GRALI —QT-

By

Distributlion/

—mll_ :..1%! COng
Availand/ox

Dist. special

- - ¢ atzak

DEVELOPMENT OF
A HIGH LEVEL LANGUAGE AND CROSS—-COMPILER

FOR THE INTEL 8080 MICROPROCESSOR

William Ward Hatcher

Permission is herewith granted to Auburn University to make
copies of this thesis at its discretion, upon the request of
individuals or institutions and at their expense. The author
reserves all publication rights.

Signature of Author

Date
Copy sent to:

Name Date

1141

f

VITA

William Ward Hatcher, son of Gatewood Matthews and Amy (Vaughan)
Hatcher, was born May 18, 1944, in York, Alabama. He attended Sumter
County Public Schools and graduated from Sumter County High School,
York, in 1962. In September, 1962, he entered Livingston University
and received the degree of Bachelor of Science (mathematics) in
December, 1966. In Jinuary, 1974, he entered graduate school at
Auburn University in Montgomery and received the degree of Master
of Public Administration in August, 1976. In September, 1976, he
entered graduate school at Auburn University and began work toward
his Master of Science degree in Electrical Engineering. He married
Diane, daughter of Sherman Alfred and Mary (Drake) Harris in
November, 1966. They have one daughter, Stephanie Elizabeth and one

son, William Todd.

iv

THESIS ABSTRACT
DEVELOPMENT OF A HIGH LEVEL LANGUAGE AND

CROSS-COMPILER FOR THE INTEL 8080 MICROPROCESSOR

William W. Hatcher
Master of Science, June 7, 1979
(B.S., Livingston University, 1966)
(M.P.A., Auburn University in Montgomery, 1976)
95 Typed Pages

Directed by J. R. Heath

This paper describes the development of a high level language and

cross-compiler written in BASIC PLUS for the Intel 8080 microprocessor.

~ The language is a general purpose language which can be entered online

on a DEC PDP-11/40 minicomputer and cross compiled for the I8080. The
cross-compiler follows the general pattern of most high level language
compilers and consists of a scanner, a parser, semantic routines and
code generation procedures. The cross-compiler accepts the input lan-
guage and produces assembly language which is provided to a cross-
assembler to generate machine code either on paper tape or a disk file.
This code is then loaded into the 18080 for execution.

The basic advantage of the high level language and cross-compiler
is that it provides a user the capability to develop a program without

having to know the details of microprocessor assembly language. Also,

- program development aids available on the DEC PDP-11/40 minicomputer
with an RSTS/E operating system are made available to the microprocessor

pProgrammer.

vi

-

T T T T T T T T T T T T s -

v N v e

q———--—-————-————--

TABLE OF CONTENTS

LIST OF TABLES « « &« ¢ ¢ ¢ & ¢ ¢ o o o o

LIST OF FIGURES . . . ¢« ¢ ¢« « o « s o &

I. INTRODUCTION+ ¢ ¢« &« ¢ o

General Features of AU78
Practical Applications
Development of AU78 Routines

II. THE SCANNER ¢« ¢ o o« « &

III. THE PARSER . . ¢« « & & ¢« o o s o &

Symbol and String Tables

1V. SEMANTIC ROUTINES/CODE GENERATION

WRITE Statement

READ Statement
GOTO/GOSUB Statements
RETURN Statement
MOVE-TO Statement
COMPUTE Statement

END Statement
IF-THEN-ELSE Statement

V. SAMPLE AU78 PROGRAM AND LISTING . .

VI. CONCLUSION . . . ¢ ¢« v v o o s » &

REFERENCES . . ¢ ¢ ¢ ¢ o ¢ o ¢ o o o« « &

APPENDIX A . . & o 4 o ¢ s ¢ ¢ o o o &

APPENDIX B ¢ ¢ 4 o o ¢ v o o &

vii

viii

11

16

23

46
57
59
61

71

LIST OF TABLES
AU78 Grammar . « « « & ¢ o o s o 4 ¢ s a o o o o o o o o o o
Key Word, Delimiter and Operator List « « + .« &
Example Scan of a Sentence . . « « « o « s « & ¢« o s ¢ & o o
Program Operation ¢ ¢ « ¢ ¢ o o o ¢ ¢ ¢ o o o & o oo
Program Source Listing . . « ¢ o« ¢« ¢ ¢ 4 ¢ ¢ 0 0 e e s s 4

Program Generated Object Code . . « +« & ¢ &+ ¢ ¢ o ¢« ¢ o« & & &

viii

10
14
14
47
48

49

T e i

j_-—--—---—-—-_-

10.

11.

12.

13.

14.

15.

16.

LIST OF FIGURES

Operational Flow Process .

Flowchart of Scanner .

Syntax Tree for Sample Sentence .

Flowchart of Parser .
Semantic Routine .
WRITE Statement . . .
READ Statement . . .
GOTO Statement
GOSUB Statement . .
RETURN Statement .
MOVE-TO Statement . .

COMPUTE Statement . .

-

Multiply/Division Subroutine .

Parenthesis Subroutine .

END Statement

IF-THEN-ELSE Statement .

ix

13
17
21
24
28
30
31
32
33
35

36

38

41
42

45

|

I. INTRODUCTION

Since the advent of the microcomputer in 1971, a new dimension in
computing capability has been opened in the world of electronics. The
microcomputer is a relatively inexpensive computer which, when compared
to machines of 15 to 20 years ago, provides a tremendous amount of
computing power for the dollar and has revolutionized the world of
automation. However, one of the limitations of the microcomputer has
been the limited availability of high level languages. Consequently,
most programming is accomplished through assembly language. The use of
assembly language is popular because of the obvious relation between
the source and the object code. Also, memory and instruction usage is
entirely under the control of the programmer and macros enable standard
code sequences to be written and debugged once. However, with the
rapidly falling price of memory and processors and the high cost of
assen.ly language level software development, there is increasing
pressure to use more economical methods of code generation since when
in assembly language, much time must be spent in using the detail
procedures of the language; especially in the relatively weak micro-
computer assembly languages.l Additionally, interpretative languages
such as BASIC do not offer the best solution since they execute slower
than compiler generated code. Therefore, high level languages offer an

attractive alternative to machine or assembly languages.

“-—-—-———-—--_-—

2

One of the primary advantages of a high level language is the lack
of the requirement that the programmer needs to know the architecture of
the machine. It is the compiler which handles registers, storage alloca-
tion and data conversions.2 Also, symbolic variables increase the read-
ability of the program; programmer productivity is increased; documenta-
tion is improved through a more understandable program; maintenance,
modification and debugging are facilitated; and transportability is im-
proved. As with most other things, there are always drawbacks. Primary
among these is the additional memory required with high level languages

(although with lowering costs it is not a important as it once was).

Also, if a language is not properly suited for the purpose, the lan—

3
guage may become a liability rather than an asset. However, with all
factors considered, there is a definite need for the development of high

level languages for microcomputers.

This thesis will discuss the development of such a language (AU78)

and cross-compiler for programming an Intel 8080 based microcomputer.

This high level language is designed to provide the capability for
accomplishing basic computing operations to the programmer through the

use of the PDP-11/40 RSTS/E on-line time-sharing operating systems. It

was designed with a combination of BASIC and COBOL type statements and

to be on a par computationally with languages such as Tiny BASIC.4 The
major purpose of the language is to provide an easier method of programming
the 18080. It offers the unique capability of developing a program

directly on-line through the PDP-11. The cross—compiler will accept

AU78 source code, which will be compiled into I8080 assembly language,

T g v T

(omm GHN NN S aas SEw s e

<

3
which in turn is passed to a cross—assembler to generate machine

language on a paper tape or a disk file. Figure 1 depicts the

operational flow process.

\

AUTS8-
Cross=-
compiler

\

INTEL

8080
Assembly

cogd

"

ASMBLR
Cross=-
assembler

" Machine
Machine Code
Code

Pigure 1. Operatlonal flow process.

4

This is a very significant feature in that a programmer can very
quickly write a short program to run on the I8080. Further, AU78 is
designed in a modular manner such that it can be expanded to include
additional specific requirements by adding subroutines for that purpose.

Another reason for the design and development of the language was
so the author could gain a greater understanding and knowledge of the
problems and trade-offs encountered when developing high level languages
for microcomputers and subsequent cross-compilers for execution on mini-

computers with time-share operating systems.

General Features of AU78

AU78 provides a variety of features to the programmer which are
common to most higher level languages available on larger computer sys-
tems. The first to comsider would be the input/output features. The

AU78 compiler accepts input values from +32,767lo to —32,7681 Meltiple

0
values can be input through the calling of the input subroutine and values
can either be used immediately or stored for later use. The output con-
sists of either variable values or strings with up to 130 characters for
use with a full line printer. The language provides for assigning
specific values to variables or if it is not specified, the value of @
will automatically be assigned. The computational operations include
multiplication, division, addition, and subtraction and the use of
parenthesis to allow for multiple levels of operations. In all equatioms,
the proper order of precedence is insured. Conditional statements allow

expressions or variables or integers or a combination of them all to be

evaluated to determine if one value is greater than, less than, greater

Py G GBI GEN GEN G e Meeed el e s am MNN BN NIRRT AN il aE =

5
than or equal to, less than or equal to, not equal to or equal to
another. The results of these comparisons will be incorporated into the
logical operation of an IF-THEN-ELSE type statement. In the IF-THEN-ELSE
statement, the ELSE is optional and the next sentence will be executed
if it is not present and the THEN condition fails.

When coding a program, line numbers are optional and statements may
be labeled to provide for branching. The language further provides for
transfer of data internally and transfer of control through branching or
calling subroutines. Data to be used in subroutines is made available
through variable storage areas.

General type statements include the following:

READ variable

WRITE variable

WRITE string

IF (expression-variable-integer) condition (expression-variable-
integer) THEN statement ELSE statement

MOVE (variable-integer) TO variable

GOTO label

GOSUB label

RETURN

COMPUTE expression = variable

The major limitations of AU78 include the ability to rapidly input
large volumes of data; although with additional subroutines, both mag-
netic tape, cards and disk could be used for input and output. The AU78
crogss—-compiler cannot handle floating-point numbers or double-precision

arithmetic operations. Floating-point was investigated as a viable

Rt S el S e

“-r—'———-—'—-—-—--———————-—_

6

capability for inclusion in AU78 but was not included for several reasons.
The first was because the 18080 has no built-in hardware provisions for
floating-point which would be required for efficient implementation. To
offer any advantages over the implemented fixed-point number format, a
thirty-two bit number (one sign bit, seven exponent bits and twenty-four
mantissa bits) would be required for the representation of each operand.
In the 18080, this would require four eight bit registers per operand
leaving only two registers plus the accumulator. Since most all compu-
tations must be accomplished in the accumulator and only one full operand
at a time can fit in the working registers of the I8080, the number of
data manipulations and memory transfers required by simple double operand
arithmetic functions make the execution of floating-point arithmetic
function very slow and inefficient except in the case of special purpose
applications. For example, to execute a simple two operand addition
would require approximately one hundred program steps. Multiplication
and division would likewise require an excessive number of program steps
and a proportional increase in execution time. Lengthy, complex mathe-
matical operations could not be accomplished with any real speed.6
Finally, a smaller sixteen bit floating-point number format could have
been developed more effectively, but the precision of the resulting
operand values would have been no greater than what was available
using an integer format.

Another limitation exists in string manipulation in that concate-

nation of strings cannot be accomplished. It should be noted that in

PP

PIEENPER

e oaas G N BN BB D

1 I B B B)

7
the existing advanced languages for microcomputers such as PL/M,
PL/M68000, Tiny BASIC and FORT/80’ many and even more of these same

limitations exist.

Practical Applications

As stated previously, one of the main reasons for developing AU78
was to provide an easier method of programming the 18080 and to provide
this capability through the PDP-11/40 RSTS/E operating system, complete
with its full editing capabilities. One of the most common applica-
tions envisioned for the languages was to provide users a handy,
readily available mechanism for writing general purpose programs for
the I8080 without having to fully understand the assembly language of
the I8080. Rather than spending time learning the details of the
assembly language, the user could spend that time in problem solving.8
This also holds true of even the experienced 18080 programmer and can
save much time and effort especilally considering the poor diagnostics
assoclated with the available assemblers and cross-assemblers. A user
can write a program and create a paper tape or a disk file and load the
program directly into the I8080 and operate it in an on-line environment
in a problem solving manner. The language as currently designed 1is
especially good at applications where computations are performed based
on input data. Examples of this might include interest rate calcula-
tions, income tax computations, budgetary projections and various other
general business type applicatious.

Another major consideration in the development of the language and

compiler is for use by the Air Force. The Air Force has recently begun

rv T

)N e e

-

8
acquiring PDP-1ls and is moving into the use of microcomputers. At the
author's assignment at the Air Force Data Systems Design Center, a
new PDP-11 has been acquired. The Air Force-wide policy is to program
all machines as much as possible in a high level language. Because of
the turnover of personnel, the high level language is easier to learn
and document. The author's approach will be to interest the Air Force
in AU78 or a modified version to allow early development of microcom-
puter systems without having programmers undergo extemnsive training in
18080 assembly language programming. The basics of AU78 could be
learned by experienced programmers in a very short period of time. Also,
with the modular approach used in the AU78 compiler, specific capabili-
ties required by the Air Force could be easily added. The Air Force
policy on standard systems is to develop systems for all compufets at
one agency in a high level language and send program; out to other
users in machine language to prevent unauthorized changes. This lan-
guage would provide that opportunity since there are few other micro-
computer languages available. It is understood that the language would
probably be changed or capabilities added for specific type requirements,
but AU78 would provide an adequate base language for Air Force use. The
use of microcomputers in the Air Force is already large, but they are
used primarily in scientific and process control type operations. The
future ugse of micros in a more business type orientation is unlimited.
AU78 1is a step in that direction and provides a basis for future growth

and development.

v -t AP -

e S aay [] [~] omuy n—— — —— mm—— Siamanay i—— mttng oamamny onmany ommane m— — P

9

Development of AU78 Routines

The remainder of this thesis will discuss the modules required in
the development of the cross-compiler. As an overview to a compiler,
there are several basic modules required and although they may be
referred to in different terms or broken into fewer or more modules,

the basics of a compiler include a scanner, a parser, semantic routines,

and a code generator. However, the first step in the writing of a compiler

is to define the language in terms of a grammar which defines valid
sentences, operations, operators, and symbols. Table 1 describes the AU78
grammar. These entries are used to create a table which is used by the
compiler to determine proper sentences. The scanner is a routine which
scans the input character string and builds the output symbols of the
programs, including integers, identifiers, reserved words, delimiters and
operators. These are then passed to the parser which checks the symbols
against the language definitions to determine if the sentences are
properly constructed. If not, an error will be indicated. With the
receipt of a valid input, a final pass is made to incorporate the

symbol table into the code and the output code is written. Each of

these routines will be discussed in detail to show how the cross-compiler
was written. The entire compiler was written in a modular manner such
that each routine for each type sentence is generally a separate

set of code in the program. This allows for easy manipulation and
addition of features in the language if future requirements dictate a
particular type application not presently available. A complete user's
manual and cross-compiler program source listing are provided in

appendices A and B respectively.

AT AT AL S A s AZs -

TN e e aEm AED D D B O BBR e e

10
Table 1. AU78 grammar,
<GCRAMMAR> ::= <LINE> (<GRAMMAR> /E)/ STOP
<LINE> ::= <STATEMEND> (; <LINE> /E)
<STATEMEND> ::= <{iOD STATE> / <IMP STATE> /
<VABEL STATE>

0D STATE> ::= IF <CONDITIOR> THEN <IMP STATE> (ELSE <IMP STATD>)

<CONDITION> ::= <EXB>DOBD<EXD

QB> = B D>/ <K=/ D=/=D>

<IMP STATE> ::= READ <PARD> /WRITE <PARD> /
gg;g gng%ow/fgo TQOAgA}r% /QAlb /
RETURN/COMPUTE <ExB> = <YAD>

<PARD ::= <(AD>

<WABEL STATE> ::= <YAD> :=<STATE> / <STRIND

<YAB> ::=QLETTER> (LETTER> / <IND> /E)

<X ::= <FERD (QOB<EXE> /E)

<TERD>::= <FACTOB> (<MoD><EX®> /E)

<FACTOR> ::=(<ExD>)/ <IND> / <(aB> / <STRIND

Qo> =+ / -

o> = %/

<LETTER> ::=A/B/..... 12

<IND = DIEID (AND /E)

Q161> ::= 9/1/....19

<STRING ::= "Any Character"

II. THE SCANNER

Perhaps the most important part of the cross-compiler is the
scanner routine. It is in this phase that the input program is
scanned sequentially and the basic elements or tokens of the program
are identified. These include terminal symbols such as literals,
variables, operators, and key words. Typically the source string of
the program is converted into another string of symbols containing
attributes of each basic element. These symbols are generally of
a fixed size and comsist ¢of the elements syntactic class and a
pointer to the table entry of the associated basic element. These
symbols are used in later processing by other phases of the cross-
compiler. Because the symbols are of fixed size, Eonverting to them
makes the later phases of the compiler operation easler to design.1

Included in this symbolic internal representation is a number
which represents an identifier, integer, delimiter, key word, or
operator. That is, all identifiers have the same internal number to
represent them, as do each of the other terminal symbols. However,
the terminal itself is needed by the parser, so it too must be stored
for later use by the parser. The solution is to output two values.
The first is the internal representation and an index to its position

in the table. Tre second is the actual value itself.

i1

i

t,’

12 .

In AU78, the above approach to the design of a cross-compiler
was followed. Each key word, operator and delimiter was loaded into a
table with an index to the appropriate entry. Each was given a
symbolic value for the entire class. For example, all delimiters
are classified as a 4, and key words as a 3. The scanner will scan
an input sentence and break apart the sentence into its relative parts.
Each part will then be assigned a value, and an index within the table
and this information will be passed on to the parser. Figure 2 is a
flowchart depicting the scanner processes and the interface links to the
parser. Table 2 contains a list of key words, delimiters and operators.

A problem that had to be overcome was to be able to differen-
tiate between alphabetic variables and key words. To accomplish this
each character is read and stored until either a space, delimiter or
numeric value is reached. Variables can contain integers, although
they must begin with letters. If an integer is encountered in the
scan, then the input is treated as a variable since key wotrds are
all alphabetic. If no integers are found, the input value is compared
with the entries in the key word table. If a match is found, the
indexed position in the table is saved and the value for a key word
is saved along with the actual value of the key word and passed om to
the parser. The same process is true of variables except that an
index for the variable is not required since it is a unique symbol.

In the case of delimiters and operators, a similar process is
followed where a table search takes place to insure the value 1s a

valid, acceptable delimiter or operator for the language. If valid,

-—————u_—-—-——-—-—

Scan
Input
String

1 Integer

Token for

Class and

Token For
Key Word

Class, Index
And Value

Token for
Variable
Class

And Value

Token For
Delinmiter

Class, Index
And Value

Token For
String Class
And Value

Flgure 2. Flowchart of scanner.

L'

14

Table 2. Key word, delimiter and operator 1list.

Key Word Delimiters/Operators

IF >
THEN <
READ =
WRITE

GOTO H
GOSUB +
MOVE -
RETURN *
ELSE /
STOP '
TO =
COMPUTE > =
END <>

Table 3. Example scan of a sentence.

STRT: IF 181 <SUM THEN MOVE 1¢1 to STORE

Value Class Index in Class
STRT 2 (Variable) 0
: 4 (Delimiter) 4 ‘
IF 3 (Key Word) 1
101 1 (Tnteger) 0 !
< 4 (Delimiter) 2 §
SUM 2 (Variable) 0 ﬁ
THEN 3 (Key Word) 2 |
MOVE 3 (Key Word) 7 |
101 1 (Integer) 0
TO 3 (Key Word) 11
STORE 2 (Variable) 0
{
1
1
ey — —_ o

-

15
again a value for the class is stored and along with the index,
the actual value is passed to the parser. Numeric values are checked

to insure they contain only integers. A class value is then assigned

for the integers, but an index 1s not required since a table of integers

is not needed. Finally, the scanner will recognize a string value.
The scanner will accept anything that is set apart by single quotes
and assign a class value for a string.

Table 3 portrays an example sentence and the symbolic values
that would be assigned and passed to the parser. As previously stated,
these class values represent the type element and the index within the
table of key words, delimiters and operators. As shown, variables
and integers do not require indexes since they are unique.

One additional major function of the scanner is to detect
initial errors in the inpvt program. The edits at this point are
primarily concerned with the various elements of a sentence and
generally check to insure that input elements are acceptable and in
correct form. Any element that does not fit into any of the various
classes will be rejected as an error. It is impossible to detect at
this point if an error was made in procedure. For instance, if a
key word and an integer were run together without any separation, the
two would be treated as a variable. As an example, if MOVE 19 to
ADDR were written MOVE1lf to ADDR, the MOVE1ld would be treated as a
variable and not as a key word and integer. It remains for the parser

to detect errors of this nature.

e

III. THE PARSER

Once the input program has been broken down into symbols or
tokens, the cross-compiler must recognize the phrases (syntactic
construction) and interpret the meaning of the constructions. Each
phrase is a semantic entity and is a string of tokems that has an
associated meaning.

The first of these two steps is concerned solely with recognizing
and thus separating the basic syntactical constructs in the source
program. It also notes syntactic errors. Once the syntax of a
statement has been ascertained, the second step is to interpret the
meaning (semantics).l4 This is accomplished through the use of rules
or reductions to build a derivation of the sentence. This is often
performed through what is called a syntax tree. Figure 3 portrays the
syntax tree derivation of a sample sentence in the AU78 language. The
approach used here and in AU78 is called a top-down approach. A top-
down parser builds the tree starting from the root and works downward
to the terminal elements or nodes. In the example of Figure 3,
GRAMMER is the root and a terminal node would be STRT. If the entire
sentence can be parsed from the root and all nodes reached, then it

is a valid sentence.

16

h I G T T T R T T TR TR ¥ Rnis e e — = .

. .

17

STRT: IF 101 < SUM THEN I:OVE 101 TC STCRE

Grammar

Statement

Label Statement

[]
Variable Statement
STRT Modifier
Statgment
{ I I]
IF Condifion Then Statement
Exprgssion Cperator Exggéssion Imperative
Statement
Term < Térm iove Lxpression TO
Factor Factor : Term Term
Integer Variable Factor Factor
101 Sum Integer Variable
101 Store

Figure 3. Syntax tree for sample sentence.

“iv-——————-—-.—_.—

»

remanai g

B et o) eeeed o eemed el sl e

18

The process for parsing a sentence is through a father-son
own-disown procedure. Each branch point is called a father and
each branch is called a son. The father will adopt the first son
(the first branch will be attempted) to see if he is the correct
one. If not he will disown him and adopt the next one to see if he
is valid. This procedure is continued through several levels if
necessary until the last son is either adopted or rejected.

There are several other approaches for a parser design. One
of the less frequently used is known as the bottom up technique.
With this approach, the parse begins with the string itself and
attempts to reduce it to the distinguished symbol. Using the example
of Figure 3, the tree would be turned upside down to accomplish the
parse. As stated, this is used less often than a top down because
although structured after similar concepts in reverse, the bottom up
is more difficult to define in a program table and it is more difficult
to keep track of the parser's position in a table if one branch is
tried and fails and another branch must be attempted.

Another method, also less frequently used is a precedence parse.
This method is extremely difficult to use since the language must be
defined such that each element of a statement must fall in a set order
of precedence in relation to all other elements. The difficulty of
programming almost precludes the use of this in complex
languages.

The parser for AU78 as previously stated is a top-down parser.
As tokens are passed from the scanner, the parser begins at the top

level of the grammer and begins a search down a path to see if the

™

Rt | L ed —h— — -

Caamipionl

SR S Ml el e e

19

terminal symbol can be identified. If it cannot, the parser backs
up to the previous division point (branch path) and attempts another
path. This will continue until the terminal is identified or if
one is not identified, then an error is indicated. Although this
sounds like it would be a long, time consuming process, generally
if the terminal is in error, this can be determined very rapidly
with properly constructed grammer tables.

In AU78, this search process was accomplished against a grammer
table loaded into core which contained all the possible paths a
sentence could follow, As each path was searched, the point of
departure was stored in a stack type approach, altﬁough the actual
stack was not used because it was required for other procedures. 1If
a path failed, the last entry on the stack would be recalled and the
search would continue from that point down an alternative path until
all paths were exhausted. It is interesting to note that in some
complex sentences, over twenty-five stack positions had to be stored
at one time to complete the sentence.

The parser also handles errors associated with the syntax of
a sentence. It is here that an error such as the one descriled in
Chapter II would be recognized. The way this works is that the
parser expects certain elements to follow each other. For example,
in a MOVE-TO statement, the parser expects a variable or integer to
follow the MOVE which in turn is followed by the TO which must be
followed by a variable name. 1If this exact sequeﬁce is not followed

an error condition will result, In another example, the WRITE verb

20
allows either a variable or string to follow. It checks for a
variable first and if one is not found, it will check for a string.
If neither is found then there is an error in the WRITE statement.
The method used for checking the comstructs of a sentence are the
tokens passed from the scanner with the class value, indexes and
actual values. If the sentence is being built correctly the
semantic routines are called for code generation. Figure 4 portrays a

flow of parser procedures.

Symbol and String Tables

The AU78 semantic routines involve a two pass approach. This
method was necessary because AU78 allows variables to be defined
anywhere in a program and the first pass is used to build a symbol
table and the second pass to append the symbol table values onto the
generated object codes. In building a symbol table, each time a
variable is encountered, the table is searched and compared to the
variable value. If a match is found, the table remains unchanged.
Upon completion of the first pass, the table elements are incorporated
into the code already generated from source statements. This is
accomplished by generating WORD statements which reserve areas for
the variables in the object code.

Strings are also handled in a similar manner. Because a
programmer could desire to write the same string in various places
in a program, there is an optimizing feature which will store values
in a table and each time a string is referenced it will compare

it to determine if two are exactly equal. If they are, the string

21

From Call
Scanner

Accept‘ruk;;J

From
er

omed mmm oy oS NN NN

Search 7 alid

For Sentence

Determine

Type
Sentence

Figure 4. Flowchart of parser.

LY

I

e

R
1
\

fo N i b ——r

A,

[] oy —— [~] m— a—

22
will be stored only once. At the beginning of the second pass, the
string values and their lengths will be incorporated into the object
code through the use of internally generated address labels which

point to each string.

>

IV. SEMANTIC ROUTINES/CODE GENERATION

The semantic routines and code generation procedures are the
parts of the cross-compiler which put the input source statements into
internal formats and then generate object code. The semantic routines
are responsible for creating symbol tables containing variable and/or

labels and for putting the source statements passed on by the parser

into the internal format such as Polish notation or quadruples. The
code generation procedures accomplish exactly what the title implies,
code generation. This is the most detailed and complicated part of
the cross-compiler. However, it is also probably the best understood.
These procedures take the created internal form and produce code for
the sentences.15 In the AU78 compiler, the two procedures have not
been separated because they are imbedded within each other. For

many straight-forward sentences such as READ or WRITE, the information
passed from the parser is not changed. However for COMPUTE and IF-
THEN-ELSE statements quadruples are created by the semantic routines.)
Consequently, in AU78 many statements have code generated without

really being changed by the semariic routines; only the symbol table

is created or updated. By interleaving the two routines wherever

possible, AU78 was designed to provide a more efficient code generation

process.

23

- JRRGUEC S,

24
AU78 created code for each routine by using a subroutine
approach for each type sentence. The remainder of this chapter
will describe the process and considerations involved in developing code
for each type statement. Figure 4 depicts the flow of the semantic

routines/code generation procedures as they are called from the parser.

. Figure 5. Semantic routine.

}:’

N G) N e ey e

MOVE-TO
tate?

Flgure 5, Semantic routine (Zontinued).

-_—Qu-—o-——u-u-——----—

26

Fiaure 5. Semantic routine (Contiaued).

- p— e e

o

ki

r——t R et —— ammny o o []] L []

1-———-—-——'——“

27

WRITE Statement

The WRITE statement code generation involves several considera-
tions when producing the code. The WRITE can involve both the
printing of variable values and the printing of strings. The printing
of the string 1is relatively straightforward in that the output area
is loaded with the length of the string and code is generated to
print the string a character at a time, while the counter is decremented
until the entire string is printed. In both cases, the code to check
the status of the output device and to proceed when it is available is
generated for the WRITE statement. Additionally, code to convert data
to Binary Coded Decimal (BCD) is accomplished. A further capability
of the WRITE statement is that the code is generated only once. All
subsequent WRITE's call the subroutine from the first WRITE. The
output variable is passed to the subroutine for printing as is a
string and its length. By following this approach, much code is
saved and a more optimal program is developed. This is accomplished
by the setting of switches in the compiler to indicate if previous
WRITE's have occurred. Figure 6 portrays a flowchart of the WRITE code
generation which is called from the parser.

READ Statement

The READ statement allows the programmer to read an input value.
When the READ variable is used, the variable area will receive the
result of the input read procedure. The data is read into a buffer
area and transferred to the variable area. As in the WRITE statement,

code is generated which checks the status of the input device and

v

SR Y e Y N et A e eEe e e omme e g G G ean ey

Move Vari-

able To

Cutput
Buf{g{

Generate
Code for
Variable
Print

Return

28

Generate
Routine

Move

Output
Area

String To

Genera
Code T
Print

String

te
o

—
Return

Pigure 6. Write

statement.

— e eeams D S G B

“ .

29
proceeds when the device is ready. All conversions from input BCD
to internally usable hexidecimal are accomplished in the generated
code. Also, code is generated for a READ only once. If additional
READ's are used a subroutine call will use the code generated for the
first READ and all variables will be passed to it. Figure 7 portrays
a flowchart of the READ functions.

GOTO/GOSUB Statement

The GOTO and GOSUB statement is one of the easier statements
for which to generate code. The GOTO and GOSUB must be followed by
a valid label address. To generate code for the statement requires
only an unconditional branch (JMP) in the case of a GOTO or sub-
routine call (CALL) in the case of a GOSUB to a labeled address.
Even in assembly language, this requires only one instruction.
Figures 8 and 9 show the flow of GOTO and GOSUB respectively.

RETURN Statement

For a subroutine to work effectively, a RETURN must be coded.
If the RETURN is not included, when there is a call to a subroutine
the processing will not return to the statement following the call

statement, but will continue with the statement following the end of

the subroutine. This could cause unpredictable results for the program

execution. A RETURN statement can be labeled so that a direct exit
from a subroutine is possible. Code generation for a RETURN also
requires only one statement. Figure 10depicts the flow for code

generation for a RETURN statement.

- | — G Y T T TN T (T TR ap e c— . e e e o - — -

|)

' Generate
Call To E(R)
Rond Return

' Routine

Generate
Code To
Read Input

) Code to Mov
Input to
| Input Buf

Return

Figure 7. Read statenent.

g oy = . e

. o — . - T T Y

PUSEFIRY

}'lll L R

31

(Z0TO)

Generate
JMP
Skiatement

Y

Generate
Branch
Address

Return

Figure §. GOTO statement.

32

l (GOSUB)

Generate
CALL
Statement

Generate

Subroutine
Address

- Return

FPigure 9. .GOSUB statement.

i erntmime &

i s e aamaeni]

MR o s i emay ey

33

< RETURN)

4

Generate
RET
Statement

Figure 10. Return statement.

it emmm¢ CEE) Ry GHEN GEHE) NP EE "EEN g,

Py

34

MOVE-TQ Statement

The MOVE-TO statement allows for the internal transfer of
data or the initialization of a variable. The data following the MOVE
can either be a constant or variable but the receiving statement must
be a variable. To generate code for either condition, the object code
must be set up to handle either variable values or constants, To
accomplish this the cross-compiler will determine if the value is a
variable or constant and will generate specific code for each which
will load the D and E registers with the constant value or variable
value. This data is held until the TO condition is processed. The
variable address following the TO is loaded into the H and L registers
and a move statement is used to transfer the data to the address
loaded in the register. Again the data in the sending field is not
changed. Figure 1l is a flow description of the MOVE-TO statement.

COMPUTE Statement

The COMPUTE statement is the most difficult statement for which
to generate code in the compiler. The COMPUTE allows for the computa-
tion of various equations involving both constants and variables and

includes parenthesis to allow for greater depth. This presents a

significant problem in being able to handle all the various combinations

of conditions. Each addition, subtraction, multiplication, and division

routine has to be uniquely written. However, for all the routines, a
common procedure was established to load the registers with the two
elements being computed at that time. 1In all routines, the same
registers are used, making it possible for this to be done in a single

subroutine. Figure 12 depicts the COMPUTE flow.

S

35

(MOVE~TO)

y

Load Data/
Address In
Register

y
oad Recw,
Address In
Address
eg(H,L)

Generate
MOV
Statements

(Return)

FPlgura 11. Move-To statement.

™

(CCMPUTE)

N
y

Get Value
Load Into
Table

Get Next
Value Load
Table

36

Accomplish
| Sum/Diff of
Values in
Table

Place re-~
sult in
Variable

\l/

Figure 12. Compufte statement.

|G cmm e e

37

The addition procedure was straightforward. Once the registers
are loaded, a double add (DAD) is generated to accomplish the 16-bit
addition with the results remaining in the D and E registers. For
subtraction, the process is not quite as simple, since there is no
double subtraction verb available in the assembly language. There-
fore to accomplish 16-bit subtraction, the complement of the subtrahend
must be taken and then a double add is preformed.

The multiplication procedure is more complex in design than
either the addition or subtraction. To accomplish the multiplicationmn,
a procedure using a 16-bit right shift of the result and a right shift
of the multiplier is performed. Each time the low order bit of the
multplier is equal to one, the multiplier is added to the shifted
high order byte of the result field. The procedure uses the B and C
registers to hold the result, the C register initially holds the
multiplier, the D register holds the multiplicand and the E register
serves as a counter. This entire procedure is generated once in a
program and if used again will be called as a subroutine and the
registers loaded with the necessary values. Figure 13 depicts the
flowchart for the multiplication procedure.

The division routine is less complex than the multiplication,

It simply involves a series of subtractions which are accomplished

by complementing the divisor and performing a double add (DAD) with
the dividend. This procedure is followed until the dividend is zero
or a remainder is found. The D and E registers hold the divisor, the
H and L registers contain the dividend and the B and C registers

contain the result. Again like the multiplication, the division

S e 4

B s e ey

Mul/Div

38

Generate

B Code to

Call Mul/
Div

Generate
Code for
Mul/Div

¥

Place
Result in
Quadruple

v

Load
Quadruple
Value in
Table

1 Return)

Figure 13. Multiply/Division subroutine.

— e e e e

[] — o—_— nn—) a—— i am—

39

procedure is written only once and subsequent uses are performed
as a subroutine. Figure 13 is a flowchart of the division procedure.

To handle equations involving some or all of the possible
operations, the compiler was designed to use a modified quadruple
approach. In using quadruples, an equation is usually broken down
into the two elements to be operated on, the operator and a result
field in the general form value-value—result-operator.16 The AU78
cross-compiler modified this approach somewhat and a table is used.
Each element of the equation is loaded into the table as it is read.
When an operator is read, it is checked to determine if it is a
multiplication or division operator. If it is, a switch is set and
after the next value is read, the oéeration is performed by calling
either the multiplication or division subroutine. Upon completion of
the operation, the results are stored in a unique result variable
generated by the compiler. This result replaces the two values and
the operator in the table and further reading of the equation proceeds.
This will continue for all multblication and division problems while
all additions or subtraction operations remain in the table. Figure
12 depicts the flow of the total operation.

While processing an equation, if a left parenthesis is
encountered, the compiler will begin working with a new table
following the same rules as for the first. In this table, all elements
read after the parenthesis will be stored, and the multiplications and
divisions performed until a right parenthesis is encountered; indicating

the end of that computation. The additions and subtractions in the

il

40
second table will then be computed and the result for the entire
operation enclosed in parcenthesis will be stored in another unique
compiler generated field. This result will be placed in the
original table as a multiplication to be performed with the last
entry in the table. Figure 14 depicts the flow of the parenthesis
procedure. At the end of the equation, the cross-compiler will
search the table, performing all additions and subtractions until
the table is clear. The final result of the computation is placed
in a specific cross-compiler generated result field which is then
moved to the variable address indicated by the COMPUTE statement.
The same tables are used for each computation, so only limited space
is required to store the tables. The result is a fast, effective
method for accomplishing computations.
END Statement

The END statement simply signifies to the compiler that this
is the logical end of the program and the compiler will then generate
an END verb. Figure 15 depicts the END condition.

IF-THEN-ELSE Statement

The IF-THEN-ELSE statement is another statement for which it
is especially difficult and complex to generate code. In AU78, the
conditional comparison allows either equations, variables, and/or
constants to be compared. Consequently, the problem is quite complex
in determining which type condition is being compared to which other
condition. If equations are compared to each other or even to a

variable or constant, the equation must first be computed and the

ot

1- wm—— —— — w—t —— vmm — "

‘PARENTHESI%

Place
Parenthesis
In Table

41
Cali' Store
¥ul/Div Quadruple
Accomplish Replace (
Sun/Diff N With * In
of SubTable Table

Figure 1l4. Parenthesis subroutine.

b et

~(RETURN

A RETURN

{

ka

END

Generate
END For
Assembler

V
Return

Flzure 15. End statement.

1-———

43
result saved and then compared to the second value. When equations
are being compared, the code for the equation will first be generated
just as stated for the COMPUTE statement. If previous arithmetic
subroutines have been generated which can satisfy the conditional
equation, then only a subroutine call will be used and the entire
code will not be recreated. The results of an equation will be stored
long enough for the comparison to be accomplished after which the
results are unavailable to the programmer. If it is necessary to
have the results, then a COMPUTE statement should be performed and
the results of it used in the comparison.

The method used for code generation for the condition is
straightforward. The first value to be compared is stored in a
compiler generated data field. The next value is then loaded into the
D and E registers and based on the type comparison, code is generated
which will compare the stored value to the register pair. Since this
comparison is accomplished using the 8-bit accumulator, it must take
place a singlé register at a time. The comparisons are made using
the compare (CMP) verb and one of the jump verbs.

Since the next statement to be processed is based on the
result of the comparison, these statements must be labeled so the
program can jump to the correct one. To accomplish this, the cross-
compiler generates address labels which are appended to the sentence
following the THEN and the ELSE, or the next logical statement if the
ELSE is not used. By using these labels, the comparison and resultant

branch will cause a jump to the proper sentence. For each time an

e o v — e —— o TR R T TSt T iy e T TR & e

|]] — —

44
IF-THEN-ELSE sentence is used, unique labels must be generated.
This is accomplished by using a counter and appending the count to
the end of a three character label, thereby insuring a unique label
each time such as THN1, THN2, ELS1, and ELS2, Figure 16 shows the
flow of the IF-THEN-ELSE statement.

As outlined above, the code generation process involves many
intricacies not readily apparent until the detail design is underway.
Also, the peculiarities of the language dictate to a great degree
the procedures required to efficiently create code. However, the
most important consideration is to generate efficient code and
wherever possible duplicate code if it can be used by more than one
statement. Code for high level languages can never be as efficient
as that created direqtly in assembly language. But if care is taken
and the design of the compiler well thought out, the differences in

efficiency can become insignificant.

e e e v T g B D S

-———‘

="

45

IF-THEN-
ELSE

y
Generate
CODE for
Condition
Comparison

Create
Labels for
Unique
Branch

y
Generate
Code To
Branch To
THEN

y

Generate
Code To
Branch To
Else

Return \

_ e e b E g Y I L Lk e TN g —

EREEEIRENSRRRRRERe S AR e e

| [aamy]] - —— o —

V. SAMPLE AU78 PROGRAM AND LISTING

To demonstrate the capabilities of AU78 and the operation of
the program on line, a sample program was developed and entered through
a teletype keyboard to the I8080. The program accepts two input numbers
and compares them to determine if the first is greater than or equal
to the second. If the condition is met then the larger number is
printed. If the condition is not met, then an equation is evaluated
and the result printed. The main purpose of this program was to
utilize each type statement in the AU78 language and to demonstrate the
corresponding object code. Consequently, the flow of the program
will produce at least one or two of each type statement. The source
listing is found in Table 4. The input and output of the program on
the teletype is found in Table 5. The object code generated by
the cross—compiler is listed in Table 6. The symbol table is produced
first followed by the actual operational code. The code generated for
each source statement can be determined by tracing through the object

code.

46

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210

0220

GTR:

COM:

OTP:

INP:

47

Table 4. Program sourde 1listing.
GOSUB INP;
MOVE INPUT TO NBRL;
GOSUB INP;
MOVE INPUT TO NBR2;
IF NBR1>= NBR2 THEN GOTO GTR ELSE GOTO COM;
MOVE NBR1 TO OUTPUT;
GOTO OTP;
COMPUTE NBR1/24+10(NBR2*5-20)=0UTPUT;
WRITE 'RESULT IS EQUAL TO ‘';
WRITE OUTPUT;
END;
READ INPUT;

RETURN STOP

- ~imp—y m— ——

5a8a v3.2
«G3770

8282 3.0
.G131
23088088A

48

Tatle 5..Program cperation.

sInittalization procedure as defined in
Users Manual

3Start addréss of procedure

sInput

RESULT IS EQUAL TO 19 ;Output

8882 V3.2

sReady

| g
' Table 6. Program generated: object code. -.
32533555 5SYMBOL TABLECCCLCL¢K<LK
RESLS 0103
I RESLE 0105
i RESL? 8187
Tt} RESL6 8189
RESLS 018B
RESL4 010D
RESL3 010F

PESL2 298t
RESL1 0113

STG1 8115
QUTPUT 8128
NBR2 alaa
NBR1 g12c
INPUT 812
sav B8l30

TTYST 8001
TTY1O 09800

INP 82EB
THN1 818D
ELS1 2193
TR 8197
KXT2 8196
COM 01A8
OTP 226<
DIV 8187
NULS 81CF

DIVDE 21C3
FNDIV e1cop

e MULT B1ES

' NUL4 Blrc
MULTO 81lEA

DONE 81FB

. . MULT1 B1F6
et SUBT 8212
NUL3 0232

CARRY 821D
SECND 0348

1 DADD 8226
PRINT 8277
NUL6 0290

TTYOUT 8283
ENLPT 828F

TTYO 8298
NUL1 02E7
LTR1 8283
TTC 8285
TT82 2288
LTR2 82DE
oT Q2ED
CHK 82ccC
OTRT 82E6
TTYIN a2r1
NCL2 6366

TTYSO g3ae

A = o o v ———

=

- L - oo e ————

. ‘“‘ Q‘i

5Q

Table &. Program generateéd- object code

NUMIN
LTRIN
SEC
ASCII
INXH

g31n
g3lc
833a
8328
9358

\END OF PASS ONE

91908 88
2101 @9
0162 @9
9103 oo
0185 8e
0187 09
8109 09
8108 90
818D 00
8ler 08
8111 00
9113 09
9115 52
8116 45
2126 4F
8128 00
8l2a o
012Cc 0¢
B812E 08
9130 0@

8131 CD
8134 21
8137 Se
2138 23
8139 56
813a 21
213D 78
813E 77
813F 23
9340 72
9141 77
9142 CD
8145 21
9148 SE
2149 23
814n 56
gl4s 21
914t 78
014F 77
g8ls¢ 23
8151 7a

29
80
20
292
ee
o8
28

53
20
20
80
1]
09

EB
2E

2C

EB
2E

2A

RESLSY:
RESLS:
RESL7:
RESL6:
RESLS:
RESL4:
RESL3:
RESL2:

ORG @l@?

BYTE

BYTE -

BYTE
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

RESL1: WORD
STGl: TXT

1]
1]
1]
e
o0
1]
00
0o
00
08
20
e

‘RESULT IS EQUAL TO '

55 4C 54 28 49 53 20 45 51 55 41 4C 20 54

02
21

g1

82
a1

21

OUTPUT: WORD 88
NBR2: WORD @8
NBR1: WORD @9
INPUT: WORD @8
SAV: BYTE 20
TTYST: EQU 41
TTYIO: EQU 4@
CALL INP

LXI
MOV

H, INPUT

-
=

INX
MOV
LXI
MOV
MOV
INX
MOV
MOV
CALL
LXI
MOV
INX
MOV
LXI
MOV
MOV
INX
MOV

-~ % v

O PpEHZX

“ N Ze

.- v .o~

PEIFPFHONMRHIDP>P>PMIPRNODM
g »mZX

-

X
z

w
x
-

g

w
bl
N

(continued).

erietens SN

nl

gew

51

Tafile 6, Program generated gbject code (continued).

8152
8153
8156
8157
2158
#8159
815¢C
215D
815E
815F
8162
8163
8164
8165
0166
6167
gle68
g9l6B
glecC
gléep
816E
2171
8172
8173
0174
2175
0178
9179
017A
0178
817¢e
218l
0182
0183
9184
8187
218A
818D
9190
8193
2196
2197
919A
0198
819¢C
919D
81A9
2lal
61A2
91A3
01A4
91A5
81As8
21AB
01AE
01AaF
2182

2C

13

13

2A

13

13

ap
93

8D
8D
93
97
96
AB

2

28

6C
82
2C

81

81

81

21

81

01

81
a1

el
8l
el
0l
8l

a1

61

82
al

55353
< <
s mEXmOoOmMmMImx

x
[+]
<
mox
>R
[
[
-

< vy O ~
o™X Xz »X
1] w
%] o
I3l [
.

.~ 0w

x

(o]

a
EXImOImM®E OXMm)

o

JMP ELS1
TENl: JMP GTR
JMP NXT2
ELS1: JMP COM
NXT2: MOV A,A
GTR: LXI BH,NBRI1
MOV
INX
MOV
LXI
MoV
MOV
INX
MoV
MOV
JmMp
COM: LXI
LXI
MOV
INX
MOV

e

uTPUT

o
OXpRTrmomm
o >PmOX

WL X~
S Rl

:!5'&‘)
b
[

= 4

Tabhle

R 2181
0184
9187
9188
2189

oA 218A

l hmne/ 91EB

91BB
81BC
81BD
81BE
81BF
01Cg
21C3
81C4
91Cs
81Cé
81C9
91CA
g1Ccp
81CE
81CF
81lDa
91D3
81D4
01Ds
81Dé
[23s1]
81DC
81lop
81DE
B 21DF
Bl 81e2
81ES
81lE7
81ES
Q1EA

81lEC
#1ED
01lEE
glr]
81F2
g1Fs
g1Fs
g1F7
elFrs
[284]
21FC
. 9lFD
0200
2281
9202
8283
8206
9209
820a
2298

B7
CF

cD
c3

13

95
2A

ES

1)
89

FB
Fé

11

14
11

Program generated

81
81

gl
21

81

1]
DY

(2
81

a1
21

0l

21

29
g1

52

CALL DIV
JMP NULS
DIV: MOV a,D
CMA
MOV D
MOV A
CMA
MGV E
INX D
MOV L
MOV B
LXI B
DIVDE: DAD D
MOV A,
RAL
JC FNDIV
INX B
JMP DIVDE
FNDIV: XRA A
RET
NULS: MOV A,A
LXI H,RESL1
WOV M,C
INX H
MOV M,B
LXI D
LXI B
MOV C
INX B
MOV B
CALL M
JMP N
MULT: MVI B
MOV D
MVI E,
MULTO: MOV A
RAR
MOV C,A
DCR E
JZ DONE
MOV A,B
JNC MULTL

ADD

MULT1: RAR
MOV B,A
JMP MULTO

DONE: RET

NUL4: MOV A,A
LXI
MOV
INX
MOV
LXI
LXI
Mov
INX
Mov

-

guw o

PXTO@MOXmEMD

x

object code (continued).

. —————— - —

TaBle 6.

020C
928F
2212
8213
8214
0216
8217
821a
821D
821E
821F
8221
8222
225
0226
0227
2228
8229
922a
9228
022E
922F
8230
8231
8232
8233
8236
8237
8238
8239
823C
823F
0242
8243
0244
8245
0248
0249
024A
0248
024E
824pP
8258
8251
8252
8253
2254
8257
9258
0259
825A
825D
92SE
825F
0269
8263
2264

12
32

21

1D
4B

[/
28

oF

aF

ga
E5
8F

oF

13

(2]

13

13

Program generated cbject code (comtinued).

@2
02

82
83

92

21

80
2l
el

D

81

81

21

a1

CALL
JMP

53

SUBT
NUL3

SUBT: MOV A,E

CMA
ADI
MOV
Jc

JIMP

1

E,A
CARRY
SECND

CARRY: MOV A,D

SECND:

DADD:

CMA
ADI
MOV
JMP
MOV
CMA
MOV
XCHG

1

D.,A

DADD
A,D

D,A

-~ ~

m
&
[o
w

-

ng" [«
tn
| ad
w

.- v

He

« v~ G =
ngrn—-:z
(]
[g
w

XTI TOoOTMMI TmEm

.-.m
&
[o
w

z XTI X
m
4]
a4
=

MITETDMIEN W PHODNMOMmDX

mom-

vt cummm. o — [[]

tiomy

TabBle

8265 SE
8266 21
8269 72
B826A 23
0268 73
926C 21
B26F 96
8271 CO
8274 C3
0277 4E
8278 CD
9278 23
827C @5
827D C2
8289 C3
8283 pB
2285 E6
8287 C2
928A 79
8288 2r
828C D3
P2BE C9
928F C9
8298 F
0291 21
9294 23
9295 Cp
0298 C3
9298 DB
029D E6
829F C2
82A2 7E
02a3 E6
82n5 9F
82n6 OF
2267 oF
92a8 oF
#2A9 FE
92a8 F2
92AE C6
8280 C3
9283 C6
9285 2F
#8286 D3
8288 DB
82BA E6
9#28C C2
92BF 7E
82Cco0 E6
92C2 re
@92c4 P2
82C7 C6
€2C9 C3
927C 21
[2 S)
2200 PE
9202 CA

6. Program generated object code (continued).

28

15
13
77
90

83
77
8F
01

04
83

28

98
E7

B4
9B

F@

23
B3
30

37
.1

04
B8

oF
[1.3
DE

EQ
3e

21
E6

21

a1

82
22

82

01
82
92

82

82
a2

82

82

82
LD

82

LXI
MOV
INX
MOV

OTP: LXI

MVI
CALL
JMP

54

PRINT
NULS

PRINT: MOV C,M

CALL
INX
DCR
INZ
JMP

TTYOUT: IN

ENDPT:

NUL6:

TTYO:

LTR1:

ANI
INZ
MOV
CMA
ouT
RET
RET
MOV
LXI
INX
CALL
JMP
IN
ANI
JNZ
MOV
ANI
RRC
RRC
RRC
RRC
Cpl
Jp
ADI
IMP
ADI

TTO: CMA

T™T82:

CHK:

ouT
IN
ANI
JINZ
Mov
ANI
Crl
Jp
ADI
JMP
LXI
MOV
CPI
Jz

TTYOUT
3]
B
PRINT
ENDPT

TTYST

04
TTYOUT
A,cC

A,A
B,0UTPUT
-4

TTYO
NUL1

TTYST
84
TTYO
A,M
240

A
LTRI
830

837

TTYIO
TTYST

TTE2
A,M

oA

LTR2

8389

oT
H,SAV

AM

OTRT

TabBle &. Progran generated object code (continued).

9205
82p7
@208
8208
92DE
02E0
92El
B2E3
B2E6
827
02ES
82EB
92EE
02F1
92F3
92F5
82r8
82FA
22FB
82rD
8300
03e2
0304
2387
B830A
2308
838D
8310
8312
8315
8317
831A
g831c
#31F
8322
8323
8325
8328
832A
0328
832E
9331
0332
8333
0334
231s
9235
917
923a
8330
#33e
8348
0343
0344
8345
9346
0343

28
28
37
89
cc

2e
Fl

© 66

21

1
-

Fl
8o

7F
82
8l
04

82

20
82
A
1A
37
1C
30

38
81
3A
81

g2
(1]

Fl

(13
ae

2.
S8

01
a2

22

38
82
B3

82

g1

83
81
1
23
03
‘28
01

a3

-

a1

23

ADI
MOV
LXI
JMP
LTR2: ADI
OT: CMA
ouT
JMP
OTRT: RET
NUL1l: MOV
JMP
INP: CALL
JMP
TTYIN: IN
ANI
INZ
IN
CMA
ANI
STA
TTYSO: IN
ANI
JNZ
LDa
CMA
ouT
LDA
CPI

55

1

M,A
H,00TPUT
TTYO

837

TTYIO
CHK

AA
23890
TTYIN

NUL2
TTYST
01
TTYIN

TTYIO

B7F
9182
TTYST
04
TTYSO
ple2

TTYIO
9l@2
93A

JC NUMIN

SUI
JMP
NUMIN: SUT
LTRIN: STA
LXI
MOV
CPI
Jz
ADI
MOV
ASCII: LXI
LXI
MOV
RLC
RLC
RLC
RLC
STAX
JMP
SEC: LXI
MoV
ANI
LXI
ora
STAX
[, ek
CPI

J7

S g s S W I T T T e Y et -

237
LTRIN
830
9182
H,SAV
A,M

EC
A

0lg2
180

P X

’
H,
,8
M

y — S - []

ool

<wiaie

1 [) w——— b)

56

Table 6. Program generated object code (continued).

6348 1E 01 SECND: MVI
834D 21 32 01 LX1
8350 AP XRA
8351 77 MOV
9352 ga LDAX
8353 21 2E 01 LXI
9356 23 INX
0357 77 MOV
8358 C3 Fl 82 JMP
8358 21 28 @1 INXB: LXI
835E @A LDAX
835F 77 MOV
8360 21 39 81 LXI
98363 AF XRA
0364 77 MOV
8365 C9 RET
9366 7F NUL2: MOV
0367 C9 RET
8368 C3 20 38 JMP
END

\END OF PASS TWO

- b o i i

A~ e e+ o e -
mnne ——I-----I--Ill-llllllIlllllllllllll.ll..ll..i

ey

VI. CONCLUSION

The design and development of the AU78 language and compiler
has provided at least one significant advancement. It has opened a
way to more efficient programming of an Intel 8080 based microcomputer
using a simple high level language. Using the assembly language for
the I8080 is tedious at best and the introduction of AU78 provides a
basis for increasirg¢ a programmers capacity to fully utilize the
I18080. It is realized AU78 has limitations. It was designed as a
general purpose type language and as a result specific capabilities
to accomplish a specific task may not be present. However, the
basis for the inclusion nf these capabilities is available through
the modular design of the compiler. Additional capabilities could be
added to perform a specific task by adding statements to the grammar
and the grammar table and by creating a new subroutine.

Major achievements, as far as the author is concerned, are the
tremendous experience gained in completing such a task and providing
the capability to program the I8080 in a high level language using
the time share capabilities of the RSTS/E operating system of a DEC
PDP11/40 minicomputer. It is virtually impossible to fully understand
the inner workings of a compiler withcut writing one. Some compilers
take several persons at least a vear or two to write and even then
they are seldom complete or totally accurate. Most are continually
being enhanced and modified because of the detailed problems

57

58
associated with accounting for every possible way a source language
statement can be used. To better understand a portion of the problem
involved in valuable knowledge.

One of the most important lessons learned from this effort is
that to be most effective, a high level language for a small computer
should be designed for a specific type application. To design one
for many type uses requires trade-offs in capabilities which tend to
weaken the overall language. For large machines, this is not as
critical, as evidenced by PL/l. But where core is a significant
consideration, special purpose languages are best. The AlJ78 requires
15K core on the PDP11/40, but had it been designed for a specific
application, these requirements could have been reduced.

Another important lesson is that in designing a compiler, one
should map out the capabilities it will have at the start and develop
these first. Otherwise in the development, it is very easy to desire
to add more capabilities. This in itself is not bad, but it tends to
extend the estimated completion dates. 1In other words, establish the
initial capabilities and enhance later.

Finally, it should be noted that many efforts to develop high
level languages for microcomputers have already been undertaken. The
results of all so far have uc. been totally satisfactory in respect
to broad capabilities. However, many of these efforts are relatively
recent and progress is being made in the design and efficiency of these
languages. With additional work, the high level language future for
microcomputers seems promising. The author sees AU73 as a small step

in that direction.

enmup—y

» - ——————

REFERENCES

1B. A. Perrin, "High Level Languages and the Micro-
processor," Electronic Tnegineering, May 1977, p. 65.

2

Ibid.
31vid., p. 66

uMark Alexander, "An Inside Look Into NIBL-Extended
Tiny BASIC for the SC/NF," Interface Age, January 1977,
p. 106.

5Yaohan Chu, Computer Organizaticn and Microprogramming,
(Englewood Cliffs, New Jersey: Prentice-Kall, Inc., 1972),
p. 173.

A

“Loi. Frenzel, "How to Choose a iiicroprocessor," BYTE,
July 1972, ©. 128,

7ﬁ. E. Kamza, ed., IEEE 1976 lini-Mini and Kicrocomputers
(IZE Computer 3oclety, 1977), p.43.

g . . .

John Coach and Terry Hamm, "Semantic Structures for
Efficient Code Generation on a Stack lachine"”, Comvuter,
Yay 1977, p. 1L40.

9Perrin, "High Level Languages," p. 66.
loﬂ. M. Kennan, J. J. Horning, and D. B. iortman, A
nompiler Generator (Englewood Cliffs, New Jersey: Frentice-
Hall, Inc., 1970), p.43.

11Donald C. Simoneaux, High Level Language Compiling
for User-Definable Architecture (Cameron 3tation, Alexandria,
Virginias Defense Documentation Center, 1975), p.24.

12Jo‘nn J. Donovan, Systems Programming (New York:
¥cGraw-Hill Book Company, 1972), p. 266.

-~

17
Cavid Gries, Compiler Construction for Zigital Zom-
nuters (New York: John wiley and 3ons, Inc., 1G71), ©. €5.

1L

-

Conovan, 3Systems frogramming, . 2:1c

[$1}
i

B e e e e

60

15Gries, Compiler Construction, p. 5-6.
16

Gries, Compiler Construction, p. 5-6.

et = e S g ng— M P! TG T T T Ay e

APPENDIX A

USER'S MANUAL

1.0

1.1

2.1

AU78 USER'S MANUAL

General Procedures - The development of an AU?8 langu-
age program must be accomplished through an on-line
PDP11 remote terminal for compilation by a BASIC pro-
gram with the results being stored in a user's disk

file.

Log on Procedures - The user will log onto the PDP11
in the usual manner as determined by the local environ-
ment. Generally an account number and a password are

required entries.

Run of Compiler - When the READY signal appears on the
terminal the compiler can be initiated. At that point,
enter the command RUN % AU78. When the program is
loaded, a "?" will appear. The compiler is ready to

accept source code,

Coding -~ Source code can be input in a generally free

form format with only spaces required between entires.

Line Numbers - Line numbers are optional in AU78 and
can be used if desired by the programmer. Since they
are not required, branch conditions cannot be to line

numbers and must be to labeled statements.

62

hadle L St anther au

ot &

[R

2.2

2.3

2.4

2.5

2.6

53
Labeled Statements - Any AU78 statement can be labeled.

A label must begin with an alphabetic character and can
be up to five characters long. The label must be followed

by a colon before the program statement begins.,

Sentences - A sentence is any valid AU78 statement. A
semicolon should be placed at the end of each sentence

to signify its completion.

Lines of Code - Upon completion of a sentence, a TAB
character on the keyboard can be depressed if it is
desired that the next sentence began on a new line.
This is not necessary since the lines can continue

without interruption.

Logical End of Program - The logical end of a program

is signified by the insertion of an END statement.

Subroutines - Subroutines can physically be placed any-
where in a program except as the very first statement.
A call to a subroutine will cause a branch to the sub-
routine address, perform the function and return to the
next logical statement after the call., If the sub-
routines are to be grouped at the end of the program,
the END statement must be entered before the sub-

routines are added.

2.7

3.0

3.1

6h
Physical End of Program - When all coding is complete, a

STOP statement followed by a carriage return should be
entered to signify to the compiler the last statement

has been entered and compilation is to begin.

Compilation and Assembly - If an error were detected
during compilation, they should be corrected and rerun.
Upon successful completion of a compilation, the assembly

process is ready to run.

Assembly - To assemble the compiled code, enter RUN %
ASMBIR. Then the following questions and their responses
are used to run the assembler.
MICROCOMPUTER 2 8g8¢
INPUT FILE ? COMP. DAT
OUTPUT FILE ? Enter either the name of a file or
depress the carriage return for a paper tape file.
LISTING ? Enter /Q for the printer or any valid
PDP11 RSTS entry.

Sign-0ff - Upon completion of the assembly process, sign

off the system with a BYE command,

Procedure for Intellec - 8 - The following actions are
required to initialize the Intellec-8 for operation
-Turn on the Intellec - 8

-Turn teletype to "on line" position.

— @ easm oI R WA

65

-Press "MEMORY ACCESS" (TOP HALF).

-Press "WAIT".

-Place zero in the switch register by depressing the
lower half of each of 16 switches in the Switch
register.

~Press "LOAD" '

~-Place "C8" (hexadecimal) in the eight switches in the
right half of the switch register. The switch is in
the one position if the upper half of the switch is
pressed in.

-Press "DEP".

-Press "INCR".

-Place "ggZ" in the right half of the switch register.
-Press "DEP",

-Press "INCR".

-Place "138" (hexadecimal) in the right half of the
switch register.

-Press "DEP".

-Press "RESET",

-Return the memory access switch to the "RESET" position.
-Return the wait switch to the "RESET" position.
-Message should then be printed on the teletype.

Procedure to locad code - To load a paper tape in the
Intellec - 8 the following steps should be followed.

-Turn on and bring up Intellec-8.

\r_mﬂ_______________

C e e

|
I

66
-Type "G377¢" followed by a carriage return.

-Depress "Start" on paper tape reader.

-Program will return to monitor when load is complete.

Procedure to Execute program - After the tape is loaded,
type GxxxX followed by a carriage return. The XXXX is
the address of the starting location of the program in

hexidecimal.

5.0 AU?8 Statements - The statements acceptable by the AU78

compiler can be entered in a free form format. The only
exception is that a space must be placed between key

words and other entries.

5.1 READ variable - The READ statements accepts input data

into the area set up by the variable. Data can be
either processed in the variable area or moved to another
area for processing. The status of the input device is

automatically checked by the READ statement.

5.2 WRITE variable/string - The WRITE statement will write

to the output device the information stored in the vari-
able area or will print out the entire string which is
enclosed by single quotes. The string capability allows
the programmer to set up header and format information.
The status of the output device is automatically checked

by the YWRITLE statement.

1_ — n— a———

€7
5.3 NOVE variable/integer TO variable - The MOVE-TO state-
ment allows for the transfer of data internally in the
program., It can also be used to initialize a variable
or set/reset a variable value. With the MOVE-TC, the

value of the sending field remains unchanged.

5.4 GOTO Label - The GOTO statement accomplishes a transfer
of control from the current location to the location of
the label address. A GOTO should not be used to branch
out of a subroutine since it could create execution pro-

blems later in the program processing.

5.5 GOSUB Label - The GOSUB statement transfers program con-
trol from the current statement to the address identi-
fied by the label. Upon completion of the subroutine,
control is passed back to the sentence following the
GOSUB. DATA can be passed to subroutines through vari-
ables. If the variables are changed in a subroutine, the

new values will be available for use in.the main program.

5.6 RETURN - The RETURN statement provides a means of return
from a subroutine to the main body of the program. The
first statement after the GOSUB statement will be executed
immediately after the RETURN statement.

5.7 CCMPUTE expression = variable - The COMPUTE statement

rrovides a means of computing equations. The use

T e —— ——— TG P et —— e o e e

A8

of parenthesis is permitted to provide greater flexi-
bility and depth in equation development. All equa-
tions are evaluated in proper order with operations
within parenthesis being accomplished first, followed

by multiplication and division operations. Both
variables and integers may be used in a typical equation.
The results must be equated to a variable for further

processing.

5.8 IF condition (equation/variable/integer - operation -

equation/variable/integer) THEN statement ELSE statement -

The IF-THEN-EISE statement provides the capability to
per form comparisons between values and then accomplish

certain operations based on the result of the comparison.

5.8.1 IF condition - The IF condition allows several alterna-
tive bases for comparison. A full mathematical equa-
tion can be compared to another equation, variable or
integer. Additionally, variables or integers can be
compared with each other or with equations. It should
be noted that if an equation is used as the basis for
comparison, the results of the equation are not saved

beyond the use of the statement.

5.8.2 THEN statement - The THEN statement will be executed

if the IF condition is met. Unless the THEN is followed

Ail.l I N T A S N e

5.8.

5.9

6.9

69
By a branch statement, upon completion of the statement,
control will pass to the statement following the IF-
THEN-ELSE,
3 ELSE statement - The ELSE statement is optional. If
used, the statement following the ELSE will be executed
1f the conditional comparisen fails. Unless a branch
statement 1s used, upon completion of the statement
the program control will fall through to the next
sentence. If the ELSE statement 1s not used, the conditional
statement fails, control will pass to the next sentence.
END -~ The E!ND statement 1dentifies the logical end of

the program.

5.10 3TOP - The STOP statement 1s used to 1ndicate the last

statement in the program.
Key Words - The folloviing is a list of key words which

cannot be used except as stated above.

IF RETURN
THEN COMPUTE
ELSE READ
GOTO WRITE
0SUB END
STOP

73

7.0 Reserved %Words - The following is a list of reserved

words that cannot be used in coding on AU78 program:

A M

B ouT

C PUSH

D POP

E CALL
H ORG

I EQU
STAY SET
DADD PSW
SECND CARRY
PRINT TTYOUT
TTO LTR1
CHK LTR2
MULT MULT1
LTRIN MULTO
TTYIN SEC NO

SP

THN (1-20)
ELS (1-20)
STG (1-20)
STOF

NUL (1~9)
DIVDE
FNDIO

DIV

SUBT
ENDPT
TT02

o7

NUMLN
INXH

SEC

TTYSO

8.0 Special Characters - lith the exception of the special

characters listed below, other special characters are

not allowed except within strings.

be used with AU78 code.

- ANUK

n AV
[H

-~

<>

The following may

APPENDIX B

AU78 PROGRAN LISTING

e i et e e 7

s _ g me

T e e—

ein'a Jva

——

s

144
148

156
169
164
168
172
176
189
184
188
192
19¢
209
204
288

-
216
220

L4

-3

N

DIM G%(419)\MAT READ G%

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0,0,0
#,1,8,332
6,29,8,12
6,4,16,16
3,1¢,0,:%
,8,335
2,28

S WU W
e
—

S s e s @
VW Co el o
WO ®~ R

[
6
4
6
[
6
6
6
8
3
6
3
6
3
6
8
6
6

. — A R —_—
— — L

224
228
232
236
249
244
248
252
256
260
264
268
272
276
2889
284
288
292
296
360
304
3es
312
316
329
324
328
332
336
349
344
348
3352
356
362
364
368
372
376
389
384
388
392
396
400
404
408
412
416
580
529
532
549

73

DATA 6,212,0,1
DATA 8,12,68,232
DATA 6,248,0,236
DATA 6,284,344,240
DATA 6,212,0,1
DATA 8,8,2,0
DATA €,13,8,252
DATA 4,14,254,256
DATA 6,212,2,26¢8
DATA 4,15,0,1
DATA 6,296,268,1
DATA 6,228,0,1
DATA 0,14,8,276
DATA 4,6,280,1
DATA ,8,1
DATR ,8,288
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA 7,20,0,1
DIM KS(13)\MAT READ KS$
DATA IF, THEN,READ,WRITE,GOTO,GOSUB,MOVE,RETURN,ELSE,STOP, TC

DIM AS (20}

Ats1\M1%29
\D2%=0
S§2%=3
\Pli=g
\Ila=d

CYS
gy

RO TR N DRE N WA -SSR D D 00—
WO SANBWRNIIEY s v 2 WYWHBWY ~ s B~ > » 9O~ > !

N oS

I e B R e B R R I N RN NV . A Nl W O W R FE SR N O Y
th
o

I I R T T T Ry

R SO0 0
N o

e

o
r

74

545 DIM DS (20)\D%$=1\El%=1\Tli=l

558 OPEN "COMP.DAT" FOR QUTPUT AS FILE 1%
568 OPEN “TEMP.TMP" FOR OUTPUT AS FILE 2%
578 DIM E25(22)\E2%=1\S1%=8\Rli=]

1868 REM SCANNER
1810 DIM T$(17)\MAT READ T$.
1929 DATA GRAMMER,LINE,STATEMENT,MODSTATE,CONDITION,OPERATOR,IMPS]
GER,STRING
1836 Ts=1
1048 DIM S%(30)
1858 He=4\I=@
1855 Yi=@g\ws=" "
1868 INPUT LINE SS$
1878 GOSUB 128@\P3%=4\GOSUB 1299
1874 z2s5=" END"\GOSUB 32P00\CLOSE 2%
1875 OPEN "TEMP.TMP" FOR INPUT AS FILE 2%\GOSUB 2080080
\CLOSE 13%\CLOSE 2%
1088 STOP
18098 REM
1188 REM GS%IS5 GRAMMER MATRIX
1118 REM T$ 15 TRACE NAME VECTOR ,T%=1 FOR TRACE
1120 R¥=0\0%=G% (P%)
113¢ IF O%=9 THEN R%=1\IF T%=]1 THEN PRINT TAB(X%*3);T$(G%(P%+l))
1148 IF (O%=1 OR Q%=2 QR Q%=35) AND C%=0% THEN R¥=1:IF T%=1 THEN PRIN'
1156 IF (O%=3 OR O%=4) AND C%¥=0% AND V%x=G%(P%+l) THEN R$=1\IF Ts=1 TI
1155 GOsUB 32520
1168 IF O%>0 AND O%<6 AND Ri%=1 THEN GOSUB 1288
1170 IF O%=6 THEN X$=X%+1\S%(X%)=P&\P%=G% (Pt+1)\GOTO 1129
1180 REM SEMANTIC DECODE HERH
1200 P%=G% (P3+2+R%)
1285 IF P%=95 THEN GOSUB 4788
12868 IF P3=72 AND C%=3 AND V&=9 THEN E6%=1
1289 IF P%=28 AND C%=4 AND Ve=5 AND E6%=1 THEN GOSUB 62B8@\E6%=¢
1218 IF P%=2 THEN X$=2\Pi=0
1228 IF NOT (P%=@ OR P%=1) THEN GOTO 1120
1239 R¥=P3\P%=S% (X3)\X¥=X3-1
1242 IF T%=1 AND R$=2 THEN PRINT TAB(X%*3+3);"FAIL"
1250 IF T%=] AND R%=] THEN PRINT TAB(X%*3+43);"SUCCESS"
1268 IF X%<8 THEN RETURN
1278 GOTO 1288
1288 REM SCANNER
1298 Cy=2\Vi=g\Vs=""
1388 IF LEN(SS)<>@ THEN 1310 ELSE 1348
1316 GOSUB 1350 \IF C$S=" " GOTO 13249
1320 GOSUB 1394
1338 PRINT "Cy="Cy, *"Vi="Vy,"VSa"V$
13403 RETURN
1358 SS=CVTSS(SS,16%)
1368 C$=LEFT(SS,1)
1370 S$=RIGHT(SS,2)
1388 RETURN
1398 REM DETERMINE CS
1420 IF INSTR(1%,72123456789",CS) THEN 1418 ELSE 1479
1418 VsS=VS+CS
1420 V=VAL(VS)
1430 IFf LEN(SS) <>@ THEN 1440 ELSE 14660
1449 GOSUB 1358

g e v e T g

tatmy,

1459
1460
1470
1480
14982
1500
1510
1520
15308

1540
1550
1568
1579
15882
1599
1608
1618
16282
1638
1642
1658
1669
1679
1686
1698
1708
171e
1728
1730
1740
1750
1760
1778
1780
179¢
1800
1819
182¢
1338
1849
1852
1855
1868
1908
1912
1915
1916
1917

1920

1949
19589

IF INSTR(1%,"8123456789",CS) THEN 1418
C=1\S5=CS+SS\RETURN
REM REY WORDS

IF INSTR(1l%,"ABCDEFGHIJXLMNOPQRSTUVWXY28123456789",C$) THEN 1499 ELSE

VS=VS$+CS\GOSUB 1358

IF INSTR(1%,"ABCDEFGHIJRLMNOPQRSTUVWXYZ28123456789",CS) THEN 1498 ELSE

IF LEN(SS)<> @ THEN 1488 ELSE 1528

FOR Vi=1 10 13
IF KS(V8)=VS THEN C%=3 ELSE 1558
\S$=CS+SS :
RETURN

NEXT V%

VE=3¥\C¥»2\S5=CS+S5

RETURN

IF CS<>"<"THEN 16460

VSay$§+CS

GOsSuUB 1358

IF CS="=" THEN VS=VS+CS\C%=4\Va=12\RETURN

IF C$=">" TEEN VS$S=VS+CS\C$=4\Vi=13\RETURN

CY¥=4\V¥=2\S$=CS+SS\RETURN

IF C$<>">" THEN 1690

V$=VS+CS

GOsuB 135@

IF CS="=" THIN C%=4\V3=11\RETURN

S$=CS$+S$\Ca=4\Ve=1\RETURN

IF C$S<>"'" THEN 1758

VSavS+CS\2%=]

GOSUB 1350

VS=VS+CS\28=23+1

IF C$= "'" THEN C¥=5\Ve=@\Yt=Y3+1\Z%=2Z4-2\RETURN

GOSUB 13S5@\IF LEN(SS)<>8# GOTO 1729 ELSE PRINT "ERROR IN STRING"\REZTUR

IF INSTR(1%,"><=:;+-*/"111()",CS) THEN 1768 ELSE 1778
Ve=INSTR(1R,"><m:;+—2/1111()*%,C8) \C$=4\V$2V3+CS\RETURN
VS=V5+CS\C3=8\Vi=d

RETURN

REM SEMANTIC ROUTINES BEGIN HERE

REM VARIABLE TABLE

IF AA>1 THEN 1828 ELSE AS (A3)=VS\AY=A3+1\GOTO 1868
Bt=]

IF A$(B%)=VS THEN 1869

By=B3+]

IF B$>A% THEN AS (AY)=VS$\At=AY+1\GOTO 1868
GOTO 1838

RETURN

REM READ VARIABLE ROUTINE

GOsSUB 1800

Y$=9

IF Il%=] THEN GOTO 2308

2S*WS+" CALL TTYIN"\GOSUB 32842

WS)ZS" R JMP NUL2"\GOSUB 32000
\ 28=°TTYIN: IN TTYST®\GOSURB 328049
\Z5=" ANI @1"\GOSUB 32009

I3=Ws+™ JNZ TTYIN"\GOSUB 32848

i5=" IN TTYIO"\GOSUB 12020
\Z§=" - CMA"\GQSUB 32809
\Z$=" ANI Q7F"\GOsUB 32000

- g o S g SR oo e O

v — T

— g

1979 ZS=WsS+" STA @182"\GOSUB 32840
1988 2S="TTYSO: 1IN TTYST"\GOSUB 320089

1992 z5=" ANI 24"\GOSUB 32809

2080 2S=W$S+" JNZ TTYSO"\GOSUB 32008

2818 25=" LDA ©@182°\GOsus 329008
\2$=" CMA"\GOSUB 32808

2929 2S$=WS+" OUT TTYIO"\GOSUB 32088
2825 GOSUB 2428

2838 ZS$=WS+" LXI H,SAV"\GOSUB 2886
2040 21$=WS+" MOV A ,M"\GOSUB 32088

2850 Zs=" CPI 1"\GOSUB 32009
2060 ZS=WS+" J2Z SEC"\GOsUB 32009
2078 Zs5=" ADI 1"\GOSUB 3288@
\Z2§=" MOV M,A"\GOSUB 320800

\2Z$="ASCII: LXI H,0102"\GOSUB 320080

2898 2$= WS+" LXI B,0100"\GOSUB 32089

2180 Z2$=wWS+" MOV A,M"\GOSUB 32808

2128 2$=W$S+" RLC"\GOSUB 328404

2138 2$=WS$+" RLC"\GOSUB 3204090

2148 2$=WS+" RLC"\GOSUB 32000

2150 2S=WS+" RLC"\GOSUB 320880

2160 7$=WS+" STAX B"\GOSUB 328440

2178 Z2S=WS+" JMP TTYIN"\GOSUB 32009

2188 25=" SEC: LXI H,8182"\GOSUB 32¢40¢

21990 2$=W$S+ " MOV A,M"\GOSUB 32388

2200 zs5=" ANI @8F"\GOSUB 32089

2210 ZS=Ws+" LXI H,E18@"\GOSUB 32280
\2Z$=WS+" ORA M"\GOSUB 32090
\2$=WS$+" STAX B"\GOSUB 32036

2234 ZS=WS+™ MOV A,E"\GOSU B 32000\2$=w$+" CPI 1"\GOSUB 320090

2235 ZS=WS+" JC INXH"\GOSUB 32000
\Z$="SECND: MVI E,1"\GOSUB 320080

22490 2SsWS+" LXI H,SAV"\GOSUB 320882

2256 1S=WS+" XRA A"\GOSUB 32000

2268 25=WS+™ MOV M,A"\GOSUB 32008

2262 I$=WS+" LDAX B"\GOSUB 32800
\2$=WS+" LXI B, "+VS\GOSUB 320890
\2$=WS$S+" INX H"\GOSUB 32000
\ZS=WS+" MOV M,A"\GOSUB 320080

2265 Z$=W$+" JMP TIYIN"\GOSUB 320890

2279 2$=" INXH: LXI ii,"+VS\GOSUB 32890
\ZS=WS+" LDAX B"\GOSUB 328080
\ZS=WS+" MOV M,A"\GOSUB 320800

2275 2$=WS+" LXI H,SAV"\GOSUB 32880
\2S=WS+" XRA A"\GOSUB 32868
\2S=WS+" MCV M,A"\GOSUB 320080

228¢ Ila=)
\2S=" RET"\GOSUB 32040
\Z$="NUL2: MOV A,A"\GOSUB 32969
\RETURN

2388 25=WS+" CALL TTYIN"\GOSUB 320280
\ws-. L
\RETURN

2408 Is=" LDA 08122°\GOSUB 12400
\ZS=" CPl 23A"\GOSUB 32809
\NZS=" JC NUMIN*"\GCSUB 320890
\ZS=" SUI 837°\GOsuB 328908

T T T TR T T T T e T T TR T A el e - -

e 2410

2589
AN 2505
2587
2519

' 2520

2538
2540
2558
2569
2579
25880
2596
2608
261
26290
2630
2648
2658
2669
2670
268¢
2599
. 2700
. 2710
2720
2738
2749
B] 2 7 50
2760
2779

l 2798
: 2800
2810

2820

2830

' 2840
2860

2879

2880
2885

2899
2908

7

Z5=" JMP LTRIN"\GOSUB 320890
\Z$="NUMIN: SUI 838"\GOSUB 32028
\Z$="LTRIN: STA 8102"\GOSUB 32008

\RETURN

REM WRITE PARAMETER ROUTINE

GOSUB 18088

IF Plg=]1 THEN GOTO 2980

2SaWS+" LXI
\25="
\Zs="
\ZS$="
\W$="

28=" TTYO:

2$=WS+" ANI
28=sWS+"™ JINZ
23=WS+" MOV
28=WS$+" ANI

H,"+VS$\GOSUB 32000

INX H"\GOSUB 320090
CALL TTYO"\GOSUB 320898
JMP NUL1"\GOSUB 32006

IN TTYST"\GOSUB 320089
847\GOSUB 32088
TTYO"\GOSUB 32086
A, M"\GOSUB 32080
24@"\GOSUB 32008

1$=WS+" RRC"\GOSUB 320989
2$=W$S+" RRC"\GOSUB 320409

Z$=WS+" RRC"
2§=WS+" RRC"

Z8=W$S+" CPI
I5=WS+" JP
ZS=W$S+" ADI
19=WS+" JIMP

\GOsuB 32g84@

\GOsSUB 32068
PA"\GOSUB 32808
LTR1L"\GOSUR 32000
§38*\GOSUB 32809
TTO"\GOSUB 32980

2$="LTR1: ADI @37"\GOSUB 320600
25="TTO: CMA“\GOSUB 32088

71$sWS+" OUT
Z$=" TTO2:

2S=sWS+" ANI
Z$=WS+" JNZ
ZS=WS+" MOV
Z2$aWsS+" ANI
2$=W$+" CPI

5" JP

1S=WS+" AD1
IS=WS+" JMP

TTYIO"\GOSUB 32080

IN TTYST*\GQSUB 32080

94"\GOSUB 32888
TTP2"\GOSUB 32888
A,M"\GOSUB 32009
BF"\GOSUB 32000
BA"\GOSUB 32800
LTR2"\GOSUB 32008
830"\GOSUB 32800
OT"\GOSUB 32004

Z$=" CHK: LXI H,SAV"\GOSUB 32028

\Z§="
23=WS+" CPI
ZS=WS+" J2
I$=W$S+" ADI
2S=WS+" MOV
23=WS+" LXI
IS=WS+" JMP

MOV A, ,M"\GOSUB 32889
1°\GOsUB 32p88
OTRT"\GOSUB 32000
1"\GOsSUB 328086
M,A"\GOSUB 32006
H,"+VS\GOSUB 32099
TTYO"\GOSUB 329482

2$= "LTR2: ADI ©37°\GOSUB 328400
2s=" OT: CMA"\GOSUB 32828

ZS=WS+"* QUT
Ply=]
\25="

TTYIO"\GOSUB 32049
JMP CHK"\GOSUB 32909

\2$=" OTRT: RET"\GOSUB 32068
\Z5=" NULl: MOV A,A"\GOSUB 32000

RETURN
ZSeaWS+" LXI
\2,="
\W$="

\RETURN

H,"+VS\GOSUB 32804
CALL TTYO"'GOSUBR 32000

78

S 3080 REM STRING ROUTINE

3818 IF D%>) THEN 3020

3012 D1S=NUM1S$ (D§)

3014 DS (D$)="STG"+D1S\D%=D%+1

3616 DS (D%)=VS\D$=D3+1\GOTO 3078

- 3920 Bi=2

g oA 3838 IF DS$S(B%)=VS THEN 3080
3048 B3=BR+1
3¢50 IF BS>D% THEN 3052 ELSE 3068
3852 D1S=NUM1S (D3)\D$(D%)="STG"+D1S\D¥=D3+1
3854 DS (D$%)=VS\D¥=D§+1\B$=Ds~1\GOTO 3087

- 3068 GOTO 303¢
3070 By=2
3086 B3=B%-l
3099 2$=WS+" LXI H,"+DS$(B%)\GOSUB 32808
3095 WS=" -
3186 2$aWS+" MVI B,"+NUM1S(2%)\GOSUB 32098
3181 IP D%=3 THEN GOTO 3182 ELSE Z$=W$+" CALL PRINT"\GOSUB 32880\GOTO 3259
3182 2S$=W$+" CALL PRINT"\GOSUB 32090

\Z5=" JMP NOUL6"\GOSUB 326408

3118 z$=" PRINT: MOV C,M"\GOSUB 32008
3128 2$=W$+" CALL TTYOUT"\GOSUB 32080
3138 z$=WS+" INX H"\GOSUB 32080
3148 2$=W$+" DCR B"\GOSUB 32080
3150 2$=WS+" JNZ PRINT"\GOSUB 32800
3160 2$=WS+" JMP ENDPT"\GOSUB 32806
3178 2$="TTYOUT: IN TTYST"\GOSUB 32000
3180 2S=W$+™ ANI 04"\GOSUB 32000
3198 2$=W$S+" JINZ TTYOUT*\GOSUB 32000
3200 2S=WS+" MOV A,C"\GOSUB 32080

o 3210 2S=W$S+* CMA"\GOSUB 32000

o 3228 2$=WS+" OUT @80"\GOSUB 32000

3230 zS=WS+" RET"\GOSUB 32008

3248 2$="ENDPT: RET"\GOSUB 32000

\Z$=" NUL6: MOV A,A"\GOSUB 32009
3258 RETURN

i 3588 REM GOTO ROUTINE
3520 zS=Ws+" JIM "+VS\GOSUB 32080
3530 ws=" .
3540 RETURN

31706 REM GOSUB ROUTINE

3728 ZssWS+* CALL "+VS\GOSUB 32048
3730 wWs=" .

3748 RETURN

3808 REM RETURN ROUTINE

3818 2S=WS+" RET "\GOSUB 32889
3820 wWs=" "

3838 RETURN

4800 REM "MOVE®" TO ROUTINE

4818 IF Cv=]1 THEN GOTO 4188

4029 GOSUB l8eg

4030 7SsWS+" LXI H,"+VS\GOSUB 32090
4040 WS=" "

4850 25eWS+" MOV E,M"\GOSUB 32080
4068 IS=WS+" INX H"\GOSUB 32089
4870 2S=WS+" MOV D, M"\GOSUB 3280¢
4980 GOTO 4128

- um

4100

4119

41208

4200

4210

4229

4230

4249
4250
4260
427¢
428¢
4500
4510

4528
4780
47182
4728
4739
4749
4750
4760
4770
4775
4788
4819
48298
4825
4327
4830
4835
4849
4845
4850
4855
4860
4900
5188

il

5119

5160
529¢

79

Z§'¥$+' LXI D,"+VS\GOSUB 32800

WS= "

RETURN

REM MOVE "TO" ROUTINE

GOsSUB 1809

29=WSs+" LXI BRB,"+VS\GOSUB 32000

ZS=WS+" MOV A,E"\GOSUB 32000

IS=WS+“ MOV M,A"\GOSUB 32000

25=Ws+" INX E"\GOSUB 32049

2S=Ws+" MOV A,D"\GOSUB 320080

Z9=WS+" MOV M,A"\GOSUB 32000

RETURN

REM LABEL ROUTINE

WS=ysS+": "

RETURN

REM IF THEN ELSE RCUTINE

25=WS+" LXI H,RESL1"\GOSUB 32000

WS=" L]

IS=WS+" MOV A M"\GOSUB 328998

Z$WS+" MOV E,A"\GOSUB 32008

2$=WS+" INX H"\GOSUB 32046

IS=WS+" MOV A, ,M"\GOSUB 32886

2$=Ws+" MOV D,A"\GOSUB 32000

2$=W$+™ PUSH D"\GOSUB 32808

RETURN

Wi=vs

RETURN

REM CONDITION ROUTINE

Z$=W$+" POP D"\GOSUB 3200808\WS=" "

IF we=1 THEN GOSUB 5200

IF Ww¥=2 THEN GOSUB 5308

IF W$=3 THEN GOSUB 5590

IF we=1l THEN GOSUB 5698

IP Wi=12 THEN GOSUB 58090

IF Wi=13 THEN GOSUB 51080

RETURN

REM CONDITION ROUTINE

2$=W$+" LXI H,RESL1"\GOSUB 32890
\Z5=" INX H"\GOSus 32088
\2S=" MOV A,M"\GOSUB 12080
\Z$=" CMP D"\GOSUB 32800

25=" JNZ THN"+NUM1S(T1%)\GOSUB 32800
\Z$=" DCX B"\GOSue 32800
\2$=" MOV A, ,M"\GCSUB 32000
\Z$=" CMP E"\GOSUB 32000
\25=" JNZ THN"+NUM1S(T1%)\GOSUB 32986
\Z§=" JMP ELS"+NUM1$(E1%)\GOSUB 32829

RETURN

Z5ews+” LXI 8&,RESL1"\GOSUB 32082
\2S=WS+" INX H"\GOSUB 32088
\ZSsWS+" MOV A,M"\GOSUB 322800
\ZS$=WS+" CMP D"\GOSUB 328d@¢
\ZSeWS+" JC THN"+NUMIS(T1%)\GOSUB 32800
\ZS=Ws+" DCX H"\GOSUB 23280¢
\ZS=WS+" MOV A ,M"\GOSUB 32000
\ZS=WS+" CMP E"\GOSUR 32802
\2$oWS+" JC THN"+NUMIS(T1%)\GOSUB 32002

5290
5380

5318

5422
5500

———?ﬁf—;-———

5510

5595
5609

5685
i 5618

5710
5800

S58l@

5895
6800
6010

6108
6110

\Z$=W$+" JMP ELS"+NUM1$(E1%)\GOSUB 32000
RETURN :
Z$=WS+™ LXI H,RESL1"\GOSUB 32098

\Z$=" INX H"\GOSUB 32000
\2§=" MOV A,M"\GOSUS 32000
\Z3=" CMP D"\GOSUB 32008
\Z$=" JC ELS"+NUM1S(E1%)\GOSUB 32000
25=" JNZ THN"+NUMI1S (T1%)\GOSUB 232828
\Z$=" DCX H"\GOSUB 328¢¢
\2§=" MOV A,M"\GOSUB 3200¢
\25=" CMP E"\GOSUB 32090
\Z§=" JC ELS"+NUMLS(E1%)\GOSUB 320080
\ZS=" JZ ELS"+NUM1S(E1%)\GOSUHB 32009
\ZS=" JMP THN"+NUM1S$(T1%)\GOSUB 32000
RETURN
2$=WS+" LXI H,RESL1"\GOSUB 32008
\ZS=" INX H"\GOSuUB 32066
\ZS=" MOV A ,M"\GOSUB 32000
\Z$=" CMP D"\GOSuB 32008
\Z$=" JNZ ELS"+NUM1S$(E1%)\GOSUB 32829
\Z$=" DCX H"\GOsSUuB 32296
Z8=" MOV A, ,M"\GOSUB 3280¢
\25=" CMP E"\GOSUB 32000
\ZS=" JINZ ELS"+NUM1$(E1%)\GOSUB 32008
\2$=" JMP THN"+NUM1S (T1%)\GOSUB 328¢90
RETURN
Z$=WS+" LXI B,RESL1"\GOSUB 328¢8
\Z§=" INX H"\GOsUB 32068
\Z§=" MOV A ,M"\GOSUB 32000
\Z§=" CMP D"\GOSUB 328@9
2§=" Jc THN"+NUM1S (T1%)\GOSUB 320089
\Z$=" JNZ ELS"+NUM1S$(E1l%)\GOSUB 320080
\2$=" DCX B"\GOSUB 32000
8=" MOV A,M"\GOSUB 32009
\25=" CMP E"\GOSUB 32090
\Z$=" JZ THN"+NUM1S$(T1%)\GOSUB 32000
\Z§=" JC THN"+NUM1S (T1%)\GOSUB 32008
\2§=" JMP ELS"+NUM1S(E1%)\GOSUB 32080
RETURN
2§=W$S+" LXI B,RESL1"\GOSUB 32090
\Z§=" INX H"\GOSUB 320080
\Z$=" MOV A ,M"\GOSUB 32080
\ZS5=" CMP D"\GOSUB 32000
\Z$=" By ELS"+NUM1S (E1%)\GOSUB 32000
Z§=" DCX H"\GOsSUB 32000
\2S=" MOV A,M°\GOSUB 32000
\Z$=" CMP E"\GOSUB 32080
\2$=" J2 THN"+NUM1S (T1%)\GOSUB 32088
\ZS=" JC ELS"+NUM1S$ (E1%)\GOsSus 12989
\Z§=" JMP THN"+NUM1S$(T1%)\GOSUB 328¢¢
RETURN
REM THEN ROUTINE
WS="THN"+NUM1S (T1%)+":"
\T1t=T18+1
\RETURN

REM ELSE ROUTINE
WS®"ELS"+NUM1S (El%)+":"

6208
6218
6500
5518
70@0
7818
7028

7838
784¢8
7100

7120
7289
7218
7229
7225
7590

7585
7518

7548
7358

7566
76008
7685
7610
7620
7788
7710
7715
7728
7738
7740

7800

7833
7908

81
\El$=El%+]
\2§=" JMP NXT"+NUM1S(E1l%)
\GOSUB 32088
\RETURN

2$=" NXT"+NUMIS$(E18}+": MOV A, ,A"\GOSUB 32208
RETURN
REM END ROUTINE
2$=WS+" JMP @3800°\GOSUB 32000\WS=" "\RETURN
REM EXPRESSION ROUTINE
IF Ct=1 THEN GOTO 7020 ELSE GOSUB 1809
E2S (E28)=VS
\E2%=E2%+]
IF Sl%=1 THEN GOTC 7580
RETURN
E2S (E2%)=V1S$
\E2%=E2%+1
RETURN
E2$(E2%)=V1S$
E2%=E2%+1
Slt=l
RETURN
E5%8=E2%
\NIF V1$="** THEN GOSUB 10000
IF V1$="/" THEN GOSUB 12080
E2S(E2%)=" *
\E2$ (E2%~1)=" "
\E2S(E2%~2)=" ~
\E2%=E2%~3
E2S(E2%)="RESL"+NUM1S$ (R18%)
Rls=R1%+1
\E2%=E2%+1
\S1t=p
RETURN
E2S (E2%)=V1$
E3%=E2%
E2%=E23+1
RETURN
ES5%=E38+2
ES¥=ES¥+2
IF ESY>E2% THEN GOTO 7380
IF E2S(ES%-2)="+" THEN GOSUB 9880\GOTO 7742
IF E2S(ES%-2) ="-" THEN GOSUB 9508 ELSE GOTO 7808
E25 (E5%~1) ="RESL"+NUM1$ (R1%)
\GOTO 7718
E2%=E3%
\E2S (E2%)="*"
\E2%=E2%+]
\E2$ (E2%) = "RESL"+NUM1S (R1%)
\E2%=E2%+1
\ES¥=E2%
\GOSUB 19092
\GOSUB 7518
RETURN
IF E2%<>2 THEN GOTO 7985
YSmAR-]l
\IF AS(Y%)=E£2S(E2%-1) THEN GOTO 79@2
CYysyi-l

3

7982

7985

7987

7918
7920
7930
7948
7958

7955
79680

8000
9908
9012
$29¢

921

9220

9229
95880
9512
9629
96189

9708
9785
9719
9728
9725
9730
9758
9760
9770
978@
9798
9800
981i8@
9828
98132

82

\IF Y$=8 THEN Z$=WS$+" LXI D,"+E2S(E2%-1)\GOSUB 32000
\ws.l [
\GOTO 7958
Z$=WS+" LXI H,“+E2S(E2%-1)\GOSUB 32099
\WS=" L]
\25=WS+" MOV E,M"\GOSUB 32008
\2S=Ws+" INX B"\GOSUB 3286¢
\Z$=WS+" MOV D,M"\GOSUB 32088
\GOTC 7958
ES¢=2
ES¥=E5%+2
\IF ES%>E2% THEN GOTO 7952
IF E2S(ES5%-2)="+" THEN GOSUB 9888\GOTO 7938
IF E2§(ES5%-2)="-" THEN GOSUB 9582 ELSE GOTC 7950
E2S(E5%~1)="RESL"+NUM1S$ (R18%)
GOTO 7987
Z$=WS+" LXI H,RESL1"\GOSUB 32088
\Ws=" »
\Z$=WS+" MOV M,E"\GOSUB 32008
\2S=WS+" INX BH"\GOSus 32088
2$=WS+" MOV M,D"\GCSUB 328900

E2¥=]1\R1%=1\S1%=8
\RETURN

RETURN

REM ADD INSTRUCTIONS TO LOAD REGISTERS

GOSUB 25008

Z$=WS+" XCHG*\GOSUB 32482
\ZS=" DAD B"\GOSUB 32888
\WS=" "

ZS=W5S+" XCHG*\GOSUB 320880
\Z5=" LXI B,RESL"+NUM1S(R1%)\GCSUB 32000
\2§=" MOV M,E"\GOSUB 32869
\2§5=" INX H"\GOsUE 32088

2$=WS+" MOV M,D"\GOSUB 322880
\E2$ (E2%+]1)="RESL"+NUM1S (R1%)
RETURN
REM SUBTRACT INSTRUCTION/MUST LOAD REGISTERS
GOsSUB 25080
IF S2%=]1 THEN GOTO 99189
2$=W$+" CALL SUBT“\GOSUB 3208080
\g5=" JMP NUL3*\GOsSUB 32048

2$s"SUBT: MOV A,E"\GOSUB 320840
ws-l L]

25=W$+" CMA"\GOSUB 320040

2S=WS+" ADI 1"\GOSUB 32408
2S=WS+" MOV E,A"\GOSUB 12p890
23aWs+" JC CARRY"\GOSUB 320090
2S»W$+" JMP SECND"\GOSUBR 3208080
2$s"CARRY: MOV A,D"\GOSUB 32088
ZSeWS+" CMA"\GOSUB 32009

2S=Ws+® ADI 1"\GOSUB 12008
I5aWS+® MOV D,A"\GOSUB 3208080
2$=W$+" JMP DADD"\GOSUB 32040
2S="SECND: MOV A,D"\GOSUB 32844
2S=WS+" CMA®\GOSUB 32000

ISsWS+" MOV D,A"\GOSUB 32040

e R e T U+ st 1 e o e L -

33

9848 zS=" DADD: XCHG"\GOSUB 32089
\25=" DAD B"\GOSUB 32840
\GOsUB 9218

9868 S2%=]
\Z$=" RET"\GOSUB 329880
\Z2$="NUL3: MOV A,A"\GOSUB 320080

99288 RETURN

9918 25=wS$+" CALL SUBT"\GOSUB 32888
\RETURN

106068 REM MULTIPLICATION ROUTINE

18882 GOsUB 25000

10006 IF Ml3=1 THEN GOTO 16708

10887 ZS=WS+" CALL MULT"\GOSUB 3282¢
\NZS=" JMP NUL4"\GOSUB 320800

13209 WS=" "
\Z$=" MULT: MVI B,E"\GOSUB 32029
\Z$=" MOV D,E"\GOSUB 32880

18219 28=WS+" MVI E,9°\GOSUB 32000

182289
19238
18248
12258
18268
18278
182889
1629¢
1g300
le3l9
18322

18330

lg58e
1p7e0

12000
12882
12886
12087

12910

12208

12212

12228

12238
12248
12238
12268
12278

2$="MULTO: MOV A,C"\GOSUB 32822
Z$=WS+" RAR"\GOSUB 32@4¢

23=WS$S+" MOV C,A"\GCSUB 32040
25=Ws+" DCR E"\GOSUB 32@38
25=WS+" J2Z DONE"\GOsUB 32864
2$=WS+" MOV A,B"\GOSUB 32000
ZS=WS+" JNC MULT1"\GOSUB 32060
ZS=WS+" ADD D"\GOSUB 32000
2$="MULT1: RAR®\GOSUB 329980

2S=WS+* MOV B,A"\GOSUB 32089

25=" JMP MULTO"\GOSUB 3200¢
\Mlt=]
\Z$=" DONE: RET"\GOSUB 32809
\ZS=" NUL4: MOV A,A"\GOSUB 32880¢

25=" LXI ©,RESL"+NUM1S(R1%)\GOSUB 3200¢
\ZSs=" MOV M,C"\GOsSUB 32809
\2s=" INX HB"\GOSUB 32090
\Zs=" MOV M,B"\GOSUB 32009
\E2S(E2%-1)="RESL"+NUM1S (R1%)

RETURN

2$=WS$S+" CALL MULT"\GJOSUB 320909
\GOSUB 18338 .
\RETURN
REM DIVISION ROUTINE
GOsSUB 25¢0¢
IF D2%=1 THEN GOTO 12798
IS=WS+" CALL DIV"\GOSUB 320890
\2§=" JMP NULS™\GOSUB 32803
ws-. L
2s=" DIV: MOV A,D"\GOSUB 32008
IS=WS+" CMA" GOSUS 3280¢
Is=WS+" MOV D,A"\GOSUB 320090
I5=W$S+" MOV A ,E"\GOSUB 32000
ZS=WS+" CMA"'\GOSUB 32008
IS=WS+" MOV E,A"\GOS{B 32009
ZSeWS+" INY D"\GOSUB 32089
15=" MOV L,C"\GOSuB 32009
\2$=" MOV H,B"\GOSUB 32022
I5=" LXI 38,8°\GosuB ::9008

PR PP T — T g v et s s e o o

12289

R) 12299
12578

126080

12620
12658
12700

15080
15218

1501¢

15220

13109

200090
20819
28119

20118
20120
281398

28140
28158
20168
20170
r{.3%-1']
20198
28295

20252
20399
~@3.0

T s v g g gy g~

2$="DIVDE: DAD D"\GOSUB 32800

\2§=" MOV A,B"\GOSUB 32886
\zS=" RAL"\GOSUB 32298
\Z$=" JC FNDIV"\GOSUB 32808
25" INX B"\GOSUB 32000
\28="* JMP DIVDE"\GOSUB 32088
\Z$="FNDIV: XRA A"\GOSUB 32008
D2%=l]
\ZS=" RET"\GOSUB 32800
\ZS=" NULS: MOV A,A“\GOSUB 32088
2$=WS+" LXI H,RESL™+NUMi$ (R1%} GO3U3 247"
\Z5=" MOV M,8"\GOSUB 32009
\ZSa* INX H"\GOSUB 32088
\NZS#" MOV M,B"\GOSUB 32808

E2S(E2%-1) ="RESL"+NUMIS (R1%)

RETURN

2$=WS+" CALL DIV"\GOSUB 32448
\GOSUB 12698

\RETURN

REM COMPUTE ROUTINE

GOSUB 18608
\Z$=wWS+" LXI H,RESLI"\GOSUB 32680
\WS=" L]

2$=WS+"™ M7 D,M"\GOSUB 320048
\ZS=W$+" INX B"\GOSUB 32088

\ZS=WS+" MOV E,M"\GOSUB 32008

Z$=WS+" LXI H,"+VS\GOSUB 3204609
\Z$=sWS+" MOV M,D"\GOSUB 320¢¢
\2S=W$S+" INX H"\GOSUB 32000
\ZS=WS+" MOV M,E"\GOSUB 32848¢
\RETURN

2$=W$S+" LXI H,RESLI"\GOSUB 32p88
\Z$=sWS+" MOV D,M"\GOSUB 32088
\Z$=W$+" INX H"\GOSUB 32000
\ZS=WS+" MOV E,M"\GOSUB 3208990

REM ROUTINE TO BUILD ASSEMBLY LANGUAGE FILE

ws-- -

z2§=" ORG ©@188"\GOSUB 32188
\Z$=" BYTE @@"\GOSUB 32188
\Zs=" BYTE 0@@"\GOSUB 32108
\z$=" BYTE @8"\GOSUB 321889

R1%=9

IF Rl1%=f THEN B%=]1\GOTO 20142
Z$="RESL"+NUM1S (R1%)+": WORD
\R1¥=R1%-1\GOTO 28120

IF (D%=]1 OR D%=0) THEN GOTC 28170

26=DS (B%)+": TXT "“+D$(B%+1)\GOSUB 32100
83=B3+2\D¥=D$-2\GOTO 208148

Av=AR-]

IF A%<l THEN GCTO 28285

2S=AS (A%)+": WORD @0°\GOSUB 32188 \GOTO 2017

2$=" SAV: BYTE @2@"\GOSUB 12l@¢

\2$="TTYST: EQU @81"\GCSUB 3212¢
NZ$="TTYIQ: EQU @8°\GOSUB 321498
SN ERRCR GCTC 260490

INPUT LINE #2%,2S\GOSUB 32,89
IF I8a" END"

TN ST e - ey e e e

#0"\GOSUB 32190

THEN GOTO 2042¢ ELSE GOTO 28339

20408
21138

25038
258902
25004
25006
25919

25829
2590389
25835
25842
25042
25044
25046
258580
250852
25054
25068
25109
25118

25209

25389
26300
32209
32019
32028
32100
32159
32590
3251¢@
32s52¢
3253¢
32549
32559
32569
32572
32580
32599
12609
32619
32620
Jzs30
32640
12659
32652
32654
326606

é5

RETURN
Z$="RESL"+NUM1S (R1%)+" WORD @8"\GOSUB 32186\
RE=R¥-1\GOTO 28120
E4%=E5%-1
FOR Y$= 1 TO 20
IF AS(Y$)= E2$(E4%) THEN GOTO 25108
NEXT Y%
FOR Y%= 1 TO 9
\IF E25(E4%)="RESL"+NUM1S$(Y%) THEN GOTO 25108
NEXT Y%
2S=WS+" LXI D,"+E2S$(E4%)\GOSUB 32008
Ws" L]
E4%=ES5%-3
FOR Y8= 1 TO 20
IF AS(Y$)= E25(E4%) THEN GOTO 25200
MEXT Y%
FOR Y%= 1 TO 9
IF E25(E4%)="RESL"+NUM1S (¥Y%) THEN 30TO 25288
NEXT Y3
7$=WS+" LXI B,"+E25(E4%)\GOSUB 32083\GOTO 25328
Z5=WS+" LXI E,"+E2S5(E4%)\GOSUB 32089
ws.n L]
\ZS$=WS+" MOV E,M"\GOSUB 32800
\ZS=W$+" INX H"\GOSUB 32208
\ZS=WS+" MOV D,M"\GOSUE 32089
\GOTO 25849
2$=WS+" LXI B,"+E2S(E4%)\GOSUB 32000
\ws-n L]
\ZS=WS+" MOV C,M"\GOSUB 32809
\2S=WS$+" INX H"\GOSUB 320080
\Z$=WS$S+" MOV B,M"\GOSUB 32008
RETURN
RESUME 284008
REM PRINT FILE ROUTINE
PRINT #2% USING 2$
RETURN
PRINT #l% USING 2§
RETURN
REM SEMANTIC DECODE HERE
IF P#=64 THEN GOSUB 7928\GOSUB 4825\GOSUB 6888\RETURN
IF P4=72 THEN GOSUB 61@0\RETURN
IF P¥=92 THEN GOSUB 47@8B\RETURN
IF P¥=132 THEN GOSUB 1988\RETURN
IF P%=142 AND C%=Z THEN GOSUB 258@\RETURN
IF P%=144 THEN GOSUB 3068 \RETURN
IF P%=152 THEN GOSUB 13SA@\RETURN
IF Pe=148 THEN GOSUB 3788 \RETURN
IF P%=168 THEN GOSUB 4@@0\RETURN
IF P¥=176 THEN GOSUB 4288\RETURN
IT Pa=18@ AND V$=8 THEN GOSUB .83@8\RETURN
IF P¥=196 THEN GOSUB 458@\RETURN
I¥ (P%¥=256 OR P¥=348) THEN GOSUB 7600 .RETURN
IF 'P¥=263 OR P%=352) THEN GOSUB 7720 RETLURN
IF P%=264 AND Z3=. THEN GOSUB 7000 RETURN
I7 P¥s263 AND C¥=2 THEN GOSUB 7882 . RETURN
IF (P¥=I7: OR P?%=224; THEN ViS$aVS.RETURN
IF .Pa=Il4. THIN GC3UB T1@@: RETURN

v

T e

32679
32688
32699
32692
32695
32700
32768

IF P%=248 THEN GOSUB 720@8\RETURN

IF P3¥=328 THEN GOSUB 15002\RETURN

IF P¥=324 THEN GOSUB 7908\RETURN

IF P%=356 AND C%=3 THEN GOSUB 6588\RETURN
IF P$=88 THEN GOSUB 7988\GOSUB 48148
RETURN

END

