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FOREWORD

This work reports part of two man-years of effort supported by the
Advanced Lightweight Torpedo Project. The object is the direct prediction
of the onset and details of submarine pressure hull rupture caused by
underwater explosive attack. An earlier report developed a material model
describing plasticity and rupture under extremely rapid loading conditions.
This work gives its finite element implementation, with numerical results
to be communicated in a subsequent report.

ELIHU ZIMET
By direction

Ac e ssion Fo)r

E:2 TA3
L, - ,

By____

-u' " OrDMstriV... -"

1/2

9!
- , !

-- ~ ~~~4Psi



NSWC TR 80-249

CONTENTS

Page
INTRODUCTION ...................................................... 5

CONSTITUTIVE MODEL................................................ 5

FINITE ELEMENT FORMULATION ......................................... 6

CONCLUSION....................................................... 20

ILLUSTRATIONS

Figure Pg

1 Triangular Element..................................... 21

2 Assemblage of Triangular Elements........................ 22

3/4



NSWC TR 80-249

INTRODUCTION

In ductile structural metals such as aluminum, the response to rapidly

applied high loads can involve two basic mechanisms [1,2]: (a) flow,

understood physically as slip within grains, and (b) damage, comprising the

nucleation of microvoids at grain interfaces, their subsequent growth, and

their eventual, usually abrupt, coalescence into cracks. Reference 1

introduces a constitutive model extending viscoplasticity to accommodate

both flow and damage. The present work concerns the finite element

implementation of the model. Numerical results will be presented in a later

work.

CONSTITUTIVE MODEL

We briefly state the constitutive relations given in Reference 1 under

restriction to small strains and temperature independent deformations.

In obvious notation, the strain is decomposed into elastic, flow and

damage parts according to

e f +d (1)

and the elastic strain is given by Hooke's law as

e kk j (2)ij 2,1 i kk i

where w and \ are the Lame' coefficients and i is the Kronecker tensor.

Let eij and e be the deviatoric (shear) and isotropic (dilatational)

parts of the strain tensor, and sij and s correspondingly for 7 ij" In

* Reference 1, constitutive relations embodying associated flow rules were

developed as
1. Nicholson, . W., "Constitutive Model for Rapidly Damaged Structural

Materials," accepted for publication in Acta Mechanica
2. Barbee, T. W., et al, "Dynamic Fracture Criteria for Ductile and Brittle

Metals," J. Materials, 1972

.. 5
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=f < f k ) > Bsf (3a)eij'f 
f

.f
= 0 (3b)

*d d aFd;d d aFd < ¢ d (F d - kd  > as (3c)

0. (3d)

Here -f and nd are material constants, kf and kd are parameters representing

dependence on the history of flow and damage, 'f, d9 Ff and Fd are material

functions and the symbols < • > are defined by

0 9 < 0

< > 1 7) 9 >=
. , F>O

f fThe material function Ff depends on eiS k and si, while Fd depends on ed,

k d and s. Finally, the history parameters are governed by

f f fi j = h. (eq, k, S ) e (3e)i= pq pq

kd = hd (ed, kd, s) d (3f)

FINITE ELEMENT FORMULATION

A. Equation of Equilibrium for an Element

Suppose that high loads are rapidly applied to a body governed by

Equation 3a-f. The body can be represented as a collection of finite elements

connected to each other at nodes [3]. We consider equilibrium of a given

element.

In accordance with the usual Dractice in finite element analysis, we

hereafter use vector notation. So - is replaced by ,ij by o, etc.
3. Zienkiewicz, 0. C. The Finite Element Method, Third Edition, McGraw-Hill

Book Co., New York, 1977
6
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Let the vector r denote the position of a given interior point of the

element under study. The time displacement vector u(r) is approximated by

ii(r) according to

(r) = N (r) ' (4)

where _ is the vector of nodal displacements and the matrix N (r) is an

"interpolation operator."

For the sake of illustrating the oftentimes bewildering finite element

notation, it is convenient to use the simple triangle element shown in

Figure 1. Its i th node is at (xi, yi), at which the displacements are

(Ux(i) uy( i)). Now let

r ={x y}H

{(1) u (1) u (2) u(2) u(3) u(3) H
Sy uuy y }y

in which the superscript H denotes the transpose.

For the triangle we assume the linear approximation

ux = CI + c2 x +  
3y

uy = + ct 5 x + c 6y

In vector notation

u = a

4 in which i is the constant vector

H
{- l {I 2  a3  14 OL5 C6

and

I7
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D I j ]o 0 0 o X O o
L ool xy

It is elementary to derive that

u.= DC C

where
1 o x o Yl

o 1 0 X o Yl

1 0 x2  0 Y2 0

o 1 o x02 0 Y2

1 o x o Y3 0

o 1 0 X3 0 Y3

Returning to the general discussion, the true strain c in an element may

be written as

SB' *u

where S' is a kinematic operator. Applying B' to u furnishes a strain

approximation as
T:B'*u-

B C _ (5)

where B(r) is a matrix.

For the triangular element we find

E = xx Eyy xy

from which

[o 10 00 01o o,! B:t o ooo1

The true stress vector 7(r) may in general be expressed as a functional

* 8
-p

(9
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of E, with the actual functional form determined by the constitutive model.

Formally,

7(r) = A(E, r) (6)

The approximate stress is obtained from

Y(r) : A(T, r)

A ' ( , r)

In the triangle, assuming linear isotropic elasticity, it follows that

: EBC

where E is a matrix of elastic constants.

For equilibrium of an element, the principle of virtual work may be

stated in terms of true quantities as

fo udV + Jo 5cdV f T 5udV (7)
V V S

In Equation 7, V is the element volume and S its surface area, 7 is the

traction applied to the element boundary, - is the mass density, S(.) is the

variational operator, and the superposed dot denotes differentiation with

respect to time.

We assume this principle also applies to the approximate quantities:

fJ 0 UH 65dV + JF ~dV f T 65dS .(8)

V V S

Hereafter, the overbars designating the approximations will not be displayed.

Upon substituting Equation 4, the right hand term in Equation 8 becomes

9

,,
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fJH H
AdS V _ US6

S S

P H6:

and P may be called the consistent load vector.

For the inertial term

J U .H 6udV = .H [ID H D HDCdV] 5r
V -

and M is the consistent mass matrix.

The second term on the left hand side involves the constitutive model.

First write - and c in deviatoric and isotropic components as

= S + s e

c = e+ee

where e is the vectorial counterpart of the Kronecker tensor. Elementary

manipulation leads to

H H
a E s e + 3 s 5 e

From the constitutive model

s_= 2u (e - e f)

s K (e - ed)

with 2. + 3>,. Consequently,

.4
CH 5c 2 eH 5e + 3K e~e

f d
-2,,e 6e -3 e6e

10

A -O
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Equation 5 implies that

e = B'C - (9a)

e = bHC (9b)

where the matrix B and the vector b are easily derived when B is specified.

For example, in the triangle element

e (cxx Eyy )/3

exx = xx -e yy -e

ezz :-e exy xy

and

e e xx yy ezz exy}

Simple algebra leads to

b = {o 1/3 o o o 1/31
H

o 2/3 o o o -1/31

o -1/3 o o o 2/3
B' 0 -1/3 o o o -1/3

L o 1/2 o 1/2 o

Up to this stage in our development, nothing has been said about the

distribution of ef and ed in an element. We now assume that they are

distributed in the same way as the corresponding parts of the strain tensor.

Formally,

e f = B C3 (10a)

ed = bH Cy (lOb)

in terms of new unknown vectors £ and v, called the flow and damage parameters.

The prime in Equation lOa will no longer be displayed. The assumption

11
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expressed in Equations lOa, b leads us to call the present relations a

consistent inelastic formulation.

It now follows that

J>H 5 L dfV = _ HKf6 +_HKd

V
H H- 2HK 6 - -y Kd6_

with

Kf = 2v C HB HBCdV
V

Kd = 3K / CHb*bHCdV

V

and

{b*bH} b b~ij 1 bi j

The matrix Ke given by

Ke = Kf + Kd

is nothing but the ordinary stiffness matrix of linear elasticity.

The equilibrium relation for the element under study is now:

M + (Kf + Kd)Z = P+ Kf _ + Kd _ (11)

In the next section we use the constitutive model to derive equations

governing E and _. They will have the general form

z z (;, 6, kf) (12a)

f=wf  6, k)(12b)

,>:z (,,jLd) (12c)

fd :w d (, Y, d) (12d)

where zf , wf z and w are material functions. More concretely, in the next

section the constitutive model will be used to derive the material functions

.- in Equation 12a-d.

! 12



NSWC TR 80-249

B. Finite Element Form of the Constitutive Equations

The constitutive Equations 3a, d, e, and f may be rewritten as

.f f f f
e = 9_ (s, ef, k) (13a)

if = hf (s, ef , kf) (13b)

• d : d ed ,
Sg (s, e, kd) (13c)

d= hd (s, ed, kd) (13d)

Our task is now to restate the constitutive relations in terms of , s and -

and to eliminate dependence on r.

From the constitutive model we may write

e BC E (14a)

f
s =2,o (e- e ) : 2, BC ( - 3) (14b)

ed b H C y (14c)

s = k (e - ed

: k bHc ( - ) (14d)

Recall that B, b and C may depend on r.

Note that kf and kd appear in the arguments on the right hand side of

Equation 13a-d. We now make the additional assumption that they may be

replaced by k and k where the circumflexes denote the element volume

averages:

aveage:if =1dV (1 5a)

V

= l kd dV (15b)

V

f I f)13

-- --
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From Equations 13a-d, 14a-d and 15a-b, it is evident that

f f
/ = 9_f (2!BC(- - 5), BC, kf)

fql ( 39, r) (16a)

where the function If is defined in Equation 16a. By similar argument,

= pf ( , 3, kf, r) (16b)

e qd (r , d r) (16c)

kd = pd Y, k , r) (16d)

We seek to eliminate dependence on r. But Equation 16a implies that

f cHB H ef dV = (2)- IKf
V

:f NH8 H IH dV

V

Therefore, the material function zf in Equation 12a is given by

zf (;, , k ) f 2Kf-1 fCHNH jf dV (17a)
f V

f f d
Similar manipulations serve to derive wf  zf, and w in Equation 12b-d:

f V1 f pf

w V dV (17b)
V

z d 3k Kd-  f A q d dV (17c)
V

Sd V- 1f pd dV (17d)
V

For the sake of illustration we consider the constitutive relations

f f < I kf/Ff > cf e (18a)

) ,i 1 4
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F = HS - cf e )H (- cf 1/)]I / 2 (18b)

*d d

ed :n < 1 - kd/Fd > (s - cd ed) (18c)

Fd = (s- Cd ed)2

where kf, kd, nf, nd' Cf and cd are material constants. These relations

were previously introduced in Reference 1.

Applied to the triangular element, the relations furnish

V ' ' (19a)

in which

f 2 P c - (2u + cf) 8 (19b)

vf : (2P A) - I 2 [TH Kf f]I/2 (19c)

where A is the area of the element.

For damage,

y vd~ (20a)

with

id K " (K + Cd) y (20b)

Vd : (3KA)- / 2 [ydH K 12  (20c)

C. Nodal Continuity and Equilibrium

The previous section concerned equilibrium of a given element. Here we

consider equilibrium and compatibility of the assemblage of elements, for

example the triangles shown in Figure 2. For this purpose it is adequate to

develop force balance and continuity equations holding at the shared nodes.

Certain modifications of the single element relations will prove convenient.

F. *15

'W

$ - ..----.-. -
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First, some additional notation is needed. The quantities . -e)

(e (e) (e) -f dth(e) Kf (e) K d(e) M - kf and k now refer to the eth element, for
- ' ' ' e e

example the second element in Figure 2.

(e)1n) beteetyote h mthLet nbe the entry of -(e) rferring to the n node and the m

direction. For instance, since (e)s the nodal displacement vector for the
eh elmnt e (n)
eth element, then is the x-displacement of its node having n as itsx

index. In reference to Figure 2,

Ix y x y x

_(2) =(2)_(l) (2)-(l) (2)(2) (2)(2) (2)(4) (2) (4),H

- x y 'x "y x y

(3) (3) (2) (3),(2) (3)_(3) (3)_(3) (3)_(4) (3)-(4),H-x 'y x 'y -X y

Continuity of displacements implies that

(1)_(l) : (2) (1) : (1) (1)_(l) = (2)_(l) : u 1

x -x x y y y

(2)_(2) (3)_(2) : (2) (2)_(2) - (3)_(2) (1)
Ix x x y -y y

(3) -(3) u u(3) (3)1(3) = (3) (21)

(1), (5) (lj3 (5 u (5)
X x y y

(1)14) = (2)_(4) (3)-(4) u (4)X X u XX

(I) (4) (2 )(4) : (3)_(4) u (4)

y 'y y y

16
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( )(e)
It is now assumed that (e) and are continuous in the same sense

I (e)
as - This is not implied by displacement continuity, but it is expected

to assure a certain degree of smoothness in the distribution of the flow and

damage strains. In any event, the alternative would appear to involve

computing a prohibitive number of inelastic nodal parameters.

Suppose for instance that there are M plane trianqular elements with a

total of N nodes. Under the present assumption there are 2N values each of

.(e) and y (e) to compute. But otherwise there would be 6M values of . and

( to determine, and M is nearly twice N. Evidently, the inelastic

smoothness assumption is very convenient in regard to computational effort.

,(e) i
Referring to Equation 21 and Figure 2, continuity of ( is expressed

as follows:

(1),;(l) (2) (1) (1)()y = (2) (1)

x x y y

(2) (2) (3) (2) (2) (2) = (3)3(2)
-x x y y

(1)(4) (2)3(4) (3) (4) (22)

x x x

(I) (4) (2),(4) = (3)3(4)
y y y

(e)
For _e, Equation 22 holds with gamma substituted everywhere for beta.

Note, however, that Equation 12a,c must now be modified for consistency
'(

with the nodal continuity of 3 e) and je) Repeating Equations 12a,c in

updated notation

(e) = zCe) -(e) 9e (e)) (23a)

,(e) = e) (e) (e) (e) (23b)

A satisfactory modification is to replace Equations 23a,b with:

' 17
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(e) (n) = 1 (e)z(n) (_(e), (e) k (e)) (24a)
m en e m f'

(e). (n) = 1 e' (e)z(n) ((e), _(e) k(e)) (24b)

m en e km2b

where en is the number of elements sharing the nth node.

We now state the modified relations holding at the fourth node in

Figure 2. First define (4) byy

(4) .((l)L(4) + (2)(4) + (3) (4))

,y 3 y y y

and by virtue of displacement continuity

(4) _ (1)_14) (2),(4) = (3)r(4)

The quantities (4) and N (4) are analogously defined.

y Y

Using Equation 22 together with the constitutive model represented by

Equations 12a-c, it follows that

3
(44) = 1 (1 4 3)) (4) (25a)

where
(i4 ) = 2 (4) .cf) (4)

y 1y (L,+c)ey

_(e) 2 l(e) - (211 + cf) 2(e)

(ee) ) 2, A( e )  -I/2 m(ent.(e))H K(e) 4)(e)]I/2

and A(e ) is the area of the eth element.

For damage the corresponding relations are

1s
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r3 *(4) 1/ (e) (4)

in which

(4) . ( + C (4)Xyy-yC d ) " y

%(e) : _(e) (K + cd) Y(e)

~(e) = 3KA(e]-2 [{,(e) H K (e) _(e)]/2

Finally, we consider the nodal balance of forces. The external force

p(e) applied to the eth element is balanced by the equivalent reaction force

(e) consisting of inertial, elastic, flow and damage parts:

Q(e) Q(e) + ,(e) + Q() + (e)

and

Q()=M(e) ;(e) (e) dK()+Ke e

Q(e) =- K(e) 8 (e) Q (e) = K ~.(e) (e)

-F f D d

Clearly, equilibrium of an element requires that

4(e) = Q(e)

We now illustrate nodal force balance using Figure 2, for which

''ii q M( q ( q 5 q )( 5 1H

Q(2) {(2)q(1) (2)q (1) (2) (2) (2)q (2) (2) (4 (2)q (4 )1'
Xy x y x y

(3)= {(3)q (2) (3)q (2) (3) (3) (3)q (3) (3)q (4) (3) q(4)'H
= ~ y x y y

To balance the external force acting vertically at the fourth node in Figure 2,

p (l)q( 4 ) + (2 )_(4) + (3)q (4) (26)

y y

19
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Simply stated, the sum of the equivalent reaction forces contributed by the

elements sharing a node is set equal to the external force aoplied at the

nodE. Equation (26) is readily extended tc more general situations.

The constitutive relations, for example Equation 25 a,b, together with

the nodal force balance relations such as Equation 26 comprise a system of

ordinary differential equations in time. Under suitable initial conditions,

the equations may be integrated numerically to furnish the nodal displacement,

flow and dawage parameters as functions of time.

CONCLUSION

The finite element method has been applied to a constitutive model

describing flow and damage in rapidly loaded structural materials. A system

of ordinary differential equations in time has been obtained for nodal

displacement, flow and damage oarameters. The formulation is "consistent"

in that the inelastic strain approximants involve the same interpolation

operators as the corresponding parts of the total strain approximant. Certain

ir,terelement continuity conditions are imposed on the flow and damage strains.

Numerical results will be reported in a subsequent article.

20
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