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ABSTRACT

Title of Dissertation: Data Abstraction Transformations

Mark Alan Ardis, Doctor of Philosophy, 1980

Dissertation directed by: Dr. Richard G. Hamlet

As sociate Professor

Department of Computer Science

A data abstraction is a collection of sets together

with a collection of operations. Methods exist for

specifying and for implementing data abstractions. The

central question for any particular example is whether the

semantics of each of these two methods corresponds with the

intended abstraction.

An algebraic comparison of data abstraction

specifications and implementations is presented. It is

shown that the specified and implemented abstractions always

overlap and have a common (lattice) structure that is

valuable in understanding the modification of code and

specification.
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/ Q A new specification technique, table specification, is

proposed that emphasizes the underlying congruence-class

structure of data abstractions. Algorithms to transform

tables are defined.
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1. Introductio~n

Software maintenance is a process of changing existing

implementations to meet new specifications. It is often

easy to change a specification, but difficult to make the

corresponding change to its implementation. In this thesis

we examine a cav~e for this difficulty in the domain of data

abstractions.

A method for specifying data abstractions, called the

algebraic or axiomatic specification technique has been

proposed by (Zilles 741, [Guttag 75] and iADJ 75b]. in this

method data abstractions are modeled by heterogeneous

algebras. We show that these algebras have a lattice

structure that is shared by models of implementations that

share the same syntax.

Each algebra has an inner structure, congruence

classes, that is useful in studying changes to

specifications and implementations. A new method of

specification, table specification, is proposed which

emphasizes this inner structure.

Chapter 2 introduces the domain of interest, data

abstractions. Distinctions and relationships between data

abstractions, specifications, and implementations are



2

introduced. Chapter 3 reviews some algebraic concepts and

presents some properties of the structure of word algebras.

The word algebra structure is used in Chapters 4 through 6

to examine specifications and implementations. Table

specifications and their transformations are covered in

Chapters 7 through 9.
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2. Data Abstractions

DEFINITION 2.1 - A data abstraction is a

collection of sets with a collection of operations

on those sets. Each set in a data abstraction is

called a domain or a data type. *

Several programming languages provide facilities for

defining data abstractions as program objects

[Dahl et al. 70], [Liskov et al. 77],

[Wulf, London & Shaw 76], [Gannon & Rosenberg 79]. A class

is a program object that may be viewed as a data

abstraction. The correspondence between classes and data

abstractions is described by an interpretation, a mapping of

program objects and operations onto abstract objects and

operations.

As we will show in Chapter 5, for each class there is

at least one corresponding data abstraction. There may be

one abstraction that best captures the intentions of the

programmer, the creator of the class. This does not rule

out the existence of other abstractions, to which the class

corresponds under other interpretations. A class describes

a collection of data abstractions in the sense that some,

but not all data abstractions may be interpretations of the

class.
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Another way to describe a collection of data

abstractions is by a specification. In particular, we will

be concerned with algebraic specifications. An algebraic

specification has syntax that must obey certain restrictions

in order to be well-formed. Every well-formed algebraic

specification corresponds to at least one data abstraction,

by means of an interpretation of the symbols in the

specification onto the objects and operations of the data

abstraction. As with classes, there may be one data

abstraction that best captures the intentions of the

specifier, the creator of the specification, but there may

be other data abstractions to which the specification

corresponds.

Because classes and specifications both describe data

abstractions, it is possible to compare them to one another.

In particular, a given class and a given specification may

describe the same collection of data abstractions. The

intersection of these collections is a measure of the

correspondence between the class and the specification.

Similarly, one may make the same type of comparison between

two specifications or between two classes.

The algebraic structure of a data abstraction may be

used to partition each set in the abstraction into blocks.

These blocks will be used to explain similarities between

different specifications and classes.
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3. Word Algebra

By reserving the term data abstraction for abstract,

intuitive objects we avoid confusing it with another idea:

the syntax of a class or a specification. In other words,

the meaning of a class or a specification is a data

abstraction. In any particular case, a data abstraction

arises from the syntax of a class or a specification.

However, we can also study data abstractions apart from

their defining classes or specifications.

Collections of sets and operations on those sets may be

described by a mathematical formalism: heterogeneous

(many-sorted) algebra. In fact, common abstract algebra

suffices to describe most phenomena. The only need for

heterogeneous algebra is to extend concepts to objects with

more than one set. Because the number of sets is always

finite, these extensions are straightforward.
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3.1. Algebras

DEFINITION 3.1 -An algebra is a pair (D,M)

where D is a collection of domains and M is a

collection of mappings from cross-products of sets

in D to sets in D .When the operations are

understood from context, we omit M*

For example, the natural numbers may be described as an

algebra with one domain, the set of natural numbers, and two

operations, Zero and Successor *An example with more

than one domain is the ubiquitous stack. Two domains,

natural numbers and stacks, are needed. The usual

operations are Newstack ,Push ,Pop ,Top , and the

natural number operations.

It is clear that names are needed to describe the sets

and operations, but that names are not enough. Two algebras

may have the same names, but the operations may do different

things. Still, the two algebras have something in common.

We capture this syntactic idea by the term signature.
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DEFINITION 3.2 - A signature is a triple

(S,F,V) , where S is a finite, nonempty set of

set names, called types; F is a finite, nonempty

set of function names and their arities: the names

of the types that make up their domains and

ranges; and V is a finite set of variables Vi

When V is empty we omit it from the signature.

For each function f: Sx ... x Sn --- > S the

product set S I x ... x Sn I sometimes written

(S 1  , ... Sn ) , is its domain arity. For

constants f: --- > St , the empty tuple ( ) is

used to denote the empty domain arity. Each

variable V has a type, an element from S

The domain of a variable, written dom(Vi) , is a

particular subset of its type. Every algebra has

a signature. Two algebras with the same signature

are similar algebras.

DEFINITION 3.3 - The order of a signature is the

maximum of the number of arguments of each

function in the signature. The T-order of a

signature is the maximum of the number of

arguments of type T of each function in the

signature. ***

It is often useful to build up a data abstraction from



its components. Each type in the signature is specified

(implemented) separately, in a sequence of specifications

(classes). Types that have been specified (implemented)

earlier in the sequence may be referenced in the new

specification (class).

DEFINITION 3.4 - a hierarchical sinature is a

signature whose domains and functions are divided

into two classes: old and new. Only one new

domain is allowed, called the type-of-interest, or

TOI . *

DEFINITION 3.5 - A hierarchical specification

(respectively, class) is a sequence of

specifications (classes) with hierarchical

signatures, in which each old domain or function

in any specification (class) is a new domain or

function in some previous specification (class) in

the sequence.**

The hierarchical signatures of the natural numbers and

stack are shown in Figures 3-1 and 3-2.
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Types: Natural

Functions: Zero: -- > Natural
Suce: Natural -- > Natural

Figure 3-1. Signature of natural numbers
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Types: Nat (Old)
Stack

Functions: Zero: -- > Nat (Old)
Suce: Nat--> Nat (Old)

Newstack: -- > Stack
Push: Nat x Stack -- > Stack
Pop: Stack -- > Stack
Top: Stack -- > Nat

Figure 3-2. Signature of Stack



Two signatures are the same if and only if the names of the

sets and operations are the same and the operations have the

same anities. On the other hand, assigning new names (e.g.

changing each name "abc" to "abc2") consistently to one of

the signatures does not change the fact that the two V

signatures describe the same structure. We will ignore such

distinctions between signatures and treat two signatures as

if they were the same if the only difference between then is

such a renaming.

Implicit in this discussion of signatures is the notion

of possible algebras they describe. In general, a signature

may be shared by many different algebras. However, there is

a natural unique algebra for each signature. If each

operation produced values in its range that were different

from all the values produced by all the other operations,

and if a new value was produced for each new set of input

values, then this algebra would be the most "general"

algebra for that signature. That is, it would have as many

distinct values as possible. Note that this definition

allows the domains to contain values that are not in the

ranges of any operations. We dispense with such values by

the following:

CONVENTION 3.6 - The elements of domains of an

algebra are restricted to those values that are

results of operations in the algebra.



12

This is an intuitive restriction for program objects.

The only values that can exist are those that arise from

operations. (We treat initialization as a constant

operation.) We now have a unique algebra to associate with

each signature, the constant word algebra.

DEFINITION 3.7 - The word algebra W v(S,F,V) of

a signature (S,F,V) is the set of all words

formed as follows:

(1) For each function f: --- > Si , the symbol

f " is a word of type Si

(2) Each variable symbol V i with domain Si is
i i

a word of type S.

(3) If f: S 1 x ... x Sn --- > Si is a function

in F and w I , ... , wn are words of types

Sl Sn. then f(w1 , ... , w n) is a

word of type Si

A word containing no variable symbols is called a

constant. The constant word algebra W (S,F,V)

is the set of all constants in Wv(S,F,V) •

For examile, the constant word algebra of the signature

of the natural numbers contains constants:

Zero

Surc(Zero)

Succ(Succ(Zero)) , etc.

The constant word algebra of the stack signature contains
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such constants of type Stack as:

Newstack

Push(News tack,Zero)

Pop(Push(Newstack,Zero)) , etc.

The same algebra contains constants of type Nat :

Ze ro

Succ(Zero)

Top(Push(Newstack,Zero)) , etc.
I,

DEFINITION 3.8- Let (S,F,V) be a signature.

An instance w' of a word w 6 WV(S,F,V) is an I'

element of Wc(S,F,V) obtained by consistently

substituting constants for variables in w . An

instance w1  , ... , w n  of an n-tuple

( w , . w n ) is obtained by using the same

substitution scheme for variables in each word

Wn .

As a special case of the definition, for each variable V

of type Ti in a signature (S,F,V) , the set of all

instances of Vi  is the set of all constants of type T i

in Wc (S,F,V)
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3.2. Semantic Interpretations

As can be seen in the stack example, the constant word

algebra may contain more distinct values than intended. In

particular, Newstack and Pop(Push(Newstack,Zero)) are

probably intended to be the same value. We can accomplish

this by defining equivalence relations on the domains. L

DEFINITION 3.9 - An equivalence relation over

a set S is a binary relation satisfying the

following properties, for all x , y and z in

S:

(1) x ~ x . (Reflexive)

(2) If x y then y x . (Symmetric)

(3) If x y and y - z then x ~ z.

(Transitive)

The subset of S of all elements equivalent to

x , called the equivalence class of x , is

denoted by 1xj .

The first two laws of equivalence relations are

obviously needed for any relation that is meant to capture

equality. Transitivity ensures that if two values are

equal, it does not matter how they were produced. For

example, if Pop(Push(Newstack,Zero)) is equal to

Newstack , and (Pop(Push(Newstack,Succ(Zero))) is equal

to Newstack, then Pop(Push(Newstack,Zero)) is equal to
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Pop(Push(Newstack,Succ(Zero))) • The history of production

of a value does not matter.

It would not be correct to allow any set of equivalence

relations on domains to define equality of values. The

relations on each domain must be consistent with one

another. Further, if two values are equal, then they should

yield equal results when passed as parameters to the same

operation. These two properties are captured by the

following definition.

DEFINITION 3.10 - A congruence on an algebra

(DM) is a set 1 of equivalence relations,

one relation defined on each set Di 6 D , with

the substitution property:

(4) For all functions f: D1 x ... x Dn --- > D

xi .i Yi , where i - I , ... , n

impl ies

f(x 1  , ... , xn) m f(y 1 .. ,yn) i
n 0.m f I "n

x denotes the congruence class of x

For example, in a congruence on stack,
Zero - Succ(Zero)

impl ies

Push(Newstack,Zero) - Push(Newstack,Succ(Zero))

Furthermore,
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Zero - Succ(Zero)

implies

Suec(Zero) = Succ(Suce(Zero))

Unfortunately, defining a congruence on an algebra does

not change the number of elements in the domains of the

algebra. Pop(Push(Newstack,Zero)) and Newstack may be

in the same congruence class, but they are still different
r

words. What we want is another algebra with one object for

each class of equal words according to a congruence defined

on Wc . Such an algebra is uniquely defined for each

congruence.

DEFINITION 3.11 - A quotient algebra (D/C,M) is

the algebra formed from (D,M) by substituting a

congruence class of C i  for each set of elements

equal under Ci  in each set Di . For each

function f: D 1 -- > D 2  in the original algebra

(D,M) , the new function f': D /C1 -- > D 2 /C2  is

defined in the natural way: fl(It) = f(x)(

Where there is no confusion we reuse the old names

for the new functions and drop the class brackets,

writing f(x) for f'(Cxl) and x for lx.

Suppose, for example, that we defined a congruence on

the natural numbers by: Zero - Succ2 (Zero) , where
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fa(x) is an abbreviation for f(f(... f(x)...))

Note that several other equalities are implied, such as:

Succ(Zero) - Succ 3(Zero)

It can be shown that there are only twelve classes of

values, where all the values in each class are equal to one

another. If we call this congruence modl2 , then we can

define a quotient algebra (jNatj/mod12, lZero,Succl) . The

quotient algebra has one domain with twelve different values

in it. The value produced by Succ(Zero) is the same value

as produced by Succ1 3 (Zero)

Because every quotient algebra arises from some larger

algebra by means of a congruence, there is a natural mapping

between the two algebras. For every value in the large

algebra there is a corresponding value in the quotient

algebra that "behaves" in the same way with respect to the

operations of the algebras. Every value in the quotient

algebra corresponds to some value or set of values in the

large algebra. This relationship is described by an

epimorphism from the large algebra to the quotient algebra.
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DEFINITION 3.12 - An algebra homomorphism, or

just a homomorphism h: (D,M) --- > (D',M') is a

mapping between similar algebras (i.e., they have

the same signature) that preserves the functions:

h(f(w I  ,. . Wn)) f(h(wl) , ... , h(wn))

for all elements wi of D and all functions f

in M . An epimorphism is an onto homomorphism.

We state without proof a theorem of [Birkhoff & Lipson 70]:

THEOREM 3.13 - The set of all epimorphisms of an

algebra A is completely determined by the set of

all quotient algebras of A . ***

Given a class or a specification, we can generate the

constant word algebra of its signature. In general, Wc

will be too large: the number of values intended will be

smaller than the number of values in W . W cannot bec c

too small, given Convention 3.6 for algebras. The intended

algebra of a class or specification, then, must be some

quotient algebra of W . We call an intended algebra, ac

semantic interpretation.

DEFINITION 3.14 - A semantic interpretation of a

class or a specification is an epimorphism of the

constant word algebra of the signature. *
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3.3. Lattices

Just as every quotient algebra is related to its

original algebra by an epimorphism, some of the quotient

algebras of a given algebra are related to one another by

epimorphisms. For example, we could define a new congruence

mod4 on the natural numbers by the equation:

Zero - Succ 4(Zero) 
r

The new algebra, (jNatj/mod4, IZero, Succ3) . is the

epimorphic image of the algebra modl2 under the following

mapping:

Zero, Succ4(Zero), Suce 8(Zero) -- > Zero

Suet(Zero), Succ 5(Zero), Succ9(Zero) Succ(Zero)
Succ2(Zero), Succ 6(Zero), Succ0 (Zero) -- > Suc2(Zero)

Succ 3 (Zero), Succ 7 (Zero), Succ 1 1 (Zero) -- > Succ 3 (Zero)

On the other hand, the algebra modl3 defined by:

Zero = Succl3(Zero)

is not related to either mod4 or modl2 . Such

relationships are described by partially ordered sets.
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DEFINITION 3.15 - A partially ordered set, or

poset, (X,<-) is a set X with a relation <-

satisfying the following properties, for all x

y , z in X

(I) x < x . (Reflexive)

(2) x <- y and y <- x

implies x - y . (Antisymmetric)

(3) x < y and y < z

implies x <= z . (Transitive)

A relation A <- B on quotient algebras is always

defined by the existence of an epimorphism from B to A

The congruence classes of the domain algebra B are

contained (in the set-theoretic sense) in the congruence

classes of the range algebra A . For example, the classes

of modl2 are contained in the classes of mod4

Some posets are closed. That is, there exists a value

in the poset that is smaller than every value, and there

exists a value in the poset that is larger than every other

value. When this happens, the poset is called a complete

lattice.
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DEFINITION 3.16 - A lattice is a partially

ordered set in which every two elements have a

least upper bound, called the join, and a greatest

lower bound, called the meet, in the set. A

complete lattice L is a lattice in which every

subset of L has a join and a meet in L * A

sublattice is a subset L of a lattice M closed

under the join and meet operations of M ,

operating on subsets of L . A lower semilattice

is a partially ordered set in which every two

elements have a meet. *

The quotient algebras of W c are closed under the

ordering defined above, containment of congruence classes,

because W is smaller (under the defined ordering) than

every quotient algebra, and the trivial algebra, which has

one value in each domain, is larger than every other

quotient algebra. In fact, for all heterogeneous algebras

we have the following theorem of [Birkhoff & Lipson 70]:

THEOREM 3.17 - The poset of all congruences on an

algebra forms a complete lattice. *

And, in particular, we have the following corollary:
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COROLLARY 3.18 -The collection of semantic

interpretations of a class or a specification

forms a complete lattice, denoted by Lw

As an example, part of the lattice of semantic

interpretations of the natural numbers signature is given in

Figure 3-3. Each box in the Figure represents a quotient

algebra defined by the congruence described by the equation

in the box. The entire lattice is infinite: there are an

infinite number of quotient algebras for that signature. In

fact, there are an infinite number of quotient algebras just

below the trivial algebra: one for each prime number.

Similarly, there are an infinite number of levels in the

lattice: there are numbers that have an infinite number of

powers of two, say. Nevertheless, there is one uniqu e

algebra at the very bottom of the lattice: the natural

numbers. Every other algebra equates at least two words.
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Succ(Zero) er

Succ 4 (Zero) -ZrlSucc 
6 (Zero) -Zero

Natural Numbers]

Figure 3-3. Part of Lw(INati , lZero, Succl)
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4. Specifications

The purpose of this section is to relate algebraic-

specifications, syntactic objects, to semantic

interpretations, semantic objects. The particular type of

specifications considered here are essentially those of

[Guttag 75], but without conditional axioms.
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4.1. Algebraic Specifications

DEFINITION 4.1 - An algebraic specification

consists of:

(1) A signature (S,F,V)

(2) A finite collection of axioms: pairs of words

of the same type from W v (S,F,V) , the two

members of each pair separated by -

Note that there may be an empty collection of

axioms. ***

Figures 4-1 and 4-2 contain specifications of Natl2

and Stack , two data abstractions discussed in the previous

chapter.
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Types: Nat

Functions: Zero: ->Nat

Succ: Nat -- > Nat

Axioms: Succ 1 2 (Zero) -Zero

Figure 4-1. Specification of Nat12



27

Types: Nat (old)

Stack

Functions: Zero: -- > Nat (Old)
Succ: Nat -- > Nat (Old)

Newstack: -- > Stack
Push: Nat x Stack -- > Stack
Pop: Stack -- > Stack
Top: Stack -- > Nat

Variables: N: Nat
S: Stack

Axioms: Succ1 2(Zero) - Zero (Old)

Pop(Push(N,S)) - S
Top(Push(N,S)) - N
Pop(Newstack) - Newstack
Top(Newstack) - Zero

Figure 4-2. Specification of Stack

_ -- = ..... . ..... .. . .... 4
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4.2. Correctness

It is clear that the lattice of semantic

interpretations contains more interpretations than are

intended by the specifications. In particular, the semantic

interpretation of the signature of Natl2 (Figure 4.1) that

corresponds to the congruence modl3 (see Section 3.3) is

in conflict with the axiom:

Zero -Succ 12(Zero)

Axioms are intended to be true statements about the objects

described by the specification. To make this notion more

precise, we define the collection of words from Wc that

may be derived eqa by a specification.
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DEFINITION 4.2 - A derivation from a

specification S is a finite sequence of

equations which may be formed as follows:

(I) w - w , where w is any constant of WC

is an equation.

(2) If w1  w2  is an equation then

w2 - w1  is an equation.

(3) If w - w2 and w2 - w3 are equations,

then w - w3  is an equation.

(4) An equation is formed from an axiom of S by

an assignment of constants to variables,

where each occurrence of a variable x of

type D is consistently replaced by a

constant w of type D

(5) If w I - 2 and

f(... c , ... ) a f(... , c ... ) are

equations, and the constant c is of the

same type as w1 and w2 , then

f(-.. , wI - f(... , w2 ,. ) is

an equation.

The last equation in a derivation is the equation

derived. **

For example, Figure 4-3 contains some derivations from

the sperifi'ation of Nail2 in Figure 4-1.
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(a) Derivation of Succ 3(Zero) - Succ(Zero)

Equation Rule

Succ 12(Zero) - Zero (4)

13Succ (Zero) - Succ(Zero) (5)

(b) Derivation of Zero - Succ2 (Zero)

Equation Rule

Succ12(Zero) - Zero (4)

Zero - Succ1 2 (Zero) (2)

(c) Derivation of Succ24(Zero) - Zero

Equation Rule

Suce 2(Zero) - Zero (4)

Succ24(Zero) - Succ 2(Zero) (5)

Surc 2 4 (Zero) - Zero (3)

Figure 4-3. Examples of derivations
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The collection of all derivations forms a relation on the

constant word algebra.

DEFINITION 4.3 - Two elements, w I and w 2  of

the constant word algebra W c  of a specification

S are in the relation speceg if and only if

the equation w I - w 2 can be derived from S

We say that w, and w 2 are equal in speceq

Because derivations obey reflexivity, symmetry,

transitivity and substitutivity, we have the following

result.

LEMMA 4.4 - Speceq is a congruence on Wc

PROOF - By rule (1) speceq is reflexive. By

rule (2) it is symmetric. By rule (3) it is

transitive. So, speceq is an equivalence

relation. To show that it is a congruence we must

demonstrate substitutivity. Let w1  and w2  be

equal constants of type S' in speceq . Then by

definition there is a derivation D of wI ' w2 .

For each function:

f: S I  x ... x S' x ... x S n  --- > Si

construct a derivation D' of:
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f(c 1  , , C' , c.. n n

f(c1  , ... , c' ... , Cn)

This is always possible for nonempty domains

S1  , . . Sn I ' , Si by rules (1) and (5).

Appending D' to D , we can derive:

f(c I  , ... , w1  , ... , cn) =

f(c I  , ... W 2  , . . C n )

by rule (5). ***

DEFINITION 4.5 - The quotient algebra specalg

of a specification (D,M) is defined by the

congruence speceq of S

specalg (Wc(D,M)/speceq,M) .

One way of looking at specifications is to view them as

describing models. That is, an algebra in which all the

axioms are true is a model of that specification.
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DEFINITION 4.6 - Let S be a specification with

signature (T,F,V) . Let A be an algebra with

the same signature. Define the extension A' of

A as follows:

(1) Add a special type BOOL with constant

functions TRUE: -- > BOOL and

FALSE: -- > BOOL . (This new type is not to

be confused with any other type Bool

already in A . If necessary, the old type

Bool is renamed so as not to conflict with

the new type BOOL .)

(2) For each type Ti in T add a function

TiEQ: Ti x T i -- > BOOL .

TiEQ(wi, w2 ) TRUE if and only if w1  and

w 2 are the same constant of type Ti in

Wc(T,F,V) . Otherwise,

TiEQ(wI, w2 ) FALSE

An axiom w1 = w2  in A , where w1  and w2  are

words of type Ti , is true if and only if every

instance (w1 ', w 2 ') of (wi, w 2 ) yields

TiEQ(wI', w2 ') - TRUE in A' . A is a model

for S if and only if every axiom in A is true.

We say that A is correctly specified by S

whenever A is a model for S *



34

LEMMA 4.7 - Given a specification S , its

quotient algebra specalg is correctly specified

by S *

PROOF - Let w I = w2 be any axiom in S . By

derivation rule (4), any instance w I ' - w 2 '

where all variables have been consistently

replaced by constants, may be derived. Therefore, K

every axiom is true in specalg .

In a sense, specalg is the "best" model of a

specification, because it contains as many different values

in each domain as allowed by the axioms. However, it is

not, in general, the only quotient algebra of the constant

word algebra that is a model of a given specification. For

example, Nat4 (&Natj/mod4, iZero,Succl) is a model of

Natl2 (Figure 4-1), because the axiom:

12
Zero - Succ (Zero)

is true in Nat4 . It is easy to describe the collection of

models of a specification.

DEFINITION 4.8 - A quotient algebra is said to

satisfy a specification if and only if it is the

epimorphic image of specalg of that

specification. ***
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THEOREM 4.9 - A data abstraction A is correctly

specified by a specification S if and only if

A satisfies S *

PROOF -

( Satisfy S =--> Correct )

Let h: specalg --- > A be an epimorphism.

Then, for every equation w, M w2 true in

specalg we have h(w1 ) I h(w 2) true in A . In

particular, the image of every instance of every

axiom in S is true in A , because they are true

in specalg . So, A is a model for S

( Correct --- > Satisfy S )

Let Iwil denote the congruence class of

wi in specalg , 1wil denote the set of all

words that are equal to w i  in A . We show that

jw1 3 2 1wAj for all i *Let E be an

equation in a derivation of w I - w2 . If E is

a consequence of any of rules (1), (2), (3) or (5)

it must be true in A . If E is a consequence

of rule (4), then it follows by an axiom of S

But, all axioms in S are true in A . So, E

is true. Therefore, w I - w 2 in A ***

The axioms are treated here as minimal, but not maximal
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conditions. That is, a specification does not describe a

unique object, but a collection of objects, all of which

satisfy the axioms. Fortunately, the collection is closed.

THEOREM 4.10 - The collection of data

abstractions that are correctly specified by a

specification form a complete sublattice of L

We denote the sublattice by Ls

PROOF - Let S be the set of all correctly

specified data abstractions. Every data

abstraction in S is an epimorphic image of

specalg . So, it is an epimorphic image of the

constant word algebra, and is in Lw * The meet

and join operations in Lw are congruence

class intersection and congruence-closure

union . We must show that S is closed under

these operations. Every element of S contains

the congruence classes of specalg in its

congruence classes. The intersection and

congruence-closure union of classes will contain

the congruence classes of specalg . So, S is

closed under meet and join . The trivial

algebra is the top element of L . Specalg is
s

the bottom element. ***
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Figure 4-4 contains the lattice of data abstractions,

or algebras, that are correctly specified by NatI2 . Each

box in the Figure represents an algebra. The equation in

the box is an axiom that must be true in that algebra.

There are only six data abstractions in the lattice.

Comparing this lattice to Figure 3-3, we see that it is a

sublattice of Lw of the signature (jNat, 'Zero,Succl)

Note that the lines connecting boxes represent epimorphisms

implied by transitivity. The data abstraction at the bottom

of the lattice is specalg . The data abstraction at the

top is the trivial algebra, with one element in Nat

The data abstraction at the bottom of the lattice L
s

for a specification is the initial algebra of that

specification, in the terminology of [ADJ 77]. That is,

there is a unique homomorphism from specalg to every other

algebra that satisfies the axioms. In fact, there is a

unique epimorphism defined by the lattice.

j
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Figure 4-4. The lattice L f or N at 12
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4.3. Inequalities

(Giarratana et al. 761 and [PolaJnar 78] describe

similar lattices, but without allowing as many

interpretations. In particular, the trivial algebra is

disallowed. This can be done by insisting that some domains

have a single, allowed interpretation in abstractions. For

example, one could insist that the natural numbers in stack

have a fixed (Cperhaps infinite) number of elements. To

accomplish this, we introduce the notion of inequalities in

specifications.

DEFINITION 4.11 - An algebraic specification with

inequalities consists of:

(1) An algebraic specification

(2) A collection of inequalities: pairs of

well-formed terms composed from the elements

of the algebraic specification (function

names and variables), the two members of each

pair separated by "

The signature of an algebraic specification with

inequalities is the signature of (1). If all the

inequalities are composed of constant terms we

call the specification an algebraic specification

with constant inequalities. ***

Note that the set of inequalities may be infinite. When the
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set is empty we have a specification as defined in Section

4. 1.

An example of a specification with inequalities is

shown in Figure 4-5. It is clear that an inequality may

imply other inequalities. For example:

Zero #Succ 6(Zero)

implies that

Zero #Succ 3(Zero)

However, inequality is not a transitive relation. It is the

transitivity of equality combined with the contradiction of

inequality that yields the implication. That is,

Zero - Succ 3(Zero)

implies, by transitivity,

Sc6
Zero Suc (Zero)

which is contradicted by

6
Ze ro Succ (Zero)

A logical way to proceed, then, is to treat each inequality

as potentially contradicting a collection of equalities. To

find the collection, we find the collection of equal word,

derived from an equality.
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Types: Nat

Functions: Zero: -- > Nat
Succ: Nat -- > Nat

Axioms: Succ 1 2 (Zero) - Zero

Inequalities: Succ6(Zero) # Zero

II
~Figure 4-5. Speciffication of Natl2 with inequalities
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DEFINITION 4.12- Two elements, w I and w 2 , of

the constant word algebra W of a specification

with inequalities S(1) are in the relation

specineg(i) if and only if the equation

w I  w 2 can be derived from the specification

S' ; where S' is formed from the signature of

S and one axiom: the axiom that equates the two

terms of the inequality i . The relation

speceS is defined to be the same as for the

specification without inequalities. ***

We can form a quotient algebra from specineq(i) just as we

did from speceq

LEMMA 4.13 - Specineq(i) is a congruence on

Wc . for each inequality i *

PROOF - Specineq(i) is the congruence relation

speceq for the specification with one axiom, the

axiom that equates the two sides of the inequality

i *
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DEFINITION 4.14 - The quotient algebra

specinala(i) of a specification with

inequalities S(I) is defined by the congruence

specineq(i) of S :

specinalg(i) = W /specineq(i)

for each inequality i E I . The quotient

algebra specalg is defined to be the same as for

the specification without inequalities. ***

The quotient algebra specinalg(i) is in contradiction with

the inequality i . That is, it only has one value where

the inequality states that there are two different values.

Specinalg(i) is not an algebra correctly specified by the

specification.

DEFINITION 4.15 - A quotient algebra is said to

satisfy a specification with inequalities S(M)

if and only if (1) it is an epimorphic image of

specalg and (2) it is not an epimorphic image of

any specinalg(i) for all inequalities i E I

THEOREM 4.16 - A data abstraction A is

correctly specified by a specification with

inequalities S(I) if and only if A satisfies

S(I) .
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PROOF - Every axiom in S(I) is true in A

because A is an epimorphic image of specalg .

Every inequality i in I is true in A

because A is not an epimorphic image of

specineq(i) . Thus, A is a model for S(I) .

If A is a model for S(I) , then the axioms

are true, and the inequalities are true. So, A

satisfies S(I) .

Adding inequalities to a specification, then,

potentially removes some data abstractions from the

collection that satisfy the specification. If the original

collection formed a lattice, what does the new collection

look like?

THEOREM 4.17 - The collection of data

abstractions that are correctly specified by a

sperification with inequalities S(I) forms a

-omplete lower sub-semilattice of L w  if and only

if specalg is not an epimorphic image of any

specinalg(l) , for all inequalities i I

If it is, the collection is void. We denote the

semilattlee S *
s

PROOF - When specalg is an epimorphir image of

some specinalg(i) every epimorphi, image of
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specalg is an epimorphic image of

specinalg(i) , because epimorphisms compose.

Hence, there is no model for S(I) in this case.

Otherwise, the collection of correctly specified

data abstractions is closed at the bottom by

specalg .

Figure 4-6 contains the semilattice of data

abstractions that satisfy the specification in Figure 4-5. r

By adding the inequality:

Zero 0 Succ 4 (Zero)

the semilattice may be reduced to a single abstraction.

If a specification contains at least one axiom it is

possible to delete the whole lattice by one inequality: the

inequality of any substitution instance of the two words in

the axiom. For example,

Zero 0 Succ1 2 (Zero)

reduces Nat12 to nothing: there are no data abstractions

that satisfy the specification. Notice that any inequality

that defines (by changing the inequality into an equality) a

quotient algebra of which specineq is an epimorphic image,

reduces the lattice to nothing. If no one inequality in a

collection (possibly infinite) reduces the lattice to

nothing, then the whole collection does not.

I
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4ZSucc(Zero) Zero

FS Su cc12 (Zero) eo

Figure 4-6. Semilattice S for Natl2 with inequalitiesS
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The final algebra of [Wand 79] and [Kamin 79] is the

top element of Ss which is guaranteed to be a lattice by

choosing a particular subalgebra for all domains except the

type-of-interest. That is, an interpretation is chosen for

each of the base types of the language. Usually, this

interpretation is described by the initial algebra of a

specification. (E.g., there are two values in type bool

an infinite number of values in type int , etc.) Each new

type in a hierarchical data abstraction is defined by the

final algebra of the specification, given the preceding

definitions for all of the old types in the specification.

Figure 4-7 shows the relationship between the initial

and final algebra interpretations, using the lattice of all

interpretations, Lw
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Trivial Algebra

Final Algebra

Initial Algebra

Figure 4-7. Initial vs. Final Algebra
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5. Implementations

Just as the collection of semantic interpretations of a

specification can be described by quotient algebras of a

word algebra, the collection of semantic interpretations of

a class can be described by quotient algebras of the same

word algebra. That is, every class has an associated

signature, which yields a lattice of quotient algebras. All

the correct semantic interpretations of the class are

contained in that lattice.
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5. 1. Classes

DEFINITION 5.1 - A class consists of:

(1) A signature (S,F,V).

(2) Function bodies in a programming language

that implement each function in the

signature.

(3) Additional functions and procedures of the

programming language as needed. ~k

Figures 5-1 and 5-2 contain classes Natl8 and

Stack .The programming language used is SIMPL-D

[Gannon & Rosenberg 79]. Objects of each domain are

implemented by a domain record of previously-defined types.

Thus, Natl8 is implemented by a record with one field: an

mnt variable. The type mnt is the implementation-defined

integer type. Values of type Stack are implemented by an

array of Nat and an mnt pointer. Note that Stack is

bounded: there may only be 100 values in the stack.

The functions and procedures of a class are assumed to

terminate. Also, all of the operations in the signature of

the class must be functions. Global variables and side

effects are disallowed.
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class Nat -Zero, Suc

unique int Val

Nat fune Zero
Nat Result
Result.Val :- 0
return(Resul t)

Nat func Succ(Nat Arg)
Nat Result
if Arg.Val - 17

then Result.Val :w 0
else Result.Val :-Arg.Val + 1
end

return(Resul t)

endelass

Figure 5-1. Implementation Natl8



52

class Stack - Newstack, Push, Pop, Top

unique Nat array Vals(100)
unique int Tops

Stack func Newstack
Stack Result
Result.Tops :- 0
return(Result)

Stack func Push(Nat N, Stack S)
Stack Result
if S.Tops - 99

then return(S)
else Result. Vals(S.Tops) :- N

Result.Tops :- S.Tops + I
return(Result)

end

Stack func Pop(Stack S)
Sta,!k Result
if S.Tops a 0

then return(S)
else Result :- S

Result.Tops :- Result.Tops - 1
end

Nat func Top(Stack S)
Nat Result
if S.Tops - 0

then return(Zero)
else Result.Val :- S.Vals(S.Tops)

return(gesul t)
end

endclass

Figure 5-2. Implementation of Stack
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5.2. Correctness

The lattice of semantic interpretations, Lw , contains

more data abstractions than are correctly implemented by a

given class. In particular, the data abstraction defined by .

modl3 (see Section 3.3) is not correctly implemented by

the class in Figure 5-I. In order to find the abstractions

that are correctly implemented, we must formalize what it

means for the code of a class to evaluate a constant word.

DEFINITION 5.2 - The exec function is a mapping

from W into the semantic domain used to definec

the base types of the programming language, using

the meaning of the functions appearing in the

constant:

exec(f(wj, ...,W)) - [f lWl], ... [w n]j)

We assume that the given programming language has a

semantics that defines domains of values for all the base

types of the language. These domains may be sequences of

bits or lattices in a denotational semantics. Any given

constant expression must have a value in one of these

domains. The bracket notation, due to [Kleene 52], denotes

the function computed by the code for the named operation on

the underlying domain. We extend the notation to words by:

w = f(w1  , ... , wn) impliesowl'
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[w] -f]( Wil , . Wnl) 
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Because we have assumed totality of all operations, the

function denoted always exists.

For example, the operation Zero in Natl8 (Figure

5-1) yields a certain constant bit string (the constant 0

in the base type int). The operation Succ in Natl8 ,

when applied to the result of Zero yields another bit

string (the constant 1 in the base type int). It is

possible to discover the functions (Zero] and [Succ] in

Natl8 by enumerating all their possible values under the

exec mapping (one value for [Zero] , eighteen for

[Succ] ). In general, a function might have an infinite

number of values.

DEFINITION 5.3 - Let A be a data abstraction

with signature ([D1  , ... . Dn, fl I ... I f' j )

and C a class with the same signature, but

written ( D 1  "" " I n* ' "" 1 ' mI )

We say that A is correctly implemented by C if

and only if there is an epimorphism

R: exec(W ) --- > A That is,c

R(exec(fi 1 i ' d

f (R(exec(d , , .. , R(exec(d I

for '' dk in D1 Dk' for

all f ' I We call R a representation mapping.
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This notion of correctness originated in [Hoare 721. Figure

5-3 shovs a commutative diagram illustrating the

relationship between A and C
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D x ... x D ... D An m

R R R

Semantic Domain

C x ... x C ------ > Cm of Programming
Language

eec ee Texeci

DI 'x ... x Dn--- > Dm

Figure 5-3. Correctness of implementations
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Now we draw a parallel between specifications and

classes. In particular, we can define a derivation'.

DEFINITION 5.4 - A derivation' is a derivation

(see chapter 4) with

(4') If exec(w I) - exec(w 2) then w I  w2 is an

equation

substituted for rule (4). The last equation in a

derivation' is the equation derived'. *

The collection of words derived' equal defines a

relation on the constant word algebra.

DEFINITION 5.5 - Two elements, w I and w2 , of

the constant word algebra of the signature of a

class C are in the relation conceg if and only

if the equation wI - w2 can be derived' from

C . We say that w, and w2 are equal in

conceq *

Not unexpectedly, we get the following result.

LEMMA 5.6 - Conceq is a congruence on Wc

PROOF - This proof is identical to the proof that

speceq is a congruence on Wc  (see chapter 4),

since rule (4) for derivations is not used in that
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proof. ***

DEFINITION 5.7 - The quotient algebra concalg

of a class C is defined by the congruence

conceq of C

concalg - W c / conceq *

Because concalg contains only one value for every

collection of words that evaluate to the same value in the

underlying domain of the programming language, concalg is

correctly implemented.

LEMMA 5.8 - Given a class C , its quotient

algebra concalg is correctly implemented by C

PROOF - The representation mapping from C to

concalg is simply the identity mapping, which is

an epimorphism. *

The algebra concalg is the algebra of the underlying

bit strings or denotational semantics of the code of the

class. It must be correctly implemented because it is

exactly implemented. However, there are other algebras that

are correctly implemented. For example, concalg of the

class in Figure 5-2 contains different values for the words

Pop(Push(Newstack,Zero)) and

Pop(Push(Newstack,Succ(Zero))) , because the values of the

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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arrays are different (at location Vals(O)). The normal

algebra of a stack would have one value for these two words.

That is, the representation mapping to concalg is an

isomorphism. However, any epimorphic image is correct.

DEFINITION 5.9 - A quotient algebra is said to

satisfy a class if and only if it is an epimorphic

image of concalg of that class. *

THEOREM 5.10 - A data abstraction A is

correctly implemented by a class C if and only

if A satisfies C . ***

PROOF - If A is correctly implemented then there

exists a representation mapping

R: exec(W c ) -- > A . But, exec(W C) - concalg

So, R is an epimorphism: R: concalg -- > A

Thus, A satisfies C

If A satisfies C then there exists an

epimorphism E: concalg -- > A . But, E is then

a representation mapping: E: exec(W C) -- > A

So, A is correctly implemented. *

For example, the algebra with exactly three values in

domain Nat :

3 6Zero - Succ (Zero) - Succ (Zero) =

Suce(Zero) - Succ (Zero) -
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Succ2(Zero) - Succ 5(Zero) -

is correctly implemented by Natl8 (see Figure 5-1) under

the representation mapping:

Val - 0,3,6,9,12 or 15 -- > Zero

Val - 1,4,7,10,13 or 16 -- > Succ(Zero)

Val - 2,5,8,11,14 or 17 -- > Succ (Zerc)

Notice that it is up to the user of the class to define and

consistently use the correct representation mapping.

The collection of correctly implemented data

abstractions is closed.

THEOREM 5.11 - The collection of data

abstractions that are correctly implemented by a

class form a complete sublattice of L We

denote the sublattice L •
c

PROOF - This proof is identical to the proof for

Ls  (see chapter 4), except that concalg is

used instead of specalg .

Figure 5,4 contains the lattice of all correctly

implemented data abstractions for the class in Figure 5-1.
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Figu(re ) 5-.Te lattic 9 (Zerr Natl0
FS -U r 0



62

There are only six abstractions in the lattice. Comparing

this lattice to Figure 3-3, we see that it is a sublattice

of the appropriate Lw , but a different sublattice from

Figure 4-4. The box at the bottom of Figure 5-4 represents

the data abstraction with 18 different values in Nat . The

box at the top represents the trivial algebra, with one

value in Nat

P

I I
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6. Specification/Implementation Intersec tion

If a class and a specification share the same signature

they can be compared. In particular, if the same collection

of data abstractions was intended to be described by both

the class and the specification, then the success or failure

of that intention can be described in terms of the overlap

of the two lattices LSand L c * When the overlap is

perfect, i.e. the two collections are identical, then total

success may be claimed. To measure the overlap, we use the

following result:

THEOREM 6.1 - Given a specification S with

signature (D,F,V) and a class C with signature

(D,F) , the collection of data abstractions that

are correctly specified by S and correctly

implemented by C form a complete sublattice of

L Sand L c We denote the common sublattice

SL .**

PROOF - Viewing the lattices L and L.c as

sets, the intersection of L and L.c is the set

of data abstractions that satisfy both the

specification and the class. Let SL be that

set. SL is not empty, because the trivial
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algebra is in both L and L.

The lattice operations, meet and join

are the same for L and L. So, they are

defined on SL . We need to show that SL is

closed under them. Every data abstraction A. in1

SL is defined by a congruence relation Ci

The meet of any two algebras is defined by their

congruence intersection. Join is

congruence-closure union. These operations

preserve containment. So, the meet and join

of two congruences containing both speceq and

conceq is a congruence containing both speceq

and conceq . **

The sublattice SL contains all those data

abstractions correctly implemented and correctly specified.

There are four possibilities: (1) SL may be equal to L

but not equal to Lr c (2) SL may be equal to L c , but

not equal to L s , (3) SL may be equal to both L and

L c  or (4) SL may not be equal to either L s or L.

In case (I) ( SL - L , SL # Lc ) the collection of

correctly specified data abstractions are all correctly

implemented, but some data abstractions that are correctly

implemented are not correctly specified: the quotient

algebra concalg contains more distinct values than the

quotient algebra specalg . If agreement was intended and
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the specification is not in error, two remedies are

available: (1) the collection of representation mappings

used may be restricted to those that map onto specaig or

an algebra contained in Ls . or (2) the implementation may

be changed to make fewer distinctions between values.

If the implementation is correct, but the specification

is wrong, then a different set of axioms is needed.

Removing axioms will (in general) increase the size of L

but may not produce the desired specalg .Changing

variables to constants and increasing the lengths of words

have a similar effect.

In case (2) ( SL - L c SL 0 L )the collection of

correctly implemented data abstractions are all correctly

specified, but some data abstractions that are correctly

specified are not correctly implemented: the quotient

algebra specalg contains more distinct values than the

quotient algebra concalg . If agreement was intended, and

the specification is in error, then L smay be reduced in

size by adding axioms. Changing constants to variables and

shortening words in axioms will also reduce L * If the

implementation is wrong, L cmay be increased by various

means. Adding new fields to the records that implement

types, increasing the number of control paths in function

bodies and lengthening the expressions that appear in

function bodies are all modifications that potentiallv
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increase L
c

In case (3) ( SL - L - L ) the collections of

correctly specified and correctly implemented data

abstractions are identical: concalg and specalg are

isomorphic. If the specification is wrong, then so is the

implementation, and vice versa. If either one is known to

be correct, then so is the other.

In case (4) ( SL # L , SL # L ) some datas c

abstractions are correctly specified but not correctly

implemented, and some data abstractions are correctly

implemented but not correctly specified: neither concalg

nor specalg is in SL . If the desired collection of data

abstractions is contained in SL , then both L and Lc

may be reduced. If the desired collection is in L ors

Lc . but not the other, then the erroneous lattice must be

expanded. Otherwise, both lattices must be expanded.

Figure 6-1 shows the lattices L , L and SL for
5 C

the specification Natl2 (Figure 4-1) and the class Natl8

(Figure 5-1). It is an example of case (4) ( SL L5

SL L )
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Succ(Zero) -Zerol

S L

Succ(Zero) -Zero Succ3 (Zero) -Zero r

Suce (Zero) -Zero Succ (Zero) -Zero' Succ. (Zero) -zero

Sur c (Zero) Zer Isuce (Zero) Zero

Figure 6-1. The lattices L , Le and SL f or Nat
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If the data abstraction with six values in Nat was

intended, then both the specification and the class may be

changed. Adding the axiom:

Succ 6 (Zero) - Zero

shrinks L s  to SL . Changing the test

if Arg.Val - 17

to

if Arg.Val - 5

shrinks L to SL

Although the techniques for changing specifications and

classes discussed above may not always work to produce the

desired lattice, there is hope that some sequence of changes

will work.
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7. Table Specifications

Software maintenance is facilitated by localization:

the confinement of required changes to small syntactic

units. Changes to axiomatic specifications do not seem to

have this property. All the axioms in a specification need

to be considered together in making any change. We propose,

therefore, an alternate form of specification--table

specifications.

Table specifications are weaker than axiomatic

specifications in the sense that the set of all data

abstractions specifiable by tables is a subset of the set of

all data abstractions specifiable by axioms. Table

specifications have two properties that axiomatic

specifications do not have, however. First, changes to

table specifications are more clearly localized than changes

to axiomatic specifications. Second, there is a natural

correspondence between table specifications and

implementations of data abstractions that preserves the

localization property.

Since every data abstraction is uniquely determined by

a c ongruence on the constant word algebra of its signature,

a presentation of the congruence suffices to describe the

data abstraction. Furthermore, the division of types into
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congruence classes is often mirrored in implementations by

division of functions into control paths: each control path

of a function handles a subset of congruence classes.

A congruence may have an infinite number of congruence

classes. (An implementation almost always defines a finite

number of congruence classes, but this number is usually too

large to consider explicit enumeration of the classes.) On

the other hand, most data abstractions decompose into a very

small number of "patterns" of simple structures. That is,

each value of the data abstraction may be constructed from a

subset af the operations in the signature, and the other

operations may be defined in terms of this subset by a small

set of simple rules. It is this property that facilitates

"data type induction" [Guttag, Horowitz & Musser 78].

The rows of table specifications are the patterns of

congruence classes that suffice to define the congruence.

The columns are operations. The entries in a table provide

the simple rules that def ine the operations in terms of the

rows . When a cong ruence has a f inite num be r of c lasse s o f

some type the table for that type can be completely

elaborated, although it might be impractical to do so. In

this case there is a one-to-one correspondence between rows

and distinr t values of the type. When a congruence has an

infinite number of classes of some type, a small number of

rows (less than 10) is usually sufficient to describe the
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patterns of congruence classes. However, some perverse

types do not have any finite description of their congruence

classes.

I I I I I I I I*I I
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7.1 . T-Grammars

It will be convenient (for describing congruence-class

patterns) to use a new notation for words in the word

algebra of a signature. We will drop the use of parentheses

in words and use angle brackets, < and >, to delimit

subwords. This does not introduce any ambiguity, since the

leading symbol of each subword has a constant arity. Thus,

f(a, g(b, c)) becomes <f><a><g><b><c> . Where there is

no ambiguity we will drop the angle brackets, also. So,

<f><a><g><b><c> uecomes fagbc . When a symbol is

repeated an exponent will sometimes be used. For example,

f 3a is an abbreviation for fffa . This new notation

suggests two kinds of patterns.

I
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DEFINITION 7.1 - Let w be a word of type T in

the word algebra W v(S,F,V) containing variables

V1  , ... , Vn  of types T 1  , ... , T n  in S .

The set of all words of form w is the set of all

words in W (S,F,V) obtained by substituting
V

words of types T 1 , Tn  for variables

V1 , ... Vn  in w We denote this set by

form(w). The set form(R1 ,R 2 ) is equal to the

product set form(R1 ) x form(R 2 ) Note that

w C form(w) The set of all words of

rightform w , denoted by rform(w) , is the set

of all words in Wv(S,F,V) of the form Xw

where X is any string, including the null

string. ***

Figure 7-1 contains some examples of form(w) and

rform(w) , using the signature of Stack in Figure 4-2.

A useful property of the word algebra of any signature

is that it may be divided into a collection of languages,

generated by context-free grammars.

a IIII
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torm(<Sticc><N>) ,an infinite set, includes:

<Succ><Zero>

<Succ> 2<Zero>

<Succ>(Top>(S> ,etc.

rform(<Succ>(N>) , an infinite set, includes:

<Succ>(N>

<Succ N

<Succ> 3(N> ,etc.

form(<Push><Zero>(S>) , an infinite set, includes:

(Push><Zero><News tack>

(Pus h>(Ze ro>(Pap> (Pu sh> (N ><

<Push>(Zero>(S> , etc.

rform((Push><Zero><S>) , an infinite set, includes:

<Push><Zero><S>,

<Pop><Push>(Zero>(S>,

<Top> <Push>(<Ze ro><S> , etc.

Figure 7-1. Examples of f orm(w) and rform(w)
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DEFINITION 7.2 - Let T be a type in the

signature (S,F,V) of a data abstraction. The

T-grammar of (S,FV) is the 4-tuple (S,F,P,T)

where

(I) The set of nonterminals is S , the set of

type names.

(2) The set of terminals is F , the set of

operation names.

(3) The set of productions P is defined as

follows:

(a) For each operation

f : T 1 x ... x T n  - --> T , f 4E F ,

there is a production T ::- fTi...T n

(b) For each constant operation f: -- > T

f E F , there is a production

T :- f

(4) The start symbol is T , the type name. The

language generated by (S,F,P,T) is called

the T-language of (SF,V). ***

The form of the productions guarantees that every T-grammar

i*; rontext-free. The Nat-grammar of Stack (Figure 4-2) is

shown in Figure 7-2.
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Nat-grammar of Stack - (S,F,P,Nat)

S = Nat, Stack

F - Zero, Succ, Newstack, Push, Pop, Top

P - <Nat> :: <Zero>
<Nat> :: <Succ><Nat>
<Nat> :: <Top><Stack>
<Stack> ::= <Newstack>
<Stack> ::= <Push><Nat><Stack>
<Stack> : <Pop><Stack>

Figure 7-2. The Nat-grammar of Stack

4 I
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THEOREM 7.3 - Let L be the Ti-language for

each type Ti in signature (S,F,V) . The union

of the Li is isomorphic to Wc(S,F,V) *

PROOF -

SWc (S,F,V) T-language )

(Proof by induction on the length of words)

(Basis step) Let f be a word of type T in

Wc (S,F,V) . Because f is a constant, there is

a production T ::. f in the T-grammar of

(S,F,V) . So, f is an element of the

T-language.

(Induction step) Now, let f(w I  , ... Wn be a

word of type T of length k and w 1 ,..., Wn

be words (of length less than k ) of types

T I  , . Tn in Wc (S,F,V) . We assume, by

induction, that the words wI , ... w are in

the T,- , ... ,Tn-languages . There is a

production T :- fT -.. T n  in the T-grammar. So,

there is a word fw 1 ... wn  in the T-language.

( T-language C W (S,F,V) )

(Proof by induction on the length of words)

(Basis Step) Let f be a word in the T-language



78

of (S,F,V) . Since every production contains a

leading terminal symbol, there must be a

production T ::- f in the T-grammar of

(S,F,V) . But, that means that there must be an

operation f: --- > T in (S,F,V) . So, f is in

W (S,F,V)

(Induction Step) Now, let fwl...Wn be a word in

the T-language of length k , so w, ... , wn

are words of length less than k of types

T, T n We assume, for induction, that

w I , , n  are in W,(S,F,V) . There must be

a production T i:- fT . .. T n  in the T-grammar of

(S,F,V) , because there is a production for each

function in the signature. That means that there

is an operation f: T I x ... x T n --- > T in

(S,F,V) . So, fw .. wn is in W c(S,F,V) .

More useful for our purposes than context-free

languages are regular languages. They have a convenient

notation, regular expressions, that may be exploited in

constructing tables and in generating implementations.

Unfortunately, not every signature guarantees regularity of

T-languages. Two special cases guarantee regularity.

THEOREM 7.4 - All T-languages of a signature with

order <- I are regular. *
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PROOF - Each operation f of type T in the

signature is constant, f: --- > T , or has one

parameter f: T' --- > T . The productions in the

T-grammar, then, are of the form T ::- f or

T ::- fT' . So, each T-grammar is right-linear.

THEOREM 7.5 - If a hierarchical specification has

TOI-order I- I for each TOI , and each TOI

parameter is the rightmost parameter in its

parameter list, then the TOI-languages are

regular. ***

PROOF - Each production in the Ti-grammar is of

the form T i  ::- f or Ti ::- fT * .. TnTOI , where

T 1  , .. , T n  are old types. This grammar is

right-linear. ***

The Nat-grammar of Stack (Figure 7-2) is regular. The

Nat-grammar of Natplus (Figure 7-3) is not regular, because

the production

<Nat> ::- <Plus><Nat><Nat>

makes the Nat-order two.
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Nat-grammar of Natplus =(S,F)P,Nat)

S =Nat

F =Zero: ->Nat

Succ: Nat -- > Nat
Plus: Nat x Nat -- > Nat

P < Nat> :- (Zero>
<Nat> : :- Succ>(Nat>
<Nat> :: (Plus><Nat>(Nat>

Figure 7-). The Nat-grammar of Natplus
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7.2. Constructors

DEFINITION 7.6 - A set of constructors of type

T in a specification (S,F,V) is a subset

R - fR] , R , of WV(S,F,V) , such that

every constant of type T in WC(S,F,V) is equal

to some word in: form(R1 ) U form(R2 ) U

When form(Ri) f form(R.) is empty for all

i # j the set of constructors is called

disjoint. The singleton set V containing only

a variable with domain T is the least set of

constructors, called the trivial set of

constructors. A set of constructors of a product

of types T1 x T 2 is the product R1 x R 2 of

sets of constructors for the individual types R1

for T i . A set of constructors for the empty set

is the empty set. **

A type may have many different sets of constructors in

a specification. Figure 7-4 contains a specification of a

type with three different nontrivial sets of constructors.

As is evident from the example, no least nontrivial set of

constructors need exist. The greatest set of constructors

of T is the subset of all elements of type T in

W (S,F,J)v
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Types: T

Functions: f: ->T

g:-- T
h: - T

Axioms: f - g

Sets of constructors: f, g, h
f , h
g, h

Figure 7-4. A type with three nontrivial sets
of constructors
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Although some specifications are not regular, an

equivalent regular specification of the constructors can

often be found for such specifications. It is an open

question whether a regular set of constructors exists for

every data abstraction.

Ir
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7. 3. Tables

A disjoint set of constructors of a type may be used to

describe the congruence classes of that type. To complete

the description of the congruence each operation must be

defined in terms of the set of constructors. When the set

is finite a table may be constructed. r!
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DEFINITION 7.7 - A table specification is a

regular signature (S,F,V) and a finite set of

triples, called tables, one triple for each domain

arity in the signature. For each triple

T = (R,C,E)

(1) R -JRi is a nontrivial, finite disjoint

set of constructors of T , called rows.

(2) C - fil is the finite set of functions

of domain arity T , called columns.

(3) E is a function: R x C --- > R' , where R'

is the union over all rows in all tables of

the specification. E(r,c) , where r 6 R

and c F C , is called the (r,c)-entry of

the table. When the entry is the word cr

it is called trivial.

In addition, the following constraints must be

met:

(4) For each nonconstant row R = fw 1 . .. wn

where f: T1 x ... x T n --- > T is a function

in F , E(w1 . . .wn,f) - Ri .

(5) Each variable in an entry appears in that

entry's row name. ***

Figure 7-5 contains a table specification for Stark
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Types: Nat, Stack

Functions: Zero: -- > Nat

Succ: Nat -- > Nat
Newstack: -- > Stack
Pop: Stack -- > Stack
Top: Stack -- > Nat
Push: Nat x Stack -- > Stack

Variables: N: Nat, S: Stack

Nat flSuc c
<Zero> <Succ><Zero>

2
<Succ><N> <Succ> <N>

Stack Pop Top

<Newstack> <Newstack> <Zero>

<Push><N><S> <S> <N>

Nat x Stack Push

(<N>,<S>) <Push><N><S>

Zero Newstack

<Zero> <N ewstack>

Figure 7-5. A table specification of Stack
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There are four tables: Nat , Stack , Nat x Stack and

S. The Nat table has two rows, <Zero> and

<Succ><N> , and one column, Succ . The rows are disjoint,

because form(<Zero>) A form(<Succ><N>) - 0 . Both entries

in this table are trivial. The Stack table has two rows,

<Newstack> and <Push><N><S> , and two columns, Pop and

Top . None of the entries in this table are trivial. Note

that the variables N and S that appear in entries also

appear in those entries' row name, <Push><N><S>

(satisfying condition (5)). The Stack x Nat table has one

row, the trivial set of constructors, (<N>,<S>) , and one

column, Push . The entry in this table is trivial. The

last table contains two constant functions, Zero and

Newstack . Their entries are trivial.

A table specification defines a unique congruence on

the constant word algebra of its signature. Thus, it

defines a unique data abstraction. The rows of the tables

define the congruence classes. The columns and entries

define the functions.
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DEFINITION 7.8 - Let T be a table specification

with signature (S,F,V) . Let w be a word in

W (S,F,V) . The T-value of w , denoted by

eval(T,w) , or eval(w) when the T is obvious

from context, is defined recursively:

(1) If w is a variable, then eval(w) = w

(2) If w is a 0-ary function and appears as a

column in the constant table of T , then

eval(w) is the entry in that column. If it

is not in the table, then eval(w) is

undefined.

(3) Otherwise, w f(x I  , .. x n) . Let

Yi - eval(xi) i - 1 , ... , n If any

Yi is undefined, then eval(w) is

undefined. If f is not a column in a table

in T , eval(w) is undefined. Let

R (z, ... , Zn) be a row in a table in

T such that yi i form(zi) I

i - 1, ... , n. If no such row exists,

eval(w) is undefined. Otherwise,

eval(w) =

E(R,f) [y1  Yn / zi )... , n

where A[B ,... , B / C , , C is the

expression formed by substituting Bi for

every occurrence of C i  in A

.... ... ~~~ ~ ~ ~~i I..... i...
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i -, 1,... , n .* *

For example, using the table specification of Stack in

Figure 7-5,

eval(Succ(Top(Pop(Push(Zero,Newstack))))) - Succ(Zero)

The significance of the eval function is that it reduces

words to forms that appear in the table specification

entries.

DEFINITION 7.9 - A derivation'' is a derivation

(see chapter 4) with

(4'') If eval(w1 ) - eval(w 2 ) then w -w 2

is an equation

substituted for rule (4). The last equation in a

derivation'' is the equation derived''. *

DEFINITION 7.10 - Two elements, w1 and w2 , of

the constant word algebra of the signature of a

table are in the relation tableg if and only if

the equation w1  - w2 can be derived''.. We say

that w, and w2 are equal in tableq and write

w1 'T w2  *

LEMMA 7.11 - Tableq is a congruence on

W (S,F,V)

PROOF - This proof is identical to the proof that

speceq is a congruence (see chapter 4), since
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rule (4) for derivations is not used in that

proof. ***

DEFINITION 7.12 - The quotient algebra tablalg

of a table specification with signature (SF,V)

is defined by the congruence tableq

tablalg W c(SF,V)/tableq

We say that the table specification describes

tablalg .

A table specification describes a data abstraction. We need

to show that a table specification exists for many useful

data abstractions.

THEOREM 7.13 - There exists a table specification

T for the constant word algebra of any regular

signature (S,F,V) .

PROOF - Let the signature of T be (S,F,V)

(I) For each domain arity Ti construct a table:

(a) Let each constant function f: --- > T i

be a row.

(b) Let each function f: Ti --- > T be a

column.

(c) For each function

f: T 1x ... x T n --- > Ti add a row

fV1 . . . V n  where each V is a

•~
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variable with domain T

(d) Let E(Rf) u fR , for all entries in

T ,

(2) For each domain arity (T, , "'" ' Tn)

construct a table:

(a) Let the rows be the set R x ... x R

where Ri  is the set of rows in table

iiTi •>

(b) Let each function

f: T 1 x ... x Tn --- > Ti be a column.

(c) Let E(R,f) fR . for all entries in

(T1  ' ". Tn)

(3) For the empty domain arity C ) construct a

table:

(a) Let each function f: --- > T i be a

column.

(b) Let 0 be the only row.

(c) Let E(C,f) - f , for all entries in

( ) •* *

Figure 7-6 contains a table specification of the constant

word algebra of Stack
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Types: Nat, Stack

Functions: Zero: --> Nat
Suec: Nat -- > Nat V
Newstack: -- > Stack
Pop: Stack -- > Stack
Top: Stack -- > Nat
Push: Nat x Stack -- > Stack

Variables: N: Nat, S: Stack

Nat Succ

<Zero> <Succ><Zero>

<Succ><N> <Succ> 2<N>

<Top><S> <Succ><Top><S>

Stack Pop Top

<Newstack> <Pop><Newstack> <Top><Newstack>

<Pop><S> <Pop> 2 <S> <Top><Pop><S>

<Push><N><S> <Pop><Push><N><S> <Top><Push><N><S>

Nat x Stack Push

(<N>,<S>) <Push><N><S>

O Zero Newatack

I <Zero> <Newstack>

Figure 7-6. The table specification of Wc  of Stack

Ic
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Comparing the table specifications of Stack in Figures 7-5

and 7-6, we see that there are no rows of the form

<Pop><S> or <Top><S> in Figure 7-5, but there are in

Figure 7-6. The entries in Figure 7-6 are all trivial, but

the entries in the Pop and Top columns of Figure 7-5 are

not trivial. The Stack data abstraction described in

Figure 7-5 is smaller (it has fewer values) than the data

abstraction described in Figure 7-6.

In the next chapter we will show how to add an axiom to

a table. This will demonstrate a technique for changing

specifications in addition to constructing tables for

axiomatic specifications.
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8. Transformations of Tables

r

The set of all rows Ri in a table specification

with signature (S,FV) has four useful properties:

(TI) It is finite.

(T2) For all rows Ri, Rj

form(Ri) (4 form(R ) - 0 . (Disjoint)

(T3) For every word w 4 Wc(SF,V) there exists

a row R and a word w' , such that

w =T w' and w' 4 form(R) . (Complete)

(T4) For each row R eval(R) - R . (Minimal)

The purpose of this chapter is to introduce transformations

on table specifications that preserve these four properties.

In the course of transforming table specifications it

will frequently be convenient to change the domains of

variables that appear in tables. For example, restricting

the domain of V reduces the size of form(V) , as well as

reducing the size of form(fV) , etc. It will always be

possible to express the domain of a variable as a sum of

rows. That is, for each variable V of type T

dom(V) - form(R1 ) U ... U form(Rn) , where

IR 1 , ... ,n is a subset of the set of rows in the

table T

~'s.. * -*
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Taking advantage of this fact, we will explicitly

denote the domains of variables by extra columns in tables.

Each variable will have a column in its type table with an

entry of its name in every row of its domain. These extra j
columns will be written immediately after the row-name

column. Figure 8-1 shows the Stack table specification of

Figure 7-5, augmented with variable columns for variables

N and S
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Types: Nat, Stack

Functions: Zero: ->Nat

Succ: Nat ->Nat

Nevstack: ->Stack

Pop: Stack ->Stack

Top: Stack ->Nat

Push: Nat x Stack ->Stack

Variables: N: Nat, S: Stack

Nat jN Suc

<Zero> N <Succ><Zero>

(Succ>(N> N (Succ> <N>

Stack IS Pop fTop
<Newstack> I < :;:sack> <Zero>

<Pus><N>S> S <S><N>

Nat x-Stack- Push

((N>,(S>) (Push><N><S>

0_1_Zro jNews tack
( Z ero>r <Newstack>

Figure 8-1. Table specification of Stack with
variable columns
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We will observe the following rules for variables:

(VI) Any constant word fj..Of g may be written

in the form fi.,*f nV , where dom(V)

The reverse change (writing a word that

contains a variable as a constant) may also

be employed where appropriate.

(V2) If two variables in a table have the same

domain they may be consolidated: one variable

may be substituted for the other, leaving

only one of the two variables in the table.

MV) Variables that do not appear in any row names

may be eliminated.

(V4) Whenever a row is removed from a table, that

row is removed from all variable domains that

included it. If a variable has a null domain

as a result of such a change, all rows that

include that variable must be removed from

the table.

(V5) When a row is added to a table no variable

domains change, unless explicitly noted.

The first three rules are for convenience. Rule (V1) makes

it possible to treat all row names as if they contained a

variable. Rules (V2) and MV) cut down on the growth of new

variables. Rules (V4) and (V5) are needed to explain the

effects of transformations on the domains of variables.
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8.1. Benign Transformations

DEFINITION 8.1 - A change to a table

specification that preserves properties (TI),

(T2), (T3) and (T4) is called a benign

transformation. ~F

All of the transformations defined in this section are

benign.

There is a table for each domain arity in a

specification, not each type. If a type appears in a

signature, but does not appear in the domain or range of any

function, it will have no table in a table specification.

We call these types null types. Addition and deletion of

null types are benign transformations.

Addition of a function to a table specification

requires defining the function over all rows in its domain

arity table. This may be done by defining new rows In the

result table: the result of applying the function f to

(WI w is the word fw I .w n Since all the

added entries are unique and distinct from all other

entries, the transformation is benign. If a nontrivial

function is desired axioms must be added by another

transformation, described in Section 8.3.
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ALGORITHM F Add a Function

Input: T : a table specification with signature

(S,F,V)

f: T x ... x Tn - Tm  a function

distinct from all those in F

where none of T 1 , ... , Tn are

the TOI

Output: T a new table specification

Local Variables: R : a row name

k : an index to table names, as in Tk

(F) Add new variables V1 , ... , Vn  of types

T 1  T ... , T n  to tables T1  , ... , T n  in

T . Let dom(Vi) be Ti , i-i, ... n

(F2) Add a new variable Wi  to each table T. in

T . Let dom(Wi) be empty.

(F3) Let R be the row name fV ... Vn . Let k

be m

(F4) Add R to table Tk with trivial entries.

(F5) Extend dom(Wk) to include R . If there is

a Vk , extend it to include R , if

possible.

(F6) For each function

f Tax ... x T x ... T -- > T in F,
i a k b c

let R be the row name fiWa.. .Wk...Wb . If

there is no such row in table Tc . let k
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be c and r~peat steps (F4) through (F6).

(F7) Add the column f with trivial entries to

Tm

(F8) Eliminate any variables Wi with empty

domains.

(F9) Add f to (S,F,V) .

Adding a function f: T I x ... x Ta -- > T m  to a table

specification implies adding new words (some of which are of

the form fV .. V ) to the word algebra of its signature.

Given variables V 1  ... Vn with domains

T . T the row fV .. ,V is added to table Tm

This can cause a "ripple" effect in new word generation.

Functions that include Tm in their domain arity produce

new words, which produce new words, and so on. To close

this process a new variable, Wi , is introduced for each

type Ti . Wi  catches" all the new words introduced into

type Ti . This limits the ripple effect to one pass

through each domain in each domain arity, at worst. If no

new words are added to a type Ti , the variable W. may be

eliminated. An example of adding a function to a table

specification is shown in Figure 8-2.



101

Original table specification:
Types: T 1
Functions: Z: -- > T

S: T1 -- TT
Variables: N, VI, W I :

Function to be added: P: T T

(FI): T I N V 1 S

( FS1 s ,

(F3): R - PV I  , k - III

Figure 8-2 (Part I of 3). Example of function addition

| h
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(F4.1) T__ N V wI S

z N V1  SZ

SN N V 2N

PvI SPV 1

(F5.1)- T N v1  w1 s

Z N V 1  SZ

SN N V1  S 2 N

PV 1  V1  W1  SPV 1

(F6.1): R- SWI , k- 1

Figure 8-2 (Part 2 of 3). Example of function addition
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(F4.2): T N V W S

Z N V1 Sz

2SN N V S2N

pV 1  V 1  W 1  SPY 1

SW1  S 2 W

(F5.2): T N V1  WI S

Z N V1  sz

1 2SN N V SN

Pv1  V W1 SPV

SW1  V2  W1  S W

(F6.2): R - SW I , but SW I  is already a row

Z N VI  SZ PZ

SN N V1  S2N PSN

PV1  VI W I  SPV I  p2v 1

SWI  VI  W1  S 2 W1  PSW I

Figure 8-2 (Part 3 of 3). Example of function addition
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Removal of a iunction is not a problem unless the

function is used to form a set of constructors. If it is,I

then some new set of constructors would need to be chosen,

and the table specification changed to reflect this, before

the function could be removed.

ALGORITHM D Delete a Function

Input: T a table specification with signature

(S,F,V)

f: T1 x ... x T -- Tm a function in

F not found in any row name of

T

Output: T : a new table specification

(DI) Remove the column with name f from table

(TI . T) in T

(D2) Remove the function f from (S,FV).

Since the function to be removed does not appear in any row

name, its absence will not affect the set of constructors of

any type. Also, it cannot appear in any entry if it does

not appear in any row name. Removal is as simple as

deleting one column from one table. Figure 8-3 shows the

result of removing the function Pop from the table

specification of Stack in Figure 8-1.
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Types: Nat, Stack

Functions: Zero: -- > Nat
Suce: Nat -- > Nat
Newstack: -- > Stack

Top: Stack -- > Nat
Push: Nat x Stack -- > Stac'

Variables: N: Nat, S: Stack

Nat IN Suc

<Zero> N} <Succ><Zero>

<Succ><N> <Succ> 2<N>

Stack S Top

<Newstack> ( <Zero>

<Push><N><S> <N>

Nat x Stack Push(<N>,<S>) <Push><N><S>

0 Zero Newstack

<Zero> <Newstack>

Figure 8-3. The result of deleting Pop from Figure 8-1.
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Two more benign transformations that will be useful

later are expansion and contraction of rows. These

transformations have no semantic effect: the output table

specification describes the same data abstraction as the

input table specification.

ALGORITHM X Expand a Row

Input: T a table in a table specification

R - f '.f V : a row in T

Output: T : a new table

(Xl) For each row Ri in dom(V)

(a) Add a row fl...fnRi to T.

(b) Add entries to fill the row:

E(fl...fnRi , f) -

E(fi...f nV , f) (Ri/V]

for each column f in T .

(c) Extend the domains of all variables

defined over R to include Ri

(X2) Remove the row R from T *
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This algorithm takes advantage of an equation that holds for

all tables:

form(fV o) - form(fglV I) U ... U form(fgnVn)

where

dom(V0 ) - form(g1 VI ) U ... U form(gnVn)

Since domains of variables are always defined in terms of

rows, such an equation exists for every row V0  The

algorithm substitutes the rows on the right side of the

equation for the row on the left side. The entries are

formed by substitution of the appropriate giVi for V0

An example of expanding a row is shown in Figure 8-4.

- .h i--
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Input:

T- T N v W S P

Z N V1  SZ PZ

22

PV1  V1  WI SPV1  P 2V1

R SW~w PW

(X1.1) R, PV

T N V1 1 W S P

Z N V1  SZ PZ

SN N vS N PSN

PV1  V Wi SPV P

SW 1  V 1  W1  S W PSW1

Figure 8-4 (Part 1 of 2). Example of row expansion
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(X1.2) R1  SW1

TN V 1  H S P

Z N V1  SZ P Z

S N N vS 2N PSN

SW VI W S 2 W PSW

SPV1  V WI S 2pv PSPV1

S H1  v WI S W PS 2W

(X2): TN- V1  W S

Z N V1  SZ PZ

22

PV1  V W1  SPy1  P 2V1

22

Figure 8-4 (Part 2 of 2). Example of row expansion



110

Expanding a row is useful when one of the new rows can

be eliminated by another transformation. Such

transformations will be described in Section 8.3.

The opposite of expansion of a row is contraction of

rows. Contraction is possible whenever two rows have

similar entries due to a common prefix. That is, a more

"general" row could be defined, such that each of the two

original rows is an "instance" of the general row. For

example, rows that arise from expansion of a row R may be

contracted into the row R , since the expanded rows are all

instances of R

Let R fl...fngl...g3 V1  and R- fl...fnhl...hkV2

be two rows to be contracted into R - fl...f nV Then

three properties must hold:

(P1) form(R) - form(R 1 ) U form(R 2 )

(P2) For all columns f in T there exist words

e(R,f) in W v(S,F,V) , such that:

(a) E(RIf)

e(R,f) [g1 ''gV /V]

(b) E(R 2 ,f) .

e(R,f)(h I ... hkV 2 /V]

(P3) There is no variable whose domain includes

R 1 but not R2 , or vice versa.

Property (PI) guarantees that R may be substituted for the
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pair of rows R1  and R2 without changing the constructor

set of the table. Property (P2) guarantees that the

evaluation of any word will be the same before and after the

contraction. Property (P3) prevents the side effect of

increasing the size of the constructor set by increasing the r
domains of variables.

ALGORITHM C Contract Rows

Input: T a table in a table specification

with signature (S,F,V)

R- f1 ... f ng1 ... gmV1

R2 fl...fnhl...hkV 2  : rows in T

n>I0

R - fl...fnV a new row to replace R1

and R such that properties
2'

(PI), (P2) and (P3) hold.

Output: T a new table

(Cl) Add the row R to T , with entries

E(R,f) - e(R,f) for each column f in T

(C2) Extend the domains of variables defined over

R1 and R2 to include R

(C3) Remove rows R and R2  from T *

An example of contraction of rows is shown in Figure 8-5.

Note that the resulting table is the same as the input table

of Figure 8-4.

iI
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Input:
T T N V WI s P

1
z N V 1  SZ PZ *
SN N V S2N PSN1

Pv 1  V1 W I  SPV 1  p2V

SPV v W s2pv PSPV
1 1 1 11

S2W V W S3W PS2W
1 1 11

R SPVI (f1 I S g1  P M V1 - V1 )

R2 S 2 W1 (f1 S ,h I  S V2 " W1 )

R - SWI  (f1 . s , V = W1 )

Note: (1) form(SW1 ) - form(SPV 1 ) U form(S 2 W 1)

(2a) E(SPV1,S)-S
2W1 [PV,/W 1 ], E(SPV1 ,P)-PSWI[PV /WI]

(2b ES 2W vs)s 2 I[SW 1/Wl] E(S 2W wlP)-PSW 1[SWII/W 1 1

(CI): N v1  W1  S P

Z N V SZ PZ

SN N v S2N PSN

PV1  V1  WI SPVI 2

SPV1  V1  W S 2pv PSPV I

2 3 2
SW SW PSW

Figure 8-5 (Part I of 2). Example of row contraction
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(C2): T I N v WI s P

Z N V SZ PZ
I2

SN N V S2N PSN

PV1  V W1  SPV 1  2
P1 1 I P 1 P 1

SPV 1  V 1  W 1  S 2 PV1  PSPV1

2 3 2S2W V W S3W PS2W

SW V W S2W PSW1 1 1 1

(C3): T_1  N v 1  W s P

Z N V1  SZ PZ

SN N V1  2N PSN1

2PV I  V W1  SPV I p 2 V 1

SW1  V1  W1  S2W PSW1

Figure 8-5 (Part 2 of 2). Example of row contracrion
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8.2. Rewrite Sets

By Lemma 7.11 a table specification defines a

congruence on the constant word algebra of its signature.

More than that, it defines a set of rewrite rules. Given

two different words wI and w2 , such that

eval(w1 ) - eval(w 2) and w1 - eval(- I) , the rewrite rule

w 2 --> w1  may be derived. By changing table

specifications we change the derived rewrite rules. Looking

at it from the other direction, we need to know which

rewrite rules we want before we can change the table

specification. To do this, a total order on each type is

defined.

DEFINITION 8.2 - Let (S,F,V) be a regular

signature. Let F be partitioned into the set of

constant functions [kiS and nonconstant

functions " We define a total order < on

each type in W (S,FV) by first defining <*
V

(1) 1 < k -= i  <* kj

(3) i < j -- > i <* V

(4) k <* V for all ki Vj

(5) V <* f for all Vi fij f

Let < be lexicographic ordering of strings,

using <* to compare individual symbols. *
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Note that it will never be necessary to compare function

symbols of different types. Figure 8-6 shows the standard

order on Stack (Figure 8-1), given the naming convention

shown. Our algorithms will be defined so that all tables

will follow the standard order in all implied rewrite rules.

DEFINITION 8.3 - Let T be a table

specification. The rewrite set of T is the set

of all pairs (fw w n' R) , usually written in

the form fw l .. .w -- > R , one pair for each

nontrivial entry R = E(wl...wn f .

For example, the rewrite set of Stack (Figure 8-1) is

f <Pop><Newstack> -- > <Newstack> ,

<Pop><Push><N><S> -- > <S> , <Top><Newstack> -- > <Zero>

<Top><Push><N><S> -- > <N> " The function eval uses the

entries in a table specification to rewrite any word to a

canonical term. By virtue of the table properties (TI)

through (T4) the rewriting is always convergent

[Musser 79b]. That is, a unique term is always produced

after a finite number of rewriting steps.

i
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Naming Convention:

Nat: k - <Zero>

f - <Succ>

f <Top>

V - <N>1

Stack: k - <Newstack>1

f - <Push>

f2 - <Pop>

V1 - <S>

Standard Order:

Nat: <Zero> < <N> < <Succ> < <Top>

Stack: <Newstack> < <S> < <Push> < <Pop>

Examples:

<Succ> 2 <N> < <Top><Newstack>

<Push><Zero><Pop><Push><N><S> <

<Pop> <News tack>

Figure 8-6. The standard order on Stack
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Some changes to a table specification cause the rewrite

set of some table(s) to become incomplete: they are no

longer convergent. An algorithm for completing an

incomplete set of rewrite rules is described in

[Knuth & Bendix 70]. Unfortunately, this algorithm does not

always terminate. We give here a modified version of part

of the Knuth-Bendix algortihm. Our algorithm always

terminates, but it may have to be used an infinite number of

times to complete a rewrite set. A useful sub-algorithm is

defined first.



ALGORITHM G Generate Rewrite Rules

Input: T : a table specification with signature

(S,F,V)

(x 1 , x 2 ) a pair of words in Wv(S,F,V)

output: P - [(Li, R1 )I a set of pairs of words

in W (S,F,V) to be used inv

rewriting: Li -- > R

Local Variables: 0 - J(wil Wi : a set of pairs

of words in W v(S,F,V) defined in

T

(GI) Let 0 and P be empty sets.

(G2) If both x and x2 are defined in T let

o be the set [(x 1 , x2)" Otherwise,

substitute all rows in the domains of

variables in xI and x2  for those

variables, generating a set

0 - [(w i , wiI

(G3) For each pair (w I , w2) in 0

(a) Compute w1' = eval(w 1 )

w 2 '  eval(w 2 ) .

(b) If w I  _ w2 ' add w 2' -- > w' to P.

If w 2  w' add wl' -- > w 2 ' to P

(Otherwise, w I ' - w2 ' , a trivial

rewrite rule.) ***
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This algorithm consists of two major steps: (G2) and (G3).

The first step generates a set of pairs of words. Each

member of each pair is a word defined in the table

specification. The second step orders the pairs by the

standard order.

The first step is needed whenever a word in the input

pair is in "too general" form for the table. That is, the

input word is of the form fl...fnVI , but there are rows in

the table specification of the form fl...fng 1 ... gMV 2 . In

this case the variable VI must be expanded in exactly the

same way that a row is expanded. Each row in the domain of

VI is substituted for V1 , generating a set 0 of pairs.
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ALGORITHM K : Complete a Rewrite Set

Input: T a table specification with signature

(S,F,V)

0 [ (Li, R1)l a set of pairs of

words in W v(S,F,V) , the original

rewrite set

Output: N - Li -- > Ri : a new rewrite set,

disjoint from 0

Local Variables: PF -- > R a set of

rewrite rules generated from

Algorithm G

B - (Li -> R i  L2 -> Ri2) a
C 1  11  Li2  12

set of pairs of rewrite rules

C - w3 : a set of words in Wv(S,F,V)

representing overlapping of rewrite

rules

(KI) Let N be an empty set.

(K2) Using all pairs (L, R) in 0 generate a

set of rewrite rules P , using Algorithm G.

(K3) Add to N each rewrite rule in P that is

not in 0

(K4) Form the set B - ( Li -- > Ri,
I i

Li -- > R )i of all pairs of rewrite
2 2

rules in 0 U N

(K5) If B is empty quit.
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(K6) Select an element ( -- > R1 ,

L 2 -- > R 2 ) of B , and remove it from B .

W) Form the set C- f...fngl...gmh ... h 021

(where m >- 1, n >- 0, k >- 0) of all

"overlaps" of L 1 and L 2 , where

L 1  " fl...fngl...gmVl

L g2' 'gmh'... hkV 2 , and

dom(V 1 ) 2 form(hl...hkV2 ) . C may be

empty.

(K8) For each element of C generate a rewrite

set P , using Algorithm G with w 1 - R and

w f f...f R Add to N each rule in2 n 2

P that is not in 0 .

(K9) Repeat steps (K5) through (K9). ***

This algorithm finds implied rewrite rules, given a rewrite

set and a table. Several invocations of the algorithm may

be needed to complete a rewrite set. Algorithm G is used to

generate a set of rewrite rules from input pairs of words.

This is necessary for those cases where the table

specification has a rewrite set that is different from the

one input to the algorithm. Such cases arise in Algorithm

A, defined in the next section.

To find implied rewrite rules, each pair of rewrite

rules is checked for "overlap." If a word can be rewritten

in two different ways (an overlap), a new rewrite rule is
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generated. Overlapping in regular signatures can only occur

in one form: fghV -- > ahV and fghV -- > fbV , where

fgV -- > aV and ghV -- > bV are rewrite rules, and f

g and h are subwords of any finite length.

An example of completing a rewrite set is shown in

Figure 8-7. In the example Algorithm K is invoked twice.

An example that does not converge is shown in Figure 8-8.

In this example each invocation of Algorithm K generates a

new rewrite rule that requires another invocation of

Algorithm K.

40.
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Types: T1
Functions: Z: -- > T

S: T I -- T

T T S

z Sz

sz s2zSz S2 z

3 4t
S z S z
4

s z z
0 S s 2 , Z >, <SIZ, Z>j

First invocation of Algorithm K:

(KI) N -

(K2.1) Invoke Algorithm G with x1 , S2 Z x - z

(GI) 0 - 0

(G2) 0 - <S 2Z, Z>

(G3) (a) wI' - S2 Z , w2' - Z

(b) P - is 2 z -- > z!

P . -~z > z

(K2.2) Invoke Algorithm G with x1 - Sz x 2  Z

._ S 2 z __> z ,Sz __> zI

Figure 8-7 (Part I of 3). Example of rewrite set completion
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(K3) N -

(K4) B - j< S2Z -- > Z , S2 Z -- > z >

<S 2 Z -- > Z , s5z -- > Z >

5 2

(K6.1) Select < SZ -- > Z S Z -- > z >

(K7.1) C - fS2z ( S2z overlaps with itself trivially.)

(K8. ) P - S 2 Z -- > Z N 2

(K6.2) Select < S2Z --> Z , Sz -- > Z >

(K7.2) C - 0 (No overlaps)

(K8.2) P - 0 , N - 0

Figure 8-7 (Part 2 of 3). Example of rewrite set completion
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(K6.3) Select < S5 Z -- > Z , S2Z -- > Z >

(K7.3) C - SZ 3  (f 1f 2f s3 gg2 - v2 -Z)

12 gS 2  '1

(K8.3) P- s 3 z -- > z , N- S3z -- > z

5 5(K6.4) Select < S Z -- > Z , S5Z -- > Z >

B=0

(K7.4) C - iS5ZI (Trivial overlap)

(K8.4) P - {S5z -- > Z , N fs3Z--> Z

(K5.5) B - - -> quit

Second invocation of Algorithm K:

0 o [S2Z- z , SIZ -- > Z , S3Z-->Z

Result: N - SZ -- > z

0 U N is a complete rewrite set

Figure 8-7 (Part 3 of 3). Example of rewrite set completion

'",.. J .'.-,,: -,, "- ' <
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Types: D
Functions: h: -- > D

f: D -- > D
g: D -- > D

Variables: V: D

T D V f g

h V fh gh

fV V f2V gfV .

gV V fgV g2V

0Ih

it;h,!

0 - (cfgfv, gfV>l

Note: Standard order must be: h < f < g

Otherwise, gfV --> fgfV -- > f 2gfV -- >

First invocation of Algorithm K:

2fgfgfV --> gfgfV -- > g fV and

fgfgfV -- > fg2 fV

So, N- I<fg 2 fV, g2 fV>-

Second invocation:

fg 2 fgfV -- > g 2 fgfV -- > g 3 fV and

2 f3fg fgfV -- > fg fV

So, N - t<fg 3 fV, g3 fV>3

Figure 8-8. Example of non-convergent rewrite set
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8.3. Adding Axioms

Adding an axiom to an axiomatic specification usually

changes the lattice of specified data abstractions. When it

does, it shrinks the lattice by eliminating some data

abstractions. The corresponding change to a table

specification is a change in the rows, the constructors of a

type. Given an axiom, the appropriate row changes can

sometimes be made so that tablalg =specalg .This

cannot be done when the use of Algorithm K fails to

converge.

Two algorithms are defined for adding axioms to table

specifications. The first algorithm changes the constructor

set of a type by removing a row and all words that contain

that row as a rightmost subword. It is invoked by the

second algorithm, the algorithm to add an axiom.
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ALGORITHM R : Remove a Row

Input: T : a table in a table specification

T#

R fl ... f nV : a row in T

Output: T : a new table

Local Variables: k : an integer

W : a variable in the signature of T'

of type T

R' - gl...gmfl..fkX : a row in T

(R1) Let k be n

(R2) If k - 0 quit.

(R3) Let W be a new variable with

dom(W) form(f k+l..f nV) .

(R4) For each row R' - g 1 ... gmf .. fkX in T

m >- 0 , where dom(X) 2 dom(W) :

(a) Replace X with a new variable X'

dom(X') = dom(X) - dom(W) .

(b) If dom(X') is empty remove R' from

T .

(R5) Subtract I from k , and repeat steps (R2)

through R5). ***

Given a word fl...fnVn , Algorithm R eliminates words in

rform(fl ... f V ) , rform(fl...f*n1.. , and

rform(f 1 V I ) , in that order (where
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dom(Vi) aform(fi+l...fnVn) ) It does this by changing

the domains of variables in row names. Each word to be

eliminated is removed from the domains of variables. For

example, if fV1  is to be eliminated, and there is a row
gfV I . where dom(V I) = form(gfV I ) U form(hV) then a

variable change is made:

gfVI -- > gfJ 3 dom(V3 ) = form(hV 2 )

If a variable's domain becomes empty as the result of such a

change the row containing that variable is removed from the

table.
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ALGORITHM A Add an Axiom

Input: T a table specification with signature

(S,F,V)

<wl, w2> : a pair of words in

W (S,F,V) , the axiom to be added

'A
Output: T : a new table specification

Local Variables: P Li -- > Ril : a set of

rewrite rules generated from the

axiom

0 t i -- > R the original rewrite

set generated from T extended by

calls to Algorithm K

L -- > R : a particular pair from P

T' : a table in T

(Al) Let 0 be the rewrite set of T

(A2) Using Algorithm G, generate a set P of

rewrite rules from the axiom <wl, w 2 >

(A3) If P is empty quit.

(A4) Remove a rule L -- > R from P . Add the

selected rule to 0 .

(A5) Expand rows (Algorithm X) until L is a row

in some table T'

(A6) Remove L from T' (Algorithm R).

(A7) Substitute R for L in all entries of T

(A8) Using Algorithm K, complete the rewrite set

D ._ __4
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0 with the table specification T *Add

the new set, N , of rewrite rules to P and

t o 0

(A9) Repeat steps (A3) through (A9).

Each axiom to be added to a table is transformed into a set

of rewrite rules, using Algorithm G. Each rewrite rule is

processed, yielding a new rewrite set. Algorithm K is then

used to complete the rewrite set. Because new rewrite rules

may need to be added, an iterative process is necessary. In

those cases where no convergent rewrite rule set can be

formed, the algorithm does not terminate.

For each rewrite rule to be processed the table

specification is changed by eliminating all occurrences of

the left side of the rewrite rule. Algorithm R is used to

eliminate occurrences in row names. Substitution of the

right side of the rewrite rule is used for entries. An

example of axiom addition is shown in Figure 8-9.
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Types: T1

Functions: Z: -- > T

P: T -- > TII

S: T -- > T

Variables: V : Ti, i1,2,...

T- T I V P S

z V1  PZ SZ

PV1  V I  p v1 SPV 1

SV 1  V1  PSV 1  S 2V1

0hZ Note: This table will not change.

< w, w 2 > =< S4z , z >

(AI) 0 - 0 (Every rewrite rule in T is trivial.)

(A2) Use Algorithm G to generate rewrite rules:

(A4) Select S4 Z -- > Z from P

Figure 8-9 (Part 1 of 9). Example of axiom addition
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(A5) Use Algorithm X to expand rows until S 4Z is a row.
Because Algorithm X is not as "smart" as it could
be the result is a larger table than necessary.
This will be corrected at the end by contraction.
Altogether, Algorithm X is invoked three times.

T V P S

z V PZ SZ

PV 1  VI p 2 V SPV

Sz V PSZ S2Z

SP VI PSPV 1  S PV I

3 3 4S Z V PS Z S Z

3 3 4S PV V1  PS PV1 S PVI

S PV V1  PS PV1  S PV1

S6 V1  V1  PS 6 PV S 7PV1

S Z V PS 7Z S8Z

S 6PY 1 VI PS 6PV 1 S 7PV1

I P I PS 7IVI S8P

S V I V I PS 8 V1  S 9V 1

Figure 8-9 (Part 2 of 9). Example of axiom addition
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4

(A6) Remove S Z from T : Use Algorithm R

(RI) k - 4

(R3.1) dom(W) - form(Z)
4h

(R4.1.1) R' - S 4Z , X = Z

(a) Remove Z from dom(Z)

(b) Remove S 4Z from table

V 1  P S

z V1  PZ Sz

2~ ~SPV 1  V1  PV SPV

32

S3Z V1  PS3Z S4Z

S PVI VI PSPV 1  S PV1

S~pv 1  V 1  pS~pV 1  sp1
S8z V pS8z sgz

S PV1 I PPVI SP1

I VI S I S I
S Z V I PS Z S Z

7 P 7 8

S 6PV1  V PS 6PV1  S 7PV1

8 P 8 9

S7V V PS7V S8V
S8VI I S I S9VI

Figure 8-9 (Part 3 of 9). Example of axiom addition
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(R4.1.2) Remove S Z ° ( = S )

(R4.1.3) Remove S6 Z ( gg 2 - S )

(R4.1.4) Remove S Z ( glg 2g 3 = S3 )

T V P S

z V PZ SZ

PV 1  V 1  p 2V 1  SPV 1

SZ V 1  PSZ S 2Z

SPV1 V PSPV 12PV
2 2 2

sZ V1  PS2Z s3z

2 2 3S PV VI PS PV S PV

3 3 4S3Z V PS Z S Z

3 3 4
S PV V1  PS PV1  S PV1

4 4 5
SPV1  V1  PS PV1  S PV1

5 V1  PS5 pV1  S6pv

s PV1  V1  PSp6 V S7 PV1

S 7PV1  V 1  PS 7PV1  S 8 PV

s 8V V 1 PS V 9V 11 1 1

Figure 8-9 (Part 4 of 9). Example of axiom addition
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(R4.1.5) R' = S 8 V 1 81 92 93 94  S4  X1 ( l~~4), X=Vi

(a) Replace V1 with V2 :

dom(V 2 ) dom(V1 ) - form(Z)

T V1  V2  P S

z V PZ Sz

PV I  V2 p2V SPV

SZ VI V2  PSZS2
SP 1  V1  V2  PSP 1  S2p 1

S2Z VI V P2 pSZ S3Z

Sp V 1 V2  pV 1  S pv1

S Z V I  V2  PS Z S Z2 2S pv I  V I  V 2  PS pv1 Spv I

3 3 4
S pv1  V1  V2  PS PV SPv1

S~py V1  V2  pS S
s Pv v S5 Pv1  s Pv1

v 1 V 2  S S

S1 pv 1 V1  V2  pS 7 pV 1  S8 p 1

1 V V2  pS8V2  S

(R5. 1) k - 3

(R3.2) dom(W) - form(SZ)

Figure 8-9 (Part 5 of 9). Example of axiom addition
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(R4. 2) R' S V2  (g1 ."'g4  4 flf 2f3  S )

(a) Replace V2  with V 3: remove form(SZ)

T V I  V3  P S

z V PZ Sz
PV V 1  V p2V 1  SPV 1 :1 i.4I 1 ~3 1y 1
Sz V PSZ S 2Z

I2
SPV 1  V 1  V3  PSPV S PV12 V 1  V 3  1S2 S3

s 2z V I V 3  PS 2z s3

S2 pV1  V1  V3  PS2 pV1  s3pv I 1

s 3 z V1  V 3  PS 3 Z S4Z
S3PV V V3 PS3 PV S4PV

S4 PV V P V 5P
5I 1  V3  PS S pV 1

s PV V1  V3  PS PV S PV
S~vI V 1 V 3  pS I~ S Iv

S 5 P8V3 V1  V3  pS85 V3  S9PV

1 1
6 6 7S PV.'1  V1I V 3  PS PV.'1  S PV 1
7 7 8

PV V V3  PS PV1  s PV1

s 8 V3  VI V 3  PS 8 V 3 s 9 V3

(R5.2) k - 2

(R3.3) dom(W) - form(S 2Z)

(R4.3) Replace V3 with V4  remove form(S 2Z)

(R5.3) k - I

(R3.4) dom(W) - form(S 3Z)

Figure 8-9 (Part 6 of 9). Example of axiom addition
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(R4.4) Replace V4  with V5  remove form(S 3Z)

T V1  V5  P S

Z V PZ sz

PV 1  V1 V 5  p2V SPV

sz V PSZ s "

sp VI v5  PsPv 1  s PV1
s2 z v Ps2 z s 3 z

S 2 PV I  V I  V 5  PS 2PV I  S 3 PVI

s 3 z V 1  PS 3 z s 4 Z

S3PVI V I  V35 PS3PVI S4PV 1
S4 PVI V 1  V5  PS 4PVI s PV

s 5PV I  VI V 5  PsS5PV I  S 6PV
S6 PV V V PS 6PV S7 PV1 1 5 1 1

s PV I V1I V5 P PV I S PV11~vI V V5  pSV S pv1

s 8V 5 V 1 V 5 PS 8sg5  v1  V5  PS8V 5  S9V5

(R5.4) k - 0

(R2.5) Quit Algorithm R

Figure 8-9 (Part 7 of 9). Example of axiom addition
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(A7) Substitute Z for S4Z in E( S3 Z S )

T V V P S

zV 1  P z S z"
PV1 V1 5SPVI

Sz V PSZ S2Z
I

SPV 1 VI V 5  PSPV 1  S2pv

S2z v Ps2z S3Z

S2Pv I  VI V5  PS2pV 1  S3pv

S 3Z v 1PS 3 z Z

1I

S3pvI VI V s5 PS53pV sSpv

S 4pv I  V I  V 5  PS 4Pv I  S 5pvI

S5pv I 1 V I  V 5  PS5pV1 S 6pvI

S V1  V5  PS pV 1  S7pv 1

S Z V 1  V 5  PS 8 v

(A8) Use Algorithm K with 0 0 i S4Z -- ZI

No new rewrite rules generated.

(A3) Quit Algorithm A

Figure 8-9 (Part 8 of 9). Example of axiom addition

II
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Using Algorithm C, rows SPV 1 , 2pv, S 3pv I

S7pv 1  and S8 v5  can be contracted into SV 5

T V1  V 5  P S

z v1  Pz sz

PV I 1 V 5  p2V1 SPV

2
Sz v PSZ S Z

S 2 Z VI PS 2 Z S 3 Z

S3Z V1  PS3Z Z

SV 5  V V 5  PSV 5  S2V

Figure 8-9 (Part 9 of 9). Example of axiom addition
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9. Implementations and Tables

Table specifications correspond nicely with

implementations in two ways: (1) The partitioning of a type

into table rows is often mirrored by the partitioning of a

function's input into disjoint cases, treated by disjoint

control paths. (2) The existence of a table specification

ensures the existence of an implementation--the

implementation of tablalg

.. . . , , i I II II
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9.1. Program Partitions

From the control structure statements of a function in

a class, a set of control paths may be determined.

DEFINITION 9.1 - Let f: T x ... x T --- > T be

I n

a function in a class. Let t1 , ... , tn be

constants of types T 1 , ... , T n

Path(f,(t 1  , ... , tn)) is the sequence of

non-control statements executed by f on input

(t1  , .. tn)

Because we have assumed totality of all class functions,

path(f,(t 1  , ... tn)) is always a finite sequence of

statements. Because no side effects are allowed, execution

of control statements does not change the values of any

variables.

DEFINITION 9.2 - Let f: T x ... x T ---> T be

a function in a class. Let ti . tn be

constants of types T1  , ... , Tn

Func(f,(t I  , .. tn)) is the constant function

defined by execution of the sequence of statements

path(f,(t
1  , ... , tn )) • **'

An implementation of func(f,(t I .... tn)) is easily

constructed by generating assignments of the values of

t! . t n  to the parameters of f and generating the

4
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sequence of statements in P . The values of

t I , ... , tn must be expressed in terms of the primitive

types of the language. For example

func(Push,(Zero,Newstack)) (see Figure 5-2) is the

sequence

Result.Vals(O) : 0

Result.Tops : 0 + 1

Such functions are not very interesting by themselves, but

combine with each other in a nice way.
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DEFINITION 9.3 - Let f: T I x ... x Tn --- > T

and g: T,' x ... x Tn' --- > T be functions with

disjoint domain arities:
T i A Tit i - I n.Tif Ti' i , ... ,n

The sum of f and g is a function with meaning:

If + g]: (T 1 x...x Tn) + (T 1  x...x T T,
n n

where T + T' denotes the disjoint union of types

T and T' , such that

f + g](t 1 ,...,t) = f(t I ,... tn) when

t i  C- T i  , i = I , . . ,n

[f + g](t 1 , ... , tn ) n g(tJ , ... t) when

i i- .t i Cc T i t , I n

We denote the meaning of the sum of all functions

fi: Ti x ... x Ti --- > T , i r I , an index
I n

set , by

This notation allows us to express a useful lemma.

LEMMA 9.4 - Let f: T I x ... x T --- > T be a

function in a class. The sum of the control paths

of f uniquely defines f

143
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PROOF -The set of functions in the sum is the set

of all constant functions generated by considering

every constant word in form(fV1 . . Vn) where

Vi has domain T i . The set of constants is

disjoint, so the sum is defined. The set of

constants covers all values of f , so the

equality holds. *

r o.
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9.2. Table Partitions

Very few useful functions are written as giant

case-statements, with each case a constant function. So,

very few useful functions are syntactically divided by the

set of all func( )functions. On the other hand, very few

functions are written with straight-line code, with no

control statements. A good programmer strikes a balance

between these extremes. Table specifications help define

such a balance.

We extend the definition of the path function to sets

of input values.

DEFINITION 9.5 - Let f: T1 x ... x T n--- > T be

a function in a class. Let R L- i be a set

of constants in T 1 x ... x Tn Path(f,R) is

the set of sequences fpath(f,Rl A

We intend to use rows of tables for the sets R *Since the

rows of a table are disjoint, it is natural to expect the

paths of rows to be disjoint.
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DEFINITION 9.6 - Let f be a function in a class

of domain arity T . Let RI and R2 be subsets

of domain T . I and R2 are f-independent if

and only if

path(f,R1 ) A path(f,R 2) - 0

R and R are independent if and only if they

are f-independent for all functions f of domain

arity T in the class. *

The rows <Newstack> and <Push><N><S> in the table

specification of Stack (see Figure 7-5) are independent in

the implementation in Figure 5-2. The sets I<Zero>l and

t<Succ><Zero>3 are not independent in the implementation

in Figure 5-1.

The degree to which the control structure of a function

f in a class corresponds to the row structure of the

corresponding table in a table specification is measured by

the f-independence of the rows in the table.
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9.3. Relative Correctness

The division of a function by rows, or sums of rows,

leads to a division of its correctness. Since a function is

determined by the sum of its components, its correctness is

similarly divisible.

DEFINITION 9.7 - let f: T x ... x T --- > T beI n

a class function. Let

F: T1 x ... x T --- > T' be a function in a

data abstraction. Correct(f,F) - True if

there exists an epimorphism

h: (TI x ... x Tn) --- > (T' x xT

h: T --- > T' , such that

h(f(t I  . t n) F(h(t I  . t n)) •

This definition merely adds notation to the notion of

correctness defined in chapter 5.
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THEOREM 9.8 - Let f be a class function of domain

arity T . Let F be a function in a data

abstraction of domain arity T' . Let R, and

R2  be f-independent sets of domain T

Correctness of f with respect to F over the

disjoint union of R1  and R2 may be factored

into its correctness over each:

correct(func(f,R1 ) +

func(f,R 2) ,F)

if and only if

correct(func(f,RI),F) AND

correct(func(f,R 2 ),F) .

PROOF - Since R I and R 2 are f-independent, we

may construct functions f and f2 . such that

[f] If1  + f 21

and

f(R 1 ) - fl(R 1 ) , f(R 2 ) - f2 (R2 )

Suppose f1  and f2 are both correct.

Then, there exist epimorphisms h I , h2 , such

that

hi(fi(Ri)) - F(hi(Ri)) i - 1,2

But, that means there exists an epimorphism

h - h I + h.

So f is corrert.
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Conversely, let f be correct. Then there

exists an epimorphism h , such that

h(f(t)) - F(h(t)) , for all t C T

But, the division of T into f-independent sets

R I and R2 yields

h(f(t 1 )) I F(h(t1 )) , for all t I - R,

h(f(t 2 )) - F(h(t 2 )) , for all t2 G .

But,

f(t )  f f (ti) , i 1 2

So,

h(fi(ti)) F(h(ti)) , i-1,2.

Therefore, f1  and f2 are correct. ***

The significance of the theorem is that identification of

f-independent sets allows decomposition of correctness

proofs by control paths. When the sets are rows, this means

that a function can be proved correct, row-by-row.
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10. Summary

Correctness is a relationship between a real object, a

specification or a class, and an abstract object, an

intended data abstraction. The correctness of two real

objects, a specification and a class, with respect to the

same abstract object yields a relationship between the two

real objects. We have shown that this relationship may be

described by a lattice.

Each element of the lattice has a structure--congruence

classes. These are used in table specifications. Each row

in a table describes a collection, or pattern of congruence

classes. The partitioning of congruences into patterns of

congruence classes is often mirrored by the partitioning of

implementations into control paths. This is useful in

sof tware maintenance.

Axiomatic specifications are useful in design of data

abstractions, but they are awkward to use in software

maintenance for two reasons: (1) The effect of a change is

determined by the total context of the specification. That

is, all axioms must be considered in making any change. (2)

The syntax of a change to a specification provides little

assistance in making a corresponding change to an

implementation.
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The first problem is familiar to programmers who write

highly-dependent code: each statement in a program affects

and is affected by practically every other statement. A

one-line change to such a program may have quite

unpredictable results. Structured programming is an attempt

to avoid such problems by separation of concerns. Table

specifications are an example of "structured specification,"

where the rows of the tables are the concerns separated.

The second problem with axiomatic specifications is

caused by the first. Since most programmers (we hope) use

structured programming techniques in implementing data

abstractions, changes may be localized. Changes to

specifications should also be localized, and in the same

way.

AlL
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