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INTRODUCTION 

In processing blank forgings for gun tube manufacturing, excessive 

permanent deformations are often developed.  Straightening Is then required 

to bring the tube component to within some manufacturing-specified tolerance. 

In some cases the maximum permanent deflection Is quite close to the end of 

the tube which gives rise to an unsymmetrlcal distance-deflection curve 

similar to that shown in Figure 1(a).  One might logically wonder if such an 

unsymmetrlcal deformation could be removed by inverting the tube and placing 

the straightening load at the point of maximum deflection as shown in Fig- 

ure 1(b).  The load would then be increased until elastic-plastic deformation 

was sufficiently large that when the load was removed the initial permanent 

deformation would be essentially eliminated.  The objective of the present 

study was to gain a better appreciation of load-deflection relationships, 

which would hopefully give a better understanding of the straightening 

process for the case of three point, unsymmetrlcal bending. 

4^^ 

Fig, Ua) 

Fig. 100 

Figure 1.  Sketch of unsymmetrically deformed beam. 



APPROACH 

This report is meant to be one in a series dealing with studies concern- 

ing aspects of elastic-plastic bending both from theoretical and experimental 

view points.  The work presented here is theoretical and based on the method 

of virtual work. Without going into all of the mathematical details, which 

will be given elsewhere,  it will suffice to say that a solution is obtained 

by integrating the expression 

/ 
J^J^  where M = bending moment due to real load and 

El 
m = bending moment due to dummy load 

over the length of the beam which is subdivided into four major sections as 

shown in Figure 2.  First the integration is carried out from 0 to a, then 

from a to X, which cover the elastic region on the left-hand side, then X to 

A, and A to y which cover the two elastic-plastic regions and finally from 

U to L in the elastic region on the right-hand side of the beam.  These 

deflection components give the deflection in the region 0 to X (from the left 

support to the beginning of the elastic-plastic region relative to length). 

Next the so-called dummy load is placed between X and A.  An integration is 

made from o to X in the elastic region, X to a, a to A, and A to y, all 

three integrals being in the two elastic-plastic regions and finally y to L 

through the second elastic region.  The dummy load is then placed in the 

region A to y and the same type of integrations are made to determine the 

iR.  V. Milligan, "Load-Deflection Relationships for Simply Supported Beams 
Loaded Into the Plastic Region," to be published. 
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Figure 2. Sketch of beam showing elastic and elastic/plastic regions, 



deflections in this region.  Finally, the dummy load is positioned between 

y and L to obtain the deflections in the elastic region on the right-hand 

side.  In this way a continuous spectrum of deflections across the entire 

length of the beam is obtained.  The value of M and m assume two different 

expressions depending on whether the section in question is to the right or 

left of the loads.  The values X and y change as the load increases beyond the 

point of yielding up to the ultimate load,  a is the distance from the left 

support to the point where the dummy load is applied - which is the point 

where the deflection is desired. Although the integrals are standard ones 

so as to be easily evaluated, there are a large number of t'hem. 

For determining the residual or permanent deflections, the beam is 

assumed to unload linearly, hence by ratio, the elastic deflection to be 

subtracted from the elastic-plastic deflection can be easily calculated by 

el  eJ- 

where P  is the elastic-plastic load, P , is the elastic load or at most 

the yield load, and 5 , is the elastic deflection corresponding to the 

particular load.  The elastic deflections were calculated by using the double 

integration method. Of course, they can also be calculated by the method of 

Virtual Work, but the computer program is much longer. 



RESULTS AND DISCUSSION 

As an example, Illustrating the results of this study, a problem for a 

segment of a 105 mm cannon tube was solved.  The length was 216 inches and 

the load located 36 inches from the left end as shown in Figure 3(a).  Fig- 

ure 3(b) shows the cross section containing the Neutral axis and the plane 

of loading.  The outside diameter was assumed constant.  The material was 

assumed to be elastic-perfectly plastic with a stress-strain behavior as 

shown in Figure 3(c),  The yield strength was taken as 160 ksi and modulus 

equal to 30 x 106 psi. 

Figure 4 shows the elastic-plastic deflections vs length of beam for six 

different loads.  The smallest corresponds to the yield load and the largest 

is 99.5 percent of the ultimate.  Beyond this point the computer solution 

breaks down.  One of the things to be noted is that the point of maximum 

deflection is located a considerable distance to the right of the load. 

Figure 5 is a plot of load vs distance to the point of maximum deflection. 

This figure shows that the maximum deflection shifts quite rapidly as the 

load approaches the ultimate but is still approximately 46 inches to the 

right of the load for P  equal to 99.5 percent of the ultimate load.  The 

points of maximum deflection were obtained two different ways.  First the 

increment of the do-loop was decreased and the point of maximum deflection 

2 
simply read from the computer printout. A second method using splines was 

2R. V. Milligan, "Computer Analysis of Mechanical Test Data Using Cubic 
Splines," Transactions ISA, Vol. 17, No. 2, 1978, pp. 21-30. 
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used.  In this case the deflection vs distance data is fed into a spline 

routine where the first and second derivatives are calculated.  From a Cal- 

Comp plot of the slope vs distance, a horizontal line is drawn from the point 

of zero slope on the vertical axis to intercept the curve.  Then a line is 

projected downward to obtain the desired point on the horizontal axis. This 

is illustrated in Figure 6.  Finally to complete this section a load vs 

maximum deflection curve is shown in Figure 7. 

Figure 8 shows an exaggerated vertical scale plot of the permanent 

deflection vs distance from the left support.  The interesting thing to note 

here is that these points of maximum deflection have shifted a considerable 

distance toward the load as compared with the case for the elastic-plastic 

deflections.  Finally, Figure 9 shows a plot similar to Figure 5 except the 

abscissa represents the distance to the point of maximum permanent deflection. 

As before we can see that the curve flattens out as Pep approaches Puit. 

However, the distance to the point of maximum deflection is still nine 

inches to the right of the load application point. 

Figure 10 is a plot of maximum permanent strain vs depth of the elastic- 

plastic interface.  Curve A has the expanded scale on the right, while 

curve B has the scale on the left. One of the interesting points which 

should be pointed out is that the maximum strains occur on the outside fiber 

and at the point of loading. Therefore, the maximum permanent strains and 

the maximum permanent deflections do not occur at the same place along the 

length of the tube. 
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These results are for the case of a constant outside diameter along the 

length of the tube.  A tapered tube having a variable outside diameter would 

interject additional complications for determining these points of maximum 

deflection. 

CONCLUSIONS 

1. As in the elastic case, the point of maximum elastic-plastic 

deflection is located far to the right of the point of load application for 

a tube that is unsymmetrically loaded into the plastic region. 

2. The points of maximum deflection for both the elastic-plastic and 

permanent cases shift rapidly towards the point of loading as the load 

approaches the ultimate. 

3. For a load up to 99.5 percent of the ultimate load, the point of 

maximum permanent deformation is still a considerable distance to the right 

of the load point. 

4. The point of maximum permanent deflection, along the length of the 

beam, does not coincide with the point where the maximum permanent strains 

occur. 

IS 
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