
AD-AOB9 873 DELAWARE UNIV NEWARK APPLIED MATHEMATICS INST F/6 20/1o- ITERATIVE METHODS FOR SOLVING THE EXTERIOR OIRICHLET PROBLEM FO--ETC(UI
MAY 80 0 COLTON, R KRESS AFOSR-76-2679

UNCLASSIFIED TR-72A AFOSR-TR-0-0637 NL

EmhhhmmhINmhhhhIhhhz



I go-Q6~LEVELU'

jt*

1;i,  40,

APPLI ED

AK MATHEMATICS INSTITUTE

0 University of Delaware
Newark, Delaware

fez Public

Glt

, i 
One

80 9 22



Iterative Methods for Solving the!
Exterior Dirichiet Problem

for the Helmholtz Equation with
Applications to the Inverse
Scattering Problem for Low
Frequency Acoustic Waves

by/

iDavid-Colton J,
Department of -Matfrematical Sciences_-

University of Delaware -

Newark, Delaware 19711 i'

and

Rainer Kress J
Lehrstuhle fur Numerische und

Angewandte Mathematik
Universit~t G6ttingen
Gbttingen, West Germany47

Technical Report No. 72A

&LIf kOMOR min1C OF SeIl"?!pit, TtZARCH (APSC)
VOTICX OF TRLBSMIflAL To DDC
This technical report haSi been reviewed and is
6pprowed for public release JAW AnI 19%-12 (7b).

aDistribution is unlimited.
C, 0 %ULOSI

4, technical Information Off icer

*The research of the first author was supported in part by NSF
Grant MSC 78-OZ -,2 and AFOSR f 76-2879.,v

e ~7



I introduction S g

In a previous paper ([E]) one of us presented an iterative

method for solving the exterior Dirichlet problem for the Helm-

holtz equation defined in the plane and used this result to pro-

vide a constructive approach for solving the low frequency in-

verse scattering problem for a cylinder. These results were

based on the use of conformal mapping and the fact that the

integral of the normal derivative of the total field over the bound-

ary of the obstacle vanishes, neither of which is valid in the

three dimensional case., 1-n this-paper, we shall show how the

analysis -of [5;can ie modified in order to extend these results

to the case of the exterior Dirichlet problem for the Helmholtz

'3equation in . Our results are based on chosing an appropriate

fundamental solution such that the integral equation associated

with the exterior Dirichlet problem can be solved by iteration

for sufficiently small values of the wave number.V Previous results

in this direction have been given by Kleinman ([9]) and Abner

([]). However, in Kleinman's approach it was necessary to first

construct the Green's function for Laplace's equation defined

in the exterior of the scattering obstacle D, whereas inSi~ Ahner's approach it was necessary to compute the first eigen-

function of the integral equation associated with this problem.

Our method avoids both of these computations and instead provides

an integral equation formulation of the exterior Dirichlet problem

for the Helmholtz equation with the kernel of the integral equa-

tion being independent of D and exDressable in closed form. Such

a formulation is particularly suitable for obtaining analytic
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approximation for low frequency scattering problems (c.f. [2)).

However, rather than presenting an application to the direct

scattering problem, we shall show how our iterative procedure

can be used to obtain information on the inverse scattering problem

for low frequency acoustic waves. The importance of our itera-

tive procedure in this case is that it allows us to rigorously

establish the limiting behaviour of the total field as the wave

number k tends to zero. This step is in general nontrivial

since in the classical formulation of the scattering problem as

an integral equation the resolvant operator has a pole at k = 0

and we are thus faced with a singular perturbation problem (c.f.

[12] and the references contained therein. In this regard we

note that in many cases it is not in fact the limiting behaviour

of the total field that is of interest, but instead the coef-

ficients of certain higher order terms - c.f. [4], [5). Having

established the limiting static problem associated with the in-

verse scattering problem, we proceed to follow a standard approach

(c.f. [16)) in order to obtain information on the shape of the

scattering obstacle from a knowledge of the low frequency behaviour

of the far field pattern. Our contribution here is to note that

although in general the far field pattern is only known approxi-

mately, the determination of the shape of the obstacle D is

stabilized by the fact that the solution of the static potential pro-

blem is known to have values lying between zero and one, i.e. the

*potential function to be determined lies in a compact set of har-

monic functions (c.f. [8), [15)). Here it is necessary to assume

that we know "a priori" the radius of a ball containing D in

I fV
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its interior, with optimal results holding i'f we know the radius

of the smallest such ball containing D.

I. The Exterior Dirichlet Problem for the Helmholtz Equation

We begin by first considering the exterior Dirichlet problem

for Laplace's equation, i.e. to find u f C2 2U3\f) Co( 3\D)

such that

u(x) ui (x) + uS(x) in R3\D (2.1a)

A3 u 0 in C\ (2.1b)

u(x) = 0 for x e aD (2.1c)

rli uS(x) 0 (2.1d)

where D is a bounded simply connected domain in 13  containing

the origin with C2 boundary 3D, ui  is a given solution of

Laplace's equation defined in all of R , and r xi. We note
that under these conditions a solution u to (2.1) exists and

u C 2(13\5) M CI(1 3\D) (c.f. [7]). Now let B be a ball of radius

R contained in D with center at the origin and let

G(xy) 1 ___R I= . x (2.2)

be the Green's function for Laplace's equation in the exterior of

B. Then from Green's formula we have

1 { G(x,y) au6-us a Gxy sy

aD

(2.3)
-1/2 uS(x), x t 3D

{-u 8(x),x C £ \
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where v denotes the unit outward normal to 3D. In addition,

since ui  is a solution of Laplace's equation in all of A3

and G(x,y) 0 for y e aB, we have

1 G(x'Y) au u a G(x,y) ds~y)

aD

+ 1 u a G(x,y) ds(y) (2.4)

aB

1/2 ui(x), x c aD

|0 , x C 13\A5

where again v denotes the unit outward normal. Adding (2.3)

and (2.4) together and using the fact that u(x) 0 for x e aD

now gives
i 1 3 ~, u u

-u C x) + -£ - ) 3U dsCy) + U a u1 7 G(xy) ds(y)

aD 31

U(x) , x C 3\f (2.5)

|~-I/2u(x), x c aD

From the jump discontinuity properties of the single layer potential

we now have the following integral equation for au/av evaluated
1 on 3D:

a u + a au

3D (2.6)

2 aua 1fu- G~x,y) ds(y) ;x c aD
3U =7r I *3B

,r a, c, Cl - 4 :

S) fr- L%% .

4I1 V * " I "
'
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Note that in the special case where u (x) 1 we have

C xy) ds(y) 2 (2.7)
aB

for x e 3D and hence in this case the right hand side of (2.6)
becomes -2 R a 1

We shall now show that the integral equation (2.5) can be

solved by successive approximations. (The solution of (2.1)

can then be obtained by substituting the solution off (2.6) into

(2.5), i.e. we have a constructive method for solving (2.1).)

To this end let C(OD) denote the Banach space of continuous

complex valued functions defined on aD and equipped with the

maximum norm and define the compact integral operator

K C(MD) - C(D) by

(Kv)(x) - f C.G(x,y) v(y) ds(y) . (2.8)

3D

If we let f(x) be the right hand side of (2.6) then (2.6) can

be written as

v - Kv a f (2.9)

where v z au/av. :n order to show that (2.9) can be solved by

iteration we shall show that the spectrum of K is contained in

(-1,1). We first note that since K is compact all spectral

values of K different from zero are eigenvalues. Let X be an

eigenvalue of K corresponding to the eigenfunction *,
KO X )4, and define
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G) I (x,y).q(Y) ds(y) ; x _ 3 (2.10)

aD

Then u is harmonic in ,3 \f and D\S, and from the jump

discontinuity properties of single layer potentials we have

U+ = U on 9D (2.la)

v - 4K " (2.11b)

(-X o)€ on aD

where + denote the limits from outside and inside D

respectively. Hence

1 au4.
(l-5) - + (l+X) w : 0 (2.12)

and since u(x) 0 for x e aB we have from (2.11a), (2.12)

and Green's theorem that

3 u rs-UX -d0 = (l-X) + T ds + (l+X) U ds - (l+X) J ds

aD aD aB

(X-l) j Ifgrad u12 dx + (X+l) Igrad u12 dx (.3

a R3\D D\B

Now define

INu) fJgrad u1 2d
ff, i I

* D/B (2.14)

(u) f Igrad ul2dx

1 3 \D
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Then i42 -(u) + 1(u) > 0 we have

1(u) - 1(u)

1(u) + 1(u)

which implies that in this case all the eigenvalues of K are real

and contained in (-,) :f 1(u) + 1(u) = 0 then u is constant

In R \5, and D\3 and since from (2.10) we have that u' van~shes

at infinity and on aB we can conclude that u(x) =0 for

x is1 \B. Hence, from (2.11b) we have

-a_ u 0 ,(2.2.6)

i..e. X is not an eigenvalue, contrary to assumption. Hence,

the spectrum of K is contained in (-1,1) and hence (2.9) can

be solved by successive approxi4mations.

Before turning our attention to the exterior Dirichiet pro-

blem for the HeLmholtz equation we briefly consider what effect

a change of the radius R of -the ball B has on the spectrali radius of the operator K. In particular, consider the special
case when D is a ball of radius one and u is defined by (2.10).I Then u has an expansion in spherical harmonics of the form

(a_ n 0 n-l, m(o im
E a p+b P P (C ). ; R<p<l

nz:0 mm:-nn
(2.17)

u~x =- n-l imo.
- I I c~ p P~(Cos e)e ; ,c

where (,,) are spherical coordinates, P mdenotes an as-
11

sociated Legendre polynomial, and the a, b n, c = are con-

stants. Then (2.lla), (2.12) and the fact that u(x) z0 for

-q-



x aB implies that

a +b -c :0nm nm run

R 2n+la + b 0 (2.18)nm n~m

(l+X)n anm (l+X)(n+l) bnm (1-X)(n+l)c 0

and this system has a nonzrivial solution if and only if the

determinant of the coefficients vanishes, i.e.

S-(2n+2)R
2n+l

X = An  2n+l (2.19)

From (2.19) we see that in this special case the eigenvalues

decrease as R increases, i.e. by using overrelaxation we can make

the spectral radius smaller. This in turn implies that the rate

of convergence of the successive approximations to the solution

of the integral equation is improved. By using the methods intro-

duced in [13) it can in fact be shown that this behaviour is true

not only for a sphere but also for an arbitrary bounded simply

connected domain ([ll], [19]). Hence for computational purpose

it is desirable to pick R as large as possible and then use over-

relaxation to improve the rate of convergence (c.f. [13)).

We now consider the exterior Dirichlet problem for the

2 3-3Helmholtz equation, i.e. to find u C C (U \D) n CoC(3\D) such

that



u(X) =ui (x) + u5 (x) In P\D (2.20a)

3.A~u. + k u =0 in I ,f(2.20b)

u(x) =0 for x e )D (2.20c)

lim r au' -iku-sJ 0 (2.20d)

where the "incoming wave" ul is a solution off (2.20b) in all of

13~, the wave number k is positive, and the radiation condition

(2.20d) for the "scattered wave" us is assumed to hold- un-

formly in all directions. The domain D is assumed to satisfy

the same conditions as in problem (2.1) and under these condi-

tions we can again conclude that a solution to (2.20) exists and

u f C (I \r) Ci C(I \D) C[181). Now define

G- R e ke e y * x (2.21)
Gk IXT F :7Y IxKi

where R is again the radius of the ball 3 contained in the

interior of D. Then with respect to y the function G. is
X

afundamental solution to the Helmholtz equation satisfying the

radiation condition (2.20d). Hence, proceeding in the same

j manner as we did for Laplace's equation, we can use Green's for-

mula to derive the following integral equation for the unknown

normal derivative of the solution to (2.20) evaluated on aD:

au + 1 f Gkxy ds(y) =2au3

7v(x) 7Tr J 3vx) vy
aD

(2.22)

+ -u 2.G.,Y (x,y)' ds(y); xc D'1ra av(x)y)*7 Gk~y a v ay Gk jD

-. A



Note that the additional term on the right hand side of (2.22)

(as compared with the right hand side of (2.26)) occurs since

we no longer have the fact that Gk(xy) = 0 for y e 3B. This

minor inconvenience could have been avoided by chosing _k to

be the Green's function for the Helmholtz equation in the exterior

Ow Binstead of as in (2.21), but in this case the kernel of

the integral equation (2.22) could no longer be expressed in a

simple closed form such as (2.21).

We shall now show that the integral equation (2.22) can be

solved by iteration for k sufficiently small. As in the case

of Laplace's equation this provides a constructive method for sol-

ving the boundary value problem (2.20). Let C(OD) again denote

the Banach space of continuous complex valued functions defined

on DD equipped with the maximum norm and define the compact

integral operator K k C(D) C(OD) by

( kv)(x) - 2T v Gk(x,y) v(y) ds(y) (2.23)
DD

Let f(x) denote the right hand side of (2.22). Then the integral

equation (2.22) can be written in the form
b I'

v - Kkv f (2.24)

" au

where v - . Then since

IGk(x,y) - G(x,y)= 0(k) (2.25)

it follows that

1!_



I!Kk-KIl 0(k) (2.26)

where " denotes -he maximum operator norm. Hence, since the

spectral radius of K is less than one, we can follow the argu-

ment of Theorem 2.2 of [10] to conclude that there exists a

positive constant k such that the spectral radius of Kk

is less than one for 0 < k < k0. Thus for such values of k we

ca. solve (2.22) by the method of successive approximations.

I1. Remarks on the Inverse Scattering Problem

We now consider the application of the results of Section

Two to the inverse scattering problem associated with (2.20). In

particular, if we apply Green's formula to the solution u of (2.20)

and the fundamental solution for the Helmholtz equation, we have

that for x 1 13\5 (c.f. [6)

i a u e iklx-y I

uS (x) a vy) lx- ds(y)
3D

(3.1)

= __ F(e,;k) + 0 [ 1

where (r,8,0) are spherical coordinates and

F~e,e;k) = - j 2 ds(y); n = . (3.2)

3D

The inverse scattering problem we wish to consider is to determine

the shape of 3D from a knowledge of the far field pattern F

for all angles e,0 and low values of the wave number k.

.. am::]
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We first want to reduce the solution of the inverse scattering

problem to a generalized moment problem for the conductor potential
i~kx 1

of the domain D. To this end suppose u(x) = e where

= (lx 2, 3). Then from the results of Section Two, we have that

the integral equation (2.24) can be solved by successive approxi-

mations, i.e.

8u = Kn~ - R  1
n= L v + 0(k) (3.2)

From (2.26) and [17J, p. 164, we now have from (3.2) that

u Z n -2R + + 0(k)
a V U0 -0 L dv 'n 0 Flo(3.3)

- u, + 0(k)

vx)

for x 6 aD. From the results of Section Two we can now identify

u0 (x) for x C 13 \D as the solution of the Dirichlet problem

u0 (x) 1 -u(x) in C3\D (3.4a)

A2u0 = 0 in (3.4b)

* u0 (x) = 0 for x ~ D (3.4c)

*1 lim u 0 (x) = 0 (3.4d)

4 x

i.e. u 0  is the conductor potential of the surface aD (c.f.

* [3)). Now expand F in a series of spherical harmonics

F(e,O;k) Z an(k)Pm(cos e) e (3.5)
ran

n=O m=-n

I,
.%

• ' , V.
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and write n and y in spherical coordinates as

n (sin 9 cos 6, sin e sin 0, cos 6)" (3.8)
y z(sin 6' cos €', sin e' sin 0', cos e').

Then

n y z [cos e cos 8' + sin 6 sin e' cos ((3-'))
~ (3.7)

= P Cos y

and since (Elul)

-ik p cos - ( -i )n  (2n + l ) J (kQ ) P (Co s y ) (3 .S a )
n O n+ 

2n n): i0€ ')(.b

P (Cos Y) Z Cn-m)! m (cos ) pm (cos e') (3.8b)
n -n (n+m): "n n

where J, denotes Bessel's function and Pn Legendre's poly-

nomial we Rave from (3.2), (3.5), (3.8) and the orthogonality of

the associated Legendre polynomials that

a W 2Tir F(S,;k) pm (cos 8) sin e e"imo d8don = (n
0 0LU 2wr ffkpo m(O e-sin

-~~o - f e eim ded ds(y)
aD 0 (3.9)

-. i ; P 1(cos '.

Since

1-k) (kp - + 0(kp)n+ 2  (3.10)
- Jn+1/2 2n+1/2 r(n+3/2)

a'
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we have from (3.3), (3.9) and (3.10) that for n > 0,

-n < mn < n nmo- k u-m E
a (k) - 0  [npm(cos e')e -im ds(y) + 0(kn+l)

2 rn+l (n+3/2) D (31n
3D (3.11)

Hence, if we define

= [n+l r(n+3/2) in a(kli -- 32nm k-0 (.2
L kn

then the inverse scattering problem has been reduced to determining

D from the "moment" problem

= _f 3u0  rn pm (cos e') e-im$fl ds(y) (3.13)
nm J 3,vTy) ' -n3D m

aD)

Note that although the pnm are explicitly computable from the far

field pattern F, small errors in measuring the coefficients

anMCk) will result in large errors in the numbers wnm  if n

I iis large. Hence, in practice we must assume that only a finite

, [:number of the Unm are known. Observe also that the "moment"

4 problem (3.13) is nonlinear since both u0  and the region of

Iintegration depend on D.$ ' We shall now show that (3.13) allows us to compute u0

outside of a ball B containing D in its interior. Since only

a finite number of the U are known we can only compute u0

approximately, and in order to obtain error estimates it is neces-

sary to know the radius of B "a priori". Having obtained an

Ube



aoProximation to u0, we note that the level curve u0(x) 0

's aD and hence the level curves u0 (x) X Y, < Y <,

aoproxima-:e aD as Y tends to zero. Thus, if we determine

the curves u 0 (x)= y, 0 < Y <., for x c 13\9 and ex-trapoate

as y tends to zero we can determine an approximation to aD.

Obviously the success of this procedure is optimized if 3 is

in -act the smallest ball containing D in its interior. To

determine an approximation zc u 0(x) for x 1 13 A we use the

fact that u x)= 0 for x c aD and hence from (3.13) and

Green's formula we have

f { [o Pm (cos e') e'imol

aB
(3.14)

a 0 [o n ) e" mo} ds.

Since on 32, u0  has an expansion of the form

a n -n-i m (o )• m

u0 (x) Z1 + E r bn Pn (cos 9) e 3.15)
- nz0 mc-m

we have from (3.14), (3.15) and the orthogonality of the associated

Legendre polynomials thatI
i b, (n+m)!Unm = 4 bnm (n-m) (3.16)

Suppose now that we know the v (and hence from (3.16) the br)

for -n < m < n, 0 < n < N. We then want to know how accurately

• N N n n-i
u (x) Z 1 + Z Z bnm Pnm (Cos 8) (3.17)

0 nzO m:-n n

**1.

AMA
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approximates u (x) for x S 13 B. To this end we note that from

(3.15) we have that for n > 1 and D > a z radius of 3,

41 (n+m)! b on-'
2n+7. (n-m)! nm

u0 (x) Pm (cos e) e sin 6 d6dO (3.18)

0 0

and since from the maximum principle 0 < u0 (x) < 1 for

x C 13 \D, we have from (3.18) that

i& b nm an l  < 21r IFPm(cos e)f sin e d81(n~)n-I- 0o

1/2 1/2

2<2 sin 9 d9 Lr tp(cos a)12 sin 8
-2 f Or (3.19)

22n+1 2(2n+l)(n-m)l

lbr n+M)! .(3.20)

Hence, for p > a we have

1 N 2 n 2N22-2n-2
-7 IuO(x)-u 0xW1 ds I lb rMI Cn-rn)!p24 71  ~ 0-0 n-N+1 (n-m)-(2nnl)

(3.21)

} 
(,)2n+2

< 2w r (2n~l) (aP~
nzN+l

4

I and in view of (3.16) this tells us how many Fourier coefficients

of the far field pattern are needed in order to approximate
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u0 (x) for Ixl > a0 > a to obtain a given degree of accuracy in

the L sense. We note that considerably sharper results are

obtainable in the case of :he inverse scartering problem for a

cylinder due to the fact that conformal mapping techniques are now

available (c.f. [4], ES)).
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