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I. Introduction A AN ~

In a previous paper ([f]) one of usﬁpresentedvgh iterative
method for solving the exterior Dirichlet problem for the Helm-
holtz equation defined in the plane and used this result to pro-
vide a constructive approach for solving the low freguency in-
verse scattering problem for a cylinder. These results were
based on the use of confeormal mapping and the fact that the
integral of the normal derivative of the total field over the bound-

ary of the obstacle vanishes, neither of which is valid in the

- . -
Y -

three dimensional case. , In this-paper, we shall show how the R

analysis of [56} can ve modified in order to extend these results
to the case of the exterior Dirichlet problem for the Helmholtz

equation in 5R3. Qur results are based on chosing an appropriate “

funcdamental solution such that the integral equation associated

with the exterior Dirichlet problem can be solved by iteration

for sufficiently small values of the wave number.l Previous results
in this direction have been given by Kleinman ([9]) and Ahner
([1]). However, in Kleinman's approach it was necessary to first

construct the Green's function for Laplace's equation defined

in the exterior of the scattering obstacle D, whereas in

Ahner's approach it was necessary to compute the first eigen-
function of the integral equation associated with this problem.

Our method avoids both of these computations and instead provides
an integral equation formulation of the exterior Dirichlet problem
for the Helmholtz equation with the kernel of the integral equa-

tion being independent of D and expressable in closed form. Such H

a formulation is particularly suitable for obtaining analytic




appreximation for low frequency scattering problems (c.f. [2]).
However, rather than presenting an application to the direct
scattering problem, we shall show how our iterative procedure

can be used to obtain information on the inverse scattering problem

for low frequency acoustic waves. The importance of our itera-

¢ tive procedure in this case is that it allows us to rigorously
establish the limiting behaviour of the total field as the wave
number k tends to zero. This step is in general nontrivial
since in the classical formulation of the scattering problem as

. an integral equation the resolvant operator has a pole at k = 0

’ and we are thus faced with a singular perturbation problem (c.f.

[(12] and the references contained therein. In this regard we

“ -

note that in many cases it is not in fact the limiting behaviour
of the total field that is of interest, but instead the coef-

ficients of certain higher order terms - c.f. (4], [5]). Having

established the limiting static problem associated with the in-

verse scattering problem, we proceed to follow a standard approach

(c.f. [16]) in order to obtain information on the shape of the
scattering obstacle from a knowledge of the low frequency behaviour
of the far field pattern. Our contribution here is to note that

although in general the far field pattern is only known approxi-
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mately, the determination of the shape of the obstacle D is

! : stabilized by the fact that the solution of the static potential pro-

blem is known to have values lying between zero and one, i.e. the

potential function to be determined lies in a compact set of har-

KXY

. monic functions (c¢.f. [8], [15]). Here it is necessary to assume

that we know "a priori" the radius of a ball containing D in

v S
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its interior, with optimal results holding if we know the radius

of the smallest such ball containing D.

IZI. The Exterior Dirichlet Problem for the Helmholtz Zquation

We begin by first considering the exterior Dirichlet problem
for Laplace's equation, i.e. to find u ¢ Cz(la\ﬁ) n C°(13\D)

such that

% ul(x) = ui(g) + us(g) in 2%\ " (2.1a)

: au =0 in RN\ (2.1b)

] t u(x) = 0 for x ¢ 3D (2.1¢)
lim uS(x) = 0 (2.1d)

r‘.ﬂ

where D 1is a bounded simply connected domain in R3 containing
the origin with Cz boundary 3D, ui is a given solution of
Laplace's equation defined in all of R3, and r = |§|. We note
that under these conditions a solution u to (2.1) exists and

u e Cz(Ra\ﬁ) n cXR3\D) C(e.f. (71). Now let B be a ball of radius

R contained in D with center at the origin and let

2
.1 _ R 1 . .- _R
R F =1 FUR S e 2.2
if be the Green's function for Laplace's equation in the exterior of
L B. Then from Green's formula we have
' s
1 3u ] )
! e J {G()S,}.') m -u m G(f,z)} ds(y)
i aD

. (2.3)
' : -1/2 us(§), x € 3D

: s 3
“u (x),x ¢ R \b
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where V denotes the unit outward normal to 93D. In addition,
3

since u® is a solution of Laplace's equation in all of R

and G(x,y) = 0 for y e 3B, we have

o f {G"E'X’ WGy Y WGy G(’f”f)} et
oD
1[4 3
v [ o gy sy as) (24

3B
1/2 ul(x), x ¢ D

0, x ¢ RA\D
where again Vv denotes the unit ocutward normal. Adding (2.3)
and (2.4) together and using the fact that u(x) = 0 for x e 3D

now gives

i E) i )
-ul(g) + o [ G(Z_{,z) 3-\-)—(;‘1- dS(y) oT é ul W G(E,Z) dS(Y)
]

(2.5)
“ulx) , x ¢ 23\5

-1/2u(x), x ¢ 3D

From the jump discontinuity properties of the single layer potential

we now have the following integral equation for 23u/3v evaluated

on 3D:
Ju 1 3 u
oo ! ’ﬁai WG Y sryy 98

(2.6)

Jut a1 i3 ,
av(x) ~ 3v(x) I j Ut 5ty G(%ey) ds?y) 3 X “aD .

3B . S
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Note that in the special case where ul(g) z 1 we have

1 3 - R -
T I W G(E,Z) ds(y) = 2 T;T' (2.7
3B -

for x ¢ 3D and hence in this case the right hand side of (2.8)

3 1
becomes -2 R 3—\) m .

-~

We shall now show that the int;gral equation (2.5) can be
solved by successive aprroximations. (The solution of (2.1)
can then be obtained by substituting the solution of (2.8) into
(2.5), i.e. we have a constructive method for solving (2.1).)
To this end let C(3D) denote the Banach space of centinuous
complex valued functions defined cn 3D and equipped with the
maximum norm and define the compact integral operatcr

K : C(3D) - C(3D) by

(Xv)(x) = - o= f sofy G(x,y) viy) dsty) . (2.8)
3D

If we lez 2(x) be the right hand side of (2.6) then (2.6) can

be written as
V - Ev z £ (2.9)

where v = 3u/3v. In order %o show that (2.9) can be solved by
iteration we shall show that the spectrum of K is contained in
(=1,1). We first note that since X is compact all spectral
values of K different from zerc are eigenvalues. Let )\ be an

eigenvalue of K corresponding to the eigenfunction ¢,

K¢ = ¢, and define




e

B

.

S(x,y) 9(y) ds(y) 5 x ¢ RO\B . (2.10)

1
u(}f) s rd
]

Cr—

Then u is harmonic in R°\T and D\B, and from the jump

discontinuity properties of single layer potentials we have

u, = u_ on 3D ‘ (2.112)
8u+ _
™o T -Ke v (2.11b)
= (-2 F )¢ on 3D

where + denote the limits from outside and inside D

respectively. Hence

au+ su_
(1-)) vt (1+X) Frvmdi 0 (2.12)

and since u(x) = 0 for X € 3B we have from (2.lla), (2.12)
and Green's theorem that

du

- + - du_ = 3u
0 = (1-)) j u, gy~ ds + (1+)) J u_ zg— ds = (1+3) I u x> ds
3D 3D 3B
(2.13)
= (A=1) [ J | grad u|2dx + (A+1) f | grad ulzdx .
R3\p D\B
Now define
- 2
I(u) = J J |grad ul“dx
b/B (2.14)
2 2
I(w) |grad uf‘ax .

"
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t Then if I(u) + I(u) > 3 we have

A = T(w) - I(w
2w + (W)

(2.18)

which implies that in this case all the eigenvalues of X are real
- . - 2 .

and contained in (-1,1). If I(u) +# I(u) = 0 then u 1is cens<tant

. 3 . - - . . ' . .

in ®\D and D\3 and since from (2.10) we have that u vanishes

at infinity and on 5B we can conclude that u(x) = 0 for

X ¢ Ra\B. Hence, from (2.1lb) we have

1 |?u, du,
¢ =? W—--W = 0 > (2016)

——

i.e. A 1is not an eigenvalue, contrary to assumpticn. Hence,
the spectrum of K is contained in (-1,1) and hence (2.8) can

be solved by successive approximations.

i Before turning cur attention to the exterior Dirichlet pro-

! blem for the Helmholtz equation we briafly consider what effect

a change of the radius R of the ball B has on the spectral

\ radius of the operator K. In particular, consider the special
’ case when D is a ball of radius one and u is defined by (2.10).
i ) Then u has an expansion in spherical harmonics of the form
® n .
I & Caye”+b 0" PR (cos 0)el™; Repsl
v’ ¥ - - n - -
: n=0 m=-n
o - (2.171
wu(x) = « -n-1 imé
- £ I e P: (cos 8)e™ " ; lgp<=
nz0 mz-n

where (9,9,%) are spherical coordinates, Pﬁ denotes an as-

sociated Legendre polynomial, and the a bnm’ Shm 4re con-

stants. Then (2.11la), (2.12) and the fact that u(§) = 0 for

-

(3]
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% £ 33 implies thaz
a + b - c =0
nm nm nm

2n+la

R +Db =0 (2.18)

(1+X)n a&m - (1+2)(n+1) bnm - (l-)\)(nﬂ.)cnm =90

and this system has a nontrivial solution if and only if the
determinant of the coefficients vanishes, i.e.

2n+l
A= oA = l-(2n+2)R

. nz) : (2.19)

From (2.13) we see that in this special case the eigenvalues

decrease as R increases, i.e. by using overrelaxation we can make

the spectral radius smaller. This in turn implies that the rate

of convergence of the successive approximations to the solution

of the integral equation is improved. By using the methods intro-

duced in [13] it can in fact be shown that this behaviour is true

not only for a sphere but also for an arbitrary bounded simply

connected domain ([11], [19]). Hence for computational purpose

it is desirable to pick R as large as possible and then use over-

relaxation to improve the rate of convergence (c.f. [13]). a
We now consider the exterior Dirichlet problem for the

Helmholtz equation, i.e. to find wu ¢ C2(13\3) n C°(R3\D) such

that
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g .
- q P‘
ulx) = ut(x) + uS(x) in RV\D (2.20a)
2
a,u+ ku =0 in 21D (2.208)
u(g) =0 for % ¢ 3D (2.20¢)
s
lim r {é%. -ikusJ = 0 (2.20d)
bl
where the "incoming wave" at is a solution of (2.20b) in 21l of

3 . . . . ‘s
&7, the wave number k 1s positive, and the radiation ccndition

(2.20d) for the "scattered wave" u° is assumed to hold uni-
formly-in all directions. The domain D is assumed to satisfy
the same conditions as in problem (2.1) and under these condi-
tions we can again conclude that a solution to (2.20) exists and

u e c2xI\D) » crx3\D) ([18]). Now define

ik |x-y| ik |x*-y| 2
- e ~ ™ - R e -~ ~ . % = R
G (%oy) = RETTA =T TEeyT 0 % x| 2 s (2.20)

L

where R is again the radius of the ball 3 contained in the
interior of D. Then with respect to y the function Gk is

a fundamental solution to the Helmholtz equation satisfying the
radiation condition (2.20d4). Hence, proceeding in the same
manner as we did for Laplace's equation, we can use Green's for-~

mula to derive the following integral equation for the unkncwn

normal derivative of the solution to (2.20) evaluated on dD:

au 1 ) 3 - 3ui
VT + YCl J 7% Gk(a_(,!) L EI62) ds(y) = 2 VR
8D
' (2.22)
3 1 dus i_ 3 .
+ m ﬁ I {m Gk(E,Z) - 4 W Gk(}f,z)} dS(y), }S € aD.
9B
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Note that the additional term on the right hand side of (2.22)

(as compared with the right hand side of (2.26)) occurs since

we no longer have the fact that Gk(§’¥) = 0 for y ¢ 9B. This
minor inconvenience could have been avoided by chosing Gk to

be the Green's function for the Helmholtz equation in the exterior

o]
h
r

instead of as in (2.21), but in this case the kernel of
the integral equation (2.22) could no longer be expressed in a
simple closed form such as (2.21).

We shall Aow show that the integral equation (2.22) can be
solved by iteration for k sufficiently small. As in the case
cf Laplace's equation this provides a constructive method for sol-
ving the boundary value problem (2.20). Let C(3D) again denote
the Banach space of continuous complex valued functions defined

on 3D equipped with the maximum norm and define the compact

integral operator K

¢ C(3D) = C(3D) by

3 -
(V) () = = =2 Jf sty G (Xey) viy) ds(y) . (2.23)
3D

Let £(x) denote the right hand side of (2.22). Then the integral

equation (2.22) can be written in the form

Vv - }fkv = f (2.24)
. du .
where v = TR Then since
|6, (x,y) - G(x,y)| = 0(k) (2.25)

it follows that




. e

11

P =K = 0(x) (2.26)

where |}+|| denotes the maximum operater norm. Hence, since the
spectral radius of K is less than one, we can follow the argu-
ment of Theorem 2.2 of [10] to conclude that there exists a
positive constant ks such that the spectral radius of K

is less than one for 0 < k < kO' Thus for such values o7 k we

can solve (2.22) by the method of successive approximations.

ITI. Remarks on the Inverse Scattering Problem

We now consider the application of the results of Section
Two to the inverse scattering problem associated with (2.20). 1In
particular, if we apply Green's formula to the solution u of (2.20)
and the fundamental solution for the Helmholtz equation, we have

that for x e Ra\ﬁ (c.f. [61)

ik|x~-y|
us(g) z - E% J au g —— ds(y)

aviy) %=y
D -~ Ny

ikr
e . 1l
— F(8,05K) + 0[;7}

where (r,8,%) are spherical coordinates and

F(a,d3k) =

The inverse scattering problem we wish to consider is to determine

the shape of 3D from a knowledge of the far field pattern F

for all angles 6,% and low values of the wave number k.
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We first want to reduce *the solution of the inverse scattering

th

problem to a generalized moment problem for the conductor potential
K ikx 1
of the domain D. To this end suppose u~(x) = e where

~

X = (xl,xz,xa). Then from the results of Section Two, we have that

the integral equation (2.24%) can be solved by successive approxi-

'

mations, i.e.

b _ . .l 3 1
EXI 6 NN S I T TEE‘ + 000 . (3.2)

From (2.26) and [17], p. 164, we now have from (3.2) that

W _ 3 0 3 1
W - 5K 2R 5% Tag) ¢ 0w
(3.3)
au,

® woo t o)

for x ¢ 3D. TFrom the results of Section Two we can now identify

uo(g) for x ¢ R3\D as the solution of the Dirichlet problem

ug(x) = 1 - ug(x) in 33\D (3.4a)
- : 3.5

b,ug =0 in R°\D (3.4b)

uo(x) =0 for X ¢ 3D (3.4¢)

lim ugcg) =0, (3.ud)

[ %[+

i.e. u; is the conductor potential of the surface 23D (ec.f.
[3]). Now expand F in a series of spherical harmonics
© n

F(o,0;k) = £ £ a_ (kK)P™(cos 8) eime (3.5)
n=0 m=-n nm n




o

e — oo — — .:zszszﬂinl-\f:!!
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and write n and y in spherical cocrdinates as

n = (sin 9 cos ¢, sin ¢ sin ¢, cos &)
- (2.5)
'y = p(sin 8' cos ¢', sin 8' sin ¢', cos 8').
Then
ne+ys plcos 8 cos 8' + sin ©® sin 8' cos (¢=-9')]

p COS Y

and since ([1u])

e~ikp cosy I (=D (2a+1) § , (ke) P_(cos v)  (3.8a)

f T H
2
n . ' i
- (n-m)! am m ' im(¢=-0") :
Pn(cos Y) = mi-n o T °n (cos 8) Pn {(cos §') e (3.8b) %
where J , denotes Bessel's function and Pq Legendre's poly-~
n+3s :
nomial we Rave from (3.2), (3.5), (3.8) and the orthogonality of
the associated Legendre polynomials that
2mm m -im¢
a_ (k) = I f F(9,¢3k) P_ (cos 8) sin & e ded¢
nm n
0 0 1
21T . .
s - u_:—' f % f f ¢~ ikpcosy PP(cos 8)sin 8 e ™™ dgd¢ ds(y)
3D 9 0 (3.9)
= -//g i=n I 5%%—7 F:;_ J 1 (kp) Pﬁ(cos e')e'im¢ ds(y) .
Y |/&Ke ne+
3D 7 B
Since ‘
1 (k)" n+2
_J (kp) = + 0(ko) (3.10)
/e Atl/2 27172 pine3sa)
]
LTRSS o T T e e
ST e e o e )
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we have Zrom (3.3), (2.9) and (3.10) that for n > 3,

. =N n su s
- i vYT k 0 n.m -imd . n+l
a n(k) = - =37 I ™Gy |° P (cos 6')e _st(y) + 0(k™ ).
2 r(n+3/2)3D (3.11)

Hence, if we define

e 2™ renraz2) 1P oal (k)
Hpm = 1im am (3.12)

nm o lg -
YTk

then the inverse scattering problem has been reduced to determining

D from the "moment" problem

u PR
Wooo® - Jf W%T E" PR (cos €' e m"_l as(y) . (3.13)
3D

Note that although the Mom avre explicitly computable from the far
field pattern F, small errors in measuring the coefficients
anm(k) will result in large errors in the numbers Hnm if n

is large. Hence, in practice we must assume that only a finite
number of the are known. Observe also that the "moment"

nm
problem (3.13) is nonlinear since both Uy and the region of

integration depend on D.

We shall now show that (3.13) allows us to compute Uq
outside of a ball B8 containing D in its interior. Since only
a finite number of the Mpm are known we can only compute g
approximately, and in order to obtain error estimates it is neces-

sary to know the radius of B "a priori". Having obtained an

R T
. ‘ < -

[N
A
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asproximation <o Ugs We note that the level curve uo(E) LI
is 30 and hence the level curves u0(§) Yy, 2<vy<l,
approximate 3D as ¥y <Tends to zeroc. Thus, i1f we determine
the curves u0(§)= Y, 0 <y <1, for x ¢ 13\3 and exTrapoiaze
as Yy <tends to zero we can determine an approxima<tion To L.
Obviously the success of this procedure is optimized if § is
in fact the smallest ball containing D in its interior. 7o

determine an approximation t¢ ua(x) for x ¢« %°\3 we use the

15

act that uo(§) = 0 for X ¢ 4D and hence from (3.13) and

Green's formula we have

- a n mn ) "j-m°'
Mom = J {uo 35 (e Py (cos 8') e ]

38
(3.14)
au . '
- 539 [e® Pﬁ (cos 6') e'1m¢]} ds.
Since on 38, u, has an expansion of the form
[} n .
ulx) =1+ L T b o™ PP (cos 9) & (3.15)
n=0 ms-m

we have from (3.14), (3.15) and the orthogonality of the associated
Legendre polynomials that

(n+m)!

Mop = 47 B tomay (3.16)

nm

' Suppose now that we know the u . (and hence from (3.16) the bom’

for e-n<m<n, 0 <n<N. We then want to know how accurately

N n .
N “n=-1 .m imé
u.(x) 2 1+ ¢ z b 0 P (cos 8) e (3.17)
0= nz0 ms-n O n




A iy P —— =

approximates ua(x) for x ¢ R7°B., To this end we note that from

(2.15) we have that for n > 1 and o > a = radius of 3,

4n  (n+m)! -n=1

2n+l (n-m)! bnm © z

up(x) P (cos 8) ™™™ sin 6 eas (3.18)

O
[ 8]
=2

QY
2

and since from the maximum principle 0 < uo(x) <1l for

X ¢ 13\D, we have from (3.18) that

b1 (n+m)! -n-ll
{m bom 2 < 2n '{0 IPm(cos 8)| sin 8 dae
1/2
n 2
< o2n [ sin 6 d] l_ IPm(cos 8)|“ sin 8 d]
= 53/2 b (n+m)!
= 2/ et (3.19)
i.e
n+ /2 + -m) ]
bl < &™) SERELARIL (3.20)
Hence, for P > a we have
@ n -2n=-2
1 [ luo(x)-ug(x),zds s T T lb '2 (n+m)' -
~ ~ n-m n
brp |%)=p nz=N+1l m=-n
) (3.21)
® a 2n+2
<2m I (2n+1) [-]
n=N+1 P

and in view of (3.16) this tells us how many Fourier coefficients

of the far field pattern are needed in order to approximate
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for [x| 2> a, >a to obtain a given degree of accuracy in

7 [ -
L® sense. We note that considerably sharper results are

obtainable in the case of <the inverse scat=ering problem for a

cylinder due to the fact that conformal mapping techniques are now

available (c.f. (4], [s5)).
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