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ABSTRACT

Stochastic approximations of the form Xn+ 1 = Xn + anh(X n,&n )

are treated where h(,-) might not be continuous and the noise

sequence {9 } might depend on {Xn }. An 'averaging' and ann n
'ordinary differential equation' method are combined to get w.p.1

convergence for both the above algorithm and for the case where

the interates are projected back onto a bounded set G if they

ever leave it. Two examples are developed, the first being an

automata problem where the dynamics are not smooth and the noise

is state dependent, and the second a Robbins-Monro process with

observation averaging (which causes the noise to be state dependent).

Each example is typical of a larger class.
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1. Introduction.

References [1], [2] present a collection of fairly general

methods for proving w.p.l and weak convergence results for

stochastic approximations of the type

r

(1.1) X n+ 1 = Xn + anh(Xn'n) Xn E R , Euclidean r-space,

where { n} is a sequence of random variables and 0 < a + 0,n n
Ea = . Also, several stochastic approximation schemes for
n

sequential monte carlo function minimization or equation solving

under equality and inequality constraints were dealt with. One,

among others, is the projection method. Let ql,...,q m  denote

continuously differentiable functions, define G = {x:qi(x) < 0,

i=l,...,m}, then the algorithm is

(1.2) Xn+ 1 = I G[n+anh (Xn,En)]

where 7t G(y) denotes the closest point on G to y. Both weak

convergence and w.p.1 results were proved for this and several

other tonstrained' algorithms.

If h(x,Q) is not additive in E, then the methods in [1]

(and also in [3], which deals with related algorithms, at least

for the unconstrained case) require that h(.,.) be continuous.

In many applications, h(.,.) is not continuous (e.g., h(.,.)

might be an indicator function). Here, we combine some of the

basic ideas from [1] together with the averaging methods of [4],



2.

[5] to develop an alternative method which is more convenient

when h(;,.) is not smooth, and which is often quite advan-

tageous if } is state dependent. We rely on the assumption

that even if h(.,.) is not smooth, expectations or conditional

expectations of the types Eh(xEn) , E[h(XEn)1 n-lEn.2,...

are smooth functions of x. This situation occurs in many examples.

Reference [6] also makes such an assumption for non-smooth h(.,.),

but deals with an a > 0, and a finite time interval [n:an<T].

In Sections 2,3, respectively, we treat the case (1.1), (1.2),

respectively, and where is bounded and not state dependent.

nnSection 4 deals with the case of state dependent {t nI and the

'unbounded'noise case is briefly discussed. The convergence is

w.p.1 in all cases. Two interesting classes of examples appear

in Sections 5 and 6.

2. The algorithm (1.1).

Assumptions. En denotes expection conditioned on {,jj < n1

K denotes a constant whose value might change from usage to usage

and 3Xn denotes Xn+l - X.

Al. Ea 2 < M, a {an /a is bounded, h(.,.) is
n n n+1 n'

measurable and h(x,-) is bounded uniformly on bounded

x-sets. (Cn} is uniformly bounded.

A2. There is a twice continuously differentiable Liapunov

function 0 < V(x) such that IVxx(-)I is bounded, V(x)

as jxl - m and for some o 0 0 and compact set Q0 2_f

the form {x:V(x) < X,0), V,(X)E(x) < -C for x 00

where l(.) is defined in (A3).

.............................................. ~~~,--.-----



I3
A3. There is a continuously differentiable function FiC.)j

and a null set N 0  such that for each n and x and

fN 0o t he function defined by

j=n

is bounded by Kan(1+IV,'(x)E(x)I) where the con-

vergence for V0 (x,n) and for all infinite sums of the
N

sequel is in the sense lim I a[] for each x, and where the
N n

sequence of partial sums is bounded uniformly on comnpact x-

sets.

AS. IVx(x)h(x)I < K(l+V(x))

A6. Let (] denote the gradient here. Then
X

a. ~ - 1/2
a IVn~ (xE(~,.)hx) Ka n (+IVx(x)h(x)I

A7. For 0 < s <1

E nIV X(x+sa nh(x,&n))h(x+sa nh(X,; ))I < K(l+ IV XCx)h(x)I).

The examples show that the assumptions are often not restrictive.

Let X 0( denote the continuous piecewise linear function
n-l

which equals X 0  on [-WO], Xn, n > 0, at t n 10a. and in

each (t nstn+l) is a linear interpolation of X n and Xn+l*
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Define Xn(.) by Xn(t) = XO(t+tn). Note that Xn(O) X0 (tn) = Xn ,

and define m(t) = max{n:tn < t} for t > 0 and m(t) 0 for

t < 0.

Theorem 1. Assume (Al)-(A7). Then {Xn ) is bounded w.p.l. If_
_____ f is.V bounded=0 w.p. I

Vx(x)h(x) < 0 for all x, then X {x:V(x)K(X) = 01 w.p.l.

n 

_

In general, {Xn} converges w.p.l to the largest bounded invariant

set of

(2.1) W = (x).

If x0  xt) is an asymptotically stable solution of (2.1) (in

the sense of Liapunov) with domain of attraction DA(x0 ), and if

X n E compact A c DA(x0 ) infinitely often, then (except for w

in a null set) Xn xO as n

Proof. We have

(2.2) EnV( n+) - V(Xn) = anVx(Xn)Enh(Xn, n)

2 f 1 Enh (Xn, n)Vxx(Xn+s 6Xn)h(Xn'tn)ds.

Also

J



E n Vl(Xn+l n+l) -V 0 (Xn n)

E ~ aV' (Xn+i)En+l h(Xn+r%>h(nj)

(2.3)

I a aV ,(X )En [h(X ~ ,F. (X )
n+l i n n ,J n

-a~ (X )[E hh(Xn'n) h h(Xn)I,

which equals

(2.4) last line of (2.3) +

an~nh '(Xn Ed jl 1 a LEn.iVx (X+s 6 kn) (h (Xn+s6Xn IE )h(Xn+s 6Xn))]~

Th e last term in (2.4) is bounded b, 0(a )O0(l +I V '(X MhX )J). Define

V(n) = V(Xn) + V0 (Xnn). Then, by the above calculations,

(2.5) EnV(n+l) - V(n) a a(l~anen)V h a 2n)

where lenI (c I are sequences of Vniformly bounded random variables.

Thus we can write

(2.6) V ~cn) - Xih(XXm - a

where (2.6) def ines mi IMn, and f Mn) is a martingale. Note that
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mn = V(n+l) - V(n) - an(l+anCn)Vx(X)h(Xn) -nan.

o 
2

Define Win) = Vin) + En J=ni ja i and note that W(n) > -O(an

for large n by (A3), (AS).

Let n0  be a stopping time such that Xn0  Q0 and define

n= min{n:n > n0,Xn C Q01. Then {W(n) = W(n n n),n > n is

a super martingale bounded below by -O(an), and EnW(n+l) -

W(n) < -coan/ 2  if Xn ' QC and n is large. This implies that

Qo is a recurrence set; i.e., Xn E Q0  for infinitely many n

w.p.l. Let X > X and define Q, = {x: V(x) < X11. For each

2< 2
such Q1  there is a real K(Ql) such that ImnI < K(Q1)an if

Xn E QI Define n = minin: Xn C QI' n > n Then

n n2 1
• _ _ .n0  

2 .  2(2.7) P{ sup II mil.>1} <K(QI)En0 i a=i/e•
n0<n<n 2  i=n 0  no

From the above part of this paragraph and the fact that VX(X)h(x) <-E 0

for xOQOand the boundedness of ih(x,&)I, x E QI, we conclude

that eventually (w.p.l) Xn  stays in Q1 (for any X1 > A0)"

Also,

Lm- 1

(2.8a) sup IV()-V(i 1 )- X ai(l+aiei)Vx(Xi)h(Xi)t 0 w.p.1 as n
m>n n

or, equivalently, using m(tn) n

m(tn+s)-l -

(2.8b) sup jVC)~s))-V(p(o)) aj(l+ajej)V'(Xj)h(X) 0 w.p.1
s>O i=n

as n-.
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Let Q 1 [set of non-recurrence of %1 u { set of non-convergence

of Emn). By the w.p.1 boundedness of {Xn1, X0 (.) is uniformly

continuous for wC a null set 0 2* Fix w ( Q 1 U2 = n O" Via

the ArzelA-Ascoli Theorem, pick a convergent subsequence (con-

verging uniformly on bounded intervals) of {X n(.)}, with limit

X(.). Then

(2.9) V(X(t)) f V(X(0)) + J (X(s))h(X(s))ds.JO X

Equation (2.8) implies that if Vx(x)h(x) < 0 for all x, then

Xn S = {x: V (X)h(x) = 01 w.p.l as n

Next, let f(.) be a real valued function on Rr with

compact support and continuous second derivatives. With f(.)

replacing V(.), define f0 (x,n),f(n) as V0 (x,n),v(n) were

defined. Then (2.8) holds for f(x) replacing V(.). By choosing f()

such that flx) = xi , i=1,...,r, in the set , where xi is the ith component of x,

we see there is a bounded sequence { c n such that

n
m(tn+S)-i

(2.10) sup Ixn(s)-Pn(O) - ai(l+ai .)h(Xi)t 0 w.pa. as n -.
s>0 i=n

Thus any limit X(.) of {Xn(.) } must satisfy (2.1) and the possible

limit points of {Xn ) are contained w.p.l in the largest bounded

invariant set of (2.1). The assertion concerning asymptotically

stable x(t)-- x0  is now readily proved (see, e.g., proof of Theorem

(2.3.1) of [1]), and the details are omitted. Q.E.D.
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3. The Projection Method.

Let G be as defined in Section 1. For the continuous

vector field h(.) define f(h(x)) = projection of h(x) onto

G; i.e., W(h(x)) = lim [irG(x*Ah(x)) - x]/A. The limit need not
A}0

be unique. We will nced

(A8). (A3) and (A6) hold, but with Vx dropped and the right

sides O(an).

(A9) qi(.), i = 1,...,m, are continuously differentiable,

G is bounded and is the closure of its interior

GO = G - DG = {x: qi(x) < 0, i = l,...,m}, at each x E aG,

the gradients of the active constraints are linearly independent.

Theorem 2. Assume (Al), (A8), (A9). Then {X0(.)} is uniform-

ly continuous on [0,-]. There is a null set 0 such that for

W % any limit X(-) of a convergent (uniformly on bounded

intervals) subsequence of {e(.)} satisfies

(3.1) x = F(h(x))

If {Xn } c compact A c DA(x0 ) infinitely often and w C %, and

x0 = x(t) is an asymptotically stable point of (3.1), then )n x0 w,p,I.

Let H(.) >obe a real valued function whose second mixed partial

derivatives are continuous and h(x) = -H xX). Define KT = set

of points where h'(x)-(h(x)) - 0, and suppose that KT U Sit
i-l

where the Si are disjoint, closed and such that H(x) is

constant on each Si . Then Xn -* KT w.p.1 as n - 0.

.. .. .i ..... ... ... "m lm u ui
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Proof. The proof is very similar to that of Theorem 1. Let

f(') be an arbitrary real valued function on Rr with continuous

second partial derivatives. Then

Enf(Xn+l) - f(X) = a f'(Xn)E h(XnEn) + a f' )E
n n nnnnx (Xn n~n

2a1

+ n- JoE (6X /an)If (Xn+S6Xn)(6 Xn/an)ds,
0n n xxn

where n [7G(Xn+anh(Xn n - (Xn+anh(Xn ' n))]/an 0(i).

Note that there is a K such that T = 0 ifn

distance(X ,aG) > Kan  and that Tn lies in the cone

C(Xn+I) = fy: q (Xn~l)y < 0 for i: qi(Xn+l) = 0}.

Define f0 (x,n) by

f0 (x,n) = ajf'(x)E [h(x, .) - Rx)]
j=n n

and set f(n) = f(Xn) + fO(Xn ,n). There is a bounded sequence

E. such that
1

Enf(n+l)f(n) 2 . anfx(Xn)F(Xn) - anfx(Xn)En '0'En nnnlnx-n nnnxa nn

n-l 2 n-i n-i n-i
f(n) - f(0) - Z C.a. a f aifx(Xi)(Xi)- I af(Xi)Ti E mi -Mn,

i=0 i=0i i=0 X O0 1-

2 2where {M n  is a martingale and Imi 2 < Kai. As in Theorem 1,

m(tn+s)-1 m(tn+s)-1

(3.2) sup~f(Xn(s))- fe(n(0)) - E aix'(Xi)ECXi) - I aif(i)TiI 0
s>0' in 1 i-n CX

w.p.1 as n m,
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from which follows

(3.3) supixns I ~O ai(X.) E air T -* 0

w.p.l as n+

Also, X~()} is equicontinuous, since h(.,-) is-bounded.

Let n denote the set of nonconvergence in (3.3) and for

fixed w no%, extract a convergent subsequence of {Xn (.)}

(uniformly on bounded intervals) with limit denoted by X(1).

Define 5iO(x = ;(Wf W and Fl (x) = F (x) - NO (x) . Then, by

(3.3) there is a bounded Rr~valued measurable function -(-)

such that T(S) = 0 unless X(s) E aG, and if X(s) E DG then

T(S) is in the cone C(X(s)) and (3.4) holds.

X(t) =X(O) + f F(X(s))ds + ft (s) ds

Th( attw3n.rl4o)h igto 34)ms ace fXt

Th ls twf Tinteral onH ) thergh use H(3.as aus ancel fnct

for (3.1) to get

(3.5) AI(x) -H X(x)i(-H (x)) <0,



from which we see that X(t) * KT as t * . Thus, for each

C > 0, {X n  is in an c neighborhood N C(KT) of KT infinitely

often w.p.l. Fix c > 0. Define = lim H(X . Suppose that
n

S and 1 are such that H1 = value of H(x) on S1  if

W E I and POI > 0, and for some c1 > c > 0, {Xn } leaves

the cl-neighborhood N 1 (S1) infinitely often for w E a1 " Then

for (almost, all) w E O1, there are real numbers Ln and

k > K0 > 0 with k -* T < - and a solution X(-) to (3.1)

which is a limit of the sequence {X0 (1n+s), s < knP n = 1,2,....

and where X(0) CN (S 1  and either X(t) E MN C(S 1 ) if T <

or else X(t) - N 1(S ) as t + . Using an argument like that

used in [1], Theorem 2.3.5, the last sentence and (3.5) imply

that H1 *lim H(Xn) almost everywhere on 91, a contradiction.
n

The next to the last assertion of the theorem is proved in a

similar way. Q.E.D.

4. State Dependent and Unbounded Noise

State Dependent and Bounded Noise

There are several ways in which the state dependent and bounded noise case

can be treated. The noise can be parameterized as in [41, Section 9. Here, we

choose a Markovian representation. Suppose that {n-1 Xn} is a

Markov process. In applications, this might require an augmentation

of the state space of the 'original' {gn1  and a redefinition of

the 'original' h(,). Let En denote conditioning On Ej, j < n,

Xj, j n, and define the 'partial' transition function

P(u,a,rlx) - P( n+a-1 e rixn = Xf'n-1 =
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It is supposed that P does not depend on n, for notational

simplicity only.

Write V 0 (x,n) in the form

(4.) V(x~) =V'() ~a.(h(x,&aP(Cniu-n+l~dtlx) - EWxI.
(4.) VO~xn) .(X j=n an-

Note that EnP(&n ,jn,rlx)= P(&n1 j-n+l,rlxn by the Markov

property. Assume that the sum in (4.1) is continuously differen-

tiable in x, and that the derivatives can be taken termwise and

that (replacing A6))

(4.2) I a. EV'x I W h(x,F&)P(&nj-n,dglx) - hEx)J1
j=n+l x nX

Ka (l+IV, (x)h(x) 1/2)

Theorem 3. Assume (Al)-(A7) but with (4.1), (4.2) replacing (A3),

(M6), resp. and (A4) replacedjby

Then the conclusions of Theorem 1 hold.

Assume (Al), (AS), WA) but with the modifications of (A3),

(A6) stated above. Then the conclusions of Theorem 2 continue

to hold.
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Remark on the proof. In the proof the difference (4.3) occurs,

(43 " -' (X )Ih jndXF(
4.3nj=n+1 naj (Xn+l hn+i0P(Cn n+in+l) )

a.Vx(Xn) [Jh(Xn,)Pnl,j-n+l,dtIXn) - hl
j=n+l x

Using the differentiability and the equality below (4.1) and the

bounds from (Al) - (A) (modified for Theorem 3), (4.3) can be

seen to be of the order of a2 (1+IVxI(Xn)E(Xn)l).n x

The proof of Theorem 3 is the sane as those of Theorsw 1 and 2.

Unbounded noise

We state a generalization of Theorem 1 for the case where

{In}  is unbounded. First, make the following alterations in

the assumptions. Drop the boundedness of {F n } in (Al) and

suppose that there are K0 < M and On > n' ¥n - 0 such that

sup(En+EY) < , a nBn + an n -1 0 w.p.l as n - and

Ih(x,En) I < K0 n  for x E and A3,4 hold with K replaced by

KY n . An additional assumption is required. (A6) and (A) were

used in Theorem 1 to get the bound (below (2.4)) on (2.4). We

require that the bound hold with O(an) replaced by ynO(a2).

This is, perhaps, an awkward way of stating the assumption, but it

can be verified in many standard examples. For an alternative

condition see the remark after the example. We now have
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Theorem 4. Under the conditions of Theorem 1, altered as above,

the conclusions of Theorem 1 continue to hold.

The proof is very similar to that of Theorem 1; with only

a few changes requires; e.g., anen is replaced by a 6n -. 0

w.p.1 and W(n) > -6 t 0 w.p.1 as n *. There is an analogous
n

result for the Cases of Theorem 2.

Example. Let {n I be stationary and Markov and h(x,&) =
n2K(x) + h0(x)g()), where Eg( n  0, Eg2(E < Here n is a

w n n He

function of En-l and On is a function of En. Such a form

occurs in applications to the identification and adaptive control

of linear systems, where F and h0  are affine functions of x.

Then, Theorem 1 holds under a simple stability condition on x = F),

and on reasonable conditions on (E n. A standard and important

special case occurs in the identification problem for linear systems

where we use Cn = LI n' y = L 2 nt (En I Markov and
n

Xn+l =X n -an n[*nXn-yn],

* Rn, y n R.

Remark on Theorem 3. The 'unbounded noise' analog of Theorem 3

also holds under the conditions of Theorem 3, modified as follows.
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(A4) is replaced by the expression in the statement of Theorem 3,

but with K replaced by Kyn .  (4.1) is used for V0 (x,n) and

the K there is replaced by Kyn . As an alternative to (A6), (A7),

assume that

(4.4) EnIleft hand side of (4.2)12 yK(1+IVx)h(x)I),

where x is replaced by x + sa nh(x,tn), s E [0,11, in evaluat-

ing (4.4). Then under the conditions on Onyn, K0 , h(x, n) in

the paragraph above Theorem 4, the conclusions of the first para-

graph of Theorem 3 continue to hold. There is a similar extension

of the second paragraph of Theorem 3.

The following two classes of examples have state dependent

noise and they illustrate two different ways of using Theorem 3.

5. A Learning Automata Example.

This example is a modification of one in [51, where

a e > 0 and an extensive development of the asymptotic distri-n

butional properties is given. Here we are concerned with w.p.1

convergence only for the case where an - 0. A relatively simple

case is treated. Clearly, more complicated arrival and adaptive

processes and systems can be treated.

The problem. Calls arrive at a switching terminal at random at

--7
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time instants n = 0,1,2,..., with P{one call arrives at nth

instant) = p E (0,1), P{>l call arrives at nth instant) = 0.

There are two possible routings to the destination, routes i,

i = 1,2, where route i has Ni independent lines - and can

handle up to Ni calls simultaneously. Let [n,n+l) denote the

nth interval of time. The duration of each call has the distri-

bution: P{call completed in the (n+l)St intervalluncompleted

at end of nth interval, route i used) = A. E (0,1). The

members of the sequence of interarrival times and call durations

are mutually independent. The use of an adaptive automaton for

adjusting the routing comes from [7].

The routing automaton operates as follows. Let {Xn ) denote
n

a sequence of random variables - with values in [0,1]. In order

to have an unambiguous sequencing of events, let the calls ending

in the n interval actually end at time n + 1, and let both

arrivals and route assignments be at the ends of the intervals;

i.e., at the instants 0,1,2,... precisely. Thus the state of

the route occupancy at time (n+l)- does not include the calls just

terminated or calls arriving at (n+l). Define the "route occupancy

process" Zn = (ZIZ2 ), where Zi  is the number of lines of routen n
occupied at time n+. Thus, Zn < Ni. If a call arrives at

instant n + 1, the automaton chooses route 1 with probability Xn

and route 2 with probability 1 - Xn. If all lines of the chosen

route i are occupied at instant (n+l)-, then the call is switched

to route j (j i). If all lines of route j are also occupied
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at instant (n+l)-, then the call is rejected. The choice
probabilities (Xn } are to be adjusted or adapted according to

the 'experience' of the system.

The specific adjustment scheme for {Xn } is the following

"linear-reward" algorithm [7]. Let Jn denote the indicatorin

of the event {call arrives at n + 1, is assigned first to route

i and is adcepted by route i. For practical as well as theoretical

purposes, it is important to bound Xn away from the points 0 and

1. Let 0 < x < x < 1. We use the (projected) algorithm (5.1),

where denotes truncation at xu or xL, and

a(x) = 1 - x, O(x) = -x.

(5.1) Xn+l1 = [Xn + an (Xn)Jln + an(Xn)J2n] .

Some definitions. If the choice probabilities X are held fixedn

at some value x for all n, then the route choice automaton still

is well defined. For fixed route selection probability x E (0,1),

let 1Zn(x)=Z. x)), 0 < n < -} denote the corresponding

route occupancy process. For the process (Z (x)}, the state space

Z = {(i,j): i < N1 , j < N2 } (whose points are ordered in some

fixed way) is a single ergodic class, and the probability transition

matrix, denoted by A'(x), has infinitely differentiable components.

With given initial condition, define P n(Ix) - P{Z n(x) - a and define

the vector Pn (X) u {Pn (01x), a E Z). Then Pn+l(X) - A(x)Pn( x).

&M
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The pair {Zn~ nX) n > 0) is a Markov process on Z x[x9 ,x]

and the marginal transition probability P{Z n+l 0 (k~t)IZ n -(ilj),Xnl

is just the ((i,j)-column, (k,t)-row) entry of A(X)d. Define the

vector Pn {P n (CL), OL EZI where Pn (C) = P{Z n = al xe,, X- < n, Z01.

Then Pnl= ( )P .Also, let P(x) = {P(alx), aL E Z} denote then~l A(Xn n

unique invariant measure for {Z (x)), with marginal defined by
1 n1 =

P1 (Nlix) =asymptotic probability that Zn NV~ and similarly for

route 2. Finally, define the transition probability P(cI,j,CL11x)=

P{Z.i(X) =CLlJIZO(x) - 00), and define the marginal transition

probability

P (a~jNl) = P{Z(x) Ni1 Z Ox) = CLI.

Define E nto be the expectation conditioned on {Z,-, Xe,, I- < n)
N.

and set V. (l-X i .

Application of Theorem 3.

We have h(Xn 'Yn = cL(Xn )in + (X )Ji and, with 1{-)

denoting the indicator function,

+ IA8(X )(l-Xn)lV 2{~ N2 ,
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which can be written in the form

(5.2) OXn (1Xn)1V2P2( C,O,N2 iXn) vlp 1(ZnO*NjlXn)I.

Define () to be the limit

iiWx =jX(l-x)lim E[V P2 (Z nN IX) - 1lz ,
2 2 1P (n n, 2 1x)]

(53)x = (1-X)[P2 P (N 2 x) Y iP (N1Ix)].

The sum (M3) is replaced by (since the second part of Theorem

3 is to be used, the. (x) component can be dropped)

V(x,n) pxl=) 3 (x [ ( (x,j- n,N 2 1x) P2(N 2 1x))

(5.4) -V 1(P (x,j-n,N1 Ix) - P (N1jx))]

The sum (A6) is replaced by the analogous sum of the derivatives

(again drop the V X(x) component). There is a unique X- E (0,1)

such that F(i) =0 and E(x) > 0 for x E (0,5k) and S(x) <0

for x E (R,l). The Pn (x and P (x) converge [5) to then n,x

limits P(X), P x(x) geometrically with a rate uniform in

x E [x zoxu and in P0 (xW (PO,x (x) = 0 is the appropriate

initial condition to get the limit for the derivative sequence in

(A6). This result implies that (M3), (M6) exist and converge

absolutely and uniformly in (n,X n at a geometric rate. See

[5) for the details of the convergences.
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Part 2 of Theorem 3 now yields Theorem 4 below. Theorem 4

can also be proved directly, via the method of Theorem 2 (here

the boundary is only {xXx ) with the 'corrected' test function

(5.4) used in lieu of the sum in (A3).

Theorem 5. Let Ea. < , Eai = . Then if x E [xRXu], we

have {X n } + x w.p.l. Otherwise {Xn I converges w.p.1 to the

point x, or xu which is nearest to x.

6. Observation Averaging for Stochastic Approximations.

The general method of Theorems 1 and 2 can be easily used to

prove w.p.1 convergence for stochastic approximations of the

Robbins-Monro or Kiefer-Wolfowitz type but with averaged observa-

tions. The main difficulty is due to the fact that the quantity

which plays the role of the noise is always state dependent. The

idea will be illustrated via a very simple example. We use a

Robbins-Monro scheme to estimate the root of Kx = 0, x = scalar,

K > 0 (but the method is applicable to the general problem).

Define the estimates by

Xn+i =(Xn+an n)u

(6.1)

Cn M agn-I - B[KXn+*n]'
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where a E (0,1), 8 > 0 and ( n} is a bounded sequence of

mutually independent random variables with zero mean value. If

a = 0, then (6.1) is the usual Robbins-Monroe method, truncated

at values XuXL . If a E (0,1), then the observations are

exponentially weighted. Theorem 3 requires truncation to some

finite interval [xtXu]. Such truncation is usually done in

practice anyway. Define i(x) =-$Kx/(l-a) and h(x,E) = E.

Instead of writing V0 (x,n) in the form (4.1), it is more

convenient to do the following. For each x,n, define the

auxiliary processes {Cj(x), j I n) where the initial condition

En-l(x) is to be defined and E j (x) = a& jl(x) - (OKx+ j)
j I n. Write V0 (x,n) as

(6.2) V0 (x,n) = najV (x)E [h(x,Ej(x))-h(x)],
=nj

where (n-X n En-l' and En denotes expectation conditioned

on Xi, i < n, i' i < n. Note that En(Xn) =n"

Now Theorem 3 yields

Theorem 6. Let Za? < C , Za. = " If 0 E [xp,xu1, then

{Xn } ) 0 w.p.1. Otherwise (X n  converges w.p.1 to the point

x,,, which is closest to zero.

In [41 there is an analysis of the asymptotic properties

of (6.1) when a > 0.
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