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1. Introduction.

References [1], [2] present a collection of fairly general
methods for proving w.p.l and weak convergence results for
stochastic approximations of the type

. r .
(1.1) Xn+1 = Xn + anh(xn,gn), X, € R, Euclidean r-space,
where ‘{En} is a sequence of random variables and 0 < a, =+ 0,
fa = ». Also, several stochastic approximation schemes for
sequential monte carlo function minimization or equation solving
under equality and inequality constraints were dealt with., One,
among others, is the projection method. Let Ayseveslp denote

continuously differentiable functions, define G = {x:qi(x) <0,

i=1,...,m}, then the algorithm is

where = (y) denotes the closest point on G to y. Both weak
convergence and w.p.1 results were proved for this and several
other ‘constrained' algorithms.

If h(x,£) 1is not additive in £, then the methods in [1]
(and also in [3], which deals with related algorithms, at least
for the unconstrained case) require that h(:,°*) be continuous,
In maﬁy applications, h(.,.) is not continuous (e.g., h(-,-)

might be an indicator function). Here, we combine some of the

basic ideas from [1] together with the averaging methods of [4],




|
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[S] to develop an alternative method which is more convenient

when h(:,:) is not smooth, and which is often quite advan-

tageous if {Eu} is state dependent. We rely on the assumption

that even if h(.,:) is not smoofh, expectations or conditional

expectations of the types Eh(x,&n), E[h(x,&n)lsn_l,an_z,...]

are smooth functions of x. This situation occurs in many examples.

Reference [6] also makes such an assumption for non-smooth -h(.,-.),

but deals with a, =a>0, and a finite time interval ([n:an<T].
In Sections 2,3, respectively, we treat the case (1.1), (1.2),

respectively, and where {ﬁn) is bounded and not state dependent.

Section 4 deals with the case of state dependent {gn} and the

'unbounded 'noise case is briefly discussed. The convergence is

w.p.l in all cases. Two interesting classes of examples appear

in Sections 5 and 6.

2. The algorithm (1.1).

Assumptions. En denotes expection conditioned on {gj,j < n}

K denotes a constant whose value might change from usage to usage

and 6Xn denotes Xn+1 - Xn.

AlL. zaﬁ <=, Ia ==, {a ., /a} is bounded, h(-,-) is

measurable and h(x,-) is bounded uniformly on bounded

x-sets. {En} is uniformly bounded.

A2, There is a twice continuously differentiable Liapunov

function 0 < V(x) such that |Vxx(-)| is bounded, V(x) + =

as [x| + = and for some e, > 0 and compact set Q, of
the form {x:V(x) < Ao}, V;(x)E(x) <=-¢y for x 4 Qg
where h(-) is defined in (A3).




A3.

A4,

AS5.

A6,

A7.

each

There is a continuously differentiable function h(:)

and a null set N, such that for each n and x and

w €N the function defined by

0 ’

o q
v

Vo(x,n) = jzn a;V, (\)E [h(x, &5)-h(x)],

is bounded by Kan(1+|V£(x)K(x)l) where the con-

vergence for V,(x,n) and for all infinite sums of the

N

sequel is in the sense 1lim ) aj[ ] for each x, and where the
N n

sequence of partial sums is bounded uniformly on compact x-

sets,

B lh(x,65) 1% < KAV (0R() 1), 3 2 n
IV (x)h(x)] < K(1+V(x))

Let | ]x denote the gradient here. Then

, _ .= 1/2
|} L2 IV ®E (h(x,€;)-h 01| < Ka, (1+]V, ()R ()] )

For 0 <s < 1

EnIv;(x«»sanh(x,&n))'H(x+sanh(x,£n))I < K(1+ IV;(X)K(X)I)-

The examples show that the assumptions are often not restrictive.

Let Xo(-) denote the continuous piecewise linear function
n-1

which equals X0 on [-=,0], X,»n>0, at t = Y a; and in

n 1

i=0
(tn’tn+1) is a linear interpolation of Xn and Xn+1.




Define X"(.) by X"(t) = X0(t+t ). Note that X"(0) = x0(t) = x,
and define m(t) = max{n:tn <t} for t>0 and m(t) = 0 for

t < 0.

Theorem 1. Assume (Al)-(A7). Then {Xh} is bounded w.p.1. If

V;(x)ﬁ(x) < 0 for all x, then Xn - {xzv;(x)ﬁ(x) = 0} w.p.l.

In general, {Xn} converges w.p.l to the largest bounded invariant
set of

(2.1) | x = h(x).

If Xg x(t) 1is an asymptotically stable solution of (2.1) (in

the sense of Liapunov) with domain of attraction DA(xO), and if

Xn € compact A < DA(xy) infinitely often, then (except for w

in a null set) X - Xg as n > =,

Proof. We have

(2.2) E V(%) - VX)) = a V. (X )E h(X ,E)

v P

1
fosnh’(xn’gn)vxx(xn+sexn)h(xn,gn)ds.




E Vo (X ,1,0+1) - Vo(X,n) =
(-4 ' —
En ngl.aij(Xn+1)En+1[h(Xn+r£j)-h(Xn+1)]
® 1

; ngl asV, (X )Ep Th(X;,E5) - h(X)]

- a V. (X)) [Eh(X,,E,) - h(X )],
which equals

(2.4) last line of (2.3) +

] o

BBk 05

0 jzn+1aj[En+1V;(Xh+56Xn)(h(xn+56xn,gj)-ﬂtxﬁ+saxn))]x.

The last term in (2.4) is bounded by O(alzl)O(1+|V);(Xn)}_1(Xn)|). Define
V(n) = V(X,} + V4(X, ,n). Then, by the above calculations,

(2.5) EnG(n+1) - V(n) = a (1+a e V(X IR(X ) + € al,

where {en},{En} are sequences of uniformly bounded random variables.

Thus we can write

~ n-1 ' - n-1_ 1
(2.6) V(n) - iZoaiu+aie:i)vx(xi)h(xi) - izoelai z izomi =M

where (2.6) defines m;,M,, and {Mn} is a martingale. Note that




m = V(n+1) - V(n) - an(1+anen)v;(xn)ﬁ(xn) - ¢ al.

yy 5o A

Define W(n) = V(n) + En E-ag and note that W(n) > -O(an)

j=n i%i
for large n by (A3), (AS5).

Let n, be a stopping time such that Xn € Q and define
0

1 n, = min{n:m > nO’xnl € Qy}. Then {W(n) = W(n n nl)rn > nyl s i

e 8

a super mariingale bounded below by -O(an). and EnW[n+1) -
W(n) < -gqa /2 if X € Q and n is large. This implies that ?
Q0 is a recurrence set; i.e., Xn € Q0 for infinitely many n

w.p.1. Let Ay >} and define Q; = {x: V(x) < Ay}. For each
such Q1 there is a réai K(Ql) such that |mn|2 < K(Ql)aﬁ if

X €Q,. Define n, = mig{n: X, € Q, n> ngl. Then
n,-1

2

y a?/ez.

f . n
(2.7) P{ sup | ] my|>e} <K(Q)E i

ny<n<n, i=n, nOi=n0

From the above part of this paragraph and the fact that V;bdﬁbd <-eg
for x £Q, and the boundedness of |h(x,£)|, x € Q;, we conclude
that eventually (w.p.1l) Xn stays in Q1 (for any Al > AO).

Also,
‘; ' m‘l [ —_
(2.8a) :;;:‘ VO)-V(X) 121\ ai(1+aiei)vx(xi)h(xi)| +0 w.p.l as n-+ow

or, equivalently, using m(tn) =1,

_ . m(tn+s)-1 _
o @.85) swp [VORENVORE) - T a(+age VPR | 0 wp.d
=2 i=n as n -+
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Let @, = {set of non-recurrence of QO} u {set of non-convergence
of Zmn}. By the w.p.1 boundedness of ({X 1}, Xo(-) is uniformly
continuous for w€ a null set ,. Fix w € QY Q = Q. Via
the Arzela-Ascoli Theorem, pick a convergent subsequence (con-
verging uniformly on bounded intervals) of {X™(:)}, with limit

X(-). Then
t ' _
(2.9) V(X(t)) = V(X(0)) + jo V. (X(s))R(X(s))ds.

Equation (2.8) implies that if v;(x)}T(x) < 0 for all x, then

Xn -+ S0 = {x: V;(x)ﬁ(x) = 0} w.p.1l as n » o,

Next, let f(+) be a real valued function on R' with
compact support and continuous second derivatives. With £f(-)
replacing V(.), define fo(x,n),g(n) as VO(x,n),;(n) were
defined. Then (2.8) holds for £(x) replacing V(:). By choosing £(-)
such that £(x) = x*, i=1,...,r, in the set Qs vhere x* is the i™h component of x,

we see there is a bounded sequence {;n} such that

m(tn+s)-1
n ~ —
(2.10) :gg |x"(s)-%(0) - | izn ai(1+aiei)h()(i)| +0 wW.pl. as n » w,

Thus any limit X(<) of {Xn(-)} must satisfy (2.1) and the possible
limit points of {X } are contained w.p.1 in the largest bounded
invariant set of (2.1). The assertion concerning asymptotically

stable *(t)z Xp 1is now readily proved (see, e.g., proof of Theorem

(2.3.1) of [1]), and the details are omitted. Q.E.D.
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3. The Projection Method.

Let G be as defined in Section 1. For the continuous
vector field H(-) define w(h(x)) = projection of E(x) onto
G; i.e., F(E(x)) = lim [nG(xiAﬂ(x)) - x}/4. The limit need not

A+0

be unique. We will nced

(A8). (A3) and (A6) hold, but with V_ dropped and the right

sides O(an).

(A9) qi(~), i=1,...,m, are continuously differentiable,

G 1is bounded and is the closure of its interior

6° = 6- 36 = {x: q;(x) <0, i =1,...,n}, at each x € 3G,

the gradients of the active constraints are linearly independent.

Theorem 2. Assume (Al), (A8), (A9). Then {XO(-)} is uniform-

ly continuous on. [0,®], There is a null set 90 such that for

w € QO any limit X(*) of a convergent (uniformly on bounded

intervals) subsequence of {X"(-)} satisfies

(3.1) x = T(h(x)).

—

If {X } =compact A <DA(xy) infinitely often and w ¢ Q,, and

Xy = x(t) 1is an asymptotically stable point of (3.1), then X = x; w.p.l.

Let H(-) >0be a real valued function whose second mixed partial

derivatives are continuous and E(x) = -Hx(x). Define KT = set

— — 2
~ of points where h'(x)7W(h(x)) = 0, and suppose that KT = U S
i=1

where the Si are disjoint, closed and such that H(x) is

constant on each S.. Then X + KT w.p.1 as n * =




Proof. The-proof is very similar to that of Theorem 1. Let
r

f(+) be an arbitrary real valued function on R~ with continuous

second partial derivatives. Then

Enf(xn*l) - f(Xn) = anfi(xn)Enh(xn’gn) + anf;(Xn)EnTn

2

a 1
n

* 5 JOEn(axn/an)'fxx(xn+sdxn)(6xn/an)ds,

where L [“G(Xn+anh(xn,€n)) - (Xn+anh(xn,€n))]/an = 0(1).
Note that there is a K such that Tn =0 if

distance(xn,ac) > Kan and that Tn lies in the cone

C(xn+1)'= {y: q!

1,x(xn+1)y <0 for i:q (X ,;) = 0}.

Define fo(x,n) by
£,(x,n) = jEnajf)'((x)En[h(x,Ej) - h(x)1

and set f(n) f(Xn) + fo(xn,n). There is a bounded sequence

Ei such that

)H(Xn) - a f!'(X )EnTn =0,

nx'n

P2 P 2
Enf(n+1) - f(n) - €hén - anfi(xn

~ - n-1 2 n-1 ' n-1 _
£(n) - £(0) - izoeiai - izoaifx(xi)ﬁ(xi)-igggfi(xi)ri =

{M } is a martingale and Imil2 < Kaf. As in Theorenm 1,

m(tn+s)-1 m(tﬁ+s)-1

n ' '
:;xg!f(xn(-‘o))-f(x © - 1 afXPR&) - T e &)Y 0

i=n
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10.

from which follows

m(tn+s)-1 m(tn+s)-1
(3.3)  sup|x"(s) - X"(0) - I a.R(x;) - I a.t.|+o0
s>0 i=n 1 1 i=n 11

w.p.l as n + o,

Also, (x"(-)1 is equicontinuous, since h(.,+) is bounded.

Let QO denote the set of nonconvergence in (3.3) and for
fixed w ¢ QO’ extract a convergent subsequence of (x"()}
(uniformly on bognded intervals) with limit denoted by X(‘).
Define Hb(x) = v(h(x)) and El(x) = h(x) - ﬁb(x). Then, by
(3.3) there is a bounded RF-valued measurable function 7(°)
such that t(s) = 0 unless X(s) € 3G, and if X(s) € 3G then

t(s) is in the cone C(X(s)) and (3.4) holds.

t t
X(t) = X(0) + IOF(X(S))ds . Iot(s)ds

(3.4)

t ' t t
X(0) + Ioﬁb(X(s))ds + foﬁl(x(snds-+jot(s)ds,

The last two integrals on the right of (3.4) must cancel if X(t)
is to remain in G for all t. Thus (3.1) holds w.p.l.
If h(x) = -Hx(x), then use H(*) as a Liapunov function

for (3.1) to get

(3.5) H(x) = H (0)7(-H,(x)) < 0,




R MA]

from which we see that X(t) - KT as t + «, Thus, for each
e >0, {xn} is in an ¢ neighborhood N_(KT) of KT infinitely

often w.p.l. Fix ¢ > 0., Define Hl = lim H(xn). Suppose that
n

S and ﬁl are such that Hl = value of H(x) on S1 if

1l
o € ﬁl and P(ﬁl} > 0, and for some €, > € > 0, {xn} leaves

~

‘the e,-neighborhood N_ (S;) infinitely often for w € ;. Then

1 1
for (almost all) w € ﬁl, there are real numbers £ -+ = and

I AR . 5o

kn 2Ky >0 with kn + T < » and a solution X(-) to (3.1)

*: which is a limit of the sequence {x0(2n+s), s <k,,n= 1,2,...1}

and where X(0) € 3N_(S;) and either X(t) € 3N_ (S;) if T <=
1
or else X(t) - 3Ne (Sl) as t » », Using an argument like that
1l
used in [l1], Theorem 2.3.5, the last sentence and (3.5) imply

A

1 ¥ lim H(X ) almost everywhere on &,, a contradiction. |
" n

The next to the last assertion of the theorem is proved in a

that H

similar way. Q.E.D.

4. State Dependent and Unbounded Noise

State Dependent and Bounded Noise

’§ There are several ways in which the state dependent and bounded noise case
can be treated. The noise can be parameterized as-in {4], Section 9. Here, we
4 : _

| choose a Markovian representation. Suppose that {;n_l,xn} is a 7

Markov process. In applications, this might require an augmentation

of the state space of the 'original' {gn} and a redefinition of

the 'oxiginal' h(<,*). Let En denote conditioning on Ej' j < n,

X:» j < n, and define the 'partial' transition function
3 <

i P(E,G,PIX) = P{E € rlxn = X.En_l =€},

n+a-1
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It is supposed that P does not depend on n, for notational
simplicity only.

Write Vo(x,n) in the form

z aj[Ih(xcE)P(En_lpj‘n"'l,dE‘x’ - t—l(x,].

(4.1) V.(x,n) = V. (x)
0 RN

Note that EnP(En,j-n,Plxn) = P(E__,,5-n+1,T|X ) by the Markov
property. Assume that the sum in (4.1) is continuously differen-
tiable in x, and that the derivatives can be taken termwise and

that (replacing A6))

(4.2) |1 a, [v;(x)'{Ih(x.s)P(sn.j-n.dzlx) - h(x) |
j=n+l J , _ 1/2
< Kan(1+|vx(x)h(x)| ).

Theorem 3. Assume (Al)-(A7) but with (4.1), (4.2) replacing (A3),

(A6), resp. and (A4) replaced by

th(x,e)IZP(En_l,j—n.dzlx) < K(1+IV;(x)E(x)I). j > n.

Then the conclusions of Theoggp 1 hold.

Assume (Al), (A8), (A9) but with the modifications of (A3),

(A6) stated above. Then the conclusions of Theorem 2 continue

to hold.
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Remark on the proof. In the proof the difference (4.3) occurs,

© . _
(4-3) .j=£+lEnajvx(xn+l) [Ih(xni-l'E)P(zn'J-n'dgIxn+l) - h(Xn+1)]

_ j=z§+l ajvx(xn)[]h(xn.e)p(sn_l,j-nu,dg|xn) - B ).

Using the differentiability and the equality below (4.1) and the
bounds from (Al) - (A7) (modified for Theorem 3), (4.3) can be

2 ' -
seen to be of the order of an(1+|vx(xn)h(xn)|).

The proof of Theorem 3 is the same as those of Theorems 1 and 2.

Unbounded noise i

We state a generalization of Theorem 1 for the case where

e

{;n} is unbounded. First, make the following alterations in

the assumptions. Drop the boundedness of {gn} in (Al) and

suppose that there are Ko < «» and Bn >0, n > 0 such that

sup(EBn+EYn) < =, aan + a vy, * 0 w.p.l as n * = and
n
Ih(x,En)| < RgB, for x € o, and A3,4 hold with K replaced by

KYn. An additional assumption is required. - (A6) and (A7) were

used in Theorem 1 to get the bound (below (2.4)) on (2.4). We

require that the bound hold with O(ai) replaced by yno(ai).
This is, perhaps, an awkward way of stating the assumption, but it

. can be verified in many standard examples. For an alternative

5 condition see the remark after the example. We now have

L. S

o oy
o R AT R e




Theorem 4. Under the conditions of Theorem 1, altered as above,

the conclusions of Theorem'l continue tc hold.

The proof is very similar to that of Theorem 1; with only

is replaced by a §_ -+ 0

a few changes requires; e.g., a n

nén

w.p.l and W(n) > -En + 0 w.p.l as n + «, There is an analogous

result for the cases of Theorem 2.

Example. Let {En}. be stationary and Markov and h(x,§)
R(x) + h)(x)g(f), where Eg(f) =0, Eg°(f) < =. Here

function of £ _, and 8  is a function of £ . Such a form

occurs in applications to the identification and adaptive control

of linear systems, where h and ho are affine functions of x.

Then, Theorem 1 holds under a simple stability condition on x = h(x),
and on reasonable conditions on '{En}. A standard and important
special case occurs in the identification problem for linear systems

~ -~

where we use § = L&, y, = LyE, {En} Markov and

X41 = ¥p — ap¥p Lo X -y,

n
¥n € R, Y, € R.

Remark on Theorem 3. The ‘unbounded noise' analog of Theorem 3

also holds under the conditions of Theorem 3, modified as follows.




(A4) is replaced by the expression in the statement of Theorem 3,
but with K replaced by 'Kyn. {4.1) is used for Vo(x,n) and
the K there is replaced by Kyn. As an alternative to (A6), (A7),

assume that

(4.4) E_|left hand side of 4.2)}2 < ynK(1+|V;‘(x)}T(x) .,

where x is replaced by x + sanh(x,En), s € [0,1], in evaluat-
ing (4.4). Then under the conditions on Bn’Yn' Ky h(x,zn) in

the paragraph above Theorem 4, the conclusions of the first para-
graph of Theorem 3 continue to hold. There is a similar extension

of the second paragraph of Theorem 3.

The following two classes of examples have state dependent

noise and they illustrate two different ways of using Theorem 3.

S. A Learning Automata Example.

This example is a modification of one in [5], where

a se?> 0 and an extensive development of the asymptotic distri-

butional properties is given. Here we are concerned with w.p.1l
convergence only for the case where a -+ 0. A relatively simple
case is treated. Clearly, more complicated arrival and adaptive

processes and systems can be treated.

. The problem. Calls arrive at a switching terminal at random at
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time instants n = 0,1,2,..., with P{one call arrives at nth

instant} = y € (0,1), P{>1 call arrives at n®D instant} = 0.
There are two possible routings to the destination, routes i,
i=1,2, where route i has Ni independent lines - and can
handle up to N, calls simultaneously. Let [n,n+l) denote the
n*? interval of time. The duration of each call has the distri-
bution: P{call completed in the (n+l)3*% interval |uncompleted

at end of nth

interval, route i used} = A; € (0,1). The
members of the sequence of interarrival times and call durations
are mutually independent. The use of an adaptive automaton for
adjusting the routing comes from [7].

The routing automaton operatgs as follows. Let {xn} denote
a sequence of random variables - with values in [0,1]. In order
to have an unambiguous sequencing of events, let the calls ending

th

in the n interval actually end at time n + %, and let both

arrivals and route assignments be at the ends of the intervals;

i.e., at the instants 0,1,2,... precisely. Thus the state of

the route occupancy at time (n+l)  does not include the calls just

terminated or calls arriving at (n+l). Define the "route occupancy

process" zn = (z;,zﬁ), where z: is the number of lines of route

i occupied at time n*. Thus, zi < N;. If a call arrives at
instant n + 1, the automaton chooses route 1 with probability xn
and route 2 with probability 1 - xn. If all lines of the chosen

route 1 are occupied at instant (n+l)”, then the call is switched

to route 3j (j # i). If all lines of route j are also occupied
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at instant (n+l) , then the call is rejected. The choice
probabilities (X } are to be adjusted or adapted according to
the 'experience' of the system.

The specific adjustment scheme for {Xn} is the following
"linear-reward" algorithm (7]. Let Jin denote the indicator

of the event {call arrives at n + 1, is assigned first to route

i and is accepted by route i}. For practical as well as theoretical

purposes, it is important to bound xn away from the points 0 and

1. Let 0 < x, < x, < 1. We use the (projected) algorithm (5.1),

L

X
where u denotes truncation at X, Or X, and

X

[}
a(x) =1~ x, B(x) = -x.
. _ X |

(5.1) xn+1 = [xn * anm(xn)‘lln * ans(xn)JZn] X 2 )

Some definitions. If the choice probabilities Xn are held fixed

at some value x for all n, then the route choice automaton still
is well defined. For fixed route selection probability x € (0,1),
let {Z (x)} = {(Zi(x),Z§(x)), 0 < n <=} denote the corresponding
route occupancy process. For the process {Zn(x)}, the state space
Z = {(i,j): i < Ni» 3 < Nz} (whose points are ordered in some

fixed way) is a single ergodic class, and the probability transition

matrix, denoted by A'(x), has infinitely differentiable components.

With given initial condition, define P (2¢|x) = P{Z (x) = @} and define

the vector P (x) = {Pn(ulx), @ € 2}. Then P ,,(x) = A(X)P,(x).
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The pair {zn,xn), n > 0} 1is a Markov process on Z X [xl,xh]

and the marginal transition probability P{Z_,, = (k,l)lZn = (i,j),xn}

is just the ((i,j)-column, (k,%)-row) entry of A(X ). Define the

vector P {Pn(a), @ €2} where P (@) = P{Zn = alxz, 2 <n, Zo}.

Then P o1 = A(Xn)Pn. Also, let P(x) = {P(a|x), & € Z} denote the 3
unique invariant measure for {Zn(x)}, with marginal defined by ‘

Pl(Nllx) = asymptotic probability that Zi = Nl’ and similarly for

route 2. Finally, define the transition probability P(a,j,allx) =
P{Zj(x) - GI[ZO(X) = o}, and define the marginal transition

probability
PE(®,5,N; %) = PLZj(x) = Ni1Z5(x) = o}

Define E to be the expectation conditioned on {Zz, Xg» & < n}

- _ i
and set Vi = (1 Xi) .

Application of Theorem 3.
We have h(xn,En) = a(Xn)J1n + B(Xn)J2n and, with I{-}

denoting the indicator function,

1 _
Enh(xn’gn) = ua(xn)xnll'vll{zn = Nl}]

+ WB(X,) (1-X ) [1-v, {22 = N,}1,
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which can be written in the form

= . 2 N 1
(5.2) WX (LX) [V,P(Z ,0,N,|X ) - v;PT(2,,0,N; X )]

Define h(:) to be the limit

. 2 1
ux(1-x)1lim E[vz? (Zn,n,Nzlx) - V,P (Zn,n,Nzlx)]

n-+

h(x)

(5.3)

wx (1-x) [V,P2 (N, [x) - v Ly [0

The sum (A3) is replaced by (since the second part of Theorem

3 is to be used, the V _(x) component can be dropped)

Volx,n) = ux(l-x)V;(x)Jznaj[vz(pZ(x,j-n,N [x) - pZ(Nzlx))

(5.4) - v (PL(x,3-n,N %) - PRON 1)),

The sum (A6) is replaced by the analogous sum of the derivatives
(again drop the Vx(x) component). There is a unique x € (0,1)
such that h(X) = 0 and h(x) >0 for x € (0,x) and h(x) <0
for x € (x,1). The Pn(k) and Pn,x(X) converge [5] to the
limits P(x), Px(x) geometrically with a rate uniform in

x € [xz,xu] and in Po(x) (Po,x(X) = 0 is the appropriate
initial condition to get the limit for the derivative sequence in

(A6)). This result implies that (A3), (A6) exist and converge

absolutely and'uniformly in (n,xn) at a geometric rate. See

{5] for the details of the convergences.

E
E
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Part 2 of Theorem 3 now yields Theorem 4 below. Theorem 4
can also be proved directly, via the method of Theorem 2 (here
the boundary is only {xz,xu}) with the 'corrected' test function

(5.4) used in lieu of the sum in (A3).

Theorem 5. Let Zai < ®, fa; = . Then if x € [xz,xu], we

have ({X } - X w.p.l. Otherwise (X} converges w.p.l to the

point x, or x,  which is nearest to x.

6. Observation Averagigg,for'Stochastic Approximations.

The general method of Theorems 1 and 2 can be easily used to
prove w.p.1l convergeﬁce for stochastic approximations of the
Robbins-Monro or Kiefer-Wolfowitz type but with averaged observa-
tions. The main difficulty is due to the fact that the quantity
which plays the role of the noise is always state dependent. The
idea will be illustrated via a very simple example. We use a
Robbins-Monro scheme tq estimate the root of Kx = 0, x = scalar,
K > 0 (but the method is applicable to the general problem).

Define the estimates by

*u

L

X (X_+a_&

n+1 = Xptapto) iy
(6.1)

En - asn_l - B[Kxn+¢n],




where a€(0,1), 8 > 0 and {wn} is a bounded sequence of
mutually ihdependent random variables with zero mean value. If
a = 0, then (6.1) is the usual Robbins-Monroe method, truncated
at values *ﬁrxz. If a E.(O,l), then the observations are
exponentially weighted. Theorem 3 requires truncation to some
finite interval [xz,xu]. Such truncation is usually done in
practice anyway. Define h(x) =-8Kx/(1-«) and h(x,£) = ¢.
Instead of writing Vo (x,n) in the form (4.1), it is more
convenient to do the following. For each x,n, define the
auxiliary processes {Ej(x), j > n} where the initial condition
Eh-1 (%) is to be defined and Ej(x) = an_l(x) - (BKx+wj),

j > n. Write Vo(x,n) as

JZnajvx(x)sn[h(x,sj (x))-h(x)],

Vo(x,n) =

where £ _ (X ) = §h-1r and E_ = denotes expectation conditioned

on X.,, i <n, ¥;, i <n. Note that £ (X ) =& .

Now Theorem 3 yields

Theorem 6. Let zai < =, Zai ==», If 0€ [xz,xu], then

{Xn} + 0 w.p.l. Otherwise (Xn} converges w.p.l to the point

Xy 0%, which is closest to zero.

In [4] there is an analysis of the asymptotic properties

of (6.1) when a = e > 0.
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