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1.0 INTRODUCTION

1.1 Background

The Aids to Navigation Positioning Project (ANPP) was initiated in 4

the Coast Guard to establish ways to improve the reliability of buoys in

marking advertised positions. Support efforts in this task were assigned to

the CG Research and Development Center at Groton, Connecticut, and are

snt}tl:d.“The Aids to Navigation Position Accuracy and Reliability (ANPAR)
roject.' j

1.1.1 Philosophy | ?*
The Positioning/Error Model has been defined in three dis-

I - Error Sensitivity Model
II - Operational Positioning Model

IIT - Uses of the Models

tinct phases:

This report concerns itself with Phase I which adopted the
following philosophy:

Error sources, both random and systematic in nature, are
inherent in the positioning process. Each error source can cause an error in f
one or more of the observations from which position is determined. The
resulting observation error will be propagated within the positioning process
and result in a corresponding position error. This error propagation is a 3
function of both the fix geometry (locations of landmarks or transmitting
stations) and the observed parameter (sextant angle, radar range, gyroscope
bearing, or LORAN time differences). It is reasonable to construct a
mathematical model of error propagation routines which can include, where
practical, the functional relationship between a measure of error source
magnitude and a corresponding observation error. For the purpose of this
report the term "error" will refer to either an error source magnitude or an
observation error; the effect of an "error" is called "position error"; and
the error propagation routine is called "modeled error."” Errors with similar
propagation functions can be grouped and referred to by a representative
"modeled error" to avoid redundant model routines.

Studies of error in the positioning process can be
conducted by constructing a model which can accommodate various modeled
errors, error magnitudes, and fix geometries, as well as display various
measures of position error. The model developed by this project allows the
user to: (1) select the modeled error to be studied; (2) specify the range of
error magnitude; (3) efither define one particular geometry or specify the
nunber of randomly generated geometries for an average effect; and (4) select
the position error effect to be displayed.

Studies using this model of the positioning process can
be conducted for ranking errors by their effect on a selected position error
measure. Once errors are ranked, efforts can be directed toward minimizing
the magnitudes of the priority errors. This model also can be used to study
the effect blunders have on the positioning process. The most significant

IR I R AR T N e o= e s




blunder effects can be identified and examined to ascertain the need for
training efforts directed towards amelioration of these effects.

The Error Sensitivity Model (ESM) phase of this effort
provides insight into the effect of the various error sources and provides a
tool for use by ANPP to support further efforts. The result of such efforts
should help Coast Guardsmen comply with the requirement that an aid mark
accurately and precisely the geographic position advertised by the govern-
ment. In this Tight, the Error Sensitivity Model is a management tool to help
study the aid positioning macro-structure.

1.2 Terminology and Symbology

The terminology established by reference 1 has been adopted here and
extended as necessary. In addition to the Glossary of reference 1, the
following publications establish the terminology used herein:

a. American Practical Navigator, Bowditch (1977)

b. Aids to Nav?ggt?on Manual, Positioning, Volume V, 1978

¢. Observations and Least Squares, Mikhail, E.M.

d. Hydrographic Manual, 4th Edition, Department of Commerce

e. Defingtions of Survez Terms, Mitchell, H.C., Special Pub. No.

Symbols are defined where they are first used in the text.

1.3 Summary of Previous Work

A review of the descriptive bibliography of reference 1 indicates
that ANPP work related to the ESM has been in progress for about seven years.
Items listed in this bibliography (along with some unpublished notes compiled
within the Coast Guard) comprise the majority of previous work on the ESM
Phase of the Positioning/Error Model.
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2,0 MATHEMATICAL MODEL

: The model simulates the inherent stochastic nature of observations o
3 through use of systematic and random error inputs making possible the }
! observation of error propagation effects on important mathematical measures of b
position error.

The model employs the least squares principle to find a set of adjust-
ments that will cause the observations to be compatible with the following
. functional model:

- Within the local region where the positioning process is being exe-
cuted, the Tines of position determined by any sufficient subset of
functionally independent observations should cross at a single point.

ket i sa i,

2.1 Preliminary Considerations

Mathematical models, by necessity, must rely upon appropriate 4
assumptions and/or approximations. When these are understood, the model is ;
applicable to the domain defined by them. These considerations are defined ;
and expanded in this and succeeding sections of the report. While every '
effort has been made to select error magnitudes that reflect those occurring )
in practice, the model is flexible enough to incorporate verified values as ,
they become available. 4

While the basic transformation from observation space to real
positioning space is well known, the statistical methods chosen for weighting
each observation and simulating each error source in the system are dictated 4
by the project element requirements. The requirements of phase I of this ;
project element are to both model and study position error effects as a
function of the systematic and the random measurement error components.
4 Statistics which effectively deal with each of these error components are a
‘w necessity.

The basic tenet (reference 1), "that the conditions imposed upon any
positioning task are unique to the station and not necessarily well defined,”
dictate procedures which statistically account for the uncertainty of a
specific positioning evolution by calculating unbiased estimates of
measurement precision from observations made on scene. These procedures deal
with the total measurement error, not its components, and are not needed to
satisfy the requirements of phase I of this project element. These procedures
will be discussed in phase II of the Positioning/Error Model effort where
emphasis is placed on mathematical tools for actual aid positioning. (See
reference 1)

The results of ESM studies presented in this report are position
error effects as a function of error magnitudes and provide an indication of
which error to prioritize. The measurement and quantification of actual error
magnitudes is the subject of other project elements of the ANPAR project.
Definite error magnitudes can be input to the model for analysis when they are
established.

2.2 Least Squares Adjustment Method

The error model is based on the least squares adjustment method of
computing the Most Probable Position (MPP). Mathematical justification for
the adjustment method is contained in references 4 and 8. Expressions for ,
each matrix element are provided in appendix A.

; I
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The least squares method is used to provide probable corrections to
a set of observations so that they will satisfy the functional model. The
input is a set of inconsistent measurements with an inherent stochastic nature
and the output is an adjusted set of measurements which are consistent but are
not the true measurements. In a related fashion, the least squares method can
be used to study the effect observation errors have on position error.

A "fix geometry" is defined so that the set of errorless measure-
ments cause a consistent set of lines of position. The observations are then
subjected to a known error, or set of errors, and the resulting inconsistent
system is studied. [f the system is subjected to systematic error, the MPP
may change its location and that change will be dependent on the weight of the
observations subjected to the error and the structure of the fix geometry.
Mathemat}ca]ly, displacement of the MPP in positioning space is defined by the
vector X' = [ax, Ay]. The vector X is determined through the transfor-
mation of n observations given by: (references 3 and 8)

X = -(ATWA)-1ATwL (2-1)

Where L is an (n x 1) vector matrix of systematic observation errors.
W is an (n x n) diagonal matrix of observation weighting factors
(inverse of covariance matrix).
A is an (n x 2) matrix of partial derivatives of measurements with
respect to x and y dimensions in real positioning
space.

It is upon this equation that the Error Sensitivity Model is based.
The A matrix is completely determined by the "fix geometry" specified for
modeling. The L matrix is the tool for systematic error input to the system
and the W matrix is the weighting matrix which depends on the specified vari-
ances (and therefore weight? of each observation. It can be seen at this
point that the effect a systematic error has on X is linear but is dependent
heavily on the variance of the measurements to which it is subjected.

The MPP displacement vector X is not the only error effect of
interest. The stochastic nature of the observations is transformed into a
bivariate normal probability distribution (reference 11) centered around the
MPP. Selected parameters of this distribution are calculated as a function of
the stochastic nature of the observations.

The next step is to define the error sources within the positioning
process and to functionally relate each in turn to the respective elements of
either the L or W matrix. In this fashion, the errors of interest can be
studied for any "fix geometry."

2.3 The Errors Modeled

Each element 1; of the L matrix in the adjustment equation %2-1)
is a function of the systematic error sources present in making the i
‘observation. In an actual positioning evolution each 1; is subject to
random error sources present in making a measurement. Because of the random
nature of 1;, each element is associated with the variance of the respective




measurement type which is used to weight the observations. The diagonal
elements w;j; of the W matrix in the adjustment equation are the weighting
factors. +hey are determined by the equation:

wij = —;—z (2-2)

1

. Where o; is the standard deviation of the ith gbservation in units of the
observation. -

The matrix elements 1; and w;; are the dependent variables of
the functional relationships between errors and the adjustment equation. For
any "fix geometry," the effect that varying the fundamental elements (1; and
wii) has on the resulting position error could have been studied. This,
however, does not make the relative significance of the various error sources
obvious. The output of the routine is a function of readily understandable
errors which are described in words in the following sections and mathe-
matically in appendix A.

Throughout this report, the measuring instruments are assumed to be
the sextant (angles), the gyrocompass (bearings), the radar (ranges), and the
LORAN receiver (time differences). These four measuring instruments were
chosen because of field familiarity with the measurement terminology of each.
The model is capable of simulating other range, bearing, angle, or time dif-
ference measuring instruments in the same manner it simulates the four chosen
instruments.

2.3.1 Modeled Systematic Errors

The ERRORS column of table 2-1 lists readily apparent sys-
tematic errors subject to study through use of the ESM. Many errors have a
similar effect on the position error. Therefore, errors with similar effect
are grouped and listed under the heading - MODELED ERROR. The MODELED ERROR
column of table 2-1 is a list of these groups. Each of the modeled errors is
described briefly in the subsections to follow. For this report, an error
maximum for each modeled error is given in table 2-1. The maximum error must
be assigned by the user of the ESM. Because the model iterates through a
range from zero to the maximum error, it is not necessary to specify an
expected value of any systematic error. It is accepted that the list of sys-
tematic errors may not be entirely complete; but, any exclusions are of minor
importance, since any measurement error omitted may be grouped with one of the
errors listed for modeling.

2.3.1.1 Index Error

. A1l angular measurement errors which add directly to
the angular measure are grouped with Index Error for purposes of this model
because Index Error is probably the best known error in making sextant
measurements.




TABLE 2-1
SYSTEMATIC ERRORS

ERROR
INSTRUMENT ERRORS MODELED ERROR cooe¥  maxImumM*
SEXTANT Index Index Error n-1E 60 minutes {
(Angles) - Personal
Three-Arm Protractor
Instrument
Sextant
Inclined Angle Inclined Ang]s n-IA 100 meters
Error (C&NC)
Observer Coincidence Observer Coinci- n-0C 20 meters
dence Error '
Survey Landmark Misplaced n-LMM 100 meters
Alignment Error (C&NC)
Landmark Charting
RADAR Radar Range Error n-RE 100 meters
(Ranges ) *Variable Electronic Bias
*Range Marker Alignment
*Personal
*_andmark Misplaced
- GYROCOMPASS *Gyro Bearing Error n-BE 3 degrees
g (True Bearings) *Speed
Personal
Repeater Offset
*| andmark Misplaced 1
LORAN *Prediction LORAN Error n-LE 0.25 usec
(Time Differences) *Electronic Bias
*Transmission

# C = Common Tandmark for several observations.
NC = No common landmark to any two observations.
n = The number of measurements in each simulated geometry subjected to the error.

* These errors were not modeled in detail, even though they may have a complicated -
functional relationship to the elements of the L matrix, because the weight of
observations made by instruments other than the sextant is small compared to the
weight of sextant observations.

* This quantity was arbitrarily chosen for this study.
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Personal Error - This error occurs when individual
observers make measurements that, "on the average," are a little larger or a
little smaller than they actually should be.

Three-Arm Protractor Error - This error is due to
inaccuracies in a three-arm protractor which is used for plotting or unplot-
ting angular values.

Instrument Error - The sum of all non-adjustable
errors in a sextant including, prismatic, graduation, and centerwng errors,
constitute Instrument Error.

Sextant Error - The total systematic error in a
sextant measurement is considered sextant error. Index error, mirror perpen-
dicularity, and instrument error are included in this group.

2.3.1.2 1Inclined Angle Error

When a sextant is used to measure the horizontal
angle subtended by two landmarks, an error may occur if the landmarks are of
different altitudes. The error is called Inclined Angle Error. For purposes
of modeling, the Inclined Angle is given the units of meters which represents
the difference in altitudes of the two landmarks. The functional form of the
model for Inclined Angle Error is provided in appendix A.

2.3.1.3 Observer Coincidence Error

When resection methods are used in positioning, the
assumption is norma]ly made that all angles are observed with all observers
standing on the same point. This, however, is usually not the case, and
results in position error. The error in angular measurement due to a lack of
coincidence of the observers is called Observer Coincidence Error. The orien-
tation of the observer separation with respect to the "fix geometry" is also
important. For modeling purposes, the observer making the measurement in
error is displaced in the direction that causes maximum effect. The function-
al relationship between observer coincidence error and the elements of the L
matrix is provided in appendix A.

2.3.1.4 Landmark Misplaced Error

This modeled error can be used to simulate errors
occurring when the geographic coordinates of a landmark differ from those used
in computations or plotting., Survey Error falls in this group. Survey error
represents any case where the published coordinates of the landmark are not in
agreement with the coordinates of the landmark. This may be due to lower
order survey work or, even worse, to rebuilding of landmarks in different
locations without a new survey.

In using the sextant to measure horizontal angles,
two landmarks must be aligned in the horizon mirror. If the two landmarks are
aligned using points other than the published coordinates of the surveyed
point of the landmark, Alignment Error will occur. For example, alignment
error will occur when 1ining up the perceived centerlines of two tanks rather
than the surveyed points on the platforms around the tanks. The effect of




this error is identical to survey error but the source is the observer rather
than the survey network.

Cartography is the science or art of making maps and
charts. Though the techniques used by cartographers are quite accurate, there
is always a small allowable error in charting any specific landmark. Charting
error contributes to position error when graphical procedures are used in
positioning. For purposes of modeling, this small error is called Landmark
Charting Error and is placed in the Landmark Misplaced group.

The orientation of the Landmark Misplacement error
with respect to the "fix geometry" can be important, as it is with Observer
Coincidence. For the purpose of modeling, the misplacement is always perpen-
dicular to the simulated line of sight to the landmark. The mathematical
details of the Landmark Misplaced group are contained in appendix A.

2.3.1.5 Range Error

There are many possible sources of error in measur-
ing ranges using either electronic or mechanical devices. Most errors do not
have a direct relationship to the elements of the L matrix. Model require-
ments, however, do not specify a need for the exact formulation of each
relationship. A1l errors in this group are simulated by direct addition to
the measurement.

Radar Error - The difference between radar range
output and a true geodetic range is called Radar Error. Unfortunately,
calibration by using this comparison is often not performed; only an electron-
ic "tune up" is performed. The Tack of an electronic "tune up" may cause an
Electronic Bias Error to be overlooked.

Variable Range Marker Alignment Error - This error
occurs when the user does not correctly align the variable range marker with
the blip that represents the landmark. This error is expected to be closely
related to Personal Error because most observers have their own way of align-
ing the marker.

Landmark Misplaced Error - This error also applies
to radar measurements, but the functional form for this error is used only in
angular measurement simulation because of the relatijve weights of the measure-
ment types.

2.3.1.6 Bearing Error

The determination of true bearings using the gyro-
compass is subject to error from many sources. Most of the errors are related
to the elements of the L matrix in a complex manner. Model requirements,
however, did not specify a need for the exact formulation of the relation-
ship. A1l errors in this group are simulated by direct addition to the true
bearing measurement.

Gyro Error - The Gyro Error is the total combination
of the gyrocompass errors at any time., It is expressed in degrees east or
west to indicate the direction in which the axis of the compass is offset from
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true north. The errors generally associated with Gyro Error are: speed
error, tangent latitude error, ballistic deflection error, ballistic damping
error, quadrantal error, and gimballing error.

Reference 2 contains definitions and discussion of
Ehese error types. For purposes of modeling, they are grouped under Bearing
rror.

Personal Error - This error represents the fact that
the overall mean of an individual's observations may tend to be slightly
larger or smaller than the true measurement.

Repeater Offset Error - This occurs when gyrocompass
repeaters, which are located at a convenient location for measurement, do not
present the same values as indicated on the master gyrocompass.

Landmark Misplaced Error - Because of the relative
weights of bearing measurements to sextant measurements, the functional form
for this error is used only in sextant measurement simulation.

2.3.1.7 LORAN Error

There are many possible sources for error in posi-
tion location using LORAN (reference 3). Most do not have a simple direct
relationship to the elements of the L matrix of the adjustment equation.
Model requirements, however, did not specify a need for the exact formulation
of each relationship. A1l errors in this group are simulated by direct
addition to the measured LORAN time difference measurement. All receiver
electronic misadjustments which could cause measurement error are represented
by Electronic Bias for modeling purposes. The other group of error sources
which could result in position error are those due to the differences in the
predicted and actual transmission path of the LORAN signal. Any error source
in this category is represented by Transmission Error. There is also a
possibility for Charting Error if a chart is used in positioning with LORAN.

2.3.2 Modeled Random Errors

Table 2-2 provides a list of the random error sources subject
to study through use of the ESM. The table also provides an arbitrary maximum
value for each standard deviation (s.d.) of each modeled error as well as a
default s.d. for each modeled error. Lacking an input value for s.d., the
model assumes the default value for the s.d. The default s.d. values used are
taken from references 3, 9, and 10. These arbitrary values are intended to
represent the relative goodness of the measuring instruments and are presently
being refined/verified by other ongoing work. Unless otherwise specified, the
default s.d.'s associated with the measurement types are:

a. Sextant - 5 minutes
b. Radar - 30 meters
c. Bearing - 0.5 degree
d. LORAN - 0.1 usec
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In some cases, it is more appropriate to assign smaller
standard deviations to chosen measurement types in order to see the effect of
a projected improvement in the repeatability of an instrument.

The importance of random error assignment cannot be over-
emphasized as the effect of any particular systematic error is dependent upon
the weight assigned to the observation. This is not a serious constraint
because, as more refined measures of instrument precision are provided, the
model can be modified and exercised accordingly.

A1l but Landmark Definition have a simple inverse square
relationship to the diagonal elements of the weighting matrix, W. The
relationship between landmark definition and the variance of the resulting
measurement is provided in appendix A.

The list of random error sources may not be entirely complete
but it is considered that any exclusions are of minor importance since omitted
random errors may be grouped with one of the errors listed for modeling.

2.3.2.1 Sextant/Observer Standard Deviation

The inherent stochastic nature of sextant observa-
tions is modeled through use of this error. It combines random error due to
Observer Standard Deviation and Sextant Standard Deviation. Observer s.d.
represents the fact that even with a perfect sextant, an observer will not
make the same observations with repeated measurements.

Sextant Standard Deviation is similar to Observer
Standard Deviation except that the observer is considered perfect while the
sextant is the random error source. Both errors have identical effect on
position error.

2.3.2.2 Landmark Definition

A landmark observed while making resection measure-
ments may not provide a clear and distinct image. This would cause even the
perfect observer with the perfect sextant to have poor repeatability of a
measurement. Some landmarks provide a very clear point for alignment while ;
other landmarks, such as a wide water tower at close range, do not. These !
errors are represented by Landmark Definition. Any doubt in the quality of '
horizontal control can be modeTed also through use of this error (for doubt
?ssg;iaﬁﬁd only with the direction perpendicular to the line of sight to the
andmark).

2.3.2.3 Radar, Bearing, and LORAN Standard Deviation

The precision of each radar, gyrocompass, and LORAN
measurement is dependent on the observer and the equipment. Electronic noise,
inherent mechanical fluctuations, and visibility conditions are sources of
random error in each measurement. The random errors are modeled directly by
user assignment of s.d.'s to measurements simulated. Since known values of
s.di's are not yet available, the s.d.'s assigned for this report are
estimates.
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2.3.3 Modeled Qutliers

A project requirement for the ESM is to introduce a high
confidence outlier detection technique. A mathematical description of an
outlier detection scheme, which can be investigated using the ESM, is provided
in appendix F, and demonstEated in section 5.5 in this report. The technique
js fashioned after the " X ¢ Goodness of Fit" statistical test used in the
physical sciences. In this test the question is asked, "Does the observation
deviate from the functional model by such a magnitude that it is unlikely due
to random error alone?" The existence of a large blunder, or of a systematic
error as a cause of the outlier, can be suspected using this method when a
reasonable estimate of the measurement s.d. is known. However, small blunders
or systematic errors will go unsuspected.

Examples of the most common mistakes are applying Index
Correction improperly or of sighting a landmark which is not the one
selected. Blunders are modeled similar to systematic errors.

Table 2-3 provides a list of often-discussed blunders (not
all possible blunders) and the systematic error group in which they are
assigned.

Because the least squares adjustment equation uses linear
first-order approximations to a more comdlex system, large blunders cause
higher order effects and cannot be modeled accurately.

TABLE 2-3
BLUNDERS
BLUNDER SYSTEMATIC MODELED ERROR GROUP
Index Correction Applied Wrong Index Error
Sextant Read Wrong Index Error
Wrong Landmark Observed Landmark Misplacement
Data Entry Mistake Index Error
Incorrect Radar Reading Radar Error
Incorrect Gyro Reading Bearing Ervror
Incorrect LORAN Reading LORAN Error
Angles Switched Too drastic to model
Uncompensated-for Systematic Errors All errors discussed in 2.3.1*

*Source of blunder need not be Coast Guardsmen (e.g., survey team).
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3.0 GEOMETRY

The geometry of a fix consists of all the LOP's which represent the
measurements that compose the fix, their respective measurement standard
deviations, and their orientation with respect to each other. The *fix
geometry" determines the strength of the fix. Effects of measurement errors
and computational mistakes on position error depend on the strength of the
fix, which implies that choice of the "fix geometry" is important part to ESM
efforts. The pitfalls of assuming only a few geometry layouts become evident
when considering the basic tenet "that all fixes are unique." Too much
information (studying many selected "fix geometries") can be as harmful as too
little if useful information is not apparent. The ESM model was created with
two alternative approaches to the geometry problem. In the first alternative,
called the “Fixed Geometry" alternative, representative positioning scenarios
are selected for study. The three scenarios selected for this study are
described in detail in the next section. Users of this model for other
studies are cautioned that if too few geometry scenarios are considered,
erroneous conclusions could be drawn and important results bypassed. The
second alternative, called the "Random Geometry" alternative, generates
information from many "fix geometries" without creating so much information
that it is unmanageable. The "Random Geometry" alternative is described
verbally in section 5.2 and expressed mathematically in appendices A and E.

3.1 Fixed Geometry

Although many scenarios can be analyzed using the ESM, only
scenarios called Harbor, Near-Coast, and Offshore were selected for study in
this report.

3.1.1 Harbor

The Harbor scenario is composed of sextant measurements using
landmarks that are relatively close (4000 meters) to the designated position,
and which surround the position with equal angular spacing (90°). Figure
3-1 depicts the geometry of the Harbor scenario. This scenario was chosen
because many aids serviced by the Coast Guard are within rivers and harbors.

3.1.2 Near-Coast

This scenario is composed primarily of sextant measurements
using landmarks equally spaced on a nearby (4000 meters) coastline. A fourth
1ine of position is included using an additional gyrocompass measurement
thereby further "checking” the fix. The effect of this additional "check" is
studied. Figure 3-2 provides the fix geometry for the Near-Coast scenario.

3.1.3 Offshore

This scenario represents cases when sufficient landmarks are
not available or visible for resection, and is composed of measurements made
using combinations of instruments other than the sextant. Comparison between
measurement types is made using a symmetrical geometry for each and then
studyln the respective position error. Figure 3-3 describes the Offshore
geometries.,
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Ao Posw,

R = 4000 meters
A = 90 degrees

Three lines of position from sextant.
No other measurements.

FIGURE 3-1
HARBOR GEOMETRY

R = 4000 meters
A = 30 degrees
8 = 60 degrees

Three lines of position from sextant.

One line of position from gyrocompass,

sighting on second landmark from left.
FIGURE 3-2

NEAR-COAST GEOMETRY

R = 4000 meters
A = 60 degrees

Three lines of position from radar,
gyrocompass, or LORAN (Gradient taken to
be 300 meters/ysec).

FIGURE 3-3

OFFSHORE GEOMETRY
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3.1.4 Other fix geometries

The operating instructions for using the ESM to study other
scenarios of interest are contained in appendix 8.

3.2 Random Geometry

It is seldom that all elements of a large population can be
studied. A common method of studying large populations is to draw a sample
from the population, perform tests on it, and infer the statistics apply to
the entire population. :

A sample of "fix geometries" using the sextant was drawn from the
SANDS (reference 3) forms of USCGC REDWOOD (WLM 685), and sample statistics
were calculated. The direct route of subjecting each "fix geometry" to
analysis proved to be cumbersome, therefore, a Monte Carlo routine was created
using the sample statistics. The mathematical equations used in the Monte
Carlo simulation and the sample statistics are provided in appendix E.

The "random geometries" generated by the Monte Carlo routine were
subjected to error analysis and selected frequency distributions of error
effects were determined. The inference was made that the frequency distribu-
tions created represent the results obtainable by study of all "real" aid
positioning geometries. The critical reader will question the validity of
representing all possible fix geometries by a sample from the SANDS data of
only one unit. The response to this valid criticism is that the requirements
placed on the ESM efforts reported on herein calls for a tool to be used in
Judging relative error effects among some representative geometries. If a
different set of representative geometries (such as one drawn randomly nation-
wide) is desired, the statistics of the sample can be entered into the model
for further study. The results contained herein must be weighted by the fact
that they are created through use of the USCGC REDWOOD sample.

The sample drawn from USCGC REDWOOD had too few "fix geome-
tries" composed of radar, gyrocompass, and LORAN measurements. Because of
this data deficiency, other modeling techniques were employed. A Monte Carlo
simulation of all measurements is used adding reasonabie constraints upon
landmarks sighted and crossing angles. The simulated landmarks used for range
and bearing measurements were generated using statistics of the REDWOOD
sample. However, successive landmark bearings were distributed uniformally
between 30 and 90 degrees. LORAN LOP's were simulated with similar crossing
angles. Though the distributions used in this work are necessarily biased due
to sampling from a single unit, the point that this error evaluation technique
{s a powerful one is effectively made. More precise distributions can be
substituted if a substantial return is indicated.
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4.0 COMPUTER ADAPTATION OF THE MODEL

A set of landmarks, measurements, and/or signals are chosen which define
a "fix geometry" that satisfies the functional model introduced in section
2.0. The measurements are perturbed by subjecting them to an iteratively in-
creasing modeled error from among those defined in section 2.3. The perturbed
measurements are then transformed via the least squares adjustment equation
into a two-dimensional location with an associated two-dimensional uncertain-
%{. z?rious measures of position error are calculated following each

eration.

As inputs are required, the computer displays a message to the operator.
The routine does not have a data entry error feedback system which means the
operating instructions of appendix B should be followed strictly. The time
required to study the effect of one error source on a specified "fix geometry"
is a few minutes, including data entry time. The time required for a "random
geom$try“ case increases linearly with the number of geometries desired in the
sample.

4.1 Required Inputs

4,1.1 Fixed Geometry

Table 4-1 1ists the inputs required by the routine in study-
ing a "fix geometry" (refer to appendix B for proper data entry procedures).

4.1.2 Random Geometry

Table 4-2 1ists the inputs required by the routine in study-
ing "random geometries" (refer to appendix B for proper data entry procedures).

4.2 Qutputs of the Error Sensitivity Model

The outputs differ significantly between the two geometry approaches.
In all "fixed geometry" cases, the chosen error effect parameter is plotted as
a function of the modeled error, whereas the "random geometry" outputs are
frequency distributions or cumulative frequency distributions of the selected
error effect parameter as a function of five values of the modeled error all
equally spaced within the modeled error domain (see section 5.2). In either
method the same modeled errors and error effect parameters are available. The
modeled errors were discussed in section 2.3 and the error effect parameters
are described in the following subsections. Refer to Results (section 5.0)
for examples of the output of the model.

4.2.1 AP-to-MPP

The point at which all Tines of position cross in an unper-
turbed "fix geometry" is called the assigned or assumed (designated) position,
AP. The adjusted set of lines of position cross at a point called the most
probable position, MPP. The vector on the two-dimensional positioning surface
between these two points is an error effect parameter called the AP-to-MPP
vector. The AP-to-MPP vector, following any disturbance of the initial "fix
geometry," requires magnitude and direction to define it completely. The
direction is not of value in meeting present project requirements. The routine

16




TABLE 4-1
FIXED GEOMETRY - INPUTS

Number of sextant angular measurements
Number of gyrocompass bearing measurements
Number of radar range measurements

Number of LORAN time difference measurements

Number of landmarks that are common to sextant measurements (see
section 5.6, Limitations of the Model)

Standard Deviations of simulated sextant measurements (Default = 5
minutes) (Reference 9)

Standard Deviations of simulated gyrocompass measurements
(Default = 0.5 degrees) (Reference 9)

Standard Deviations of simulated radar measurements (Default = 30
yards) (Reference 10)

Standard Deviations of simulated LORAN measurements (Default = 0.1
usec) (Reference 3)

Error Effect Parameter Choice (see section 4.2)

Error to be studied (see section 2.3)

Radius of target circle (optional)

Maximum of error to be studied

Range and true bearing to all landmarks used in sextant angular
measurements

Range and true bearing to all landmarks used for gyro bearing measure-
ments

Range and true bearing to all landmarks used for radar range
measurements

Gradient magnitude and direction for all LORAN time difference
measurements




TABLE 4-2
RANDOM GEOMETRY - INPUTS

(1) Number of sextant angular measurements ]

(2) Number of gyrocompass bearing measurements

(3) Number of radar range measurements
(4) Number of LORAN time difference measurements

(5) Number of landmarks that are common to sextant measurements (see
section 5.6, Limitations of the Model)

;

(6) Standard Deviations of simulated sextant measurements (Default = 5 !
minutes)

(7) Standard Deviations of simulated gyrocompass measurements 1
(Default = 0.5 degrees) 1

(8) Standard Deviations of simulated radar measurements (Default = 30 yards)

(9) Standard Deviations of simulated LORAN measurements (Defauit = 0.1 usec)

(10) Error Effect Parameter Choice (see section 4.2)
(11) Error to be studied (see section 2.3)
(12) Radius of target circle (optional)
(13) Maximum of error to be studied
*(14) Number of "fix geometries" desired in sample

(15) Seed for random number generator (nine-digit fraction between 0 and 1)

* To change the parameters used to randomly generate sample geometries, the
program needs slight modifications. Appendix A describes the program
listing that requires change.




is not written to provide the direction, but a modification is not difficult
if studies of this nature are desired. The mathematical expression for
AP-to-MPP is provided in appendix A.

4.2.2 2-drms

The mathematical model results in an MPP and in the two-
dimensional uncertainty in the MPP for each iteration through the modeled
error. The two-dimensional uncertainty of the MPP is defined with respect to
a rotated reference system centered on the MPP. The angle between the origi-
nal reference axis and the new reference system is determined such that the
coordinates are uncorrelated in the new system. The variance associated with
the MPP in each of the two orthogonal directions defines completely the
uncertainty in its location in the form of a bivariate normal probability
distribution. Often, the two-dimensional uncertainty can be approximated by
one number. One such number, 2-drms, is twice the square root of the sum of
the variances in the orthogonal reference system. It is used to definz the
radius of a circle which contains at least 95 percent of the probability mass
of the bivariate normal distribution.

4.2.3 Maj*Min (90%)

The contours of equal probability density of the bivariate
normal distribution form ellipses. The area of an ellipse which contains 90
percent of the probability mass of the distribution is an error effect parame-
ter, the Maj*Min (90%).

4.2.4 Maj (90%)

The major semi-axis of the ellipse described in section 4.2.3
is an error effect parameter, the Maj (90%).

4.2.5 P-in-R

The probability mass which is contained by a circle of radius
R centered about the assigned position is called the P-in-R. Of course,
P-in-R is always less than one. The probability is calcuTated by a two-dimen-
sional integration of the bivariate probability distribution over the area of
the designated circle. Details of this calculation are contained within
appendix C.

The value of this error effect parameter can be realized by
considering that it is a function of both random and systematic errors. A
drawback to its usefulness is that the computations necessary to arrive at it
are very time consuming.

4.2.6 Sum _Sqd Res

The Sum Squared Residuals (Sum Sqd Res) is an error effect
measure which indicates how far, in terms of multiples of assumed measurement
standard deviation units, the lines of position of the perturbed system are
from satisfying the functional model. A residual is the difference between a
measurement of the perturbed "fix geometry" and the respective measurement of
the adjusted "fix geometry." The residual of each measurement is squared then
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divided by the variance of that measurement. The weighted quantities are
sumed to obtain the final parameter. The value of this error effect parame-
ter is demonstrated in section 5.5, Outlier Detection and lIdentification. The
mathematics associated with its calculation and use are expressed in
appendices A and F.

4.2.7 Min/Maj

The ratio of the minor and major semi-axis of the ellipse
defined in section 4.2.3 is called the Min/Maj error effect parameter.
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5.0 APPLICATION OF THE MODEL - RESULTS

The preliminary considerations of Section 2.1 should be reviewed before
the reader becomes involved in studying the results presented in this section.
A failure to appreciate the constraints of using specific geometries can
easily lead to erroneous conclusions. On the other hand, to interpret that
the expected values of error effect derived from the "random geometry" method
are all inclusive, can just as easily lead to erroneous conclusions. It is a
combination of both approaches that will prove useful in a genera: analysis of
the positioning problem.

The primary result of this effort is that an Error Sensitivity Model has
been created complete with operating instructions and example applications.
The examples given do not represent the total of all information derivable by
use of the model and should only be examined with regard to the "fix geome-
tries" from which they were derived.

The key for figure numbers throughout this section is:

X-LL-X(L X=number
Report Section—""’dr Figure a, b, or ¢ L=lLetter

Geometry Type Page of LL Data
H=Harbor '[

NC=Near-Coast Example: 5-0S-2(a) is figure (a) on

0S=0ffshore page 2 of the off-
R=Random shore data in section
B=Blunder 5 of the report.

5.1 Fixed Geometry

The results of error analysis on the fixed geometry scenarios
described in section 3.1 are displayed in figures S-H-1(a) through 5-0S-4(c).
Refer to section 2.3 for a description of the modeled errors and section 4.2
for a description of the error effect parameters.

Equivalent modeled error is introduced to allow comparison of the
effects of modeled errors pertinent to each measuring instrument. The equiva-
lent modeled error is the error value which causes 100 percent degradation of
the error effect parameter studied (i.e., either halves or doubles the error
effect parameter - as appropriate - with respect to its value when the modeled
error is zero.). Table 5-1 lists the equivalent modeled errors for the P-in-R
error effect parameter. The equivalent modeled errors are grouped by their
respective measuring instrument within the columns and by geometry type within
the rows. The table is useful for comparing the different geometry scenarios
and in finding the relative importance of each modeled error within each
“fixed geometry" scenario. Examination of table 5-1 and figures 5-H-1(a)
through 5-0S-4(c), pages 33-54, reveals information as follows:

Pages 33-50
e modeled errors have a more significant increased effect on the error
effect parameters using the Near-Coast Geometry than they do in the
Harbor Geometry. Equivalent modeled errors differ by as much as a factor
of two in the case studied.

21




TABLE 5-1
FIXED GEOMETRY EQUIVALENT MODELED ERRORS

N/A = Not applicable NWR = Not within range NE = No effect '
ERROR? HARBOR NEAR-COAST OFF SHORE
Sextant
1-1E 58 minutes 25 minutes N/A
1-NCLMM 70 meters 50 meters N/A
2-CLMM 32 meters 19 meters N/A
1-NCIA NE NWR N/A
2-CIA NE NWR N/A
1-0C NWR NWR N/A

+*3.5/0SD 8.2 minutes 7.6 minutes N/A
+x1-NCLMD NWR NWR N/A
+%2.CLMD 12 meters 8 meters N/A
Gyrocompass
3-8t N/A NWR 0.42 degrees
*3-8SD N/A NWR 0.74 degrees
Radar
3-RE N/A N/A 24 meters
#*3-RSD N/A N/A 46 meters
LORAN
3-LE N/A N/A 0.08 usec
#3.1L5D N/A N/A 0.15 usec

* The value listed is that which corresponds to a P-in-R which is one-half of
that obtained using the default standard deviations for the simulated
observations.

* Target Circle 5-meter radius

# The number represents the number of measurements to which the modeled error
was appiied.
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Pages 33-35, 40-42
The P-in-R output parameter remains high (more than 0.9) until the
AP-to-MPP distance is about 80 percent of the target circle radius.

Pages 33-96(a), 40-46(a), 51-53(a
-to- error effect parameter is a linear function of systematic
error.

Pages 34-35, 38-39, 41-44, 48-49
‘Landmark-related modeled errors have a more severe effect on position
error when the geometry contains a landmark which is common-to two
measurements. In all cases presented, only one common landmark was
simulated. The same effects would result if two landmarks, each used
once, provided similar input errors.

Pages 36, 43-45
Inciined Angle Error and Observer Coincidence Errors have, within the
range investigated, little effect on the error effect parameters studied.

Pages 35, 42, 39(c), 49(c)
Common Landmark Misplacement and Common Landmark Definition can signifi-
cantly affect position error if the error magnitude is of the same order
as the target circle radius.

Pages 37(b), 47(b)

Y [
The Maj (90%) error effect parameter is a linear function of S/0 Standard
Deviation.

Pages 37(a), 47(a)
The Maj*Min (90%) error effect parameter is a quadratic function of S/0
Standard Deviation.

Pages 46(a), 50(c '
The simulated gyrocompass bearing measurement in the Near-Coast geometry
adds very little to the strength of the fix. Unless the standard devia-
tion of gyrocompass measurements is decreased to less than 0.25 degrees,
it is often of little help in further "checking" a fix determined by
three-angle resection (assuming a reasonably good geometry is used in the
three-angle fix).

Pages 51-53
Given the default measurement standard deviations, three measurements

using the gyrocompass, radar, and LORAN receiver have a small (less than
0.1) chance of positioning the observer within a target circle of 25
meters radius, if systematic error exceeds 0.5 degree, 40 meters, and 0.1
usec, respectively.

Page 54
yrocompass, radar, and LORAN measurements must have standard deviations
of less than 0.25 degrees, 20 meters, and 0.05 usec, respectively, to
achieve high P-in-R values (approximately 0.8) for a target circle of
radius 25 meters with 60° crossing angles (provided all systematic
errors are zero).
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5.2 Random Geometry

Cumulative frequency distributions of error effect parameters are
displayed in figures 5-R-1(a) through 5-R-6(c), pages 55-60. Refer to section
2.3 for modeled error definitions and section 4.2 for error effect parameter
definitions. Each figure displays five cumulative frequency distributions
(one for each of five different modeled error values) each of which was
created using the following procedure:

The error effect parameter is assigned a maximum value as an option-
al user input (see appendix B) and the resulting range (0 to maximum) fis
divided into 26 data accumulation bins. Each geometry of the sample is
studied iteratively, once for each fifth of the maximum modeled error, with
the resulting error effect parameter tabulated in the appropriate bin. If the
error effect parameter exceeds the specified maximum, it is tabulated in a
twenty-sixth bin. After all geometries of the sample have been studied, the
sample fraction within each bin is calculated. The modeled error effect is
determined by comparing the cumulative frequency distributions and summary
statistics which correspond to the respective modeled error values.

If desired, the frequency distribution can be plotted directly (not
cumulative). The numbers which compose each frequency distribution on the
graph represent the number of fifths of the maximum modeled error present in
generating the respective frequency distribution.

.
The expected value of any error effect parameter is calculated from
the frequency distribution and is used to rank order expected error effects.

At least 200 randomly generated geometries are required to suffi-
ciently "smooth" the cumulative distributions, however, 100 geometries normal-
1y provide enough data to distinguish among distributions on a single graph.
In each case, the number of sample geometries, as well as the number of each
measurement type, are given in the figure. In each case, the number of angle
(A), bearing (B), range (R), and LORAN (L) measurements is indicated on the
right side of the graph. In addition, the target circle radius, R, is
provided in the title block.

Examination of figures 5-R-1(a) through 5-R-6(c), pages 55 through
60 respectively, and the expected values of all error effect parameters
reveals the following expected trends and quantified information:

Page 55
ubjecting one sextant measurement to Index Error is less severe than
subjecting all three measurements to Index Error.

Pages 56, 57, and 59
Eanamarﬂ-re1afed errors have a more severe effect on P-in-R when the
geometry contains a landmark which is common to two measurements (that

is, when two measurements contain errors).




Pages 55-58
The following errors cause at least 90 percent of the geometries to have
a P-in-R of less than 0.5. The target circle radius is 25 meters.

ERRORY MAGNITUDE

T-TE Y0 minutes (extrapolated value)
3-1E 48 minutes

1-NCLMM 100 meters

2-CLMM 60 meters

1-NCIA NWR*

2-CIA NWR*

1-0C NWR*

3-BE 0.20 degrees

3-RE Less than 10 meters
3-LE Less than 0.05 psec

# See table 2-1 for list of modeled error abbreviations and codes.
* NWR - Not within range.

Pages 55-58
The following errors cause 50 percent of the geometries to have a P-in-R
of less than 0.9. The target circle radius is 25 meters.

ERROR# MAGNITUDE
T-Tt 18 minutes
3-1E 12 minutes
1-NCLMM 20 meters
2-CMM 18 meters
1-NCIA 450 meters
2-CIA 300 meters
1-0C 16 meters
3-8BE 0 degrees
3-RE 0 meters
3-LE 0 usec

# See table 2-1 for modeled error abbreviations and codes.

Page 57
Inclined Angle Error and Observer Coincidence Errors have very little
effect on the P-in-R under nearly all circumstances investigated.

L‘ Page 59(a)

4 There is a huge potential for increasing fix strength by reducing the
Sextant/Observer Standard Deviation. Fifty percent of the P-in-R's are
. . moved from below to above 0.8 by reducing Sextant/Observer Standard

? Deviation from 5 minutes to 2 minutes.
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Page 59(c)

Landmark Definition can have a significant effect on P-in-R for many
geometries if its magnitude is greater than the target circle radius.

For a 5-meter target circle, a Common Landmark Definition Error of 10
meters causes P-in-R to be less than 0.2 for 80 percent of the geometries
studied. A Common Landmark Definition error of 10 meters is unacceptably
large by applicable survey standards. The average landmark is 4000
meters from the assigned position which, when Third Order Class II
Geodetic Survey Standards (reference 19) are used, indicates a possible
1:5000 or 0.8 meter uncertainty in landmark location. Landmark alignment
difficulties or poor visibility may cause landmark definition errors as
large as 10 meters.

Page 60
s.d.'s of gyrocompass, radar, and LORAN measurements of greater than 0.5

degrees, 30 meters, and 0.1 usec, respectively, make positioning within a
25-meter target circle very improbable (approximately 80 percent of
geometries with P-in-R of less than 0.5 with no uncompensated systematic
errors present).

Table 5-2
Table 5-2 summarizes the expected values of the error effect parameters
as a function of the modeled errors.

g p e RS TR ATAT L e T

5.3 Rank Order of Modeled Errors by Average Effect

There is no conclusive method for rank ordering modeled errors by
average effect. Any rank ordering for one “fixed geometry" may not apply to
any other "fixed geometry." In order to provide a ranrk order with far-reach-
ing applicability, the modeled errors must be ranked with the following
considerations in mind;

a. On what error source should resources be expended to most
effectively decrease position error?

b. Are the modeled errors under consideration relatively
negligible?

c. What is the frequency with which the modeled error occurs?

d. 1Is a suggested method of decreasing position error subject to
other (possibly more severe) error sources?

Answers to these questions are very complicated. Modeled errors can i
be ranked to meet the project requirement by considering the expected values ‘
of the error effect parameters. The P-in-R error effect parameter was chosen
to rank modeled errors by average effect.

Table 5-2 provides the information needed to rank modeled errors.
P-in-R is given as a function of each modeled error over the domain of the
modeled error selected. The function provided is a least squares curve fit of
the "random geometry" derived P-in-R averages. The correlation coefficient
was very good for nearly all error effect functions. In reviewing the func-
tions, consideration must be given the relative ease in effecting a decrease
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in the error throughout the aids to navigation macrostructure. For example,
large improvements in P-in-R are possible by decreasing the S/0 Standard
Deviation (Slope = -0.08/min at S/0 Standard Deviation of 5 minutes). How-
ever, decreasing this standard deviation by 1.0 minute throughout the Coast
Guard may be very difficult compared to decreaging other errors. The error
effect function for P-in-R is of the form y=aePX, The coefficient, b, in
the exponent of each curve fit can be used to define another useful value,
1/b. A modeled error of magnitude 1/b decreases the expected P-in-R value to
a/e, where a is determined by the curve fit and e is the natural base, 2.718.
A review of table 5-2 allows selection of the modeled errors which often do
not contribute significantly to position error. The following is a list of
the modeled errors of least effect on position error:

a. Common and Non-Common Inclined Angles - Very seldom is an
elevation difference of the range modeled large enough to
cause significant increase in position error.

b. O0Observer Coincidence - Most often P-in-R is low only when
observers are separated by distances greater than those
physically possible on the ships used to position aids.

¢. Non-Common Landmark Definition - The image of a non-common
landmark has to be quite poor before any significant decrease
in P-in-R is suffered.

The effectiveness of any decrease in an error from a given source is
indicated by the slope of the error effect functions. Table 5-3 lists the
first derivatives of the P-in-R error effect functions evaluated at selected
modeled error magnitudes. This provides a measure of how effective a decrease
of one model error unit is in increasing P-in-R.

The Tist in table 5-3 still does not allow exact ranking of errors
by average effect because there is no data on the frequency of occurrence of
the modeled errors. However, the following statements are made with reference
to tables 5-2 and 5-3:

a. Index Error, whether it occurs on one or all of the sextant
measurements, has a significant effect on P-in-R and should
be compensated for in a regular fashion.

b. Landmark Misplacement Error contributes very little to
position error for displacements acceptable to geodetic
survey standards. However, unsurveyed landmarks can easily
cause a large position error. Blunders caused in using
landmarks differing from those selected are obvious violators
of fix strength.

c. Inclined angles normally degrade position error very little.
d. Observer Coincidence is not significant enough to warrant any

more than directing observers to stand as close as possible
to one another,
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25-meter
Target
Circle

Radius

S-meter
Target
Circle
Radius

25-meter
Target
Circle
Radius

TABLE 5-3

EFFECTIVENESS OF MODELED ERROR DECREASE

MODELED ERROR

MAGNITUDE

1-1E = § minutes
3-1E = 5 minutes
1-NCLMM = 10 meters
2-CLMM = 10 meters
1-NCIA = 100 meters
2-CIA = 100 meters
1-0C = 5 meters
3-BE = 1.0 degree
3-RE = 50 meters
3-LE = 0.1 usec
3-S/0 SD = 5 minutes
1-NCLMD = 10 meters
2-CLMD = 10 meters
3-BSD = 0.5 degree
3-RSD = 30 meters
3-LSD = 0.1 psec

ERROR EFFECT
FUNCTION DERIVATIVE*

-0.030exp(-0.025(1-1E))
-0.041lexp(-0.039(3-1E))
-0.020exp(-0.022(1-NCLMM))
-0.038exp(-0.034(2-CLMM))
-0.001exp(-0.001(1-NCIA))
-0.002exp(-0.002(2-CIA))
-0.015exp(-0.015(1~0C))
-1.52exp(-2.50(3-8E))
-0.049exp(-0.062(3~RE))
-3.05exp(-12.7(3-LE))

-0.188exp(-0.164(3-S/0SD))
-0.005exp(-0.012(1-NCLMD))
-0,007exp(-0.023(2~CLMD))

-2.97exp(-2.29(3-8SD))
-0.038exp(-0.034(3-RSD))
-14.6exp(-11.9(3-LSD))

EFFECTIVENESS
P-in-R/unit

-0.026/min

- «0.034/min

-0.016/met
-0.027 /met
-0.001/met
-0.002/met
-0.014/met
-0.124/deg
-0.002/met
-0.850/psec

-0.082/min
-0.004 /met
-0.006/met

-0.940/deg
-0.014/met
-4.40/usec

* The coefficient (1-IE) in the exponent represents a modeled Index Error
applied to one angle (not, 1 minus the Index Error); this is also true for
other modeled errors.




e. Improvements in Bearing, Range, and LORAN Errors of 0.25
degree, 10 meters, and 0.05 usec, respectively, increase

g-;n-R by less than 5 percent at points considered in table

f. c decrease in S/0 Standard Deviation can greatly increase .
-in-R. T

g. Common Landmark Definition, on the average, does not affect ]
position error as drastically as Landmark Misplacement, but .

should not be neglected when either large or unclear land-
marks are used.

h. Decreases in Bearing, Range, and LORAN Standard Deviations of
0.25 degrees, 10 meters, and 0.05 usec, respectively, can in
many cases increase P-in-R by more than 0.20. This can make
them suitable for positioning aids when a 25-meter target
circle is adequate.

5.4 Priority Error Designation

The discussion in sections 5.1 through 5.3 leads to designation of
the following modeled errors as "Priority Average Errors" (based on assump-
tions made).

a. Index Error

b. Landmark Misplacement

c. S§/0 Standard Deviation

d. Bearing, Range, and LORAN Standard Deviation
5.5 Outlier Detection and Identification

An R&D project requirement called for formulation of a high confi-
dence outlier detection technigue for application when aid positioning. Two
mathematical techniques are described in appendix F and one is discussed in
this section. Section 2.3.3 provides a list of some of the blunders possible
in the positioning process.
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The mathematics in appendix F indicate that the_presence of an
outlier becomes apparent in many cases by performing a X ¢ test (reference
8) on the sum of the squared weighted residuals. The test is designed to
indicate when the consistency of the lines of position is so poor, compared to
what is expected, that it probably was not the result of only random error.
An analogy to blunder detection is to consider the outlier as a signal, and
ragdan errors as the noise. If the signal-to-noise ratio is large enough, the
X ¢ test should indicate an inconsistency in the measurements used to create
the fix; the inconsistency may be large enough to be flagged as an outlier
containing a blunder. If the fix is composed of three lines of position,
further examination is required to identify the suspicious observations. 1In a
fix containing four independent lines, all fo!r can be tested and if found
excessively inconsistent by failure of the X ¢ test, each of the four
combinations of three can be tested in turn against the fourth line (see
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apppendix F). In cases where the geometry includes common landmarks (e.g., a
four-line fix with only four landmarks, not independent lines of position), a
blunder in using a landmark other than the selected common landmark could
disturb two or more lines of position and the blunder identification procedure
could break down because of this dependency. Four good landmarks are required
to find an inconsistency due to one poorly located landmark. Fixes with more
tha?dgour LOP's can be tested similarly, but the possible combinations grow
rapidly.

Figure 5-B-1(a), Page 61, shows frequency distributions of the Sum
Sqd Res of a three-angle fix using the random geometry method; there is one
distribution for each of five Index Error (IE) values to which the fixes were
subjected. One angle was subjected to error and the fixes were tested for
excessive inconsistency at the 95 percent confidence level

(i.e., % (0.95)=3.8). The reference s.d. used was 5 minutes (appendix F).
The following information is obtained by review of the figure:

a. Eighty percent of all fix geometries subjected to 12 minutes
of Index Error go unsuspected.

b. Forty-five percent of all fix geometries subjected to 24
minutes of Index Error go unsuspected.

c. Thirty-two percent of all fix geometries subjected to 36
minutes of Index Error go unsuspected.

d. Twenty-two percent of all fix geometries subjected to 48
minutes of Index Error go unsuspected.

e. Twenty percent of all fix geometries subjected to 60 minutes
of Index Error go unsuspected.

If the S/0 Standard Deviation was improved, many more blunder
candidates could be found. The ESM can be used in the fixed geometry mode to
study the outlier rejection levels of any specified "fix geometry." Figures
5-8-1(b-c) are examples of such a study on the Harbor geometry, employing the
chosen 5-minute standard deviation of sextant measurements. Figure 5-8-1(b)
displays the effect Index Error has on the Sum Sqd Res when it is subjected to
one measurement of the Harbor geometry. The outlier detection scheme would
detect Index Errors greater than 15 minutes. This plot may be different when
subjecting the error to other measurements in the "fix geometry." Figure
5-8-1(c) displays the effect Index Error has on the Sum Sqd Res when it is
subjected to all measurements of the Harbor geometry. The inconsistency of
the measurements becomes apparent at a much smaller value of Index Error
(7 minutes).

The 5-minute measurement standard deviation used can be changed for
any study to suit the requirements on outlier detection. Likewise, other
confidence levels can be used in the 2 tests.

5.6 Limitations of the Model

The following 1ist contains limitations of the Error Sensitivity
Model. The limitations remain because solutions were either too time-consum-
ing, unjustly complicated, or beyond thslscope of this report.



Study of the effect of combinations of errors.

Study of the effect of errors using various combinations of
common and non-common landmarks.

Study of geometry scenarios using various sets of default
standard deviations.

The instability of numerical integration of very peaked
probability distributions (appendix C) exists and has not
been dealt with adequately.

The model has no built-in landmark selection algorithm and
therefore should not be considered a Landmark Selection
Routine.
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6.0 CONCLUSIONS

The following list summarizes results obtained by work on the ESM. The
conclusions are based on assumptions made throughout this report and, there-
fore, must not be considered without knowledge of the assumptions:

a. A computer routine has been written which considers random
errors, systematic errors, and blunders in a mathematical simulation of the
Coast Guard aid to navigation positioning process.

b. Error ranking by average effect on position error has been
accomplished (section 5.3). The following error sources, as specified in
table 2.1, have the most significant effect on position error:

1. Index Error

2. Landmark Misplacement Error

3. Sextant Observer Standard Deviation

4. Bearing, Range, and LORAN Standard Deviation

¢. Calculation of the probability of sinker release within a
target circle (P-in-R) is useful in error analysis of the positioning process.

d. Unless the precision of bearing, range, and LORAN measure-
ments is significantly better than that used in this report, their use to
improve confidence of sextant fixes is of little consequence. However,
independent checks may be useful in identifying blunders.

e. Landmarks common to more than one measurement, on the
average, can cause larger position error than landmarks used for only one
measurement .

f. A high confidence outlier detection procedure seems tractable.

g. The visual definition of a landmark can contribute signifi-
cantly to position error under certain circumstances.

, h. Observer Coincidence and Inclined Angle errors seldom add
significantly to position error.

i. Gyrocompass, radar, and LORAN measurements can be used to
position with high confidence only if their measurement s.d.'s are
significantly Tess than those simulated.

J. Landmark Misplacement errors must exceed geodetic survey
standards to have a significant effect on position error.




7.0 RECOMMENDATIONS

The following 1ist results from work done on the Positioning/Error Model.

a. The E£SM should be considered for use in development of stan-
dards and requirements for aid positioning.

b. The ESM should be used to study specific areas of concern.
Examples are requirements on sextant quality and survey quality,

¢. Further investigation into the value of P-in-R as a planning
tool should be performed. Numerical stability and time considerations should
be examined thoroughly. The inverse of P-in-R, that is, the radius of a
circle required to contain some desired probability mass (R-for-P), should be
studied for possible usefulness.

d. The outlier detection scheme briefly introduced should be
thoroughly examined for practical use in field procedures.

e. The position error magnitude calculated in this report should
be compared to those errors associated with sinker drop and the watch circle
of the buoy. )

63




10.

11.

12.

13.

14,
15.
16.

17.

18.

REFERENCES

Positioning/Error Model - First Interim Report of 22 May 1979.

Bowditch, Nathaniel, American Practical Navigator, HO Pub #9, Mapping
Agency Hydrographic Center, Washington, DC, 1977.

Aids to Navigation Manual - Positioning, CG-222-5, U.S. Coast Guard,

Department of Transportation, 1978.

Mikhail, E.M., Observations and Least Squares, JEP-A Dun-Donnelly
publisher, New York, 19/6.

Umbach, M.J., Hydrographic Manual - Fourth Edition, U.S. Department of
Commerce, NOAA, NDS, Rockville, MD, 1976.

Mitchell, H.C., Definitions of Terms Used in Geodetic and Qther Surveys,
U.S. Department of Commerce, C&GS, Publication #242, 1948.

Anderson, T.W., An Introduction to Multivariate Statistical Analysis,
Wiley & Sons, Inc., New York, 1958.

Meyer, Stuart L., Data Analysis for Scientists and Engineers, Wiley &
Sons, Inc., New York, 19/5.

Clark, G.P., Langholtz, H.J., Human Factors Experiments Concerned with
Random Errors in Obtaining Visual Lines of Position, Fourth International
Conference on Lighthouses and Other Aids to Navigation, 1975.

Position Accuracy Study (unpublished), USCG R&D Center, Groton, CT.

Rosenblatt, J.R., Statistical Modei and Estimation Procedures for Posi-
tion Location Based on Lines of Position, NBSIR /8-1457, U.S. Department

of Commerce, NBS, Washington, DC, 19//.

R&D Center letter 702702.1.1 of 21 February 1980, approved by Commandant
Tetter 3903/702702 of 4 March 1980,

Handbook of Mathematical Functions, U.S. Department of Commerce, NBS,

1970.
Scheid, F., Numerical Analysis, McGraw Hill, New York, 1968.

Commandant Tetter 3922/792702 of 30 August 1979.

Error Model Statement of Work (Encl 2), Commandant letter 3922/792702 of
3 April 1979.

;o;;cy Meeting Summary (Encl 1), Commandant letter 3922/792702 of 6 July
979.

Freund, J.E., Mathematical Statistics, Prentice-Hall, New Jersey, 1971.

64




] 19. (Qlassification, Standards of Accuracy, and General Specifications of
- Geodetic Control Surveys, NOAA, NOS, U.S. Department of Commerce 4,
20. Bevington, P.R., Data Reduction and Error Analysis for the Physical
Sciences, McGraw Hill, 1969.

65




APPENDIX A

PROGRAM DESCRIPTION AND FLOWCHART

Program Description

The main routine of the ESM is called POSER. This routine contains nearly all
the input/output function of the model. POSER calls the subroutine FIXED to
define a particular "fix geometry" and the subroutine RANDOM to set up for
generation of the sample "Random geometries." The FIXED routine-automatically
calculates and stores the elements of a parameter matrix. The parameter
matrix contains all the information necessary to iteratively study any par-
ticular fix geometry. POSER calls DEFAULT to establish the random error
parameters of each line of position within the parameter matrix. In the
Random Geometry method, POSER calls GENERATE each time a new fix geometry is
needed for study. In either method POSER calls GRADIENT to calculate the
gradient vector magnitudes and directions of each line of position and stores
them within the parameter matrix. POSER then uses ERROR to branch to one of
the error input subroutines which are numbered 1 through 18.

The error input subroutines complete the parameter matrix formulation and
provide the errors that perturb the system.

POSER then constructs the A matrix of equation 2-1 by calling PARTIALS. The W
matrix follows when POSER uses WEIGHTS. The systematic error perturbation is
then entered when POSER uses BIAS. The system is now perturbed and ready for
a least squares adjustment which is performed through the matrix transforms of
equation 2-1 in REDUCE. The completed transformation is then analyzed and the
error effect parameters are stored by ZOUTPUT. At this point two different
paths are possible depending on what geometry method is being used. If a
fixed geometry is being studied, POSER calls TABULATE to plot and print the
selected error effect versus the present value of the modeled error. In the
random geometry method TABULATE records the result of this particular fix
geometry then calls OUTLIERS which searches the results for outliers and
computes statistics of the error effect sample. If OUTLIERS finds a large
error effect (more than two standard deviations different from the mean of
previous values of this parameter), it prints the parameter matrix of that
particular fix for future study. POSER then returns to GENERATE to continue
the Monte Carlo process. Once all geometries have been studied and the error
effects tabulated, POSER calls PLOTOUT and PRINTOUT to provide the
distributions to the user. The user has a paper-tape printout of his input
parameters, a plot of the results, and a tabulation of the results at iterated
error values. In addition, the random geometry user has a list of outliers to
study for indications of bad or good geometries.

The format used in describing each subroutine or subfunction in the Error
Sensitivity Model includes:

a. A definition of each variable used in the equations of the sub-
routine (unless they have been defined previously in this appendix).

b. The equations used in the subroutine
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c. A brief explanation of the purpose of the subroutine or subfunction,
including any circumstances or conditions important in the develop-
ment of the routine.

Figure A-1 is a flowchart of these routines as they are applied in the pro-
grammed sequence.

POSER
Definitions of Variables: N/A

Equations: N/A

Remarks: POSER is the main input/output (I/0) routine whose overall
purpose is space allocation, data storage, and program execu-
tion.

CHANGE

Definitions of Variables: D is the s d. stgnage array
dj = s.d. of measurement type

Sextant measurement s.d.
then d; = Gyrocompass measurement s.d.

Radar measurement s.d.

LORAN measurement s.d.

Equations: N/A
Remarks: The ESM assumes measurement s.d. default values for the

sextant, gyrocompass, radar, and LORAN receiver of: 5
minutes, 0.5 degrees, 30 meters, and 0.1 usec, respectively.
In the case where other default values are desired, the user
instructs POSER to call CHANGE to alter the necessary dj
values.

ERROR

Definitions of Variables: r¢g = Number assigned to error to be studied
Index Error

Non-Common Landmark Misplacement
Common Landmark Misplacement
Range Error

Bearing Error

LORAN Error

Non-Common Inclined Angle

Common Inclined Angle

Observer Coincidence

a5/0 Standard Deviation

#S/0 Standard Deviation
Non-Common Landmark Definition
Common Landmark Oefinition
Bearing Standard Deviation

Range Standard Deviation

LORAN Standard Deviation

Vacant

Vacant




M o1

Equations:

N/A

Remarks: ERROR transfers execution to the subroutine that corresponds
to the error being studied, and returns.
WEIGHTS
Definitions of Variables: P is the (n x 10) parameter matrix
n is number of lines of position
Pij = jth parameter of ith yine of position; (i = 1 to n)
1 sextant
If pj1 = ) 2 then measurement type is | gyrocompass
3 radar
4 LORAN
1 x coordinate of left landmark of
horizontal angle
If pi = {2 then pyy = x coordinate of landmark used for bearing
3 x coordinate of landmark used for range
4 direction of LORAN gradient vector
1 Yy coordinate of left landmark of
horizontal angle
If psy = {2 then p;y = y coordinate of landmark used for bearing
3 y coordinate of landmark used for range
4 magnitude of LORAN gradient vector
Pig = x coordinate of right landmark of horizontal angle (zero
for other measurement types)
Pis = y coordinate of right landmark of horizontal angle (zero
for other measurement types)
Pig = measurement which determines the ith 1ine ,f position of
the unperturbed system
pi7 = measurement s.d. of the ith measyrement
Pig = systematic error for ith measurement
Pig = gradient magnitude of itN 1ipe of position
Pilo = positive gradient direction (that direction normal to the
line of position that will increase the measurement)
W is the (n x n) weighting matrix
Wij = weighting factor for ith 1ine of position (all off

W""‘"'
e ariadand

ey

diagonal elements are zero)

adi,




Equations:

10800 \ 2 .
1 ( D7 ) minutes
2
2 ( P%ggr ) degrees
If piy = then w; = ! with py7 in
3 1 2 meters
Pi7 .
1

2
4 secs
( P17 ) g

Remarks: The measurement s.d.s are used to form the weighting matrix.

IAS

Definitions of Variables: L is the (n x 1) observation vector

1; = systematic error perturbation of ith
line of position
Equations:
1 _ _Pigw
10800
2 _ Pigmw
180
if pj1 = then 14 =
3 - Pis
4 - Pig

Remarks: The systematic error is transferred from the parameter matrix
to the observation matrix with units conversion.

REDUCE (reference 3)

Definitions of Variables: A is the (n x 2) matrix of partial derivatives

m m
agp = 301 a2 = 20
ax ay

m; = variable which represents the measurement which
determines the ith1ine of position

V is the (2x2) matrix of eigenvectors

t = angle between x-axis and major semi-axis of confidence
ellipse

v s [cgs t -sin t]
sint cos t
A-5




Equations:

AX

X = -(ATwa)-1 ATwL.[Ay]from AP to MPP

N = (ATWA)-1 = (2x2) covariance matrix of MPP
(not normally diagonal in the North oriented
reference system)

AX + L = (nxl) residual matrix

vINy = ¢§? 0 rotated covariance matrix of MPP -
0 ?y? (diagonal)

Remarks: The matrix operations in this subroutine form the basis of
the Error Sensitivity Model. The diagonal elements of the Q
matrix are the two variances of the bivariate probability
distribution which describes the position uncertainty. The X
matrix contains the x and y displacement of the MPP from the
unperturbed AP. A1l output parameters are computed from the
elements of X, Q, and the residual matrix, R.

ZOUTPUT

Definitions of Variables: Z is the (1 x 7) row vector of the error
effect parameters.

2] = AP-to-MPP = Vax2 + ay2

22 = 2-drms = 2y 0% 40}
23 = Maj*Min (90%) = (2.15)2 ox' 9y
z4 = Maj (90%) = 2.15 { max (ng: o-y?)
zg5 = P-in-R = (see appendix C)

n
Sum Sqd Res = E:i ri Wi
i=

Equations:

6

Min/Maj =‘/m1‘n (0;(?, o'y?)/max (a'x?. o 2)

27 y'

Remarks: The output parameters are transferred from Q, X, R to the error
effect parameter matrix.
TABULATE

Definitions of Variables: F is the (6 x 26) error effect parameter tab-
ulation matrix

p is a number 1-7 (Z; - Zy, respectively)
which indicates the error effect parameter to
be tabulated for plotting and printout

fij is the jth error effect increment bin
for the ith modeled error value
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Remarks: In the fixed geometry method, TABULATE plots and prints the
calculated error effect parameter versus the modeled error ]
for each iteration. In the random geometry method, the value
of the error effect parameter is assessed and the count
incremented in the appropriate bin for later frequency
distribution calculations.

PLOTOUT
Definitions of Variables: N/A

Equations: N/A ;
4
Remarks: PLOTOUT calculates the frequency distributions and offers the
user the option of either a frequency distribution or cumula- ;
tive frequency distribution output. 1
PRINTOUT 5
Definitions of Variables: 0 = 6x7x4 error effect parameter ?
statistics array 3
0ij3 = mean of it error effect parameter :
for the i*" modeled error value v
0ij4 = standard deviation of the jth |
error effect parameter for the ith ;
modeled error value !
1 and 0jjp are the sum and sum-squared
ques used to caculate the means and s.d.'s
Equations: N/A
fs Remarks: PRINTOUT lists the frequency distributions of each output
y parameter and the array of error effect parameter statistics. ]
SN (reference 13) i
Definitions of Variables: rnd(l) is a uniformly generated random number |
between 0 and 1.
Equations: SN = ‘/-ZIn(rnd(l)) cos (2 7 rnd(1))
Remarks: SN is a subfunction which transforms a uniformly distributed ]
random number into a normally distributed random number with
a mean of 0 and a standard deviation of 1. It is used in the

random geometry method for generating normally distributed
angles, ranges, and LORAN gradients.

Definitions of Variables: oy = standard deviation in x' direction

oyr = standard deviation in y' direction ]
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Equations:

DIS =

Remarks:

DEFAULT

Definitions

2
1 3
1
1 -7 (g7t
e P yl

211' o’x'o'y'

This subfunction defines the bivariate normal distribution
which is integrated in two dimensions over the target circle
(appendix C) to calculate P-in-R.

of Variables: N/A

Equations:

If pj1 =J then dj = p;7

Remarks: DEFAULT transfers the default measurement standard deviations
from the storage array (D) to the active parameter matrix (P)
before each iterative increase in the modeled error.

GENERATE
Definitions of Variables: M is the (n x 3 x 2) array of geometry sample
set statistics.
i = ith 1ine of position
’ mean of ranges to left landmarks
mijl = mean of ranges to right landmarks
‘1 l mean of angles between landmarks
if j = 12 then
1 3 s.d. of ranges to left landmarks
mijz = s.d. of ranges to right landmarks
s.d. of angles between landmarks

Equations:

Remarks:

Definitions

N/A
GENERATE calis subroutines NA, NB, NR, NC as necessary to

create a new geometry for the next iteration of the Monte
Carlo method.

of Variables:

SN is the normally distributed random number
with mean = 0, s.d. = 1.




Equations:

riL = mjll + mj12 SN = range to left landmark of ith measurement
riR = mj21 + mj22 SN = range to right landmark of ith measurement
aj = mj31 + mj32 SN = ith angular measurement

Remarks: NA generates the ranges to and angle between two landmarks
for a sextant measurement. Additional logic and equations in
NA establish parameter matrix elements for the -1andmarks
gﬁneggaed. See appendix E for the sample statistics used in
the .

Definitions of Varijables: b; is the bearing measurement for ith
line of position.

Equations:
bj+1-b; = 60rnd(1) + 30 = tl[30,90]

Remarks: This subroutine generates gyrocompass measurements with
crossing angles uniformly distributed between 30 and 90
degrees. The ranges to the landmarks being simulated are
generated as in NA.

Definitions of Variables: r; is the range measurement for the ith
T1ine of position.

Equations:

ri =mj11 + mj12 SN = range measurement for the ith Yine of position.

bis1-bj = 60rnd(1) + 30 = u[3o,9o]

Remarks: The ranges are generated as in NA and the crossing angles the
same as in NB.

Definitions of Variables: mjj; = mean LORAN gradient in meters/usec
my12 * s.d. of LORAN gradients in
meters/musec

Equations:

Pi3 = mj11 + mj12 SN = gradient magnitude of ith LORAN Tine of
position

DY Ay v yvery
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Remarks: The gradient magnitudes are generated from a LORAN gradient
distribution simulation (appendix E). The crossing angles of
LORAN line of positions are generated uniformly between 30
and 90 degrees as within NB and NR.

GRADIENT

Definitions of Variables: N/A

Equations: N/A

Remarks: GRADIENT is a branching subroutine which calls GA, GB, GR, or
GL to calculate the pjg and p;yg parameter matrix
elements which are the gradient magnitude and positive
gradient direction, respectively.

GA

Definitions of Variables: r6 and r7 are dummy test variables

atn = arc tangent

Equations:

1
2 2 2 2
S 4+ 5 + p2 7
Pig = (pi2 p;3)(p14 ng) 0.00029 = gradient of ith line
(pi2-pia) e+ (pi3-Pis) of position
2. 2, . 2,2
Pi3(Pig*pi5) - Pis(Pi2*Pi3) _
¢(Pi4Pi3 - Pi2Pis)
Pi2(pi4*Pi3) - Pialpi3ti) _ o7
~ ¢lPi2Pi5 ~ Pi4Pi3)
=0 and r7>0 0
=0 and r7<0 180
if r6 then pij10 =
>0 90-atn(r7/r6)
<0 270-atn(r7/r6)

Remarks: GA calculates the gradient, pjg, and the positive gradient
direction, pyygs for each line’of position determined by
resection and places them in the active parameter matrix for
later use.

GB

Definitions of Varjables: N/A
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Equations:

2
(pi2+pi
P10 =

Remarks:

Definitions

o 1
Z
3) 0.017453 = pig
Pig - 90 (but less than 360 degrees)

GB calculates the gradient and positive gradient direction
for all bearing measurements.

of Varjables: N/A

Equations:
Pig =1

if py2

Remarks:

Definitions

0 and py3 > 0 180
_J0 and pj3 < O {9
% then Pi10 =) 90 - atn(pi3/pi2)

>0 270 - atn(pj3/pi2)

GR calculates the gradient and positive gradient direction
for all range measurements.

of Variables: N/A

Equations:
Remarks:

PARTIALS

Definitions

N/A
GL transfers the input gradient and positive gradient direc-

tion of LORAN measurements from pj; and p;3 to p;g and
Pil0s respectively.

of Variables: N/A

Equations:
Remarks:

QUTLIERS
Definitions

N/A

PARTIALS uses the equat’ .ns derived in appendix G of refer-
ence 3 to establish all <.ements of the A matrix. It calls
an AA, AB, AR, and AL for angles, bearings, ranges, and LORAN
measurements, respectively.

of Varjables: N/A

Equations:

N/A




|
:

Remarks: QUTLIERS calculates the mean and s.d. of the random geometry
error effect parameters for each increment in the modeled
error. 1If (after 30 geometries have been sampled) any error
effect parameter exceeds two standard deviations in either
direction from the mean, the BAD or the GOOD subroutines are
called to print the respective parameter matrix for
additional examination.

PROBABILITY
Definitions of Variables: N/A

Equations: N/A

Remarks: PROBABILITY is discussed in appendix C. PROBABILITY calcu-
lates the P-in-R error effect parameter.

1 (Index Error)

Definitions of Variables: d = number of measurements in error

q = counter from 1 to d
m = maximum modeled error
Fixed geometry method 25 equally spaced modeled error
values between zero and m
if then e =
Random geometry method 5 equally spaced modeled error

values between zero and m

Equations:
if ¢ < d; then p;g = e

Remarks : Angular measurement error are iteratively entered into the
parameter matrix.

2 (Non-Common Landmark Misplacement)

Definitions of Variables: N/A

Equations:
e 10800

Pig =
8 2 23
7 (p§2 + Py3)
Remarks: See appendix D.
3 (Common Landmark Misplacement)

Definitions of Variables: 0 is number of landmarks used for more than
one measurement (see appendix B)
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Equations:

1 -e 10800
1
2 2 i
) then . 1r(pi4 + p15)
s Pig = e 10800
o+l

' 1
2 2
™ (piz + Pi3)°

Remarks: See appendix D.

4 (Range Error)
5 (Bearing Error)
6 (LORAN Error)

number of measurements in error
counter 1 to d

Definitions of Variables: d
q

Equations:
if ¢ < d; then p;g = e
Remarks: Errors are entered directly into the parameter matrix. |
7 (Non-Common Inclined Angle Error)

Definitions of Variables: N/A

Equations:

pig = 60 |cos cos(p15)c05\”(p1§+plg)1/2 - P16 b

Remarks: The left landmark of the first sextant measurement is
elevated (e) meters and the resulting error in the angular
measurement is (pyg) in minutes.

8 (Common Inclined Angle Error)

Definitions of Variables: N/A
Equations: Same as 7.

Remarks : The error is the same as for Non-Common Inclined Angle Error
except that it affects two angles instead of one.

9 (Observer Coincidence)

Definitions of Variables: p1g = gradient of first line of position %

A-13
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Equations:
P18 = e/P1g

Remarks: This error simulates the displacement of one observer in the
direction of maximum change in angular measurement (the posi-
tive gradient direction). Studying error effect by using
maximums is discussed in appendix D.

10 (S/0 Standard Deviation)

number of measurements in error
counter 1 to d

Definitions of Variables: d
q

Equations:
<d e
if q then pi7 =
>d default value of S/0 Standard Deviation

Remarks: Sextant measurement s.d.'s are transferred to the parameter
matrix.

11 (# S/0 Standard Deviation)

Definitions of Variables: i=1¢%ton
n = number of measurements
Equations:
even number modeled error value, e
if i= then pj7 =
odd number default S/0 Standard Deviation value

Remarks: Standard deviation of alternate angular measurements are
assigned a value of e and the remaining measurements the
default s.d. value. This logic can be used to study the
effect of assuming equal s.d.'s for all measurements when in
fact they may not be equal.

12 (Non-Common Landmark Definition)

Definitions of Variables: dg =z default s.d. of first measurement

Equations:

1
P17 = |d§ + e 10800 I 212 2.4, of the perturbed
"(Plg . p1§)? measurement in minutes

Remarks: An uncertainty in a landmark's position adds uncertainty to
the measurements made using the landmark. The s.d. of the

A-14
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position of the landmark along a line perpendicular to the
line of sight from the observer (which represents the uncer-
tainty) is weighted by the distance from the observer to the
landmark. The resulting s.d. is provided by the equation
above. (See appendix D.)

13 (Common Landmark Definition)

Definitions of Variables: N/A

Equations: Same as 12.

Remarks: This random error adds to measurement s.d. in the same way as
Non-Common Landmark uncertainty except that more than one
angle is effected. If a common landmark has an uncertainty
in its position perpendicular to the observer's line of
sight, then all measurements using that landmark are
effected. If both landmarks used in a horizontal angle
measurement are poorly defined, then both contribute to
uncertainty in the measurement.

14 (Bearing Standard Deviation)
15 (Range Standard Deviation)
T6 (LORAN Standard Deviation)

Definitions of Variables: q = counter from 1 to d
d = number of lines affected

Equations:
if @ < d; then pj7 = e

Remarks: The measurement s.d.'s are transferred into the parameter
matrix, replacing the default s.d. values iteratively through
the domain of the modeled error.

17 (Vacant)
18 (vacant)

GO0D

8AD

Definitions of Variables: N/A

Equations: N/A

Remarks: The subroutine OUTLIERS calls GOOD if an error effect
parameter calculated for one of the random fix geometries is
two s.d.'s less than the mean of all previously calculated
error effect parameters of that type. GOOD prints parameter
matrix and error effect parameter values for further study.

Definitions of Variables: N/A

Equations: N/A
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Remarks:

Definitions

BAD performs the same function as GOOD except that the error
effect parameter must be more than two s.d.'s greater than
the mean of all previously calculated error effect parameters
of that type.

of Variables: N/A

Equations:

Remarks:

Definitions

N/A

FIXED is called by POSER to accept user definition of a fix
geometry. It accepts ranges and true bearings to all
landmarks which are part of the unperturbed system. It also
accepts LORAN measurement information. FIXED calls FA, FB,
FR, and FL as necessary to define the fix.

of Variables: G = number of random geometries to be

Equattions:
Remarks:

PLOTR
PLOTF

———

Definitions

generated
N/A

RANDOM is called by POSER to accept user input of the
statistics for generation of random geometries. The
statistics used in the ESM are derived from a sample set of
fix geometries from the USCGC REDWOOD (WLM 685). Any other
sample statistics require changes to RANDOM. (See appendix
E.) RA, RB, RR, and RL are called as necessary to establish
statistics for generation of angular, bearing, range, and

LORAN measurements, respectively. !

of Variables: Z$ = a string array of output parameter .

Equations:
Remarks:

names 1
E$ = a string array of error nameg '
kp = maximum scale value of the p h error .
effect parameter

N/A

PLOTR and PLOTF create the axis on which the error effect
parameters are plotted as a function of the modeled error.
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APPENDIX B
ERROR SENSITIVITY MODEL OPERATING INSTRUCTIONS

Prospective "operators" of the ESM should first become familiar with the
modeled errors and the error effect parameters before attempting to operate
the routine. Because no data entry error feedback mechanism was built into
the routine, the instructions should be strictly followed.

Listed

below is the equipment needed to operate the routine. Familiarity with

the operation of the HP-9825A is assumed throughout this appendix.

ac
b.
CO
d.
e.
f.

g’

Hewlett-Packard desk-top calculator HP-9825A (Option 002, 23K memory)
+Read Only Memory (ROM) String Advanced Programming HP-92210A

ROM HP-9872A Plotter General 1/0-Extended I/0 HP-98216A

ROM Matrix HP-98211A

Plotter/Printer HP-7245A or HP-9872A

Printer HP-98668B

Interface HP-IB98034A

INSTRUCTIONS DISPLAY KEYSTROKE

1. Ins

ert tape cartridge

2. Turn on calculator RUN

3. The

calculator displays #A,#8,#R, #L

ENTER #A (The number of sextant mea-
surements in the fix geometry) CONTINUE

The calculator displays B?

ENTER #B (The number of gyrocompass
measurements in the fix geometry) CONTINUE

The calculator displays R?

ENTER #R (The number of radar mea-
surements in the fix geometry) CONTINUE

The calculator displays L?

ENTER #L (The number of LORAN mea-
surements in the fix geometry) CONTINUE
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INSTRUCTIONS DISPLAY KEYSTROKE

4, If the number of sextant measurements is
greater than one, the calculator displays # COMMON LM's

a. ENTER # COMMON LM's (The number of
landmarks used for more than one
sextant measurement - the model is
limited in this simulation, the first
landmark defined is always a non-common
landmark, then all common landmarks are
defined, then the final landmark is
always a non-common 1landmark) CONTINUE

5. The calculator displays ANY NEW DEFAULT
STANDARD DEVIATIONS?

a. ENTER y or n (n denotes the default
measurement s.d.'s are adequate. y
signifies that the default measurement
s.d.'s are inadequate and new ones are
desired.) The calculator displays DEF. VALS.?

(1) Enter desired sextant default

value (minutes) CONTINUE
(2) The calculator displays D(2)
(3) Enter desired gyrocompass default

value (degrees?y
(4) The calculator displays D(3)
(5) Enter desired radar default value

(meters) CONTINUE
(6) The calculator displays D(4)
(7) Enter desired LORAN default value

(psec) CONTINUE

CONTINUE

6. The calculator displays OUTPUT PARAMETER
NUMBER?

a. ENTER one of the following numbers
for error effect output parameter:

AP-to-MPP

2-drms

Maj*Min (90%)

Maj (90%)

P-in-R

Sum Sqd Res

Min/Maj CONTINUE

1
2
3
4
5
6
7
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INSTRUCTIONS DISPLAY KEYSTROKE

7. If output parameter number 5 (P-in-R) was

selected, the calculator will display TARGET CIRCLE
RADIUS?
a. ENTER the radius of the target circle
(meters) CONTINUE
8. The calculator will display NEW QUTPUT SCALE
NEEDED? .

a. ENTER y or n (n means that the dimen-
sions of plotting grid are sufficient
to display the range of the output
parameter selected, y means that the
dimensions are not sufficient.) The
calculator will display K(P)?

b. ENTER the desired range of the output
parameter. (Trial and error may be
needed on this step if the user finds
the graphical output inadequate.) The
default ranges for the error effect
parameters are:

AP-to-MPP = 100 meters

2-drms = 100 meters

Maj*Min (90%) = 300 meters squared

Maj (90%) = 100 meters

P-in-R = 1.0

Sum Sqd Res = 25

Min/Maj = 1.0 CONTINUE

9. The calculator will display ERROR STUDIED?

NON L WN -

a. ENTER the number of the modeled error to
be studied:

1 - Index Error
. 2 - NC LM Misplacement
1 3 - C LM Misplacement
F 4 - Range Error
5 - Bearing Error
6 - LORAN Error
7 - NC Inclined Angle
8 - C Inclined Angle
9 - Observer Coincidence
10 - = S/0 Standard Deviation
11 - # S/0 Standard Deviation
. 12 - NC LM Definition
; 13 - C LM Definition
E § 14 - Bearing s.d.
- T 15 - Range s.d.
16 - LORAN s.d.
17 - Not used
18 - Not used CONTINUE




INSTRUCTIONS DISPLAY

KEYSTROKE

10.

11.

12.

The calculator will display # TIMES IT
OCCURRED?

a. ENTER the number of measurements to
which this error is being subjected to.
(Consecutive, starting with first measure-
ment to which the error can be subjected)

The calculator will display MAXIMUM OF ERROR
STUDIED?

a. ENTER the maximum of the error studied
(respective units)

The calculator will display FIXED GEOMETRY
STUDIED?

a. ENTER y or n {y means that the fixed
geometry method of error analysis is
desired. n means that the random
geometry method of error analysis is
desired.) If n is pressed, the cal-
culator will display # AND SEED?

b. ENTER # and SEED (# represents the num-
ber of sample geometries desired for study
of the error effect and SEED is a nine-
digit fraction between zero and one
to start the random number generator)

c. If y is pressed, the calculator will
display GEOMETRY NAME?

d. Enter the desired geometry name
(This will label output graphs)

e. The calculator will display R&B TO LEFT OBJECT
f. ENTER the range then the true bearing to

the left landmark of the first sextant

measurement simulation r3?
g. The calculator will display R&B TO RIGHT QBJECT?
h. ENTER the range then the true bearing to

the right landmark of the first sextant

measurement simulation r3?

i. Repeat f, g, and h for all sextant measure-
ments

B-4
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CONTINUE

CONT INUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE
CONTINUE

CONTINUE

CONTINUE




INSTRUCTIONS DISPLAY KEYSTROKE

Jj. The calculator will display R&B TO O0BJECT (8B) CONTINUE

k. ENTER the range then the true bearing
to Tandmark used in gyrocompass

measurement simulation r3? CONTINUE
1. Repeat k for all gyrocompass measure-

ment simulations CONTINUE
m. The calculator will display R&B TO OBJECT (R) CONTINUE

n. ENTER range then the true and bearing
to landmark used in radar measurement

simulation r3? CONTINUE
0. Repeat n for all radar measurement simu-
lations CONT INUE
p. The calculator will display GRAD DIR AND
MAGNITUDE? (L) CONTINUE

q. ENTER the LORAN gradient then the
magnitude
P (1,3)? CONTINUE

; r. Repeat g for all LORAN measurement
A simulations CONT INUE

13. The calculator will display PAPER IN PLOTTER?

a. Press CONTINUE when the plotter is
set to plot CONTINUE

13. The calculator will plot the desired
grid and error effect parameter in the
fixed geometry case

15, The calculator will begin the time-
consuming study of a random sample of
geometries in the random geometry method.
Following completion, the calculator will
display CUMULATIVE?

a. ENTER y if a cumulative frequency piot
are required

e T i P G it et s W M ki AU, 5 708t 1 S

b. ENTER n if frequency distribution is
required CONTINUE

e e
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INSTRUCTIONS DISPLAY KEYSTROKE

Eoiom

16. The calculator will display PAPER IN PLOTTER?

a. Press CONTINUE when the plotter is
set to plot CONTINUE

17. The calculator will print out all plotted
values and label the rows and columns with
appropriate headings for future reference

18. The calculator prints END OF RUN
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APPENDIX C

NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURE
(Reference 14)

Frequent use of the P-in-R parameter in the ESM dictates the necessity for a
mathematical description of the method. A brief discussion of some mathemati-
cal aspects of the numerical method is made in this appendix leaving the more
complicated explanations to reference 14.

Many numerical methods for integration of known functions call for equally
spaced points within the region of integration at which the integrand is
evaluated. Gaussian Quadrature employs points of unequal spacing within the
region and is the preferred scheme for numerical integration for this applica-
tion. The selected points are zeros of orthogonal polynomials. The degree of
the polynomials is determined by the desired accuracy of the integration.

The concept is to evaluate an integral by selection of the formula:

a n
[ vt ax = 2 Ay(xi) (c-1)
b i=l
Where: x; = unequally spaced zeros of orthogonal (Legendre Polynomials)

polynomials.
weighting values determined by orthogonal polynomials.

Aj

The details of calculating the x; and A; values are found in reference 14.

For ESM application, the sixteen-point Gaussian Quadrature is adequate. The
sixteen-point method requires evaluation of the integrand at 256 points within
a two-dimensional region of integration. When multiplied by the model error
value and gecmetry iterations, a huge number of calculations are required
consuming much computer time. However, by comparison, the Gaussian Quadrature
scheme, for equivalent accuracy, is at least twice as fast as any other scheme.

Errors occur when the integrand changes rapidly over the region of integra-
tion. In the ESM this error appeared when the s.d.'s, which define the
bivariate probability density function, were less than 20% of the radius of
the circular region of integration. 1If the P-in-R parameter proves to be a
candidate as a measure of success in aid positioning, more study will be
needed to define the tradeoff between speed and accuracy.

The calculation of P-in-R within the ESM is performed by the subroutine PROBA-
BILITY. PROBABILITY evaluates the integral,

16 16
//DIS(x,y) dxdy m ) D AAjDIS(xiyg)  (C-2)
R i=1 j=1




Where: The weighting values A; are the same as described above and the
(Xi’yi) points of integration are located within the region of
interest (reference 14). R is the radius of the circular region of
integration.

The calculations were verified by comparison with table Q-6-c in appendix Q of
Bowditch (see reference 2).

The numerically evaluated integrals were within 0.1% of being equai to the
tabulated values.

c-2
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APPENDIX D
CONSEQUENCES OF STUDYING ERRORS ONLY IN THE DIRECTION OF MAXIMUM EFFECT
Within the ESM, the following systematic modeled errors could have been
studied as displacement vectors:
a. Non-common landmark misplacement
b. Common landmark misplacement
c. Observer coincidence

Furthermore, landmark definition could have been studied using bivariate
probability distributions.

- However, studying each of the above modeled errors as vectors or bivariate

3 probability distributions would add another dimension as well as mathematical

3 complications to the error modeling task. The discussion in this appendix
verifies the legitimacy of studying the component of the displacement vector
in the direction of maximum affect and verifies the use of a univariate
probability distribution in studying Landmark Definition.

The position P is determined by resection with L as one of the reference land-
marks. The effect landmark displacement has on the position P is determined
by the effect it has on the lines of position which were determined using L as
a landmark. The effect displacement has on the lines of position is deter-
mined through use of the gradient equation which is (reference 3, appendix B):

D=6 do (D-1)
Where: D = Distance LOP is displaced

G = Gradient of the line of position
do = Small angular change in measurement

vy

For all practical situations the gradient remains constant in the region of
interest. That is, when the displacement magnitude is small compared to
distances between landmarks and P. The angular measurement change due to
landmnark displacement is therefore the only important quantity.

Figure D-1 depicts a representative landmark displacement error vector show-
;n?]its effect on an angular measurement. The symbology in the figure is as
ollows:

E = Magnitude of displacement vector
P = Position of observer
R = Range from observer to landmark :
L = Landmarks position without error b
Ly = Landmark position with projected displacement :
Lo = Landmark position with vector displacement
E, = Magnitude of projected displacement vector
a = Angle of displacement vector with line perpendicular to line !
of sight ( i
d01 = Angular error due to projected landmark displacement 1
d02 = Angular error due to d1sp1fcement vector ]
D-
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FIGURE 0-1
DISPLACEMENT VECTOR DIAGRAM
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It can be seen from figure D-1, that studying displacement perpendicular to
the line of sight (PL) is a close approximation to studying the displacement
vector when considering the angular change d8. A condition for this approxi-
mation is that E be much smaller than R, which is the case for most displace-
ment of landmarks. The need for this condition is shown as follows:

when E << R

- Ecos « ~ Ecosa -

By the law of sines

E sin(180-(90+ a +d0 D-3
sin dop = sin ; 2)) ~ _R__E;:osa (0-3)

Therefore, sin d0; = sind @, , and d8; = dO; and it is legitimate to
study the projection of the displacement vector upon the line perpendicular to
the line of sight. It is now possible to extend the results of studying the
projected displacement error to results concerning the displacement error
vectors.

The direction of the displacement vector is uniformly distributed in all
directions from the landmarks true location. The distribution which repre-
sents the magnitude, E, is unknown and unimportant for only the effect of E on
P is modeled in the ESM. For all values of E, a is uniformly distributed.
For the first quadrant the probability density function for a is:

T

fla) =1% u(o, g—) (Similiarly for all other quadrants) (D-4)
The projected value of E is Ep = E cosS a

Averaging both sides of the equation over the respective intervals will yield
the expected value of Ep when the error E and directions are known.

2 E /2
<Ep>= £ <C05a> 2 7 fo CcosS a da = _2__ (D‘S)

g

This result indicates that studies within the ESM which involve any of the
three systematic modeled errors listed at the start of this appendix represent
conservative estimates using maximum error effect. A better measure of the
average effect due to a displacement vector of magnitude E can be calculated

by using a modelsd error of magnitude . This gives results which differ
by a factor of £ for those errors which propagate linearly. A similar

argument can be made for landmark definition as it can be considered a
displacement of the observed landmark coordinates from the true (hori{zontal
control) coordinates.

D-3




APPENDIX E
DISTRIBUTIONS FOR RANDOM GEOMETRY METHOD ;

The statistics used in generating random geometries were calculated from
historical data on fixes taken by the crew of USCGC REDWOOD (WLM 685). The
following procedures were followed:

a. SANDS forms were researched.

b. A sample (n = 100) of each of the following variates Qas taken from
the data:

(1) Range to non-common landmarks
(2) Range to common landmarks !
€3) Angles between landmarks !
4) Gradients

(5) Line of position crossing angles

¢c. The mean and s.d. of the first three variates were calculated and
the distributions were tested for normality.

The information compiled was used to derived the following results:

a. The distribution of ranges to common and non-common landmarks were
not significantly different.

b. The ranges had a mean of 4000 meters and a s.d. of 2000 meters, and
were distributed as a truncated normal distribution (truncated at
zero meters). The effect of this truncation is insignificant in the
generation of fix geometries.

c. The angles had a mean of 60° and a s.d. of 35° and were distri-
buted as a truncated normal distribution (truncated at 0°), The ‘
effect of this truncation is insignificant in the generation of fix Y
geometries.

d. The gradients generated by the Monte Carlo Routine were distributed ’,
identically with those of the sample set. :

e. For a fix with n lines of position the n-1 smallest crossing angles
are uniformly distributed between zero and 1809/n.

The statistics derived from the sample allow random generation of fix geome-
tries for the sextant, gyrocompass, and radar in the following way:

a. Sextant - The routine generates a simulated landmark with a range
distributed as per sample statistics and with a bearing uniformly
distributed around the horizon. An angle is generated using sample
statistics and is followed by another range. The three variates
together simulate the geometry of one sextant angle. Other simu-
lated measurements of the same fix are similarly generated. If two
angles use a common landmark, the right landmark of the first mea-
surement is used as the left landmark of the second.

E-1
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Gyrocompass - The routine generates a simulated landmark with a
range distributed as per sample statistics and with a bearing uni-
formly distributed around the horizon. Other simulated gyrocompass
measurements of the same fix are generated with a crossing angle
uniformly distributed between 30° and 90° of the previous simu-
Tated measurement of the geometry.

Radar - Generates a simulated landmark in same manner as with
gyrocompass simulations.

LORAN - The routine generates crossing angle in the same manner as
for both the gyrocompass and radar routines. As a first approxima-
tion, LORAN gradients are generated with a truncated normal distri-
bution with a mean of 300 meters/usec and a standard deviation of
150 meters/usec (truncated at 150 meters/usec). The effect of this
truncation will slightly raise the mean gradient by discarding all
values less than 150 meters/psec and regenerating the gradient
needed. This distribution was created by studying a random sample
of L?%G? grids on Mercator projection navigation charts (sample size
ns .
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APPENDIX F
DISCUSSION OF OUTLIER DETECTION

A method to determine whether or not a given set of measurements conform to
normal expectations is discussed in this appendix. Before any method can be
successfully employed as a part of a calculator-based positioning system, the
following items will require further consideration.

a. Assumed measurement variances

b. Conditions unique to specific aid locations
¢. Combinatorial analysis of fix situations

d. Independence of measurements

e. Post blunder detection procedures

A discussion in reference 11 provided the basis for the outlier detection
method presented here.

- e A S ey

The computed values of measurements for the desired location are assumed to be
the parent population means of each measurement. Ideally, assuming no sys-
tematic error, the measurements are normally distributed about the parent
population means. The differences (1;) in the measurements from the parent
population meags are normally distributed variates with a mean of zero and a
variance of o{, wherg o; is the measurement s.d. The error detection
method employs the X< probability distribution which is introduced as
follows. The sum of the squares of n ipdependent random variables having
standard normal distributions has the x§ distribution where n denotes the
degrees of freedom. The variates 1j/o; form a standard normal distribu- .
tion (reference 11). 4

Thus:

N ;

1 )2 2

) * X, (F-1)
1=1 ( %
The sum gf n normalized squared errors are xz distributed. This is equivalent
to the x< "goodness of fit" testzmth no parnmeters being estimated by the
sample measurements. With the x“ method, any set of the measurements can be
checked for agreement with the computed values at some desired confidence
level, a.

For any subset of m measurements, the test is,

m 14 \2 2 .
12’:1 (7;-:—) 2 xg (@) (F-2)

The confidence level chosen is dependent upon the geometry of the fix and
criticality of the aid (reference 1) being positioned.

. F<l
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If the sum exceeds the X % » inconsistency of the measurements relative to

the assumed measurement variance is indicated and one or more of the following
possibilities exist concerning the measurement subset,

a. The position determined by the measurement subset is not the desired
position.

b. Blunders and/or uncompensated for systematic errors exist in one or
more of the measurements.

c. A chance (1-a) outlier situation occurred.

In case a, subsequent maneuvering should allow improvement. In the event of
case b, the measurements in question should be investigated. Possibilities
include individual checks of each measurement, measuring instruments, and of
signal sources for accuracy. An example of the x< method is as follows: a
vessel is maneuvered by "marking two measurements” _and the error in a third
measurement is checked against some prespecified x¢ value. If the observa-

tion error exceeds x§ at some prespecified confidence level, a,an inves-
tigation of the all three measurements is in order.

A mathematically more complicated test of the residuals of a set of n measure-

ments can be performed using a similar procedures. In this procedure, the

measurements are made, 2 most probable position is determined from the

¢easu1em$nts, and the X< test i{s perfarmed on the weighted residuals. The
ormula is,

n 2
Yo() s ox @ (F-3)
f=1

Where the n-2 is the number of degrees of freedom resulting from the loss of
two degrees in the estimation of the MPP from the measurement set.

If the test indicates inconsistency, the following possibilities exist:
a. The measurement geometry is functionally inconsistent.

b. One or more measurements are in error and exceed the confidence
1imits imposed by the assumed o.

Case a requires redundant precomputation or, if that fails, a new geometry.
Case b requires investigation of the measurement set (all measurements).
Possibilities here also include study of measuring instruments and signal
sources for accuracy. Further statistical tests can be performed on subsets
of the measurement set. If four or more lines are used, the sum of the norma-
11zed squared residuals of each three-measurement subset with n-3 degrees of
freedom can be compared to the normalized squared residual of the nth measure-
ment with reference to the MPP determined by the n-1 measurement subset. The
normalized squared residual of the nth measurement has one degree of freedom.
The test is for n(>3) measurements:




c
Tn 1

1 = =7 F (1,“-3, a )

(=
isl 71

Where: F(1, n-3, @) is the F distribution with 1 degree of freedom in the
numerator and n-3 degrees of freedom in the denominatar.

This calculation would be repeated for each subset of (n-1) measurements with
the largest of the ratios tested for significance against the desired

F-statistic. A significant result would indicate that the corresponding nth
measurement is likely in error.
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APPENDIX G
ERROR SENSITIVITY MODEL LISTING

310 “POSER"
"SHtradir{-2In(rnd(1rricos(2arnd{1))*rlideairet rl
“DIS"iexp(-,3(r1P1/P3P3+p2R2/F4r4))721Rr3P4+RSiret RS

"DEFAULT":for I=1 to Hifor J=1! to 45if PLI»11=J5DCJI+P(I1,7]

next Jinext Iiret

“GCEHERRTE":8+rd45rSsré

for Ist to N .

azb "HR"3if PLIs11¥139sh "HEB"3if PCIs113253sb "HR"3if PCIs11>35azb
next liret : .

"HR"

P if O#9 and 131 and I4=0+13Jmp 2
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d rnd{10#3804r25rlzinlr2)3sPL 12 rlcos(r2Y+PL 1,32 )idmp 2
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% 37 ri1+Pl1:s313505PL1s5]5ree
38: "GRADIENT":
3%t for I=1 to N
40: PLIs1)sr1iPLIs2)9r23PL1s3)4r3PL1+412r43PLIsS]+r5S
41: 9:zb "GR"3if rid>lissh "GB"3if r1>233sb "GR"3}if r1)33asbk "GL"
42t if ri=1 ond P[1+»2)>10033¢9 3%ask "GEMERATE"
432 if flaeal3cfs 3i9to -4
44¢: next liret
45: "GA":
458 riir2r2+r3r3rirdrd+rSrS) . B0023 0 r2=r4 224 Cr3=rSit20+P{ 1+ 9]
478 (r3(rdrd+rSrS)=rSir2r2+r3r3) ) 2¢r4r3-r2rS)+ré
458 (r2 rdrd+rSro)-rd4 r2r2+r3r3)) - ,2Kr2rS-r4r2dsr?
49:;if ré=0 ond r7>0304P{1:10)5me 4
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