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1.0 INTRODUCTION

1.1 Background

The Aids to Navigation Positioning Project (ANPP) was initiated in
the Coast Guard to establish ways to improve the reliability of buoys in
marking advertised positions. Support efforts in this task were assigned to
the CG Research and Oevelopment Center at Groton, Connecticut, and are
entitled "The Aids to Navigation Position Accuracy and Reliability (ANPAR)

1.1.1 Philosophy

The Positioning/Error Model has been defined in three dis-
tinct phases:

I - Error Sensitivity Model
II - Operonal Positioning Model

III - Uses of the Models

This report concerns itself with Phase I which adopted the
following philosophy:

Error sources, both random and systematic in nature, are
inherent in the positioning process. Each error source can cause an error in
one or more of the observations from which position is determined. The
resulting observation error will be propagated within the positioning process
and result in a corresponding position error. This error propagation is a
function of both the fix geometry (locations of landmuarks or transmitting
stations) and the observed parameter (sextant angle, radar range, gyroscope
bearing, or LORAN time differences). It is reasonable to construct a
mathematical model of error propagation routines which can include, where
practical, the functional relationship between a measure of error source
magnitude and a corresponding observation error. For the purpose of this
report the term "error" will refer to either an error source magnitude or an
observation error; the effect of an "error" is called "position error"; and
the error propagation routine is called "modeled error." Errors with similar
propagation functions can be grouped and referred to by a representative
"modeled error" to avoid redundant model routines.

Studies of error in the positioning process can be
conducted by constructing a model which can accommnodate various modeled
errors, error magnitudes, and fix geometries, as well as display various
measures of position error. The model developed by this project allows the
user to: (1) select the modeled error to be studied; (2) specify the range of
error magnitude; (3) either define one particular geometry or specify the
number of randomly generated geometries for an average effect; and (4) select
the position error effect to be displayed.

Studies using this model of the positioning process can
be conducted for ranking errors by their effect on a selected position error
measure. Once errors are ranked, efforts can be directed toward minimizing
the magnitudes of the priority errors. This model also can be used to study
the effect blunders have on the positioning process. The most significant
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blunder effects can be identified and examined to ascertain the need for
training efforts directed towards amelioration of these effects.

The Error Sensitivity Model (ES4) phase of this effort
provides insight into the effect of the various error sources and provides a
tool for use by ANPP to support further efforts. The result of such efforts
should help Coast Guardsmen comply with the requirement that an aid mark
accurately and precisely the geographic position advertised by the govern-
ment. In this light, the Error Sensitivity Model is a management tool to help
study the aid positioning macro-structure.

1.2 Terminology and Symbology

The terminology established by reference 1 has been adopted here and
extended as necessary. In addition to the Glossary of reference 1, the
following publications establish the terminology used herein:

a. American Practical Navigator, Bowditch (1977)
b. Aids to Navigation Manual, Positioninq, Volume V, 1978
c. Observations and Least Squares, Mikhail, E.M.
d. drographic Manual, 4th Edition, Department of Commerce
e. Definitions of Survey Terms, Mitchell, H.C., Special Pub. No.

242

Symbols are defined where they are first used in the text.

1.3 Summary of Previous Work

A review of the descriptive bibliography of reference 1 indicates
that ANPP work related to the ESM has been in progress for about seven years.
Items listed in this bibliography (along with some unpublished notes compiled
within the Coast Guard) comprise the majority of previous work on the ESM
Phase of the Positioning/Error Model.

2
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2.0 MATHEMATICAL MODEL

The model simulates the inherent stochastic nature of observations
through use of systematic and random error inputs making possible the
observation of error propagation effects on important mathematical measures of
position error.

The model employs the least squares principle to find a set of adjust-
ments that will cause the observations to be compatible with the following

functional model:

- Within the local region where the positioning process is being exe- *
cuted, the lines of position determined by any sufficient subset of
functionally independent observations should cross at a single point.

2.1 Preliminary Considerations

Mathematical models, by necessity, must rely upon appropriate
assumptions and/or approximations. When these are understood, the model is
applicable to the domain defined by them. These considerations are defined
and expanded in this and succeeding sections of the report. While every
effort has been made to select error magnitudes that reflect those occurring
in practice, the model is flexible enough to incorporate verified values as

they become available.

While the basic transformation from observation space to real
positioning space is well known, the statistical methods chosen for weighting
each observation and simulating each error source in the system are dictated
by the project element requirements. The requirements of phase I of this
project element are to both model and study position error effects as a
function of the systematic and the random measurement error components.
Statistics which effectively deal with each of these error components are a
necessity.

The basic tenet (reference 1), "that the conditions imposed upon any
positioning task are unique to the station and not necessarily well defined,"
dictate procedures which statistically account for the uncertainty of a
specific positioning evolution by calculating unbiased estimates of
measurement precision from observations made on scene. These procedures deal
with the total measurement error, not its components, and are not needed to
satisfy the requirements of phase I of this project element. These procedures
will be discussed in phase 11 of the Positioning/Error Model effort where
emphasis is placed on mathematical tools for actual aid positioning. (See
reference 1)

The results of ESM studies presented in this report are position
error effects as a function of error magnitudes and provide an indication of
which error to prioritize. The measurement and quantification of actual error
magnitudes is the subject of other project elements of the ANPAR project.
Definite error magnitudes can be input to the model for analysis when they are
established.

2.2 Least Squares AdJustment Method

The error model is based on the least squares adjustment method of
computing the Most Probable Position (MPP). Mathematical justification for
the adjustment method is contained in references 4 and 8. Expressions for
each matrix element are provided in appendix A.
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The least squares method is used to provide probable corrections to
a set of observations so that they will satisfy the functional model. The
input is a set of inconsistent measurements with an inherent stochastic nature
and the output is an adjusted set of measurements which are consistent but are
not the true measurements. In a related fashion, the least squares method can
be used to study the effect observation errors have on position error.

A "fix geometry" is defined so that the set of errorless measure-
ments cause a consistent set of lines of position. The observations are then
subjected to a known error, or set of errors, and the resulting inconsistent
system is studied. If the system is subjected to systematic error, the t4PP

may change its location and that change will be dependent on the weight of the
observations subjected to the error and the structure of the fix geometry.
Mat hemat cally, displacement of the MPP in positioning space is defined by the
vector Xi = [Ax, 1y] . *The vector X is determined through the transfor-
mation of n observations given by: (references 3 and 8)

X - -(ATWA)-lATWL (2-1)

Where L. is an (n x 1) vector matrix of systematic observation errors.
W is an (n x n) diagonal matrix of observation weighting factors

(inverse of covariance matrix).
A is an (n x 2) matrix of partial derivatives of measurements with

respect to x and y dimensions in real positioning
space.

It is upon this equation that the Error Sensitivity Model is based.
The A matrix is completely determined by the "fix geometry" specified for
modeling. The L matrix is the tool for systematic error input to the system
and the W matrix is the weighti~ng matrix which depends on the specified vari-
ances (and therefore weight) of each observation. It can be seen at this
point that the effect a systematic error has on X is linear but is dependent
heavily on the variance of the measurements to which it is subjected.

The MPP displacement vector X is not the only error effect of
interest. The stochastic nature of the observations is transformed into a
bivariate normal probability distribution (reference 11) centered around the
MPP. Selected parameters of this distribution are calculated as a function of
the stochastic nature of the observations.

The next step is to define the error sources within the positioning
process and to functionally relate each in turn to the respective elements of
either the L or W matrix. In this fashion, the errors of interest can be
studied for any "fix geometry."

2.3 The Errors Modeled

Each element l.i of the L matrix in the adjustment equation (2-1)
is a function of the systematic error sources present in making the ith
observation. In an actual positioning evolution each I. is subject to
random error sources present in making a measurement. iecause of the random
nature of li9 each element is associated with the variance of the respective
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measurement type which is used to weight the observations. The diagonal
elements w- of the W matrix in the adjustment equation are the weighting
factors. They are determined by the equation:

wii = - z (2-2)

Where ciis the standard deviation of the ith observation in units of the
observation.

The matrix elements l.i and wi are the dependent variables of
the functional relationships between errors and the adjustment equation. For
any "fix geometry," the effect that varying the fundamental elements (li and
wii) has on the resulting position error could have been studied. This,
however, does not make the relative significance of the various error sources
obvious. The output of the routine is a function of readily understandable
errors which are described in words in the following sections and mathe-
matically in appendix A.

Throughout this report, the measuring instruments are assumed to be
the sextant (angles), the gyrocompass (bearings), the radar (ranges), and the
LORAN receiver (time differences). These four measuring instruments were
chosen because of field familiarity with the measurement terminology of each.
The model is capable of simulating other range, bearing, angle, or time dif-
ference measuring instruments in the same manner it simulates the four chosen
i nstruments .

2.3.1 Modeled Systematic Errors

The ERRORS column of table 2-1 lists readily apparent sys-
tematic errors subject to study through use of the ESM. Many errors have a
similar effect on the position error. Therefore, errors with similar effect
are grouped and listed under the heading - MODELED ERROR. The MODELED ERROR
column of table 2-1 is a list of these groups. Each of the modeled errors is
described briefly in the subsections to follow. For this report, an error
maximum for each modeled error is given in table 2-1. The maximum error must
be assigned by the user of the ESM. Because the model iterates through a
range from zero to the maximum error, it is not necessary to specify an
expected value of any systematic error. It is accepted that the list of sys-
tematic errors may not be entirely complete; but, any exclusions are of minor
importance, since any measurement error omitted may be grouped with one of the
errors listed for modeling.

2.3.1.1 Index Error

All angular measurement errors which add directly to
the angular measure are grouped with Index Error for purposes of this model
because Index Error is probably the best known error in making sextant
measurements.
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TABLE 2-1

SYSTEMATIC ERRORS

ERROR

INSTRUMENT ERRORS MODELED ERROR CODE# MAXIMUM+

SEXTANT Index Index Error n-IE 60 minutes
(Angles) Personal

Three-Arm Protractor
Instrument
Sextant

Inclined Angle Inclined Angl n-IA 100 meters
Error (C&NC)1

Observer Coincidence Observer Coinci- n-OC 20 meters
dence Error

Survey Landmark Misp aced n-LMM 100 meters
Alignment Error (C&NC)i
Landmark Charting

RADAR Radar Range Error n-RE 100 meters
(Ranges) *Variable Electronic Bias

*Range Marker Alignment
*Personal
*Landmark Misplaced

GYROCOMPASS *Gyro Bearing Error n-BE 3 degrees
(True Bearings) *Speed

Personal
Repeater Offset
*Landmark Misplaced

LORAN *Prediction LORAN Error n-LE 0.25 psec
(Time Differences) *Electronic Bias

*Transmission

C = Common landmark for several observations.
NC = No common landmark to any two observations.

n a The number of measurements in each simulated geometry subjected to the error.

• These errors were not modeled in detail, even though they may have a complicated
functional relationship to the elements of the L matrix, because the weight of
observations made by instruments other than the sextant is small compared to the
weight of sextant observations.

+ This quantity was arbitrarily chosen for this study.
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Personal Error - This error occurs when individual
observers make measurements that, "on the average," are a little larger or a
little smaller than they actually should be.

Three-Arm Protractor Error - This error is due to
inaccuracies in a three-arm protractor which is used for plotting or unplot-
ting angular values.

Instrument Error - The sum of all non-adjustable
errors in a sextant including, prismatic, graduation, and centering errors,
constitute Instrument Error.

Sextant Error - The total systematic error in a
sextant measurement is considered sextant error. Index error, mirror perpen-
dicularity, and instrument error are included in this group.

2.3.1.2 Inclined Angle Error

When a sextant is used to measure the horizontal
angle subtended by two landmarks, an error may occur if the landmarks are of
different altitudes. The error is called Inclined Angle Error. For purposes
of modeling, the Inclined Angle is given the units of meters which represents
the difference in altitudes of the two landmarks. The functional form of the
model for Inclined Angle Error is provided in appendix A.

2.3.1.3 Observer Coincidence Error

When resection methods are used in positioning, the
assumption is normally made that all angles are observed with all observers
standing on the same point. This, however, is usually not the case, and
results in position error. The error in angular measurement due to a lack of
coincidence of the observers is called Observer Coincidence Error. The orien-
tation of the observer separation with respect to the "fix geometry" is also
important. For modeling purposes, the observer making the measurement in
error is displaced in the direction that causes maximum effect. The function-
al relationship between observer coincidence error and the elements of the L
matrix is provided in appendix A.

2.3.1.4 Landmark Misplaced Error

This modeled error can be used to simulate errors
occurring when the geographic coordinates of a landmark differ from those used
in computations or plotting. Surve Error falls in this group. Survey error
represents any case where the published coordinates of the landmark are not in
agreement with the coordinates of the landmark. This may be due to lower
order survey work or, even worse, to rebuilding of landmarks in different
locations without a new survey.

In using the sextant to measure horizontal angles,
two landmarks must be aligned in the horizon mirror. If the two landmarks are
aligned using points other than the published coordinates of the surveyed
point of the landmark, Alignment Error will occur. For example, alignment
error will occur when lining up the perceived centerlines of two tanks rather
than the surveyed points on the platforms around the tanks. The effect of

7
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this error is identical to survey error but the source is the observer rather
than the survey network.

Cartography is the science or art of making maps and
charts. Though the techniques used by cartographers are quite accurate, there
is always a small allowable error in charting any specific landmark. Charting
error contributes to position error when graphical procedures are used in
positioning. For purposes of modeling, this small error is called Landmark
Charting Error and is placed in the Landmark Misplaced group.

The orientation of the Landmark Misplacement error
with respect to the "fix geometry" can be important, as it is with Observer
Coincidence. For the purpose of modeling, the misplacement is always perpen-
dicular to the simulated line of sight to the landmark. The mathematical
details of the Landmark Misplaced group are contained in appendix A.

2.3.1.5 Range Error

There are many possible sources of error in measur-
ing ranges using either electronic or mechanical devices. Most errors do not
have a direct relationship to the elements of the L matrix. Model require-
ments, however, do not specify a need for the exact formulation of each
relationship. All errors in this group are simulated by direct addition to
the measurement.

Radar Error - The difference between radar range
output and a true geodetic range is called Radar Error. Unfortunately,
calibration by using this comparison is often not performed; only an electron-
ic "tune up" is performed. The lack of an electronic "tune up" may cause an
Electronic Bias Error to be overlooked.

Variable Range Marker Alignment Error - This error
occurs when the user does not correctly align the variable range marker with
the blip thit represents the landmark. This error is expected to be closely
related to Personal Error because most observers have their own way of align-
ing the marker.

Landmark Misplaced Error - This error also applies
to radar measurements, but the functional form for this error is used only in
angular measurement simulation because of the relative weights of the measure-
ment types.

2.3.1.6 Bearing Error

The determination of true bearings using the gyro-
compass is subject to error from many sources. Most of the errors are related
to the elements of the L matrix in a complex manner. Model requirements,
however, did not specify a need for the exact formulation of the relation-
ship. All errors in this group are simulated by direct addition to the true
bearing measurement.

Gyro Error - The Gyro Error is the total combination
of the gyrocompass errors at any time. It is expressed in degrees east or
west to indicate the direction in which the axis of the compass is offset from

8



true north. The errors generally associated with Gyro Error are: speed
error, tangent latitude error, ballistic deflection error, ballistic damping
error, quadrantal error, and gimballing error.

Reference 2 contains definitions and discussion of
these error types. For purposes of modeling, they are grouped under Bearing
Error.

Personal Error - This error represents the fact that
the overall mean of an individual's obsevations may tend to be slightly
larger or smaller than the true measurement.

Repeater Offset Error - This occurs when gyrocompass
repeaters, which are located at a convenient location for measurement, do not
present the same values as indicated on the master gyrocompass.

Landmark Misplaced Error - Because of the relative
weights of bearing measurements to sextant measurements, the functional form
for this error is used only in sextant measurement simulation.

2.3.1.7 LORAN Error

There are many possible sources for error in posi-
tion location using LORAN (reference 3). Most do not have a simple direct
relationship to the elements of the L matrix of the adjustment equation.
Model requirements, however, did not specify a need for the exact formulation
of each relationship. All errors in this group are simulated by direct
addition to the measured LORAN time difference measurement. All receiver
electronic misadjustments which could cause measurement error are represented
by Electronic Bias for modeling purposes. The other group of error sources
which could resl in position error are those due to the differences in the
predicted and actual transmission path of the LORAN signal. Any error source
in this category is represented by Transmission Error. There is also a

possibility for Charting Error if a chart is used in positioning with LORAN.
2.3.2 Modeled Random Errors

Table 2-2 provides a list of the random error sources subject
to study through use of the ESM. The table also provides an arbitrary maximum
value for each standard deviation (s.d.) of each modeled error as well as a
default s.d. for each modeled error. Lacking an input value for s.d., the
model assumes the default value for the s.d. The default s.d. values used are
taken from references 3, 9, and 10. These arbitrary values are intended to
represent the relative goodness of the measuring instruments and are presently
being refined/verified by other ongoing work. Unless otherwise specified, the
default s.d.'s associated with the measurement types are:

a. Sextant -5 minutes
b. Radar - 30 meters
c. Bearing - 0.5 degree
d. LORAN - 0.1 msec

9
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In some cases, it is more appropriate to assign smaller
standard deviations to chosen measurement types in order to see the effect of
a projected improvement in the repeatability of an instrument.

The importance of random error assignment cannot be over-
emphasized as the effect of any particular systematic error is dependent upon
the weight assigned to the observation. This is not a serious constraint
because, as more refined measures of instrument precision are provided, the
model can be modified and exercised accordingly.

All but Landmark Definition have a simple inverse square
relationship to the diagonal elements of the weighting matrix, W. The
relationship between landmark definition and the variance of the resulting
measurement is provided in appendix A.

The list of random error sources may not be entirely complete
but it is considered that any exclusions are of minor importance since omitted
random errors may be grouped with one of the errors listed for modeling.

2.3.2.1 Sextant/Observer Standard Deviation

The inherent stochastic nature of sextant observa-
tions is modeled through use of this error. It combines random error due to
Observer Standard Deviation and Sextant Standard Deviation. Observer s.d.
represents the fact that even with a perfect sextant, an observer will not
make the same observations with repeated measurements.

Sextant Standard Deviation is similar to Observer
Standard Deviation except that the observer is considered perfect while the
sextant is the random error source. Both errors have identical effect on
position error.

2.3.2.2 Landmark Definition

A landmark observed while making resection measure-
ments may not provide a clear and distinct image. This would cause even the
perfect observer with the perfect sextant to have poor repeatability of a
measurement. Some landmarks provide a very clear point for alignment while
other landmarks, such as a wide water tower at close range, do not. These
errors are represented by Landmark Definition. Any doubt in the quality of
horizontal control can be modeled also through use of this error (for doubt
associated only with the direction perpendicular to the line of sight to the
landmark).

2.3.2.3 Radar, Bearing, and LORAN Standard Deviation

The precision of each radar, gyrocompass, and LORAN
measurement is dependent on the observer and the equipment. Electronic noise,
inherent mechanical fluctuations, and visibility conditions are sources of
random error in each measurement. The random errors are modeled directly by
user assignment of s.d.'s to measurements simulated. Since known values of
s.d.'s are not yet available, the s.d.'s assigned for this report are
estimates.



2.3.3 Modeled Outliers

A project requirement for the ESM is to introduce a high
confidence outlier detection technique. A mathematical description of an
outlier detection scheme, which can be investigated using the ESM, is provided
in appendix F, and demonstrated in section 5.5 in this report. The technique
is fashioned after the "X ' Goodness of Fit" statistical test used in the
physical sciences. In this test the question is asked, "Does the observation
deviate from the functional model by such a magnitude that it is unlikely due
to random error alone?" The existence of a large blunder, or of a systematic
error as a cause of the outlier, can be suspected using this method when a
reasonable estimate of the measurement s.d. is known. However, small blunders
or systematic errors will go unsuspected.

Examples of the most common mistakes are applying Index
Correction improperly or of sighting a landmark which is not the one
selected. Blunders are modeled similar to systematic errors.

Table 2-3 provides a list of often-discussed blunders (not
all possible blunders) and the systematic error group in which they are
assigned.

Because the least squares adjustment equation uses linear
first-order approximations to a more co.plex system, large blunders cause
higher order effects and cannot be modeled accurately.

TABLE 2-3

BLUNDERS

BLUNDER SYSTEMATIC MODELED ERROR GROUP

Index Correction Applied Wrong Index Error
Sextant Read Wrong Index Error
Wrong Landmark Observed Landmark Misplacement
Data Entry Mistake Index Error

Incorrect Radar Reading Radar Error
Incorrect Gyro Reading Bearing Error
Incorrect LORAN Reading LORAN Error

Angles Switched Too drastic to model
Uncompensated-for Systematic Errors All errors discussed in 2.3.1*

*Source of blunder need not be Coast Guardsmen (e.g., survey team).
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3.0 GEOMETRY

The geometry of a fix consists of all the LOP's which represent the
measurements that compose the fix, their respective measurement standard
deviations, and their orientation with respect to each other. The "fix
geometry" determi nes the strength of the fix. Effects of measurement errors
and computational mistakes on position error depend on the strength of the
fix, which implies that choice of the "fix geometry" is important part to ESM
efforts. The pitfalls of assuing only a few geometry layouts become evident
when considering the basic tenet "that all fixes are unique." Too much
information (studying many selected "fix geometries") can be as harmful as too
little if useful informiation is not apparent. The ES?4 model was created with
two alternative approaches to the geometry problem. In the first alternative,
called the "Fixed Geometry" alternative, representative positioning scenarios
are selected for study. The three scenarios selected for this study are
described in detail in the next section. Users of this model for other
studies are cautioned that if too few geometry scenarios are considered,
erroneous conclusions could be drawn and important results bypassed. The
second alternative, called the "Random Geometry" alternative, generates
information from many "fix geometries" without creating so much information
that it is unmanageable. The "Random Geometry" alternative is described
verbally in section 5.2 and expressed mathematically in appendices A and E.

3.1 Fixed Geometry

Although many scenarios can be analyzed using the ESM, only
scenarios called Harbor, Near-Coast, and Offshore were selected for study in
this report.

3.1.1 Harbor

The Harbor scenario is composed of sextant measurements using
landmarks that are relatively close (4000 meters) to the designated position,
and which surround the position with equal angular spacing (900). Figure
3-1 depicts the geometry of the Harbor scenario. This scenario was chosen

£ because many aids serviced by the Coast Guard are within rivers and harbors.

3.1.2 Near-Coast

This scenario is composed primarily of sextant measurements
using landmarks equally spaced on a nearby (4000 meters) coastline. A fourth
line of position is included 'ising an additional gyrocompass measurement
thereby further "checking" the fix. The effect of this additional "check" is
studied. Figure 3-2 provides the fix geometry for the Near-Coast scenario.

3.1.3 Offshore

This scenario represents cases when sufficient landmarks are
not available or visible for resection, and is composed of measurements made
using combinations of instruments other than the sextant. Comparison between
measurement types is made using a syimetrical geometry for each and then

stuyinthe respective position error. Figure 3-3 describes the Offshore

13
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A oI

R = 4000 meters
A = 90 degrees

Three lines of position ftom sextant.
No other measurements.

FIGURE 3-1

HARBOR GEOMETRY

RR R R - 4000 meters

A = 30 degrees
B - 60 degrees

-Ie Three lines of position from sextant.
One line of position from gyrocompass,sighting on second landmark from left.

FIGURE 3-2

NEAR-COAST GEOMETRY

II
Pt R = 4000 meters

A - 60 degrees

Three lines of position from radar,
gyrocompass, or LORAN (Gradient taken to
be 300 meters/psec).

FIGURE 3-3

OFFSHORE GEOMETRY
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3.1.4 Other fix geometries

The operating instructions for using the ESM to study other
scenarios of interest are contained in appendix B.

3.2 Random Geometry

It is seldo, that all elements of a large population can be
studied. A common method of studying large populations is to draw a sample
from the population, perform tests on it, and infer the statistics apply to
the entire population.

A sample of "fix geometries" using the sextant was drawn from the
SANDS (reference 3) forms of USCGC REDWOOD (WLM 685), and sample statistics
were calculated. The direct route of subjecting each "fix geometry" to
analysis proved to be cumbersome, therefore, a Monte Carlo routine was created
using the sample statistics. The mathematical equations used in the Monte
Carlo simulation and the sample statistics are provided in appendix E.

The "random geometries" generated by the Monte Carlo routine were
subjected to error analysis and selected frequency distributions of error
effects were determined. The inference was made that the frequency distribu-
tions created represent the results obtainable by study of all "real" aid
positioning geometries. The critical reader will question the validity of
representing all possible fix geometries by a sample from the SANDS data of
only one unit. The response to this valid criticism is that the requirements
placed on the ESM efforts reported on herein calls for a tool to be used in
judging relative error effects among some representative geometries. If a
different set of representative geometries (such as one drawn randomly nation-
wide) is desired, the statistics of the sample can be entered into the model
for further study. The results contained herein must be weighted by the fact
that they are created through use of the USCGC REDWOOD sample.

The sample drawn from USCGC REDWOOD had too few "fix geome-
tries" composed of radar, gyrocompass, and LORAN measurements. Because of
this data deficiency, other modeling techniques were employed. A Monte Carlo
simulation of all measurements is used adding reasonable constraints upon
landmarks sighted and crossing angles. The simulated landmarks used for range
and bearing measurements were generated using statistics of the REDWOOD
sample. However, successive landmark bearings were distributed uniformally
between 30 and 90 degrees. LORAN LOP's were simulated with similar crossing
angles. Though the distributions used in this work are necessarily biased due
to sampling from a single unit, the point that this error evaluation technique
Is a powerful one is effectively made. More precise distributions can be

substituted if a substantial return is indicated.



4.0 COMPUTER ADAPTATION OF THE MODEL

A set of landmarks, measurements, and/or signals are chosen which define
a "fix geometry" that satisfies the functional model introduced in section
2.0. The measurements are perturbed by subjecting them to an iteratively in-
creasing modeled error from among those defined in section 2.3. The perturbed
measurements are then transformed via the least squares adjustment equation
into a two-dimensional location with an associated two-dimensional uncertain-
ty. Various measures of position error are calculated following each
iteration.

As inputs are required, the computer displays a message to the operator.
The routine does not have a data entry error feedback system which means the
operating instructions of appendix B should be followed strictly. The time
required to study the effect of one error source on a specified "fix geometry"
is a few minutes, including data entry time. The time required for a "random
geometry" case increases linearly with the number of geometries desired in thesample.

4.1 Required Inputs

4.1.1 Fixed Geometry

Table 4-1 lists the inputs required by the routine in study-
ing a "fix geometry" (refer to appendix B for proper data entry procedures).

4.1.2 Random Geometry

Table 4-2 lists the inputs required by the routine in study-
ing "random geometries" (refer to appendix B for proper data entry procedures).

4.2 Outputs of the Error Sensitivity Model

The outputs differ significantly between the two geometry approaches.
In all "fixed geometry" cases, the chosen error effect parameter is plotted as
a function of the modeled error, whereas the "random geometry" outputs are
frequency distributions or cumulative frequency distributions of the selected
error effect parameter as a function of five values of the modeled error all
equally spaced within the modeled error domain (see section 5.2). In either
method the same modeled errors and error effect parameters are available. The
modeled errors were discussed in section 2.3 and the error effect parameters
are described in the following subsections. Refer to Results (section 5.0)
for examples of the output of the model.

4.2.1 AP-to-MPP

The point at which all lines of position cross in an unper-
turbed "fix geometry" is called the assigned or assumed (designated) position,
AP. The adjusted set of lines of position cross at a point called the most
probable position, MPP. The vector on the two-dimensional positioning surface
between these two points is an error effect parameter called the AP-to-MPP
vector. The AP-to-MPP vector, following any disturbance of the initial "fix
geometry," requires magnitude and direction to define it completely. The
direction is not of value in meeting present project requirements. The routine

16



TABLE 4-1

FIXED GEOMETRY - INPUTS

(1) Number of sextant angular measurements

(2) Number of gyrocompass bearing measurements

(3) Number of radar range measurements

(4) Number of LORAN time difference measurements

(5) Number of landmarks that are common to sextant measurements (see
section 5.6, Limitations of the Model)

(6) Standard Deviations of simulated sextant measurements (Default = 5
minutes) (Reference 9)

(7) Standard Deviations of simulated gyrocompass measurements
(Default = 0.5 degrees) (Reference 9)

(8) Standard Deviations of simulated radar measurements (Default = 30
yards) (Reference 10)

(9) Standard Deviations of simulated LORAN measurements (Default = 0.1

Msec) (Reference 3)

(10) Error Effect Parameter Choice (see section 4.2)

(11) Error to be studied (see section 2.3)

(12) Radius of target circle (optional)

(13) Maximum of error to be studied

(14) Range and true bearing to all landmarks used in sextant angular
measurements

(15) Range and true bearing to all landmarks used for gyro bearing measure-
ments

(16) Range and true bearing to all landmarks used for radar range
measurements

(17) Gradient magnitude and direction for all LORAN time difference
measurements
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TABLE 4-2

RANDOM GEOMETRY - INPUTS

(1) Number of sextant angular measurements

(2) Number of gyrocompass bearing measurements

(3) Number of radar range measurements

(4) Number of LORAN time difference measurements

(5) Number of landmarks that are common to sextant measurements (see
section 5.6, Limitations of the Model)

(6) Standard Deviations of simulated sextant measurements (Default = 5
minutes)

(7) Standard Deviations of simulated gyrocompass measurements
(Default = 0.5 degrees)

(8) Standard Deviations of simulated radar measurements (Default = 30 yards)

(9) Standard Deviations of simulated LORAN measurements (Default = 0.1 psec)

(10) Error Effect Parameter Choice (see section 4.2)

(11) Error to be studied (see section 2.3)

(12) Radius of target circle (optional)

(13) Maximum of error to be studied

*(14) Number of "fix geometries" desired in sample

(15) Seed for random number generator (nine-digit fraction between 0 and 1)

* To change the parameters used to randomly generate sample geometries, the
progran needs slight modifications. Appendix A describes the program
listing that requires change.
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is not written to provide the direction, but a modification is not difficult
if studies of this nature are desired. The mathematical expression for
AP-to-MPP is provided in appendix A.

4.2.2 2-drms

The mathematical model results in an MPP and in the two-
dimensional uncertainty in the MPP for each iteration through the modeled
error. The two-dimensional uncertainty of the MPP is defined with respect to
a rotated reference system centered on the MPP. The angle between the origi-
nal reference axis and the new reference system is determined such that the
coordinates are uncorrelated in the new system. The variance associated with
the MPP in each of the two orthogonal directions defines completely the
uncertainty in its location in the form of a bivariate normal probability
distribution. Often, the two-dimensional uncertainty can be approximated by
one number. One such number, 2-drms, is twice the square root of the sian of
the variances in the orthogonal-re-erence system. It is used to define the
radius of a circle which contains at least 95 percent of the probability mass
of the bivariate normal distribution.

4.2.3 Maj*Min (90%)

The contours of equal probability density of the bivariate
normal distribution form ellipses. The area of an ellipse which contains 90
percent of the probability mass of the distribution is an error effect parame-
ter, the Maj*Min (90%).

4.2.4 Maj (90%)

The major semi-axis of the ellipse described in section 4.2.3
is an error effect parameter, the Maj (90%).

4.2.5 P-in-R

The probability mass which is contained by a circle of radius
R centered about the assigned position is called the P-in-R. Of course,
P-in-R is always less than one. The probability is calculated by a two-dimen-
sional integration of the bivariate probability distribution over the area of
the designated circle. Details of this calculation are contained within
appendix C.

The value of this error effect parameter can be realized by
considering that it is a function of both random and systematic errors. A
drawback to its usefulness is that the computations necessary to arrive at it
are very time consuming.

4.2.6 Sum Sqd Res

The Sum Squared Residuals (Sum Sqd Res) is an error effect
measure which indicates how far, in terms of multiples of assumed measurement
standard deviation units, the lines of position of the perturbed system are
from satisfying the functional model. A residual is the difference between a
measurement of the perturbed "fix geometry" and the respective measurement of
the adjusted "fix geometry." The residual of each measurement is squared then
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divided by the variance of that measurement. The weighted quantities are
summed to obtain the final parameter. The value of this error effect parame-
ter is demonstrated in section 5.5, Outlier Detection and Identification. The
mathematics associated with its calculation and use are expressed in
appendices A and F.

4.2.7 Min/Maj

The ratio of the minor and major semi-axis of the ellipse
defined in section 4.2.3 is called the Min/Maj error effect parameter.
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5.0 APPLICATION OF THE MODEL - RESULTS

The preliminary considerations of Section 2.1 should be reviewed before
the reader becomes involved in studying the results presented in this section.
A failure to appreciate the constraints of using specific geometries can
easily lead to erroneous conclusions. On the other hand, to interpret that
the expected values of error effect derived from the "random geometry" method
are all inclusive, can just as easily lead to erroneous conclusions. It is a
combination of both approaches that will prove useful in a general analysis of
the positioning problem.

The primary result of this effort is that an Error Sensitivity Model has
been created complete with operating instructions and example applications.
The examples given do not represent the total of all information derivable by
use of the model and should only be examined with regard to the "fix geome-
tries" from which they were derived.

The key for figure numbers throughout this section is:

X-LL-X(L)%. X=number
Report Section- \ Figure a, b, or c L=Letter

Geometry Type Page of LL Data
H=Rarbor
NC=Near-Coast Example: 5-0S-2(a) is figure (a) on
OS=Offshore I page 2 of the off-
R=Random shore data in section
B=Blunder 5 of the report.

5.1 Fixed Geometry

The results of error analysis on the fixed geometry scenarios
described in section 3.1 are displayed in figures 5-H-1(a) through 5-0S-4(c).
Refer to section 2.3 for a description of the modeled errors and section 4.2
for a description of the error effect parameters.

Equivalent modeled error is introduced to allow comparison of the
effects of modeled errors pertinent to each measuring instrument. The equiva-
lent modeled error is the error value which causes 100 percent degradation of
the error effect parameter studied (i.e., either halves or doubles the error
effect parameter - as appropriate - with respect to its value when the modeled
error is zero.). Table 5-1 lists the equivalent modeled errors for the P-in-R
error effect parameter. The equivalent modeled errors are grouped by their
respective measuring instrument within the columns and by geometry type within
the rows. The table is useful for comparing the different geometry scenarios
and in finding the relative importance of each modeled error within each
"fixed geometry" scenario. Examination of table 5-1 and figures 5-H-1(a)
through 5-OS-4(c), pages 33-54, reveals information as follows:

Pages 33-50

The modeled errors have a more significant increased effect on the error
effect parameters using the Near-Coast Geometry than they do in the
Harbor Geometry. Equivalent modeled errors differ by as much as a factor
of two in the case studied.
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TABLE 5-1

FIXED GEOMETRY EQUIVALENT MODELED ERRORS

N/A = Not applicable NWR = Not within range NE = No effect

ERROR#  HARBOR NEAR-COAST OFFSHORE

Sextant

1-IE 58 minutes 25 minutes N/A

1-NCLMM 70 meters 50 meters N/A

2-CLMM 32 meters 19 meters N/A

1-NCIA NE NWR N/A

2-CIA NE NWR N/A

1-OC NWR NWR N/A
+*3-S/OSD 8.2 minutes 7.6 minutes N/A

+*I-NCLMD NWR NWR N/A

+*2-CLMD 12 meters 8 meters N/A

Gyrocompass

3-BE N/A NWR 0.42 degrees
*3-BSD N/A NWR 0.74 degrees

Radar

3-RE N/A N/A 24 meters
*3-RSD N/A N/A 46 meters

LORAN

3-LE N/A N/A 0.08 usec

*3-LSD N/A N/A 0.15 usec

* The value listed is that which corresponds to a P-in-R which is one-half of
that obtained using the default standard deviations for the simulated
observations.

+ Target Circle 5-meter radius

# The number represents the number of measurements to which the modeled error
was applied.
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Pages 33-35, 40-42

The P-in-R output parameter remains high (more than 0.9) until the
AP-to-MPP distance is about 80 percent of the target circle radius.

Pages 33-96(a), 40-46(a), 51-53(a)
The AP-to-MPP error effect parameter is a linear function of systematic
error.

Pages 34-35, 38-391 41-44, 48-49
Landmark-related modeled errors have a more severe effect on position
error when the geometry contains a landmark which is common'to two
measurements. In all cases presented, only one common landmark was
simulated. The sane effects would result if two landmarks, each used
once, provided similar input errors.

Pages 36, 43-45
Inclined Angle Error and Observer Coincidence Errors have, within the
range investigated, little effect on the error effect parameters studied.

Pages 35, 42, 39(c), 49(c)
Common Landmark Misplacement and Common Landmark Definition can signifi-
cantly affect position error if the error magnitude is of the same order
as the target circle radius.

Pages 37(b), 47(b)

The Maj (90%) error effect parameter is a linear function of S/O Standard
Deviation.

Pages 37(a), 47(a)

The Maj*Min (90%) error effect parameter is a quadratic function of S/O
Standard Deviation.

Pages 46(a), 50(c)
The simulated gyrocompass bearing measurement in the Near-Coast geometry
adds very little to the strength of the fix. Unless the standard devia-
tion of gyrocompass measurements is decreased to less than 0.25 degrees,
it is often of little help in further "checking" a fix determined by
three-angle resection (assuming a reasonably good geometry is used in the
three-angle fix).

Pages 51-53
Given the default measurement standard deviations, three measurements
using the gyrocompass, radar, and LORAN receiver have a small (less than
0.1) chance of positioning the observer within a target circle of 25
meters radius, if systematic error exceeds 0.5 degree, 40 meters, and 0.1
psec, respectively.

Pae 54

iyrocompass, radar, and LORAN measurements must have standard deviations
of less than 0.25 degrees, 20 meters, and 0.05 psec, respectively, to
achieve high P-in-R values (approximately 0.8) for a target circle of
radius 25 meters with 600 crossing angles (provided all systematic
errors are zero).
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5.2 Random Geometry

Cumulative frequency distributions of error effect parameters are
displayed in figures 5-R-1(a) through 5-R-6(c), pages 55-60. Refer to section
2.3 for modeled error definitions and section 4.2 for error effect parameter
definitions. Each figure displays five cumulative frequency distributions
(one for each of five different modeled error values) each of which was
created using the following procedure:

The error effect parameter is assigned a maximum value as an option-
al user input (see appendix B) and the resulting range (0 to maximum) is
divided into 26 data accumulation bins. Each geometry of the sample is
studied iteratively, once for each fifth of the maximum modeled error, with
the resulting error effect parameter tabulated in the appropriate bin. If the
error effect parameter exceeds the specified maximum, it is tabulated in a
twenty-sixth bin. After all geometries of the sample have been studied, the
sample fraction within each bin is calculated. The modeled error effect is
determined by comparing the cumulative frequency distributions and summary
statistics which correspond to the respective modeled error values.

If desired, the frequency distribution can be plotted directly (not
cumulative). The numbers which compose each frequency distribution on the
graph represent the number of fifths of the maximum modeled error present in
generating the respective frequency distribution.

The expected value of any error effect parameter is calculated from
the frequency distribution and is used to rank order expected error effects.

At least 200 randomly generated geometries are required to suff i-
ciently "smooth" the cumulative distributions, however, 100 geometries normal-
ly provide enough data to distinguish among distributions on a single graph.
In each case, the number of sample geometries, as well as the number of each
measurement type, are given in the figure. In each case, the number of angle
(A), bearing (B), range (R), and LORAN (L) measurements is indicated on the
right side of the graph. In addition, the target circle radius, R, is
provided in the title block.

Examination of figures 5-R-1(a) through 5-R-6(c), pages 55 through
60 respectively, and the expected values of all error effect parameters
reveals the following expected trends and quantified information:

T3jecting one sextant measurement to Index Error is less severe than
subjecting all three measurements to Index Error.

Pages 56, 57, and 59
LandmarK-related errors have a more severe effect on P-ln-R when the
geometry contains a landmark which is conmmon to two measurements (that
is, when two measurements contain errors).
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Pages 55-58
The following errors cause at least 90 percent of the geometries to have
a P-in-R of less than 0.5. The target circle radius is 25 meters.

ERROR# MAGNITUDE
qu minutes (extrapolated value)

3-IE 48 minutes
1-NCLMM 100 meters
2-CLMM 60 meters
1-NCIA NWR*
2-CIA NWR*
1-OC NWR*
3-BE 0.20 degrees
3-RE Less than 10 meters
3-LE Less than 0.05 jsec

# See table 2-1 for list of modeled error abbreviations and codes.
Pages 55-58 NWR - Not within range.

The following errors cause 50 percent of the geometries to have a P-in-R
of less than 0.9. The target circle radius is 25 meters.

ERROR# MAGNITUDE
=18 minutes

3-IE 12 minutes
1-NCLr4 20 meters
2-CLMM 18 meters
1-NCIA 450 meters
2-CIA 300 meters
1-OC 16 meters
3-BE 0 degrees
3-RE 0 meters
3-LE 0 psec

See table 2-1 for modeled error abbreviations and codes.

Page 57
Inclined Angle Error and Observer Coincidence Errors have very little
effect on the P-in-R under nearly all circumstances investigated.

Page 59(a)
There is a huge potential for increasing fix strength by reducing the
Sextant/Observer Standard Deviation. Fifty percent of the P-in-R's are
moved from below to above 0.8 by reducing Sextant/Observer Standard
Deviation from 5 minutes to 2 minutes.
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Page 59(c)
Landmark Definition can have a significant effect on P-in-R for many
geometries if its magnitude is greater than the target circle radius.
For a 5-meter target circle, a Common Landmark Definition Error of 10
meters causes P-in-R to be less than 0.2 for 80 percent of the geometries
studied. A Commnon Landmark Definition error of 10 meters is unacceptably
large by applicable survey standards. The average landmark is 4000
meters from the assigned position which, when Third Order Class 11
Geodetic Survey Standards (reference 19) are used, indicates a possible
1:5000 or 0.8 meter uncertainty in landmark location. Landmark alignment
difficulties or poor visibility may cause landmark definition errors as
large as 10 meters.

Page 60
s.d .'s of gyrocompass, radar, and LORAN measurements of greater than 0.5
degrees, 30 meters, and 0.1 Misec, respectively, make positioning within a
25-meter target circle very improbable (approximately 80 percent of
geometries with P-in-R of less than 0.5 with no uncompensated systematic
errors present).

Table 5-2
Table 5-2 su~mmarizes the expected values of the error effect parameters
as a function of the modeled errors.

5.3 Rank Order of Modeled Errors by Average Effect

There is no conclusive method for rank ordering modeled errors by
average effect. Any rank ordering for one "fixed geometry" may not apply to
any other "fixed geometry." In order to provide a rank order with f ar-reach-
ing applicability, the modeled errors must be ranked with the following
considerations in mind:

a. On what error source should resources be expended to most
effectively decrease position error?

b. Are the modeled errors under consideration relatively
negligible?

c. What is the frequency with which the modeled error occurs?

d. Is a suggested method of decreasing position error subject to
other (possibly more severe) error sources?

Answers to these questions are very complicated. Modeled errors can
be ranked to meet the project requirement by considering the expected values
of the error effect parameters. The P-in-R error effect parameter was chosen
to rank modeled errors by average effect.

Table 5-2 provides the information needed to rank modeled errors.
P-in-R is given as a function of each modeled error over the domain of the
modeled error selected. The function provided is a least squares curve fit of
the "random geometry" derived P-in-R averages. The correlation coefficient
was very good for nearly all error effect functions. In reviewing the func-
tions, consideration must be given the relative ease in effecting a decrease
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in the error throughout the aids to navigation macrostructure. For example,
large improvements in P-in-R are possible by decreasing the S/0 Standard
Deviation (Slope = -0.08/min at S/O Standard Deviation of 5 minutes). How-
ever, decreasing this standard deviation by 1.0 minute throughout the Coast
Guard may be very difficult compared to decrea ing other errors. The error
effect function for P-in-R is of the form y=aeDX. The coefficient, b, in
the exponent of each curve fit can be used to define another useful value,
1/b. A modeled error of magnitude 1/b decreases the expected P-in-R value to
a/e, where a is determined by the curve fit and e is the natural base, 2.718.
A review of table 5-2 allows selection of the modeled errors which often do
not contribute significantly to position error. The following is a list of
the modeled errors of least effect on position error:

a. Common and Non-Common Inclined Angles - Very seldom is an
elevation difference of the range modeled large enough to
cause significant increase in position error.

b. Observer Coincidence - Most often P-in-R is low only when
observers are separated by distances greater than those
physically possible on the ships used to position aids.

c. Non-Common Landmark Definition - The image of a non-common
landmark has to be quite poor before any significant decrease
in P-in-R is suffered.

The effectiveness of any decrease in an error from a given source is
indicated by the slope of the error effect functions. Table 5-3 lists the
first derivatives of the P-in-R error effect functions evaluated at selected
modeled error magnitudes. This provides a measure of how effective a decrease
of one model error unit is in increasing P-in-R.

The list in table 5-3 still does not allow exact ranking of errors
by average effect because there is no data on the frequency of occurrence of
the modeled errors. However, the following statements are made with reference
to tables 5-2 and 5-3:

a. Index Error, whether it occurs on one or all of the sextant
measurements, has a significant effect on P-in-R and should
be compensated for in a regular fashion.

b. Landmark Misplacement Error contributes very little to
position error for displacements acceptable to geodetic
survey standards. However, unsurveyed landmarks can easily
cause a large position error. Blunders caused in using
landmarks differing from those selected are obvious violators
of fix strength.

c. Inclined angles normally degrade position error very little.

d. Observer Coincidence is not significant enough to warrant any
more than directing observers to stand as close as possible
to one another.
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TABLE 5-3

EFFECTIVENESS OF MODELED ERROR DECREASE

MODELED ERROR ERROR EFFECT EFFECTIVENESS
MAGNITUDE FUNCTION DERIVATIVE* P-in-R/unit

1-IE = 5 minutes -0.030exp(-O.025(1-IE)) -0.026/mmn

3-IE - 5 minutes -0.O41exp(-0.039(3-IE)) .-0.034/min

1-NCLW4 - 10 meters -0.O2Oexp(-0.022(1-NCL4M)) -0.016/met

25-meter 2-CLMM a 10 meters -0.O38exp(-0.034(2-CLMM)) -0.027/met

Target 1-NCIA = 100 meters -0.O0lexp(-0.O01(1-NCIA)) -0.001/met

Circle 2-CIA = 100 meters -0.OO2exp(-0.002(2-CIA)) -0.002/met

Radius 1-OC - 5 meters -0.Ol5exp(-0.015(1-OC)) -0.014/met

3-BE = 1.0 degree -1.S2exp(-2.50(3-BE)) -0.124/deg

3-RE = 50 meters -0.O49exp(-0.062(3-RE)) -0.002/met

3-LE a 0.1 usec -3.O5exp(-12.7(3-LE)) -0.850/pusec

5-meter 3-S/0 SD = 5 minutes -0.1B8exp(-O.164(3-S/0SD)) -0.082/mmn
Target
Circle 1-NCLMD = 10 meters -0.OO5exp(-0.012(1-NCLMD)) -0.004/met
Radius 2-CLMD a 10 meters -0.O0lexp(-0.023(2-CLMD)) -0.006/met

25-meter 3-BSD - 0.5 degree -2.97exp(-2.29(3-BSD)) -0.940/deg
Target
Circle 3-RSD -30 meters -0.O38exp(-0.034(3-RSD)) -0.014/met

Rais 3-LSO 0.1 usec -14.6exp(-11.9(3-LSD)) -4.40/Musec

*The coefficient (1-IE) in the exponent represents a modeled Index Error
applied to one angle (not, 1 minus the Index Error); this is also true forI. other modeled errors.
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e. Improvements in Bearing, Range, and LORAN Errors of 0.25
degree, 10 meters, and 0.05 jisec, respectively, increase
P-in-R by less than 5 percent at points considered in table
5-3.

f. A decrease in S/0 Standard Deviation can greatly increase
P-i n-R.

g. Commnon Landmark Definition, on the average, does not affect
position error as drastically as Landmark Misplacement, but
should not be neglected when either large or unclear land-
marks are used.

h. Decreases in Searing, Range, and LORAN Standard Deviations of
0.25 degrees, 10 meters, and 0.05 Musec, respectively, can in
many cases increase P-in-R by more than 0.20. This can make
them suitable for positioning aids when a 25-meter target
circle is adequate.

5.4 Priority Error Designation

The discussion in sections 5.1 through 5.3 leads to designation of
the following modeled errors as "Priority Average Errors" (based on assump-
tions made).

a. Index Error

b. Landmark Misplacement

c. Sf0 Standard Deviation

d. Bearing, Range, and LORAN Standard Deviation

5.5 Outlier Detection and Identification

An R&D project requirement called for formulation of a high confi-
dence outlier detection technique for application when aid positioning. Two
mathematical techniques are described in appendix F and one is discussed in
this section. Section 2.3.3 provides a list of some of the blunders possible
in the positioning process.

The mathematics in appendix F indicate that the presence of an
outlier becomes apparent in many cases by performing a X(2 test (reference
8) on the sum of the squared weighted residuals. The test is designed to
indicate when the consistency of the lines of position is so poor, compared to
what is expected, that it probably was not the result of only random error.
An analogy to blunder detection is to consider the outlier as a signal, and
raidom errors as the noise. If the signal-to-noise ratio is large enough, the
X'test should indicate an inconsistency in the measurements used to create
the fix; the inconsistency may be large enough to be flagged as an outlier
containing a blunder. If the fix is composed of three lines of position,
further examination is required to identify the suspicious observations. In a
fix containing four independent lines, all fo r can be tested and if found
excessively inconsistent by failure of the X 2 test, each of the four
combinations of three can be tested in turn against the fourth line (see
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apppendix F). In cases where the geometry includes commnon landmarks (e~g., a
four-line fix with only four landmarks, not independent lines of position), a
blunder in using a landmark other than the selected conmion landmark could
disturb two or more lines of position and the blunder identification procedure
could break down because of this dependency. Four good landmarks are required
to find an inconsistency due to one poorly located landmark. Fixes with more
than four LOP's can be tested similarly, but the possible combinations grow
rapidly.

Figure 5-8-1(a), Page 61, shows frequency distributions of the Sum
Sqd Res of a three-angle fix using the random geometry method; there is one
distribution for each of five Index Error (IE) values to which the fixes were
subjected. One angle was subjected to error and the fixes were tested for
excessive inconsistency at the 95 percent confidence level
(i.e., 2 (0.95)=3.8). The reference s.d. used was 5 minutes (appendix F).

The following information is obtained by review of the figure:

a. Eighty percent of all fix geometries subjected to 12 minutes
of Index Error go unsuspected.

b. Forty-five percent of all fix geometries subjected to 24
minutes of Index Error go unsuspected.

c. Thirty-two percent of all fix geometries subjected to 36Itminutes of Index Error go unsuspected.
d. Twenty-two percent of all fix geometries subjected to 48

minutes of Index Error go unsuspected.

e. Twenty percent of all fix geometries subjected to 60 minutes
of Index Error go unsuspected.

If the S/0 Standard Deviation was improved, many more blunder
candidates could be found. The ESM can be used in the fixed geometry mode to
study the outlier rejection levels of any specified "fix geometry." Figures
5-B-1(b-c) are examples of such a study on the Harbor geometry, employing the
chosen 5-minute standard deviation of sextant measurements. Figure 5-8-1(b)
displays the effect Index Error has on the Sum Sqd Res when it is subjected to
one measurement of the Harbor geometry. The outlier detection scheme would
detect Index Errors greater than 15 minutes. This plot may be different when
subjecting the error to other measurements in the "fix geometry." Figure
5-8-1(c) displays the effect Index Error has on the Sum Sqd Res when it is
subjected to all measurements of the Harbor geometry. The inconsistency of
the measurements becomes apparent at a much smaller value of Index Error
(7 minutes).

The 5-minute measurement standard deviation used can be changed for
any study to suit the requirements on outlier detection. Likewise, other
confidence levels can be used in the 2 tests.

5.6 Limitations of the Model

The following list contains limitations of the Error Sensitivity
Model. The limitations remain because solutions were either too time-consum-
ing, unjustly complicated, or beyond th~1 c~ fti eot
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a. Study of the effect of combinations of errors.

b. Study of the effect of errors using various combinations of
common and non-common landmarks.

c. Study of geometry scenarios using various sets of default
standard deviations.

d. The instability of numerical integration of very peaked
probability distributions (appendix C) exists and has not
been dealt with adequately.

e. The model has no built-in landmark selection algorithm and
therefore should not be considered a Landmark Selection
Routine.
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6.0 CONCLUSIONS

The following list summarizes results obtained by work on the ESM. The
conclusions are based on assumptions made throughout this report and, there-
fore, must not be considered without knowledge of the assumptions:

a. A computer routine has been written which considers random
errors, systematic errors, and blunders in a mathematical simulation of the
Coast Guard aid to navigation positioning process.

b. Error ranking by average effect on position error has been
accomplished (section 5.3). The following error sources, as specified in
table 2.1, have the most significant effect on position error:

1. Index Error

2. Landmark Misplacement Error

3. Sextant Observer Standard Deviation

4. Bearing, Range, and LORAN Standard Deviation

c. Calculation of the probability of sinker release within a
target circle (P-in-R) is useful in error analysis of the positioning process.

d. Unless the precision of bearing, range, and LORAN measure-
ments is significantly better than that used in this report, their use to
improve confidence of sextant fixes is of little consequence. However,
independent checks may be useful in identifying blunders.

e. Landmarks common to more than one measurement, on the
average, can cause larger position error than landmarks used for only one
measurement.

f. A high confidence outlier detection procedure seems tractable.

g. The visual definition of a landmark can contribute signifi-
cantly to position error under certain circumstances.

h. Observer Coincidence and Inclined Angle errors seldom add
significantly to position error.

i. Gyrocompass, radar, and LORAN measurements can be used to
position with high confidence only if their measurement s.d.'s are
significantly less than those simulated.

J. Landmark Misplacement errors must exceed geodetic survey
standards to have 4 significant effect on position error.
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7.0 RECOMMENDATIONS

The following list results from work done on the Positioning/Error Model.

a. The ESM should be considered for use in development of stan-
dards and requirements for aid positioning.

b. The ESM should be used to study specific areas of concern.
Examples are requirements on sextant quality and survey quality.

c. Further investigation into the value of P-in-R as a planning
tool should be performed. Numerical stability and time considerations should
be examined thoroughly. The inverse of P-in-R, that is, the radius of a
circle required to contain some desired probability mass (R-for-P), should be
studied for possible usefulness.

d. The outlier detection scheme briefly introduced should be
thoroughly examined for practical use in field procedures.

e. The position error magnitude calculated in this report should
be compared to those errors associated with sinker drop and the watch circle
of the buoy.
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APPENDIX A

PROGRAM DESCRIPTION AND FLOWCHART

Program Description

The main routine of the ESM is called POSER. This routine contains nearly all
the input/output function of the model. POSER calls the subroutine FIXED to
define a particular "f ix geometry" and the subroutine RANDOM to set up for
generation of the sample "Random geometries." The FIXED routine. automatically
calculates and stores the elements of a parameter matrix. The parameter
matrix contains all the information necessary to iteratively study any par-
ticular fix geometry. POSER calls DEFAULT to establish the random error
parameters of each line of position within the parameter matrix. In the
Random Geometry method, POSER calls GENERATE each time a new fix geometry is
needed for study. In either method POSER calls GRADIENT to calculate the
gradient vector magnitudes and directions of each line of position and stores4
them within the parameter matrix. POSER then uses ERROR to branch to one of
the error input subroutines which are numbered 1 through 18.

The error input subroutines complete the parameter matrix formulation and
provide the errors that perturb the system.

POSER then constructs the A matrix of equation 2-1 by calling PARTIALS. The W
matrix follows when POSER uses WEIGHTS. The systematic error perturbation is
then entered when POSER uses BIAS. The system is now perturbed and ready for
a least squares adjustment which is performed through the matrix transforms of
equation 2-1 in REDUCE. The completed transformation is then analyzed and the
error effect parameters are stored by ZOUTPUT. At this point two differentI
paths are possible depending on what geometry method is being used. If a
fixed geometry is being studied, POSER calls TABULATE to plot and print the
selected error effect versus the present value of the modeled error. In the
random geometry method TABULATE records the result of this particular fix
geometry then calls OUTLIERS which searches the results for outliers and
computes statistics of the error effect sample. If OUTLIERS finds a large
error effect (more than two standard deviations different from the mean of
previous values of this parameter), it prints the parameter matrix of that
particular fix for future study. POSER then returns to GENERATE to continue
the Monte Carlo process. Once all geometries have been studied and the error
effects tabulated, POSER calls PLOTOUT and PRINTOUT to provide the
distributions to the user. The user has a paper-tape printout of his input
parameters, a plot of the results, and a tabulation of the results at iterated
error values. In addition, the random geometry user has a list of outliers to
study for indications of bad or good geometries.

The format used in describing each subroutine or subfunction in the Error
Sensitivity Model includes:

a. A definition of each variable used In the equations of the sub-
routine (unless they have been defined previously in this appendix).

b. The equations used in the subroutine
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c. A brief explanation of the purpose of the subroutine or subfunction,
including any circumstances or conditions important in the develop-
ment of the routine.

Figure A-i is a flowchart of these routines as they are applied in the pro-
grammed sequence.

POSER

Definitions of Variables: N/A

Equations: N/A

Remarks: POSER is the main input/output (I/0) routine whose overall
purpose is space allocation, data storage, and program execu-
tion.

CHANGE

Definitions of Variables: D is the s.d. stQage array
i = s.d. of iLn measurement type

1 Sextant measurement s.d.
if i = 2 then di = Gyrocompass measurement s.d.

3 Radar measurement s.d.
4 LORAN measurement s.d.

Equations: N/A

Remarks: The ESM assumes measurement s.d. default values for the
sextant, gyrocompass, radar, and LORAN receiver of: 5
minutes, 0.5 degrees, 30 meters, and 0.1 psec, respectively.
In the case where other default values are desired, the user
instructs POSER to call CHANGE to alter the necessary di
values.

ERROR

Definitions of Variables: r$ = Number assigned to error to be studied
1 Index Error
2 Non-Common Landmark Misplacement
3 Common Landmark Misplacement
4 Range Error
5 Bearing Error
6 LORAN Error
7 Non-Common Inclined Angle
8 Common Inclined Angle

rO 9 Observer Coincidence
10 -S/O Standard Deviation
11 #S/O Standard Deviation
12 Non-Common Landmark Definition
13 Common Landmark Definition14 Bearing Standard Deviation15 Range Standard Deviation

16 LORAN Standard Deviation

17 Vacant18 Vacant

A-3
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Equations: N/A

Remarks: ERROR transfers execution to the subroutine that corresponds
to the error being studied, and returns.

WEIGHTS

Definitions of Variables: P is the (n x 10) parameter matrix
n is number of lines of position

Pij = jth parameter of ith line of position; (i = 1 to n)

1 sextant
If Pu = 2 then measurement type is gyrocompass

P3 radar
4 LORAN

1 x coordinate of left landmark ofhorizontal angle
If Pil 2 then Pi2 = x coordinate of landmark used for bearing

3 x coordinate of landmark used for range
4 direction of LORAN gradient vector

1 y coordinate of left landmark of
horizontal angle

If Pil 2 then Pi3 y coordinate of landmark used for bearing
3 y coordinate of landmark used for range
4 magnitude of LORAN gradient vector

Pi4 = x coordinate of right landmark of horizontal angle (zero
for other measurement types)

Pi5 = y coordinate of right landmark of horizontal angle (zero
for other measurement types)

Pi6 = measurement which determines the ith line Jf position of
the unperturbed system

P17 = measurement s.d. of the ith measurement
P18 S systematic error for ith measurement
Pig = gradient magnitude of ith line of position
Pi1o m positive gradient direction (that direction normal to the

line of position that will increase the measurement)

W is the (n x n) weighting matrix

wjj = weighting factor for ith line of position (all off
diagonal elements are zero)
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Equations:

1 ( 10800 2 minutes

2 180 ) 2 degrees

If Pil = then wii = \ ) with Pi7 in

1 2 meters

Pi psecs

Remarks: The measurement s.d.s are used to form the weighting matrix.

BIAS

Definitions of Variables: L is the (n x 1) observation vector

Ii  = systematic error perturbation of ith
line of position

Equations:

Pi8 ir
1 - 10800

2 P18 7

if Pil = then lii
3 P18

4 Pi8

Remarks: The systematic error is transferred from the parameter matrix
to the observation matrix with units conversion.

REDUCE (reference 3)

Definitions of Variables: A is the (n x 2) matrix of partial derivatives

al - m a1 2 - 'm1

mi - variable which represents the measurement which
determines the ithline of position

V is the (2x2) matrix of eigenvectors

t angle between x-axis and major semi-axis of confidence
ellipse

sin t cos t A-



Equations:

X = -(ATWA) "1 ATWL=fj from AP to MPP

N = (ATWA)" = (2x2) covariance matrix of MPP
(not normally diagonal in the North oriented
reference system)

R = AX + L = (nxl) residual matrix

Q - VTNV = ' 0E ] rotated covariance matrix of MPP

Remarks: The matrix operations in this subroutine form the basis of
the Error Sensitivity Model. The diagonal elements of the Q
matrix are the two variances of the bivariate probability
distribution which describes the position uncertainty. The X
matrix contains the x and y displacement of the MPP from the
unperturbed AP. All output parameters are computed from the
elements of X, Q, and the residual matrix, R.

ZOUTPUT

Definitions of Variables: Z is the (1 x 7) row vector of the error
effect parameters.

Equations:

zI = AP-to-MPP = 4&x2 + jy 2

Z2 - 2-drms = 2 x' +("  2

Z3  Maj*Min (90%) = (2.15)2 ox' ay'

Z4 - Maj (90%) - 2.15 J max(xrx, a y2)

z5 = P-in-R = (see appendix C)
n 2

z6 = Sum Sqd Res= i riwi

Z7 - Min/Maj =Vmin ((x ,2 ,  y2)/max (rx,, oy2)

Remarks: The output parameters are transferred from Q, X, R to the error
effect parameter matrix.

TABULATE

Definitions of Variables: F is the (6 x 26) error effect parameter tab-
ulation matrix

p is a number 1-7 (Z1 - Z7 , respectively)
which indicates the error effect parameter to
be tabulated for plotting and printout

ffij is the jth error effect increment bin
for the ith modeled error value
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Remarks: In the fixed geometry method, TABULATE plots and prints the
calculated error effect parameter versus the modeled error
for each iteration. In the random geometry method, the value
of the error effect parameter is assessed and the count
incremented in the appropriate bin for later frequency
distribution calculations.

PLOTOUT

Definitions of Variables: N/A

Equations: N/A

Remarks: PLOTOUT calculates the frequency distributions and offers the
user the option of either a frequency distribution or cumula-
tive frequency distribution output.

PRINTOUT

Definitions of Variables: 0 = 6x7x4 error effect parameter
statistics array

oij3 = mean of jth error effect parameter
for the ith modeled error value

oij4 = standard deviation of the jth
error effect parameter for the ith
modeled error value

oi1I and 
0ij2 are the sum and sum-squared

values used to caculate the means and s.d.'s

Equations: N/A

Remarks: PRINTOUT lists the frequency distributions of each output
parameter and the array of error effect parameter statistics.

SN (reference 13)

Definitions of Variables: rnd(1) is a uniformly generated random number
between 0 and 1.

Equations: SN = V-21n(rnd(1)) cos (2 7 rnd(1))

Remarks: SN is a subfunction which transforms a uniformly distributed
random number into a normally distributed random number with
a mean of 0 and a standard deviation of 1. It is used in the
random geometry method for generating normally distributed
angles, ranges, and LORAN gradients.

DIS

Definitions of Variables: uX = standard deviation in x' direction

= standard deviation in y' direction
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Equations:

= 2 r crx, y, x'

Remarks: This subfunction defines the bivariate normal distribution
which is integrated in two dimensions over the target circle
(appendix C) to calculate P-in-R.

DEFAULT

Definitions of Variables: N/A

Equations: If Pil = J then dj = Pi7

Remarks: DEFAULT transfers the default measurement standard deviations
from the storage array (D) to the active parameter matrix (P)
before each iterative increase in the modeled error.

GENERATE

Definitions of Variables: M is the (n x 3 x 2) array of geometry sample
set statistics.

i = ith line of position

( mean of ranges to left landmarks
mijl = mean of ranges to right landmarks

ii mean of angles between landmarksif j = 2 then
3 I s.d. of ranges to left landmarks

mij2 = s.d. of ranges to right landmarks
s.d. of angles between landmarks

Equations: N/A

Remarks: GENERATE calis subroutines NA, NB, NR, NC as necessary to
create a new geometry for the next iteration of the Monte
Carlo method.

NA

Definitions of Variables:

SN is the normally distributed random number
with mean = 0, s.d. = 1.
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Equations:

riL = mill + mi12 SN = range to left landmark of ith measurement

riR - mi2l + mi22 SN = range to right landmark of ith measurement

ai = mi3l + mi32 SN = ith angular measurement

Remarks: NA generates the ranges to and angle between two landmarks
for a sextant measurement. Additional logic and equations in
NA establish parameter matrix elements for the landmarks
generated. See appendix E for the sample statistics used in
the ESM.

NB

Definitions of Variables: bi is the bearing measurement for ith

line of position.

Equations:

bi+l-bi = 60rnd(l) + 30 = U[30,90]

Remarks: This subroutine generates gyrocompass measurements with
crossing angles uniformly distributed between 30 and 90
degrees. The ranges to the landmarks being simulated are
generated as in NA.

NR

Definitions of Variables: ri is the range measurement for the ith

line of position.

Equations:

ri = mill + mil2 SN = range measurement for the ith line of position.

bi+l-bi = 60rnd(l) + 30 = U[30,90]

Remarks: The ranges are generated as in NA and the crossing angles the

same as in NB.

NL

Definitions of Variables: mill = mean LORAN gradient in meters//sec
mil2 a s.d. of LORAN gradients in
meters/usec

Equations:

Pi3 = mill + mi1 2 SN = gradient magnitude of ith LORAN line of
position
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Remarks: The gradient magnitudes are generated from a LORAN gradient
distribution simulation (appendix E). The crossing angles of
LORAN line of positions are generated uniformly between 30
and 90 degrees as within NB and NR.

GRADIENT

Definitions of Variables: N/A

Equations: N/A

Remarks: GRADIENT is a branching subroutine which calls GA, GB, GR, or
GL to calculate the Pig and pilO parameter matrix
elements which are the gradient magnitude and positive
gradient direction, respectively.

GA

Definitions of Variables: r6 and r7 are dummy test variables
atn = arc tangent

Equations:

F 22 +2 )1

pig = [(Pi2 + Pi3)(Pi4 + Pi5)- 0.00029  gradient of ith line
[(Pi2-Pi4) 2+ (Pi3-Pi5)2j of position

2p2 2 2
Pi3(Pi4 P5) - Pis(Pi2+Pi3) = r6

Z(Pi4Pi3 - Pi2Pi5)

2p2 2 2
Pi2(Pi4 Pi5) - Pi4(Pi2+Pi3) = r7

ZkPi2Pi5 - )i4Pi3)

=0 and r7 >0 0

=0 and r7<0 180
if >0then pilO gO-atn(r7/r6)

< 0 270-atn(r7/r6)

Remarks: GA calculates the gradient, Pig, and the positive gradient
direction, p1O, for each line of position determined by
resection and places them in the active parameter matrix for
later use.

GB

Definitions of Variables: N/A
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Equations:

2 2
(Pi2+Pi3) 0.017453 pig

Pi1O = Pi6 - 90 (but less than 360 degrees)

Remarks: GB calculates the gradient and positive gradient direction

for all bearing measurements.

GR

Definitions of Variables: N/A

Equations:

Pig = 1

0 and Pi3 > 0 180
=0 and PiQ < 0 0if Pi2 -<0 then Pi10 = 90- atn(Pi3/Pi2)
1-0 270 - atn(Pi 3/Pi2 )

Remarks: GR calculates the gradient and positive gradient direction

for all range measurements.

GL

Definitions of Variables: N/A

Equations: N/A

Remarks: GL transfers the input gradient and positive gradient direc-
tion of LORAN measurements from Pi2 and Pi3 to pig and
PilO, respectively.

PARTIALS

Definitions of Variables: N/A

Equations: N/A

Remarks: PARTIALS uses the equat .is derived in appendix G of refer-
ence 3 to establish all ,,ements of the A matrix. It calls
an AA, AB, AR, and AL for angles, bearings, ranges, and LORAN
measurements, respectively.

OUTLIERS

Definitions of Variables: N/A

Equations: N/A
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Remarks: OUTLIERS calculates the mean and s.d. of the random geometry
error effect parameters for each increment in the modeled
error. If (after 30 geometries have been sampled) any error
effect parameter exceeds two standard deviations in either
direction from the mean, the BAD or the GOOD subroutines are
called to print the respective parameter matrix for
additional examination.

PROBABILITY

Definitions of Variables: N/A

Equations: N/A

Remarks: PROBABILITY is discussed in appendix C. PROBABILITY calcu-
lates the P-in-R error effect parameter.

1 (Index Error)

Definitions of Variables: d = number of measurements in error
q = counter from 1 to d
m = maximum modeled error

Fixed geometry method 25 equally spaced modeled error
values between zero and m

if then e =

Random geometry method 5 equally spaced modeled error
values between zero and m

Equations:

if q _< d; then Pi8 = e

Remarks: Angular measurement error are iteratively entered into the
parameter matrix.

2 (Non-Common Landmark Misplacement)

Definitions of Variables: N/A

Equations:

P18= e 10800
2 2

Ir (P12 + Pi3)

Remarks: See appendix D.

3 (Common Landmark Misplacement)

Definitions of Variables: 0 is number of landmarks used for more than
one measurement (see appendix B)
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Equations:

1 -e 10800

if ij Pi8 e 10800

0+1 1

r (Pi 2+ Pi3)Z

Remarks: See appendix 0.

4 (Range Error)
S (Bearing Error)

(LORAN Error)

Definitions of Variables: d = number of measurements in error
q = counter 1 to d

Equations:

if q _< d; then Pi8 = e

Remarks: Errors are entered directly into the parameter matrix.

7 (Non-Common Inclined Angle Error)

Definitions of Variables: N/A

Equations:

P18= 60 [cs cos(P6)cos( elP608 [O (pi1 T2)11 -P16

Remarks: The left landmark of the first sextant measurement is
elevated (e) meters and the resulting error in the angular
measurement is (p,8) in minutes.

8 (Common Inclined Angle Error)

Definitions of Variables: N/A

Equations: Same as 7.

Remarks: The error is the same as for Non-Common Inclined Angle Error
except that it affects two angles instead of one.

9 (Observer Coincidence)

Definitions of Variables: PI9 gradient of first line of position
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Equations:

P18 = e/p1g

Remarks: This error simulates the displacement of one observer in the
direction of maximum change in angular measurement (the posi-
tive gradient direction). Studying error effect by using
maximums is discussed in appendix 0.

10 (S/0 Standard Deviation)

Definitions of Variables: d = number of measurements in error
q = counter 1 to d

Equations:

{:d {e
if q then Pi7 =

>d default value of S/0 Standard Deviation

Remarks: Sextant measurement s.d.'s are transferred to the parameter
matrix.

11 (A S/0 Standard Deviation)

Definitions of Variables: i = 1 to n
n = number of measurements

Equations:

i even number (modeled error value, e

if i = then P17 
=

odd number (default S/0 Standard Deviation value

Remarks: Standard deviation of alternate angular measurements are
assigned a value of e and the remaining measurements the
default s.d. value. This logic can be used to study the
effect of assuming equal s.d.'s for all measurements when in
fact they may not be equal.

12 (Non-Common Landmark Definition)

Definitions of Variables: dl - default s.d. of first measurement

Equations:

P17 [d + "2 1080-2 2 . s.d. of the perturbed2 2 measurement in minutes

Remarks: An uncertainty in a landmark's position adds uncertainty to
the measurements made using the landmark. The s.d. of the
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position of the landmark along a line perpendicular to the
line of sight from the observer (which represents the uncer-
tainty) is weighted by the distance from the observer to the
landmark. The resulting s.d. is provided by the equation
above. (See appendix 0.)

13 (Commnon Landmark Definition)

Definitions of Variables: N/A

Equations: Same as 12.

Remarks,: This random error adds to measurement s.d. in the same way as
Non-Coiion Landmark uncertainty except that more than one
angle is effected. If a coimmon landmark has an uncertainty
in its position perpendicular to the observer's line of
sight, then all measurements using that landmark are
effected. If both landmarks used in a horizontal angle
measurement are poorly defined, then both contribute to
uncertainty in the measurement.

14 (Bearing Standard Deviation)
1(Range Standard Deviation)
T~(LORAN Standard Deviation)

Definitions of Variables: q = counter from 1 to d
d = number of lines affected

Equations:

if q d; then Pi7 = e

Remarks: The measurement s.d.'s are transferred into the parameter
matrix, replacing the default s.d. values iteratively through
the domain of the modeled error.

17 (Vacant)
1T8 (Vacant)

GOOD

Definitions of Variables: N/A

Equations: N/A

Remarks: The subroutine OUTLIERS calls GOOD if an error effect
parameter calculated for one of the random fix geometries is
two s.d.1s less than the mean of all previously calculated
error effect parameters of that type. GOOD prints parameter
matrix and error effect parameter values for further study.

BAD

Definitions of Variables: N/A

Equations: N/A
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Remarks: BAD performs the same function as GOOD except that the error
effect parameter must be more than two s.d.'s greater than
the mean of all previously calculated error effect parameters
of that type.

FIXED

Definitions of Variables: N/A

Equations: N/A

Remarks: FIXED is called by POSER to accept user definition of a fix
geometry. It accepts ranges and true bearings to all
landmarks which are part of the unperturbed system. It also
accepts LORAN measurement information. FIXED calls FA, FB,
FR, and FL as necessary to define the fix.

RANDOM
RA

RE

Definitions of Variables: G = number of random geometries to be
generated

Equations: N/A

Remarks: RANDOM is called by POSER to accept user input of the
statistics for generation of random geometries. The
statistics used in the ESM are derived from a sample set of
fix geometries from the USCGC REDWOOD (WLM 685). Any other
sample statistics require changes to RANDOM. (See appendix
E.) RA, RB, RR, and RL are called as necessary to establish
statistics for generation of angular, bearing, range, and
LORAN measurements, respectively.

PLOTR
PLOT

Definitions of Variables: Z$ = a string array of output parameter
names

ES - a string array of error names
= maximum scale value of the pth erroreffect parameter

Equations: N/A

Remarks: PLOTR and PLOTF create the axis on which the error effect
parameters are plotted as a function of the modeled error.
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APPENDIX B

ERROR SENSITIVITY MODEL OPERATING INSTRUCTIONS

Prospective "operators" of the ESM should first become familiar with the
modeled errors and the error effect parameters before attempting to operate
the routine. Because no data entry error feedback mechanism was built into
the routine., the instructions should be strictly followed.

Listed below is the equipment needed to operate the routine. Familiarity with
the operation of the HP-9825A is assumed throughout this appendix.

a. Hewlett-Packard desk-top calculator HP-9825A (Option 002, 23K memory)
b. jRead Only Memory (ROM) String Advanced Programmning HP-92210A
c. ROM HP-9872A Plotter General I/O-Extended I/O HP-98216A
d. ROM Matrix HP-98211A
e. Plotter/Printer HP-7245A or HP-9872A
f. Printer HP-9866B
g. Interface HP-IB98034A

INSTRUCTIONS DISPLAY KEYSTROKE

1. Insert tape cartridge

2. Turn on calculator RUN

3. The calculator displays A#,RL

a. ENTER #A (The number of sextant mea-
surements in the fix geometry) CONTINUE

b. The calculator displays B?

c. ENTER #B (The number of gyrocompass
measurements in the fix geometry) CONTINUE

d. The calculator displays R?

e. ENTER #R (The number of radar mea-
surements in the fix geometry) CONTINUE

f. The calculator displays L

g. ENTER #L (The number of LORAN mea-

surements in the fix geometry) CONTINUE
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INSTRUCTIONS DISPLAY KEYSTROKE

4. If the number of sextant measurements is
greater than one, the calculator displays # COMMON LM's

a. ENTER # COMMON LM's (The number of
landmarks used for more than one
sextant measurement - the model is
limited in this simulation, the first
landmark defined is always a non-common
landmark, then all common landmarks are
defined, then the final landmark is
always a non-common landmark) CONTINUE

5. The calculator displays ANY NEW DEFAULT
STANDARD DEVIATIONS?

a. ENTER y or n (n denotes the default
measurement s.d.'s are adequate. y
signifies that the default measurement
s.d.'s are inadequate and new ones are
desired.) The calculator displays DEF. VALS.?

(1) Enter desired sextant default
value (minutes) CONTINUE

(2) The calculator displays D(2)
(3) Enter desired gyrocompass default

value (degrees) CONTINUE
(4) The calculator displays D(3)
(5) Enter desired radar default value

(meters) CONTINUE
(6) The calculator displays D(4)
(7) Enter desired LORAN default value

(pjsec) CONTINUE

6. The calculator displays OUTPUT PARAMETER
NUMBER?

a. ENTER one of the following numbers
for error effect output parameter:

1 - AP-to-MPP
2 - 2-drms
3 - Maj*Min (90%)
4 - Maj (90%)
5 - P-tn-R
6 - Sum Sqd Res
7 - Mln/MaJ CONTINUE
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INSTRUCTIONS DISPLAY KEYSTROKE

7. If output parameter number 5 (P-in-R) was
selected, the calculator will display TARGET CIRCLE

RADIUS?

a. ENTER the radius of the target circle
(meters) CONTINUE

8. The calculator will display NEW OUTPUT SCALE
NEEDED?

a. ENTER y or n (n means that the dimen-
sions of plotting grid are sufficient
to display the range of the output
parameter selected, y means that the
dimensions are not sufficient.) The
calculator will display K(P)?

b. ENTER the desired range of the output
parameter. (Trial and error may be
needed on this step if the user finds
the graphical output inadequate.) The
default ranges for the error effect
parameters are:

1 - AP-to-MPP = 100 meters
2 - 2-drms = 100 meters
3 - Maj*Min (90%) = 300 meters squared
4 - Maj (90%) = 100 meters
5 - P-in-R = 1.0
6 - Sum Sqd Res = 25
7 - Min/Maj = 1.0 CONTINUE

9. The calculator will display ERROR STUDIED?

a. ENTER the number of the modeled error to
be studied:

1 - Index Error
2 - NC LM Misplacement
3 - C LM Misplacement
4 - Range Error
5 - Bearing Error
6 - LORAN Error
7 - NC Inclined Angle
8 - C Inclined Angle
9 - Observer Coincidence

10 - = S/O Standard Deviation
11 - # S/O Standard Deviation
12 - NC LM Definition
13 - C LM Definition
14 - Bearing s.d.
15 - Range s.d.
16 - LORAN s.d.
17 - Not used
18 - Not used CONTINUE

B-3



INSTRUCTIONS DISPLAY KEYSTROKE

10. The calculator will display # TIMES IT
OCCURRED?

a. ENTER the number of measurements to
which this error is being subjected to.
(Consecutive, starting with first measure-
ment to which the error can be subjected) CONTINUE

11. The calculator will display MAXIMUM OF ERROR
STUDIED?

a. ENTER the maximum of the error studied
(respective units) CONTINUE

12. The calculator will display FIXED GEOMETRY
STUDIED?

a. ENTER y or n (y means that the fixed
geometry method of error analysis is
desired. n means that the random
geometry method of error analysis is
desired.) If n is pressed, the cal-
culator will display # AND SEED?

b. ENTER # and SEED (# represents the num-
ber of sample geometries desired for study
of the error effect and SEED is a nine-
digit fraction between zero and one
to start the random number generator) CONTINUE

c. If y is pressed, the calculator will
display GEOMETRY NAME? CONTINUE

d. Enter the desired geometry name
(This will label output graphs) CONTINUE

e. The calculator will display R&B TO LEFT OBJECT CONTINUE

f. ENTER the range then the true bearing to
the left landmark of the first sextant
measurement simulation r3? CONTINUE

g. The calculator will display R&B TO RIGHT OBJECT? CONTINUE

h. ENTER the range then the true bearing to
the right landmark of the first sextant
measurement simulation r3? CONTINUE

i. Repeat f, g, and h for all sextant measure-
ments CONTINUE
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INSTRUCT IONS DISPLAY KEYSTROKE

j. The calculator will display R&B TO OBJECT (B) CONTINUE

k. ENTER the range then the true bearing
to landmark used in gyrocompass
measurement simulation r3? CONTINUE

1. Repeat k for all gyrocompass measure-

ment simulations CONTINUE

m. The calculator will display R&B TO OBJECT (R) CONTINUE

n. ENTER range then the true and bearing
to landmark used in radar measurement
simulation r3? CONTINUE

o. Repeat n for all radar measurement simu-
lations CONTINUE

p. The calculator will display GRAD DIR AND
MAGNITUDE? (L) CONTINUE

q. ENTER the LORAN gradient then the
magnitude P (1,3)? 

CONTINUE

r. Repeat q for all LORAN measurement

simulations CONTINUE

13. The calculator will display PAPER IN PLOTTER?

a. Press CONTINUE when the plotter is
set to plot CONTINUE

14. The calculator will plot the desired
grid and error effect parameter in the
fixed geometry case

15. The calculator will begin the time-
consuming study of a random sample of
geometries In the random geometry method.
Following completion, the calculator will
display CUMULATIVE?

a. ENTER y if a cumulative frequency plot
are required

b. ENTER n if frequency distribution is
required CONTINUE
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INSTRUCTIONS DISPLAY KEYSTROKE

16. The calculator will display PAPER IN PLOTTER?

a. Press CONTINUE when the plotter is
set to plot CONTINUE

17. The calculator will print out all plotted
values and label the rows and columns with
appropriate headings for future reference

18. The calculator prints END OF RUN
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APPENDIX C

NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURE
(Reference 14)

Frequent use of the P-in-R parameter in the ESM dictates the necessity for a
mathematical description of the method. A brief discussion of some mathemati-
cal aspects of the numerical method is made in this appendix leaving the more
complicated explanations to reference 14.

Many numerical methods for integration of known functions call for equally
spaced points within the region of integration at which the integrand is
evaluated. Gaussian Quadrature employs points of unequal spacing within the
region and is the preferred scheme for numerical integration for this applica-
tion. The selected points are zeros of orthogonal polynomials. The degree of
the polynomials is determined by the desired accuracy of the integration.

The concept is to evaluate an integral by selection of the formula:
a n

f y(x) dx -_ 2 Aiy(xi) (C-i)
b i=1

Where: xi = unequally spaced zeros of orthogonal (Legendre Polynomials)
polynomials.

Ai = weighting values determined by orthogonal polynomials.

The details of calculating the xi and Ai values are found in reference 14.
For ESM application, the sixteen-point Gaussian Quadrature is adequate. The
sixteen-point method requires evaluation of the integrand at 256 points within
a two-dimensional region of integration. When multiplied by the model error
value and geometry iterations, a huge number of calculations are required
consuming much computer time. However, by comparison, the Gaussian Quadrature
scheme, for equivalent accuracy, is at least twice as fast as any other scheme.

Errors occur when the integrand changes rapidly over the region of integra-
tion. In the ESM this error appeared when the s.d.'s, which define the
bivariate probability density function, were less than 20% of the radius of
the circular region of integration. If the P-in-R parameter proves to be a
candidate as a measure of success in aid positioning, more study will be
needed to define the tradeoff between speed and accuracy.

The calculation of P-in-R within the ESM is performed by the subroutine PROBA-

BILITY. PROBABILITY evaluates the integral,

16 16f DIS(x~Y) dx dy AiAj DIS(xi,yj) (C2
-i=l j1
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Where: The weighting values Ai are the same as described above and the
(xi,yi) points of integration are located within the region of
interest (reference 14). R is the radius of the circular region of
integration.

The calculations were verified by comparison with table Q-6-c in appendix Q of
Bowditch (see reference 2).

The numerically evaluated integrals were within 0.1% of being equal to the
tabulated values.

C-2



AD-A08 277 COAST W4ARD RESEARCH AND DEVELOPMiENT CENTER GROTON CT F/6 17,7
ERROR SENSITIVITY ODEL.(U)
APR So N A MILLRACH

UNCLASSIFIED CGR/DC-8/8O usCe o ss RI N



iiiii _ _
~3 6__ I__

III"11111 2. ~ * 0

11111.25 111111-4 1111 1.6

MICROCOPY RESOLUTION TES" CHART



APPENDIX D

CONSEQUENCES OF STUDYING ERRORS ONLY IN THE DIRECTION OF MAXIMUM EFFECT

Within the ESM, the following systematic modeled errors could have been
studied as displacement vectors:

a. Non-cosmmon landmark misplacement

b. Common landmark misplacement

c. Observer coincidence

Furthermore, landmark definition could have been studied using bivariate
probability distributions.

However, studying each of the above modeled errors as vectors or bivariate
probability distributions would add another dimension as well as mathematical
complications to the error modeling task. The discussion in this appendix
verifies the legitimacy of studying the component of the displacement vector
in the direction of maximum affect and verifies the use of a univariate
probability distribution in studying Landmark Definition.

The position P is determined by resection with L as one of the reference land-
marks. The effect landmark displacement has on the position P is determined
by the effect it has on the lines of position which were determined using L as
a landmark. The effect displacement has on the lines of position is deter-
mined through use of the gradient equation which is (reference 3, appendix B):

0 - G d9 (D-1)

Where: 0 = Distance LOP is displaced
G = Gradient of the line of position

d9 a Small angular change in measurement
For all practical situations the gradient remains constant in the region of
interest. That is, when the displacement magnitude is small compared to
distances between landmarks and P. The angular measurement change due to
landmark displacement is therefore the only important quantity.

Figure D-1 depicts a representative landmark displacement error vector show-
ing its effect on an angular measurement. The symbology in the figure is as
follows:

E a Magnitude of displacement vector
P - Position of observer
R a-Range from observer to landmark
L = Landmarks position without error
Ll Landmark position with projected displacement
L2aLandmark position with vector displacement
E* Magnitude of projected displacement vector
a- Angle of diplacement vector with line perpendicular to line

of sight P
dO1 - Angular error due to projected landmark displacement
d92 a Angular error due to displacement vector
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It can be seen from figure D-1, that studying displacement perpendicular to
the line of sight (PL) is a close approximation to studying the displacement
vector when considering the angular change dO. A condition for this approxi-
mation is that E be much smaller than R, which is the case for most displace-
ment of landmarks. The need for this condition is shown as follows:

when E < < R

sin dO1 = Ecos a Ecos a
(E2cos 2 a + R2)(-)

By the law of sines

sin dQ2  E sin(180-(90+ a +dO2 )) ECosa (D-3)

Therefore, sin dO1  sin d 02 , and dO1 s dO2 and it is legitimate to
study the projection of the displacement vector upon the line perpendicular to
the line of sight. It is now possible to extend the results of studying the
projected displacement error to results concerning the displacement error
vectors.

The direction of the displacement vector is uniformly distributed in all
directions from the landmarks true location. The distribution which repre-
sents the magnitude, E, is unknown and unimportant for only the effect of E on
P is modeled in the ESM. For all values of E, a is uniformly distributed.
For the first quadrant the probability density function for a is:

f(a) -2 UCO, ( --) (Simillarly for all other quadrants) (D-4)

The projected value of E is Ep - E cos a

Averaging both sides of the equation over the respective intervals will yield
the expected value of Ep when the error E and directions are known.

<Ep>= E <cosa> = 'r O cos a da = 2E (0-5)Jo VT

This result indicates that studies within the ESM which involve any of the
three systematic modeled errors listed at the start of this appendix represent
conservative estimates using maximum error effect. A better measure of the
average effect due to a displacement vector of magnitude E can be calculated

by using a modelld error of magnitude 2 E . This gives results which differ
by a factor of £for those errors whichwpropagate linearly. A similarS"

argument can be made for landmark definition as it can be considered a
displacement of the observed landmark coordinates from the true (horizontal
control) coordinates.
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APPENDIX E

DISTRIBUTIONS FOR RANDOM GEOMETRY METHOD

The statistics used in generating random geometries were calculated from
historical data on fixes taken by the crew of USCGC REDWOOD (WLM 685). The
following procedures were followed:

a. SANDS forms were researched.

b. A sample (n As 100) of each of the following variates was taken from
the data:

(1) Range to non-common landmarks
(2) Range to common landmarks

J)Angles between landmarksS4) Gradients
(5) Line of position crossing angles

c. The mean and s.d. of the first three variates were calculated and
the distributions were tested for normality.

The information compiled was used to derived the following results:

a. The distribution of ranges to common and non-common landmarks were
not significantly different.

b. The ranges had a mean of 4000 meters and a s.d. of 2000 meters, and
were distributed as a truncated normal distribution (truncated at
zero meters). The effect of this truncation is insignificant in the
generation of fix geometries.

c. The angles had a mean of 600 and a s.d. of 350 and were distri-
buted as a truncated normal distribution (truncated at 00). The
effect of this truncation is insignificant in the generation of fix
geometries.

d. The gradients generated by the Monte Carlo Routine were distributed
identically with those of the sample set.

e. For a fix with n lines of position the n-1 smallest crossing angles
are uniformly distributed between zero and 180 /n.

The statistics derived from the sample allow random generation of fix geome-
tries for the sextant, gyrocompass, and radar in the following way:

a. Sextant - The routine generates a simulated landmark with a range
distributed as per sample statistics and with a bearing uniformly
distributed around the horizon. An angle is generated using sample
statistics and is followed by another range. The three variates
together simulate the geometry of one sextant angle. Other simu-
lated measurements of the same fix are similarly generated. If two
angles use a common landmark, the right landmark of the first raea-
surement is used as the left landmark of the second.



b. Gyrocompass - The routine generates a simulated landmark with a
range distributed as per sample statistics and with a bearing uni-
formly distributed around the horizon. Other simulated gyrocompass
measurements of the same fix are generated with a crossing angle
uniformly distributed between 300 and 900 of the previous simu-
lated measurement of the geometry.

c. Radar - Generates a simulated landmark in same manner as with
gyrocompass simul ati ons.

d. LORAN - The routine generates crossing angle in the same manner as
for both the gyrocompass and radar routines. As a first approxima-
tion, LORAN gradients are generated with a truncated normal distri-
bution with a mean of 300 meters/psec and a standard deviation of
150 meters/psec (truncated at 150 meters/psec). The effect of this
truncation will slightly raise the mean gradient by discarding all
values less than 150 meters/psec and regenerating the gradient
needed. This distribution was created by studying a random sample
of LORAN grids on Mercator projection navigation charts (sample size
n * 100).
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APPENDIX F

DISCUSSION OF OUTLIER DETECTION

A method to determine whether or not a given set of measurements conform to
normal expectations is discussed in this appendix. Before any method can be
successfully employed as a part of a calculator-based positioning system, the
following items will require further consideration.

a. Assumed measurement variances
b. Conditions unique to specific aid locations
c. Combinatorial analysis of fix situations
d. Independence of measurements
e. Post blunder detection procedures

A discussion in reference 11 provided the basis for the outlier detection
method presented here.

The computed values of measurements for the desired location are assumed to be
the parent population means of each measurement. Ideally, assuming no sys-
tematic error, the measurements are normally distributed about the parent
population means. The differences (1j) in the measurements from the parent
population meals are normally distributed variates with a mean of zero and a
variance of of, wheri cri is the measurement s.d. The error detection
method employs the x probability distribution which is introduced as
follows. The sum of the squares of n i ldependent random variables having
standard normal distributions has the x distribution where n denotes the
degrees of freedom. The variates 1i/ai form a standard normal distribu-
tion (reference 11).

Thus:

(x2 (F-)
I-1

The sum n normalized squared errors are x distributed. This is equivalent
to the x "goodness of fit" test with no parimeters being estimated by the
sample measurements. With the x2 method, any set of the measurements can be
checked for agreement with the computed values at some desired confidence
level, a.

For any subset of m measurements, the test is,

-X (F-2)

The confidence level chosen is dependent upon the geometry of the fix and

criticality of the aid (reference 1) being positioned.
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If the sum exceeds the X m, inconsistency of the measurements relative to
the assumed measurement variance is indicated and one or more of the following
possibilities exist concerning the measurement subset,

a. The position determined by the measurement subset is not the desired
position.

b. Blunders and/or uncompensated for systematic errors exist in one or
more of the measurements.

c. A chance (1-a) outlier situation occurred.

In case a, subsequent maneuvering should allow improvement. In the event of
case b, the measurements in question should be investigated. Possibilities
include individual checks of each measurement, meAsuring instruments, and of
signal sources for accuracy. An example of the x4 method is as follows: a
vessel is maneuvered by "marking two measurements" and the error in a third
measurement is checked against some prespecified X2 value. If the observa-
tion error exceeds X2 at some prespecified confidence level, a,an inves-
tigation of the all three measurements is in order.

A mathematically more complicated test of the residuals of a set of n measure-
ments can be performed using a similar procedures. In this procedure, the
measurements are made, most probable position is determined from the
measurements, and the jc test is performed on the weighted residuals. The
formula is,

1-1 On-2

Where the n-2 is the number of degrees of freedom resulting from the loss of
two degrees in the estimation of the MPP from the measurement set.

If the test indicates inconsistency, the following possibilities exist:

a. The measurement geometry is functionally inconsistent.

b. One or more measurements are in error and exceed the confidence
limits imposed by the assumed w.

Case a requires redundant precomputation or, if that fails, a new geometry.
Case b requires investigation of the measurement set (all measurements).
Possibilities here also include study of measuring instruments and signal
sources for accuracy. Further statistical tests can be performed on subsets
of the measurement set. If four or more lines are used, the sum of the norma-
lized squared residuals of each three-measurement subset with n-3 degrees of
freedom can be compared to the normalized squared residual of the nth measure-
ment with reference to the RPP determined by the n-1 measurement subset. The
normalized squared residual of the nth measurement has one degree of freedom.
The test is for n( >3) measurements:
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2/rn ~ 2
F (1,n-3, a )(F

n-in

Where: F(I, n-3, a) is the F distribution with I degree of freedom in the
numerator and n-3 degrees of freedom in the denominator.

This calculation would be repeated for each subset of (n-i) measurements with
the largest of the ratios tested for significance against the desired
F-statistic. A significant result would indicate that the corresponding nth
measurement is likely in error.
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APPENDIX0

ERROR SENSITIVITY MODEL LISTING

0: v o "POSER" m

* 2: tDIS':exp(-.5(1pi.'p3p3+p2p2r4p4))/2ifp3p44p,5 ret P'5
3: "DEFAULT":for Im1 to NWfor Jul to 4;if PCIIJ=J;DCJJ+P(Ip7J
4: next J;next Iret
5: "G.EtERAiTE":0+r44r5+r6
6: for 1=1 to N
7: gsb "WRIif PC hi J>1;gsb "NB"; jf PClhi ]>2isb "t4R1 if PChisJ>3;.qb *"NV
-8: next I;ret
9: .0 HR..:
103: if 0#0 aind 1>1 and I<=0+l~jmu 3
11: MCIlplJ+'SN'MCIl92+rl;if rl<O or rl>i6000;gto +0
12: r nd (I)* 36 0 +r2; r1Isirn , r 2) 4PC 192 1; r Ic o s(,r 2)P CI P3; i~ 2
13: PCE 1-1 4 3J+PC I s2 3J;P C 1-Iv5 3+P E I , :3 3
14: MC 1,2,1 +'SN'MC Ip2p2J4rWif r1<0 or .rl>16000;to +0

*15: MCI3,lJ+'SN'MI,:3,2J+r3PCI,6J;if r3<0 or r3>180igto +0
16: r2+r:3+r2;risir,(r2)+PCI,43Jr1zos(r2)ePCI,5]

*17: if r2>-360;r2-360+r2
18: ret
19: "NB:l+r4+r4

*20: rCI~1ilJ+'SN'MCIs1,2J+r1;if rl<O or r1>16000;.-to +0
2 1: if r4<2;rnd(1)*360r2+P1,6;jmp 2

22 r.+ rnd~ 1 ) *60+30-*r2*PC 1 6 3
* 23: if r2>390;r2-360-r2

24: r I si n (r2)ePC1,23; r Icos r2)+PC Iv33;ret
25: "NP ": I +r5+ r5
26: MC1,919 13+ SN' MC)I p 2J3+r1+PCI1,6 3 if rlI< 0 o r r 1 >16000; :t o +0
27: if r5<2;rd(1)*360+r2;.mp 2
2.,8: r2'+rnd(1)*60+30+r2

2:if r2>360 r2-360+r2
30: rl:zin( r2)+PC12J;rlcos(r2)-4PI,31ret
31: "NL":1+rg~rg
32: iif r6<2 rnd(l)*3603.r2;jip 2

33 r+rnd(11*680+30*r2
34: Jif r2>360;r2-360+r2
35: r2+PC 1 2 3
:36: ME11131+SN'MCI,1,2J+rlif rl<150 or r1>1500;gto +0
3-7: r I -PI 3 1; +P 196 3;ret
38: "GRADIENT":
39: for lul to N
40: PC I11+ JrI1;PC 1,23+ r2;PC 19 3 3-r3;PC I ,43+ r4; PC 1,5J3+r5
41: -as "GA";if rI >;,gsb "GE"; if rl >2; .sb "GR"; if rl >3; ssb "GL"
42: if r11l and PCI9J>100sfg 3;,sb "GENERATE"

* 43: if flv3;cfv 3;vto -4
44: next I;rt
45? ",;Am:
46: r( (r2r2+r3r3) (r4r4+r5r5) ). 08029/r( (r2-r4)t2+( r3-r5)t2+P[ 1 9 3
47: (r3(r4r4+r5r5)-rS( r~r2+r3r3) )/2( r4r3-r2r5)+rG
48: < r2(r4r4+r5r5)-r4( r~r2+r3r3) )/2( r2r5-r4r3)+r7
49: i f r6O ad r7 >0;0+PC 1910 3;i p 4
*6627



5 1 +t rE>::0;90-atn( r/..r6)4P 1 10 3Jrjp 2
5: if -,- r&0;2G-atn~r7"rS)+PEI1 J
53: ret

55: r(r~r2+r~r3).8017453+PEIP9J
5e6: PE I.63-90+PE I qo 1 if PEI q1 Oo; PE I 10 +360+fl 19 10o
57: ret
58: " GR:
59: 1ePCI.93
60: if r2=0 and r:3>BM18O+PEIF18J;igp 4
61: if r2=0 and r3<8;O+PC Iq10impi' 3
62: if r2<0;9G-atn(r3'r2)PC IP10;imp 2
63: if r2>0;27O-atn~r3/r2)+PEI1OJ0
64: ret
65 : 'CL":PE I'3JPC I,9JPE 15 2JPE I, i01ret
66: "PARTIALS":
6?: for 1=1 to N
68: -Pc 1 .3.821-13 f-PC I1,53+8(2 13
69: -PC If2J.CC2I-1 J;-PCIb4+CE21I3
70 : r(B(2I1it2.C(21-1Jt2).8C2I-lfr(BCZI~t2.CE2I~t2).S(21J
71: next I
7 2: for -L1 to N
73: ngb "AA";if P(L91D>1;nsb "AB";if PCL91 >2;i:sb "AR ; if PL1)3b"AL"

75 : 'AR":
76: 2L-14 1;2L+J
77 (CE I ]-S 1( I(/SE JJ-cos (PCEL 46 ),/SEI1)+FIELP1)
73: AE L~ I J3+eCE JJ3/SC J) (l1'S[ I J-c--os (PC L P6 3)S JJ3)+AE L 1)

7,:: -PC L j3l/ ifn<PC(Lgv6J)+RE L 9 )
80: (:.BE I )/$E 1 I (/SC J)-cos(PE L'6P1'SE 13 )AE L 92J3

HE;ti L2 J+6.E.IJJ'S(J) D( I S[ I )-3. H )i-SE JJ)*+AE bE')
82: 1AEL,2J3/s in(PC L,96D*A(+8L,92)1

86: 'C PL6 )t2/PE L YJ]-A[CL 91)

88 : s inr(PC L16 J) t2/PC L, 2J3+AC L 2J
89: ret
N1 'AR:
941: if4 PE L,6W30;0.+AEL 913;Jimp 2
92: -PE L,2)3/PC L,6)3+AELP13
93 : if P1Lq6J=O;0.ACL?2J;imP 2

96O: " AL"
9?.: sin(F'ELP,2 )/PC L,:33V*AEL,13
9:8: cos(PCL 2J 3)/PC L9,:JI4A( L,23
994: ret,
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10%: OUITLIERS": .
101 : for J1l to 7
102: r.J.OE P8 9J, 1 340C r8 J p 13 );Jt2+OE r8 J p 2 340(pr8,PJ, 2 J

* 10? nc: ,:tif 9G-t
10.,4 : f or J=1 to 7
105: 01p jpJ1)I/p940(prS 9J, 3)3

*106: rC( (Q PS3J,92J3/p9-0Q p$, J,:3J3t2)pr9/(<gz9- 1))01fr,fJs4J
10?: if J=5 or J=7;jmp 3
10e: if n-J>OCpvJ33+2O~pSJ'4) 'and fl1-9h0tgsb "B AD"
109: if PJ<O1 pBJ,32-20E p8 J14 3 and f l,10 and P8#O; isb "GOOD"
110: next J;rct
lip: "PROBSABILITY": sfs3 14; -pi4co(r-j )-p.5sin(pLlSI; r4sin(p1 )-p5cos(rp1 .r.
112. if 2,r(papa2+p3p3)+r(p~rpS+pl~t2)<pG6;ret 1
113: if r(p~pS+p15t2)-2r(p2p2+p3p3) p6;ret 0

*114: ficr 1= 1 t o 16;e0*p9; P>E cI13pl1s4pi10; r(p6p6- (p1I0-p15) t2) 4p11
115: for J=1 to 16; IEJZJDIS(plOgpllICJJP1+p,pr2,p3)+p9+p,9
116: next J; P91EcI,2Jp11 +p14+P14; next I;p14p6+p14;cfg 14;ret P14
117': '.1'I
118: 04Q
119: for 1=1 to N
120: if PCI ,1J3=1; Q+1*Q;if Q<=D; E4PC198J3
121: next I; ret

122 2S

r..-*Z :PC 1 * 2 )-t2+PE I 1 1 JT-2) 1:~ ~i4PE I,)

1 -,S to r 11l to N
I if PCII 1 J=1 oand 1=1; -E/r(PE I,43)t2+PEI95 Jt2)*( 10800/ 04-P I :3
1 8:f PC I 1 TI = arid 1=0+1 E'.rPC 1 2 )-t2+PE 1 3t2)*( 10800'ir)+ .PC i.,8)3
1 IL. uexlt I; ret

1 Sl'1. 4
1 .-. t or 1=1 to N
1 33 v t PCEI 1)3=3; Q+1I '; if oK*=D; E.PEI, 8)
13'4: wie::t I; ret

*1:36: OeQ
1:-3?7: f or hil to N

*138:: if PC Iq1J=2;Q+14Q;if Q<=D;Ee*PCIq8J
3:, r ett I ; ret

*141: 0 4 0
142: for 1=1 to N

L i: : I. 9l-.4.*9.4P !; f I*.r

*144: next I; ret
1415:7
146: <-c'co(C16JcsE8'(E12 t+C1 3)~l -(l6)6C 1
14?: ret
148: " 8" :
149: for 1=1 to N
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IF i FE I I ;#1;Ji"p 5
151: if I#1;jtp '9.*rrr -C • 6 J=:t23.f r' ::-F1[ I 4t-2]+'P+P[E I, 'gC'" - _' ,-. .- ': c.,, .': &I, ),.)'-- ::E 1'G.. .:PePE 1 +F[ ,

-. -- 7--ic

15:3-: if" I#o+1;j1 ,Ip 2
154: :'':.( .s.cos(PC IP6)) cos(E180.rPC 121.t-2+P I3Jt2)i.))-PC I,6)604P[ I,:3)
155: next I;ret
156: "9":
157: E,'PC 1,9)]PC 1,8]
158: ret
159. " i:
160: Q4Q
161: f':'r I=1 to N
162: if PC I ,=i;+140;if Q<=D;E+PI,7]
16:3: ne::.:t I ;ret
164: "11":
165: f or I=l to N
166: if PC I I= and irt(I/2)=O;EPE I,73
167: next Iret
168: "12":
169: r:P[ .7)'t2+(ElO80.'r(P[ i.2)-t2+P[ 1 F3 )t'2),,w)'2)+P 1,7]
170: ret
171 " 13":

f PC tIF-, N
i7:-. t+ F[I.,I]#i;J,',', 6

174: i I ; r(PC I 3t2+(E10800'r(PC 1,4 )t2+P[ 1,5 3t2)nt22PI,]57 ;.jr-, 5
7=: i' I=+1 r(PEI7]t12+'.E10800/.f(PCI12t2+F.[I.:-3.t2')-t.)CP197;i m 4

1.7 I if .O+i;.j.,p 3
!I: Tr:'r 7,7 ]t2+(El:OO0,r(P[ I, 2]t2+P[ I,3 ]t2))'t2:,P I, 3
17 r 1 F IT' 2t2+(E10800r(P[ I, 4JT2+P 1,5 3)T2) t 2)+P I, 7)

. ; ret
IE LI: 14"

I-2: ,tor !=I to N
1_33: if FE hI, =2; Q+I4-; if" Q<=D; EF'C 1 7)
1:34: next I; ret
1:5: "15":
1:6: 0 Q
187: for I=l to N
1:: if PC 1 1 )=3; Q+ I *,; if Q< =D; EFPC I 7 3
19: re>::t I;ret
190 . .:
19'?1 : r4Q

19:3: iJ PC'EI, ]=4; Q+I+L:,; if' Q-'=D;E-4F'[I ,7]3
194: nexit I
1951: ret

196:: "GOOD": ..rt 6; sfq. ; if f l. 0#; wrt 6.2
1 S47 : urt 6.:31 ,rt 6.4
198: for I=I to N
199: t or .J=1 to I; PC I .J 3+rJ; next J

'54-
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: "rt 6. s rIi r 2 r3 r4, r5, r6, r7, rS, r9, rlO

202: ' rt £;wrt 6.6;wrt 6.7
203: ..rt 6.5,E-CZ[I1',ZE2]ZC3),Z[4ZC5J,Z[6],Z[7J
204 : ret

5: "BAD":wrt 6;sf, 1;if" f l.O#1;wrt 6. 1
2 0fEl,: urt 6. 3;,wrt. 6.4
207: for I=1 to N
.0: f, or L=1 to 0;PC I,L)4rL;r, ext L
.209: wrt 6.5, ri, r2, r3, r4, r5, r6, r7, r8, r9, rig
210: next I
21: wrt 6;wrt 6.6;wrt 6.7

: ':rt 6.5,E-CZ[E1, ZC2qZ['3], Z[4],Z[5],ZC6],Z[7]; ret
: "FI'.ED":sf.3 0

214: "FA" :
15: for I=I to A

216: I-PCI,1
217: enp "'R& to LO" r2, r3;r3 r4
2S: r2s inr,S)P[,Y2;'2c~o.( r3)-P[1 P,33
219: en. "R&B to RO", r2, r3; r3-r4+:.'6 P[ 1,6)
220: if PC I,6>360;PC I,63-360 P I,6322 1 r2" r -r:'4P1 I,4); r2c.os(r:.")FP 1,5)

27-7 ' next I

24: for I=+B+l to +E

:2._ ::-PC[I,13

22: enr- "F.:B to Object (P)", r2, r:3; r:+PC I G63
2 : r2s.n r3- )PC i,2 r2os( r3).P[ 1, 3 ]

:r,: ex I
2.:-: "FL":

: o r h=A+B+R1 to ++.'

2::=' er. ",:;B to Object (R)", r2) r3; r2+P[ 1,96]1
2:-s: :-2 n.r,,:'. -*PC[IY2]3;r2cos<r:3) P[I, 3]1

2 3,5 : "' FL I

2 2: 6 : for' t I=A+B+R+I to N
237: 4 PI,13
:2.-3:8: erFp "Gr'ad dir. -and ,'aq. (L'PC I, 2 J, PCI, 3) ;gPC I,6)

2.39: r, ext I
240: retA!

24-2:r # r. r d Seed?'" G r:3; wait rrid( -r3)
243: "RA":
244: tor I=I to A

• 245: I+P[II]3
2 i #f 0 and I> 1 ..r I =0+I; J 'r., 2
247: 4000-tM[IIIo1 ; 2000-t-1[Is ,2]3

24 : 4HUU4*MC 1, 2, 13; 2000+MC I, '2 2
249: 60*M 1,3, 13; 35+MC 1,:3,2 3

0 :';:5 26
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£'51: "P6 :
2 5 2: for 1AR+l to R+8
253: 2-PE hi)1
210.4 :40UU4MCI±,±, j2000+MCIi 1P.J

*255: next I
256: "RR":

*257: for 14s+6+1 to A+B+R
258: 34PEI YlJ3
259: 4000*MCIo 13;. J2000+M[ I 1 b23
260: next I
261: "RL":
262: for I=A+B+R+1 to N

264: 300-MC 19 1913J; 150+ME Is 1 2 3
265: next 1
266: ret
267: "PLOTR":
268: wrt 705' "IP000,00096000,30G0"
269: adl 0,9q0,6;xax O09e0e9;vax e9e,0,6;xax 6P0ieP9;vax 9R0P0,6

2-71: fxd O;Plt TaS,93.5;lbl "A= I;lbi A;rlt 7.75,3.25;1bi "6= ";1b1 8
272: p1t 7.75,3; ibi "p= ";ibi R;P1t ?.75p2.75;lbl %L= ";lbl H-(A+B+R)
273: ri1t 2 5.'75; ibi 'Random~ Geomet ry" ; 1t 2s5.5; ibi "Number=;1ibi c; fxd 1
24: pit 4.75 5.75 if cap(A$)="YIibi "Cuimu1 vs. ", mrj

2 75 : lbi "Frnoct vs.
27:ibi Z$[CPJ3

2??: r,1 t 4.75,5.S;lbl E$trO)
27:3: ,It 4.7595.25;lbl "MAXIMUM= I;lbi M
2 9 if tf ii2 p1t 4.7595; ibi "R= ";Ib h ; ibi " meters" ie h

R. sz 2 919 2/3, 90; rIt .3 3q 2;i f car,. A$) = 1" ibiCm iv vr
281: ibi "Fraction"

2~::,: iurt 705F"IP1000 500 ,500092300"
28:sc 0 9KE PJ3,9091

2:35: a>x 0,KtPJ'10q0sKcPJs2;v)ax 0P.i 0,i92
2:36: csiz 2,1.7Y2/3; ret
26'? 7: "PLOWF":
288: wrt 75 I00OG60~00
289: adl 0999096

cq1: csiz 291.7s2'3;c.lt 49.2;1b1 E$Cr03
292: P1t 295.75; ibi "Fixed Geomwtrv" ; lt 2,S .5; ibi N$

293 lt 4.7595.75;lbl Z$CPJ;lbi " .vs. ";lbl E$Er03
294: Pit 4J7595.5Ulb1 "MRXIMUM= ;Il M

2 if4 f 1;.:2 0r.I t 4. 793!5. 25; 1ibi1 " R= '1 bi F; ibi " m'eters"

29?: kirt 705,"IP10089 '700,500092500'
2948-: ::ci 0,Mq0qKCP2
299: f:.,d 2;xaix eqM'i0q0qI1q2;vax 0,KCP]/1i3,0,KEPJ,2
26 43
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301: "CHANGE":enp "Def Vas?7!8,B,R.,L",D) 3 D[ 2 ,DC 3 J,D 4 1; ret
:302: POSER":trk 0
30: fn.;t 1, "Bad Out Ii , '

304: f vt :'," Good Out lier",.
305: f ,t 3,4x, "TYPE XL YL XR YR MEAS S I GMA", z
3,06: t,.t 4,' BIAS GRAD PGD"
307: fvn 5,10f8.2
308: frt 6," E Z 2RMS AREA MAJ P IN R ",z
309: fit 7.," RES RATIO"
310: f'fit 8,4x"BIN 0 .2M .4M .6M .8M M",/
311: fmt 9o" MEANS 0 .2M .4M .6M .84 M",/
312: enp "#A,#B,#R,#L",AB,R,L;if >=2;enr,p "# Com'on LM's?",O
313: R+B+R+L+N
314: dim A[No2 I, BE 2NJ'CE 2N] 3DE 4 JE2,N, FE0: 5,26 3,HE2P 2, 1E 16,2 JKC 7 ,LEN I
315: dim MCN,3,2INE2,23,OES:5,7,4I,PN, 10I,QC2,2JRCNISC2NJTE2,NJ
316: dim VC2,2J,WEN,N),X[23,YE2J,Z[7,AR$[1J,E$[20,20I,N$C151,Z$[7,20
317: ldf I,E$;ldf 2,Z$;ldf 3,I[*]
318: 1004K1J3;1004KC2J;300-K[33;1004Kt4J;1+Kt53;5eKE63;1+K17J
319"1 5 DE1I;.5Dr2J;303[+DE3I; .1+DE43
3 2.0-: enp "An. New Default Std. Dev.'?y or n" ,A$; if cap(A$)="Y'*1b "CHANGE"
321: enp "Output Parameter Number?",P;prt Z$(P)
322: if P=5;erip "Target Circle Radius'?(meters)",F;sfg 2
323: enr "New Output Scale Needed?v or n"A$
324: if ,.rA$)"Y"'er, p "New Output Scale Value?"qKP
325: enp "Error studied?",rS;enp "# Tim ,es it Occurred?",D; prt E$[r03

t2e: ens- "MaxiMuMt of Errors Studied?'',M
27: enp "Fixed Geometry Method?' or n",A$
.23s; b "RANDOM"; if cp(AS)= "Y" enp "Fixed Geoet r'Y Nai.'ie?", N$; sb "FIM IE."

329: if 1 30;f:.d 1;ds.- "Paper in Plot ter?".stp ;nsb "PLOTP"
30: it flsO;M...25+C;wrt 6.6;wrt 6.7;. p 4

3I1: rMvs+c
3,3,: for K=1 to G

.33:': -sb "GENERATE"
334: *sb "GRADIENT"
3:35: cf' I

'336: for Z=G to M by C
337: gsb "DEFAULT"
338: "ERROR":
3S9: .?to 41 if r5 o +' if" rO1', . t o +5: if r0).14;'to +7
340: .sb "1";if rO>;.'nb "2";if r:2;. sb "3";if rS>3;nb "4";if rO>4.b "5"
341: i,,p 6
342: gsb "6" if rS>6;-sb "7'if r0>7;.;sb ""if rO>8;g sb " 9"it rO: 9;n..q sb "10"
343: JP 4
344: -sb "ll"if r>11;.sb "12";if rO12gsb "13";if rO,.13;.3sb "14"
345: .j,,p 2
346: .sb '15 ;if rG>i5;gsb "16";if rO)>-16;'sb "17";if rG>17.gsb "18"
347: tsb "PAPTIALS"
348: "WEIGHTS":
349: for I=1 to N
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:50: I FIP?0; 1tt-WC I, s; j va. 5
35 1 P' PC I1 3i=; ( 100'P/K Io 7 JN)t2+W I, J
3,: i PCI,1J=2;(180,PCI,]7J)t2 WCI,I]
353: if PCI 113=3; 1/PC I,7]24W I,I]
354: if PCI 1J=4;1/P[I,7]t2W[IPI]'.:"5 5 re.>t I
356: "BIAS"

357: for I= to N
358: if PCI,1J=I;-P[I,83J,°iO800+LCIJ
359: if PCI 1 =2;-PE I,8 N/180*LC I 13
360: if P[I,1]>=3;-PCI 9 8]+LCIJ
361: next I
362: "REDUCE":
363: trn R+T;,,at TW+E;,nat EAeY; ,at EL+X inv VH,'itat NX*YImpY -IY+X
364: mat AX+R
365: ara R+L+R
366: if NC1,1J-N[2,2)=O and N[1,2<;135+T;j, 6
367: if NC1,1]-N2,2J=6 and NCI2=;0.T;jmp 5
33: 8 f N[11-NE2,23=0 and NC1,2J>;45+T; i,'p 4
369: .5atn(2N[1,2J/(NC1,1]-N2,2))+T
:370: if NE 1,1 ]-NC 2,23<0;T+99+T
371: if T<O;T+i80T
372: cos (T)VE1, 1YC2,2]; siri(T)V[2,1];-yr 2,1]J V[1,2)
37.3: t rr. V4Q ,'I.t QN+H, at HV4Q
374: "Z0UTPUT" :
2 - 5 .: I )t2'+XC 2 3T2)[ZC 13
376: 2,[ E 1I ]+[Q2,2) ZE23
377: 2.15t2"(Q[ 1,1 )QE2,2J)+ZC3]

,." ,g axm..."Q 1, .,QC2,2 )+Z[4
379: ro:. (QE 1 11, QCE2 J 2)+rllr|'in(QE 1 13 J QE 2,' 2) +r12
330: tf tg2; 9 PROBABILITY' T, r 11 r12, XC 1) 3XC 2)3, F ' ZE5

331: Z, 6; f'or I=I to N; RE I Jt2WC I, I )+Z 6 eZE 6 3; next I
me'nu :r, I n(r 1 rl2)/max( rI 1, r12)eZC 73

3 :': if f 1':go; iw, 5
384: clI 'OUTLIERS'(ZE1J,ZC2JZC3,ZC4),ZC5JZC63b.ZC7),E'C,K)
385. "TABULATE":
336: int :-C P *25./KE P+)r6; if r6>25; 264r6
387: FEE.C r6J+1 FCE/C, r6)

!. "4' $ F..I.t E" sZE P):;,w.rt 6. 5, EZ[ 13,)ZC2,ZC3.,Z 4),Z[.Z[53, 3..
8 e net E

3 : if f1.90; ; rt "End of Run";osb "GOOD"
391: if fli3e;end
392: ne::ct K
,393: "PLOTOUT":
394: enp "Cunulative?",AS
3,35: t-rd 1;dsr "Paper in Plotter'?";stp ;.b "PLOTR"
3906: f d 0
3S?: 7 or I=1 to 26;for J=o t o 5;FEJ, I 3/G+FEJ, I);n ext J;next I
398: if cap(A$)"Y"L.np 3
399: for J=1 to 5•2 "19,26
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4 Q 0: i ,r 1=1 to 25; p1t (I-. 5)*K[ F 3.25,FE J9 I1, 3; LbI J;r, Ext I; ,xt J; jr.. 3
401: for J=1 to 5;for 1=1 to 24;Orl;for H=1 to I;F[J,H]+r-lrl;rext H
40--. r.1lt (]1-. 5).*K-,P]3/259 r1, 3; lb I J; next I ; P1t . 9:3,1,3;l1bl J;r,,ex:t J

403: "PRINTOUT".
404: wrt 6;wrt, 6.Bwrt 6
405: fo r 1=1 to 26
406: wrt 6.5,(I-.5)K[P].259F O, I] F[ 1Ip]F[2pI]JF[3 I pF[4,I ]9F5 1I]
407: next I
408: wrt 6;wrt 6
409: for J=3 to 4
410: if .J=3;wrt 6,9;j.p 2
411: wrt 6.5, STD DEV 0 .2M .4M .6M .8M M
412: w rt 6
413: for 1=1 to 7
414: wrt 6.5,1,OC0,I,jJ,O[1,I,JJ,OC2, I,JJ,O[3,IJ],O[4,I,JCO5, IJ]
415: next 1;wrt 6;next J;end
*14322

E$ Z$

Index Error(r'in) AP to MPP(' et)
NC LM Misp(ret) 2DRMS(ret)
C LM Misp(,'et) Mj*Hr(90%) (1mtt2)

R ase Error(r.'et) MO..i (90") (,et)
B.arins Error(deq) Prob in R
LORAN Error(u.ec) Su,m S.d Res

NC Inl Ani(ret) Min,"dJ
C Incl Ang('et)

Observer Coin(r',et)=S/0 Std Bev(m'in)

#S/O Std Dev(,min)
NC LM Def(,et)
C LM Def (met)

Bearin.q Std Dev(dev)
Rin.e Std Dev(met)

LORAN Std Dev(usec)

IE*3

-0. 989400930 0. 027152460
-0,9d4575020 0.062"53520

S.-0.865631200 0.095158510
-0.755404410 0.124628970
-0.617876240 0.149595990
-0.458016780 0.169156520
-0.281603550 0.18260:3420
-0.095012510 0.189450610
0.095012510 0.189450610
0.281603550 0.182603420
0.458016780 0.169156520
0.617876240 0.149595990
0.755404410 0.124628970
0.865631200 0.095158510
0.944575020 0. 062253520
0.989400930 0.027152460
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