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THE DIFFERENCE BETWEEN THE EMPIRICAL HISTOGRAM AND THE

PROBABILITY HISTOGRAM FOR SUNS

Persi Diaconis, Stanford University
and

David Freedman, University of California, Berkeley

1. Introduction.

The central limit theorem is often used heuristically to Justify the

approximation of histograms for data by the normal curve. This argument

can be made precise through the following model. There is some basic

random variable X. Take the sum of n independent copies of X, and

then take k independent copies of these sums. Provided X is well-

behaved, n is large, and k is large in relation to n, the histogram

for the sums will be close to the normal curve. In this way, the model

rigorously justifies the use of the normal curve to approximate the data.

In more detail, let JX 2 ,... be independent, identically distributed

random variables. Suppose the Xi are integer-valued and have g.c.d. 1:

(1.1) g. c.d. (m: P(Xi=m) >0) =1

Suppose too

(1.2) E1I1 < 00

Let S n = X1 +... + Xn . Take k independent copies of Sn' and let N

be the number of these sums which are equal to J: the notation hides the

dependence of N on n and k. Up to scaling, the counts N corres-

pond to the empirical histogram for the k sum. Of course,

Research partially supported by NSF Grant MCS-77-01665.
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(1.3) E(N.) = kpj, where pj = P(Sn=J)

Up to scaling, the numbers pj correspond to the probability histogram for

the k sums. 4hen n is large, the local central limit theorem implies

that the pj are uniformly close to an appropriately scaled normal curve.

In this paper, we study the random variable

(1.4) Mnk = max(Nj -kp ).

Up to scaling, this is the maximum difference between the empirical

histogram of the k sums and the probability histogram of the sum. This

random variable is the key to understanding the maximum difference between

the histogram and the normal curve, as will be shown in a future paper.

We suppose

(1.5) n -+oo and k//-n (log n)3 -0 .

Assumption (1.5) is discussed at the end of this section. Let

(1.6) .=E(x 1 ) and u VarX 1 .

In Freedman (1977) it is shown that if (1.1-1.6) hold, then

(1.7) Mn - log n-el in probability.
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Our main object in this paper is to prove the following result, which

sharpens (1.7).

(1.8) heorem. Assume (1.1-1.6). With probability approaching one, M

maxj (Nj-kj) is taken on at a unique index n. Moreover, L3 and

Mnk are asymptotically independent, Lnk being asymptotically normal

and Mnk being asymptotically double-exponential. To be more precise,

let

1 y 1
(1.9) ex) _ ep(--u )du

(1.10) Zn(x)= log n-2 log log n + x

Then, the probability that / C

Lnk-np < yo '2n/log n and k< z(x)

converges -to. A.' b.) ,. -

Dis A lrl1Rd/,i sPe, al

(y) exp-aVY e- 7
x

As usual, exp(x) ex.

This theorem is illustrated in table I and figure 1, which reports

three computer simulations. In all three, the basic random variable XI

took the six values 1 through 6 with equal probability 1/6. The table

shows the values chosen for n and k, the lower and upper quartiles for



TABLE 1.

Computer simulation illustrating theorem (1.8).

lower quartile upper quartile observed value

n k k/[./n(log n) 3 ] Lnk Mnk Lnk nk Lnk Mnk

25 100 o.6 83 3.0 92 4.9 97 2.5

50 500 1.2 169 6.2 181 9.5 185 8.3

100 10,000 10.2 341 24.9 358 36.8 358 26.9
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FIGUIM 1.

Computer simulation: the empirical histogram converges to the nozual curve.
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the asymptotic distributions of Lnk and Mnk, as computed from the

theorem, and the values observed in the simulation.

In the first line of table 1, the location Lnk is reported as

97: so N.-kp. is largest when j = 97. From the figure, the mode of
3 3

the empirical histogram is at 82: so N. is largest when j = 82. In

general, the location of the maximum deviation and the mode are very

different. Compare theorem (1.8) with Diaconis and Freedman (1978).

The figure shows the histograms themselves. The horizontal scale

shows j, but the three axes are arranged so that the means np line

up, and the standard deviations an cover the same physical distance.

The vertical scale shows (oj/) x (N./k) X 100$- that is, Nj is

converted to a percent (relative to k), and the histograms are rescaled

vertically by uyfn to have the same physical area. For a discussion

of this convention, see pp. 29 ff and 275 ff of Freedman, Pisani, Purves

(1978). Thus, the maximum difference between the rescaled empirical

and theoretical histograms is

urn

k nk

In the third line of table 1, for instance, that is about 5%.

In section 2, we argue heuristically that our problem can be reduced

to finding the location and size of the maximum of a sequence Z of

independent, normal variables having mean 0, but variances 1-(j 2/2o- 2 n)

as n -o . This problem is solved in proposition (2.2). In section 4,

we prove theorem (1.8). Section 3 gives some technical lemmas, including

bounds for the probability of an intersection of events, and approximations

for binomial tail probabilities.
6



In this paper and in Freedman (1977) the condition EI4I < 0 was

assumed. In fact lemmas (4.1) and (4.3) of this paper replace lemma (15)

in Freedman (1977), and hence prove theorem (5) of that paper assuming only

The main use of the third-moment assumption in this paper is to justify

the bound on the error in the local central limit theorem in equatior 0.27).

In section 5, we construct an example to show that new limiting behavior

can occur when EIX31 = 00. The argument involves Edgeworth-like

corrections to sums of random variables without third momentsp and may be

of independent interest.

Concerning condition (1.5), if k >>/ log n but k = 0[ /n (log n) ],

the form of the norming constants in equation (1.10) changes radically,

because the large deviations corrections in the normal approximation to

the binomial distribution must be accounted for. This is worked out in

detail for the closely related problem of the mode of the histogram, in

section 4 of Diaconis and Freedman (1978). If k = 0 (Qi log n), then

Freedman (1977) shows that the maximum deviation does not converge to zero

in probability.

2. A Heuristic Argument.

It is convenient to discuss the behavior of N -kp separately for

four zones. The zones are described in terms of constants B and A,

where 5 is small but positive, A is large but finite. For definite-

ness, we will assume 0 < 5 < 1/10. The zones are:

7



(2.la) zone I j -nl < ba-i

(2.lb) zone II b -V j -n;iJ <A a-in

(2.1c) zone III: Acr*' < lj-npl < 3 / 4

(2.ld) zone IV : c-n / 4 < Ij-nl•

As will be shown below, zones II, III, and IV make no contribution to the

maximum. In zone I, the Nj-kp. are approximately independent and normal,

with mean 0 and

Var(N.-kpj) = kp.(1-p.) kp c rW 2,rn 2a-2 n

Thus, Lnk-np and /l-/k Mnk should be distributed like the Ln ad

of the following proposition.

(2.2) Proposition. Let U. be independent normal random variables,

with mean 0 and Var(U.) = l-j2 / 2a2 n , for I j < 5 . Let

Mn = maxj Uj, and let Ln be the index at which the maximum is achieved.

Then, as n tends to c, the probability that

Ln < y -/2n/log n and Mn <Z.log n-2 log log n+x

converges to

-D(y)exp[-crV/ e 2]
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As in (1.9), 0 is the standard normal distribution function.

Pro For -wo< a <b < o, let I abbe the set of j with
j < -a- abd

a-O/n/log n < j < ba.-On/lo-gn

Thus, I abis always finite. Let Ma be the max of U.j for j c I b

Clearly, if a <b < c <d, then Mab and Mc areidpnnt

Abbreviate

(2.3) wn (X) =V/log n-2 log log n+x and y

We will show that

(2.4) PfIMa < wn(x)) -+ exptl-y[,D(b)-O(a)]e- 2 for -coo<a<b<oo

(2.5) lim, sup n- oP(Mbo< nx)

- 1-x

<expf-y[1-0(b)]e 2)for -0 < b < o

Granting (2.4-6), the proposition can bE derived by an elementary

argument as follows. First, (2.4) holds even for infinite a or b,

9



in view of (2.5-6). Now let Y and Y2 be independent double-

exponential random variables:

1 
PfYi < x) = exp[-i e 2-

where

-, y (y) and 2
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so

Y7 1 + 2 = •

The function w (.) defined by (2.3) is continuous and strictly increasing;
n

so is its inverse, w n. Equation (2.4) implies that the joint distributionn

of w-1 (M )and wl (M ) converges in distribution to the joint
n n dy

distribution of Y and Y2 Now P(Y0 =x) = P(Y. = Y2)  0. So

(2.7) P(L n < yo a/2n/log n and Mn < wn(x))

=P(M < w(x) and MY >

=P(&1 (M <x and w1 (M >i- (Mn -coy n -cY n

-PtY1 < x and Y 1>Y 2

1 1 2 2

= J ~ yle exp[-y 1e ] exp[-y 2e ]dz

11(X i g -g z
"-- (y)J ye exp[-e ]dz

Jf

The last displayed expression equals

t?(y) exp[-ye 2

Thus, (2.4-6) imply (2.2).
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We turn now to the proof of (2.4). We will write v for

Var(U.) = l-j /2a2 n. Fix an x, and abbreviate w = w (x). In

essence, the proof of (2.4) is the following computation:

(2.8) log P(Mb < wJ =E log P(Uj < w)
j C Ia b

E jE a P(u j > w)

-X .j I 2/ jJ1 Iab

by (3.15). The symbol " means "approximately equal" and is only used in

heuristic argument. For our purposes

(2.9) .v./w = 1//logn

In the exponent, 1/v. 1 + j 2/2a2 n. So
0

(21) 12/v . 1 1 il j2/(2u 2no
(2.10 Lw /v log n - log logn + 2x + L / n/log n)

2 j 2 2x 2n

1
2

Thus, log P{M < w) is approximately y/2 a e times

(2.11) 1 i exp(- ; j2/(2_ 2 n/log n))

This last is a Riemann sum for

1 f exp(- u ) du =(b) - O(a)

IV/2- Ja
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We now indicate the details required to justify (2.8). AU "01

and 'oll error terms are uniform over j ' Iab. Note that a and b

are finite, so j 2/n = 0 (1/log n). In (2.9), ,then, the ratio of

the two sides converges to one as n - o, uniformly over j e I * In
ab*

(2.10),

1 221 1 2 J
-w -- 1

2 j2a 2 n1 2__ -! w22

2 vi - 2)

- O(log n) o(j2/b)

- o(-)

So the difference between the two sides of (2.10) is

1wo2 _ gn. 2 + o(l)

22a 2n 2 2a 2 n

1 (w2 _ log n) -. + o(1)lo n2o) 2

0 O(log log n) 0(1/log n) + o(1)

- o(l)

Thus, the ratio of P(Uj > w) to V a e 2 times the j-th term in

(2.11) goes to one as n goes to unfinity, uniformly over j e Iab. As

12



a result,

(2.12) P(U i > w) o(1)

and

1

(2.13) P(Uj > w) -j a- e 2 x [0(b) - O(a)]

JEIab

Now (2.12-13) imply that

log P(U. < w) [P(U. > w) +0o(P(U. > w))]
JEI ab JEIab

also converges to the right side of (2.13).

This completes the proof of (2.4). The proof of (2.5) is very

similar. In place of (2.9), we use the estimate

/VT/w < llw

To modify (2.10), we use the fact that

1+ 2

lvj > 1 + j2a n

so

2/v >_ log n log log n + x + w 2 /2a2

and I P(UJ > w) is bounded above, to within o(1), by

13



1

r e times w log n times

1 w 1x( 222

27n je--a

Now v log n , i, and the last display is at most

O(a) + o(1)

because the normal density is monotone increasing on (-.,O). The o(1)

corresponds to the term in j at the edge of I. a This completes

our discussion of (2.5), and (2.6) is symmetric. 03
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3. Probability Approximations.

The random variables N. introduced in section 1 have a joint

multinomial distribution. We will approximate this distribution by

getting upper and lower bounds in terms of independent binomial random

variables. The binomial variables are then approximated by an appro-

priate normal distribution. This section contains the basic bounds

and approximations. The main results are (3.2), (5.16), and (3.17).

The first lemma is an upper bound for multinomial probabilities due

to mallows (1968).

(3.1) Lemma. Let MN,...,M have a joint multinomial distribution.

Then, for any real numbers a1 ,a 2 ,...,a J

P(M <a. fori I < < J)< T J  P(M. <a.j Jl

The second lemma will be used to get a lower bound for multinomial

probabilities.

(3.2) Proposition. Let (i,U,P) be a probability triple, and let 40 c i c...

be sub-a-fields of '. Let Aj and G be events in U.. Let %j, %

and a be nonnegative numbers. Suppose P(Gj) > l-EJ and

Xj < P(AjII) < X* on G- - 1- j -1"

14



Then P(n j  A ) is bounded betweenJ=l

7j~ %J EJ1 and T %*E-C

Proof. Induction on J. 0

Let N be binomial with larameters k and p, here 0 < p < 1.

The next set of results give approximations for the distribution of N which

are uniform as k and p vary over a wide range. Readers may be surpisled

to find ui proving versions of the central limit theorem for coin-tossing,

at this late date. However, we need bounds which are uniform as p gets

small; to stay in the realm of the central limit theorem, we will require

kp to be large. Our results involve the function

(3.3) g(x) = (lx) log(l+) - x for -1 < x <

The function g is strictly convex, strictly decreasing on (-i,0),

strictly increasing on (O,co). It satisfies

(3 4) g (x) x2 + O(X3  as x O

More precisely,

1 2/+ ~)<1 2

(3.5) x 2 <g(x)<-x for x>o,

with the inequalities reversed for x < 0. The function g(x) is closely

15



connected to a function which arises in the theory of large deviations

theory. See, for example, pp. 100-101 of Kolchin, Sevastyanov, and

Chistyakov (1978).

We begin with a special case of theorem (4b) in Freedman (1975),

restated here for ease of reference.

(3.6) Lemma. Let u > 0. Then

P(N > kp(l+u)) < expt-g(u)kpI

Combining (3.5) and (3.6) gives a version of Bernstein' s inequality:

(3.7) P(N > kp+m) < exp(-.m 2/(kpm)) for m > 0

Parenthetically, theorem (4 a) in Freedman (1973) implies

(3.8) P(N < kp-m) < exp(-'m 2/kp) for m> 0t2
The next result is a variation on lemma (7) of Freedman (1977), and

is proved the same way. (The condition b > 1/b in that lemma is super-

fluous.)

(3.9) Lemma. Fix E > 0. There is a positive b such that the ratio

P(N = a+b)/P(N=a) is bounded between (l+e) times

11 1
I-) ex[-t-,a -

16



for all integers a, b and k satisfying

a> 1/6, &+b > 1/6, k > 1/5, a b < Bk, I < 5 Irk-•

The next result gives a bound for binomial probabilities P(N=v)

in terms of the function g. Informally: for small values of p,

large values of kp, and vrs not too far from kp, P(N=v) is

asymptotic to

exp(-g[(v-kp)/kp]kp)

This is a combination local central limit - large deviation result,

holding uniformly in small p.

0.10) Lemma. Fix E > 0. There is a positive 8 that P(N= v)

is bounded between

(i+ ) --- e3Cp(-g[ (v-kp)/kp]lkp)

for all k, p and v satisfying

p < b, kp > l/b, v -kp I < bkp, v -kpl < F). .-

Proof. First, suppose v is the integer part of kip, so v = kp-e

with 0 < e < 1. Abbreviate p = l-p, so k-v = kp+e. By Stirling's

formula, P(N=v) is asymptotic to

17



times

kp~e -kp-e(i - ) (1 -k+ k

kp

The first expression is asymptotic to i/'2kp-. The second is asymptotic

to

-kp kp
(i. +) ( + -

kpp

By taking logs and expanding, the last is seen to be nearly 1. Thus,

(3.11) P(N=[kpl ) ,/W'2irkp

More explicitly, the ratio of the two sides of (3.11) converges to 1

as 5 ->O, uniformly in k and p satisfying our conditions, namely,

p < 5 and kp > 1/5.

We now apply (3.9), with a = [kpl and b = v-a to see

(3.12) P(N=v)/P(N=[kp]) " exp[-g(b/a)a]

* First, as easily verified, the conditions of (3.9) hold. Second,

1

(3.13) a tb

indeed a = kp + 0(i) and b = v-kp+0(1) is small relative to kp,

by assumption. (The "0(1)" terms are bounded as b ->0, uniformly in

k, p and v satisfying our conditions.) Likewise,

18



(3.14) [i.]b A )

indeed, this expression is

+ -b ,b
kp kp

and b v-a = v-kp+O(1) is small relative to kp and to kp. This

completes the proof of (3.12).

Recall that a = [kp] and b = v-a. The final step in proving

(3.10) is to show that

is uniformly small. This tedious piece of calculus is omitted. [

We now recall a bound on the tail probabilities of a normal

random variable:

( .15) Suppose U is a normal random variable with mean 0 and

variance 1. Let w > 0. Then P(U > w) is bounded between

1 1W2 l W2 )•T exp(- )aw') - -exp(-
w

The following result is a generalization, as one sees by taking

f(x) = x 2

19



(3.16) Proposition. (a) Let f be convex, and suppose f(o) o. Then

!x 1
exp[-f(u)] du < 77 exp[-f(x)]

(b) Suppose 1/f' is convex. Then

Jexp -f(u)I du> f'(x) 1flp exp[-f (x)]f()+f' (x)

Proof. Claim (a). Let F = exp(-f). Then F(o.) = 0 and F' -f'F.

Now f' is monotone so

c00
f' (x) F(u) du < -F (u) du - F(x)

Claim (b). Let = (i/f') exp(-f). Then -(o) 0 and

F : -(i+--) exp(-f). So

ft2

[I + 2_'''''''t _ F (u) du > -9' (u) du -F(x) 0

f, (x) x - •

Note. If f is convex and f' is concave, then 1/f' is convex. This

is the case for our function g. The concept of complete monoto-

nicity is relevant here: see section XIII.4 of Feller (1971).

The next lemma extends corollary (8) of Freedman (1977). It provides a

bound for binomial tail probabilities, in terms of g, analogous to (3.15).

(3.17) Proposition. Fix c > 0. There is a 8 > 0 such that

P(N > kp+m) is bounded between

20



(1 + E) --- exp[-g(m/kp)kp]- m

for all k, p and m satisfying

p < 5, kp > 1l8, 4/k- < m < bkp, m < 5J •

Proof. We break the tail probability up into two parts:

P(N > kp+m} = P +P2

where

P1 = Pfkp+m < N < kp+2m) and P2 = P(N > kp+2n)

Later, we will show that P2 is negligible, but that

(3.18) P1 Pd exp[-g(m/kp)kpl

First, some preliminaries. To simplify the notation, let

G(u) : exp[-g(u/kp)kp]

Clearly,

(3.19) 1---- G(m) is small relative to la G(m)

because m is small relative to kp, by assumption. Likewise, in view

of (3.5)

21



(3.20) G(2m) is small relative to a G(m)
7-7 m

because m is small relative to kp, but large relative to -/i.

Next, we claim

(3.21) V G(i) is bounded above by (l+e 1 ) k G(m)

Indeed, G is monotone decreasing, so

+i G(i) < G(u) du < G(m)

by (3.16). But

g, m - log(l + m)

kpkp kp

because m is small relative to kp, by assumption. This proves

(5.21).

We are now ready to prove part of (3.18), by estimating PI from

above. Let v range from tkp]+m+l to [kp]+2m, so P1 = EV P(N=v).

As (3.10) implies, P1 is bounded above by

(3.22) ) 1 E G(v-kp)

Because G is decreasing, the expression (3.22) is bounded above by

22



1... 22-I G(i)
V i=m

In view of (3.19) and (3.21),

(3.23) P1 is bounded above by

1 1exp(-g(m/kp)kp]

We are now ready to prove the rest of (3.18), by estimating P2

from below. Indeed, as (3.10) implies P2 is bounded below by (1-'E4)

times

(3.24) 1 G(v-kp) > m G(i)

The right side of (3.24) is T-T2-T3' where:

1 G(i)
-p; i~tm

1 o

>G p (u) du

1 k G(m) by (5.16),
j m

T G(m) o[k& G(m)] by (3.19)
T2 m

23



3= 1 G(i)
-Alkp i=2m+l

(1 +l 21 G(2m) by (3.21)

O[Lk G(m)] by (3.20)m

on recollecting that I/m is small by assumption. This completes the

proof of (5.18).

Our last job is to show that P2  is negligible by comparison with

Pl. But

* P2 
= P(N > kp+2m) < G (2m)

by (3.6); now (3.18) and (3.20) can be used to complete the argument. 03

(3.25) Remark. Under the conditions of (3.17), P(N < kp-m) can be

bounded by the same expression. The argument is almost identical,

because (3.10) is symmetric around kp. The only difference comes at

the end:

P2 = P(N < kp-2m) < exp(-2m2 /kp) by (5.8)

< G(2m) by (3.5)

24



Many of our arguments use the local central limit theorem. We state

two versions for ease of reference. For the first version, assuming only

a finite second moment, see page 517 of Feller (1971). For the second

version, assuming a finite third moment, see page 197 of Petrov (1975).

(3.26) Suppose (1.1), and E(X2) < ., and (1.6). Then uniformly in J,

1

P(S n=J o 1 exp(- g[(j-ng)/o/ ]2  +o(//iM)

(3.27) Suppose (1.1), (1.2), and (1.6). Then uniformly in J

P(S =j) I exp(-1 (j-n)/u/ ]2 ) + 0 (1/n)

25



4. Proof of theorem (1.8).

The first step in the proof is to show that, with probability

approaching one, the maximum does not occur in zones II, III, or IV

as defined in (2.1). This part of the argument does not require

third moments nor the full force of (1.5). Thus, for lemmas (4.1), (4.3),

and (4.5), we assume (1.1)-(1.6) with (1.2) replaced by E(Xl) < c and (1o5)

replaced by n - and k/j' log n o. We begin with zone IV.

(4.I) Lemma. Let y be any positive number. Let M4  be the maximum

of NJ-kp. over zone IV, namely the set of j's satisfying Ij-nl >On 3 / 4.
Let &nk be the probability that M > y(k log n)/2 Then

- as n-vco.

Proof. To begin with, 0nk is bounded by the sum over j in zone IV of

P(N -kpj > y(k log n) i2/n / 4 ).

By Chebychev's inequality, the last displayed probability is at most

-2 1/2/oy n ./logn .

Summing over j in zone IV shows

Unk Ce (yb-e n l/?/log n) ePuSin-ntI > Oan3 /a )

Using Chebyshev's inequality again,

P6



P(Isn-npl > om31/ ) _< n z 1 .

So

0n <_y' 2/log n. E

We turn now to zone III. It will be convenient to abbreviate

(4.2) m F log n

This m appears in (1.7) and is the leading term in (1.10); it will have some

connection with the variable m in section 3.

(4.3) Lemma. Let 0 < A <c.. Let MA be the maximum of NJ-kp .

over j in zone III, namely the set SA of j with An./2< IJ-npl < cn 3 / 4

Fixany e with 0 < c < 1. Then there is an A = A(c) so large that

P(MA > (1-E)M)0 10

as n and k tend to infinity, satisfying the growth condition k/p log n ->c.

2!

Proof. Let e satisfy 0 < 0 < 1(l-C) . Recall that pj = P(Sn=J).

In view of the local central limit theorem (3.26), there is an A > 0

and a finite n1  such that pj < 0/o" 2,rn for all j in SA Provided

n > n1 . From inequality (3.7),

2
(4.4) P(N i > kpj + (1-e)m) < exp[ - 1g (1-e) kp +(l-E)m]
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We must now bound m 2/[kp+(1-6)m] from below. The choice of

A forces kpj < ke/a2n. The growth condition on n and k forces

(1-E)m < kO/aj2r- eventually. Then,

2 2 logk+l-m m - 'n- -)I
p ~~ 2keA/aV--T 2e0J

and the right side of (4.4) is smaller than 1/n. Finally,

P[MA > (l-E)m} is bounded above by the sum over jES of
A A

P(N. > kpj+(l-E)m.

3/3

This sum comprises at most 2on /' terms, each bounded by 1/n. This

proves (h.3). 0

We turn now to zone II.

(4.5) Lemma. Fix A > F > 0. Let M2 be the maximum of N.-kp for

j in zone II, namely the set S2 of j with 5o-1 n < lij-ni <At.

Let m be defined by (4.2). Then, for c > 0 sufficiently small,

P{M2 > (I-E } -# O

as n and k tend to infinity satisfying the growth condition k/V log n -> m.

Proof. In view of the local central limit theorem (3.26), there is a

81 > 0 and a finite nI  such that for n > nl,
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(4.6) pj < (l-B )/ o-, /2" for all j satisfying lj-npJ > Ba .

Choose e positive with (1-e)2 /(1-8 1 ) > 1. Inequalities (3.7) and

(4.6) imply, after some algebra:

(4-7) PIN% i k + (1le)m) < exp - o 1> l+en

-where 1 (i-) 2/(l-61) > 1 by our choice of e, and

e, a (2n) n (log n) 2k ->0

by the growth condition on n and k.

ii
a Choose 0' with 1 < 0' < 1. For large n, the right side of (4.7)

is at most n . Sum (4.7) over j in 82, comprising at most

2Pa- terms, to see that
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I

We now proceed to zone I. Fix b with 0 < 8 < 1/10. For

- _ a<b <oo, let Iab be the set of j with Ij-n~l < ba jn

and

(4.8)aa /2n/log n < j -np < bo- J2n/l-og n.

These intervals are all finite and nonrandom; I corresponds to all

of zone I. Let

Wab be the max of N"-kp for j in I
a) . ab

To state the main result concerning zone I, recall zn(X) from

(1.10). As in (1.9), let ¢ be the standard normal distribution

function. We will now need finite third moments and the growth

condition (1.5).

(4.9) Proposition. Assume (1.1)-(1.6). Let -o<a<b<c<d<m. Then

P(Wab <zn(x) and Wcd <zn(y))

converges to erp(-.a-/ Q], where

1 1

Q = [0(b)-®(a)je + ['(d)-¢(3)]e0
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The proof of (4.9) is a bit complicated. Here are some preliminary

estimates.

(4.10) Lemma. The bounds given below apply uniformly to j c I ,

and the "o" errors are uniform in j c I as n o.

(a) (j-n.)2 /c 2 n < 62 < 1/100.

(b) p is bounded between

1 j - i (+_%) 11L +

where a =52

(C) i/[l - (1±a) is bounded between
on

1 + 1 (1+b 8 ) (jn) 22+ _ 2
an

where b is a function of 8 only and b = 0(2) as

~840.

Note. The notation in (b), although not stanard, is convenient for our

purposes and will be used throughout. To spell (b) out, there is a

sequence En > 0 with cn log n >0, such that for all n, and all

J in I., 4 the probability p3  is bounded above by

a 1 2a

4 - [ -A..... 
2 J 1+



and below by

j-n

Proof. Part (a) is trivial, and then (b) follows from the local central

limit theorem (3.26), using the estimate

l-x < e -x <1 + x2

Here, x = (J-np) 2 /20' 2 n < 152, so

;~ C x ixx> (i 2 xSx- ,x -- Xi- .fj~

Part (c) follows from the identity

2
1 x x 11=l+x+-0

1-x I -x

The probability in (4.9) will now be estimated from above and below.

An upper bound derives from Mallows' inequality given in (5.1):

(4.11) The probability that Wa < zn(x) and W < zn(y) is at most

IT Eiab d(x- cd % (y)

%&ere

\ (x) P(Nj< kpj+zn (x))
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The rest of the upper-bounding is very similar to the lower-bounding,

so details are omitted.

The lower bound will be derived from lemma (3.2). In that lemma

take

A (N j < kp+Z n(x)) for j E Iab

(412 )

(Nj < kp+z n(y)) for j EIcd.

To define Gj, let

(4.13a) K be the set of i with nUL-5aV < i < j ,

(4.13b) gJ= Pi
iEK.a

(4.13c) G. ( N > kg.-M),
iEK. ia

where

2
(4.13d) M (k log n)

1
Since I includes at most 250M indices, (4.10b) shows

(4.14) gi < 0.85 for all j eI , for all large n

Lemma (3.2) also involves a-fields il, defined as follows:
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(4.15) y. is the -field spanned by the Ni as i ranges over Kj

To apply lemma (3.2), we must estimate P(G.).

(4.16) Lemma. Define G. by (4.13). Then the sum of 1-P(Gj)

over all j E I tends to 0 as n and k tend to infinity satisfying (1.5).

Proof. Clearly, Ni is binomial: the number of trials is k,
i EK .

and the success probability is gj. From (3.8),

1-P(G) < 1exp[- 1 M

Replace gj by the upper bound (4.14): eventually,

1-P(G.) < exp(- 1 W/k) = n-1/2 < n

1

for all j E I . But I only comprises O(n ) terms. o

We are now ready to establish the basic lower bound.

(4.17) Lemma. Define g. and M by (4.13), and zn(x) by (1.10).

Let N' be binomial, with success probability p' = pj/(1-gj.1) and

the number of trials k', the integer part of k(1-gj 1 ) +M. Let

X.(x) = P(N'. kp.+z(X)•

Tbwn P(Wab < Zn(x) and Wed < Zn(y ) ) is bounded below by
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nji b j(x) • HjEIc d x j(Y) - 1l-P(Gj))

Proof. Given Ui-l' as defined in (4.15), the conditional distribution

of N. is still binomial; the conditional success probability is p,

as defined above; the number of trials T is an 9j-l-measurable random

variable:

iEKj-1

On Gj.1. however, T. < k'.. So

P(N. <kp 4 Zn(X ) )I j l >Xj(x) on G :

heuristically, the more you toss the coin, the more heads you get.

Lemma (3.2) completes the proof. CI

We must now estimate X.. Here are some preliminaries.
3

(4.18) Lemma. Define \. as in (4.17). So,

j(x) =P[N < kjpj h

where

h = z (x)+kp -kjpj.
n

The bounds and error terms given below are uniform over jeI ; the

"0" and "o" are as k and n approach infinity, satisfying condition
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(1.5) that k/ n (log n) - .

(a) k.p. is bounded between

k [1 - ( (j-np ][ + 0 )
a- 7 Tt n 2 0 a , 2 n og n

with a of (4.1Ob).

(b) h z n(x) [l +O(n- 1 14)]

2
(c) h = o(kjp.

2(d) h /k'p' is bounded between

1 (j -n ) 2

log n-2 log log n+x+- (l+2b ) ... 2 + o(1)
2 - 2

o- n/log n

with the b 5  of (4 .10c).

(e) Recall the definition of g(x) at (5.5).

Then g(h/kjpj )kjpj is bounded between

1 1 ] ~ __j-n_)_1 log n-log log n+ x+ (1+2b8 ) 2 + 0(1)2 2a2n/log 
n

Proof. Part (a). From the definitions of pj and k'. given in (4.17),

(4.19) k'p' kp.[l + k( )

where 0 < 0 < 1. By (4.13d) and condition (1.5), (M-e)/k = o(1/log n);

and g. < 5 eventually, by (4.14). Then (4.10b) completes the argument

for part (a).
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Part (b). Recall h as defined in the statement of the lemma.

Continuing from (4.19),

h _-_ - O(n-1/4)1 -gj -i
7x zn ej-1

as in (a), using the definition (1.10) of zn(x).

Part (c). This is immediate from (a), (b), and condition (1.5).

This is the first time that the full force of (1.5) has been used.

Part (d). Using (a), (b), and (4.10c), h /2kpj is bounded

between

(log n -2 log log n+x)[l + (l+bQ) n,2 ] 1 + 0( )1
on n

Of course, (2 log log n-x)/log n < b5  eventually, proving (d).

Part (e). This follows from (c) and (d), by using inequality (3.4).

I]

The proof of proposition (4.9). We pick up the argument from (4.17).

The problem is to put a lowEr bound on HjEiab % i(x), the other factor

being similar. Defining h as in (4.18),

1-% (x) = P(N'. > kp. + Zn (x))

= PtN' > k'. p. +h)

Fix an E > 0. Then proposition (5.17) implies that eventually, for all

jE , l-X. (x) is bounded between
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(4 0(1,)(kp/A) ep-g(h/kIjpj)kj~pj .

"Eventually" means for all k and n, with n and k,4/n log n

sufficiently large.

We pause to verify the conditions of the lemma being appealed to:

= p /(l-gj_,) is small by (4.10b) and (4.i4)i k'p' is large by

(4.18d); h/kjp' is large by (4.18d); h/k.p' is small by (4.18c);

12 
i

and h/k I  is small by (4.18b). Thus, the bound (4.20) is established.

The exponent in (4.20) was estimated in (4.18e); the factor k'Ip'j

in (4.18a); and the factor h in (4.18b). We conclude that eventually,

for all j in I , l-k(x) is bounded between

(l+c) (l+c 5 )a -V2 e - /

times

1 1 expf- 1 (l+2b5 ) (j-n4)
2

Y2 2a- 2n/log n -- n/logn

where c5  is a function of 6 only and c5 = 0(5 ) as 5 40.

Arguing as in proposition (2.2), we get a lower bound for the

probability in (4.9), of the form (l-3E)(l-C)exp(-Q.), where

b = 0-V/T e -x/2 [¢(fsb ) O( f a )

+ or1/ e -y 3 [D(fr d ) - ¢(fc)]

with d. - 0(b2) and f. = i)(82). It is at this point that the uniformity

in j was critical.
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An upper bound of similar form can be obtained by essentially the

same argument, starting from (4.11) instead of (4.17). Then the proof

can be completed as in (2.2). 0

Our last main job in Droving (1.8) is showing that max(N.-kp ) is

assumed at a unique index j, with probability approaching one as n and

k/ (log n 3  tend to n. The following heuristic discussion may make

the argument easier to follow. Inspection of (1.8) suggests that the

maximum is likely to occur only for j's within O(n/log n) 1 /2 of nP.

Call these the critical j's.

(4.21) There are O(n/log n) 1 12 critical j's.

Recall m from (4.2). The range of likely values for the maximum is

from

m(1 - 2 loglog n b 1/2 - 2 loglog n b
log n logn 2 log n 2 log n

to

2 loglog n + b )1/2 . )loglog n + b
m(l - log n lo- m( - 2 log n 2 log n )

Call these the critical values. In what follows we write an - b if

nn

liman/b 0 and lim an/bn <
1 1 1

(4.2,1) There are the order of m/log n - k 2 n - (log n) 2

critical values for the maximum.

Each of these critical values for the maximum corresponds to some value

i for an N. of around
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kp. +m(l - 2 loglog n)1/2
3 log n

kpj + (kp)l/2 (log n-2 loglog n)/2

Now N.-kp. is essentially normal with mean 0 and variance 4. -k/#p,

so

" ---!-- exp[ -P(N.=i) 21 2 kp.)

- k - 1/2 nI /4 exp[- logn +loglog n]

n-/2n-1/4 log n.

Furthermore, the N. are nearly independent. The chance that the3

maximum occurs at two different indices is bounded by the sum, over

the critical j, j', i and i' satisfying

(4.25) i-kpj : il-kpj,

of 1

P(N =i and N il k n 2 (log n)2

The number of critical i's was estimated in (4.22): to each, there

corresponds at most one i' by (4.25), "at most" because i' has to
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be an integer. The number of pairs j, J' is O(n/log n) by (4.21).

So the chance that the maximum occurs at two different indices is of order

n(log n)-  • k1/2 n'-1/4 (log n)
"I/2 k 1(in'1/2(log n) 2

k-1/2n 1/4 (log n)1/2

This last quantity tends to zero because of the growth @ondition (1.5).

Returning to rigorous argument, recall z n(x) defined in (1.10)

and Iab defined by (4.8). The main estimate is the following.

(4.24) Lemma. Assume (i.i)-(3.6). Fix positive finite numbers a and

b. Then, uniformly over pairs of indices j J j' in I , and pairs

of integers i, i' satisfying

(4.25) z n(-b) < i-kp = i'-kp, < zn (b)

we have

0.26) P( = i) = 0 (k/2nl/4 log n)

and

(4.27) P(N, =i' INj=i) = 0(k-1/2n'1/4 log n)

Proof. The first assertion (4.26) follows from lemma (3.10), the

requisite estimates for pj being given by (4.10). To make this
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valid, the conditions of (5.10) mist be verified. Then, one argues

2
from (4.25) and (1.5) that (i-kp.) = o(kp.) , so

g[ (i-kp.)/kp.I kp. L- (i-kpj2 /kp.+o'(I)

But, using (4.22) again,

(i-kpj) 2  - [log n-2 loglog n+0(1)]

And by (4.10),

k e s o
1+0

g[(i-kpj)/kpj] kp. - log n-loglogn + 0(1)

We omit the other details in the proof of (4.P6).

For the second assertion (4.27), given N.= i, the conditional3

distribution of Ni, is binomial with success probability

p = pj,/(1-pj) and number of trials k = k-i. Some preliminary

estimates are needed before appealing to lemma (3.10). All "0"

and "o" estimates are uniform over j j' in I and i,i'-aa

satisfying (4.25), as n and k/I n (log n? tend to infinity.

We will show that
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Aft

(4.2 ) kp = kp,[l+o(1/log n)]

(4.29) (,. )2/kp = log n-2 log log n+0(1)

Assume these bounds for the moment. Another application of lemma (3.10) shows that

P(N =i'IN =i) is of order

(kp ) /2 ,xp[_.I.2)1 .k

Now use (4.28) and (4.29) as before to complete the proof.

We now prove (4.28) and (4.29). Let

e = p- kp., = (kp.-i)p j/(1-p.)

Abbreviate h= i'-kp., = i-kp . Then (b) of Lemma (4.10) implies

e/h = -p /(l-p ) (1//). Condition (4.25) makes h of order

kl/2 n-1/2(log n)l/2, and then 0 = o(kl/2n-3/4(log n)1/2). Finally

kpj, is of order k//On, again by (b) of lemma (4.10). To summarize:

(4.30) e = 0[kl/2n-/ 4 (log n)l/2 , h Z kl/2n-1/ (log n)I /2, k, n

Now we can prove (4.28):

^A

kp = kpj, + e

= kpj, +0[kl/2n-3/ 4 (log n) I /']

= kpj, (1+0[k-, n1/4 (log n)1/2))

3 kpj 1l+o(i/log n)
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A

To prove (4.29), note that i'-kp = h-e. Now

_ .2/k h2 2 AA 2

(j,-kp /kp = (h -2eh+e )/kp h + o(1)

From (4.25)

h2 k [log n-2 loglogn+0(1)1

In view of (4.10),

kp...J- [l + 0(1/log n)] •

So

ho/kp = log n-2 log logn+ 0(1). C)

We can now prove the uniqueness assertion in (1.8).

(4.31) Proposition. Assume (1.1-1-6). Then max (N.-kp.) is assumed

at a unique index j, with probability approaching one.

Proof. We first establish:

(4.32) Given E > 0, there are large, finite numbers a and b, such

that eventually, except for probability E, max. (N .- kpj) is

assumed only for indices in I a a , and is between zn(-b) and z n(b).

"Eventually" means for sufficiently large values of n and k/n/2 (log n).

Indeed, for any b, except for probability less than E/5, the maximum

over zone IV is eventually smaller than zn(-b) by (4.1). Likewise for

zone III by (h.3),and zone II by (4.5). As a matter of notation, zone I

is I and can be dealt with by (4.9). There are a and b so large

that eventually, except for probability E/5,



Zn(-b) < max(Nj-kpj for j in I ) < zn(b)

Finally, choose a so large that eventually, except for probability E/5,

N.-kp. < z (-b) for all j E I. \I. This completes the proof of (4.32).

The next two e;timates are easily checked.

(4.33) The number of pairs (j,j') with j' A j in I is O(n/log n).-aa

(4.311) The number of integers i with z n(-b) < i-kp. <Z n(b) is at

most
z n (b)-zn(-b) = o[ kl/2 n-i/4 (log n) - 1/2

Now, lemma (4.24) and relations (4.31-34) enable us to estimate

the chance of finding two distinct indices j' j in I with

N.-kp. = N.,-kp., in the critical range from zn(-b) to zn(b). Take
3 3 = 3

the number of pairs j L j' in Iaa, and multiply by the number of

integers i with i-kp. in the critical range. Each i is a possible

value for N., and associated with it is at most one possible value i'

for Nj, satisfying i-kpj = i'-kpj,. Then, we multiply by

P(N.=i) • P(N.,=i'IN A). The result is O[k l/2n-/ 4 (log n) 1 /2] ->O. 

The proof of theorem (1.8) (-an now be given.

Proof of theorem (1.8). As proposition (4.31) implies, Mnk is assumed

at a unique location Lnk, with probability approaching one. Lemmas (4.1),

(4.3), and (4.5) imply that with probability approaching one, Lnk is in

zone I. Now, proposition (4.9) implies (1.8) by the same argument which

showed that equation (2.4) implies proposition (2.2). 03
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. ~Moment As sumptions.

We have been assuming J. ) that E!XII < o . An argument sketched

later in this section will prove theorem 1.8) under the weaker hypothesis

(5.) EiX "log(l+ X )i < i' for some 5 > 0

However, if only

(5.2) E(:Xl 1i[iog(l+IXl) < o for some 5 with 0 < 6 < 1

the conclusions of the main theorem (1.8) become false. This is

demonstrated by theorem (5.4) below, which gives the correct asymptotic

formulae for a particular random variable satisfying (5.2) but not (5.1).

The present discussion leaves unrezolved the caseE(IXl 2 [log(l+IX1 1 )11)<

for some 8 with u < 6 < 1.

Theorem (5.4) uses an Edgeworth-like correction in the local central

limit theorem for a random variable without third moments, given in (5.23).

The techniques used are similar to those in Pitman (1968). Some related

work can be found in Cramer (1963), or Takeuchi and Akahira (1976a,b).

We now define a class of probability distributions on the integers.

Let a > 1 be given. Let q = qa be the symmetric probability on the

integers with

q(0) q(-l) = q(l) = 0

n(*-7 afo +2_
(5.5) q(j) : b/[j'(logljl)a] for j +2, +3,...

b is chosen so that Ej q(j 1

(~b q~j) =1



As for theorem (1.8), let a2 be the variance of q. Let XIV... be independent

with common distribution (5.3), and write S n = X4... +-X n . Take k independent

copies of S • Let N. be the number of these sums which are equal ton J

j. Let Mnk max.[N.-kP(S n=J)].

(5.4) Theorem. Let XI,X2 ,... be independent, having common distribution

a-i
(5.3), with 1.5 < a < 2. Let c = b2 /(a-l). Define

(5.5) z n(x,-a) -- /log n+c(log n) 2-a2 log log n + x

Then, with probability approaching one, Mnk is taken on at a unique location

Ln , and the probability that

L < y- /2n/log n and < zn (x,a)

converges to
4,(y) exp[-u/ e - x / 2 ]

as n and k tend to infinity satisfying the growth condition (1.5).

Note that q in (5.5) has a second moment,but just barely. In

particular

j2[log(l+Ijl)]S~q(j

is finite provided 5 < a-l, but infinite for 5 > a-i. Note too that

z n(x,a) defined in (5.5) is different from Zn (x) of (1.1o). When

a 2, the difference is not so dramatic--a constant under the square

root sign. But when a < 2, there is an extra term going to infinity,

namely c(log n)2 -a
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To prove ( .4), sharp estimates of P(S sj) are needed. This isn

done by approximating the characteristic function of XI . We begin with

some preliminary estimates. The first lemma is implicit in Pitman (1968).

(5.6, Lemma. Suppose the rea] numbers u are nonnegative, nonincreasing

and (weakly) convex:

> u-u >U -U

Un n - 1  n n Un+l-Un 2

Suppose too that u - ) as n -. . Ltt S be the (conditionally convergent'

sum uo-ul+u2 -U',+" . Then

1
~UO < S <U( -

Proof. Clearly,

S = U..-u. (un-u.)

> (U -U.) (u.-u) + by convexity

= uo-S

This proves the first inequality. For the second,

S uu-u+u -... )<u i U
12 -0 2 '

because ul-U2 -u ... u by the first inequality applied to the
21

sequence u ,u... .

The next lemma is at the heart of the approximations in this section.

It is abstracted from Theorem ,of Pitman (1,68). We work with conditionally

convergent Rcimann integrals. uch integrals are d~noted by using an arrow

over the integral oirn.



(5.7) Lemma. Let H(x) be a convex function on [O,c) which decreases

to 0. Then. for any t > 0,

(5.8) 1 < t H(x) sin(tx) dx<_0 - I

where

S

(5.9) I0 H(x/t) sin x dx and I / H[ (x-A)/t] sin x dx.0 -J0

Proof. By changing variables, it is enough to do the case t = 1.

Abbreviate h.(x) = H(x+jlt). Srlit at multiples of n to see that the

integral to be estimated equals the conditionally convergent sum

j +1)1 T 0 )h

S Ji H(x) sin x dx= J (-.)h (x) sin x dx.
j=0 js j-o

Croup the terms as (uo-u 1 ) + (u2-u 3 ) +... to get

T. [h k(X)-h (x)] sin x dx
k--O f 'k 2k+l

Because H is monotonE decreasing, h, > h, so the last sum is
2k , Qk-'l

absolutely convergent, and we can take E inside the integral by Fubini t s

theorem. As a result,

it

H(x) sin x dx (ho(x)-h W(X) sin x dx
4L.' k- Ok ;e].i is

Now H is convex, so for each x the sequence h0 X), hl(X), .. is
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convex. By .

1

h t x) x _Z' h1 x -h~k.1 x _< h ,x - - h I(x
k '

'his completes the proof. 0

We ill now apply this result to H's of order I' jiog x) , at infinity,

and evaluate the corresponding integrals I and I in (':.7' A

calculus estimate will be needed.

('11) Lemma. let b a i ositive number and x a real number. Then,

1 <l x? 1 0 x for x > -1

(b 0' o~bl 1
b 1< Ix j " dlx" for x >

\c -I. 1 kx for 0 < x < -, with k finite

but opending on 1.

Prof. Expand I . in a 'Pgvlcor series with remainder. [J

l5. 1' Lemma. ,t , be a positive number. Mhen, as t -4- 0

f l -)Co 1 sin x d-K- t.

and

Oot, x sin x tx

are both equal lo

' ± Of o, ' og

• t



Proof. We will only do the first integral, the second being similar.

Write the first integrand as

CLa(log ) i + lo x sin x.
log

Now x > ,- so (log x)/(log .) > - , and (5.lla-b) can be used to

estimate the middle factor in the display. The integrals which result

are evaluated as follows:

sin x dIx = 2 + O(t)

f sin x Ilog xVJ  dx < for j 1 1 or 2. 0

The following calculus facts are needed to estimate the tails of

the distribution (5.5).

(5.13) Lemma. Let .> 0 and > 1.

(a) Define

f(a,u) x-5 (log x) " a dx
'U

Then f(a,1,u) is bounded below by

1 _~la a -43+1 -0e-1
u u (log u)) 2 u (log )

Likewise, f( 3 ,u) is bounded above by

L i__P-Iu'l (log U)-<

1 5l1



(b) i -P log j )- n (log n) + O[n n l (log n) " a- ]

(c) Let ,> 1. Then

x (log x) dx -- <log u)( a-i

Proof. Claim (a,. Clearly,

f(aU) 1 -1 ) f (+l,,,u)
f( 8, = / u log u) - --

In particular,

(5.14) f(a,8,u < -- u - log u)

f-1 +, -

Using (5.114 ) with 0Y+1 in place of Cty

1 ',) 41, 1 0 a Q - '+l (o )-a -1iu u - logu) -+l(log u)-- •

Claim (b). Clearly, x - (log x) _ is monotone. So, the sum in (b)

is bounded between f(c, ,n) and f(a,O,n) + n' (log n)

Claim (c). This is clear.

Of course, the estimates in (5.13a-b) can be developed into asymptotic

series.

We now begin to investigate the probability density q defined by

(5.f). The following repeated integrals of the tail of q will be

useful.



(5.15) Lemma-. Define q(j) and b by (53. For x > 0, set

F(x) q(j)
it>x

(x) F (u) du
Jx

H (x) 1"G(u) du.

Then, as x -a ,o

(a) F~x) = bx-(log x)- + O( -(log x)-a1

(b) G(x)j bx l(log x)- + 0[X l(log x) -1

(c) H(x) -~(log x) + OE(log xc)-a

Proof. This is immediate from (.3.L

Note. Claims (b) and (c) follow from (a). In fact, theorem (5.9)

and the supporting results (5.7-2)0-23) hold provided the X's are

symmetric, interger-valued, aperiodic and satisfy (5.15a), namely,

P(lXI > x) = bx 2(log x)- + 0[x-2(log x)-a1

as x -Bo oo. It is the precise bound on the remainder, namely

ofx (log x) -- ], which enables us to push the calculations through. In

2
this generality, there is no connection between a and b, or a= Var X;

the latter is finite by our condition on P(OX( > x).
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Let (t) be the characteristic function of q. Since q is

symmetric,

, (5.16) (t) = cos (Jt )q QJ)

The next lemma gives an approximation for e. Recall that 2 is the

variance of q: namely, a- q(j).
j

(5.17) Lemma. Fix a > 1. As t tends to 0,

1 2 o

0(t) 1 - 2 -t + r(t)

where

tr(t) = t 2 (log T 7) + O[t (log )-aT

and b is defined in (5.3).

Proof. By symmetry, it is enough to do the case where t - 0 . Integrating

by parts three times gives

(5.18) 0(t) 1 - gt + r(t)

where

r(t) t 5  sin(tx) H(x) dx ,

and H is defined in (5.15). Clearly, P is convex and H(O) < 00

because QT < -. Now (5.7) shows that
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(5.19) t 2 1 0 r (t) < t 2(1o 1

2 0

with I o and I, defined as in (5.9). To approximate 1 , break the range of

integration into two zones [0,11] and [ 1 T,n]. For the first zone,

0  < H(x/t) sin x dx < H(o) x dx = I (o)t

For the second zone, use the apporoximation (5.15c) for H(x/t), along

with (5.12). Combining the two zones we have:

2b(og1-a+1 -a
10 - --(lo L) + 0[(1og L) •

The same estimate for I1  can be obtained by the same argument. Rubsti-

tuting into (5.19) completes the proof. Q

We will use lemma (5.17) in the following form:

(5.20) Lemma. Define q and b by (5.3). Let e(t) be the character-

istic function of q defined in (5.16). Let a2 be the variance of q.

Then, as t ->O,

exp( 1 a2 t 2 )e(t) = l+y(t)+p(t)

where

/(t) = t 2 (log 1)-a+l
a-1 7

and

55



P (t) = O [ t(log 71)-a

The next two facts are well known, but are recorded here for ease of

reference.

(5.21) LEmma. Let z. and z'. be complex numbers of absolute value

at most A. Then

z3 - j=l JI - Z j~ S An En z zj-z'

(5.22) Lemma. Let n be a positive integer, and z a complex number.

Then

1(l+Z)n 1 1 - nzl < n 2  •2 njz

We are now ready to give an approximation for the probability density

of S . We will abbreviate the normal density with mean 0 and variance
n

2aby cp:

cp (x) __- exp (- ) x /a ).

Also, we introduce the Hermite polynomial:

h (x) - (x/u) 2 -1

(5.23) Proposition. Fix a > 1. Lft XlX,... be independent with comon

distribution (5.3). Let S = X +... + X n . Then, as n -,

(5.23) n P(S n  ) a (j/' -n h (j +rjn
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where
2

=e Var X.

b / l g nal
En =-ab/ (log/)a- with b as in (5.3)

and
d = min(a,2a-2) > a-i

drn = O(log n) -  uniformly in j

Note. Similar techniques would give more terms in an Edgeworth-like

expansion.

Proof. Our argument is adapted from section 16.2 of Feller (1971). By

the Fourier inversion formula,

(5.2h) q)(x) = f exp(-itx) exp(- 2 ) at

Differentiate twice with respect to x:

1 r2exp(-itx) 12t2(5.25) h -(x)(x) exp(A dt
a. 2

Likewise,

= 1( exp (-itj) O(t) n dt

Changing variables,

(5,26) n P(Sf exp(-itj/-) ((t/'n) ndt
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Combining (5.24-"5-20), we have

r.j Vn P(S n j) (j//F + E nY ( //A)ho0.(j//T)

~j +Ji

where

j 1 exp(-itj/y n) v(t) dt

wi th

(5.27) vr(t (t,')n (li n t') exp(- - a t

and

J, ~.Je -itj//n) (1+E t2) exp( ~ t2) dt

Clearly,

ItI , n

so is negligible.

Likewise,

(52)1 2! 1 4ri t)ldt

5p



We split the interval of integration in (5.2t) into three sub-intervals:

Rl, the set of t with Itl < n/4

R2, the set of t with n/4 < Itl _ 5n I1/2

R , the set of t with bn1/2 < Itl < gnl/2•

We will choose 8 > () later.

Consider R3. The distribution q(j) of (5.5) is aperiodic, so

sup lt 8 1(t)l = 1 < . Of course

1nt* < (t/in) n + (1+ct 2 ) exp(- Io 2 t 2 ).

So the contribution from R3 to the integral in (5.28) is at most

n 2 1 22) dtk, n/ + jII> r(1Ent)exlp (-2
t t>8! >5

This is negligible.

Next consider R,,. Using (5.17), we may choose E > 0 so sreiall

that

1 2 2 1 2u2
-(u) <1 - u <exp(-W4au

for lul < b. This fixes the 5 defining H2 . In particular,

!e(t/") < exn(- 1 2t2 )

for all t in R,. As a result, the contribution from R2  to the

integral in (5.28) is negligible.
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We now show that the contribution from R, to the integral in

5.28) is O(log n) - a + O(log n - Let

f, (t) exp 0 j-;/n ) 0 (t/,' -) - 11n

Recall the definition of 4 n from (5.27). Clearly

(5.29) in(t) = ([l+n(tW]n - 1 - cnt") exp(- (T t 2 ).

Recall 7 and p from (5.20). As that result shows,

(5.30) Gn(t) = Y (t/-/n) + P(t//n)

Use (5.20) again: there are positive, finite constants Ki  such that

for all t in

(5.31) jn(t/vl)j < Klt 2 /(log n)a

and then

i(532) Inon (t)I <_ K t ?/(log n ) a - 1

so

(5.53) rnt < (t ot for all large n.

We are estimating

1R] 2 I*n(t)Idt

Using (5.29), (5. w)),and the triangle inequality, we have

lJ1 a b c

6o)



where

j ! lnp(t/f)( - 1 2t 2

a = 2( exp) dt

ex 1r 2t,2d

n) f En(t/y) nt 2 l exp(- 7 t
f1

We estimate J, using (5.31):

Ir < 1 (log n ) - a  5 t 2 I1x( 2t2) d

! Ja <-  T S ex( )d

= O(log n)-a

We estimate Jb' using (5.22):

l+ n(t)] n -1 - n~n_ (t) < n(t)L exp(Inn(t))

In view of (5. 2-2,), this bound is at most

1a )1 .
1~K (log n)2 t 4 exp( 1 -' t ).

So

S2 n) t exp(- 7o ) dt.Jb 
<-  K (log n) - a 1 2t

* O(log n 2a .

61



Finally, we estimate I This is mor delicate, and it is

'onvenient to treat two .,ones separately. Let

R b, the set of t witi 1 < iti < n I /.

R, be the set of t with ItI < 1

So R,= R U ii" Using the definition of in (t.20), and the

definition of kn in (5.3), the contribution of' J from R is

b

(5..-;4) 7 -
ailog 1/n)a-i

times

(1 log I!-a It d
(5- ,5- t- exp(- a -

R1  log " 1n

The integrand in (5. 5) can be estimated by (5.11c), because tj < nI / 4

1 +
This is '(log n)-I . Thus, the contribution to Jc from R1  is at

most O(log n)-a. likewise, the contribution to Jc from R1  is

the factor 5.514) times

iog+ i a - iI t' exp(- o. 't) dt
JR log -Wn

By '5.11b), this is at most

I1 III IIQI



a-i (log 1 t" exp(-i1 c, t' dt
log 

7t1

a-i (log 1 2 1 2t2) dt

(log f) i T

This too is 0(log n)- . Thus, the contribution to Jc from R is also

0 (log n )-a. ,

We are now in position to finish the proof of (5.4). The argument is

very similar to the pro f of theorcm (1.8) and we just indicate the changes.

Proof of (5.4). Tht bounds on the maximum deviation in zones IV, III, and

II, as given in (h.l), (. ), and 14.5) go through without change. The

estimates used in ,. V are valid as stated, except that (4 .10b) becomes:

p.P S = Ii)- n where
n Cr'i

15n ) (5' ,'(:n ba (log 'n)l-a + 0(log n)2 ,a)

uniformly in j - zone I; the Uj. )" is uniform in j and n. This

follows from (. . iide:d, since j is confined to zone I, j /n 0(5,

and

exp[-j /(2cr n) i= - [1 ,(," )] j' /(:&cr'n)

We must now multiply by

-a]



We get

- ~ ~ ~ ~ ~ o nL5a 4 g~ ) ~ T

where

b 2 2

c (i) *
LT n

because a > I; arid T can be mt rged into the lead term of -in.

Since a < 2,

d - min(a, 2a-)) 2a- ,

accounting for the error term O(log n)a in r.. Instead of

\4.1 c), we must estimate

M ,1. z 1 - o j-/(2a'n)

- 1 b g 1 -a
" -b (]ogln) l -  (log nY2 2

the higher powers of the lead term merging into the 0(5'), because for

c zone i,

J (T' n j o' n



Lemmas (4.16-17) go through as stated, with z (x) replaced by

zn(x,a). In (4.18 a), the bound on k p. is

-(I- [1+0(F2 + + 0(log n)2-2 a

2g a-i (log/n)l-a

In (4.18b), zn(x) should be replaced by Zn (x,a). There is no problem

with (4.18c). Remarkably enough, the bound on h 2/k.p. in (4.18d) goes

h 2 2
through unchanged, with =0, and some different b E)C (b ). it is

here that we use the condition a > 1.5, as well as the definition of'

the constant c in (5.4). In essence, h and k'.p. have the same

lead factor k// k , which ancels in h2 /kp, leaving the product
J

UVW, where

U = '>g n -c(log n) -a - 2 log log n + x

.2 1)2-2a

V = 1 l(S) b 1 + O(log n)
2& n a-i log /n/)a -

W = 1 + o(l/ilog n) .

The factor W can be ignored. In multiplying out UV, the term

- a 2a-1 b (log n)2-a
a- aog-

cancels thf term

6,,



°I
n2 - a

c (log n)a 1,

a-i
because c was chosen to be 2 b/(a-1). Furthermore,

2-2aU • (log n)2 o o(i1

because we imposed the condition a > 1.5, so 3-2a < U.

The remaining arguments used in (1.8) go through with only minor changes. C1

Finally, we indicate why theorem (1.8) continues to hold when the

third-moment condition (l.:) is replaced by the log-moment condition

(5.1). Let

F(x) - P(X 1  x) for x > C)

P(X 1 < x) Ior x < O.

By Chebychev's inequality,

(5.57) F(x) O[x(logx -] as x

Let

G(x) f F(u) du for x > 0
x

J F(u) du for x <

U.in (5.15),
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(5.38) G(x) = O[x-(logIx) as x -- +

Let

H(x) f G(u) du for x > 0

f G(u) du for x < 0

Using (5.15) again,

(5.59) H(x) O[(1ogIxI)- 1  as x . +

Now, if O(t) is the characteristic function of X and ± =E ),

we can argue as in (5.17) to show that

O(t) = 1 + ipt - 1)E() t2 + r(t)

where as t + 0,

r(t) = O[It,2(log T1T )-1 -6 1 .

Consequently, by an argument like the one used for (5.23) but

without the Hermite polynomial,

(5.40) 71n P(Sn=j) = (p[J-np) + O(log n)-  ,
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where u -- Var X The approximation !'.h, ) can be used in place of the

local central limit theorem ( .27) in proving (1.8). An approximation

similar to (5..'O) based on fractional momEnts (rather then log moments)

is given by Ibragimov (1C 36).
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