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THE DIFFERENCE EETWEEN THE EMPIRICAL HISTOGRAM AND THE
PROBABILITY HISTOGRAM FOR SUMS

By

Persi Diaconis, Stanford University
and
David Freedman, University of California, Berkeleyl

1. Introduction.

The central limit theorem is often used heuristically to justify the
approximation of histograms for data by the normal curve. This argument
can be made precise through the following model. There is some basic
random variable X. Take the sum of n independent coples of X, and
then take k independent copies of these sums. Provided X is well-
behaved, n is large, and k 1is large in relation to n, the histogram
for the sums will be close to the normal curve. In this way, the model
rigorously justifies the use of the normal curve to approximate the data.

In more detall, let Xl,xe,... be independent, identically distributed

random variables. Suppose the xi are integer<valued and have g.c.d. 1:

(1.1) g.c.d. (m: p(xi=m) >0} =1.
Suppose too
(1.2) El)cz’l <w.

Let Sn = xl tees + xn. Take k independent copies of Sn’ and let NJ
be the number of these sums which are equal to Jj: the notation hides the
dependence of NJ on n and k. Up to scaling, the counts NJ corres-

pond to the empirical histogram for the k sums. Of course,

Research partially supported by NSF Grant MCS-77-01665.
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(1.3) E(NJ,) = ka., vhere p; = P(s =j) .

Up to scaling, the numbers pJ correspond to the probability histogram for
the k sums. When n is large, the local central limit theorem implies
that the pJ. are uniformly close to an appropriately scaled normal curve.

In this paper, we study the random variable

(1.4) M, = maxy (NJ.-ka.) .

Up to scaling, this is the maximum difference between the empirical
histogram of the k sums and the probability histogram of the sum. This
random variable is the key to understanding the maximum difference between
the histogram and the normal curve, as will be shown in a future paper.

We suprose
(1.5) n -+« and k//n (log n)3 -,
Assumption (1.5) i1s discussed at the end of this section. Let
(1.6) w=E(X) ad o =VarX, .

In Freedman (1977) it is shown that if (1.1-1.6) hold, then

‘( k.
a.7) log n #1 in probability.
Mnk o’lann
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Our main object in this paper is to prove the following result, vwhich

sharpens (1.7).

(1.8) Theorem. Assume (1.1-1.6). With probability approaching one, Mnk

max, (Nj-kpj) is taken on at a unique index L ,. Moreover, I and

nk nk
%k are asymptotically independent, Lnk being asymptotically normal

and M ik being asymptotically double-expanential. To be more precise,

let
(1.9) o) = L fy exp(-L)au
21 - 2
(1.10) zn(x) = /m/;ﬁ .y logn-21og logn + x .

Then, the probabllity that

L ~0u < yo ¥2n/log n and My < zn(x)

converges to

ke
o(y) expl-ov2 e ° 1.

As usual, exp(x) = €.

This theorem is 1llustrated in table 1 and figure 1, which reports
three computer simulations. In all three, the basic random variable xl
took the six values 1 through 6 with equal probability 1/6. The table

shows the values chosen for n and k, the lower and upper quartiles for

3
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TABLE 1.

Computer simulation illustrating theorem (1.8).

-

lover quartile wupper quartile

observed value

3
n k k/lyn(log n)’] L My Ly, My L, M,
25 100 0.6 83 3.0 T PR 4.9 =1 2.5
50 500 1.2 169 6.2 18 9.5 185 8.3
100 | 10,000 10.2 341  2k4.9 ( 358 36.8 358 26.9
N
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FIGURE 1.

Computer simulation: the empirical histogram converges to the normal curve.

25 SUMMANDS, 100 REPETITIONS

AY |

P

60 70 80 0 100 110 120

SO SUMMANDS, SO0 REPETITIONS

140 150 180 170 180 180 200 210

100 SUMMANDS., 10000 REPETITIONS

300 320 340 360 380 400
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the asymptotic distributions of Lnk and M [k’ as computed from the
theorem, and the values observed in the simulation.

In the first line of table 1, the location Lnk is reported as
97: so NJ.-kp,j is largest when J = 97. From the figure, the mode of
the empirical histogram is at 82: so NJ. is largest when j =82. In
general, the location of the maximum deviation and the mode are very
different. Compare theorem (1.8) with Diaconis and Freedman (1978).

The figure shows the histograms themselves. The horizontal scale
shows J, but the three axes are arranged so that the means nu line
up, and the standard deviations oyYn cover the same physical distance.
The vertical scale shows (oy/n) X (Nj/k) x 100%: that is, N, is
converted to a percent (relative to k), and the histograms are rescaled
vertically by cr-fﬁ to have the same physical area. For a discussion
of this convention, see pp. 29 ff and 275 ff of Freedman, Pisagni, Purves
(1978). Thus, the maximum difference between the rescaled empirical

and theoretical histograms is

st

o
Mnk'

o

In the third line of table 1, for instance, that is about 5%.

In section 2, we argue heuristically that our problem can be reduced
to finding the location and size of the maximum of a sequence Z'j of
independent, normal variables having mean O, but variances 1l=- (32/20'2n)
as n + . This problem is solved in proposition (2.2). In section L,
we prove theorem (1.8). Section 3 gives some technical lemmas, including
bounds for the probebility of an intersection of events, and approximations

for binomial tail probabilities.
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In this paper and in Freedman (1977) the condition E[Xil < ® was
assumed, In fact lemmas (4.1) and (4.3) of this.paper replace lemma (15)

in Freedman (1977), and hence prove theorem (5) of that paper assuming only

E(li) < o0,

The main use of the third-moment assumption in this paper is to Justify
the bound on the error in the local central limit theorem in equatior (3.27).
In section 5, we construct an example to show that new limiting behavior
can occur when EIX?_ | = ». The argument involves Edgeworth-like
corrections to sums of random variables without third moments, and may be
of independent interest.

Concerning condition (1.5), if k>>4/nlogn but k = 0[yn (log n)5 1,
the form of the norming constants in equation (1.10) changes radically,
because the large deviations corrections in the normal spproximation to
the binomial distribution must be accounted for. This is worked out in
detail for the closely related problem of the mode of the histogram, in
ssction 4 of Diaconis and Freedman (1978). If k = O (/n log n), then
Freedman (1977) shows that the maximum deviation does not converge to zero

in probability.

2. A Heuristic Argument.

It is convenient to discuss the behavior of Nj-kp 3 separately for
four zones. The zomnes are described in terms of constants 5 and A,
where 5 1is small but positive, A 1is large but finite. For definite-

ness, we will assume O < & < 1/10. The zones are:
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(2.1a) zone I : |j-nul < &0 ym

(2.1b) zone II : Boy/n < |j-nu| < Aoy
(2.1¢) zone III: Aoyn < |j-np| < onj/u'
(2.14) zone IV : o-nB/M < lj-nul .

As will be shown below, zones II, IIT, and IV make no contribution to the

maximum. In z-one I, the NJ. -kpj are approximately independent and normal,

with mean O and

2
. . k 5 o
Var(N;-kp,) = kp, (1-p;) = kp, * [1- o)y

Thus, L, -ty and -/Uy’2ﬂn/k M should be distributed like the L and M_

of the following proposition.

(2.2) Proposition. Let UJ. be independent normal random varigbles,
with mean O and Va.r(UJ.) = l-jg/ 26°n , for |j| < 8oyn. Let

Mn = max Uj’ and let Ln be the index at which the maximm is achieved.

Then, as n tends to o, the probability that

L < yo+/2n/log n  and M </Iog n-2 log log n+x

converges to

ue
o(y)exp[-0y/2 e ] .

8




As in (1.9), ¢ 4is the standard normal distribution function.

Proof. For -0 < a<b<w let Iab be the set of j with
|j| < 8oyn and

acy2n/log n < j < boy2n/Iog n .

Thus, I&b is always finite. Let Ma,b be the max of Uj for j el

ab’
Clearly, if a<b<ec<d, then Mab and Mcd are independent.
Abbreviate
(2.3) wn(x) =yYlog n-2 log log n+x and 7 =092 .

We will show that

1
-=x
(2.1) P[Mab < wn(x)} -+ exp{-y[0(b)-¢(a)]e 2 } for ~=w<a<b<w .

(2.5) 1im supna’ ) P{M_ooa < wu(x)]
1
--2—x
< exp(-y @ (a)e ] for ~«<a<o0.

2.6 1i P( <w (x)}
(2.6) J.xnsupn->0o Mboo e

1
-=x
< exp{-y[1-0(b)]e 2} for D<b<ow.

Granting (2.4-6), the proposition can be derived by an elementary

argument as follows. First, (2.4) holds even for infinite a or b,

—




in view of (2.5-6). Now let Y

1
exponential random variables:

7, =70(y) and »,

9a,

and Y

2

be independent double-

7[1-0(y)]
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The function wn(~) defined by (2.3) 1
so is its inverse, w;l. Equation (2.4

-1 -1
of w_ M ) and W (Myoo) converges

~oy

distribution of Y, and Y,. Now P(Y;=x) = P(Y,=Y

2

7 .

8 continuous and strictly increasing;
) implies that the joint distribution

in distribution to the joint

(2.7) P(Ln < yo yY2n/log n and M < wn(x)]

=P{M_my<wn(x) and M__>M )

= P[w-l(M )<x and w
n =ocy’

*P{Yl <x and Y, > Y2}

L, 2 e 2
= 271 exp-7l

2
2

=ody’ Yoo

-1

n ) >t )

1
=z -=z

] expl -7 €

-1,
5

= o(y) %7e exp( -re laz .

The last displayed expression equals

o(y) exp(-ye 2

Thus, (2.4-6) imply (2.2).

10
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We turn now to the proof of (2.4). We will write vy for

2
Va.r(UJ.) = 1-j /202n. Fix an x, and abbreviate w = wn(x). In

essence, the proof of (2.4) is the following computation :

(2.8) log P(Mab < w) o= E log P[U'j < w}
‘ J€Iab

=y P(U; > w)
JEIa,b

L3 Z JV. /2R . %‘- exp{- %w2/vj],
jeIab J

by (3.15). The symbol = means "approximately equal" and is only used in f

‘ heuristic argument. For our purposes

(2.9) 7w INTOE R -

e

2
In the exponent, l/v'j 1+ /202n. So :

L] -2
(2.10) %wa/vj = % log n - loglogn + %x + %— J /(202n/log n) .
1 ;
- =X :
g R 2 »
; Thus, log P(M b < w) is approximately 42 o e times 1
\ i
‘ L
1l .2 2
(2.11) -1 1 ) expl- 5 J /(26°n/1log n)} .

yan 4202n/log n JeI&v.b

This last is a Riemann sum for

i

o) - ¢(a) .

b
2 j exp (-~ %— u2) du
Vex a

11
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We now indicate the details required to justify (2.8).

and "o" error terms are uniform over Jje€I .. Note that a and b

ab

are finite, 8o ,je/n =0 (1/log n). In (2.9), then, the ratio of

the two sides converges to one as n »«, uniformly over JjeI

(2.10),

0(10g n) * o(3°/b)

ofl) .

So the difference between the two sides of (2.10) is

2 202n 2 20 n

2 .2
L’ e - L10gn. L+ 0(1)

2
%— (wg_ log n) —*1-2—- +0(1)
20 n

o(1) .

X

A ] ol

Thus, the ratio of P(UJ >w) to Y20 e times the

(2.11) goes to one as n goes to unfinity, uniformly over Jel e As

12

0(log log n) * 0(1/log n) + o(1)

Al

j=th term in

b

ab’

"ol'

In

_
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a result,

(2.12) P(Uj >w) =0(1)
and
-1y
(2.13) )X PU.>w)>/Zoe ° [0(b)-0(a)l .
jeIab J

Now (2.12-13) imply that

N log P(U, < W) = L

[P(U, > w)+o(P(U, >w))]
JeI jeIab J J

also converges to the right side of (2.13).
This completes the proof of (2.4). The proof of {2.5) is very

similar. In place of (2.9), we use the estimate

-/E/w <1l/w.
To modify (2.10), we use the fact that
vy 21+ 57 /26°n
so

.2

-]2='w2/vj Z%log n - log log n + %x +%W2 J /20'2n5

and } P(U; > w) 1s bounded sbove, to within o(1), by

JEI-ooa
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2

times w2 log n times

Y20 e

1
J/2n 20°n JeI

9

-0 8

Fow wo log n 1, and the last display is at most

o(a) + o(1)

= 1 exp( - % v232/20-2n] .

because the normal density is monotone increasing on (=<,0). The o(l)

corresponds to the term in J at the edge of I_wa

our discussion of (2.5), and (2.6) is symmetric. DO

This completes
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3 Probability Approximations.

The random variables NJ. introduced in section 1 have a joint
multinomial distribution. We will approximate this distribution by
getting upper and lower bounds in terms of independent binomial random
variables. The binomial variables are then approximated by an appro-
priate normal distribution. This section contains the basic bounds

and approximations. The main results are (3.2), (3.16), and (3.17).

The first lemma is an upper bound for multinomial probabilities due
to Mallows {1968),

(3.1) Lemma. Let Ml’Mz""’MJ have a joint multinomial distribution.

Then, for any real numbers a.l,ao,...,a.J s

. J
< for 1 < j<J)< M. <a.).
P(Mj_aj <Jj<d)< szl P(J_aJ

The second lemma will be used to get a lower bound for multinomial
probabilities.

(3.2) Proposition. Let (2,3,P) be a probability triple, and let %O c Zflc veo

J
and 13 be nonnegative numbers. Suppose P(Gj) Zl-ej and

be sub-g-fields of §. Let A, and G, be events in B Let A, Ay,

*
xjgp(Ajlisd_l)ng on Gy, -

1k




Then P(n :-11=1 A;) 18 bounded between

J-1
J=O GJ L]

J J=1 J *
Mia - Ly ¢y ama Ty, )+

Proof. Inductionon J. O

Let N be binomial with marameters k and p, where O <p<l.
The next set of results give approximations for the distribution of N which
are uniform as k and p vary over a wide range. Readers may be surprised
to find us proving versions of the central 1limit theorem for coin-tossing,
at this late date. However, we need bounds which are uniform as p gets
small; to stay in the realm of the central limit theorem, we will require

kp to be large. Our results inwvolve the function
(3.3) glx) = (1+x) log(l+x) = x for -1<x<ow.,

The function g is strictly convex, strictly decreasing on (-1,0),

strictly increasing on (0,»). It satisfies

(5.4) gx) = 3°

+ o(x5) as x >0,
More precisely,

(3.5) %xe/lﬂfx(g(x) <%x2 for x>0,

with the inequalities reversed for x < O. The function g(x) i1s closely

15
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connected to a function which arises in the theory of large deviations
theory. See, for example, pp. 100-101 of Kolchin, Sevastyanov, and
Chistyakov (1978).

We begin with a special case of theorem (4b) in Freedman (1973),

restated here for ease of reference,

(3.6) Lemma. Let wu > O. Then

P(N > kp(1+u)} < exp{-g(u)kp} .
Combining (3.5) and (3.6) gives a version of Bernstein's inequality:

(3.7) P(N > kptm} < exp{-%m2/(kp+m)) for m >0 . 1

Parenthetically, theorem (4a) in Freedman (1973) implies
1 2
(3.8) P{N < kp-m} < exp[-Em /kp} for m>0 .

The next result is a variation on lemma (7) of Freedman (1977), and

is proved the same way. (The condition b > 1/6 in that lemma is super-

fluous. )

(3.9) Lemma. Fix ¢ > 0. There is a positive 8 such that the ratio

P(N = a+b)/P(N=a) 1is bounded between (1+€) times

1l
2 - b
(%)% expl-g(Ral (5287

16
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for all integers a, b and k satisfying

a>1/6, a+tb>1/6, k>1/5, atb<sk, |b]<Byk-a .

The next result gives a bound for binomial probabilities P(N=v)
in terms of the function g. Informally: for small values of p,
large values of kp, and v's not too far from kp, P(N=v) is

asymptotic to

—— exp{-gl (v-kp)/kplkp} .
y2nkp

This is a combination local central limit — large deviation result,

holding uniformly in small p.

(3.10) lemma. Fix € > O. There is a positive & that P(N=v)

is bounded between

(Lte)

exp( -g[ (v-kp)/kp)kp)
¥2kp

for a1l k, p and vy satisfying

p<s, kp>1/s, |v-kp| <Bkp, |v-kp| <8&./K.

Proof. First, suppose v 1is the integer part of kp, 8o v = kp=8
with 0 <6 <1. Adbreviate p = 1-p, 80 k-v = kp+6. By Stirling's

formula, P(N=v) is asymptotic to

17
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~kp+6 ~kp-6
(1 - g) a+-2)
kp

The first expression is asymptotic to 1/,/2tfkp. The second is asymptotic
to

-kp -kp
1-2) a+2 .
P Xp

By taking logs and expanding, the last 1s seen to be nearly 1. Thus,
(3.11) P(N=(kp]) ® 1/y2rkp .

More explicitly, the ratio of the two sides of (3.11) converges to 1

as 5 >0, uniformly in k and p satisfying our conditions, namely,

p<5% and kp > 1/5.

We now apply (3.9), with a = [kp] and b = v-a to see
(3.12) P(N=v)/P(N=[kp]) » exp(-g(b/a)a] .

First, as easily verified, the conditions of (3.9) hold. Second,

1

(3.13) (a-%exl ;

indeed & = kp + 0(1) and b = y=kp+0(1) is small relative to kp,
by assumption. (The "O(1)" terms are bounded as & >0, uniformly in

k, p and v satisfylng our conditions.) Likewise,

18
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b
(3.14) [gﬁgl 81

indeed, this expression is
b b
L+2y/a--2)
kp kp

and b = v-a = v-kp+tO(1) is small relative to kp and to kp. This
completes the proof of (3.12).

Recall that a = [kp] and b = v-a. The final step in proving

(3.10) is to show that
vk - b
ls(——zkp Jep-g (3)a]
is uniformly small. This tedious piece of calculus is omitted. gy

We now recall a bound on the tail probabilities of a normal

random variable:

(3.15) Suppose U is a nomal random variable with mean 0 and

variance 1, let w > 0. Then P{U > w} is bounded between

1 1 1l 2 1 1 1 2
- — exp(- 5 w ) and —= ;exp(-gw ) .
,/21t w+ = ,/21(
The following result is a generalization, as one sees by taking
1.2
f(x) = 5x .

19
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(3.16) Proposition., (a) Let f be convex,and suppose f(w) = w. Then

® 1
[ eml-e o < gy expl-reo) -

(b) Suppose 1/f' 1is convex. Then

® 1
expl-f(u)] du > z exp[-f(x)] .
fx R (x) + % .

i

Proof. Claim (a)., Let F = exp(~f). Then F(x) =0 and F' = -f'F.

Now f' is monotone 8o

00

' (x) J " F(u) du Sj =F' (u) du
x x

F(x) .

Claim (b). ILet F = (1/f') exp(-f). Then F(x) =0 and

vt
]

-(1 +;—2) exp(-f). So

£ (x

(1 +
£ (x)°

] jxm F(u) du > ]xoo Fr(u) au = Fx) . Q

Note., If f is convex and f' is concave, then 1/f' is convex. This
is the case for our function g. The concept of complete monoto-

nicity is relevant here: see section XIII.4 of Feller {1971).

The next lemma extends corollary (8) of Freedman (1977). It provides a

bound for binomial tail probabilities, in terms of g, analogous to (3.15).

(3.17) Proposition. Fix € > 0. There is a 5 > 0 such that
P(N > kp+m) is bounded between

2° |




a+ e)‘/—l_: ‘@ exp( -g (m/kp )kp]
2n

for all k, p and m satisfying

p < &, kp>l/8, 4kp/ 5 < m < 5kp, m< B4k .

Proof. We break the tail probability up into two parts:

P{N > kpim} = P *P, ,

where

P = P{kptm < N < kp+2m} and P, = P(N > kp+om) .

‘ Later, we will show that P2 is negligible, but that

(3.18) Py “Ef_ @ exp[ -g (m/kp Jkp] .
T

First, some preliminaries. To simplify the notation, let

; G(u) = exp[-g(u/kp)kp] .

Clearly,

(3.19) L G(m) is small relative to —_-l_ (-152 G(m) ,
2nkp NETS

because m is small relative to kp, by assumption.
of (3.5)

Likewise, in view

21




(3.20) G(2m) is small relative to -

1/_7

G(m) ,

kp
m

EY

because m 1is small relative to kp, but large relative to +kp .

i
!
! Next, we claim

(3.21) v G(i) 1is bounded above by (1+e ) R g(m) .
bi=m+l €l -

Indeed, G 1is monotone decreasing, so

w . © _ 1
Zi=m+l GH) < jm G(u) du < m G(m)

by (3.16). But

; ' _m = { _m z_m
5 g (kp) log\l+kp) i

because m 1is small relative to kp, by assumption. This proves

(3.21).
: We are now ready to prove part of (3.18), by estimating P, from
above. Let v range from [(kp]+m+l to [kpl+m, so P, = Ev P(N=v).
f As (5.10) implies, P, is bounded above by
(3.22) (+ey) === L = G(vkp) .

v 2enkp

Because G 1s decreasing, the expression (3.22) is bounded above by

22

e



.
|
i
i

—L 52l ogq).

v2nkp i=m

In view of (3.19) and (3.21),

(3.23) Py is bounded above by

(1+€5) «/Ti 2 exp{ -g (m/kp )kp} .

We are now ready to prove the rest of (3.18), by estimating E,

from below. Indeed, as (3.10) implies P, is bounded below by (1-‘eh)

2
times
(3.24) 1 L, ¢v-kp) > —L §2®  gH).
J21kp 2nkp i=m+l
The right side of (3.24) is Tl-T2-T5, where:
T L v e@)

1 +/27kp i=m

1
> J G(u) du
J/2nkp Jm

= % 6w) vy (.26)
k14

, - cm) = o cm)] by (5.19)

2

Varkp

23




T, Lo¢= G(i)
Yarkp  i=2m+l

< (ve) =2 B2 Glom) by (.21

1 /-2? 2m
=o[1§2 Gm)] vy (5.20),

on recollecting that ¢/kp/m is small by assumption. This completes the
proof of (3.18).
Our last job is to show that Pé is negligible by comparison with

Pl' But

P, = P(N > kp+2m) < G(2m)
by (3.6); now (3.18) and (3.20) can be used to complete the argument. O
(3.25) Remark. Under the conditions of (3.17), P(N < kp-m) can be
bounded by the same expression. The argument is almost identical,
because (3.10) is symmetric around kp. The only difference comes at

the end:

P, = P(N < kp-2m) < exp(-eme/kp) by (3.8)

< c(2m) by (3.5) .

2k

A




Many of our arguments use the local central limit theorem. We state

two versions for ease of reference. For the first version, assuming only

a finite second moment, see page 517 of Feller (1971). For the second

version, assuming a finite third moment, see page 197 of Petrov (1975).

(3.26) Suppose (1.1), and E(xi) < w, and (1.6). Then uniformly in j,

1

o Y2%n

P(s,=) = expl- 3 (3-n0)/o /7 1) +0(L//E)

(3.27) Suppose (1.1), (1.2), and (1.6). Then uniformly in j

L

0 4/2%n

P(S,=3) = exp[-%[(:j-nu)/cr’ﬁlzl +0(1/n)
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4, Proof of theorem (1.8).

The first step in the proof is to show that, with probability
approaching one, the maximum does not occur in zones II, III, or IV
as defined in (2.1). This part of the argument does not require
third moments nor the full force of (1.5). Thus, for lemmas (4.1), (4.3),

and (4.5), we assume (1.1)=(1.6) with (1.2) replaced by E(x21) <oand (1.5)

-~ Ny

replaced by n %« and k/fﬁ log n »~, We begin with zone IV.

(4.1) Lemma. Let y be any positive number. Let Ml+ be the maximum
of NJ.-kpj over zone IV, namely the set of Jj's satisfying Ij-nul >cm5/u.
Let 6, be the probability that M, > y(k log n)l/z/nl/“. Then

Gnk-OO as n +*ow,

Proof. To begin with, enk is bounded by the sum over j in zone IV of

P[N._j-kp'j > y(k log n)l/e/nl/h] .

By Chebychev's inequality, the last displayed probability is at most

y-2 nl/epj/log n.

Summing over J in zone IV shows
0 < (Y-in/’(?/log n) - P([Sn-np[ > cnj/h) .

Using Chebyshev's inequality again,




e

P(fSn-ngI > cm3/h) < tz"l/2 .

So

-2
64 <Y /logn. QO

We turn now to zone III. Tt will be convenient to abbreviate

k
(4.2) m = logn .
o72nn :

T™is m appears in (1.7) and is

connection with the variable m

(4.3) Lemma. Let 0 < A < .

over j in zone III, namely the

the leading term in (1.10); it will have some

in section 3.

Let MA be the maximum of I‘I'j-kpJ

set S, of j with a2 < | 3ony <or?’*,

Fix any € with 0 < € < 1. Then there is an A = A(€) so large that

P(MA >

as n and k tend to infinity,

(L=e)m} -0

satisfying the growth condition kAR log n > w.

Proof. let ¢ satisfy 0<6 < ﬂ:(l-e)z. Recall that Py = P(Sn=;j).

In view of the local central limit theorem (3.26), there is an A4 >0

and a finite n, such that Py < 6/cf2rn for all Jj in S, provided

n>n. From inequality (3.7),

(4. 4)

2
P(Ny > kp,+(1-€)m} < exp[-% (1-¢)° ,q,jf——(—l-:a;] .
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We must now bound m2/[kpj+(l-€)m] from below. The choice of
A forces ka. < k8/cy/27n. The growth condition on n and k forces

(1-¢)m < k6/cy/2mn  eventually. Then,

2 m2 log n

m
> =
= 2 28
kp,+(1-€)m 2k6 b 4/2n

and the right side of (4.4) is smaller than 1/n. Finally,

P[MA > (1-€¢)m} is bounded sbove by the sum over jes, of

P[N‘j > kpj+(l-e)m] .

3/b

This sum comprises at most 2on terms, each bounded by l/n. This

proves (L.3). G

We turn now to zone II.

(4te5) Lemma. Fix A > 8 >0, Let M, be the maximum of NJ.-kp;.| for
J in zone II, namely the set S, of j with &oyn < |3-nu| < Aov/m.

Let m be defined by (4.2). Then, for € >0 sufficiently small,

P(ME > (l-e)m) 20
as n and k tend to infinity satisfying the growth condition k//m log n = o.
Proof. In view of the local central limit theorem (3.26), there is a

bl>0 and a finite n such that for n>n1,

28
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(4.6) Py < (1-51)/c,/“"2un for all j satisfying |j-np| > 8oy/n .

Choose ¢ positive with (1-¢)°/(1-6,) >1. Inequalities (5.7) and

(4.6) imply, after some algebra:

1 1 n
4.7) P[NJ > kp, + (1-e)m) < exp(-7 B I%:]

vhere B = (1-6)2/(1-51) >1 by our choice of €, and

1 1l 1 1l 1
l-c

oy = 1%, o2 (en )b- nE(log n)2/k2 >0

by the growth condition on n and k.

Choose B' with 1 < B' < B, TFor large n, the right side of (4.7)

is at most n-B'/2. Sum (4.7) over j in oY comprising at most

2/0y/n  temrms, to see that

29
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P{M2 > (1-€)m) < 2A04/m n-ﬁ'/2 -0.03

We now proceed to zone I. Fix & with 0 <8 < 1/10. For

~-o<a<b<w let I, be the set of j with |j-np| < s04/n

ab
and
(+.8) a0 +/2n/log n < j=nu < bo ¢/2n/log n .

These intervals are all finite and nonrandom; I_moo corresponds to all

of zone I. Let

W . be the max of N -kp_. for jin I .
ab J p,] J ab

To state the main result concerning zone I, recall zn(x) from

(1,10). As in (1.9), 1let @ be the standard normal distribution
function. We will now need finite third moments and the growth

condition (1.5).

(4.9) Proposition. Assume (1.1)-(1.6). Let «x<a<b<c<d<w. Then
P(Wa'b Sz (x) and We <z ()]

converges to exp(-c /2 Q}, where

1 1

Yy
Q- (o(v)-0(a)le 2 + [o(@)-0(c)le 2 .

30



The proof of (4.9) is a bit complicated. Here are some preliminary

estimates.

(4.10) Lemma. The bounds given below apply uniformly to J € I_.°

' and the "o' errors are uniformin jeI__ & n o
(a) (J-nu)g/cren < 8% < 1/100.

(v) p:j is bounded between

2
- % (11eg) ﬁ%&][l + 0(1'6%71)]
on

o -/2ﬂn

1.2
wherea.b=§6 .

2
©) 1/{1-% (1+a ) L9055 pounded between
2 1% 2.
1 +% (1+0.) Q_'I_‘P_)E
z 12%) ~ 5

vhere b. is a function of & only and b =o(52) as

e} o)

8 *O.

——— gy v ——

Note., The notation in (b), although not standard, is convenient for our
!

purposes and will be used throughout. To spell (b) out, there is a

sequence € >0 with h log n >0, such that for all n, and all

J in I_m o’ the probability pJ. is bounded above by

2
L (2 - fa-a) Wl (ee))
on

o -/2ﬂn

31
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I R A=

Y T ” L > .
and below by ‘
5 |
: |
L (1 -2ve) W) ).
2 ) 2
o ./2nn on -

Proof. Part (a) is trivial, and then (b) follows from the local central

limit theorem (3.26), using the estimate

lex < e X <1lx + %xe .
Here, x = (j-np)2/20'2n < -Jé- 62, 850

x-L = (1-%x)x> (1-111-62) X .

v

Part (¢) follows from the identity

=
l-x l-x

The probability in (4.9) will now be estimated from above and below.

an upper bound derives from Mallows'inequality given in (3.1):

(4.11) The probability that Wy < zn(x) and W, < zn<y) is at most

T .
gerg M) Ty 20)

where

xj(x) = P[NJ. Skpj+zn(x)] .

32




The rest of the upper-bounding is very similar to the lower-bounding,

8o details are omitted.

The lower bound will be derived fram lemma (3.2)., In that lemma

take

>
i

N. < kp.
{ 5 < pJ+zn(x)] for j e I

it

(4.12)

N, < kp.+ .
{ j < kg z (y)} for j e I.4

To define Gj’ let

i
. (4.138) K, De the set of i with mubWA <1<,
’
|
! (4.13v) g = D.
3 3 zieK .
4.13¢ G, = { N >kg.-M
i ( : J zieK 178 b
: where
i
‘ 1
(4.134) M= (k log n)° .
1

Since I__ . includes at most 280n° indices, (4.10b) shows
(4.14) g,<0.8 forall jeI » for all large n .
J - o0

Lemma (3.2) also involves o-fields i}J, defined as follows:

33
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(k.15) ifj is the o-field spanned by the N, as i ranges over K.j'

To apply lemma (3.2), we must estimate P(Gj Je

(416) Lemma. Define Gj by (4.13). Then the sum of l-P(GJ.)

over all j e I__ _tends to O asn and k tend to infinity satisfying (1.5).

Proof. Clearly, Z Ni is binomial: the number of trials is Kk,
ieK
J

and the success probability is g5 From (3.8),
L
1-P(G;) < exp(- 5 /kgj] .

Replace g5 by the upper bound (4.14): eventually,

1-P(c,) < exp(- 2 /ks) = a1/ ¢ 55

1
. . 2
for all j e€I___ . But I  only comprises 0(n°) temms. O

We are now ready to establish the basic lower bound.
(+.17) Lemma. Define g; and M by (4.13), and zn(x) by (1.10).
Let N"j be binomial, with success probability p:). = pj/(l-g ;1-1) and
the number of trials k,'j’ the integer part of k(l-gj_l) +M. Let

xj(x) = P{N'} < kpj+zn(x)] .

Then P[wa.b < zn(x) and W, < z,(y)} 1is bounded below by

34




AL (x) « T ) - X
J Jelq 9 eI

=000

HJ‘Iab [l-P(GJ)] .

Proof. Given %j-l’ as defined in (4.15), the conditional distribution
of Nj is still binomial; the conditional success probablility is pS’
as defined above; the number of trials Tj is an ﬁj_l-measurable random

variagble:

On G.

1
5-1° however, Tj < kj. So

PN, < kpj+-zn(x)|§j_l] >A;(x) on Gy ¢
heuristically, the more you toss the coin, the more heads you get.

Lemmg (3.2) completes the proof. 32

We must now estimate xj. Here are some preliminaries.

(4,.18) Lemma. Define kj as in (4.17). So,

)v. LAX = P{N' < k'. '. + h
where

h =z (x)+kp.-k'p. .
n(x) P - kD,

The bounds and error terms given below are uniform over jeI_m ; the
oo

"0" and "o" are as k and n approach infinity, satisfying condition
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(1.5) that k//m (log n)f -~ o .

(a) k‘;p:j is bounded between

k

o y21n

(1-5 (ag) W0 4oL
an

log n
with 3, of (L.10b).

() b -z Go[1+om™ M)

) v = o)’

(@) hg/k"jps is bounded between

2

log n-2 log log n+x+i (1+2b.) {J-ny) + 0(1)
7 \“If% /) 5

o n/log n

with the 'b6 of (4.10¢c).

(e) Recall the definition of g(x) at (3.3).

Then g(h/k:j.p&. )k5p5. is bounded between

%log n-1log log n+%x+l']r' (1+2p ) —2<-J—_&Q—-+ o(1) .
o n/log n
Proof. Part (a). From the definitions of p3 and ks given in (4.17),
1 M-¢
L1 k'p' = kp.[1 +
(k.19) 5P PJ[ W] ’

where O <9 < 1. By (4.13d) and condition (1.5), (M-8)/k = 0(1/log n);

and g; <% eventually, by (4.14). Then (4.10Db) completes the argument
for part (a).
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Part gb}. Recsll h as defined in the statement of the lemma.

Continuing from (L4.19),

D,
h (M-8 J -1/4
-1-- —J oMt
zani z, (x l-gJ._l
as in (a), using the definition (1.10) of zn(x).
Part (c). This is immediate from (a), (b), and condition (1.5).
This is the first time that the full force of (1.5) has been used.
Part (d). Using (a), (b), and (4.10c), he/képé is bounded

between

] 22
(log n=-2 log log n+x)[l + ]2; (l_‘tbg) -g ][l + O(l__ol —n)] .
on g

Of course, (2 log log n-x)/log n < b. eventually, proving (d).

o)
Part (e). This follows from (c¢) and (d), by using inequality (3.k4).

The proof of proposition (4.9). We pick up the argument from (L.17).

The problem is to put a lower bound on I,

jer Kj(x), the other factor

ab
being similar. Defining h as in (4.18),

1k, (x) P(N;. > kp; + z (x))

1

N. > k'p' +h) .
PNy > kip;

Fix an € > O. Then proposition (3.17) implies that eventually, for all

X1

JeI__ lA-Aj(x) is bounded between
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(h.20) (1) (k:jpé/zn)l/ - %exp[-g(h/k3p3)k3p3] .

"Eventually" means for all k and n, with n and kA/n log n

sufficiently large.

We pause to verify the conditions of the lemma being appealed to:

p; = pj/ (1-gj_1') is small by (4.10b) and (4.1k); k:].pé is large by
(4.18d); hg/k:].p:]. is large by (4.18d); h/k;_p'; is small by (4.18¢);

L‘ and h/kl/2 is small by (4.18b). Thus, the bound (4.20) is established.
The exponent in (4.20) was estimated in (4.18e); the factor kgpé

in (4.18a); and the factor h in (4.18b). We conclude that eventually,

for all j in I__ , 1 -hj(x) is bounded between
| (lie)(lips)c'/§ e-x/E

L enpl- £y Yl

ver fgcgn/log n g n/log n

where c_, 1is a function of & only and c =o(52) as & = 0.

5 %
Arguing as in proposition (2.2), we get a lower bound for the

probability in (4.9), of the form (1-5e)(1-d5)exp(-06), where

o, = o2 e X/2 [0(£,0) =0 (z,a)]

v oy3 eV [0(£,a) - o(£.c)]

e

2
) and f_ = 1+(8"). It is at this point that the uniformity

with dy - 0% 5

in j was critical.




An upper bound of similar form can be obtained by essentially the
same argument, starting from (4.11) instead of (4.17). Then the proof
can be completed as in (2.2).

Our last main job in vroving (1.8) is showing that ma.x(NJ.-kpj) is
assumed at a unique index j, with probability approaching one as n and
k/yn (log n)5 tend to «. The following heuristic discussion may make
the argument easier to follows Inspection of (1.8) suggests that the
maximum is likely to occur only for Jj's within O(n/log n)l/2 of np.

Call these the critical j's.
1/2
(4.21) There are 0O(n/log n) critical j's.

Recall m from (4.2). The range of likely values for the maximum is

from

B - = igglii = - 102 n)l/2 =md - 221§§20;1Ln T2 123 )
to

m(1 - &loglogn . b )1/2 @ - - loglogn , _ b y .

log n log n 2 logn 2logn

Call these the critical values. In what follows we write a, ~ bn if
lima /b >0 and Iima /b < w.
1

(k.2.) There are the order of m/log n ~k“ n J (log n)
critical values for the maximum.

av] | o)
O

Each of these critical values for the maximum corresponds to some value

i for an NJ. of around




-

14

kp. +m(l - 2lloglog n)l/2
J og n

s}
= kpj + (kpj )l/2 {log n -2 loglog n)l/" .

Now NJ.-ka. is essentially normal with mean O and variance ka. ~ k/yn,

SO

(i-kpa. 5

Y2k ¢ kpy

~ k" n exp[-5 logn +loglog n]

Furthermore, the NJ. are nearly independent. The chance that the
maximum occurs at two different indices is bounded by the sum, over

the critical j, j', 1 and i' satisfying
b,23 i-kp, = it=kp.
(La23) i-kp; = if-kp,,

of _J__
P(N;=5 and Ny, -1') ~ k0 2 (log n)? .

The number of critical i's was estimated in (4.22): to each, there

corresponds at most one i' by (4.23), "at most” because i' has to

Lo




be an integer. The number of pairs J, j' is 0(n/log n) by (4.21).

So the chance that the maximum occurs at two different indices is of order

n(log n)-l . k1/2n-1/1+ ( -1/2 k-1n-1/2 (log n)e

log n)

e VRV /2

(log n)

This last quantity tends to zero because of the growth gondition (1.5).

Returning to rigorous argument, recall zn(x) defined in (1.10)

and Iab defined by (4.8). The main estimate is the following.

(4.24) Lemma. Assume (1.1)-(1.6). Fix positive finite numbers a and
b. Then, uniformly over pairs of indices j # j' in I , and pairs
-aa

of integers i, i' satisfying

(4.25) zn(-b) < i-kpj = i'-kpj, < zn(b)

we have

(h.26) P(Nj==i) = O(k-l/2n°l/h log n)

and

(4.27) P(N,, =1 INJ.=1) = O(k-l/gn-l/h log n) .

Proof. The first assertion (4.26) follows from lemma (3.10), the

requisite estimates for P, being given by (4.10). To make this

L1




valid, the conditions of (3.10) must be verified. Then, one argues
. g 2
from (4.25) and (1.5) that (1-ka. )Y = o(ka.) s SO

gl (-kp,)/kp;] kpy = 5 (1-kpy)/kpy +o(1) .

But, using (4.22) again,

(i-kp,)° = —%— [log n-2 loglog n+0(1)] .
J o4/2ntn
And by (4.10),
g kp, = —— [1+0(=2—)] .

J o /20 log n

! So

gl (i-kpj )/kpj] kp. = % log n=-loglogn + O(1) .

J
We omit the other details in the proof of (4.26).

For the second assertion (4.27), given Nj =i, the conditional
i ' distribution of NJ., is binomial with success probability
P - pj'/(l-pj) and number of trials &k = k-i. Some preliminary
estimates are needed before appealing to lemma (3.10)., ALl "O"
and "o" estimates are uniform over j £ j' in I-a.a and i,i’
satisfying (4.25), as n and kA/n (log n)3 tend to infinity.
We will show that

Lo




(4.28) kp = kp, [1+ o(1/10g )]
(4.29) (11 -£2)2/kp = log n-2 log log n+0(1) .

Assume these bounds for the moment. Another application of lemma (3.10) shows that

P(NJ'=i'|NJ=i) is of order

K2 expl-5 @ AP)P/EDT . i

Now use (4.28) and (4.29) as before to complete the proof.

We now prove (4.28) and (4.29). ILet

AA i
e = kp - kpy, = (kpj-l)pj,/(l-pj) .

tbbreviate h = i'-kpj, = i-kpj. Then (b) of Lemma (4.10) implies
6/h = -%,/ (1~-p j) = 0(1//n). Condition (4.25) makes h of order
1/2n-1/2 1/2 k1/2!1-3/1; (Log n)1/2). Finall

k (log n)'“, and then 6 = O
kpj, is of order k//m, again by (b) of lemma (4.10). To summarize:

-1/2

l/2
/)kpjva“’okn .

%.30) o = olk2nD ™ 20g n)2], 1 5 k20" * (10g n)

Now we can prove (4.28):

kp = kpj, +6

1/2n-5/u 1/2]

(log n)

ka., +0(k

ka., {lm[k-l/;)n-l/h (log n)l/2 ))

= kpy, [1+0(1/20g n)] .

L3
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"Eventually" means for sufficiently large values of n and k/nl/ 2 (log n)5.
Indeed, for any b, except for probability less than ¢/5, the maximum
over zone IV is eventually smaller than zn(-b) by (4.1). Likewise for
zone III by (4.3),and zone II by (4.5). As a matter of notation, zone I

is I__ and can be dealt with by (4.9)s There are a and b so large

ah ,
To prove (4.29), note that i'-kp = h-6. Now

A
(10 L5128 - mP-2en+e®)/RD < n°/RB + 0(1) -

From (4.25) !

h2 S [log n~2 loglogn+0(1)] .

o 4/2m

In view of (4.10),

k

AA
kp = p—
o y2mn

(1 +0(1/10g n)] .

5 AA
h“/kp = log n-2 log logn+0(1) «
We can now prove the uniqueness assertion in (1.8).
(4.31) Propositiou. Assume (1.1-1-6). Then max (Nj-kpj) is assumed
at a unique index Jj, with probability approaching one.
Proof. We first establish:

(4.32) Given ¢ > 0, there are large, finite numbers a and b, such
that 2ventually, except for probability e, max (Nj-kpj) is

assumed only for indices in I-a.a’ and is between zn(-b) and zn(b).

that eventually, except for probability ¢/5,
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zn(-b) < ma.x{NJ.-ka. for j in I_mm] < zn(b) .

Finally, choose a so large that eventually, except for probability e/s,
NJ.-ka. < zn(-b) for all j € I__ oO\I_aa‘. This completes the proof of (k.32).

The next two e.timates are easily checked.
(4.33) The number of pairs (j,j') with j' # j in I an is 0(n/log n).

(4.354) The number of integers i with zn(~b) < i-ka. <zn(b) is at

most

1/2n-1/h -1/2J _

zn(b)-zn(-b) = 0k (log n)

Now, lemma (4.24) and relations (4.32-34) enable us to estimate

the chance of finding two distinct indices j'#J in I~ with

N.-kp, = N.,~kp., in the critical range from z_(-b) to z_(b). Take
J 73 J J n n

the number of pairs j # j' in I-a.a’ and multiply by the number of

integers i with i-ka. in the critical range. Each 1 1is a possible
value for NJ., and associated with it is at most one possible value i!
for er satisfying i-kpj = i'-kpj,. Then, we multiply by
P(N,=1) - P(Nj'=i'|Nj=i). The result is o[k 20" (1og n)Y/2] >0. o

The proof of theorem (1.8) can now be given.
Proof of theorem (1.8)., As proposition (4.31) implies, L is assumed
at a unique location L, with probability approaching one. Lemmas (».1),

(4.3), and (4.5) imply that with probability approaching one, Lok is in
zone I. Now, proposition (4.9) implies (1.8) by the same argument which

showed that equation (°.4) implies proposition (2.2). O

b5




5. Moment Assumptions. ‘

9
We have been assuming :1..') that E[Xil <. An argument sketched

later in this section will prove theorem '1,8) under the weaker hypothesis

. o g NIYAE s
{5.1) Et1xlf [log(l+ XJI)J 1 <« for some § >0 .
However, if only
e ®
(5.2) E[lei [10g(1+|Xl| 31°} < o for some & with 0 <8 <1,

the conclusions of the main theorem (1.8) become false. This is

demonstrated by theorem (5.4) below, which gives the correct asymptotic

formulae for a particular random variable satisfying (5.2) but not (5.1).

The present discussion leaves unresolved the caer{|Xl|2[log(l+|Xl!)]l+6) <

for some B

Theorem (5.4) uses an Edgeworth-like correction in the local central
limit theorem for a random variable without third moments, given in (5.23).
The techniques used are similar to those in Pitman (1968). Some related

work can be found in Cramer (1963 ), or Takeuchi and Akshira (1976a,b).

with U <5 Sl.

We now define a class of probability distributions on the integers.

Let a > 1 be given. Let @q = qa be the symmetric probability on the

integers with

a(0) =4q(-1) =q(1) =0

i}

alj) = b/l5 (ogll)?1 for § = +2, +3,... ,

b 1is chosen so that ZJ. a(j) =1 .

“6

e
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As for theorem (1.8), let 0-2 be the variance of q. Let Xy5X55+«- be independent

with common distribution (5.3), and write S = X, +-++ +X . Take k independent

copies of Sn‘ Let NJ. be the number of these sums which are equal to

jo Let M = maxj[Nj-kP(Sn=J)J.

(5.4) Theorem. Let xl,xe,... be independent, having common distribution

(5.3), with 1.5 < a<2 Let ¢ = bea'l/(a-l). Define

r

k

o +4/21n

(5.5) zn(x,a,) =J Hlog n+c(log n)2-a_2 log log n + x .

Then, with probability approaching one, M ik is taken on at a unique location

Lnk’ and the probability that

L, <vyo /2n/1og n and My < zn(x,a.)

converges to

®(y) expl-o 42 e-x/E]

as n and k tend to infinity satisfying the growth condition (1.5).

Note that q in (5.3) has a second moment, but just barely. In

particular

¥ i°r10g(1+131)1%03)

is finite provided & < a-l, but infinite for & > a-1. Note too that
zn(x,a) defined in (5.5) is different, from zn(x) of (1.10). When

a = 2, the difference is not so dramatic--a constant under the square
root sign. But when a < 2, there is an extra term going to inlinity,

namely c{log n )a-a'

L7
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To prove (Y.4), sharp estimates of P(Sn;j) are needed. This is

done by approximating the characteristic function of Xl. We begin with

some preliminary estimates. The first lemma is implicit in Pitman (1968).

(5.6} Lemma. Suppose the real numbers u ~are nonnegative, nonincreasing

and (weakly) convex:

Uy 2 v Up 2 Y2 U8 2 By Y
Suppose too that u =+ as n .. Let S be the {conditionally convergent'
sum uo-u1+u2-u3+"' + Then
1 S N
WSS -5 Y
' Proof. Clearly, %
" S = (uo-ul) + (u?-u) +eee
> (ul-ul) | (uj-ub) ++-+ by convexity
= uO-S .

This proves the first inequality. For the second,

Ui

. 1
U =-u-utu =-«..})<u_=-=-u
o1 205 )—o 2 !

because u,=-u_tu = e+ U
1 2 -

>

% u1 by the first inequality applied to the j
sequence U ,u ,... . [J

The next lemma is at the hecart of the approximations in this section.
It is abstracted from Theorem ot Pitman (1'%68). We work with conditionally

convergent Riemann integrals. Uuch integrals are denoted by using an arrow

! over the integral cien.




(5.7) Lemma. Let H(x) be a convex function on [0,») which decreases

to 0. Then, for any t >0,
(5.8) i <t-m H(x) sin(tx) dx < I. - = I
* 270 - 0 -0 2 71
where
P 1 7
(5.9) I, = ( H(x/t) sin x dx and Il [ H[ (x+ﬂ)/t] sin x adx .
20 <0

Proof. By changing varisbles, it is enough to do the case t = 1.
Abbreviate hj (x) = H(x+jn). Split at multiples of n to see that the

integral to be estimated equals the conditionally convergent sum

(J+1)m b .
f H{x) sin x dx = Ew f (-l)JhJ. (x) sin x dx .
j 0

j:o Jn j=0

Croup the terms as (uo-ul) + (u2-u5) ++e.  to get

n
T f [h , (x)-h (x)] sin x dx .
- CKUTYOT2k+1

k=0 Q

Because H 1is monotone decrcasing, h h 80 the last sum is

ok 2 Poe1’
absolutely convergent, and we can take Z inside the integral by Fubini's

theorem. As a result,

[ b14
| H(x) sin x dx = }_—_

|

O O k=0

[h?k(x)-hpkﬂ(x)] sin x dx .

Now H is convex, so for each x the sequence ho(x\, hl(x), se- is

by




S

convex. By .00,

)

N 1
?L—\ll\\\x\ < Z l_hl‘k;x\-h X)X h\\v\x\ - = hA

. (x) .
- Skl

1

This completes the proof. 0

. o . 0 . L.
We will now apply this result to H's of order 1/(log x) 7, at infinity,

and evaluate the corresponding integrals I, and I, in (.7« A

calculus estimate will be needed.

{*.11) Lemma. let @ be a positive number and X a real number. Then,

v Y
(a) 1 (1'x) ~1 ~ax for x > -1 .

‘\7 [N

. b 2
{(b) 1; \]'x\k < 1 ~Aax QX for x

15/

P

1

: 1 s s
) 1/2-x) <1 ks for O<xyT, with k finite

but Jdepending on O,
S I . . .
Proof. Expand 1 (1+4x) in a Taylor series with remainder. O

; .
(5.1 Lemma. ot v be u positive number. Then, as t >0,

B
X =O .
_ dog T\ sin x dx
vt '

1 .
f__ (Jop =) sin x dx
n t
.

are both equal to

and

I - 1 -1 -]
Clog =Y+ Olog T) .




Proof. We will only do the first integral, the second being similar.

Wwrite the first integrand as

- -Q
(log %) (1 + lQE_%) sin x .

log T

Now x Z‘/%; so (log x)/(log %) > - % , and (5.11la-b) can be used to
estimate the middle factor in the display. The integrals which result

are evaluated as follows:

{/JT

1
E

sinx dx =2 + 0(t)

t .
{ sin x |log x[J dXx <o for j=1 or 2. O
0

The following calculus facts are needed to estimate the tails of

the distribution (5.5 ).

(5.13) Lemma. Let ¢ >0 and B > 1,

{a) Define
[s ¥}
| - -Q
f@,B,u) = ; x B(log x) dx .
‘u

Then f(®,B,u) is bounded below by

.i_ u_8+1(

-
5T log u) -

Likewise, f(®,B,u) is bounded above by

1 -8+1
u

-
AT (log u)
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Proof. Claim (a). Clearly,

f&,B,u) = 5{—1 u—etl log u)-u

a
T BT

f@+1,P,u) .

In particular,

(5.1k4) fa,pu < B%I u-Bﬂ(log u)-a .

Using (5.14) with Q+1 in place of Q,

a

®-1)

Qal

al w i (log u) .

4 , a
" 10g u) -

1
£(@,8,u) = Bl ¢

- < .
Claim (b). Clearly, x B(log x) is monotone. So, the sum in (b)

- =0
is bounded between f(@,E,n) and fr(x,B,n) + n B(log n) .

Claim (c). This is clear. (J

Of course, the estimates in (5.13a-b) can be developed into asymptotic

series.

We now begin to investigate the probability density q defined by

(5.7). The following repeated integrals of the tail of q will be




(5.15) Lemma. Define q(j) and b by (5.5). For x >0, set

F(x) =} a(j)

l3] >x

Gx) = fm F(u) du
X

H(x) =[m G{u) du.
x

Then, as x ® o,

(a) F(x) = bx™° (Log x)™® + 0[x™° (log x)~®1]

i

(b) G(x)

]

bx'l(log x)"% + O[x'l(log X)'a-l]

it

(c) H(x) = 2 (log x)™*™ + o[ (108 x)™] .

Proof. This is immediate from (5.13). (.?

Note. Claims (b) and (c) follow from (a). In fact, theorem (5.9)
and the supporting results (5.17-20-23) hold provided the X's are

symmetric, interger-valued, speriodic and satisfy (5.15a), namely,

p(]X] > x) = bx (log x)"® + 0[x 2 (Llog x) >

as X ®w. It is the precise bound on the remainder, namely
(.)[x'2 (log x)'a'l], which enables us to push the calculations through. 1In
this generality, there is no connection between a and b, or 0-2 = Var X;

the latter is finite by our condition on P(|X| > x).




Let ¢(t) be the characteristic function of gq. Since q is

symmetric,

(5.16) a(t) = § cos(3t)a(g).
J

2 .,
The next lemma gives an approximation for €. Recall that o is the

2 RESE
variance of q: namely, o =Y J7q(j).
J

(5.17) Lemma. Fix a>1l. As t tends to O,

o(t) =1 -%czt"’ + r(t)

where

r(8) = By +°(og )™ + olt” (log 1)

and b is defined in (5.3).

Proof. By symmetry, it is enough to do the case where t - O+. Integrating

by parts three times gives

(5.18) ((6) =1 - 50t + r(t)

where

;P
r{t) -t f sin(tx) H(x) ax ,
0
and H is defined in (5.15). Clearly, ! is convex and H(0) < w

because o < o, Now (5.7) shows that
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21 2 L
(5.19) t° 5 I, Sr(t) <7 (Iy-5 ;)

with I, and I, defined as in (5.9). To approximate I,, break the range of

integration into two zones [O,/t) and [y%,n]. For the first zone,

t t
o_<_f'/ H(x/t)sinxdx<H(o)f-/—xdx=-l-H(o)t.
0 0

For the second zone, use the approximation (5.15¢) for H(x/t), along
with (5.12). Combining the two zones we have:
__2b 1,-a+l l\~a
IO = o7 (log t) + 0[ (log E‘) 1.
The same estimate for Il can be obtained by the same argument. Substi-

tuting into (5.19) completes the proof. O

We will use lemma (5.17) in the following form:

(5.20) Lemma. Define q and b by (5.3). Let 6(t) be the character-

istic function of q defined in (5.16). Let 02 be the variance of q.

Then, as t >0,

exp(G o7t3)6(t) = 14 (t)+0(t)

where

B _b_ t2 3 1l \=a+l
7(t) = a-l (1og TTT)

and
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p(t) = O[tz(log T%T)-a] .

The next two facts are well known, but are recorded here for ease of

reference.

(5.21) Lemma. Let Zj and 23 be complex numbers of absolute value

at most A. Then

n-n - n-l'l ' n n ot
My 25 - Tyl o8 ijl 25251 -

(5.22) Lemma. Iet n be a positive integer, and z a complex number.

Then
|@ez)® -1 - na| <La? (21202l
We are now ready to give an approximation for the probability density
of Sn' We will abbreviate the normal density with mean O and variance
2
[} by @U.
1 1o,
qb(x) = — exp(- 5 x /a7) .
o /20

Also, we introduce the Hermite polynomial:

n (x) = (x/o)P-1 .

be independent with common

(5.23) Proposition., Fix a > 1. Let X15Xopeee
distribution (5.3). Let %:xl»~+xﬁ Then, as n -+,

(5.23) Y0 PS5, §) =@ (j¥n)l1-c b (JAM)) 4y,

n




st o

where
2
o = Var Xi [}
-1
¢, = =5/ (log /M) with b as in (5.3),
and

d = min(a,2a-2) > a-1

]

r 0(log n)'(1 uniformly in j .

Jn

Note. Similar techniques would give more terms in an Edgeworth-like

expansion.

Proof. Our argument is adapted from section 16.2 of Feller (1971). By

the Fourier inversion formula,
) L " exp(-itx) exp(-% o°t°) at
(5.24) o (x) = 5% exp xp (-5 .

Differentiate twice with respect to x:

1 (" . 2 1 22
(5.25) h (x)o_(x) = - 5= exp(-itx) t~ exp( 5 0°t)at.

-x)

Likewise,
1 [ - n
P(Sn:j) = §]’T frr exp(-itJ) e(t) at .

Changing variables,

- 1 "7/n - -.n
(5.26) ¥n P(Sn=j) = 5¢ f _ exp(-itj/¥yn) 6(t/y/n) dt
- -ﬂg/n
57
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Combining (5.24-5-26), we have

v =¥ (S =) = o (//T) v e G/Rn (3//R)

:Jl + J‘,

where
, ("m
Iy 5w Lﬁ exp(-itj/y/n) ¥, (t) dt

with
i (5.27) v (t) - o/t - (lhnt;)) exp(- _1_ o2t )

and

L ity 2 1 20
2~ T om 6] >nyE exp(-itj//n) (1+€nt ) exp(- 50t ) dt .
Clearly,

so J, 1is negligible.

Likewise,
. ny'n
(5.28) la, ] 5;[ - v (et
2! ~!‘7/n n
50




We split the interval of integratior in (5.28) into three sub-intervals:

N
R, the setof t with It| < nt/

nl/la

1/2

Ry, the set of t with < || <8n

2 1/2
Ry, the set of t with snt/2 < |4 < w7,
We will choose & > O later.

Consider R3 The distribution a(j) of (5.3) 1is aperiodic, so

Supltbb le(t)] =Ar <1. Of course

[ ()] < oA + (1ret?) exp(- 5 0°7) .
So the contribution from R3 to the integral in (5.28) is at most
N o (1+ent2) exp (- %oﬁtg) at .
lt] >8¢n

This is negligible.

Next consider R,. Using (5.17), we may choose & > O so small
that

le(u)] <1 - %— aeuz < exp(~ Jh;aeua)

for |u| <&. This fixes the & defining Ry In particular,

le (64/)|" < exp(- F 0°t°)

for a11 t in R_,. As a result, the contribution from R2 to the

integral in (5.28) is negligible,
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5.28) is 0(log n)"® +0(log n*' "% Let

We now show that the contribution from Rl to the integral in

la

ﬁn(t) : exp(% ot /n) e(t/n) - 1. |

1
E
Recall the definition of v, from (5.27). Clearly 1
(5.29) vot) = ([148_ (617 =1 - e £} exp(- & o t°)
n' n' n pPl=3 *
Recall ¥ and p from (5.20). As that result shows,
(5.30) BL(t) = 7 (t//n) + o(t//m) .
Use (5.20) again: there are positive, finite constants K, such that
for all t 1in Rl
2
(5.31) Ino (t//n)| < K t°/(1og n)?
and then
(5.32) Ing_(t)] <K,t"/(1og n)®*;
n =2 ’
SO
(5.23) g (t)] < i— o“t%  for all large n .
We are estimating
* 1
J| < 5r jR] lv, (t)]at .
Using (5.29), (5.70),and the triangle inequality, we have
M T |
"1 =Yg Jb Jc
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where

J, = é-,‘-; j Ino(t/vn) exp(- 3 «“t7) dt
R, :

f ][l+Bn(t)}n-[l‘*-n5n(t)]! exp(- -el-cztd) dt ,

!

[+
I
2

2 .
J_ - 53 f !ny(t/,/ﬁ)-ent | exp(~ 5,cr te) at .
R, ’ |

=1

We estimate J , using (5.31):

- 2
(log n) a J t7 exp(~ % o‘ete) dt

Bl

J, <
a—

= 0(log n)™2 .

We estimate J using (5.22):

b,
¢ n 1 2
[ (6)) -2 - ne (6)] <5 InB (8)] exp(lmB (¢)]) .
In view of (5.32-%3), this bound is at most
=2 ) St
i,lé (log n) 2a exp(jl‘-c t ).

So

D L 2
be_E%Kg(logn) aft exp(-%ctg)dt

oo
= 0(log n)° 8
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Finally, we estimate ,lc. This is mor. delicate, and it is

convenient to treat two cones separately. Tlet

R{ b: the set of t with 1 < iti <n

R, be the set of ! with [tf <1 .

So R - R1° U B . Using the definition of > in (5.20), and the

. . . + .
definition of < in (5.3°), the contribution o' J_ from Rl is
(&

(5.34) s _b_ 1

o {log ¢yn

)a'l

times

| 1-a \ O
(5.35) J - }SE_LE") -1; t exp(~ l- o"t7) at .
Rl log v'n :

The integrand in (5. 5) can be estimated by (“.llc), because |t| < n

in R, so log]tf/_logy'ﬁx’% in R,. Hence (5.%%) is at most

K . Vot S 1 2,20
_ logiti) t expi- o't ) dt .
log 4 n [t] >1 <

This is . {log n)-l. Thus, the contribution to J, frem R:[ is at

most ©(log n)"®. Iikewise, the contribution Lo J, from Rj is

the factor .5.54) times

1) 1- .,
J_![1«1° b2 ) b exp(- 2o t) at .
R log 4 n .

By (%.11b), this is at most

1k




— T e g o e

1 N “ A

-l (log 1 Yt exp(-}: o) dt
— t ' .

log +'n -1

- 1 (oI )
4 8 -ﬂiﬁjé)T J' (log T%T)‘ £ exp(- L 0%t%) at .
(log /‘n) -1 :
This too is (i{log n\—l. Thus, the contribution to Jc from Ri is also
O(log n)" % @
We are now in position to finish the proof of (5.4). The argument is

very similar to the pro f of theorem (1.8) and we just indicate the changes.

Proof of (5.4). The bounds on the maximum deviation in zones 1V, III, and

II, as given in (4,1), (4.%), and 4%.5) go through without change. The

estimates used in (4.10) are valid as stated, except that (4.10b) becomes:

1

{5.50) Py P\Snzki):-—~fj—— in where
0 q. 1N
RN RN , —\1- 2-Pa
g 1= [10® ) (00 ) o E%T (log /7)™ + 0 (1og n)" 0)

uniformly in j < zone I: the ™ {% )" is uniform in J and n. This
. N, 2 2
follows from (-..%), TIndecd, since Jj is confined to zone I, § /n° = 0{8"),

and

N N )

o Al N,
expl=j /(' n)l =1 -~ [1+e{®7)] §/om) .
We must now multiply by

-~
- P gy (- 1
a-1 o’ n




S

where

)

b —l-a i RN ;
T2 =2= (logan) T == 1+ [10p7) (= - 1)
. a 25 n 2o 'n
= O<1> * dr\
.o n

because a > 1; and T can be mirged into the lead term of “"n
}
A
Since a < 2,

d = min{a, 2a-") = 2a- ,

accounting for the error term (log n) =8 4n ", Instead of

o)

k.1 ¢c), we must estimate

~ hl
1 n =1+ I - Y (& Vo3 / 20
ni \ Ofs Vi /(20" n)

2=->a
)

- -a.t-)-_l (1ogy )™ 1 (log n )

the higher powers of the lead term merging into the O (BC), because for

J € zone I,

3 » N N Al

Jj /oot Y (& Vo jg r0o'n. ;




Lemmas (4.16-17) go through as stated, with zn(x) replaced by

zn(x,a). In (4.18a), the bound on k'p'. is

Jd
S 1- 270(67)) o B 0208 0P L o))
o /21 20 n (log 9/n) g

In (4.18b), zn(x) should be replaced by zn(x,a). There is no problem
with (4.18c). Remarkably enough, the bound on h2/k"jp5 in (4.184) goes
through unchanged, with p = O, and some different by = 0(52). It is
here that we use the condition a > 1.5, as well as the definition of
the constant ¢ in (5.4). 1In essence, h2 and k:].pé have the same

2
lead factor k/o +21n, which ~ancels in h /RBPS’ leaving the product

UVW, where
U=">n +cfllog n)z'l-a -2 1log logn + x
h g
o s oo
Vel (isol ) o Bl 4 0(10g n)TR
20 n ‘log ¥n)
W=1+o0(l/log n) .
The factor W can be ignored. In multiplying out UV, the term W
b 1 -1 b 2-a
~log n - e-x.Tl- ——3-T ° _28. E (log n)
(log 4/n)

i cancels the term




c(log n)2-a .1,

a
because ¢ was chosen to be 2 b/(a-1). Furthermore,

=0
U - o(log )% 2 6(1) ,
because we imposed the condition a > 1.5, so 3-2a < G.
The remaining arguments used in (1.8) go through with only minor changes.
Finally, we indicate why theorem (1.8) continues to hold when the
third-moment condition (1..>) is replaced by the log-moment condition

(5.1). Let

=PX, <x) Tor x<O0.

1
By Chebychev's inequality,

(5.57) F(x) - o[x (log)x]| )]

as X + 1t o .
Let

G(x) = ( F(u) du for x >0
X

X
:J F(u) du for x <O,

V]

Usdne (5.15),
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(5.38) a(x) = 0llx| ™ (10g]x|) 2] as x ++w.
Let

H{x) =fm G{u) du for x>0
x

X
=I G(u) du for x <O .

=00

Using (5.13) again,

(5.39) Hx) = 0 (log}x|)?®) as x»+w.

Now, if o(t) is the characteristic function of X;, and = E()L_L),

! we can argue as in (5.17) to show that
1 2y ,2
6(t) =1 + ipt -§E(X1)t + rt)

vwhere as t =+ 0,

7 r(t) = o[ t]%(log w7

Consequently, by an argument like the one used for (5.23) but

without the Hermite polynomial,

(5.40) /7 P(s,=3) = o_[J-nu] + 0(l0g n)™°,




where o - Var Xl. The approximation (5.4 ) can be used in place of the
local central limit theorem ( .”7) in proving (1.8). An approximation
similar to (5.'0) based on fractional moments (rather then log moments)

i is given by Ibragimov ()966).
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