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PREFACE

There is a growing literature and interest in methods for

quantifying subjective judgments. Several ongoing Air Force efforts

utilizing subjective judgment have come to the authors' attention.

Mission Area Analysis requires subjective estimates of a large number

of parameters. Long-range planning repeatedly draws on judgments

about the future importance and worth of plans and geographical

areas. The Constant Quest project, directed by the Readiness/NATO

Coordination Board, highlighted the importance of subjective judgments

in evaluating command and control systems.

Thomas Saaty of the University of Pennsylvania has advanced a

popular tool for quantifying and scaling the worth of a set of objects

or entities. For problems that fit the Saaty framework, this report

details aa ImpEuveNeL ua Sd4Ly'b "CtSgeLVCLLuL" Lri-imique (Refs. 1191

to [301) that is easier to use and more amenable to statistical

inferences.

This report was prepared under the Project AIR FORCE research

study effort, "Evolving Concepts for Long-Range Planning."

RL!
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SUMMARY

The recurring need to utilize subjective information and

judgments in quantitative analyses has been widely recognized and has

been treated in a number of ways. This report considers the problem

of using subjective paired comparisons to estimate the relative worth

of each member of a collection of objects or alternatives.

Let {EE 2 ).. E nEI be a collection of objects or entities that

are in some sense comparable. The E.i may be alternative plans to

achieve some goal, alternative objects that have some comparable

utility, or generally a collection of entities that have varying

degrees of some common value. A vector (uu 2 '" . ,n ) is called

a ratio scale for the collection if for each i and j, u.i/u.i is the

ratio of the value of E.i to the value of E.i. For example, u 2/u 5

-- ."

is 4 if E 2has four times the value of E 5. In this case E 5has

2 5

1/4 the value of E and u t 5/uv2 is 44.

An important application of ratio scales is in the study of

hierarchies. A hierarchy is a.collection of objects organized into

levels. Suppose that for each level there is a ratio scale for the

objects at that level relative to any object at the next level up.

The ratio scales for various levels can be combined multiplicatively

to give a view of the entire hierarchy. Because hierarchies are used

to model complex systems in many important military and industrial

applications, the estimation of ratio scales deserves considerable

attention.

Iii

Sups htaratio scale foru 2he colcto n) for objech EP and* E, nsh

eist bu ifhs nour knon.est alu of j j=12.n bs ae sbective

es4tmaue of E ad u5/u a s judg . Inpriua, i' o

each ih and a ier/aJhy s . The matrix A b[a. 1 of subjective

pairwise comparisons is called a judgment matrix.

If the judge is perfectly consistent in making estimates, then

the matrix A will satisfy the consistency criterion

~Val a

attention.O
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a IJ'j,k * 8t~k for each ij,k.

If this condition is met, then any column of the matrix A lives a
ratio scale for {11,A2,...Ia). loever, judgments are frequently

inconsistent, and many judgment matrices do not satisfy the con-

sistency criterion. A mathematical procedure is required for esti-

nting an underlying ratio scale based on an inconsistent judgment

matrix A.

A procedure proposed by Thomas Sooty has been used in a variety

of applications calling for the estimation of ratio scales from

judgment matrices. Soaty has shown that corresponding to any judgment
matrix is a positive eigenvalue exceeding all the other eigenvalues in
absolute value, and the normalized eigenvector corresponding to this

maximal eigenvalue has strictly positive components. Because the

normalized eigenvector corresponding to the unique nonzero eigen-

value of a consistent judgment matrix does give a ratio scale for V
the matrix, and because the componedts of the eigenvector depend
continuously on the matrix entries, Sooty uses the normalized eigen-

vector corresponding to the maximal eigenvalue as an estimate for

the ratio scale underlying any judgment matrix.

The normalized eigenvector corresponding to the maximal eigen-

value of a judgment matrix is not the only vector that gives the

underlying ratio scale when the matrix is consistent. The underlying

ratio scales in the consistent case are also given by any colum of

the matrix, by the vector of row sums, and by the vector of row

geometric means (nth root of the product of row elements). In fact,

if the judgment matrix is consistent, all these vectors are scalar

multiples of the normalized eigenvector. Moreover, each of these
vectors depends continuously on the matrix entries. Thus, the argu-

mnat in favor of the eigenvector as a ratio scale estimator holds for

several other vectors as well.
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The prabiM of estimating ratio scales frm Judgmnt, mtrices
can be ii.d is a statistical framwrk as follows. Let
(01.I62 ... ) be a ratio scale for a collectim (9, #g2 9 .~. a
amW lot A a [a i~iI be a Judgment matrix derived from pairvise
comparisons of then I1. The elemests aj,j can be thought of as
arising from ratios of the scale elemests by multiplicative
partubtim-i.e.

ohm doe e1, an positive raimvariables. Maing Iesritm

em b 1 bm e(52

%6m b aIn U, ad 1 1 ja Ins ei1  Assmingtetthe d1 j 9 0
ONisd ft M- , variables with aero massm sad eipal varismcese

the best Hmer umbiased estimator of the bi aro the teast squme
estimtor gives by

JAuJ

Ceuepssiagentimmter of th e . are gives, by

jo
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Under the additional assumption that the d.1 . are normally distrib-

uted, the u . are maximum likelihood estimators of the u..

As an estimator of ratio scales, the geomrtric mean vector is

preferable to the dominant eigenvector in several respects. First,

the geometric mean vector is easy to calculate, even by hand; cal-

culation of the eigenvector usually requires an iterative procedure

that would be difficult to carry out by hand and can be time-consuming

even on a computer. Also, because the geometric mean vector arises

from a well-known statistical model, it lends itself to confidence

interval estimation and tests of hypotheses.

Finally, empirical evidence based on Monte Carlo experiments

indicates that the geometric mean vector is statistically better than

the dominant eigenvector under two quite different assumptions on the

distribution of the d. .. In both cases the relative efficiency of

the two procedures is nearly one when the variances of the d.l1j are

small, and the geometric mean becomes preferable as the matrices

become increasingly inconsistent.

I
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I. INTRODUCTION

Over the past three decades, military and industrial researchers

have directed considerable effort to the quantitative analysis of sub-

jective data. Analytic tools building upon the subjective judgments

of experts have been used in such diverse fields as energy policy

analysis, marketing research, economic forecasting, and military plan-

ning. Problems amenable to the analysis of subjective information

abound, and numerous methods have been proposed for acquiring and

treating judgmental data.

One question that arises in the treatment of subjective data is

how to construct a scale of relative merit for a collection of objects

or activities based upon subjective comparisons of each pair in the

collection. For example, consider a collection of three objects,

labeled A. B, and C. Suppose that an eynprt hPlieves A has twice the

merit of B, B has three times the merit of C, and A has six times the

merit of C. It is natural to construct a scale of relative merit for

A, B, and C as (1, 1/2, 1/6). However, suppose that the expert says A

has twice the merit of B and B has three times the merit of C, but A

has only four times the merit of C. In this case, it is not so easy

to decide upon a scale for A, B, and C. This sort of inconsistency is

common in human judgments, especially when complicated issues are

involved.

Thomas Saaty of the University of Pennsylvania has developed a

matrix eigenvector procedure for constructing scales of merit based on

inconsistent pairwise comparisons. The method has been applied in a

wide variety of planning and decision problems.

This report presents an alternative approach that is preferable

to the eigenvector procedure in several important respects. The

proposed procedure is derived within a statistical framework and is

compared with the eigenvector method on the basis of theoretical and

empirical considerations.

The remainder of this introduction discusses the motivation for

dealing formally and quantitatively with subjective information and

provides a brief review of some of the relevant literature. Section

i4=C.1kG PAOR BlLANK-NOT 11JW
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II provides a short, nonrigorous discussion of the elgenvector method

and the proposed method for utilizing subjective judgments in quanti-

tative analysis. An example, illustrating the use of the two methods

as well as similarities and differences in their results, is intro-

duced in this section and examined throughout the report.

In Section III we give rigorous definitions and develop a frame-

work for treating the estimation problem with classical statistical

techniques. Section IV provides a mathematical treatment of the

eigenvector method. Section V deals with the application of subjec-

tive judgment methods to the study of hierarchical structures. The

example introduced in Section II is considered in further detail

there.

Section VI introduces the geometric mean vector and gives

theoretical justification for its use as an estimator of subjective

scales. In Section VII we define a statistical measure of coiisistency

for subjective judgment matrices. Section VIII presents results

of a Monte Carlo study comparing the two methods. Section IX con-

siders in greater detail the example introduced in Section II and

expanded on in Section V.

QUANTITATIVE ANALYSIS OF SUBJECTIVE DATA

The quantification of subjective data is essential for dealing

with a wide class of problems whose solution by other methods would be

extremely difficult or impossible. Such problems are often amorphous

and vaguely stated. They involve large, multifaceted issues of impor-

tance to decisionmakers and interest groups with diverse backgrounds

and biases. Their outcomes may determine the allocation of large

sums of public money and impinge critically on the public interest.

Moreover, some facets of the problems may lack any well-defined,

scalar-valued measures of merit. Even if there are appropriate mea-

sures, the collection of relevant objective data might be prohibitively

expensive or impossible.

Such problems frequently arise in the assessment of future needs

for large organizations. As an exam~ple, consider the problem of long-

range planning in the U.S. Air Force. This problem involves a great
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many interrelated issues: the effects of political and economic

factors on national security, the importance of various geographic

regions to U.S. interests, the threat posed by conflicts of different

types in different regions, the current strength of forces to deal

with such conflicts, and so on. Although it might be possible toW

define objective yardsticks to deal with some of these issues, it

certainly is not possible for all of them. For some issues, sub-

jective judgments of relative importance or value are the only

measures available.

In some problems the best information available is subjective, so

why is quantitative analysis (desirable at all? Why not just ask the

experts to make plans and decisions based on an informal, intuitive

analysis? In fact, problems that are not ameniable to hard analysis

are frequently resolved through intuitive analysis by experts and

decisionmakers. However, there are several good reasons for using a

formal, quantitative approach in these problems.

A formal analytic framework gives structure and definition to

an amorphous mass of data. It allows the decisionmaker to consider

relevant information systematically and to examine options and con-

sequences one at a time. In such a framework, the analyst can break

an unmanageable problem into manageable parts and then synthesize

information about the parts in a rational fashion.

A formal analytic framework also permits sensitivity analysis on

alternative judgments. When a problem is considered within a formal

framework, tradeoffs among alternative judgments can be spelled out

explicitly, and the effects of variations in subjective judgments on

outcomes can be studied. Sensitivity analysis may even provide a

basis for resolving different points of view.

Perhaps the greatest advantage of a formal analysis in government

and military applications is that it is repeatable. Formal analysis

p rovides the audit trail that is so important in matters involving

extensive allocation of public resources and impinging on the public

interest.

Research literature on the use of subjective information

emphasizes three major issues: how to elicit meaningful subjective
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judgments from individuals or groups, how to synthesize subjective and

objective data obtained from various facets of a large problem, andr

how to construct measurement scales based on subjective information.

Following is a review of some of the literature related to each of

these issues.

ELICITING SUBJECTIVE JUDGMENTS

Methods for eliciting subjective judgments have received

considerable attention in operations research and forecasting

literature. Two such methods are war gaming and scenario writing,

both of which are used extensively in military planning to provide

insights into possible future environments and needs.

Much of the literature on eliciting judgments deals with the

problem of acquiring a collective expert opinion free from the usual

negative effects of group pressure. An important method in this

category is the Delphi technique, a controlled feedback procedure

originally developed by researchers at The Rand Corporation [1]. In

Delphi, a researcher interrogates a group of experts individually
concerning their opinions on possible future events. The researcher

assembles means and quartiles for quantitative data thus obtained and

presents them individually to group members along with arguments and

comments made by individuals. Group members can then revise their

judgments. The procedure is repeated until the range of judgments

narrows. The controlled feedback mechanism in Delphi makes it pos-

sible for a group of experts to avoid the usual social pressures of

open discussion. The method has been used in many military and

industrial applications (see, e.g., [21, 131).

The Delphi technique has given rise to a number of modifications.

The Probe method designed by researchers at TRW for forecasting tech-

nological events combines Delphi with a timing chart structure so

that events can be considered in sequence [4]. The method of qual-

itative controlled feedback proposed by Press [5] is similar to

Delphi in that it uses a controlled feedback loop to aid groups in

arriving at judgments, but it differs in that at each iteration, mem-

bers are supplied only arguments and comments from the group, with no

information about the quantitative distribution of group answers.
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SYNTHESIZING DATA IN LARGE PROBLEMS

Economists and statisticians have proposed a variety of methods

for breaking large problems into smaller pieces and quantitatively

synthesizing subjective and objective data from the pieces. One of

the most popular of these methods is multi-attribute utility theory,

which provides a framework for selecting an optimal decision from

among multiple alternatives when some effects of the decision can be

measured only subjectively. The expected value of each alternative is

determined as a function of the decisionmaker's preferences for the

possible consequences and the probabilities that the alternative will

lead to those consequences. The probabilities are generally deter-

mined from subjective judgments. Some of the decisionmaker's pref-

erences are determined on the basis of subjective indexes such as

aesthetic appeal, and others are determined on the basis of objective

measures such as cost. The alternative with maximum expected 'value is

chosen as the optimum decision.

The mathematical foundation for multi-attribute utility theory

was laid by von Neumann and Morgenstern [61. Application of the

theory to business problems was pioneered by Raiffa and extended by

Keeney and others. The theory has been applied to many problems in

industrial, government, and military settings (see 17], [8], [91,

1101, 1111). The 1976 book by Keeney and Raiffa gives an excellent

treatment of the subject [12].

A similar method was applied to military problems in a 1958

Master's thesis by Wells, who gives a detailed framework for assessing

the relative desirability of existing or proposed weapon systems.

System desirability is determined as a function of feasibility, cost,

and an attribute Wells calls "military worth." Wherever possible,

objective measures are used to evaluate these three factors, and

expert judgments are used where there are no objective measures. In

particular, military worth is an aggregate property evaluated by ana-

lyzing a complex hierarchy and subjective scales for a number of vari-

ables. The Honeywell Corporation used Wells's method in a military

planning model called PATTERN [13). A detailed description of the

method can be found in Ref. 1141.
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Saaty proposes that complex decision problems be viewed in

terms of hierarchies of objects or properties. At each level of a

hierarchy, Saaty uses subjective judgments to estimate a merit scale

of the objects. Scales from all the levels are combined mathemati-

cally to provide quantitative information about the whole problem.

The results in this report are applied within the framework of hier-

archical analysis proposed by Saaty. Hierarchies are discussed in

Section V.

CONSTRUCTING MEASUREMENT SCALES
Many methods have been developed for constructing scales of

measurement based on subjective data. Several books and hundreds of

articles have been written about these methods. A classic reference

for early contributions, especially for work on psychophysical scales,

is Torgerson's 1958 book [15].

Churchman and Ackoff did pioneering work in the area of esti-

mating scales of values for decision problems in 1954. They used a

criterion of additive order consistency to estimate scales from suc-

cessive subjective judgments. Their 1954 paper described a number

of applications to industrial problems [16]. Wells and others later

applied the Churchman and Ackoff method in military decision problems

[14].

Much of the literature on subjective scales concerns the esti-

mation of scales from pairwise comparison data. A good deal of sta-

tistical work in this area goes under the name "paired comparisons."

In the simplest paired comparison experiment, each of several judges

examines a number of objects two at a time and states which of the

two object. is preferred. No indication of strength of preference is

given. Data from these paired comparisons are then used in a statis-

tical model to estimate a scale of preference for the objects. Such

an experiment might be used by marketing researchers to determine the

relative taste appeals of several new food items.

A good reference for the statistical theory of paired comparisons

is David's 1963 book [17]. A bibliography of recent articles on the

subject was compiled in 1976 by Davidson and Farquhar (181.
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Saaty has proposed another method for estimating subjective

scales using pairwise comparisons in which a single judge makes

pairwise comparisons of a number of objects. For each pair, the judge

states not only which object is preferred, but to what degree that

object is preferred over the other. A preference scale is determined

for the objects based on an eigenvector analysis of the matrix of

pairwise comparisons.

Saaty has published a number of articles (Refs. [19] to [30])

describing the eigenvector procedure for estimating subjective scales

and illustrating the usefulness of this procedure in analyzing complex

hierarchical structures. He has applied the procedure in a broad,

range of problems in the social sciences ([19], [21], [281). The

procedure has also gained acceptance in military applications and is

currently being used as a tool in Air Force long range planning.
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II. PAIRWISE COMPARISONS, THE JUDGMENT MATRIX, AND

THE ESTIMATION PROBLEM

Consider the problem of purchasing a new car.* Suppose that a

preliminary investigation yields five specific makes that seem appro-

priate. The price of each make is known, and although some other

measures of merit may have been quantified (principally performance

measures), the important subjective question of how much each car

satisfies the overall needs is difficult to quantify.

We will attempt to assign to each make of automobile an estimate

of utility in such a way that if u. is the utility of the ith make,
1 -

then ui/u. is a measure of the preference of the ith make to the ith
make. The vector (ul, u2,... ,u5) will be called a ratio scale.

Some aspects of the usefulness of such a ratio scale are imme-

diately apparent. We could, in this example, choose between the cars

on the basis of utility per dollar of initial cost, or with more fore-

sight, on the basis of utility per dollar of expected life cycle cost.

To estimate the vector of utilities (ul, u2,.. .,u5) Saaty has

suggested the following procedure ([19] to [30], esp. 128]): We

construct a matrix composed of our subjective estimates of the ratios

of the utilities of all possible pairwise combinations, so that the

elements a. . of the matrix A are our estimates of u /u. Thus we

know that the diagonal elements are given by a.. = 1, i = 1,...,5.

Additionally, the lower off-diagonal elements are determined by

the upper off-diagonal elements: a i1 = 1/a i j .

Saaty [281 proves that in this case the matrix A has a maximal

eigenvalue and a corresponding eigenvector (the dominant eigenvector)

all of whose components are positive. Saaty proposes, primarily with

This example, due to Capt. Jordan Kreindler and Major Michael
Parmentier of the U.S. Air Force Directorate for Programs Evaluation,
Systems Analysis Division, is treated in further detail in Sections V
and IX.
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empirical justification, that this dominant eigenvector be used as an

estimate of the ratio scale.

Suppose that when we form our estimates, the relative utility of

Make 1 to Make 2 is 2, of Make 1 to Make 3 is 1/9, of Make 1 to Make 4

is 1/6 and of Make 1 to Make 5 is 1/7. Then the first row of our

judgment matrix has the form

1, 2, 1/9, 1/6, 1/7

Continuing, suppose that we have filled in the upper off-diagonal of

our judgment matrix:

1 2 1/9 1/6 1/7
1 1/9 1/6 1/7

1 6 4
1 1/7

1

Then, in view of reciprocal symmnetry we have

1 2 1/9 1/6 1/7
1/2 1 1/9 1/6 1/7

A 9 9 1 6 4
6 6 1/6 1 1/7
7 7 1/4 7 1

Continuing with this example we compute the dominant eigenvector

w of this matrix and get:

.0378

.0294
W .5239

.1131

.2958

Thus, in this case, our estimate of the utility of the first make

is .0378 and of the third make is .5239. For a detailed treatment of

this procedure see Refs. 1191 and [281.
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This example is discussed in more detail in Sections V and IX,

where it is expanded to illustrate the value of ratio scales in

analyzing hierarchical structures. In application to hierarchies it

is assumed that the objects at each level of the hierarchy depend on

the objects of the next lower level in some way. The procedure

enables the user to estimate the influence each object in a level has

on all the objects or goals in superior levels.

For problems where the eigenvector procedure is useful there is

another estimation procedure that is preferable in several respects.

Where Saaty would estimate the utility of the ith object with

the ith component of the dominant eigenvector, we give arguments

that a better estimator is given by the vector v = vl,v 2 9...,Vn9

where

n 1/n
v. = H a. n

1 j=l 1,j

is the geometric mean of the elements in the ith row of A. In the
example above this yields the following estimates:

Geometric
Object Eigenvector Mean Vector

1 .0378 .0409
2 .0294 .0310

3 .5239 .5307
4 .1131 .1132
5 .2958 .2842

Compared with the dominant eigen.-ctor, the geometric mean vector

1. Is statistically better;

2. Is easier and faster to calculate on a hand calculator or

computer;
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3. Gives rise to a measure of consistency that is more meaning-

ful than the eigenvector-eigenvalue measure;

4. Gives rise to a measure of consistency that has known statis-

tical properties, allowing tests of hypotheses, confidence

interval estimation, etc.;

5. Gives rise to estimates of utility with known statistical

properties, allowing tests of hypotheses, confidence interval

estimation, etc.;

6. Is supported by statistical literature describing methods of

handling a wealth of variations of the problem;

7. Is rooted in a maLhematical approach to estimation that pro-

vides an intuitive understanding of the problem and a means

for assessing suitability of the method.
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III. CONSISTENT MATRICES AND RATIO SCALES

Consider a set of n activities or objects E1 , E2,... En, which

contribute to some objective. Suppose the activities can be ranked I
on a ratio scale (ul, u2 ,...,un), ui > 0, so that ui/u measures the

degree to which Ei is more important than E. relative to the objective.

In particular, ui/u. > 1 if E. is more important than E.. Let A =
[ai I be the n x n matrix of pairwise comparisons of El, E2, ...,En !

given by

a u ,I i,j = 1,2,... ,n1. ( )

Then A has the property that

aj, 1 = 1/a i j , i,j = 1,2,...,n , (3.2)

and in particular

a = 1, i = 1,2,...

A square matrix A with positive entries satisfying (3.2) will be called

a judgment matrix.

It follows immediately from (3.1) that

a i,jaj, k = ai,k (3.3)

A matrix with positive entries satisfying (3.3) is said to be consistent.

It is easy to see that every consistent matrix is a judgment matrix.

Let A be an arbitrary consistent matrix. Because

aj,k al,k/alj for any j,k,
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every element of A can be determined from the first row of A. It

follows that A is a matrix of rank one with exactly one nonzero

eigenvalue. Moreover, it follows from (3.3) that

2
A = nA.

Thus any column of A is an eigenvector of A, and the single nonzero

eigenvalue of A is n.

Let w = w, w2,. .. ,wn be any eigenvector corresponding to

the eigenvalue n. For any k, the kth column of A is an eigenvector f4
corresponding to the same eigenvalue; therefore for each i and j,

w. caiwi ,k

= cask

for some c 0, and therefore

1,
- a.

W.

Thus, w is a ratio scale for A. In fact, it is clear that there are

infinitely many such scales, each one corresponding to a different

scalar multiple of the kth column of A.

The normalized eigenvector with components

W.

n
w.i

i= 1

is the particular scale that Saaty [281 associates with the consistent

matrix A.
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A ratio scale corresponding to a consistent matrix A can be

derived in several ways. Any column of A is such a scale. The vector

of reciprocals of elements of an arbitrary row of A is also a ratio

scale for A. It is easy to see that the vector r of row sums defined

by

'-4

n
= Z Ia..ri j=l ,

and the geometric mean vector v defined by

n 1/n
v. II a.

j=1 I J

also provide ratio scales for A. When these scales are normalized,

they are equal to the normalized eigenvector scale for a consistent

matrix.

. . . .° . .. . . . . ..-
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IV. SAATY'S NORMALIZED EIGENVECTOR SCALE

Consider again the activities E, E ... ,E that contribute to

some objective. Suppose a judge makes pairwise comparisons on some

scale of the relative importance of each pair of activities with

respect to the underlying objective. If a. . represents the relative

importance of E. over Ej, so that a. > I if and only if E. is more

important than E., it is then natural to insist that the judge make

comparisons in such a way that

a = 1/a for each i,jij j'i

In other words, such a pairwise comparison matrix is a judgment matrix.

The ideal pairwise comparison matrix would also be consistent. For

example, if E. is twice as important as E. and E. is three times as
1 J J

important as Ek, one would expect Ei to be six times as important as

Ek. However, human judgment is often inconsistent, and it is not

likely that a judge making pairwise comparisons will construct a

consistent matrix except in cases where the dimension is small. A

simple example in which pairwise comparisons do not result in a con-

sistent matrix is that of a tournament: X may win against Y and Y

against Z, but X may lose to Z.

The problem we consider is this: Given an inconsistent judgment

matrix A, how can we construct a ratio scale that in some sense best

reflects the information in the matrix? Saaty proposes that the

appropriate scale is the normalized eigenvector corresponding to the

maximal eigenvalue of A.

Saaty [28] argues as follows. If the judgment matrix A is con-

sistent, then the normalized eigenvector corresponding to the single

nonzero eigenvalue n does give the underlying ratio scale: A theorem

of Frobenius for matrices with positive entries [311 guarantees that

any judgment matrix has a positive eigenvalue L that exceeds all the

other eigenvalues in absolute value. This maximal eigenvalue has an

associated eigenvector that is positive in all its components.
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Now an inconsistent judgment matrix can be viewed as having been

derived from a consistent one by perturbation of some or all of the

matrix components. Because the eigenvalues and eigenvectors of a

matrix depend continuously on its components, small perturbations in

the components will result in small changes in the eigenvalues and

eigenvectors. Thus when the perturbations of the components are

small, the maximal eigenvalue is close to n, and the corresponding

normalized eigenvector is close to the normalized eigenvector of the

unperturbed consistent matrix. Therefore, Saaty selects the suitably

normalized eigenvector associated with the maximal eigenvalue as the

ratio scale corresponding to the judgment matrix.

Saaty also proposes an index of consistency for judgment matrices.

He shows that an n x n judgment matrix whose only nonzero eigenvalue

is n must be consistent, and that the maximal eigenvalue L for an

inconsistent judgment matrix is strictly greater than n. Therefore

he uses the normalized difference

L-n
n-I

as the index of consistency of an n x n judgment matrix with maximal

eigenvalue L. Notice that the index is zero for consistent matrices

and positive for inconsistent ones. Saaty also shows that the index

increases as perturbations of the components away from consistency

increase.

Unfortunately, the question of how small the perturbations of

matrix components must be to give rise to a given deviation in the

maximal eigenvalue is a delicate one. Saaty [28] describes an

empirical investigation of this question in which he determines the

consistency indices corresponding to randomly generated judgment

matrices of different dimensions. However, because the eigenvector

does not fit into any standard statistical framework, there is no

readily available device against which deviations from consistency

can be measured.

1"I
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Saaty does show ([28, p. 238]) that the consistency index p

reflects the variance in judgmental errors for an inconsistent matrix,

in the following sense. Suppose that the pairwise comparisons a.1 ,j
in the judgment matrix A actually arise from perturbations of the

ratios of components of some underlying scale (u1, u2,...,u n ), i.e.,

a.~ = e

e. . = I+d.
I,j1 i,j

Saaty shows that for small d , 2p is an estimate of the variance of

the d 1 . Starting from this estimate, Saaty develops a test of the

hypothesis of consistency for a judgment matrix ([281, p. 238).

The choice of a scale to be used in filling in a pairwise compari-

son matrix is somewhat arbitrary. Because humans find it difficult to

rank more than about seven objects at a time, Saaty recommends a sub-

jective pairwise comparison scale consisting of the integers from one

to nine together with their reciprocals. In this scale, a value of 1

is assigned to pairs of objects that are equally important. The inte-

gers 3, 5, 7, and 9 are associated with descriptive words (9 means
"absolute importance," 5 means "essential or strong importance"), and

the integers 2, 4, 6, and 8 are used for intermediate values. Recipro-

cals of integers are used so that the matrix of pairwise comparisons

is a judgment matrix--that is, is reciprocal symmetric.
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V. APPLICATIONS OF THE RATIO SCALE

Saaty presents numerous applications requiring the estimation of

ratio scales from pairwise comparison information ([191 to [301). He

cites examples in economics, political science, and transportation

planning, as well as in personal planning areas such as choosing a

school or a vacation spot.

One of the most interesting and useful applications of the ratio

scale is in the study of hierarchical systems. A hierarchy is a col-

lection of objects grouped according to levels. Objects at a given

level of the hierarchy depend on objects at lower levels. The objects

at one level may be ranked on a ratio scale according to their impor-

tance relative to a given object at the next higher level. Thus one

may construct a system of ratio scales, one scale for each level rela-

tive to every object in the next level up.

Once such a system of ratio scales has been constructed, it can

be used to study interactions among all levels of the hierarchy. For

example, in a hierarchy consisting of three levels, we may determine

the ranked importance of objects on the lowest level relative to each

object in the highest level. Suppose for simplicity that the highest

level consists of a single object, that the second level has n objects,

and the third has m objects. Let (wl, w2,.. . ,wn) be the ratio scale

that reflects the importance of objects in the second level relative

to the single object in the first level. Now the objects in the third

(lowest) level may be ranked on a ratio scale relative to each object

of the second level. Let

(u l'j, U2 , "m j .), j = 1, . .n

be the ratio scale for the third level relative to the jth object of

the second level. Then according to Saaty the importance of objects

in the lowest level relative to the highest level may be meastired by

the vector (v , v1., v ), where
1' m
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nv.= u. .w. i = 1,2,...
Vi 1,j j'

j=l

In matrix notation, if w = (wlw 2,. ,wn) is the ratio scale for the

second level relative to the single object in the first level, and if

U 1l1  U1,2  Ul,n
U2, 1  u2 ,2  ... u2,n

U=

Um 1  Um,2 Um,n

is the matrix whose ith column is the ratio scale for the objects in

the third level relative to the ith object in the second level, then

v = Uw

gives a scale of importance of objects in the third level relative to

the first.

The same procedure may be extended to hierarchies with more than

three levels. Thus knowing only the measures of importance of objects

in each level relative to individual objects in the adjacent higher

level, we may deduce their ranked importance relative to objects at

all higher levels. In particular, objects at the lowest level can be

ranked according to their importance relative to the object (or objects)

at the highest level.

As an example, consider the problem of selecting an automobile.

(This example is treated in more detail in Section IX.) The problem

can be viewed in terms of the hierarchical structure shown in Fig. 1.

The highest level of the hierarchy is the final selection of the

automobile. On the second level are attributes of the automobiles--

namely, status, cost, economy, and size. The third level consists of

the automobile makes to be considered. The automobiles themselves are

-t
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Fig. 1--itierarchy for selecting an automobile

ranked according to each of the attributes, and the attributes are

ranked according to their importance relative to the overal] objective

of selecting a car.

Table I gives the ratio scales determined from judgments made by

one prospective buyer. The order of automobile preference for this

buyer is then given by the product of the matrix and the vector in

Table 1:

.0378 .2703 .3357 .3143 .0885 .2847 H
.0294 .4196 .2929 .4630 .2425 .3703 T
.5239 .0554 .1071 .0596 .. 2579 =.1119 M
.1131 .1571 .1500 .1288 .4112 .1397 D
.2958 .0976 .1143 .0343 .0934 C
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Table 1

RATIO SCALES

Ratio Scale of Second Level Relative to
First Level

Status .0885
Cost .2425
Economy .2579
Size .4112

Ratio Scales of Third Level Relative to

Attributes at the Second Level

Status Cost Economy Size

H .0378 .2703 .3357 .3143
T .0294 .4196 .2929 .4630
M .5239 .0554 .1071 .0596
D .1131 .1571 .1500 .1288
C .2958 .0976 .1143 .0343

The final ranking reflects the buyer's perception of the relative

status, cost, economy, and size of the five automobiles considered

as well as his judgment of the relative importance of these four

attributes in the selection of an automobile. This buyer's first

choice should be T and his last choice C.
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VI. THE GEOMETRIC MEAN SCALE

It is clear from the example in the last section that the study

of interactions among various levels of a hierarchy depends heavily

upon our assessment of the ranked importance of objects at each level

relative to objects in the level above. The basic building blocks in

a hierarchical study are the ratio scales measuring the relative impor-

tance of objects at a given level. Therefore one would like to know

that the estimates of the ratio scales are well-grounded in statistical

theory, that they work well empirically, and that they can be calcu-

lated quickly. In this section, we propose a method for constructing

a ratio scale based on pairwise comparisons that is superior to the

eigenvector procedure when judged according to each of these three

criteria.

For n x n judgment matrices A = [a. .1 and C = [c i,j, define

m(AC) = [ 1/2( I Ia . -lnc

i=l j>i

It is not difficult to verify that m is a metric on the space of n x n

judgment matrices. Theorem 3 will show that for any n x n judgment

matrix A, there is a consistent matrix C that is m-closest to A. In

fact, such a consistent matrix is given by

C1 j = J

where

n
1/n

V= H a.vi T i,j1/

j=1
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that is, vi is the geometric mean of the elements of the ith row of A.

We will use the vector v, suitably normalized, as the estimate of the

ratio scale corresponding to A.

The following two invariance properties show that m is a suitable

choice of metric for the space of judgment matrices. Their proofs are

straightforward and will not be provided here.

Theorem 1 (Invariance under Transpose). (i) Let A = [aij] and

C = [ i'j] be n x n judgment matrices. Then AT and CT are also judg-

ment matrices, and

m(A T,c) = m(A,C)

(ii) Let A = [a. .] be an n x n judgment matrix, and suppose that

C = [c. .I is the* consistent matrix that is m-closest to A. Then
T i1, T
C- is the consistent matrix that is m-closest to AT.

Theorem 2 (Invariance under Change of Scale). (i) Let A =

[a., j ] and C = [ci1iI be n x n judgment matrices and (wl, w2 ,... ,wn)

a ratio scale. Define

A' = [a.i j wi /wj I

C' = [ci,jwi/w.]

Then A', C' are judgment matrices, and

m(A',C') = m(A,C)

(ii) Let A, C, A', C', be as in (i), and suppose that C is the m-

closest consistent matrix to A. Then C' is the m-closest consistent

matrix to A'.

The existence and uniqueness of C are guaranteed by Theorem 3.
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Recall that we seek a procedure for associating ratio scales to

judgment matrices in such a way that the ratio scales capture the sub-

jective information inherent in the corresponding matrices. Let A be

an n x n judgment matrix. Let C = (c I be a consistent matrix that

is m-closest to A, and suppose that v = (vl,V 2 ,... ,vn) is a ratio scale

for B; i.e.,

c i'j = vi/vV .

We choose (vv 2,. ..IV) as the estimator of the ratio scale corres-

ponding to A.

Under this association, Theorem I guarantees that the scale

(1/vl, I/v2,...l/vn)is the estimator of the scale corresponding to

AT. This is a natural requirement, because if v1 /vj estimates a.

then (1/vi/1/vj) should estimate a. . . Theorem 2 guarantees that our

choice of ratio scale is invariant under a scale change in the judg-

ment matrix. The eigenvector scale does not satisfy either of these

requirements.

The following theorem guarantees that the geometric mean scale

gives the m-closest consistent matrix to any judgment matrix.

Theorem 3. Let A = [ai . be an n X n judgment matrix. Let

C = [c. I. be the consistent matrix given by
1,3

c i'j = vi/vj,

where v. is the geometric mean of the elements of the ith row of A;
i.e.,

n
V 11 a i'j1/n1, .. n

j=1 1
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Then m(A,C) is the minimal m-distance from A to any n x n consistent

matrix.

Proof. For any consistent matrix C = [c. .1, we can write

ci'j = wi/w.

where w = (wlW 2 ,... ,wn) is a ratio scale. Thus we seek a scale that

minimizes the expression

E [lfn a. - (In w. - in wj) 2 .i=l j>i " ,

Because the estimating scale need be known only up to a scale factor,
we may normalize by imposing the side condition

n
j- w.1.

i=1

Let

Yi,j = In a 1 j, ij = 1,2,...,n

bi = In wi, i = 1,2,...,n

Then the problem is to minimize

n

E [yi,j - (bi " b-)]2

i:I j>i
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under the side condition

n i
b. = 0 .

i=1

Since

y. = -Yi,j, i,j = 1,2,...

and

yii = 0,

this is equivalent to minimizing

2
S n 1 3

i=1 j=1

under the side condition

n
b, = 0.

i=l

Now S is convex in the differences b. - b. and therefore convex in the
1 3

vector b, so its minimum occurs at the point where

as
= Ofor i = 1,2,...,n.

8b.
I

L
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Setting these partial derivatives equal to zero, we have for k
1,2,...,

n

as
2 - b k + bj

Bbk j=1

n n

L Ti Ykj k nbk

n

and therefore, since b = 0
j=l 1

n

Yk,j nbk"
j=1

Thus S is minimized by

n

E Yk,j
j=1

bk
k n

i.e.,

n
in ak,j

j=1
In wk , k 1,2,...,n

n
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Consequently the m-distance from A to C is minimized by the vector v

given by

n
v n a /n

vk = k, j

j=l

This completes the proof of Theorem 3.

Recall from Section III that if the matrix A is consistent, then

the normalized geometric mean scale is equal to the normalized eigen-

vector scale. Interestingly, the two scales are always the same for

judgment matrices of dimension less than or equal to three. To see

this in the case n = 3, let

1 a b
A = 1/a I c

1/b 1/c 1

Then the geometric mean vector for A,

(ab)
1/3

v = (c/a)
1/ 3

(1/bc)1/3

is an eigenvector for A corresponding to the eigenvalue

L = 1 + (ac/b) + (b/ac)3

Since L is of the form

+ x + 1/x

its value is no less than 3, the dimension of A (with equality in the

consistent case). Therefore w is an eigenvector corresponding to the
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maximal eigenvalue for A. Hence in the case n = 3, the normalized

geometric mean vector and the normalized eigenvector are the same.

This result does not hold in general for inconsistent matrices with n

greater than 3.

We have shown that given an arbitrary judgment matrix A, the

geometric mean vector gives rise to the m-closest consistent matrix to

A. The problem of representing a judgment matrix by a ratio scale can

also be cast in the framework of the general linear model. We will

show that under suitable assumptions the geometric mean vector is the

maximum likelihood estimator for the ratio scale corresponding to a

judgment matrix.

Let A = [ai j ] be an n x n judgment matrix. We assume that there

is an underlying scale (wl, w2,...,wn) whose ratios are perturbed to

give the elements of A; namely,

W.I
a. - e (6.1)Ij W. i,j '

J

and thus

In a. = In w. - In w. + in e.1, 1,j '

i = 1,2,...,n; j > i . (6.2) I-

Suppose that the errors e. are independent and lognormally distrib-
S2

uted with means 0 and variances a . Making the substitutions

In a1 1  in w in e

In a1,2  In e 1,2

B= E

In an~I,n In w In en_],n
n l nn .-],
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we have the general linear equation

Y = XB+ E

where the matrix X has components -1, 0, +1 determined by the

equations (6.2). In this framework it is well known 1321 that the

maximum likelihood estimate for B = [in wi is the least-squares

estimate given by

n

b. - In a.bi n,1

and that the estimate has all of the usual desirable properties of

least-squares estimates under the general linear hypothesis. Taking

exponentials we obtain the maximum likelihood estimate of w.:

n

w exp(bi) = [ a. n

j=l

the same estimate derived above from the metric m on tt~e space of

judgment matrices.

The procedure outlined above can be modified to solve more

general estimation problems. For example, suppose that instead of

a single comparison for each pair of objects E. and E. we have
1 J

ni comparisons, where n may be zero (reflecting missing data)

or greater than one (reflecting multiple comparisons, say by different

judges). The problem is then to find a w that minimizes the sum of

squares:

n a.

S = [In ai,j,k- (ln w i n w ) 2

i=1 j>i k=1
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This generalization does not yield a simple closed-form solution such

as the geometric mean vector, but in practice S can be minimized using

standard least-squares regression packages.
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VII. THE STATISTICAL MEASURE OF CONSISTENCY

The geometric mean estimation procedure outlined in Section VI

leads to a natural measure of consistency for judgment matrices that

is well-grounded in statistical theory and suited for use in statis-

tical hypothesis testing.

Let A be an n x n judgment matrix whose components arise from

multiplicative perturbations of ratios of an underlying scale w--

that is

ai j  e el j
W.

J

where In e i,j i < j are independent random variables with mean zero

and variance a . It was shown in Section VI that the maximum likeli-

hood estimate of w. is the geometric mean of the elements of the ith

row,

n
w.= II a. n

wi al Pj '
j=l

Let s2 be the residual mean square

2 SS 
2

2=
S -

d.f.

where
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n

SS2 E E In w- i/w2

i=1 j>i

d.f. n(n-1) - (n - 1) (n-1)(n-2)
2 2

Then s2 is an unbiased estimator of a2 and is a natural measure of

consistency of A.

22Recall from Section VI that SS5 can be viewed as the squared

distance from A to the m-closest consistent matrix. Therefore s

is zero when A is consistent, is close to zero when A is close to

consistent, and is far from zero when A is far from consistent.
2

Moreover, since s depends entirely on ratios of elements of A, it

is invariant under scale changes.
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VIII. EMPIRICAL COMPARISON OF THE TWO METHODS: A MONTE CARLO STUDY

The geometric mean vector gives an estimate for ratio scales

based on pairwise comparison data that is easy to calculate, satis-

fies the theoretical requirements of invariance under scale change

and transpose, and is well-grounded in statistical theory. It follows

from Section VI that under certain assumptions on the distribution of

the perturbations, the logarithms of the geometric mean vector compo-

nents are the minimum variance unbiased estimators of the logarithms

of the underlying ratio scale factors. In addition, there is empirical

evidence that the geometric mean vector is a better estimator of ratio

scales than the eigenvector when perturbations are not lognormally dis-

tributed, particularly in cases of extreme data inconsistency. This

section describes results of a Monte Carlo study comparing the geometric

vean vector and the eigcnvcctor as estimators of ratio scales.

Suppose we start with an n x n consistent matrix A with elements

ai j := ui/u

Let (e.~j i = 1,... ,n, j i) be a collection of positive independent

random variables drawn from a suitable population, and construct a

perturbed matrix D with elements

U.

e. . for i = 1,2,...,n, j > i
U.
J

I
dd for i = 1,2,...,n, j < i

1 for i = 1,2,...,n, j i

Then D is a judgment matrix, but because of the perturbations it is

not necessarily consistent. Now one would hope that any estimate of
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an underlying ratio scale for D would give rise to a consistent matrix

that is in some sense close to A. Two measures of closeness are used

in the Monte Carlo study described here: The sum of squares of errors

n

[u _ ui 1
2

and the sum of squares of the errors of logarithms.

n Z 7" 2SSL [Iu - In ui]

where

(ui, i = 1,2,...,n)

is the actual normalized ratio scale, and

(ui, i = 1,2,...,n)

is the estimated ratio scale.

The choice of population from which the perturbing random vari-

ables e. . are drawn should reflect the fact that in a judgment matrix
1,J

constructed by an actual judge, errors are likely to be reciprocal

symmetric. That is, for any a,b > 0, the random variables e. should

satisfy:

P(a < e. < b) = P(a < < b)
,j e.

1,j

Two convenient and quite dissimilar distributions satisfying this

property are a lognormal distribution whose underlying normal distri-
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bution has mean zero and a distribution obtained from the ratio of

two independent, uniformly distributed random variables. We consider

perturbations e. . drawn from populations with distributions of both

of these types.

Table 2 gives results of the Monte Carlo comparison of the geo-

metric mean vector and the eigenvector estimates when the underlying

ratio scale is perturbed by lognormal factors. For the first row,

ratios of a normalized scale consisting of five elements were per-

turbed by e. drawn from a lognormal population with a 2  01. Then1 ,j= . f. T e
the normalized maximal eigenvector and the normalized geometric mean

vector for the resulting judgment matrix were computed. This proce-

dure was repeated in 1000 similar trials, each time with the same

matrix dimension and population variance.

Table 2

MONTE CARLO COMPARISON OF GEOMETRIC MEAN VECTOR AND EIGENVECTOR
FOR RATIO SCALES PERTURBED BY LOGNORMAL ERRORS

The sums of squares of errors and sums of squares of errors of

logarithms were computed for individual trials and then totaled over

1000 trials for both the geometric mean vector and the eigenvector

estimates.

Columns 3 and 4 in the table give the total sum of squared errors

in 1000 trials. Column 5 gives the percentage of trials in which the

L J/
lidl III 1 ll . .. .. i... I .... 1 -
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geometric mean vector is a better estimator in a least squares sense

then the eigenvector. Columns 6, 7, and 8 present the same informa-

tion for the sum of squares of errors of logarithms.

Comparisons based on 1000 trials were made for scales consisting

of 5, 7, and 10 elements with perturbations drawn from lognormal

populations with underlying normal population variances of .01, .16,

.64, 1.0, and 2.0. The results in Table 2 indicate that the eigen-

vector and geometric mean vector give very close results when the vari-

ance is small--that is, when perturbations away from consistency are

minimal. However, for larger perturbations, the geometric mean vector

deviates less from its underlying ratio scale.

Table 3 gives results of the Monte Carlo comparison of the two

methods when the underlying ratio scale is perturbed by random vari-

ables drawn from a population of ratios of uniform random variables.

As in Table 2, underlying scales with 5, 7, and 10 elements are con-

sidered along with population variances for In e. . of .01, .16, .64,

1.0, and 2.0. Again, there is very good agreement between the two

estimators when variances are small. But for larger variances, the

geometric mean vector is closer to the underlying scale in both the

least squares and the least squares of logarithms sense.

Table 3

MONTE CARLO COMPARISON OF GEOMETRIC MEAN VECTOR AND EIGENVECTOR
FOR RATIO SCALES PERTURBED BY RATIO OF UNIFORMI ERRORS
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We conclude that in the presence of marked inconsistency, the

geometric mean vector provides an estimate of underlying ratio scales

that is empirically better than the maximal eigenvector.

I./
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IX. _ EXAMPLE

In this section we discuss the use of the eigenvector and the

geometric mean vector in a specific subjective judgment situation.

Estimates of underlying utility vectors and consistency values derived

from the two methods are compared.

Consider the automobile selection problem introduced in Sections

II and V. The hierarchical structure for this problem is given in

Fig. 1.

Subjective judgment data for this example were obtained from one

prospective buyer. The buyer made pairwise comparisons reflecting his

perceptions of the relative importance of the attributes of status,

cost, economy, and size in selecting an automobile. Judgments were

made based on the subjective judgment scale developed by Saaty (see

p. 17). The buyer made comparisons in such a way that the resulting

pairwise comparison matrix would be reciprocal symmetric (i.e., a

judgment matrix). The resulting judgment matrix A is:

Status Cost Economy Size

Status 1 1/5 1/5 1/2

Cost 5 1 1 1/3 A

Economy 5 1 1 1/2

Size 2 3 2 1

Next, judgment maitrices were constructed from the buyer's pairwise

compdrisons of the five types of jutomobiles relative to vach (it the

two attributes of status and size:
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Subjective Comparison Relative to Status

H T N 1) C

H 1 2 1/9 1/6 1/7

T 1/2 1 1 /9 1/6 1/7 1,
M 9 9 1 6 4 -

D 6 6 1/6 1 1/7

C 7 7 1/4 7 1

Subjective Comparison Relative to Size

H T ND C

H 1 1/2 7 3 8

T 2 1 8 4 9

M 1/7 1/8 1 l,'3 -3 c

D 1/3 1/4 1 4

C 1/8 1/9 1/3 1/4 1

The eigenvector and the geometric mean vector were calculated

separately for each of the three subjective judgment matrices above.

Resulting scale estimates for the two tchniques are given in Table 4.

Notice that the scales determined by the two methods are very

close in value. This is as expected from theoretical (onsiderdtions,

because the two methods give the same results for (onsistent matrices

and should agree, closely for nearly consistent ones.

k __ '1
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Table 4

COMPARISON OF SCALE ESTIMATES FOR THE AUTOMOBILE EXAMPLE

Normalized Consistency
Geometric 2 Normalized Consistency

Matrix Mean s Eigenvector Ur

Matrix A

Status 1 1/5 1/5 1/2 .0812 .5680 .0885 .1513

Cost 1 1 1/3 .2453 .2425

Economy 1 1/2 .2715 .2579

Size 1 .4019 .4112

P

Matrix B
Status

H 1 2 1/9 1/6 1/7 .0409 .5550 .0378 .1770

T 1 1/9 1/6 1/7 .0310 .0294

M 1 6 4 .5307 .5239

D 1 1/7 .1132 .1131

C 1 .2842 .2958

Matrix C
Size

H 1 1/2 7 3 9 .3152 .1150 .3143 .0417

T 1 8 4 9 .4632 .4630

M 1 1/3 3 .0581 .0596

D 1 4 .1299 .1288

C 1 .0336 .0343



42

T1 ralts in Table 4 indicate that the prospective buyer

considers autmobile size to be considerably more important than
status, cost, or ecoomy. N rasm T as having the best size

of amy of the cars under consideration.
Simn ezact values were available for cost sad economy of the

five autombile types, it was met mecessary to compute scales for them

from paisuise cqarisos. The meomalized scale values for the
utombiles relative to these two attributes were determined to be:

cost 3Atmes scoer Rating#

5 .2 U .3357
T .4196 .2M
• .AM4 .1071
a .1n71 .1500
C .4976 .1143

From eck mtbed, we am have scale estimates for the five auto-
mobile types relative to each of the four automobile attributes, as
wel " a scsale ef importance of the four attributes. Scale estimates
for the five cars relative to each attribute are used as colmas of a
5 x 4 mtrin. Ts matrix is multiplied by the 4-dimesional vector

of imprtame of attributes. The resulting $-d/imusional vector re-
flects the peepective buyer's raming of the five autmobiles. The
calculatlems for but mtbods are carried out in Table S.
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Table 5
XTIIIIATION O1 BAKINGS OF FIVE AUTIOIL

Geometric Mean Vector Hethod

Hake Criterion Final
of Car Status Cost Economy Size Scale Scale

H .0409 .2703 .3357 .3152 .0812 .2874

T .0310 .4196 .2929 .432 .24 .3711

H .5307 .0554 .1071 .0581 x .2715 a.1091

D.1132 .1571 .1500 .1299 .4019 -.1407

C .2842 .0976 .1143 .0336 .0916

Eigenvector Hethod

ake Criterion Final
of Car Status Cost Economy Size Scale Scale

N .0378 .2703 .3357 .3143 .0885 .2847

T .0294 .4196 .2929 ."630 .2425 .3703

H .5239 .0554 .1071 .0596 x .2579 = .1120

D .1131 .1571 .1500 .1288 .4112 .1398

C .2958 .0976 .1143 .0343 .0934
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