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NOTICE

When Government drawings, specifications, or other data are used for any

purpose other than in connection with a definitely related Government pro-

curement operation, the United States Government thereby incurs no respon- _.

sibility nor any obligation whatsoever; and the fact that the government may

have formulated, furnished, or in any way supplied the said drawings, spec-

ifications, or other data, is not to be rogarded by implication or otherwise

as in any manner licensing the holder or any other person or corporation,

or conveying any rights or permission to manufacture, use, or sell any

patented invention that may in any way be related thereto.
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Copies of this report should not be returned unless return is required by

* security corsiderations, contractual obligations, or notice on a specific

document.
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precision-guided munitions such as Copperhead and Hellfire. Autonomous
acquisition through pattern matching holds the promise of eliminating
laser designation and enhancing fire power by multiple target prioritization.

The pattern-matching approach being developed under this program is
based on a symbolic pattern-matching framework, which is suited for the
autonomous acquisition scenario. It is based on matching a symbolic
representation derived from the two images, and it can accommodate the
stringent pattern-matching criteria established by the scenario: enormous
differences in the scene perspective, aspect and range between the two
sensors, differences in sensor characteristics and illumination, and scene
changes such as target motion and obscuration from one view point to the
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I SECTION 1

IINTRODUCTION
1V

I
This is the second interim quarterly progress report on "Advanced Pattern-

Matching Concepts, " NV&EOL contract No. DAAK70-79-C-0114. it

reports the results of work performed between November 23, 1979 and

February 23, 1980.4

The key objective of this effort is the development of pattern-matching

algorithms which can impart autonomous acquisition capability to precision-

guided munitions such as Copperhead and Hellfire. Autonomous acquisition

through pattern matching holds the promise of eliminating laser designation

and enhancing fire power by multiple- target prioritization. However, this

application imposes stringent performance requirements on the pattern-

matching algorithm--it must be robust under perspective and aspect

change, target motion, illumination change, sensor differences, image

quality, and target obscuration. Conventional pattern-matching techniques

are incapable of meeting the performance requirements in the autonomous

acquisition scenario.

The pattern-matching approach being developed under this program is based

on a symbolic pattern-matching framework which is suited for the autonomous

acquisition scenario. It is based on matching a symbolic representation

derived from the two images, rather than on numerical correlation. It can
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accommodate the stringent pattern-matching criteria established by the

scenario: enormous differences in the scene perspective, aspect and

range between the two sensors, differences in sensor characteristics

and illumination, and scene changes such as target motion and obscuration

from one view point to the other.

Figure 1 shows a broad overview of the symbolic pattern-matching approach.

The symbolic pattern-matching technique is based on matching a symbolic

representation of the two images, not the gray levels of the individual

picture elements themselves, as in conventional correlation approaches.

A symbolic representation of an image consists of describing objects (or

distinctive elements) in the image and their positions.

SYMBOLIC SYMBOLIC
IMAGE FEATURE PATTERN

EXTRACTION MATCHING

Figure 1. Pattern- Matching Overview
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The symbolic matching technique operates on the symbolic image to find

an optimal match which simultaneously ensures 1) that the matched objects

are similar in their descriptors and 2) that the interobject configuration

in the two matched sets of objects are consistent. This yields a robust

pattern-matching algorithm which is insensitive to a number of variables,

including variation in object descriptors.

OVERVIEW OF PATTERN MATCHING

Figure 1 shows the basic steps in symbolic pattern matching between the

reference and sensed images. The first step is to extract object features

from both images. Note that the result of this scene analysis combines

both blobs (from a target screener segmenter) and edge-based features

such as long lines and vertices as well. The next stage is the symbolic

description of these objects (blobs and lines) as lists of object descriptors

and their positions in the two FOV. Finally, symbolic pattern matching

is performed between the two symbolic images to establish correspondence

between the target designated in the reference image and the corresponding

object in the sensed image.

The key to a robust symbolic matching is that in an optimal match both

the object descriptions and the inter-object relationships in the two images

should be consistent. Criteria for evaluating interobject configuration

matches must be able to account for scene perspective, aspect, roll, 'ad

scale differences. The development of an efficient search algorithm to

examine the most promising object and configuration matches as defined by

the match criteria is the main thrust of this program,

3
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SUMMARY OF PROGRESS

The following is a summary of the progress made in the second quarter

toward the above program objective.

1. Algorithms for candidate match selection have been developed,

implemented, and evaluated with FLIR imagery. Examples

indicate that the candidate match selection process is able to

limit the number of candidates to a few without discarding any

correct object-to-object matches. The procedure is illustrated

with an example taken from a pair of FLIR images.

2. Given the candidate matches, an efficient branch-and-bound

enumeration scheme to find the best match of object subsets

in the two fields of view has been developed and implemented.

Prioritized and unprioritized versions of an enumeration scheme

are illustrated with examples. The algorithm finds the best match

without an exhaustive enumeration of all possible matches.

3. Several criterion functions have been specified for use in the

branch-and-bound algorithm. Criterion functions are measures

of the goodness of an object configuration match between the two

images. The criteria include the similarity of individual object-

to-object matches, geometric transformation consistency, and

topological consistency. It is shown that the criteria are monotonic, t

guaranteeing that the branch-and-bound-algorithm yields the

optimal solution among all possible solutions.

41 i



I

4. All components of the matching process-the object extraction,

object feature extraction, candidate match selection, and the branch-

and-bound algorithm (with the criterion functions)-have been

installed in a complete system simulation at the Honeywell Image

Processing facility. Two pattern-matching examples on FUR

imagery obtained with the system simulation are included. The

examples demonstrate that correct pattern matching is feasible

between two fields of view 50 deg apart, even when only a few

objects are common to both fields of view.

5. A systematic analysis of how a priori information can be utilized to

speed up the search process has been made. A computer program

to predict the efficiency of the algorithm utilizing a priori information

has been coded and tested.

6. A minimal spanning tree approach to identifying distinctive clusters

of objects in the two fields of view has been developed. The

technique appears to have the potential of speeding up the search

process for the optimum match by finding good initial object-to-

object matches, using similar distinctive object clusters.

7. The data base generation task continues; 36 frames of FLIR imagery

have been digitized from FLIR video tapes at aspects of 0 ° , - 35,

and + 500 and spanning ranges from 8 kilometers to overflight.

This data base has identified a number of key issues and is helping

us quantify the performance of the approach under conditions that

are typical of the expected conditions in the Copperhead and Hellfire

scenarios.

5



REPORT ORGANIZATION

The body of this report is organized under the following headings:

" Section 2: Candidate Match Selection

" Section 3: Branch-and-Bound Matching Algorithm

" Section 4: Criterion Functions

" Section 5: System Simulation and Results

* Section 6: Analysis of A Priori Information

" Section 7: Minimal Spanning Trees

" Section 8: Pattern-Matching Data Base

i Section 9: Plans for the Next Reporting Period
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SECTION 2

CANDIDATE MATCH SELECTION

The candidate match selection algorithm is presented in this section. As

shown in Figure 2, the candidate match selection process operates on the

output of the feature extraction process and selects a list of likely matches

for the branch-and-bound algorithm. It effects a drastic reduction in the

complexity of the problem that must be solved by the branch-and-bound

algorithm. Part of this reduction is achieved by removing from considera-

tion the nondistinctive objects in the two images. The distinctive objects

are the objects that have high probability of having corresponding matches

in the other image. The rest of the reduction is achieved by rejecting

those object-to-object matches that are clearly dissimilar, as measured

by the object features.

The candidate match selection algorithm in the current simulation exploits

four object features. They are as follows:

1. Contrast with background

2. Area

3. Perimeter/Vire

4. Minor axis length/major axis length

7



IMAGE FEATURE CANDIDATE BRANCH-AN.
SENSORS EXTRACTION MATCH BOUND PATTERN

SELECTION MATCHING

INFORMATION ON
SENSOR POSITION
AND ORIENTATION

Figure 2. Block Diagram of Pattern-Matching Process

The candidate match selection is done in two steps:

1. Edit from the list of objects in the reference image all but the

N most distinctive objects, using contrast as a measure ofr
distinctiveness. Similarly, edit from the list for the sensed
image all but the N most distinctive objects.

s

2. For each remaining object in the sensed image, select candidate

matches in the reference image. First, remove from consider-

ation those of the remaining objects in the reference image that

have an area too large or too small or shape features too

different to be matches for the object in the sensed image. Then

use the area and shape information to rank those objects not

edited. Retain the C best matches.
max

8



It is assumed that estimates of the relative ranges for the two images are

available for use in evaluating the quality of area matches. Ns , N and

Cmax are chosen large enough to include the correct matches with high

probability.

An example of Step 2 for the image pair in Figure 3 is shown in Tables I

and 2. The objects extracted by the segmentation algorithm are shown in

Figure 4. The editing process of Step 2 is illustrated in Table 1.

Measures of similarity of the 10 most distinctive objects in the reference 4
image with an object in the sensed image are shown for the three features

used in Step 2. The larger the measure, the larger the dissimilarity

between objects. Very dissimilar matches are markod with asterisks,

and the objects remaining after editing are circled. he ranking process

is shown in Table 2. Ranks for similarity in the shape features are

combined into a shape score. The shape score and the area similarity

rank determine the overall rank of an object for match quality. The

true match is circled.

An example will illustrate the level of performance of the candidate match

selection algorithm. The candidate match selection for the segmentations

of Figure 4 is shown in Figure 5 and in Table 3. There are four correct

object-to-object matches in this image pair. They happen to be the four

targets. The targets were among the five most distinctive objects in the

sensed image, and their correct matches were ranked either first or

second among the candidate object lists.

9
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TABLE 1. EXAMPLE OF EDITING MATCHES IN STEP 2
OF THE CANDIDATE MATCH SELECTION ALGORITHM

OBJECT IN

REFERENC CO T DS REPANCY MASURES
NIMAGE RANK AREA . ,/A INORMAJR

2 .7 .23 .E2

141 3 1.111 .76* .M4

* .13 .72 .19

S.Af .21 .24

137 6 .N 1.66 1.724

162 7 .120 .2E .20

* .11 .17 m

to .0 1.13 1.13

INDICATES DISCREPANCY MEASURE LARGE ENOUGH
TO REJECT. ACCEPTED MATCHES ARE ENCIRCLED.

TABLE 2. AN EXAMPLE OF RANKING ACCEPTABLE MATCHES

RANK FOR , RANK FOR SHAVE AREA COMINED

,p/fA MIORSAJOR SCORE RANK SCORE

I3I 3 1 4 1 I

2 2 4 2 2

142 I 3 4 3 3

In 4 4 8 4 4

CORRECT MATCH ENCIRCLED

1t
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Figure 4. Objects Extracted for In-tapes of Figure 3
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a. Candidate matches for A are I and 2. (Object I
is in a three-object group at the left.

Figure 5. Candidate Match Selection Example
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Figure 5. Candidate Match Selection Example (continued)
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Figure 5. Candidate Match Selection Example (continued)
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e. Candidate matches for E' are .5 and 1. (Object I
is in a three-object group at the left.

Figure 5. Candidate Alatch Selection Example (continued)



f. (':tridid;itt iwoulhes for I.' :it'( 11 iIIJ 12

Figure 5. Candidate Match Selection Example (concluded)



TABLE 3. EXAMPLE CANDIDATE MATCH SELECTION

Object in Candidate Matches
Sensed Image in Reference Image

A 1,2

B 3,5

C 6,7

D 6,,9

E 5,1

F 11,12

In this example, retaining eight distinctive objects in the sensed image

and four candidate matches per object would include the correct matches

with high probability. For such a candidate match selection there are at

most 17, 920 four-object matches. The numLer of objects extracted by

the segmentation algorithm was about 40 per image. This implies that

before candidate-match selection there were about 2 x 1011 four-object

matches. As will be seen in the next section, the branch-and-bound

algorithm finds the correct match with about 400 match evaluations when

such a candidate match selection is used. On the other hand, it is estimated

that a hardware implementation would be able to do 300 match evaluations

per frame. Thus, the present candidate selector performance appears

very good, even with a conservative evaluation.

19



The example has raised a few key issues which should be addressed in

detail. The first issue is the probability of finding corresponding objects

in the two fields of view. In this example, the only distinctive objects that

were common to both fields of view were the four targets. On the other

hand, the background and foreground clutter has changed so drastically

that it is impossible to identify corresponding clutter objects in the two

fields of view. This is because the common ground covered by the two fields

of view can be extremely small -- due to the narrow fields of view, the low

angle of elevation, and large aspect angle differences between the two

sensors. In Figure 6, the narrow field of view and the low angle of

elevation have conspired to make the "footprint" of the sensor field of

view on the ground narrow and long. For aspect angle differences as

large as 500 as in this example, the common footprint on the ground is

confined to only the targets.

A further observation is that because of the low angle of elevation, clutter

and targets which possess 3D relief from the ground (like trees, tanks,

etc. ) tend to be more invariant to aspect angle differences than planar

* clutter (roads, rivers, temperature gradients in the terrain, etc. ). This

issue will be studied in detail in the next reporting period to determine

the limitations placed by the geometry of the sensors on the presence of

corresponding distinctive objects in the two fields of view. To maximize

the common footprint, it appears that a wide field of view look would be

needed (if only from the acquisition sensor, i. e., the RPV FLIR).

2
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NARROW
FOV

Figure 6. Illustrates the Sensor Geometry for the Example in Figure 3
(Note the small common footprint because of the low angle of
elevation, narrow FOVs, and the aspect angle differences.)
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The second issue that is illustrated by the example in this section is the

need for configuration analysis. As we saw, the candidate match selector

does not always rank the correct object match highest in similarity, based

on the object-to-object similarity alone. However, the correct match is

within the first few most similar objects for every object in the sensed

image. This points to the need for the configuration matching. In its

absence, it would be difficult to distinguish a specific target (from all

other targets and distinctive clutter in the field of view) for target

prioritization. This is needed to achieve rapid salvo fire, with successive

projectiles being programmed to hit different targets in a target cluster.

This example also points out the difficulty of truly autonomous acquisition,

especially as it relates to the rejection of false alarms.

22
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SECTION 3

BRANCH-AND-BOUND MATCHING ALGORITHM

The final search for the best multi-object match among the candidate object-

to-object matches allowed by the candidate match selector is implemented

with a branch-and-bound algorithm. It achieves efficiency by enumerating

the set of matches in such a way that when a partial match fails a simple

test, the entire subset of matches containing the partial match need not be

evaluated. The algorithm is presented in this section and illustrated with

examples.

The branch-and-bound algorithm finds the best n-object match that can be

formed, using the object-to-object matches allowed by the candidate match

selector. It is most naturally presented as an efficient way to search a tree.

A tree enumerating all one-, two-, and three-object matches for the

candidate match selection of Table 4 is shown in Figure 7. The nodes of

the tree specify object-to-object matches. An m-object match is specified

by the nodes visited when m-consecutive branches are traversed, starting

from the root.

In the branch-and-bound search for the best match, each path from the root

is traced down until it is terminated. A path is terminated in two situations:

1. Terminal level: n branches have been traced, and a full n-object

match has been specified.

23



TABLE 4. CANDIDATE MATCH SELECTION

Object in Candidate matches
sensed image in reference image

11,2

111 5,6

2. Suboptimality Test: The algorithm has reached a node which is

clearly suboptimal and cannot be a part of the best n-object match.

For example, if the suboptimality test were satisfied at nodes B and C .

in Figure 7, but not at A and D, a search for the best two-object match

would have to trace the branches marked with bold lines.

The process of tracing a path corresponds to building up a partial match,

one object-to-object match at a time, until a full n-object match is built

or until it is clear that the best n-object match cannot be built by adding

more object-to-object matches to a partial (<n) object match.

24 1
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When the suboptimality condition occurs at a node, the partial match

specified at the node is rejected--it cannot be part of the best complete

n-object match. Furtherm0,re, when a partial match is rejected, all

the complete n-object matches containing it are implicitly rejected. Rather

than exploring further implicitly rejected matches subtended by the node,

the algorithm backtracks to a node not previously explored. This is how

the algorithm achieves efficiency.

For the suboptimality condition to be detectable, it is necessary that the

criterion function that evaluates the goodness of a match satisfy monotonicity.

Monotonicity is defined as follows: Let m be an object-to-object match

allowed by the candidate match selector. Let a match containing i object-

to-object matches be written.
M(i)m2 ,

M = (mi1  ... mi).

Let f(M M) be the function that evaluates the goodness of matches. Let

f(M1 M) < f(M2 M), whenever MlI is better than M2 M. The function

is defined for partial matches, as well as for complete n-object matches.

Let us denote

M + m = (m, m,).

The monotonicity condition is satisfied if

f(M +M)! f(M(i)).

In other words, adding an object-to-object match to a partial match never

decreases a monotonic criterion function.

26
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Using the monotonicity condition to detect suboptimality is simple. A

record is kept of the best n-object match found so far in the search. Each

time a path is traced to a new node, the criterion function is evaluated for

the partial match specified by the new path. If the value obtained is larger

than the value of the criterion function for the best n-object match found so

far, the monotonicity condition guarantees that all n-object matches specified

by tracing further will be worse than the current best match and, hence, can

be rejected without explicit evaluation. The best n-object match formed

during the search is obviously the best n-object match that can be formed.

I The branch-and-bound algorithm is given in steps 1 through 9 below. A

flowchart is shown in Figure 8. The notation may be interpreted either in

terms of a path being traced in the tree or in terms of the partial matches

Jspecified by the path as it is traced. The notation is as follows:

i -- tree level indicator. The algorithm extends a path from the

j root by adding a branch at level i. This corresponds to adding

one object-to-object match to a partial match containing (i-1)

jobject-to-object matches.

N i)_ the partial match specified by a path that has been traced i levels

down the tree. M( 0 ) is an empty partial match.

fm }-- an ordered list of the candidate object-to-object matches at level i

that need to be considered for addition to the current partial match

M M. Equivalently, a list of the branches to be added at the end

of the path being traced. mij is the j object-to-object match

in the list at level i.

27
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nb(i) -- the number of entries in [m 1, possibly zero.

bp(i) -- branch pointer for level i. Only one path is traced at one

time. bp(i) points to one entry in [(ni that is in the path

currently being traced at the ith level.

M -- the best n-object match found so far in the search. Initially

M= 0. the null match.
,

Z the criterion function value for M ,initially -. Z is a bound

for the value of the criterion function for the best match M .

The branch-and-bound algorithm:

1. Initialize

i=1

M =0

2. Enumerate possible matches for next level.

Create the ordered list (i.

Set nb(i).

3. Preset bp(i) = 0.

4. Is examination of m ij complete?

bp(i) = bp(i)+l.

If bp(i) > nb(i), go to step 9.

5. Add to current partial match.

M~i) ( M~i ' l  bp(i)

- 29I



6. Test for situation 2.

If f(M(i)) > z, go to step 4.

7. Extend path if it is neither suboptimal nor a complete n-object match.

If i=n, then go to 8, otherwise

set i-i+l and go to 2.

8. Update best match when a full match is formed.
If f(M(i)) < Z, set M (i)

and set Z = f(M(i)). Go to step 4.

9. When a subtree has been completely searched, go back one level

to look for unsearched subtrees. If this is impossible because

i=1, terminate.

If i>l, set i=i-1 and go to step 4.

If i=1, best match is M . Stop.

The following example of a branch-and-bound search will serve to clarify

the algorithm. This example is further extended in the discussion on

enumeration.

To the right of and below each node in the tree of Figure 7 is the value of a

criterion function for the match specified by tracing from the root of the

tree to the node. Inspection will show that the function is monotonic; i.e..

going one level deeper in the tree never decreases its value.

The branch-and-bound search for the best two-object match proceeds as

follows: The first time step 2 of the algorithm occurs, the tree level

indicator i is I and the six branches from the root of the tree to nodes

A, B, C, D, E, and F are enumerated in the first list. Node A is considered

30 Ji



first, and its criterion function is lower than the initial value of Z, which

is infinity. The path from the root to node A is not terminated by either

of the two situations discussed.

At step 2 with i=2, the four branches from node A to nodes G, H, I, and J

are enumerated in a second list. The nodes are evaluated in turn. When

node G is evaluated, it has f(M( i )) < Z, so G is accepted as the best two-

object match so far, and the value of Z is updated. H is even better than G;

when H is evaluated, it is accepted as the best match so far. I and J are not

as good. After J is evaluated, the subtree subtended by A is completely

searched. This condition is detected by the test of step 4. The algorithm

goes back to examine the next branch in the first list, to node B. At node

B suboptimality is detected, and the subtree subtended by B is not searched.

The same thing happens at node C. The last branch to be examined in the

first list is D. Neither condition terminates the path to D, so a new second-

level list of branches from D to Q and R is created. Nodes Q and R are

evaluated. Q is a new best match. After R is evaluated, control passes

back to the level 1 list. Nodes E and F are terminated because no two-object

matches containing the one-object matches of those two nodes remain to be

evaluated. After E and F are terminated, the algorithm stops, with the

match of node Q detected as the best match.

The two most important issues in the implementation of a good branch-and-

bound matching algorithm are the enumeration procedure in step 2 and the

criterion function. The criterion function will be discussed in Section 4.
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Discussion of the enumeration procedure is presented below. The require-

ments that the procedure must meet are outlined, and the procedure is presented

in detail. With the aid of examples we can show how the procedure meets

the requirements and what advantages it has over alternative procedures.

To guarantee that the branch-and-bound algorithm finds the best match, it

is essential that the enumeration procedure be exhaustive, that is, that it

be able to enumerate all allowed matches. For efficiency the enumerator

should be nonrepetitive; it should enumerate no allowed match more than

once. As will be seen, it is also important that the enumerator be able to

prioritize, to order the lists it generates to maximize the probability that the

correct match will be found early in the search. The enumerator meets

all of these requirements. In addition, it accomodates many-to-one matches,

and it requires only a modest amount of computer memory.

The enumeration procedure has three steps. In the first step an unedited,

unprioritized list is created. It contains all matches that need to be con-

sidered in the branch-and-bound algorithm. When i=l, the list consists of

all matches allowed by the candidate match selector. When I > 1, the list

is copied from the list for the previous level. Copying all of the previous list

would guarantee exhaustiveness, but not nonrepetitiveness. The enumeration

procedure copies all of the previous list except the following:

1. The object-to-object match in the current partial match.

2. Those object-to-object matches which have already been considered

at level i-1.

When these exceptions are made, exhaustiveness is preserved and non-

repetitiveness is achieved.
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In the second step the object-to-object matches in the new list that are not

compatible with the current partial match are removed. This editing

does not affect exhaustiveness. It is used to remove unwanted many-to-one

matches.

In the third step the list is reordered so that the matches most likely to

lead to the correct full match are first in the list. This prioritization

affects neither exhaustiveness nor nonrepetitiveness. Enumeration is

accomplished by executing steps 1 through 3 below at step 2 of the branch-

and-bound algorithm. The notation is as follows:

i, nb(i), bp(i), mi.. -- as in branch-and-bound algorithm.

P s(j, i), Pr(j, i) -- ordered pair specifying mi. Ps (j, i) and

P r(j, i) are pointers to the objects in the sensed

and reference images in the j match mi.. in the

list for level i.

N - number of distinctive objects in sensed image.s

Nc( k) number of candidate matches in reference image for kth

distinctive object in sensed image.
th t

C(m, k) -- pointer to m candidate match for kth object in sensed image.

Enumeration procedure:

1. Make an unedited, unprioritized list of object-to-object matches to

consider for addition to the current partial match. If i=l, obtain

a list from the candidate match selector output. If i > 1, obtain

a list from the list for the previous level.
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If i=l

then

begin

j=0

k=O

while k<N
S

k=k+l

111=O
while m<N (k)

mm+l

j=j+l

P (jQi)=k

Pr Qj,i)=C(rn k)

endwhile

endwhile

end

else

begin

j=0

kbp(i-1)

while k<nb(i-l)

kzk+l

juj+1

Pa (j, i)=P s(k, i-1)

Pr (j,li)=P r(k, i-1)

endwhile

end

nb(l )=j



2. Remove from the list those object-to-object matches that are

incompatible with the current partial match M' . (Edit

disallowed many-to-one matches.) Compact list and update nb(i).

3. PrioritLe by sorting the list so that the matches that appear

most promising are first in the list.

An example will clarify how the enumerator achieves exhaustiveness and

nonrepetitiveness. The tree in Figure 7 is generated by the enumerator

when no many-to-one matches are allowed for the candidate match selection
3 1

of Table 4 and no prioritization is attempted. There are (1)2 = 6 one-object3 2 3 3= 1
matches, (2)2 = 12 two-object matches, and ( )2= 8 three-object matches.

All are enumerated without repetition. Consider what happens if suboptimality

does not occur at node C. The list for level 1 is Im iiI = 11,12,113,114,1115,

1116), and when the new list is enumerated bp(l)=3. For bp(l)=3, the matches

I1, 12, and 13 are not copied to the new list. All the matches containing

I1 and 12 have been enumerated in the subtrees of nodes A and B. 112 is

being considered in the current partial match. No match needed to form

the matches containing the current partial match that have not already been

enumerated has been left out of the new list. Before editing, the new list

is [114, 1115, 1116). 14 will be eliminated; together with 113, it would

constitute a many-to-one match. The matches remaining after editing, 1115

and 1116, are both needed to form matches not yet enumerated. By eliminating

from the new list all unnecessary matches, but keeping all the necessary

ones, exhaustiveness and nonrepetitiveness are attained.
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Good prioritization in the enumeration procedure causes the correct match

to be found earlier in the branch-and-bound search. This means that small

values of the bound Z are found sooner and, thus, more of the tree is pruned. A

For example, the search tree of Figure 7 could be replaced with the tree of

Figure 9 , if the first level list were prioritized. The number of two-

object matches examined in the new search tree is 4, two fewer than in

Figure 7. (Note that all possible matches are enumerated nonrepetitively

in the tree of Figure 7. The gain from prioritization is modest in this tl
small example tree. The gain is much greater in a larger tree.

The present algorithm with its enumeration procedure compares favorably

with the alternatives in trading computer memory and algorithm complexity

for prioritization capability. One alternative is to do prioritization of the

objects to be matched with objects in the sensed image without prioritizing

objects in the sensed image. This would reduce the required computer

memory. However, an efficient coding of the present algorithm requires

only about 400 memory words for enumerating all five-object matches for

a candidate match selection retaining 10 distinct objects and 5 matches

per object. The memory that could be saved would not justify the reduced

prioritization capability. The other alternative is to adopt an algorithm

that traces multiple paths simultaneously, extending the most promising

path first. Such an algorithm would be able to prioritize more and would

find the best match with fewer evaluations. It would require more memory

and more complexity, and for some problems much more. The present

algorithm finds the correct match in 350 to 800 evaluations, while it is

estimated that a hardware implementation would be able to do 3000 evalu-

ations per frame. Experience with the present algorithm suggests that

some use of multi-path techniques might offer advantages for more difficult
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problems that can be attained with acceptable amounts of computer memory.

This possibility will be investigated.

The ordering required for prioritization is achieved by evaluating a

heuristic function for each match in the new list and sorting the values

obtained. The heuristic function is the error in predicting the position

in the sensed image, given the estimate of the image-to-image transfor-

mation derived from the current partial match. It will be discussed in

more detail in the next section.

Many-to-one matches do appear in correct image-to-image matches; it

is an advantage to be able to handle them. Images sensed at close range

tend to have distinctive objects segmented as multiple objects. At longer

ranges, objects such as targets are segmented as single objects. If one

image is at close range and the other at long range, there will be valid

many-to-one matches. Changes in aspect also give rise to many-to-one

matches. Many-to-one matches also occur with line structures, as when

a gap in a long line is bridged by edge-feature extraction algorithms for

one image but not the other. The enumeration procedure offers flexibility

in handling many-to-one matches.

I '
I
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SECTION 4

CRITERION FUNCTIONS

In this subsection the criterion function will be discussed. The criterion

function must satisfy two requirements:

1. It must realistically reflect the goodness of a match.

2. It must be monotonic; i. e., adding a match to a partial match

must never decrease the criterion function.

Failure to meet either requirement will prevent the branch-and-bound

algorithm from finding the best match. The criterion function combines

information about the distinctiveness of the objects in a match and the

quality of object-to-object matches with an evaluation of the configurational

consistency of the match. The effectiveness of the criterion function will

be discussed in the subsection on simulation results.

The criterion function f has three components, which may be written

as follows:

f(i)M f (M Mi
f(M )w Wdist dist

( (i)
+w f (M

cm cm

conf conf (M
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where the w's are weights, and fdist' f cm and fconf are functions

evaluating the distinctiveness of the objects matched by M , the quality

of object-to-object matches in M , and the likelihood that the configuration

of M(i) is correct. f is monotonic if the weights are nonnegative and the

contributing functions are also monotonic.

The three functions fdist, fcm# and fconf will be discussed in turn. To

simplify discussion, let M(i) = (mi. m 2 .... mi), and let s and r. be the

objects in the sensed and reference images for object-to-object match m..

Let (xsj Ysj ) and (x rjyrj ) be the coordinates of s. and r. in the two images.sj 3 j
Let t be an arbitrary object.

The Distinctiveness Component

Given two matches that are otherwise as good, the match using the more

distinctive objects is preferred. The distinctiveness component of the

criterion function, f dist is

i

fdist (M(i)) d(s.) + d(r

j=l

where d(. ) is a function that measures the distinctiveness of the object it

takes as an argument. fdist is monotonic if d(. ) is nonnegative, and matches

using more distinctive objects are preferred by the branch-and-bound

algorithm if d(" ) increases as objects become less distinctive. Both

requirements are easily met. In the present simulation, d(t) is the

contrast rank of the object t.

40
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The Object Similarity Component

Evaluation of the quality of object-to-object matches is incorporated into

the criterion function with f . The function is of the form
cm

i
f cm(Mi) M E q(s j, r.).
cm i-

j=l

f is monotonic if q(.,•) is nonnegative. It favors the better matches ifcm

q(sj, r.) decreases as the quality of the match between s. and r. increases.

In the present simulation, q(sj, r.) is the rank of r. in the list of candidate33 3
matches for s.. Thus, q(rj, s.) is determined by the candidate match

selector operating on its feature base without reference to considerations

of configurational consistency.

The Configuration Component

The component of the criterion function that contributes most of the power

to discriminate between good and bad matches is the configuration evaluation

function ff, f has three components:
cn*conf

fconf (M M) f ms(M M ) + ftopo (MM) + fap (Mi)

f and f evaluate the self-consistency of the configuration; f
ms topo ap
evaluates the consistency of the configuration with the a priori information

about the sensor positions and orientations, hereinafter referred to

simply as the a priori information. Each of the three components is

monotonic; therefore, f is monotonic.

conf
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f is a least-squares residual prediction error that is small when the
ma

positions of the objects in the sensed image may be predicted accurately

with a linear transformation operating on the positions in the reference

image. Let W denote a 2 x 3 matrix. Then

i -x7 2

f (M M ) = min - W
ms W " 1 r

An example showing the increase in f as a match configuration becomes
m s

less self-consistent is shown in Figure 10. The optimizing W for M G )

will be denoted W.. It is well-known from linear regression theory that
1

* -1
W. =AB

I

where r (Xrj 1)

j=l LXJ r

and i

B E (Xrj Yrj 1)T (Xrj Yrj 1
j=1

f smay he sqeen to be monotonic as follows: Let M 0 + 1)  M Mi +Mi.

Denote

x sj =(x si Ysj

rJ ( rj Y rj

42
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0 0 ec
C 0

B

* 0 0 C

A B A

REFERENCE SENSED
CONFIGURATION CONFIGURATION

a. A perfect match. Points in the sensed image are predicted exactly by
a linear transformation operating on the matching points in the
reference image.

C

C D X e
0

X
X

A 0 0

REFERENCE SENSED
CONFIGURATION CONFIGURATION

b. A bad match. The best predictions for a linear
transformation are shown with x's.

Figure 10. :\n Example Showing flow the Function f I)et(.cts Bad Mlathcs
Ills
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Then

f (M (i+ 1)) fms(M - 2. 2& I
f ( -f (M x .- W _x - x .- W x.

ms sJ i+1 rj Z sjV i rj
j=1 "=1

2
+ x -W xso i+1 i+l r, i+1

The term in the braces is nonnegative because W. is optimal for M , and1

the second term is always nonnegative. Therefore,

f (M ( i + ) ) f (M(i))
ms ms

and f is monotonic. In the current simulation, prioritization depends onms,

the optimal transformations W.. A heuristic function g(. ) is evaluated for
1

the m. m.. in im..) and the list is sorted. The heuristic function is:3 ij 13

g~m i Xsj- Wi-I xr

This heuristic function causes the match most consistent with the configur-

ation of the current match to be considered next. The relationship given

above for W. is not valid for i < 3 because the matrix B is singular. For
1

i < 3 the information in the match configuration is used to modify an

estimate of the true matching transformation based on the a priori

knowledge. For example, for i = 1 the single match is used to determine

the translation, and the other parameters in W. are taken as those estimated1

from the a priori knowledge.

4
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The transformation W corresponding to the best match may be used to

determine the location in the sensed image of any point in the reference

image. This gives the capability to steer toward targets that are not even

segmented in the sensed image.

Correct image-to-image matches are topologically consistent regardless

of sensor range, aspect, or perspective. The function ftopo evaluates how

much a configuration must be altered to achieve topological consistency.

If the inconsistency is greater than what is attributable to segmentation

errors, the configuration may be rejected.

The topological consistency function ftopo (M Wi) is computed as follows:(i) ) t~
Let A klM ) be a pair of triangles in the sensed and reference images

defined by x , Xsk' and x and by x rj' XrkI and x l* Two examples are

shown in Figure 11. The triangle pair is consistent if a directed path

from vertex j to vertex k to vertex 1 is either clockwise in both images or

counterclockwise in both.

Three collinear points are consistent with any triangle. The function

Xjkl ( Mi ) ) is defined to be equal to the square of the minimum distance
M(i) )

for which it is possible to move a point in either triangle of t (kl M ) and

achieVe topological consistency. This is the square of the shortest

altitude of the two triangles. An exarnple is shown in Figure lib. ftopu
combines the values of X kl for all triangles that can be formed with

M(i) and is defined as

M(i) = if

topo if > crit

L. c 4t



~X

X X r

K>rrXsj X A rl

a. A topologically consistent match

A sk--
XX

Srk

I J* rj ri

b. A topologically inconsistent match
Minimum distance to consistency = 1

Figure 11. Examples of Topologically Consistent
and Topologically Inconsistent Matches
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where

max Xjkl (M(i).

S1T- 1<k<j

The threshold Mcrit is chosen so that an inconsistency greater than what

is attributable to segmentation error always leads to rejection of M(i)

ftopo is monotonic if X jk is nonnegative, which it is.

This method of evaluating topological consistency has the advantage that it

will not reject configurations with collinear objects because of small

segmentation errors.

The function f (M Mi ) for evaluating the consistency of a match withap
a priori information is defined as

ap r ( M i )  p (M

f is computed as the result of a ratio test:

r

r if r ( )  r r(2) for 1k<j :i
f (M M) o crit jk crit

r otherwise,

where Xs- J/I- 2
r= X sj- xkly X - x ,

f is computed as the result of a test of how well the a priori information
p

predicts the differences between points in the sensed image:
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0OiflIx.x )W(x .x )1 2  d2

(i)f

s k r kcrit

f (MM)) for1!k<j i

for some WeA

otherwise.

A is a set of matrices consistent with the a priori information.

The thresholds r(1) r( 2 )  and d2  and the set A are chosen to make
crit' crit' crit'

the probability of rejecting an incorrect match high, while keeping the

probability of rejecting a correct match low.
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SECTION 5

SYSTEM SIMULATION AND R.,?SULTS

In this section the current state of the simulation software is discussed,

and results of simulation experiments are presented. The simulation is

implemented in three parts. They are as follows:

" PATS segmentation algorithm

" Candidate match selector

" Branch-and-bound pattern matching algorithm

A block diagram is shown in Figure 12. The PATS segmentation algorithm

has been discussed in a previous report. 1 The algorithms for the candidate

match selector and the branch-and-bound pattern matcher are as discussed

in other sections of this report. All the parameters of the two algorithms

are inputs to the actual programs. This allows full flexibility in experiment-

ing with the parameters of the algorithms.

The parameters input to the candidate match selector are as follows:

1. N s , N r * and Cmax . These are the number of objects to consider

in the two images and the number of matches to retain per object

as discussed earlier.

1 P.M. Narendra and J.J. Grabau, Advanced Pattern-Matching Techniques
for Autonomous Aquisition: First Quarterly Progress Report, NV&EOL

Contract Number DAAK 70-79-C-0114, Honeywell Systems and Research
Center, Minneapolis, Minnesota, Report Number 79SRC104, December 1979.
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PATS SEGMENTATION CANDIDATE MATCH BRANCH-ANO-ROUND
ALGORITHM SELECTOR PATTERN MATCHER

Figure 12. Block Diagram of Simulation Software

2. Thresholds governing the editing in step 2 of the algorithm.

3. An estimate of the ratio of areas of matching objects in the two

images.

The parameters N.0 N r and C max and the thresholds may be set large to

simulate degraded candidate match selector performance.

The candidate match selector program has a display capability for interactive

experimentation with the algorithm.

5
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The parameters input to the branch-and-bound matching programs are

as follows:

1. The weights Wdist, Wcm, and wconf for the three main components

of the criterion function.

2. Thresholds for the functions f topo f ' and fp

3. An estimate of the matching transformation.

4. A specification of whether or not to prioritize.

jBy setting weights and thresholds appropriately, it is possible to inhibit

the different features of the criterion function and determine their con-

ftributions to the power to reject incorrect matches. The effect of errors

in estimating the matching transformation from the a priori information may

also be determined.

Outputs of the program that are used in algorithm evaluation are as follows:

1. An image display that shows the matches evaluated and the best

match in a simple color-coded format.

2. A CRT output of the values of the three components of the criterion

function and the thresholding functions for which a threshold

was crossed, for use with (1) above.

3. A hard-copy printout that includes the information of (2), plus a

trace of the tree enumerated and statistics on the number of match

evaluations at each level of the tree.

These outputs give a detailed picture of algorithm performance.
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Three examples of simulation results will be presented in this section.

The main purpose of the first example is to show the power of the a priori

information in rejecting incorrect matches. The second example demon-

strates the ability of the algorithm to find the correct match quickly after

it has found a correct object-to-object match at level one of the tree. This

capability exists because of the full prioritization capability of the enumeration

procedure. The third example shows how the power of a test for the con-

sistency of configurations varies with the accuracy of the a priori information. ti

EXAMPLE 1

The main point of this example is the power of the a priori information for

rejecting bad matches. The candidate match selection for this example is

the one shown in Section 2 in Figure 6 and Table 3. Algorithm parameters

are as shown in Table 5. The full search tree is shown in Figure 13.

The correct match was determined with 49 match evaluations. The nodes

of the tree were examined in the order indicated by the numbers to the right

of and below the nodes. The first 14 match evaluations are shown in Figure

14. The objects involved in a match are marked with the symbols of Table 4.

The node numbers of Figure 13 are at the upper left in the photographs of

Figure 14. The photographs at the top are for the sensed image; those at

the bottom are for the reference image.

The algorithm starts with an incorrect match at node 1. It enumerates two-

object matches containing this match at nodes 2 through 7. All of those

matches can be rejected easily, using only the tests of consistency with the

estimate of the matching transformation derived from the a priori information.

52



TABLE 5. BRANCH-AND-BOUND ALGORITHM PARAMETERS
_ _ _FOR EXAMPLE 1

Weights Wdist = W = Wdit cm conf

Thresholds fcrit = 10 pixels

rit = 707, of truc scale

(2)
"refit= 130% of truC sc:,l,

d crit 50 pixels

Estimate of 10 roll error, translaition
Matching Trans- error equal to distance beteen
formation from targets
a priori
information

Prioritization inhibited

When all the two-object matches are rejected, the search of the subtree

subtended by node 1 is complete, and the algorithm passes to the next

match at level one of the tree which is at node 8. This is a correct

match. Two-object matches containing this match are enumerated at

nodes 9 and 22 through 26. The first considered is correct. Three-object

matches containing the correct two-object match specified at node 9 are

enumerated at nodes 10 through 13. The incorrect matches of nodes 10

through' 12 are easily rejected, using only the tests of consistency with a

priori information. The correct three-object match is found at node 13.

The four-objc.ct matches containing this match are enumerated at nodes 14

through 17. The match at node 14 is the correct four-object match.
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In the other simulation experiments it was found that, as in the example,

most of the incorrect matches could be rejected at high levels in the tree

by checking for consistency with the a priori knowledge. Munition roll

will probably be the most important perturbation in the a priori information.

Simulated errors in roll measurement of 100 had no effect on the matching

process for this example.

EXAMPLE 2

This example shows that the prioritization capability makes it possible for

the algorithm to find the correct match quickly. The candidate match selection

for this example is shown in Table 6. The parameters of the candidate

match selection algorithm were set to simulate a lower selection performance

than that of example 1. The branch-and-bound parameters were as in

example 1, except prioritization was enabled. The first four matches

enumerated are shown in Figure 15 in the same format as for example 1.

The correct four-object match was found in the minimum time- -four match

evaluations.

EXAMPLE 3

In this example data is presented to show how the power of one of the two

tests of consistency with the a priori knowledge--the prediction quality test

f -- depends on the threshold d crit. The candidate match selection was asP

in example 2. The branch-and-bound atgorltnim parameters were as in

example 1, except dcrit was varied. The number of match evaluations

for the different levels of the tree are shown for three different values of

dcrit in Table 7. The test f operates at all levels of the tree except the

first. It has no effect on the number of matches evaluated at levels 1 and 2

of the tree. Table 7 shows that there is a large reduction in the number of
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TABLE 6. CANDIDATE MATCH SELECTION FOR EXAMPLE 2

Object in Candidate matches
sensed image in reference image

A 1, 2, 3, 4

B 5, 3, 2, 1

C 6, 7, 8, 9

D 6, 9

E 5, 1, 10, 3, 2

F 11, 12, 3, 13, 2

G 1, 2, 3, 4

H 3, 11, 2, 13

matches evaluated at levels 3 and 4 of the tree when the test is switched

from dcrit = "c (disabled) to dcrit = 100 pixels.

The reduction occurred even though many of the incorrect matches were
rejected by the other tests, and even with a value of dcrit as large as 100

pixels. The conclusion is that f is powerful, even with a high d crit. ThisP
means that extreme high quality a priori information is not essential for

f to be powerful.
P
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TABLE 7. DATA FOR EXAMPLE 3

Level d crit 0 d crC100 pixels d crit 50 pixels

1 19 19 19

2 219 219 219

3 375 131 77

4 158 37 37

771 406 342
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6k;:'ciiON 6

ANALYSIS OF A PRIORI INFORMATION

It has been found experimentally that the a priori information is powerful

in rejecting incorrect matches. In this section a simple theoretical

analysis of the power of the ratio test for two-object matches is presented.

Then other work initiated toward full exploitation of the a priori information

is described.

The ratio test has the advantage that it may be used at a high level in the

tree--the second level. The least-squares consistency test, by a comparison,

has no discriminating power until the search has reached the fourth level

of the tree.

The analysis of the power of the ratio test is as follows: Assume that the

coordinates of the objects are (xs 1 , Ys1 ) and (xs 2 , Ys2) in the sensed image

and (xrl )rl} and (Xr2e Y 2 in the reference image. Assume that all the

x's and y's are statistically independent zero-mean Gaussian random variables

normalized to have variance -. This assumption is the keyt-h .iL

of the analysis. The assumption of statistical independence between images

corresponds to the situation that the match is incorrect. Define

Z s = s-x.2)2+ 2Ysl-Ys2) 2

Zr (xrl-Xr 2 ) + (yrl-yr2
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Z and Z are independent chi-square variables with two degrees of freedom. A
The ratio test is of form

Accept match if r Z S Z r2 Zr.

1r S 2

The probability of accepting is

Pr (accept) =  e e dt ds

o r 1 s

(r 2 -r 1 )

(r 1 +1) (r 2 +1)

The smaller the acceptance range, the lower the probability of accepting an

incorrect match. The narrowness of the range that may be specified depends

on the quality of the a priori information.

A conservative analysis shows that for RPV looks and munition approaches

with a depression angle of 450, one would be able to do at least as well as

rl (FOV)\2

0 (FOVNS2

where FOV and FOV are the fields of view for the sensed and reference
s r

~image. For

FOVs  3 )

FOV =15
r

this gives

P r(accept) = 5. 4%

A
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The ratio test will be even more powerful for three-object matches. As a

comparison, tests of topological consistency cannot reject two-object

matches, and symmetry arguments show that they reject only approximately

one half of all incorrect three-object matches.

It is clear that there are more powerful ways to exploit the a priori

information than the simple ratio test. For example, a modification that

detected 180 reversals would do twice as well. To find the best way to

exploit the a priori information, a powerful program is being written to

analyze how errors in estimation of the sensor orientation and positions

affect the matching transformation. This program is near completion.

Its important features include the following:

" It allows parameters to be specified and analyzed in their most

natural coordinate system. For example, the position of an RPV

with respect to the GCS and the position of a projectile with respect

to its cannon may be most meaningfully analyzed in two different

coordinate systems.

" It supports analysis for different matching techniques; for example,

ground- plane- to- ground- plane or sensor- plane- to- sensor -plane.

" Any linear combination of 16 true parameters or 16 estimated

parameters relevant to the problem may be specified as a

perturbation to be analyzed.

" The matching transformation is calculated in a standard matrix form

and also in a unique skew form that isolates the effect of errors in

the munition roll, one of the most variable parameters.
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The skew form of a transformation matrix W is specified by the six parameters

elf el, e 2 , 82 w13' and w 2 3 that satisfy the equations below. In sensor-

plane-to-sensor-plane matching as in the current simulation, the roll of the

munition is merely a variation in the single parameter 81.

The transformation W = [A b].

where A =i F 1 [cos2 - sin 2 1
L , cos1 e e2 J SinG2 cos 2 J

and ~

b =  3

W23

A simple noniterative algorithm for calculating the skew form of a matrix

has been implemented for use in the analysis program.
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SECTION 7

MINIMAL SPANNING TREES

As we saw in the previous sections, the branch-and-bound algorithm

considers sequentially object matches to find an optimal match subset.

One way to speed up the convergence to the optimal configuration match

would be to match distinctive clusters of objects rather than individual I,

objects. The branch-and-bound algorithm can then match precisely

the configurations of individual objects within the clusters. In fact,

this idea corresponds to gestalt cognition phenomena encountered in

human perception. A further advantage of matching clusters is that

extended objects like roads, rivers, etc., are often apt to be segmented

into multiple components. Matching clusters of these components between

the two fields of view is, therefore, likely to be more robust.

The basic idea is to initially match distinctive clusters in the two fields

of view. Several clustering algorithms exist for partitioning data points

in a multi-dimensional space. However, a data structure known as

minimal spanning trees offers the highest promise for extracting distinctive

clusters in this application. The following is a brief discussion of minimal

spanning trees and the results of initial experiments we have performed

on the test images described in the previous sections.

The coordinates of objects extracted from an image form a set of points.

A complete graph for such a set of points has an edge linking each pair
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of points as shown in Figure 16a. A minimal spanning tree consists of

the subset of edges in the complete graph that minimizes the total length

of its edges and still provides a path between any pair of points. The

minimal spanning tree for the graph of Figure 16a is shown in Figure 16b.

Traditionally, minimal spanning trees have been used in cluster analysis

as follows: A minimal spanning tree is constructed for the points specified

by the data to be clustered. Then the longest edges in the minimal

spanning tree are deleted. If the data really clusters, this process will

break the minimal spanning tree into groups of connected points corres-

ponding to the clusters, as shown in Figure 17.

a. Complete graph

r

b. Minimal spanning tree

Figure 16. A Minimal Spanning Tree for a Graph
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. . . .. r . . . . . .. . . . . . . . . . . . .

Figure 17. A Minimal Spanning Mat Clusters When it is Broken

This procedure could be used to group the distinctive objects in image pairs

into clusters. The minimal spanning trees would be constructed for the

distinctive objects in the two images and then broken to obtain clusters.

Software was written to test this concept on real images. Examples of

results for the images of Figure 3 are shown in Figure 18. The distinctive

objects are indeed clustered into groups. Furthermore, for this image

pair it would be easy to determine that the clusters containing the very

distinctive targets should be matched.

82l
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Figure 18. Minimal Spar uin T i in l;,o Sof F'igure 3 (continued)
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Figure 18. Minimal Spanning Trees in Imnrges of F.igure 3 (concluded)



SECTION 8

PATTERN-MATCHING DATA BASE

As we have seen in the previous sections, the pattern-matching algorithms

must successfully match images from a variety of sensor geometries and

sensor types. For the simulation task, ideally, we need images of the

same scene from FLIR and TV sensors, representing perspective changes

from 0 to 180 deg, aspect changes of 1 to 90 deg, and a variety of illumina-

tion conditions. This section reports the status of the continuing pattern-

matching data base acquisition task.

In this reporting period, we have expanded significantly the pattern- matching

data base by digitizing 36 frames from the PATS training video tapes

generated at AP Hill by NV&EOL. The frames are from three runs

(at altitudes of 500 ft and 750 ft) at approach angles of -350, 00, and +500

over four stationary targets in a formation. The digitized frames represent

ranges from 8 km to overflight. Samples from these frames are shown in

Figure 19. Note that because of overcast conditions, ground clutter is not

conspicious, and the targets are in fact the most distinctive objects in the FOV.

A promising new source of pattern-matching imagery is from the March 1980

PATS flight tests at AP Hill. These tapes contain both wide and narrow

fields of new imagery and also represent a wider range of background

clutter conditions because of changing cloud cover and other temporal

variations. These tapes are now being reviewed to select references which

may provide meaningful characterization of the pattern-matching algorithm.
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Perspective angle -35
Range 1

!4
i[

Perspective angle -350
Range 2

Figure 19. Some FLIR Images from the AP Hill Data Base
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Perspective angle -350
Range 7

Perspective angle -350
Range 8

Figure 19. Some FUIR Images from the AP Hill Data Base (continued)
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Perspective angle 0*
Range 5

Perspective angle 0*

Range 6

Figure 19. Some FUR Images from the AP Hill Data Base (continued)
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Perspective angle 08
Range 11

Perspective angle 0*
Range 12

Figure 19. Some FUIR Images from the AP Hill Data Base (continued)
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Perspective angle 500

Range 1

Perspective angle 500

Range 2

Figure 19. Some FUIR images from the AP Hfill Data Base (continued)
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Perspective angle 500
Range 5

Perspective angle 500
Range 6

Figure 19. Some FLIR Images from the AP 11ill Data Base (concluded)
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To acquire TV and FLIR imagery of the same scene, we are reviewing the

Advanced Target Tracker video tapes (also from NV&EOL) to select

appropriate sequences. Unfortunately the task is being somewhat hampered

by the malfunctioning of the 875-line Westel recorder.

Table 8 summarizes the current state of the pattern-matching data base.

TABLE 8. CURRENT DATA BASE SUMMARY

SOURCE TYPE FRAMES ERSPECTIVES RANGE

PATS FLIR 36 00, -350, +500 0 - 8 km
Training 875 line

LOHTADS FLIR 6 +150 3 - 4 km
(SWISTAK) 525 line to closure

TERRAIN Visual 1 6 00. 900
MODEL
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SECTION 9

PLANS FOR THE NEXT REPORTING PERIOD

From the results reported in the previous sections, it is apparent that

although we have demonstrated successful pattern matching on FLIR

examples, we still need to quantify the algorithm performance under a

systematic, controlled set of sensor and scene parameters. Quantification

of the performance can be divided roughly into two stages. The first

fundamental issue is the probability of finding unique, distinctive objects

in the two fields of view which can be used in the matching. This is a

function of the field of view, the differences in the perspective angles,

the angle of elevation, and the scene itself.

Second, given the presence of corresponding objects, how quickly does the

branch-and-bound algorithm find the optimal corresponding matches?

This is a function of not only the search procedure, but also the fidelity of

the criteria used to evaluate a good match. The performance of the branch-

and-bound algorithm obviously determines the computational requirements

for its implementation in the munition.

Accordingly, our plans for the next reporting period are as follows:

* Quantify the probability of finding corresponding objects in the two

fields of view as a function of the target signature, background

signatures, sensor fields of view, perspective and angle of elevation

differences, FLIR, TV sensors, etc.
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" Given the corresponding objects to be matched, quantify experimentally

the performance of the algorithm and the criterion function in

terms of the number of subsets evaluated and the optimality

of the final result for various aspect angles. Determine the sensi-

tivity of the algorithm to segmentation noise and the absence of

corresponding objects in the two fields of view.

" To provide the data for the above validation, digitize the imagery

representative of the semi-autonomous acquisition scenario

(especially wide and narrow fields of view) from the 875-line video

tapes newly acquired from the PATS flight tests.

" Digitize frames from video tapes of the same scenes from the TV

and FLIR sensors, gathered by NV&EOL for the Advanced Target

Tracker Program. This will test the algorithms under different

spectral characteristics.

* Explore additional techniques to make the branch-and-bound

algorithm computationally more efficient. As we saw in Section 5,

the optimal subset is obtained early in the search process, although

the majority of the search time is spent in validating the optimality

of this match. Therefore, it is feasible to trade off the guarantee

of the optimality for the increased computational efficiency of the

algorithm.

9
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