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ASPECTS OF MATHEMATICAL MODELING
RELATED TO OPTIMIZATION t

Philip E. Gill, Walter Murray, Michael A. Saunders and Margaret H. Wright
Systems Optimization Laboratory

Department of Operations Research
Stanford University

Stanford, California 94305

ABSTRACT

Many practical optimization problems involve mathematical models of com-
plex real-world phenomena. This paper discusses some aspects of modeling that
influence the performance of optimization methods. Information and advice are
given concerning the construction of smooth models, the transformation of an
optimization problem from one category to another, scaling, formulation of con-
straints, and techniques for special types of models.

t An earlier version of this paper was presented at the conference 'Software for
Numerical Optimization', London, March 1978.
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INTRODUCTION 1

1. Introduction

Mathematical models are frequently used to study real-world phenomena that
are not susceptible to analytic techniques alone, and to investigate the relation-
ships among the parameters that affect the functioning of complex processes.
Models provide an effective - sometimes, the only - means of evaluating the
results of alternative choices; for example, a model is essential in cases where ex-
perimentation with the real-world system is prohibitively expensive, dangerous,
or even impossible.

Optimization methods play an important role in modeling, because a model
is not usually developed as an end in itself. Rather, the model is formulated in
order to determine values of free parameters that produce an optimum measure
of 'goodness' - for instance, the most stable structure, or the best performance
on observed data.

The relationship between the formulation of a model and the associated
optimization can take several forms. In many instances, virtually all the effort
of model development is aimed toward constructing a model that reflects the
real world as closely as possible. Only after the form of the model is essentially
complete is some thought given to a method for finding optimal values of the
parameters. However, selection of an off-the-peg algorithm without considering
properties of the model often leads to unnecessary failure or gross inefficiency.

On the other hand, we do not advocate over-simplification or distortion
in formulation simply in order to be able to solve the eventual optimization
problem more easily. There has been a tendency, particularly in the large-scale
area, to model even highly nonlinear processes as linear programs, because until
recently no nonlinear methods were available for very large problems. The effort
to remove nonlinearities often leads to greatly increased problem size, and also
significantly affects the nature of the optimal solution (e.g., a linear programming
solution is always an extreme point of the feasible region, but the solution of a
nonlinear program is usually not).

A model to be optimized should be developed by striking a reasonable
balance between the aims of improved accuracy in the model (which usually im-
plies added complexity in the formulation) and increased ease of optimization.
This might be achieved by invoking an optimization procedure on successively
more complicated versions of the model, in a form of 'stepwise' refinement.
Thus, the effects of each refinement in the model on the optimization process
can be monitored, and fundamental difficulties can be discovered much more
quickly than if no optimization were applied until the model was essentially
complete. This is especially important when dealing with models that contain
many interconnected sub-systems, each requiring extensive calculation.

This paper is not primarily concerned with how accurately models reflect
the real world, but rather with aspects of modeling that influence the perfor-
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mance of optimization algorithms. In particular, we shall discuss considerations
in formulating models that contribute to the success of optimization methods.
Our observations of practical optimization problems have indicated that, even
with the best available software, the efficient optimization of a model can be
critically dependent on certain properties of the formulation. It is often the case
that the formulator of the model must make numerous arbitrary decisions that
do not affect the accuracy of the model, yet are crucial to whether the model is
amenable to solution by an optimization algorithm.

2. Classification of Optimization Problems

The most general form of an optimization problem is that of minimizing a scalar
function of the independent variables (the objective function), subject to restric-
tions or constraints on acceptable values of the variables. We shall primarily be
concerned with problems in which the set of acceptable variables is defined by
relations involving continuous functions of the variables:

NLP min F(z)

subject to c(z) =O, i = 1,2,...,mI;
C5,z) O, i = M 1,... 2.

In this formulation, the functions F and {ci} are termed the problem functions.
Constraints on the parameters may take other forms - e.g., some of the

variables may be restricted to a finite set of values only. Problems of this type
are generally much more difficult to solve than those of the form NLP; some
possible approaches to models with such constraints are noted in Section 5.

An important point to be considered in modeling is whether the formulation
has features that enhance ease of optimization, since a general algorithm for NLP
will generally be inefficient if applied to a problem with special features. For
purposes of choosing an algorithm, optimization problems are usually divided
into categories defined by properties of the problem functions, where problems
in each category are best solved by a different algorithm.

The following table gives a typical classification scheme, where significant
advantage can be taken of each characteristic:

Properties of F(Z) Properties of {¢c(s))
Linear None
Sums of squares of lnear functions Simple bounds
Quadratic Linear
Sums of squares of nonlinear functions Spans linear
Nonlinear Nonlinear
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Certain problem characteristics have a much greater impact on ease of op-
timization than others - for instance, consider problem size. Beyond one-
dimensional problems (which are invariably treated as a special case), the next
dividing line occurs when the problem size becomes so large that: (a) the data
cannot all be stored in the working memory of the computer; (b) exploiting the
sparsity (proportion of zeros) in the problem data leads to a significant improve-
ment in efficiency. Before that point, however, the effort required to solve a
typical problem is, roughly speaking, bounded by a reasonably behaved polyno-
mial function of problem size. Therefore, increasing the number of parameters
in an unconstrained problem from, say, 9 to 12 is usually not significant.

By contrast, the form of the problem constraints can have an enormous effect
on the ease of solution. In particular, there is generally a very small increase (or
possibly even a reduction) in difficulty when moving from an unconstrained prob-
lem to one with simple bounds on the variables; in fact, the optimization library
from the National Physical Laboratory, England, solves unconstrained problems
by calling a bound-constrained subroutine. General linearly constrained prob-
lems are noticeably more difficult to solve than those with bound constraints
only, and the presence of nonlinear constraints introduces an even larger increase
in difficulty. For this reason, it is sometimes advisable to reformulate a model
so as to eliminate nonlinear constraints; this topic will be discussed further in
Section 4.

Probably the most fundamental property of the problem functions with
respect to ease of optimization is differentiability, which is important because
algorithms are based on using available information about a function at one
point to deduce its behavior at other points. If the problem functions are twice
continuously differentiable, say, the ability of an algorithm to locate the solution
is greatly enhanced compared to the case when the problem functions are non-
differentiable. Therefore, most optimization software is designed to solve smooth
problems, and there is a great incentive to formulate differentiable model func-
tions (see Section 3). For a smooth problem within a specific category, there still
remains a great deal of choice in algorithm selection, depending, for example,
on how much derivative information is available, the relative cost of computing
certain quantities, and so on. As a general rule, algorithms tend to become more
successful and robust as more information is provided.

3. Avoiding unnecessary discontinuities

The word "unnecessary" appears in the title of this section because, strictly
speaking, no function is continuous when evaluated with limited precision. Since
only a finite set of numbers can be represented with a standard floating-point for-
mat, the usual mathematical definition of continuity, which involves arbitrarily
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small perturbations in the function and its arguments, is not applicable. In
general, the computed version of any function is inherently discontinuous. For-
tunately, for a well-scaled function, the discontinuities can be regarded as insig-
nificant, in that they do not adversely affect the performance of optimization
methods that assume smoothness; however, poor scaling can lead to difficulties.
The topic of problem scaling will be briefly discussed in Section 5.

Since optimization problems with general non-differentiable functions are
difficult to solve, it is highly desirable for the user to formulate smooth math-
ematical models; problems with structured discontinuities will be discussed in
Section 4.3. Before discussing means of avoiding non-differentiability, we stress
that there is a crucial distinction between a function that is non-differentiable and
a function whose derivatives are (for some reason) not computable. If a function
is truly non-differentiable, its derivatives simply do not exist mathematically at
all points - e.g., the function max(z1, z2) is in general non-differentiable when
Z1 = z2. By contrast, a function may be smooth, but its derivatives are not
available because, say, of the complexity or expense of computing them; none-
theless, an algorithm may rely on their existence.

Careful consideration of the underlying mathematical model can often indi-
cate whether a given function should be differentiable. If there are critical points
in the real-world process - for example, a reservoir overflows, or an activity
shifts from one resource to another - there will probably be discontinuities in
the derivatives. If the user is uncertain about differentiability, little will usually
be lost by assuming that the derivatives are continuous. If the chosen optimiza-
tion algorithm subsequently fails, the user may switch to an algorithm for non-
smooth functions.

3.1 The role of accuracy In model functions.
A common fallacy arises when only a limited accuracy is required in the optimal
solution of a modeling problem (for example, when the model formulation is
known to neglect significant elements in the real-world process, or the model
function represents an observed phenomenon whose form is deduced from data
of limited accuracy). In such an instance, the modeler may believe that the
problem functions need to be evaluated to only slightly more than the required
number of significant figures during optimization.

Because the real-world function, say FR(Z), is only approximated by an ideal
mathematical model function, say FM(x), the user is essentially assuming that
an optimization method will tolerate convenient changes in the representation
of FM(z) that are smaller in magnitude than the known accuracy to which FM
approximates FR. However, this assumption is not warranted if the changes
introduce serious discontinuities into the model function or its derivatives, or
cause other substantive deviations in the nature of the model function. Let cm
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denote the percentage error in FM(z) due to fundamental deficiencies in the
model. This error will not in general be known precisely, but often a lower
bound can be estimated from, say, the accuracy of the data or the significance
of neglected processes. If cm is very small, the modeler will tend to exercise the
appropriate care in the computer implementation of FM, in order to preserve
the high accuracy. However, in a typical model c. lies in the range 0.1%-5.0%.
In this case, suppose that there are two possible computable approximations of
FM, say FA and Fg, which can also be considered as functions that approximate
FR. The functions FA and F& differ from the idealized model function FM in
that, for convenience of implementation and computation, an additional error,
say e., has been introduced; however, c is guaranteed to be much smaller than
cj, - say, Cc P .01%. Since this error does not significantly increase the existing
error in approximating FR, the three approximations FM, FA, and FB could be
considered of equal merit in one sense - their closeness in value to FR.

Consider the specific example in one dimension illustrated in Figures la and
1b (the errors in the figures have been exaggerated to emphasize the aspect of
interest). If the errors IFR(z)-FA(z) and IFR(z)-FB(z) were the sole concern,
then the two approximations FA and F would be equally good.

With respect to use by an optimization method, however, FA and F, are
quite different. In particular, FB has the same smoothness properties as the
underlying (unknown) FR, whereas FA has discontinuities in both function and
derivatives at many points. The derivative discontinuities alone would have
several bad effects on an optimization method. First, the method might well
converge to a spurious local minimum of FA. Another harmful result of using FA
would occur within algorithms that approximate derivatives by finite differences.
If the small step of the finite-difference interval happened to cross a derivativediscontinuity, the approximation of the gradient would be completely inaccurate,

even if the gradient were well-defined at the current point.
It may seem that these cautionary remarks would apply only to a small num-

ber of uninformed people, since presumably no one would deliberately include

significant discontinuities in the modeling function or its derivatives. Although
discontinuities at the level of round-off error are inevitable in any model, unac-
ceptably large discontinuities are sometimes introduced by modelers who assume
that other "minor" changes are of no significance.

3.2 Approximation by series or table look-up.
In our experience, one of the most common causes of lack of smoothness is the
occurrence of a discontinuity in the evaluation of some subsidiary function, say
W(,y), upon which F(z) depends. Since computers can perform only elementary
arithmetic opliations, more complicated functions are approximated in various

ways - often by a truncated series expansion, the choice of which depends on
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- FM

Figure la. A discontinuous approximation to a smooth function.

FB

Figure lb. A continuous approximation to a smooth function.

the argument. Thus, it may happen that W(7) is evaluated using two formulae,
one for small 1[y[ and another for large 1'v1. Although both should give the iden-
tical result at the crossover point, in general the truncation error will be different
for the two series. Even if only a single series is used, discontinuities may occur
because the evaluation process includes more terms of the series for certain values
of the argument - e.g., at y -4.T four terms of the series are used, whereas at
,Y = 4.7 + 10-15 five terms are used.

To avoid such discontinuites (or at least minimize their effect), the user is
advised to do the following:

(i) whenever possible, avoid switches in formulae (for example, by using a
fixed number of terms in representing a function by an approximating series);

(ii) if there is a switch, ensure that the function values (and, whenever poa-
sible, the first derivatives) match at the cross-over point;

Unfortunately, switches in formulae sometimes occur without the user's
knowledge. For example, a standard software library routine for evaluating the
Besel function Jo(7 ) uses two different methods, depending on whether 'yis
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greater than 11. In such a case, the user may be required to utilize an alternative
procedure for evaluating the subsidiary function.

A related way in which discontinuites are introduced is by including a *table
look-up* during the computation of the model function. Suppose that F(z) 1.
depends on the quantity V(y), and that V(,y) is tabulated for the set of values
q -- 0(0.01)1. If V(.6243) is required, the user may believe that V(0.62) is an
entirely adequate approximation. Although this might be true in some cases (as
discussed in Section 3.1 with FR and FA), this treatment would make V('Y) a
piecewise constant function, with undesirable discontinuities if its properties are
reflected in F. Linear interpolation within the table will produce continuity in
V(-) (and hence, usually in F), but it will still produce discontinuities in the
first derivatives. The best solution - which is always realizable - is to avoid
tables completely, and to replace them by smooth approximating functions such F
as splines. Even two-way tables (those that require two parameters) can now be
adequately represented by smooth surfaces (see Hayes, 1970; Powell, 1977).

3.3 Sub-problems based on Iteration.
A more subtle source of discontinuities can be observed when evaluation of a
function contains sub-problems - for example, a system of differential equations
or an integral. The solution of these sub-problems to full machine precision (even
if possible) generally requires considerable computational effort, and thus tends
to be regarded as unwarranted by the modeler, since the integral, differential
equation, or whatever, is only an approximation to some more complicated real-
world phenomenon. A frequent example is the unconstrained minimization with
respect to z of the integral

F(z) = j (zt)dt. (1)

Typically, the function f(z, t) cannot be integrated analytically. Hence, a numeri-
cal quadrature scheme must be used, in which the integral is approximated by
a weighted sum of function values at selected points:

/ (z, t)dt Fs I(t, w) - jf(z, tj), (2)

where {w} are the weights and (t3 ) are a set of abscissae such that a < t<
5... tM :_ b. The error in the approximation (2) depends on the higher deriva-

tives of f, the number of abscissae {tj}, and the position of {t,} within la,b]
(Dahlquist and Bjbrck, 1974).

14
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Among the most efficient methods for numerical integration are the adaptive
quadrature techniques, in which the abscissae in (2) are chosen dynamically,
based on the sampled behavior of f during an iterative procedure; the idea is to
place more points in regions where f appears to be less well-behaved. Several
good software packages are available for adaptive quadrature, and the user may
well have chosen one of these state-of-the-art codes for evaluating the function
(1). However, unless the integrals are evaluated to full machine precision, the
function (1) may not be "well-behaved" in all necessary senses. In the case
of evaluating (1), use of an adaptive quadrature technique will tend to cause
the same unfortunate consequences noted earlier with series representation. In
particular, the inherently iterative nature of adaptive quadrature means that
widely varying numbers of points may be placed in different parts of [a, b] for
very close values of z. Although a similar accuracy will generally be attained in
the approximate integral for all values of z in [a, b], the model function tends V
to contain undesirable discontinuities. Therefore, the curve of the approximate
integral computed by an adaptive quadrature technique may well resemble that
of FA in Figure la.

It should be stressed that adaptive quadrature is inappropriate only because
the sub-problem that it enters is part of an outer problem in which smoothness
is more important than accuracy, at least far from the solution.

An alternative way to proceed is to devise a fixed (smooth) quadrature for-
mula I (as in (2)) to be used as input to the optimization routine, and thereby to
determine 2, the point at which I achieves its minimum. It would be fortuitous
indeed if 2 were an acceptable approximation to *, the minimum of (2), and
therefore another step in the procedure is carried out. For instance, a moreaccurate quadrature formula (say, involving substantially more terms) can be

devised, and the optimization process repeated, using 2 as the starting point; if
f(z, t) is well-behaved, a judicious choice of abscissae may allow a better estimate
of the integral without unduly increasing the number of points. Since 2 should be
a reasonably close approximation to *, only a relatively small number of evalua-
tions of the more complex quadrature formula should be required. If a highly
accurate integral at z is the ultimate aim, the final step could be application of
an adaptive quadrature technique at the single point z. This example illustrates
that it is often worthwhile to interleave modeling and optimization, since the
creation of increasingly accurate quadrature formulae for smaller intervals is in
fact a modeling process.

4. Problem transformation

4.1 Simpifing or eliminating coustraints.
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In the past, algorithms for unconstrained optimization were more numerous and
more effective than those for constrained problems. Today, however, algorithms
for problems with only simple bounds or linear constraints are comparable in
efficiency to unconstrained algorithms. Therefore, it is virtually never worthwhile
to transform bound-constrained problems (in fact, it is often beneficial to add
bounds on the variables), and it is rarely appropriate to alter linearly constrained
problems.

Any problem transformation should be undertaken only with extreme care.
In particular, some "folklore" transformations may cause an increase in problem
difficulty, and may not even produce the desired result. For example, to solve

minimize F(w)

subject to wt _ 0,

it is not sufficient to minimize I (z) with wi - z. To see why not, consider the
case when F(w) - w6/ 2

Furthermore, it is inadvisable to replace a problem with inequality con-
straints of the form c,(z) _ 0 by one with equality constraints that include
squared extra variables, i.e., c,(z) - y? = 0. If it is considered necessary to
eliminate inequalities in this manner, a preferable transformation is to add a
slack variable whose non-negativity is imposed with a bound: c,(z) - yi = 0;
with O> 0.

Nonetheless, transformation to an unconstrained problem or a problem with
simple constraints can be an effective method of allowing the model to be solved
more easily. This can sometimes be achieved simply by judicious choice of the
model's independent variables. In any transformation, it is important to ensure
that the new problem is not more difficult than the original one. Certain trans-
formations of the variables may lead to the following difficulties:

(i) the desired minimum may be inadvertently excluded;
(ii) the degree of nonlinearity may be significantly increased;
(iii) the scaling may be adversely affected;
(iv) the new function may contain singularities not present in the original

problem;
(v) the Hessian matrix may become singular or ill-conditioned in the region

of interest;
(vi) the transformed problem may have additional local minima;
(vii) the function may be periodic in the new variables.

It is not easy to formulate general rules that will avoid these problems. In our
experience, however, trigonometric and exponential transformations tend as a
class to create more numerical difficulties than alternative approaches, especially
as the number of variables increases.
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The problem of periodicity can be offset to some extent in two ways. First,
an unconstrained algorithm can be modified as follows. Suppose that the trans-
formed variables are (yi}, and that

F(y + jaje,) = F(y), j = :11,±2,...

If the step to be taken in y, is pi, pi should be altered by adding or subtracting a
multiple of ai until 1pil < ai. A second way to avoid difficulties with periodicity
is to impose simple bounds on the appropriate variables - e.g., if z, represents
an angle, add to the problem statement the requirement that 0 < Z, 2w, and
use a bound-constrained algorithm.

We shall illustrate other difficulties that may occur because of problem
transformation by the following example:

minimize F(z) (3a)

subject to Z ? 1. (3b)

If we make the transformation

Zi = sin YI" sin n- ,i zi'- cos yi-1sin Vi... siny.-I,,i=2,...,n,

the problem becomes
minimize I (y). (4)

YERR
-L

Some additional difficulties have been introduced into the transformed problem
(4). In addition to the obvious periodicity, the new function is invariant to
changes in any of the first n- 2 variables if V,,- I is zero. Furthermore, if any Vt,
i > 1, is close to zero, I (y) is almost invariant to changes in the other variables;
clearly, the problem has become very badly scaled.

An alternative transformation to satisfy automatically the constraint (3b) is
to define the new y variables via:

S±(1 + -I (5)

Z, = Vla, i = 1,...,n- 1 (6)
Z = 1/a. (7)

The new problem is then

minimize min(Fp(y), PN(Y)),
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where Pp(v) is the function obtained by choosing the plus sign in (5) and sub-
stituting for z in F(z), with an analogous definition of PN.

In practice, if the sign of any of the optimal xi is known, that variable could
become the one whose value is fixed by (7), thereby removing the need to define
two functions. It is preferable to choose an zi whose value is not close to zero,
since in this case some of the other transformed variables would become badly
scaled. Beware also that if zi were subject to certain bounds, e.g. 0.1 < z,:
0.2, it would not be safe in general to eliminate that variable.

Despite their drawbacks, transformations involving trigonometric expres-
sions are desirable in some situations. For example, consider a problem in which
the variables are the coordinates in three dimensions of a set of k points, which
are constrained to lie on the surface of a sphere. The problem in this form is
then

minimize F(z, y, z)
(8)

subject to zx;+ -z;-- r , i = 1, 2,..., k.

Note that there are 3k variables and k constraints.
In general, a proper elimination of t equality constraints from a problem with

n unknowns leads to an unconstrained problem with n - t variables. For this
example, a trigonometric representation of the variables allows the constraints
of (8) to be satisfied automatically, by introducing a set of 2k angles {9,, Of),
which become the new variables, such that

zi = r sin 9fcos Of
y = r sin 9f sin of
Z= = r cos 9,.

To avoid difficulties with the periodic nature of the function, simple bounds
can be imposed: 0 < 8i_5 2w0 < 9, K 21r

In fact, it may be possible to make these bounds more restrictive to ensure some
topological property of the set of points. In general, upper and lower bounds
should be as close as possible.

Alternatively, the points might be restricted to lie within a sphere of radius
r. In this case, k additional variables {di} could be added, where di gives the
distance of the i-th point from the origin, and satisfies the simple bound di < r.
The constraints on the set of points would then become

22

z? + + z+d = r2,

and the definitions of {D,, 01} would be altered accordingly.
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Although in general it is not worthwhile to eliminate only some, but not
all, nonlinear constraints, this rule does not apply to sparse problems. When
the sparsity of the constraints is significant, it is beneficial to replace constraints
that involve a large number of variables by constraints in which only a small
number of variables appear.

A device frequently used by engineers to convert a problem with nonlinear
equality constraints into an unconstrained problem is to add a 'Lagrangian'
term to the objective function. This practice is based on the following result:
under mild conditions, the solution I of the problem

minimize F(z)

subject to c,(z) = 0, i = 1,2,... ,t.

is a stationary point of the Lagrangian function F(z) - Xc(z), where X satisfies

t

VF(z*) E X )iVci(Z). (10)

This property can be used to formulate either an unconstrained problem
in the z variables only (combined with some procedure for estimating )), or a
system of nonlinear equations involving both z and ). A complete treatment
of this topic is beyond the scope of this discussion (see, for example, Powell,
1974, or Wright, 1979, for details). However, the point to be stressed here is
that this transformation is not guaranteed to be successful. The solution of (9)
is in general a stationary point, not a minimum, of the Lagrangian function,
although obviously it is a minimum in some cases. Furthermore, since the trans-
formation preserves the solution only with the vector X that satisfies (10), a
poor estimate of X may cause divergence. If one attempts to estimate z and
) simultaneously with an (n + t)-dimensional nonlinear system, the matrix in-
volved is often extremely ill-conditioned or even singular. Because of these and
other subtle difficulties that can occur, the transformation carries a serious risk
of failure. Since several algorithms for nonlinearly constrained optimization are
based on using the same result, a user will have a much better chance of suc-
cess by applying a soundly implemented Lagrangian-based algorithm designed
specifically to handle constrained problems.

4.2 Problems where the variables are continuous functions.
An important class of problems that are not immediately expressible in the finite-
dimensional form NLP involves optimization with respect to a specified set of
functions. For example, the problem may be to compute the minimum of the
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integral

f b /( (t), t) dt (1

for a givenf, over all smooth functions t(t) defined on [a, b). In many instances,
such a problem can be "solved' as a finite-dimensional problem; we shall il-
lustrate the idea of the transformation through a detailed treatment of (11).

Since the functional form of z(t) cannot be obtained in general, it is neces-
sary to represent z(t) by a finite amount of information. Clearly it would be
infeasible to store the finite, but enormous, set of values of z(t) at each machine-
representable point in the interval. Instead, we must be content with storing a
reasonable amount of information, from which a satisfactory approximation to
z(t) can be constructed. This usually involves little sacrifice because the desired
result in most practical problems is simply a compact representation of the be-
havior of z(t) - typically, the values of z(t) at a set of points in [a, b]. This set
of information can be interpreted as an implicit definition of a new function i(t),
obtained by applying some form of interpolation to approximate the value of z(t)
at non-tabulated points. The accuracy of 1(t) depends on the smoothness of z
and i, the number and placement of the interpolating points, etc. (see Dahlquist
and Bjorck, 1974).

A satisfactory solution to the original problem (11) is then a representation
of i(t). Let

q

i(t) = Z cjwj(t), (12)
j=1

where {c,) are a set of coefficients and {w,(t)) are a set of known basis functions.
Examples of frequently used basis functions are: (i) polynomials: wj = 0-1;
(ii) Chebyshev polynomials: wt = Tj .i(t); and (iii) B-splines: wt = M,(t) (see
Hayes, 1970; Cox, 1977).

If the form (12) for 1 is substituted for z in the objective function, the
infinite-dimensional problem becomes a finite-dimensional problem with unknowns
{q,). Depending on the nature of f, the integral (11) can then be computed
analytically or from a quadrature rule; see Section 3.3 for further comments on
the use of quadrature rules.

4.3 Transformation of composite non.differentlable functions.
Although non-differentiable problems are in general more difficult to solve, a
distinction must be made between a problem with random discontinuities in
functions or derivatives, and one in which a great deal of information is known
about the nature of any discontinuities. In the latter case, algorithms can take
advantage of the special structure.

,_________________________________
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In some well-known instances, the problem functions themselves are not
smooth, but rather are composites of smooth functions. For example, the fol-
lowing non-differentiable functions frequently occur in models, and are composed
in a particular way from the set of smooth functions {f}:

(a) F " max(f, f2,.."., fm);
(b) F F I ;
(c) F , 1 max(f,,0).

There has been much research concerning effective methods for these and
related problems, and it is therefore advisable to use a specialized algorithm
(see Wolfe, 1975; Murray and Overton, 1979). However, if such an algorithm
is not available, a composite non-differentiable problem can sometimes be trans-
formed into a smooth, but more complex, problem. To illustrate this type of
transformation, we consider three common composite problems.

~Problem 1:P minimize max (u(z), 12(z),... , fm(z)), (13)

where (, z)} are smooth functions. This problem can be transformed into a
smooth problem by introducing a new variable z.+,, which is an upper bound
on all the functions (f(z)j. The new problem is then

minimize Zn+1

subject to f(z) _z z,+i, i =1,2,...,m.

Note that the original unconstrained problem has been transformed into a non-
linearly constrained problem - the reverse effect from the transformations con-
sidered in Section 3. In fact, all transformations of non-differentiable composite
functions lead to a similar increase in complexity.

Problem 2: m
minimize l If$(w)I. (14)

To transform (14), we note that a typical function fj(z) may be split into its
positive and negative parts by writing f(s) = ri-- a,, where both ri and a, are
non-negative. The relationship I1f(z)I : ri + sa leads to the following transfor-
mation of (14):

m

minimize r, +,:
si

subjectto fjz)=r,-,, i=1,2,..., m,
~~ri?_>O; sj2:_ , i= 12,...,^ t
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Problem 3: PR

minimize max (f.(:), 0). (15)

A similar argument to that used in transforming (14) gives

minimize ri

subject to f,{z) = rj-,, i =12,
ri __O; 8,>0, =1,2,...,m.

Although there is a significant increase in the number of variables with the latter
two approaches, this need not be a serious obstacle to the indicated transforma-
tions if an algorithm is used that exploits bounds.

Problems 1 and 2 often arise in the context of data fitting, in which case
F(Zc) is expected to be small. If F(*) is actually zero, then in either case the
problem is equivalent to solving the smooth nonlinear least-squares problem

t minimize f 4(1).
sEW" s=1

If F(z) is small (although not zero), an alternative to solving Problems 1 or 2 is
to solve a sequence of weighted least-squares problems of the form

YR

minimise E W(f, k = 1,2,3,. (16)

Let *(Q) denote the solution of (16), and let u - /m, i = 1,...,m.
To solve Problem 1, the weights in the sequence of problems are chosen to

be
__ 1f((k)) 10(h)

where S ; !.(*(k)) k), and is chosen to make E 04+1) = I. For Problem
2, the sequence of weights is defined as

(k+1) S ,

where S = E 1 / (1 14k))1 ). If, say, t values of f/(()) are zero, the correspond-
ing elements of w(h+1) are set to l/t, and the rest to zero. Usually, only two or
three least-squares problems of the form (16) must be solved to obtain conver-

.J gence.

In either case, it is not necessary to compute z(h) to high accuracy. Since101) is used as the initial point when solving for 10l+), only a few iterations

are typically required to find the solution of (16) for k > 1. See Lawson and
Hanson, 1974, for a more complete discussion of these techniques.



16 55

5. Scaling

The term "scaling" is invariably used in a vague sense to discuss numerical
difficulties whose existence is universally acknowledged, but cannot be described
precisely in general terms. Therefore, it is not surprising that much confusion
exists about scaling, and that authors tend to avoid all but its most elementary
aspects.

The discussion of scaling in this paper will be restricted to simple transfor-
mations of the variables, and special techniques in nonlinear least-squares prob-
lems. A much more complete discussion of scaling is given in Gill et al. (1980),
which includes suggestions for improving the scaling of constrained as well as
unconstrained problems.

4t 5.1 Scaling by transformation of variables.
Scaling by variable transformation converts the variables from units that typi-
cally reflect the physical nature of the problem to units that display certain
desirable properties during the minimization process.

There is an important distinction between transforming variables to improve
the behaviour of an optimization method and transforming variables to change
the problem category; the latter type of transformation is discussed in Section
4.1.

The first basic rule of scaling is that the variables of the scaled problem
should be of similar magnitude and of order unity in the region of interest.
Within optimization routines, convergence tolerances and other criteria are neces-
sarily based upon an implicit definition of 'small" and 'large', and thus vari-
ables with widely varying orders of magnitude may cause difficulties for some
algorithms. If typical values of all the variables are known, a problem can be
transformed so that the variables are all of the same order of magnitude, as il-
lustrated in the following example. Consider a problem that involves a gas/water
heat exchanger. Table 1 gives the variables, their interpretation, and a typical
value for each.

Table 1 Typical values of unscaled variables

Vaiable Interpretation Units Typical Value
S Gas low lbs/hour 11,000

X2 Water flow lbs/hour 1, TS
X& Steam thermal resistance (BTU/(hour ft F))- 100
84 Waste build-up (BTU/(hour ft s *F))-l X 10- '
23 Ga-side radiation BTU/(hour ft' *R4) 5.4 X 10- 1_

Ii
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The magnitudes of the variables arise simply from the units in which they
are expressed. Since most of the variables are measured in terms of different
physical units, there is no reason to suppose that they will be of similar size
(in fact, the variables in the table are obviously of enormously different mag-
nitudes). Even when the physical units of measure are the same, there may be a
marked difference in typical values - for example, there is a difference between
the physical properties of water and waste product.

Normally, only linear transformations of the variables should be used to re-
scale (although occasionally nonlinear transformations are possible). The most
commonly used transformation is of the form

z = Dy,

where {zj} are the original variables, {yj} are the transformed variables, and D
is a constant diagonal matrix.

For the variables given in Table 1, an adequate scaling procedure would be
to set d,, the J-th diagonal element of D, to a typical value of the j-th variable.
For instance, d1 could be set to 1.1 X 104.

Unfortunately, this simple type of transformation has the disadvantage that
some accuracy may be lost, as the following example illustrates. Suppose that
a variable zj is known to lie in the range [200.1242, 200.1806). If the variable
is scaled by the 'typical value' 200.1242, the scaled variables will lie in the
range [1.0, 1.000282) (to seven significant figures). On a computer with seven
decimal digits of precision, only the three least significant figures are available to
represent the variation in Vy, and consequently four figures of accuracy are lost
whether the scaling is performed or not.

Another disadvantage of scaling by a diagonal matrix only is that the mag-
nitude of a variable may vary substantially during the minimization. In this
event, what might be a good scaling at one point may prove harmful at another.

Both of these disadvantages can be overcome if we know a realistic range of
values that a variable is likely to assume during the minimization. For example,
such a range may be provided by simple upper and lower bound constraints that
have been imposed upon the variables. Suppose that the variable zj will always
lie in the range aj _ zj _ by. A new variable yj can be defined as

yj 2zj aj + by IT2b- b aj b- (17)

The transformation (17) can be written in matrix form as

x = Dy+c, (18)

where D is a diagonal matrix with j-th diagonal element (by - a)/2, and c is
a vector with j-th element (aj + bj)/2. This transformation guarantees that



18 15.1

-1 < Vy -- +1 for all j, regardless of the value of sj within the interval [aj, bj].
In the example noted above, the appropriate transformation (17) for the variable
in the range [200.1242, 200.1806] is

=z = 0.0282yi + 200.1524,

which allows vj to be represented to full precision within the range [-1, +1].
We emphasize that the interval specifying the range of values for a given

variable must be a realistic one. Under no circumstances should this type of
transformation be used when the value of aj or bj is simply a crude limit, possibly
wrong by several orders of magnitude.

When the variables are scaled by a linear transformation of the form (18),
the derivatives of the objective function are also scaled. Let g. and G. denote the
gradient vector and Hessian matrix of the transformed problem; the derivatives
of the original and transformed problems are then related by

g,=Dg; G 1=DGD.

Hence, even a "mild' scaling such as zj = 10j may have a substantial effect on
the Hessian, and this in turn may significantly alter the convergence rate of an
optimization algorithm.

5.2 Scaling nonlinear least-squares problems.
Nonlinear least-squares problems most commonly arise when a model function,
say y(z, t), needs to be fitted as closely as possible to the set of observations {ffj}
at the points {ti}. The important feature of nonlinear data-fitting problems
is that the variables to be estimated can sometimes be scaled automatically by
scaling the independent variable t.

To see how this may happen, we consider the following example. The for-
mulation is a simplified version of a real problem, but the original names of the
variables have been retained. The function to be minimized is

where p is the independent variable, which lies in the range [566, 576, and the
data points (Yj) and their associated errors {Ayj} are given. The functional
form assumed for V(p) is

AjpJ + -

im Bmi
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/ ii

566 576

Figure 2. Typical data set and fitting function.

where the parameters to be estimated are {Aj), j = 1,...,J, and {B, k),
k = 1,.1..., K. A typical data set and fitting function y(p) are shown in Figure

* 2.
The problem can be interpreted as fitting a Gaussian curve to each of the

K peaks, together with a background function (the first term on the right-hand
side of (19)). For the example depicted in Figure 2, K is four, and (PJ}, k
1,..., 4, are estimates of the corresponding peak positions; clearly each p# lies
in the range 1566,5761.

The major difficulty with solving this problem is that, even for moderate,
Aj must be very small because of the size of pi. For example, if i = 3, A3 is
multiplied in (19) by at least 5663 w 108. Scaling the independent variable p
so that each A, lies in the range [-1,+11 partially solves the problem. This
can be done by defining a new independent variable z such that p = 576s.
However, this transformation has the same disadvantages noted in the previous
section for a purely diagonal scaling, namely, that relative precision in x is lost
unnecessarily. However, since a meaningful range of V values is known exactly,
the transformation

p = 5s + 571

may be used. With this transformation, both x and the transformed values of
Aj are in the range 1-1, +1, and no relative precision is lost in the values of X.
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The transformed function is then

J K -Z-*)
S(z) - A zi + Bh exp 2 2

j-1 k=k

Often it is not necessary to recompute {Aj}, {Pk}, and {o} from {A,},
{kh}, and {o}. For example, we may wish to compute the area under the 4(z)
curve, or to compute values of y(p) at values other than {pj}. In such cases the
transformed function is just as useful as the original (and often much better).

6. Formulation of constraints

6.1 Indeterminacy in constraint formulation.
A difficulty in formulating a model with constraints on the variables is the pos-
sibility of creating a poorly posed optimization problem, even though the un-
derlying model has a well defined solution. This situation can exist for many
reasons, which are too numerous to list here. For example, redundant constraints
may be included that are simply linear combinations of other constraints, in
order to provide a summary of certain activities. Such features may serve a
useful purpose within the model, and the modeler knows that they 'should"
have no effect on the optimal values of the model parameters. Unfortunately,
the performance of optimization algorithms may thereby be adversely affected.

A typical situation occurs when the variables in the optimization problem
do not correspond directly to the model parameters. As an illustration of such
a model, we briefly mention a problem posed by Professor Alice Whittemore of
Stanford University. Her work involved a statistical model of data concerning
the incidence of lung cancer. The model variables were three-way probabilities
{Pijk}, i = l,...,J; " = ,...,J; k = 1,...,K, and the objective function
depended only on {pitj}. In one of the models considered, it was assumed that
these probabilities could be represented as the product of three two-way prob-
abilities, i.e.

P. = iu #ji hk. (20)

Further constraints were also imposed upon {(f }, {g*j}, and {hik}, which then
served as the variables in a nonlinearly constrained optimization problem.

The presence of indeterminacy in the optimization problem was revealed
when the solution method consistently experienced great difficulty in converging,
which was surprising in view of the quadratic convergence that would usually
be expected. In order to discover the source of the difficulty, several different



56.2 TOLERANCE CONSTRAINTS 21

starting points were tried. The method converged to completely different values
of {fj}, {qj}), and {hik}, but always yielded the same values for all {Pij} and
the optimal objective function. This behavior led to a re-examination of the
model formulation, which showed that the problem variables were not uniquely
defined by the optimization problem. Examination of (20) shows that the value
of pijt is unaltered if fij and gjk, say, are replaced by af!j and gjk/a for any
a $ 0. Such a change did not affect satisfaction of the remaining constraints,
and hence the problem contained an inherent indeterminacy with respect to
the chosen variables. In fact, if a less robust algorithm had been used to solve
the nonlinearly constrained problem, it would have failed to converge, since the
linear systems to be solved for the search direction were exactly singular. In
this case, the lack of uniqueness was easily resolved by imposing some additional
normalization constraints on one of the sets of variables - e.g., E - 1.

This example is not particularly unusual, and highlights the importance of
applying modeling and optimization interactively. Although similar difficulties
may be less simple to diagnose and correct, the general rule of thumb is to check
that the solution of the optimization problem is as well defined as the underlying
model.

6.2 The use of tolerance constraints.
Equality constraints occur in problem formulations for a variety of reasons. Often
the very nature of the variables imposes an equality constraint - for example,
if the variables {zi} represent proportions or probabilities, this gives rise to the
constraint Z = 1 (as well as non-negativity restrictions). Constraints
of this type are *genuine" equalities, in the sense that the computed solution
must satisfy them exactly (where "exactly' means 'within working precision").
However, it is not unusual in modeling that constraints that might seem initially
to be firm equality constraints should be treated instead as constraints that need
not be satisfied with maximum possible accuracy. For example, this situation
occurs when the underlying model is known to contain inaccuracies. The term
tolerance constraint refers to a range constraint with a very narrow range, which
gives the effect of satisfying an equality constraint only to within a prescribed
tolerance. Thus, the linear constraint

r.- .

would be replaced by
b- 2 < GrZ < + (21)

where c, and 12 are small, but not negligible, positive quantities (exactly the
same transformation can be made for a nonlinear constraint).
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Tolerance constraints of the type (21) differ from ordinary range constraints
because the range of acceptable values, although Don-zero, is very small. In some
problems, treating constraints of this type as equalities may cause there to be no
feasible solution, or may distort the properties of the solution if the correspond-
ing constraints are ill-conditioned (e.g., points that satisfy the constraints exactly
may be far removed from other points that lie within the given range).

The following detailed example illustrates this situation for both linear and
nonlinear constraints, and also includes other forms of problem transformation.
The statement of the problem has been simplified in order to highlight the fea- -
tures of interest. The model is to be used in the design of a platinum catalyst
converter that controls the exhaust emission on car engines. The correspond-
ing optimization problem was originally posed in terms of a set of equations
modeling the chemical reactions within the converter. There are two types of
equations: nonlinear equations that describe the reaction rates for various chemi-
cal processes, and linear relationships that arise from the conservation of the
constituent elements. In total, there are eight variables and thirteen equations
(eight nonlinear and five linear).

The variables {zl,.. ,zs) represent the partial pressures of the following
species, in the order given: propane, carbon monoxide, nitrogen oxide, carbon
dioxide, oxygen, water, nitrogen, and hydrogen. Clearly it is required that zi _
0, i = 1,..., 8, since negative values would have no physical meaning. The eight
nonlinear reaction equations are as follows, where the constants {K,..., Ks)
are the reaction constants whose logarithms are defined by logarithms in the
temperature:

zz4o K6 = fl(z)= 0 (22)
34

3 10

Z4Z K3 = f(z) =0 (24)
.1.1

45

2Z6

I' ,z)=o(s



5 6.2 TOLERANCE CONSTRAINTS 23

Ke = f6(Z) = 0 (27)

X KT = j(z) = 0 (28)

Z4 Ks = fs(z) = 0. (29)
Z2VIZs

The linear equations derived from conservation of elements are the follow-

ing, where the constants {a,,..., as} represent the initial partial pressures of the

various species:

Oxygen balance

z2 + za + 2z + 2z5 +s ZG a2 as -2a- 2as - as =/(z) 0 (30)

Carbon balance

3ft + z2 + Z4 - 3a1 - a2 - a4 =o(Z) = 0 (31)

Hydrogen balance

8z 2zs + zs - gal -- 2ae - as =11(z) =0 (32)

Nitrogen balance
za + 2z7 - as- 2aT =12(Z) = 0 (33)

Total balance
8 8zi ,- a, = h3sWz = O. (34)

*----1 i:=1

The usual method for solving a set of overdetermined equations is to mini-

mize the sum of squares of the residuals, i.e.

13

minimize E i4(z). (35)
iml

One difficulfy with this approach is that the equations (22) - (34) are of two

distinct types, and it is desirable to preserve the natural separation of linear

and nonlinear equations during the process of solution. A means of allowing the

latter is to include only the nonlinear equations in the sum of squares, and to

,fte problem as
minimize J()(36)

s-i
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subject to the five linear equality constraints (30) - (34). If the problem is formu-
lated as (36), the computed solution will satisfy the linear constraints exactly. In
this situation, however, representation of the real-world phenomena by equality
constraints may be undesirable, since it is known that not all possible chemical
reactions have been included in the conservation equations (as many as thirty
processes involving only minute quantities were omitted from the formulation).
Therefore, forcing equality upon imprecise constraints may be imprudent. In
fact, in some instances there would be no feasible solution for this model because
of the additional non-negativity constraints. To avoid this difficulty, the equality
constraints (30) - (34) might be replaced by tolerance constraints. The selection
of each tolerance can be judged from the percentage of each reaction process
that is dominated by the main reaction (the one represented in the constraints).

For some models, this adjustment of the constraints would suffice to allow
the problem to be solved satisfactorily. However, in this instance poor scaling
causes additional difficulties, since the reaction constants {Ki} vary enormously
(for instance, K, is of order 10250). One method for overcoming poor scaling
here is to replace each fj(z), i 1,..., 8 by the transformed function

F, = ln(f,(z) + K,) - In K,

and then to minimize the new objective function

F?(z).

Although such a transformation cures the difficulty due to the variation in
magnitude of {Ki}, another indication of poor scaling is the extreme sensitivity
of the solution to differences in parameter values that would ordinarily be con-
sidered negligible. For example, the functions vary dramatically depending on
whether z 1 , is 10-14 or 10- 100, whereas standard computer algorithms would
undoubtedly treat these quantities as equivalent. To overcome this difficulty, a
nonlinear transformation of the variables is necessary, and therefore any suitable
transformation destroys the linearity of the constraints (30) - (34). Fortunately,
for this problem there is a nonlinear transformation that changes the nonlinear
functions F into linear functions, namely

- 99d.  (37)

Note that the transformation (37) also ensures that zi >_ 0. To illustrate the
.1 effect on the nonlinear functions, consider Fe, which is transformed to

P (v) = V7 + Vs -- V -- - In K.
i2
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The effect on the linear equations is illustrated by equation (32), which becomes

Jii,,(v) = 8c1 + 2e' + 08 - b3 = 0.

With the transformation (37), we obtain the following linearly constrained prob-
lem:

I$minimize 1: 12{/

IF i- (38)

subject to ti() = 0, i = l,2,...,8.

Note that (38) would not be a satisfactory representation if the original
linear constraints were expected to be satisfied exactly, since in general we would
not expect f(y) to be zero at the solution of (38).

Even (38) is still not satisfactory because the linear constraints of (38) (the
transformed nonlinear constraints of the original problem) will generally be in-
compatible, solely because the values of {K} have been determined from in-
herently imprecise experimental data. Hence the equality constraints of (38)
should be replaced by tolerance constraints, where the tolerance for each con-
straint is determined by the relative accuracy of the corresponding Ki. It is
interesting to note that if the f{KJ are only slightly in error (as they should
be), the system of equations defined by the constraints of (38) is only slightly
incompatible. In an initial solution of the catalyst converter problem, the in-
compatibility was much larger than expected, and this revealed an error in the
original data.

T. Problems with discrete or integer variables

Many practical problems occur in which some of the variables are restricted to be
members of a finite set of values. These variables are termed discrete or integer.
Examples of such variables are: items that are obtainable or manufactured in

certain sizes only, such as the output rating of pumps or girder sizes; or the
number of journeys made by a traveler. Such limitations mean that the standard
definitions of differentiability and continuity are not applicable, and consequently
numerical methods for differentiable problems must be used indirectly (except for
a certain number of special cases where the solution of the continuous problem
is known to satisfy the discrete/integer constraints automatically).

If the objective and constraint functions are linear, many special integer
linear programming methods have been developed, notably variants of *branch

Jand bound"; in some other special cases, dynamic programming methods can be
applied (see Beale, 1977). However, we shall be concerned with mixed integer-
nonlinear problems, i.e. nonlinear problems with a mixture of discrete and con-
tinuous variables.
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It is important to distinguish between two types of discrete variables, since
different methods can be applied to help solve each problem category. We shall
illustrate the distinction, and possible approaches for dealing with such variables,
by considering two typical problems in some detail.

5.1 Pseudo-discrete variables.
The first problem concerns the design of a network of urban sewer or drainage
pipes. Within a given area, the position of a set of manholes is based on needs
of access and the geography of the street layout. It is required to interconnect
the manholes with straight pipes so that the liquid from a wide catchment area
enters the manholes and flows under gravity down the system and out of the area.
Each manhole has several input pipes and a single output pipe. To facilitate the
flow, the pipes are set at an angle to the horizontal.

The variables of the problem are the diameters of the pipes and the angles
that the pipes make with the horizontal. The constraints are: the slope of a given
pipe lies between upper and lower bounds (determined by the need to facilitate
flow and comply with the topography of the street level); the pipe diameters
are non-decreasing as flow moves down the system; and the flow in the pipes (a
nonlinear function of the pipe diameters and slopes) lies between some maximum
and minimum values when the system is subjected to a specific "steady state'
load. The objective of the design is to minimize the cost of construction of the
pipe network while still providing an adequate level of extraction. The major
costs in constructing the system are the costs of digging the trenches for the pipes
and the capital costs of the pipes themselves. These costs are complementary,
since narrow pipes are cheap, but require the excavation of deep sloping trenches

to carry the required load.
At first sight the problem appears to be a straightforward nonlinearly con-

strained problem with continuous variables. What makes it a mixed continuous-
discrete problem is the fact that pipes are manufactured only in standard dia-

meters. The variables corresponding to the diameters of the pipes are examples
of the first type of discrete variable, which occurs when the solution to the con-
tinuous problem (in which the variables are not subject to the discrete restric-
tions) is perfectly meaningful, but cannot be accepted due to extraneous restric-
tions. Such variables will be termed pseudo-discrete, and occur frequently in
practice.

As we shall now demonstrate by the sewer-network example, problems with
pseudo-discrete variables can often be solved by utilizing the solution of the
continuous problem. This suggestion relies on the well behaved nature of the
functions in most practical models - i.e., if the optimal pipe diameter when
treated as a continuous variable is, say, 2.5723 feet, the optimal discrete value is

unlikely to be very different.
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In a general problem with pseudo-discrete variables, suppose that zi must
assume one of the values dl, d2,...,d,. Lot z' denote the value of z at the
solution of the continuous problem, which is assumed to be unique. Suppose
that z" satisfies d, < z'< d,+,.
The value of the objective function F at z- is a lower bound on the value of F
at any solution of the discrete problem, since if z, is restricted to be any value
other than z', the objective function for such a value must be larger than F(z),
irrespective of the values of Z2, .. ., z,. I

The next stage of the solution process is to fix the variable z' at either d,
or d.+1 (usually, the nearer value); similarly, any other discrete variable may be
set in this manner. The problem is then solved again, minimizing with respect
to the remaining continuous variables, using the old optimal values as the initial
estimate of the new solution. Solving the restricted problem should require only
a fraction of the effort needed to solve the continuous problem, since the num-
ber of variables is smaller, and the solution of the restricted problem should be
close to the solution of the continuous problem. The solution of the restricted
problem, say z', is not necessarily optimal since incorrect values may have been
selected for the discrete variables. Since F(z) is a lower bound on F(z), a
value of F(z') close to F(z) will be a satisfactory solution in most practical
problems. If it is thought worthwhile to seek a lower value than F(z'), some
of the discrete variables may be set at their alternative values. Usually, these
trials are worthwhile for those variables whose "continuous" value lies close to
the centre of the range. Typically, very few such trials are necessary in practice.

In some cases, the restriction of a discrete variable may have the beneficial
effect of automatically narrowing the choice of others. For example, in the pipe
network problem, pipes lower down the network cannot be smaller in diameter
than those upstream. Consequently, setting z, to d,+,, say, may fix the choice
for z2.

Discrete variables may also be chosen to achieve an overall balance in the
value of F(z). For example, if the problem concerns the selection of girder
sizes for minimizing the weight of a bridge, some girder sizes could be increased
to make the bridge take an increased load, but others could be simultaneously
decreased to achieve only a small increase in overall weight.

It is important in such problems to note that the solution of the continuous
problem can always be used as an initial estimate for the solution of a restricted
problem. In many practical problems, only two or three solutions of a restricted
problem are needed to determine an acceptable solution of a discrete problem.
The extra computing cost in solving the additional restricted problems associated
with the discrete variables is likely to be a fraction of the cost to solve the original
full continuous problem; if not, this implies that the discrete solution differs
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substantially from the continuous solution. In such circumstances, it may be
worthwhile to alter the extraneous conditions so that the two solutions are closer.
For example, in problems of supply, such as the urban sewer problem, alterna-

-. I tive supplies may be sought whose specifications are closer to the corresponding
elements of the continuous problem, since by definition this change would yield
a significant reduction in construction costs.

5.2 Integer variables.
The second type of discrete variable is one for which there is no sensible inter-
pretation of a non-integer value - for example, when the variable represents a
number of items, or a switch from one mutually exclusive strategy or resource
to another (e.g., the change between coating materials in lens design). This type
of discrete variable problem is much more difficult to solve than the first. If
the number of such variables is small, say less than five, and the number of dis-
tinct values that each variable can take is also small, a combinatorial approach
is possible. In this context a combinatorial technique is one in which the ob-

-Ijective function is minimized for every possible combination of values that the
discrete variables can assume. It may happen in practice that some combinations
are considered unlikely, and so not all cases need to be tried. A combinatorial
approach is often reasonable for constrained problems because many infeasible
combinations can be eliminated before any computation takes place. In addition,
with a combinatorial approach there is a useable solution no matter where the
algorithm is terminated.

Unfortunately, for larger numbers of variables the combinatorial approach
becomes too expensive, as the number of possible cases grows extremely large
very quickly. For some discrete-variable problems that arise in practice, it is
possible to pose a related problem with only continuous variables, such that
the solution of the new problem, although not identical to the solution of the
original, serves as a guide to the likely values of the discrete variables.

We illustrate this approach by considering a simplified version of a problem
solved by Professor R. H. Sargent, Imperial College, concerning the design of
a distillation column; for further details, the reader is referred to Sargent and
Gaminibandara, 1976. Figure 3 displays a simplified diagram of a distillation
column. Vapour is introduced at the bottom of the column and flows upwards.
Condensed vapour flows downwards and is recycled using a boiler. The column
is divided into a number of stages, and at some of the stages additional liquid
(known as feed) is introduced. At each stage the liquid and vapour mix and alter
in composition. The liquid is then drawn off as a product, or is used as an input
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Figure &. Diagram of a distillation column.

Figure 4. New model of a distillation column.

to the neighbouring stages. The optimization problem is to choose the level
at which to place the feed input in order to achieve a specified performance at
minimum cost.

At first sight it might be thought that the variable associated with the feed
level has no continuous analogue. However, Sargent and Gaminibandara intro-
duced a set of new variables, where each new variable corresponds to a stage
of the column, and represents the percentage of the total feed to be input at
that particular level. The new model is depicted in Figure 4. The problem is
then re-formulated and solved, treating the new variables as continuous, and its
solution is taken to indicate properties of the solution of the original problem.
For example, if the solution of the continuous problem indicates that 90 percent
of the feed should go to a particular stage, this stage is likely to be the one
at which to input the feed in the discrete model. Figure 5 shows some typical
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percentage feed levels for a 9-stage continuous model; stage four appears to be
the most likely candidate for the value of the discrete variable.

It is interesting to note that the results of Sargent and Gaminibandara sug-
gested that a change in the design of some distillation columns should be con-
sidered. In some cases, the continuous solution indicated that the feed should
be added at two separated stages - a design that had previously not been con-
sidered.

In conjunction with this and similar schemes, a term can be introduced into
the objective function that has the effect of encouraging a single choice for a dis-
crete variable. For example, in the continuous model of the distillation column,
a term like 1/E x? might be added to the objective function, where zi is the
fraction of the total input to the i-th stage.

Figure 5. Tpical optimal pecentage fod levels.

8. Conclusions

We have described some standard (and, for the most part, straightforward)
techniques that can make optimization problems arising from modeling more
amenable to solution by standard algorithms and software. Almost all of the
methods given here have been used successfully in our own experiences with real
problems. Certain cautionary guidelines have also been suggested in the hope of
avoiding frequent pitfalls.

Of course, the nature of possible models varies so much that it is impossible
to treat all relevant aspects of modeling. The main point of this paper is that
developers of models should consider in the initial stages the ultimate need to
solve an optimisation problem, since it is unlikely that optimisation software
will ever reach the state wherein a general routine can be used with impunity.
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