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Two distinct aspects of computer aided ship design are
addressed in this thesis. First, a geometrical hull form
modification technique employing the longitudinal repositioning
of sections is developed. The second aspect deals with the
mathematical representation of lines and line fairing. Before
this is done however, justification is presented for utilizing
third degree polynomials as an approximation to the spline
curves of the naval architect. The results obtained indicate
that a fairing procedure based on a least squares curve
fitting criteria and a lines representation procedure based
on parametric cubic equations could be adapted to generate
faired hull forms from the roughest preliminary hull design.
Additionally, the hull form modification technique could be
programmed so as to produce designs with desired values of
C

o’ ICB, C, and LCF from a basis design of similar type.
:
3 ’ Thesis Supervisor: Professor Chryssostomos Chryssostomidis
F Title: Associate Professor of Naval Architecture

80 7 14 082




g -

< il s B

Xpproved for public releaseq
distribution unlimited.

COMPUTER AIDED GEOMETRICAL VARIATION
AND FAIRING OF SHIP HULL FORMS

by
FREDERICK ROBERTSON HABERLANDT

B.S., Mechanical Engineering, University of Florida
(1971)

Submitted in Partial Fulfillment
of the Requirements for the

Degree of
OCEAN ENGINEER
and the Degree of

MASTER OF SCIENCE IN NAVAL ARCHITECTURE
AND MARINE ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May, 1978

(©) Frederick Robertson Haberlandt 1978

D
Signature of Author:riEi?iKiu. . & F?fﬂﬂ¢777.............

Department of Ocean Engineering

May 12, 1978
certifi‘d by. .CD... . * L J L] .2.......
Thesis Supervisor

Accepted by...ﬂ’.. I?OW% ® 9 0000 60 060 00 OSSOSO OSSN OETSTODBNOS
airman, Department Committee




Pacciia A L L e 20 L e

COMPUTER AIDED GEOMETRICAL VARIATION
AND FAIRING OF SHIP HULL FORMS

by
FREDERICK ROBERTSON HABERLANDT

Submitted to the Department of Ocean Engineering in May 1978,
in partial fulfillment of the requirements for the Degree of
Ocean Engineer and the Degree of Master of Science in Naval
Architecture and Marine Engineering.

ABSTRACT

Two distinct aspects of computer aided ship design are
addressed in this thesis. First, a geometrical hull form
modification technique employing the longitudinal repositioning
of sections is developed. The second aspect deals with the
mathematical representation of lines and line fairing. Before
this is done however, justification is presented for utilizing
third degree polynomials as an approximation to the spline
curves of the naval architect. The results obtained indicate
that a fairing procedure based on a least squares curve
fitting criteria and a lines representation procedure based
on parametric cubic equations could be adapted to generate
faired hull forms from the roughest preliminary hull design.
Additionally, the hull form modification technique could be
programmed so as to produce designs with desired values of

cp, 1CB, Cw and LCF from a basis design of similar type.

Thesis Supervisor: Professor Chryssostomos Chryssostomidis
Title: Associate Professor of Naval Architecture




R g a0 1 o e oy g B O A ARSI S5 55 1 e b i i o o e e nep e 10t S DA

ACKNOWLEDGEMENTS

The author is deeply indebted to his advisor, Professor
‘B . Chryssostomidis for his tireless efforts during the course

of this work. A deep debt of gratitude is also owed Professor
Heinrich S6ding from the University of Hanover, Hanover, West
Germany. His contribution of the parametric rotating spline
technique added greatly to the capability of the final

program.

The author would aléo like to thank Mrs. Sandy
Margeson for her masterful typing of an, all too often,
illegible manuscript.

Finally the author wishes to thank his wife and son

who, uncomplainingly, sacrificed many weekends and evenings

of his companionship through the course of this work.




i a3 A i (VT g e er e

: TABLE OF CONTENTS

3 Page
% wITm PAGE [ ] L ] * L ] L] [ ] [ ] L] L L ] L ] [ ] ® L ] * [ ] [ ] L) L ) L ] * L ] [ ] 1
i . . ABSMTO [ ] ] L ] L ] L] [ ] ® - L] L [ 3 ® L ] [ ] ® [ ] L ] ® L ] [ ] L] [ ] - 2
I mmmms L] L] - [ ] L ] L] L ] [ ] * L ] [ ] - L ] [ ) * L ] [ ] [ ] L ] L J 3
me or mms [ ] [ ] L] * L L J L ] * L] L ] [ ] L ] L] L ] L ] o L ] [ ] L] ‘
LIST 0? P IGURBS * [ ] L) [} L] L] L] [ ] L] . [ ] ] L ] [ ] . ] [ ] ] ) ] 7
1 [ ] Introduction. . @ - - * - L ] [ ] * * * L ] * * L] * L] L ] * [ ] 9
1 [ ] 1 Backgromd L ] L ] [ ] L] L ] f 2 * L ] L ] [ ] [ ] L] [ L ] * * L] L] L 9
l.2 Thesis Content. « ¢ « ¢« « o« o o o o o o« o o « « 10
2. Method of Hull Form Modification. . . « ¢« ¢« ¢ ¢« « « 13
2.1 Background. « « « ¢ ¢ o o o o o o o o o o o o o 13
2.2 Development . . . 2 1
2.2.1 The "One Minus Prismatic Vhriation e o o 21
2.2.2 Varying the Fullness of an Entrance or
Run not Associated with Parallel
mddlemy L] L ] L] * [ ] L ] L ] L L ] L ] L] 24

2,2.3 Modification of Lackenby s Mathod to

Accommodate Hull Forms with Maximum

Sections not at Midships. . . . « o o 31
2.2.4 A Method by Which Constraints may be

Placed on the Design Waterline. . . . . . 33
2.2.5 A Method by which Constraints may be

Placed on the Ship's Profile. . . . . . . 38

3. Mathematical Representation of the Lines of a
Shipo L) L ] [ ] L ] . L L) L L ] L] . L L) L] L ) L ) L] L ] L [ ] L] L] L ] ‘o

3 1 BBCkgrOund. 3 - [ ) . [ [ ] L] 3 . [y * [ . [ ) L] L[] [ ] 3 ‘o
3.2 Development . . ¢+ ¢ ¢+ ¢ ¢ o o o o o o » o @42
3.2.1 Derivation of the Spline Cubic
Equation Using a Variational Approach . . 42
3.2.2 peflections Due to Bending of a Simple
Ela’tic Beam. . L] L] L] L] L J L ] * L L ] ‘9
3.2.3 Piece-wise Continuous Cubic Polynomial
Approximation . « ¢« ¢ ¢ ¢ ¢ ¢ o s o o . . 54
3.2.4 The mt‘ting splin‘ . L] L ] L ) L ] L] L ] L ] L] L ) * 59




NS i iy g b,

o Sl MBS ¥ T

4. Mathematical Pairing of Lines. . . . ¢« « ¢« « &

4.1 Background . . ¢ ¢ ¢ o o ¢ o o o

4.2 Development. . . . . e e o o o
4.2.1 The Least-Squares Criteria for Definin

the Cubic Curve. « « ¢« « o« ¢ ¢ ¢ o o &

4.2.2 The Moving Strip Method. . . « « « « &«
4.2.2.1 smPl L] L] * L ] L] * L ] L] * [ ] [ ] L]

‘.2.2.2 Smpz L] L ] L L] L] * L ] * * L L] L]

‘.2.2.3 smp3 L] L] L - * L ) L ] L] * L] L ] L]

4‘2.2.4 TRANSI L] L L] * L ] L] L]

4.2.3 Fairing of Curves with Infinite Slcpe.

4.2.3.1 Other Transformations. . . . .
5. Computer Algorithms. . .« ¢« « ¢ « « o o o« o

5.1 Overview . . ... . o o
5.1.1 Specification of Point Type o« o
5.1.2 Specification of End Conditions.
5.1.3 Storage of Pertinent Line Data

5.2 Description of Subroutines . . . . .
5.2.1 Lines Pairing. . « . .

5.2.1.1 Subroutine PREFAR. e o o o o

5 L ] 2 [ ] 1 * 2 s‘lbroutine PARCRV. ® ® e Y ® L)

s L ] 2 L] 1 L] 3 subroutine FARLIN [ ] * * L ] [ ] [ ] [ ]
5.2.1.4 Subroutine FSTPTS. + « ¢ o+ o
502.1. S subroutine TRANSIQ L] L ] L ] L ] L ] L ]

' 5.2.1.6 Subroutine STRIPl, 2 or 3. . .
5.2.2 Lines Representation . . « ¢« ¢« ¢« ¢ o &«
5 9 2 L ] 2 L ] 1 smroutine PRESPL. * L] L ] L ] L] L ]

s L ] 2 [ ] 2 * 2 s“routine SPLINE L ] L ] L ] L 3 L] [ ] L]

5 . 2 [ ] 2 * 3 subroutine INTERP L] L] L ] L] L ] e [ )
5-2.2.4 subroutine CALCY L [ L[] L] [ ] [ ] L ]
5.2.2.5 Subroutine CALCT ¢« ¢ ¢« « o o« o«

L ]
L ]
L4
L]
L]
®

6. Comclusions and Recommendations. . .

6.1 Hull Form Modification . . . .

6.2 Mathematical Representation of Lines an
Pairing.... . e o o o o o o ° o &
6.2.1 Lines Representation e s e s e o s o
6 2 2 Fairing. L] L] L] o L L L * * L ] L ] L] L ] * L ]
6.2.3 Recommendations. « ¢« « ¢« « o o « o o &

mgmczs L] L L J L [ L] L [ L] . L] L . L ] L] [ ] L] L L] L] L]

o]

. L] L[] L] L] L ] L] L] L ] [ ] L ] L] L] L[] L] L] [ ] [ ] ®

97
.103




ey e e g e

T

APPENDIX A.

APPENDIX B.
APPENDIX C.
APPENDIX D.
APPENDIX E.
APPENDIX F.

APPENDIX G.

112
.116
120
123
.156




e e Y S o AP A0 SR R Pl NS Wt B B e o L L e A AR SRR s e i S

—— ' o ; . e
¥
LIST OF FISURES
2.1 Ship's Lines. . . ¢« ¢ ¢ ¢ ¢ ¢ o« o s ¢ o o o« o« o« « 14 |
2.2 Sectional Area CUZVE. . « « + ¢ ¢ o ¢ o o o o o o 17 -
2.3 Sectional Area Curve (with parallel middlebody) . 21 |
2.4 secticn&l Areacurveo [ ) [ ) . [ ) [ ) . [ ) [ ) [ ) L] . [ ] ') 26 } .
|

2.5 Sectional Area CUXrVe@. . « « ¢ ¢ o o ¢ o« o o o o o 28 i
2.6 Sectional Area CUIVE@. + « « « o ¢ o o o o o o o o 31
2.7 Sectional Area and Waterline Curves . . . . . . . 35
2.8 Coefficient Ratio Curve . . « ¢ « ¢« ¢ o ¢ o o o o 36

g 3.1 Strained Beam Element . . « « « « ¢« o ¢ o o o o o 49

% 3.2 Discretely Loaded Beam. . . « « « o o « o « o o« o 52
3.3 Spline Curve Fitting Routine. . . « « « « « « . . 4 1

; 3.4 Rotating Spline Routine . . « « « « ¢ « « o & « o 99 é

i , 4.1 Least SQuares Pit . + . « « o« « s o o« o s o « o o 64
‘.2 Pinned End. L ] L ] L] L] o [ ] ® L ] L ] L ] *® [ ] L ] * L ] * L ] L ] [ ] 70

} ‘03 clmped Bnd [ ] * . L] L ] [ ] - L L ) L L 4 [ ] [ ] - L * L ] L ] L] 72

] 4.‘ Axismutiono-ooo0000000-9000-76
5.1 Point Type EXampPles . . « o« ¢ o o o o« o o o o o o 82
6.1 Control Lines for a Typical Bulbous Bow

E DestrOyer.....-..............99




et i s Bt e i A Y AR A S e b 3 i i g e i e s oo e e 1+ T AN

g_ B.1l Sectional Area Curve. . . o« « « « « « « o« o o« o »108
!’1? c L 1 section mdification L ] L] L] L ] L ] L] L] L] * L - L ] L] L ] L] 112

}i D.1 Rotating Spline Routine . . « « « o« « o« « o« o « +116
F.l Flowchart of Pairing Subroutines. . . . . . . . .124
F.2 Flowchart of Splinning and Interpolation

subroutines ® & ®© 8 ¢ & 8 & e e & o * e o & o o o 125

G L] 1 Bow section L ] L L . L] L [ ] L ] L 4 L] L . L * L] L 4 L L L] 157

o s T T o

N - A e e ¢

|
-
[ &




S o e .
LR S B S a5 O S i i e £ B ¢ "

2R MDA s U sotrivtsh st AR A i

l. Introduction

1.1  Background

Because of the environment in which they operate, the
seakeeping characteristics of a ship are of paramount impor-
tance when assessing its overall performance. In the past
this aspect of a ship's performance had to be judged by the
results of model tests conducted at a point in time well into
the preliminary design phase. While these tests provide
results of good quality, they were not obtained until the
pending design was quite firmly established. 1In fact, the
results obtained by model tests had the characteristic of
being just that, results, rather than an important input into
the design cycle. The obvious desire then would be to have
a tool capable of providing accurate predictions of seakeeping
performance based on the data available in the conceptual
design phase. These predictions could then be used to in-
fluence the selection of hull form coefficients, etc. prior
to the time when the hull form is actually being generated.

In 1975 Professors T. loukakis and C. Chryssostomidis
published the "Seakeeping Standard Series for Cruiser-Stern
Ships'.lll This paper corrolates the seakeeping behavior,

as predicted by computer model, of the Extended Series 60
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hull forms and sets forth a method by which the performance
of this type of ship may be predicted based on five para-
meters: Froude number, F; ratio of significant wave height

to ship length, S; beam/draft ratio, B/T; length/beam ratio,

L/B; and block coefficient, CB. With this procedure a
designer can predict the relative merits of various candidate
; designs at a very early stage. This represents a significant
capability.

As a result of the work represented in reference [1]
there is considerable interest in generating a similar sea-
keeping series for contemporary cruiser/destroyer type hull
forms. In order to do this in the fashion of reference [1],
a representative sample of the ship type must be analyzed by
computer model and then the results corrolated. It was
this need for sample hull forms that provided the motivation

for this thesis.

1.2 Thesis Content

There are two aspects of hull form generation
addressed in this thesis: first, hull form modification and
second, mathematical lines representation and fairing The
technique of hull form modification developed in chapter two
is based on the work of H. Lackenby reported in reference [2].

The essence of this method is that the sectional area curve

10
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of an existing ship is redrawn in a systematic fashion to
produce a curve with the desired values of prismatic co-
efficient, cp, and longitudinal center of buoyancy, LCB. The
sections are then shifted longitudinally to produce a modified
form with these characteristics. In applying this technique
to destreoyer type ships there were several anomalies encoun-
tered which required that the method of Lackenby be further
modified. These modifications, with the pertinent background
are contained in chapter two.

The other aspect of lines generation which is addressed
in chapters three and four is mathematical lines representation
and fairing. Although the fairness of a hull form is not
critical to the seakeeping analysis it is an unavoidable
subject when considering computer aided ship design. 1In
these chapters the use of parametric cubic splines and least
squares curve fitting are addressed. While the parametric
splines are shown to provide the capability of representing
virtually any type of line, the least squares fairing technique
is limited to use with curves reéresentable by single valued
functions. The algorithms are, however, capable of fairing
lines with infinite slopes at the end points.

It is anticipated that the tools developed in this
thesis could be readily fused into a single computer program

with the capability of modifying an existing ship form to

11
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obtain a faired design with the desired coefficients of form.
when'this is developed it will be possible to generate

rapidly any number of designs for subsequent performance

analysis. The implications of this are discussed in chapter

six.

12




2. Method of Hull Form Modification

2.1 Background

During the design of all but the most trivial engin-
eering systems, it is incumbent upon the engineer that he
or she formulate a model of that system. Additionally,
the designer must continually refine the model with each
successive iterative cycle so that the results are of
sufficient detail to be meaningful [3]. One such model
used during ship design is a geometric description of the
ship's hull form. The most traditional manner of providing
this information is by way of the lines drawing.

The ship's lines drawing, more frequently referred
to as the ship's lines, is a set of three orthogonal views
of the ship's hull depicting the lines of intersection of
various planes with the hull form. When viewed in conjunc-
tion with one another, they provide the capability to
spatially locate any point on the moulded surface of the
ship. Pigure 2.1, taken from reference [ 4], is an example
of a lines drawing for a "Mariner"-class, steel hull cargo
vessel.

While the lines drawing, prepared manually by the naval
architect and draftsman, has been the older and more tradi-

tional means of depicting the geometric properties of a ship,

ol o
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the advent of the high speed computer has provided great
impetus for defining the ship's form in a mathematical
format [ 5]. It is interesting however, that a very
successful attempt was made at representing ship's lines .
mathematically by Admiral David Taylor in the early 1900°'s
[6). This will be expanded upon a bit later.

When first confronted with the job of creating the
lines of a new ship, the naval architect seeks a means of
quantifying the expected form of the vessel so that he may
strive to create an "optimum” design. These optimizing
criteria generally take the form of requirements and restric-
tions placed on the various coefficients of form, i.e.,

Cp, Cw,
requirements placed on certain specific regions of the

LCB, LCF, etc. However, there might also be

ship. An example of this could be the shape of the midships
section for a cargo vessel or the stern configuration
dictated by propeller and rudder selections. Nonetheless,
when the naval architect completes his candidate design,
the important product will be a faired set of ship's lines
meeting all the optimizing criteria previously established.
The above procedure is clearly long and involved. For
this reason much effort has been expended to develop hull
form modification techniques. The objective of these pro-
cedures is to utilize an existing, successful hull design,

or parent form, as a basis and then to alter this form in a

15
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systematic fashion. This modified form should have the
desired characteristics, and, hopefully, require little
additional refairing. It is this fairing procedure, des-
cribed in chapter 4, which requires a large proportion of
the designer's effort. The remainder of this chapter
addresses the modification techniques themselves.

One of the oldest and most widely used methods of hull
form modification is illustrated in Figure 2.2. 1In essence,
the sectional area curve of an existing ship is altered by
some arbitrary or systematic method to produce a curve which
satisfies some criteria of the designer, usually prismatic
or block coefficient and longitudinal center of buoyancy.
The offsets for the new design are then obtained by taking
the section in the parent whose ordinate in the sectional
area curve matches the ordinate of the derived curve. This
is represented by the movement of section A at position xa
in the parent to section A' at position xa. in the derived
hull form. Hence, it is merely a longitudinal repositioning
of the existing sections. This method works reasonably well
as long as the shifts are of "moderate”™ amount and the
designer is prepared to accept the resulting profile and

waterlines without alteration.

16
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Sectional Area Curve

. m
Figure 2.2

The above method lends itself quite well to design
without the aid of computers or other automatic computational
devices. However, in recent years there has been much work
done in the area of hull form modification with the use of
high speed digital computers. In virtually all cases where
computers are used, an effort is made to represent the ship's
contours or surface regions [5] in a mathematical format.

It is for this reason that the "Taylor Standard Series" is of
interest. It was Admiral David Taylor who, in the early
1900's, generated one of the first successful hull series
based on representing the sectional area curve and design
waterlines by fifth degree polynomials [6].

Another procedure of hull form modification utilizes
specific transformation functions to alter various regions

or characteristics of the hull [7]. This form of

17
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modification provides the user with much greater control over
the specific ship form than the method of shifting sections
longitudinally as previously described. An interesting
description of this type of procedure may be found in
reference [ 7].

It is, however, the method of longitudinally shifting
sections which was selected for development in this ihesis.
The reasons for its selection are twofold. First, preliminary
work with destroyer-type ships conducted at M.I.T. during the
summer of 1977, indicated that the results of the modification
were quite realistic and not plagued by gross unfairness.
Secondly, the method was tractable and readily adopted to the
peculiarities of destroyers. Those peculiarities being
principly the fact that this type of ship has no parallel
middle body and also that the section of maximum area, in
most cases lies at a location other than midship.

The specific method of modification used is that of
Lackenby [ 2] as subsequently modified by Moor [ 8], and then
again by this author. Briefly, the developments presented in
reference [ 2] are highly general, permitting the designer to
vary the value of prismatic coefficient, cp, and the longi-
tudinal center of buoyancy, LCB, of a very wide variety of
ships. Included was the capability of altering, or retaining
unchanged, the parallel middle bodies of ships so configured.

However, one serious drawback was that the method left no

18
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control over the design waterline, and while this line might
turn out fair, the longitudinal center of floatation, LCF,
merely ended up where it did. It was to this problem that
Moor [ 8] was concerned. By addressing himself to both the
sectional area curve and the design waterline in the manner
of Lackenby, and then coupling the two procedures, he was
able to obtain a derived form having the desired values of
Cp, Cw, LCB and ICF.

At this point only one minor problem existed with the
method as it stood. For ships with keelrise fore or aft it
was possible to obtain unwanted oscillations in the ship's
centerline profile. To eliminate these oscillations, this
author extended the logic of Moor to include the ship's
profile. In so doing, the designer may be assured of a
derived form having not only the four desired characteristics
and coefficients previously mentioned, but also the desired
profile. The only restricting requirement, other than the
fact that the changes in cp and cw be "moderate”, is that
for the method to be mathematically rigorous the section
of maximum beam, sectional area and local draft must be
coincident. If this isn't the casé a small (=1%) unpre-

dictable error, based on the parent hull design and the

desired changes is introduced.
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All of these relationships are developed in full in
the following section. The only other alteration to the
methods of Lackenby and Moor was that the procedure had to
be capable of accommodating destroyer-type ships whose
maximum sections fill other than at midship. This change
is also included in the derivations that follow.

20




2.2 Development |

2.2.1 The "One Minus Prismatic" Variation ; J

As a means of introducing the method of longitudinal

repositioning of sections, the traditional "“one minus

; prismatic" is first developed. This procedure enables the

‘ designer to modify the fineness of a parent form by expanding

j (creating in ships without), or reducing the region of

l parallel middle body. It is convenient for this, and the
following derivations to refer to Figure 2.3 and the
following definitions. It should also be noted that the
sectional area curve is normalized with respect to both the

value of maximum area and length of the half body.

‘ . » sp
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For the

For the
§¢ =

Sx =

parent design:

the prismatic coefficient of the half body.
the fractional distance from midships of

the centroids of the half body.

the fractional parallel middle of the half body.
the fractional distance of any transverse
section from midships.

normalized area of any transverse section at
longitudinal position x.

derived form:

the required change in prismatic coefficient
of the half body.

the resulting change in parallel middle body.
the necessary longitudinal shift of the
section at x required to generate the required
change in prismatic coefficient.

the fractional distance from midships of the
centroid of the added "sliver" of area

represented by 6¢.

In Pigure 2.3 it should be recognized that AB'C is the

curve of the derived form and curve ABC is that of the

parent. In accordance with the method of the "one minus

prismatic” the new location of the transverse sections is

defined by the following equations.
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1-(x+6x) _ 1=(¢+68¢)
I -x -
Sx 8
I=x ~ I%$

§x = {{T (1-x) (2.1)

The area BCD is seen to be 1 ~ ¢ and the above modification

simply reduces it by the factor 1- £¢+6 ),

The new area B'CD is therefore 1 - (¢+6¢), demonstrating

that the method generates the desired prismatic coefficient

of ¢ + 8¢.

There is however a concomitant change in a parallel

middle body found by solving for x at x = p, i.e.,

o = §¥5 (1-p)
%;Lp = %27 (2.2)

Therefore the resulting change in prismatic coefficient is
obtained by altering the length of parallel middle body and
then proportionally expanding or contracting the entrance

and run. Because of this procedure the method has the

following disadvantages:
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1. There is no control over the length of the

parallel middle body, i.e., ¢ and p, cannot
be varied independently.

2. The procedure cannot be applied to reduce the
fullness of a ship having no parallel middle
body.

3. Conversely, a ship cannot be increased in
fullness without introducing parallel middle
body .

4. The prismatic coefficient of the entrance or
run cannot be altered..-. .

5. The region where fullness is added cannot be
controlled. That is, the maximum changes in
fullness take place at the shoulders of the
curve, i.e., point B.

It is because of these numerous, severe restrictions that
Lackenby sought to develop a more general technique of

modification.

2.2.2 Varying the Fullness of an Entrance or Run not

Associated with Parallel Middle Body.

In reference {2 ], Lackenby concerned himself with
providing a means by which to modify both Cp, LCB and the
length of parallel middle body in a controllable manner.
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While many of these relationships are of importance, only

those which apply more specifically to destroyer-type hull
forms will be pursued in any detail. However, for the
readers'convenience, the most generalized case of Lackenby's
formulas is included as equations (2.10) through (2.13) in the
last part of this section. For the in depth derivations the
reader is referred to the original paper. Nevertheless, the
following derivation is the foundation upon which all the
subsequent relationships are based.

In referring to figure 2.4 the various quantities have
a meaning identical to those of the previous section. The
only additional term requiring definition is k, defined
mathematically as follows:

l
2 1 3
3% fo x~dy

k
The only other difference between figures 2.3 and 2.4 is that
figure 2.4 represents a hull form not having parallel middle
body, i.e., p = 0, and as a consequence the length of the
entrance and run equals that of the half length of the ship.

In referring to figure 2.4, it is recognized that in
order to preserve the form of the parent at both the end of °
the ship, (x = 1) and the middle of the ship, (x = 0) an
equation for 6x of the following form would suffice:




D R A

8x = cx(1l - x)

where ¢ is an as yet to be determined constant.

It may be

seen in Appendix A that the relationship for éx is:

(2.3)

1 =
~
h ~
8 [
~ 8
> >
- Na——
~
N
L ] 7
4_;<_$;

Clearly, the equation for é6x is of the form of a second degree

polynomial (parabola) whose values are 0 at x = 0 and x = 1,

as desired. This relationship also shows that the amount by

which any section in the parent is shifted is a function solely

of the unchanged longitudinal position x and some as yet unknown

value §¢.
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At this point we must turn our attention and consider
both the entrance and run concurrently if we are to lend some
significance to the quantity §¢. If we desire to specify both
C,. and LCB, we are in essence placing a requirement on the

p
area under the sectional area curve and its moment about some

BV g

axis (say x = 0). Since equation (2.3) applies independently
to the entrance and run, it should be possible to select the
6¢'s of these respective regions such that when taken together,
- the ship has the values of cp and LCB desired.
At this point we-introduce the following quantities:
Z = the distance of the parent ship's LCB
from midships, normalized by the half
length, (positive forward).
§z = the required shift in LCB to obtain that
required for the daughter hull form
(positive fprward).
Prime (') - denotes derived forms.
Subscripts - e = entrance or forward half-body.
r = run or after half-body.
t = a property describing the
entire ship.
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Referring to figure 2.5 above, we may interpret the require-

ments on cp and LCB mathematically as follows:

P OL = 0.+ 80, = (B + 8.) + (S0 *+ 800 (2.4)

ICB = 2 - -
2' = 2 + 62

Ssumming moments of areas
2' (¢, + 80.) = X 9, + h S0, = (X 4. + h 8]

2’ = %: (Xg9q + hodbg = [X 0, + h 801} (2.5)
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If equations (2.4) and (2.5) are rearranged, the expressions

for 6¢e and 6¢r may be obtained.

ﬁ‘ , _ _
:_. “e = '(he—.,_rrr {5¢t(hr+z) + Gz(‘ht + GOt)} (2.6)
7? 2 _ _

8o, = TR_ ¥R {6¢,(h=2) - &Z(¢, + 8¢.)} (2.7)

At this point the only variables which were not previously
defined are he and hr' The exact expression for these

variables is, with the appropriate subscript:

2 2,3
o= X3, 8 (X kT w2, (2.8)
1-2x ¢ (1 - 2x)

While equation (2.8) contains §¢, the very thing for which it
is being used to calculate, it has been stated [2 ] that the

leading term along provides a very good approximation to h

for "moderate" values of §¢, i.e.,

— 2
h= 3"_'3_"__ (2.9)
1 - 2x
Should it be desired to calculate §¢ using equation (2.8), the
solution will prove to be a quadratic which, while unwieldy,
is certainly not unsolvable. The derivation of h may be found

in Appendix A with the value of r defined as follows:
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3 r’ = /] x dy

i Lo 0

i

t |

fv While the above equations with “he derivations in the 1 1
| Appendix illustrate the underlying theory, the following

expressions represent the most general form of Lackenby's

work. E
I 1
]
1 - !
5¢e = -B:TB—; {2[6¢t(Br+z)+52(¢t+5¢t)]+ce5pe‘cr'59r} :
(2.10)
1 - -
6, = EZ—;-E; {2[5¢t(Be-z)-Gz(¢t'5¢t)]-ce59e'cr69r}
(2.11)

In the following expressions the items refer to the entrance

or run as appropriate:

= - $ _L’L.ﬂ - (1-¢) |
6x = (1 = x) {p=R + LR (o4-sp {322} (2.12)
The practical limits on 6¢e and §¢ . are: !

1 8
6p(1-4) t3A[1 - 7B
§p = ——— l,z_p P_ (2.13)

A, B and C are calculated as follows:

A= ¢(1-2%) - p(l-¢) | (2.14)
B = {-{2? - 3?2 - p(1-2%)} (2.15)
C = 1I5{B(1-¢) = ¢(1-20)) (2.16) ‘
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It should be recognized that in the above equations the
necessary section shift, 6x, is a function of the new values
of C_ and LCB, and the properties of the original parent hull

P
form.

2.2.3 Modification of Lackenby's Method to Accommodate Hull

Forms with Maximum Sections not at Midships.

It should be realized that in all of the preceding
developments it was assumed that the section of maximum area
fell at midships. While this is certainly the case for a
large class of vessels, it is virtually never true for contem-
porary cruisers and destroyers., It is for this reason that a
new set of equations was sought while still adhering to the

basic philosophy of longitudinally shifting sections.

. ‘e
figure 2.6 - SA. Curve
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Referring to figure 2.6, the definition of terms is,

once again, consistant with the preceding section. There are,
however, two very important changes. First, where z and §z

were originally normalized by the ships half length, they are

now normalized by twice that length or tpe length between
perpendiculars, L. Second, x, the local longitudinal position
of any section is normalized by the appropriate length of
entrance or run Le or Lr respectively. Also all values of
x and z take as their origin the station of maximum sectional
area.

The basic relationship for 6x is still of the form
§x = cx(l-x) or &x = 57%%757 x(1-x), the same as equation

{2.3) previously. However, equations (2.4) and (2.5) now

become:
1
¢, = ¢ {Le(¢e + 6¢e) + L.(¢, + 6¢r)} (2.17)
- = - 1 2,, — 2, —
zZ' =2z + 6z = _7;_'{Le(¢exe+6¢ehe)-Lr(¢txr+6¢rhr)}
L
t (2.18)

These two equations are solved simultaneously for §¢q and

é¢, in Appendix B, the results of which are listed below:

1 2 vl 2 e | 2 - - ]
6¢Q - m {Lr¢rxr-Le¢exe+z L ¢é Lrhr(L°¢e+Lr¢r wr)}
ee err (2.19)
1

8 = {2-_2 -'-_-2_ -
¢y Lihr+LrLehe Lg¥oX-LJ¢ X -7'L ®1-Lyhg (L0 +L ¢, L¢é)}

(2.20) |
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It was these two equations along with equation (2.3) which
proved to give very satisfactory results for several sample

calculations.

2.2.4 A Method by which Constraints may be Placed on the

Design Waterline

In the preceding development the designer had no
control over the shape of the design waterline. Because the
longitudinal center of flotation LCF, was felt to be an
important parameter in determining a ship's performance in
a seaway, Moor [ 8] further developed the method of Lackenby
to include control over the design waterline. It was with
his revised method that Moor and his colIeagues developed
four distinctly different models with only their midships
section identical. They were thus able to cut these four
models in half to generate sixteen uniquely different hull
forms.

An interesting side light of this experiment was that
the parent form used was that of a fast twin-screw currently
in service whose maximum section was abaft midships. They,
therefore, had to first swing the original area curve to
place the maximum section at midships and then proceed with
the new method of modification. Although having the maximum

section at amidship may have proven to be more tractable for
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the creation of the models, it was not necessary for the
application of Lackenby's method. This fact was demonstrated
in the previous section.

The essence of Moor's method is that the sectional

area curve and the design waterline are both altered in the

sense of Lackenby to produce the desired values of Cp, ICB,
Cw and LCF. At this point a new factor is introduced; the
ratio between the sectional area ordinate and the design
waterline ordinate is calculated for both the parent and
derived hull forms. These ratios are then plotted as a
function of ship length and it is from this curve that the
longitudinal shift of sections is determined. Figures 2.7
and 2.8 illusgrate the sectional area and design waterline
curves and the area/waterline ratio curve respectively.
Referring to figure 2.8, to obtain the offsets for a
particular section Ra in the derived form, section Rp in the
parent is used as a basis. The reason for selecting station
Rp in the parent is that it is the closest section to Rd with

the same value of area/waterline ratio. The offsets of

section Rp are then multiplied by the ratio of the beam i

coefficient in the derived form at section Rd to that of the
parent at section Rp, i.e., Bd/Bp. These values may be seen

in figure 2.7. Additionally, if the maximum beam of the
derived form is different from that of the parent, the

offsets of section Rp also have to be multiplied by the ratio
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of the maximum beam in the derived form to the maximum beam

in the parent, i.e., bdmax/b Therefore, the equation

pmax*’
for any offset bd in the derived form is:

B
bd=pr—d dmax
ppmax

(2.21)

It can be seen in figure 2.8 that there are regions of
ambiguity. Such is the case where the derived curve lies
below a minimum in the parent curve. It has been this
author's experience confirming that in reference [ 8], that
the regions which cannot be explicitly be defined may be
faired in after defining the sections on either side.

The one remaining undesirable characteristic occurs
in regions where there is some form of keel rise, i.e., the
fore foot or skeg region. In these areas, if the draft of
the parent is proportionally altered to equal that of the
derived form, there is a concomitant and undesirable change
in the area of the section. It is to this matter which the

next section is addressed.
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2.2.5 A Method by which Constraints may be Placed on the

Ship's Profile

Since Moor's method proved capable of constraining
both the sectional area curve and the design waterline, it
was decided to extend the method to include the centerline
profile of the ship. The actual mechanics require only the
introduction of a local draft coefficient, (local draft/
maximum draft) into the denominator of the.area/beam ratio.
This new ratio, (Area/Beam/Draft), is graphed and the sec-
tional shifts determined from this graph. In determining
the new offsets not only are the offsets of the parent
modified transversely as described in the previous section,
they are also altered in the vertical sense. This altera-
tion is accomplished by using the water plane as a reference
and moving the waterlines below a distance proportional to
the ratio of the derived form draft coefficient/parent draft
coefficient. Also if there is a difference in the maximum
draft of the derived form and parenér the waterlines are
altered by this ratio as approprié%e.

As was mentioned in the background section of this
chapter, section 2.1, for this modification technique to
be mathematically rigorous the sections of maximum area,
maximum design waterline breadth and maximum draft must be

coincident. If this is not the case, the actual areas of
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the sections generated will be consistantly different by a
very small amount from what is desired. From the few

examples this author has worked, it is estimated the

difference in the value of cp obtained and that desired is

on the order of 1%. The explanation of this is seen in

Appendix C.
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3. Mathematical Representation of the Lines of a Ship

3.1 Background

It was established in section 2.1 that before the
naval architect attempts to actually draw the lines of a new
ship, he must have a "firm" description of the new design as
represented by the various coefficients and curves of form.
Examples of these, as cited previously, are: the sectional
area curve, and hence Cp and LCB, the design waterline curve,
(Cw and LCF), the principle dimensions and perhaps specific
information about the geometry of the midship section or
stern region. These characteristics should represent what the
designer feels is the "optimum" solution to his set of re-
quirements. The naval architect now has to create one or
more, of a possible infinity of, design candidates which ful-
£ill his descriptive coefficients.

The traditional method for drawing the various lines
of the ship is with the use of long, continuous strips of
wood, metal, or more recently plastic, held in the desired
position by weights. These tools are called splines and
ducks respectively. The curves produced by this method
were continuous but often timés contained unwanted waviness,

Removing these unwanted undulations, while preserving the
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desired character of the line, is a process referred to as
fairing. This topic, and the implications of placing a
mathematicai interpretation on it, are discussed in the

next chapter. Not only did the naval architect have to
generate smooth curves which pleased him visually, there also
had to be a consistancy in location of the surface points
when observed from the different views. This is sometimes
referred to as cross-fairing and is also addressed in the
final chapter. It is the fairing, and cross-fairing, which
represents a very large part of the manual design effort.

It was recognized long ago, that if the ship design
process was to be automated to any degree, a technique to
represent the lines of the ship mathematically would have
to be developed. This is especially true today where much of
the work is to be done by high speed digital computers. Not
only must the designer/programmer provide the mathematical
algorithms for representing the ship's lines, he must also
provide the logic necessary for the computer to duplicate the
heretofore trial and error methods of the draftsman. The
alternative to programming the logic however, would be to
give the system an interactive man-machine interface at the
decision points. It is, however, the mathematical repre-
sentation of these ships' lines to which this chapter is

devoted.
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3.2 Development

3.2.1 Derivation of the Spline Cubic Equation using a

Variational Approach

There are essentially two different methods by which
one may arrive at a mathematical representation for ships
lines.

l. Select some mathematical function with several
unspecified parameters whose values may be deter-
mined by some accuracy criteria and boundary
conditions. Typical of this approach is the use
éf a polynomial and a least squares fit criterion.

2. Choose some smoothness and closeness of fit
criteria such that, when taken together with the
boundary condition, the function and parameters are
determined.

It is this second method, based on a variational smoothness
criterion, that will be developed in this chapter.

In general these variational methods involve the
minimization of the integral of some linear combination of
the squares of the various derivatives of the function
sought. In the case where the equation of the flexible
spline is sought, the "smcothness" criterion is taken to be

the minimization of the strain energy in the spline.
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Mathematically this may be represented by [9]:

b )

TLAYsY' ¥ eeoy®) %) dx = min (3.1)
a

where, for the spline equation (3.1) becomes:

! ckzds (3.2)
s

s = the total path length
¢ = flexural rigidity of the beam

k = curvature defined mathematically as:
(1-Y'2) 372

ds = elemental arc length

= l+y' ax

If these values are substituted into equation (3.2) the

smoothness criteria becomes:

X e
I=/0 —Y-Tm dx = min (3.3)
(l+y*'“)

*
To complete the variational problem one must also
consider a "closeness of fit" criterion which takes the

following form:
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b
N=1/ Fly,y' ", ...y"™ £,x) ax (3.4)
a

i it Tt e St .

It may be seen in most any text on the calculus of variations,

R

e.g., [10] that the criteria for smoothness and closeness
of £fit may be combined by the introduction of the unknown
l1agrange multiplier A [10). The results of combining
equations (3.1) and (3.4) into a single variational

problem is:

(n) ,x) +

b
§ 5 {Lly,y',¥"r.c0y
a
AF(y,y',y",...y(n),f,x)} dx = 0 (3.5).

A necessary condition for the integral in (3.5) to be

stationary is:

2LNF) _ 4 amarn, , @ aaar),_
(-1t L @RUERE), (3.6)
ax® ay'®
with boundary conditions:
2 3 2
v . (3L _d_ 3L (n-1j
ees)8y' + (ay.' a',"'a—yIV'F...)GY 4'...'0-—(—5-617 0 ]
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Equation (3.6) is known as the Euler differential equation
for the variational problem presented in equation (3.5). The

usual procedure for solving this system of equations is to

; first solve the Euler equation (3.6) in conjunction with the
é boundary conditions, expressed in equation (3.7). This
solution results in an equation of the form y = f£f()A,x). This
equation is then substituted into the "closeness of fit", or
accuracy criterion of equation (3.4), to determine the value,
or values of A.

Another aspect of the mechanics of this procedure is
revealed when the accuracy criterion requires that the
resulting relationship for y = f(x) pass thrdugh a discrete
set of data points. Such is the case for a "colocative spline"”,
or a spline made to pass exactly through discrete data points.
In this instance the integral in equation (3.4) would become
a summation. However, in order to preserve the consistancy
and similarity of working with integrals in both portions of
equation (3.5), the Dirac delta function may be introduced
into F.

Redirecting attention to equation (3.3), it will be
noted that due to the complexity of the integrand, the

differential element of strain energy, the result of equation

(3.5) will not be closed form. In order to simplify the above
2)5/2
’

integrand it is assumed that the demonimator, (l+y' is
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approximately 1. Or y'z is very small. While this may not
be the actual case, if the value of y' is linearized as being
the value of the slope of the chord between two successive

data points, the integral in (3.3) might be thought of as

follows: [
.

2

I* = fm W(x) y"" dx = min (3.8)

s |
If we were to take some mean value for W(x) for the entire

domain of x, the minimization would be similar to the

minimization of:

n2 (3.9)

Yy dx

H" \gx

It is also this simplification which will allow us to calcul-

ate a closed form solution to y = f(x).

One other simplification which will be made, without

} harm to generality, is to assume that xe{0,1]. That is

0 <% <Xy < ..o <X 4 <xp <1. At this point we must

actually define the accuracy criterion. Assuming that the

curve passes exactly through the data points, we may say:

(3.10)

y(xi) = fi i=1l...m
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Translating the conditions of (3.9) and (3.10) into the

single variational problem of the form of (3.5) we have:

1 2 W
§ / {y""+2: Ajd(x-xj)(f-y)} =0 (3.11)
0 j=1

It should be recognized that the first delta (to the left of

the integral sign) is the symbol for the variation, while the

second is the Dirac delta function. £ is any "candidate"

function passing through the data points (xj, y(xj)) and

the xj's are to be determined from the accuracy criteria ;

of equation (3.10). 1
The resulting Euler equation (3.6) is:

m

- ] - = 3.12
§-1 AJG(x xj) 0 ( )

iv

The solution of this equation generates a function of the

following form:

g

|3 3 2

y(A,x) = %7 b Ajlx—xj + Ax~ + Bx

j=1

+Cx +D | (3.13) !

Therefore the value of y and the integration constants A, B,

C, and D are all linear functions of the Aj's.




The boundary equation (3.7) for this specific problem

turns out to be of the following form:

1
(-y'" 6y + y" Gy'lo =0 (3.14)

It must also be noted that (3.13) is valid for 0 = x < 1.

While it is not intended to determine equation (3.13)
for every possible situation, suffice it to say that the
values of the Aj's and the constants A, B, C, and D are
uniquely determined by the coordinate points and the end
conditions of the curve [9]. The essential points to be
made are:

l. For the criteria used, the equation for the

spline as obtained by the variational approach

is of the form of a multi-coefficient third

degree polynomial.

2. Where the curve is defined over the region (0, 1)
by m data points, there is also a need for four
additional pieces of information to satisfy, and
fully solve equation (3.13).

It will now be demonstrated that the form of equation

(3.13) is also supported by the theory developed for the small
deflection of elastic beams. As it turns out, the simplifying

assumptions made in the preceding derivation are exactly that

=
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which will be made in the small deflection theory. Neverthe-

less, the consistancy of results lends much reassurance.

3.2.2. Deflections due to Bending of a Simple Elastic Beam

In virtually any undergraduate strength of materials
course the subject of beam deflections may be presented in
several different ways [ll]. However, it will be the

method of multiple integration which will be developed here.

m (1 )M

/ \\\'64 ___/\

Figure 3.1 -~ Strained Beam
Element (Pure Bending)

Referring to figure 3.1 above, it may be said that
the element of the beam deforms about the neutral axis and

that as a result, transverse plane sections remain plane after
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deformation. This results in an elongation of those fibers

outside of the neutral axis and a compression of those fibers
inside. Also, the amount of distortion is proportional to
the distance from the neutral axis. This being the case,

the following equations hold:

a=£'.=L—+§.
p p+c

or, by rearranging,

%.s ;Lf (3.15)

In the above equations the following definitions apply:
M = bending moment
E = the stiffness or Young's modulus
I = the moment of inertia of the cross section 1
p = the radius of curvature of the beam, measured to |
the neutral axis
EI -‘the "flexural stiffness” or "rigidity"

The mathematical expression for the radius of cruvature, or

more traditionally the curvature, K, is defined as follows [12]:
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It is to this equation which the simplification is applied.
For actual beams it is assumed that the value of g§ is very
small, hence, (%%)2 <<1l. If this is the case, the expression

for curvature becomes:

(o N
N

O
L]
=
"
R

Therefore, when equations (3.15) and (3.17) are combined,

the results are as follows:

2
EId—§ = M(x) (3.18)
dx

Here, M(x) is meant to indicate that the bending moment is a
function of x.

At this point we must address ourselves to the
equation for the bending moment in a beam. Specifically,
we will look at the results of loading a uniform elastic
beam with concentrated point loads; remembering that this

case most closely approximates the naval architect's ducks

and splines.




R

Y
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I i P, P r
R 1 3 "1
¢ P Pz . Pr\

Figure 3.2 - Discretely
Loaded Beam

It is advantagious, at this time, to introduce the
concept of the singularity function defined as follows:
0, x < Xy
<X=x,> = (3.19)
. n
(x-xi) x> x,
With the aid of the singularity function, and in reference to
figure 3.2, the bending moment eguation obtained from the

application of concentrated point loads is:

M(x) = P x + P1<x - x>+ Pyex = x> 4+ .,

Po<x = x> (3.20)
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It should be obvious that when equation (3.20) is
substituted into equation (3.18) the result may be twice
integrated to obtain an equation for y = f£(x) which is of
the following form:

EIy(x) = A + Bx + % {Pox3 + Pl<x - x1>3 + Pz<x - x2>3

vee Bo<x - x>} (3.21)

The above equation is of a form very much the same as equation
(3.13). The essential difference is that in equation (3.13),
the values of the end forces Py and Pn were still unknowns
requiring the statement of two conditions at each end of the
beam. It should also be apparent that the resulting values
of the Ai's are nothing more than 2EI times the forces
required to keep the beam in equilibrium. Therefore, based
on the results of this and the previous section, it will be
accepted without further discussion that the third degree
polynomial, or cubic, is an adequate model of the ducks and
splines of the naval architect. Hence the term "spline

cubic".
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3.2.3 Piece-wise Continuous Cubic Polynomial Approximation

I
| Ys 2
Yz
Y.
9, Oe [* Py
x‘ Xg xs x"_l XNT X

Figure 3.3 - Spline Curve
Fitting Routine.

Referring to figure 3.3 above, it is desired to
approximate the curve y(x) by some series of cubic functions

of the form:
gj(x) aj(x xj) +bj(x xj) +cj(x xj)+dj (3.22)

where j represents'the jth interval bounded by xj and xj+l'
and 1 £ § £ n -1, n being the number of data points. 1In
order for these segments to be continuous we impose the

following conditions:




(1) j = l,2,...n-1

gn-l(xn) =¥y

(2) gj(xj+1) = gj+1(xj+1) j-1'200°'n-2

From equation (3.22) it should be recognized that to fully
describe the curve requires 4(n-l) unknown coefficients.
However, the above equations provide 4n-2 conditions. We
therefore require two more conditions. The obvious choice
for these two additional constraints would be to specify the
end conditions for the beam. Specifically, you would specify
either g' or g" at the ends.

For the sake of brevity the remainder of this deriva-
tion will be abridged to include only the essential equations.
For a complete and detailed description of this procedure the
reader is referred to references [13] and (14].

Continuing with the derivation, the following
definitions will prove useful.

h

- X (3.23)

37 %5417 %
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We may now relate the unknown coefficients in the following

manner:
a, = s (8,.. - 8.) (3.25)
3 3'5; 3+l j
s .
by = -21 (3.26)
h
cj = Dj - 1} (2sj + sj+1) (3.27)
dy =y, (3.28)

Substituting these equations into condition (3) will generate
a relationship between successive values of sj of the

following form:

sjhj + 2(hj +h
j = 1,2,...“-2 (3.29)

Equation (3.29) will thus generate the following system of

equations:
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2(h1+h2) h2 0 « o o 52 6(D2-Dl)—slh1

1

L4 L] L 3 i

hn-3 2(l"n--3"'l'1n-2) hn-2' é

hp-2 2(hn-z"'hn-l)h 8y-1| 6(Pp_1~Dp o) g

h s %

L L J L n=-1"n _ 3
(3.30)

It can be seen that, for any point xj, sj ia the curvature
at that point. For the above system of equations if the
curvature is known at the end points, i.e., s and 8, the
curve will be completely defined.

If instead of curvature the slope is specified at the
end point, the above matrix will be modified slightly. 1In ]
this case, the value of the curvature at the end point will be
unknown. For the situation where the beginning slope is z;
specified the following changes will occur. From equation }

. (3.27):
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h
l =

or Zslh1 2h1 = G(Dl - tl) (3.31)

The effect on the matrix system will be to change the currently
existing top row and then add another top row and left

column as follows:

—

2n, by ... | [sy] [eto-tp

hy 2 (hl+h

If the end slope is specified a change of similar form takes
place only adding a row to the bottom and a column to the

right side as follows:

... hn-2 2(hn 2+hn 1l hn-l sn-l 6(Dn-l-pn-z)
« e« ho, 2h, 1| |%n 6(-D,_ J
L — pu—

The form of the above matrix is tridiagonal and lends
itself to rapid solution by a recursive relationship [14].
This fact will save a significant amount of computational

time when reduced to a computer algorithm.
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3.2.4 The Rotating Spline [15]

One particular disadvantage of the "piece~wise
cubic”" method developed in section 3.2.3 is that it will not

provide a solution for curves having infinite slopes. It is

S e YR BT 3380l A SN N I .

for this reason that method of the "rotating spline" was
developed. Referring to figure 3.4 it may be related that
this procedure is merely a modification of the "piece-wise

cubic" technique.

Y * /)\ Ya Y
- y
N X
N /A g,
) y“
\'\ﬂ
%, X, s X, X, x“ﬂrx

Figure 3.4 - Rotating
Spline Routine

For this method of curve approximation a cubic
polynomial is generated for each interval as before. However,

in this case the coordinate system is redefined for each

e — e z RS i i Ve 2
7y o land e o A - sz S ——
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interval, and the cubic equation is generated with respect
to this local coordinate system.

Appendix E contains the steps necessary to generate
the computer algorithm. There is, however, one definate
disadvantage to using a rotated coordinate system. In order
to obtain an interpolated ordinate on the curve the
following two parametric equations must be used.

x = xi+(x =X )t (Y ,1-¥ ) t(1-t) [a; (1-t) =D, t]

(3.32)

i+l

and

y = yi+(yi+l-yi)t+(xi+l-xi)t(l-t)[ai(l-t)-bit]

(3.33)

Both of these equations are third degree polynomials in the
parameter t. To solve for some value y of the point (x,y)
in the unrotated coordinate system, x is used in equation
(3.32) to solve for t such that 0 St 51 and t is also real.
This value of t is then used in equation (3.33) to calculate
y. It should be pointed out that the quantities a and bi
were determined previously as described in Appendix E.

In summary, we have shown by two methods, variational
calculus and simple beam theory, that the third degree or
cubic polynomial provides a good representation of the thin

elastic spline used in drawing ships lines. There was,
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however, the disadvantage that the equations were not capable
of representing curves having infinite slopes. For this
reason the method of the rotating spline was introduced.

This parametric method permits the representation of
virtually any continuous curve, including those which are

non singular.

61




el 1l crt——————— PSP LA S PUEP I SN

paL

T

4. Mathematical Fairing of Lines

4.1 Background
It has been stated previously that the lines fairing

process can be the most time consuming aspect of the ship
design cycle. For this very reason fairing becomes a prime
candidate for automation. The difficulty, however, lies in
the fact that obtaining a universally accepted mathematical
definition of a faired line, or the fairing process itself,
is a virtual impossibility. Perhaps the most general defini-
tion, and one which would prove the least restrictive, is
the following:
A faired line is one which retains
the desired "character" but eliminates

any undesired wa#iness or fluctuations.

It will be shown in the following sections that this
result may be achieved by fitting, in a least squares sense,
a third degree polynomial to a set of four or five data
points. The number being dependent upon the desired boundary
conditions. In addition to the similarity of the third
degree polynomial to the form of an elastic spline, the
polynomial also provides the capability of introducing a
desired inflection point into a series of data points. It
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| also prohibits the introduction of multiple inflection points
] and undesired waviness, also an asset. Because of these

) characteristics and the excellent results demonstrated in

reference [16], this "least squares" criteria was employed

as the foundation of the fairing process.

e T e T T T T T

T T T T T
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4.2 Development

4.2.1 The Least-Squares Criteria for Defining the Cubic Curve

It was established in chapter three that the cubic
polynomial would provide a "good" approximation of the shape
of a spline used to construct the lines of a ship. What
remains to be shown is how these polynomials are applied in
order to generate the faired position of a set of data

points.

T Curve II

Curve I

|
‘ E—
X, X, X5 x‘ X, > X

Figure 4.1- Leost Squares Fit

P(x) ao + alx + azx + ayx
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Referring to equation (4.1) above it should be
recognized that, in order to uniquely specify the cubic
polynomial in its general form, four independent pieces of
information are required. The reéult of applying this
information is to determine the values of ags 23, 2, and aj.
This will produce a curve which exactly conforms to the given
requirements. This is illustrated as curve I in figure 4.1
where the curve is required to pass exactly through the first
four data points. The disadvantage of using this type of
curve is that, since it is required to pass exactly through
the given data points, it is unable to modify their position.
It is this alteration however that is necessary if the curve
is to be "faired".

As stated above, four pieces of information are
required to uniquely specify the cubic polynomial. If, how-
ever, we were to over specify the requiremenis of the curve
and then demand that the solution satisfy these requirements
in some "best possible” but not exact manner, we begin to
get a feel for how fairing can be produced. Mathematically
this can be stated as follows.

Referring to curve II in figure 4.1 we will require
that our resulting curve pass as close as possible to the

five given data points. Usually this translates into a
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mathematical form by requiring that the sum of the squares
of the distances between the curve and the given data

points should be minimized.

5

s= Dy - agtax + ax; + age)’? (4.2)
l=
or
E—aai. =-——-as =
aao da, aa3

These derivatives generate the following system of normal

equations which can be solved for ag oo a5

8o S S, S3 2, %o
s1 s2 s3 s4 al tl
= (4.3)
o) S5 84 Sg a t
83 S, Sg Sg a, t;
L 4 L 74 L 7

5k
s, = x (4.4)
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k
YiXg (4.5)

It can be seen that curve II in figure 4.1, while not

passing exactly through the data points, passes "fairly

close"” and also displays a smooth and continuous character.

It is this closeness of proximity, or minimization of the

least squares difference, procedure that is the essence of

the fairing criteria used in this thesis.

The following sections will develop the equations for

line segments whose end position and slope or just end

position are fixed. First, however, a brief explaination

of how these segments are applied to fair a complete line

or set of data points.

4.2.2 The Moving Strip Method

In the
least squares
the points on
order to fair
consider only
After passing
points obtain

procedure described above it was seen that a
spline was passed through five data points and
that line were then considered to be fair. 1In
a complete set of initially unfair points

five points at a time, i.e., P_ to P

k k+4°
a least squares spline through these five

the faired position of point P Then move

k+2°




the strip one unit (k = k+1) and consider the next five
points, Pk to Pk+4' fairing Pk+2' For each step we could use
previously faired values for P, and Prsl expecting our final
gsolution to be obtained more rapidly. By walking this strip
of five points through the entire set of data the faired
position of each point may be obtained. This procedure may
also be found in references [16, 17].

The following three sections develop the equations
needed when considering data points whose boundary conditions

are of the following type:

1. Free end--the position and slope of the end is
unspecified.

2. Pinned end--the end position is fixed but free
to rotate.

3. Clamped end--end position and slope are fixed.

4.2.2.1 STRIPl: Fairing an interval with free ends.

This procedure is the same as that developed in
section 4.2.1. It is this routine which is used to fair
the center data point (Pk+2) of five interior data points,
i.e., Pk ol P1 and Pk+4 o Pn' where P and Pn are the first
and last points respectively in the set of given data. This

routine is also used to fair P;, P,, P _, and P for the

case where the ends are free to both rotate and translate.
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Repeating equations (4.3) to (4.5) for convenience.
8¢ s, s, s, aOT rtl :
51 32 53 ol 3 51 !
= (4.3) {1
S2 S3 84 Sg a2 £,
s s s s a t
3 4 5 6 3 3
L 4 L7 e
and
5
s, =L  x (4.4)
i=1
5 k :
= 3 Y.:X, (4.5)
% j=1 11
also 5
P(x) = a, + a,x + a x2 + a x3 {4.1)
0 1l 2 3 *

Therefore the faired position of the second and third points

in the five point strip are:
¥, = P(x,) and §; = P(x,)

For the case of a free end point the first point becomes:
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¥, = P(x,)

It would be fair to expect that the equation P(x)

would be most representative of the actual curve at its

interior regions where uncertainty about end conditions

would have less effect. For this reason only the center

o i W R AR

point of a strip is recalculated as being faired, i.e.,

Pk+2 as opposed to recalculating both Pk and Pk+1‘

; 4.2.2.2 STRIP2: Fairing an interval with pinned end.

T
|
|
X

2 X

Figure 4.2 - Pinned End

70




In fitting the curve of equation (4.1) to the five

data points in figure 4.2 above, we require that P(xl) =Y

exactly. If in our calculations we adjust the abscissas

such that x = 0 we may simplify this equation to:

2 3

P(x) = y; + a;x + a,x” + a.x (4.6)

L e 4y i

Applying our least squares criteria to this we obtain the ?

following normal equations:

i
i
B 7 ] . 7] %
) 83 84 a Y |
i
= i
s3 54 s5 az tz (4.7) i
|
'z
S, 8g 8¢ a, t5 |
where : j
5
s, = I xik (4.8)
i=2
3 X
t, = I (Y,-y,)x} (4.9)
kT ., iYL
. and
3
‘ Xy =%y -x




With the values of a, a, and a, computed from equation (4.7)

we can calculate the faired position of points P, and Py:

¥, = P(x3), ¥ = P(x})
where
X'y = Xy = X), X3 = X3 X

After these two points are determined STRIPl can be applied

to continue the fairing process

4.2.2.3 STRIP3: PFairing an interval with clamped

ends.

-

|

] ]
| - !
| | |
X X

&

;’-x

Figure 4.3 -~ Clamped End
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In order to fair an interval with both position and

slope of the first point fixed we will consider only the
first four points as shown in figure 4.3 above. 1In order
to simplify the derivation we once again adjust the abscissas

such that x, = 0. For this case equation (4.1) becomes:

1

P(x) = y1-+ gx + azx2 + a3x3 (4.10)

After applying the least squares fit criteria to the four

data points the normal equations obtained are:

o Sg ay t,
= (4.11)
Sg S¢ 2,y t3
where
4
k
s, =1 x! (4.12)
k i=2 i
4 . k
= - . -
t §=2 (yi qx Yz) 9 (4.13)
and

73

oo




T T TR

'

For the simple 2 X 2 system above a, and ay may be written
as follows:
o f2% ~ 55

a (4.14)
2 )
84% ~ S5

t.s - t.8
a, = 34 225 (4.15)
S,S - 8
456 5
where
84 8g
A = #0
Sg 8¢

Using the values of a, and a, calculated the faired position

of the second point may be readily determined as: 1

¥z = P(x3)

where

NI I IP PRIy Py
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After fairing the second point STRIPl can be applied to
continue the fairing process, fairing point three and four

the first time it is applied.

4.2.2.4 TRANSl: Fairing the last points in a given

sequence of data.

As can be seen in the previous sections, the fairing
procedures operate on a series of points with monotonically
increasing abscissa and end conditions specified at X7
where x; < X, < X5 ... . At the time when the five point
fairing interval reaches the other end of the curve, i.e.,

Pk = Pn-4’ the following transformation must take place:

X) = X, =X, =0 Y] = ¥p
X = X, = X Y3 = ¥po1
X, =X =X _ Yya =Y. _
? n n-2 ? n-2 (4.16)
Xg = X5 T *p-3 Yg = Ypo3
Xg = X, < Xp_4 Y5 = Ypoq

This allows the fairing of the last three points as if they
were the first three points. Once these three points are
faired the reverse transfbrmation is employed to place yi

into Yo' ete.
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4.2.3 PFairing of Curves with Infinite Slopes

In ship design it is not infrequent that lines are
encountered which possess infinite slopes at one or both
end points. Such is the case of a section through the bow
of a ship equiped with a bulbous oow. Here if the offsets
y are expressed as a function of 2z, an infinite slope will
occur at the bottom of the bulb. While the parametric
rotating spline of section 3.2.4 will accommodate such a
form, the simple cubic polynomial of equation (4.1) will
prove indeterminate for an interval containing an end point

with infinite slope.

Figure 4.4- Axis Rotation




Referring to figure 4.4 above, it can be seen that if

the axis are rotated by socme small anle 6, and the data

points are redefined in this new coordinate system the

fairing process may be carried out as normal. The following
equations relate the coordinates in the two coordinate

systenms,
x' = x cosb + y siné

(4.17)

y' = -x sin® + y cos6

x = X' cosf - y' siné
(4.18)
y = x' sin86 + y' cosé

It is also assumed that for small values of 6, e.g., 10°:

Ay = Ay', Ax = Ax' = 0 (4.19)

k

; In order to continue the fairing process the faired
E position of the first three points and the slope at the

F third point could be calculated in the rotated coordinate
|
l




system and then transformed back into the unrotated coordinate
system. The faired position and slope of the third point
could be used to continue the fairing in the unrotated plane.

The following slope transformation is also helpful.

dy . tan {arc tan(gx-;-)+ e} (4.20)

dx X

4.2.3.1 Other transformations.
There are any number of transformations one could
use to accommodate the problem of the infinite slope. One

tried by this author was that of letting [18]:

X = %(1 - cos 0)
or 0<x315 (4.21)

9 = arcos (1 - 2x)

The curve is then plotted as a cubic in 6. This has the
advantage of eliminating an infinite slope at x = 0; in fact
dy/de = /xr/2, where r is the radius of curvature of y = f£(x)
at x = 0. The disadvantage, as seen by this author, is that
fairing will take place in the distorted y,9 plane. Addition-
ally, even though the resulting curves appear to be aesthet-

ically pleasing, some apprehension exists regarding the use
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of lines faired in the two coordinate planes. For this

reason the author opted for fairing in a rotated coordinate

system as opposed to one which was distorted.
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5. Computer Algorithms

5.1 Overview

The system of subroutines developed in this thesis
were designed to provide two distinct capabilities: (1) to
provide a means of fairing a series of data points not pre-
viously considered fair, and (2) to provide the capability of
representing a series of data points by an analytical
mathematical expression. This second feature would also
provide a means by which slopes, curvatures, etc. could be
determined by interpolation. The theory of these two pro-
cedures was developed in chapters four and three respectively.

The ultimate objective of these subroutines would be
their utilization in: a program to fair and draw an entire
ship form. Because of this and the virtually infinite nature
of the lines existing in a hull form, the program has to be
capable of handling many line types. As an example of this,
see figure 5.1, the programs require the following information
as input.

1. Independent variable coordinates.
2. Dependent variable coordinates.
3. Data point type.

4. Number of data points.
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5. Type of end conditions.

6. End slopes if required.

7. An indication as to whether the input data

is fair as submitted.

The only other pieces of information required for

fairing are:

1. TOL:
2. ACC:
3. LIMIT:

Is a tolerance representing a limiting
distance which any data point may be
moved in the fairing process.

This number represents an accuracy
which, if during the fairing process
a point is not moved by more than this
amount, it is considered to be in a
faired position.

This number sets a limit on the
number of iterative cycles permitted
in the fairing process.

5.1.1 Specification of Point type

The designation of point type is desigrned to be as

consistant as possible with reference {19]}.

POINT TYPE

0

DEFINITION

Normal point at the béginning or
in the interior of a continuous
curved line segment.

Break point at the end of a continuous
curved segment. At present this point
is treated as if it were pinned. The
slope, while unspecified, is discon-
tinuous.




Figure 5.1- Point Type Examples
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5.1.2 Specification

This point can be at the beginning,
middle or end of a straight line
segment. The slope is continuous at
this point. This point must be
specified where a curved segment
joins a straight line segment since
the point is considered to be a
clamped end condition for the curved
segment.

Break point at the end of a straight
line. The slope is discontinuous at
this point.

of End Conditions

The end condition deésignation is made with a two digit

real number of the following format, "B.E". Here B corres-

ponds to the end conditions at the beginning of the line and

E the end condition at the end of the line.

END TYPE

1

DEFINITION

Free end. The end point is free to
both rotate and translate.

Pinned end. The end point is free
to rotate only, the position is fixed.

Clamped end. The end is totally con-
strained. It is free to neither
rotate or translate. The slope must
also be defined.

Clamped end with infinite slope. The
slope, whether ¢t » is determined by
the second data point, i.e., + =

if Y, > Y, 0r - = if Yy < ¥y
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5.1.3 Storage of Pertinent Line Data

The information necessary to fully describe any line
is stored in a 32 x 7 two-dimensional array. This array is
labeled CRV in the subroutines and its elements have the
following significance. At present the first thirty rows
are for data point or interval information and the last two
rows are for overall curve characteristics. This could be
easily expanded to allow more input data,

l. Colume 1, CRV(1l,1) to CRV(30,1):

Abscissa of the input data points.

2. Colume 2, CRV(1l,2) to CRV(30,2):
Ordinates of the original data points.

3. Column 3, CRV(1,3) to CRV(30,3):
The faired ordinates of the data points.

4. Column 4, CRV(l1,4) to CRV(30,4):
The point type, see section 5.1l.1.

5. Column 5, CRV(1l,5) to CRV(29,5):
The values of a; as defined in Appendix D.

The values of bi as defined in Appendix D.

7. Column 7, CRV{1,7) to CRV(30,7):
The slope of the curve at the data points as
defined in Appendix D.
It should be noted that the elements of columns 5, 6 and 7
are c»tained as a result of the splinning option. The data

in column 3 are obtained as a result of exercising the

fairing option.
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ELEMENT

? CRV(31,2)

CRV(31,3)

F CRV(32,1)

CRV(32,2)

CRV(32,3)

.0

DEFINITION

The number of data points. At present,

6SCRV (31,2)530.

The slope at the beginning of the
curve. Left blank if not specified.

An indication of the fairness of the
curve.

l.=the data submitted is fair.
2.=the data submitted is not fair.

End condition specification, see
section 5.1.2.

The slope at the end of the curve.
Left blank if not specified.

} The other elements of the CRV matrix are reserved for future

! use, e.g., in a full ship fairing program.

There are three other aspects of the program which are

of the utmost importance.

valued curves.

Eiades asaui

As was seen in the development of

chapter three, the mathematical curve representation, or
splinning procedure is fully capable of accommodating multi-
The fairing option, however, requires that a
curve be single valued over the domain of the independent
Ev variable. Therefore, while it is possible to fit a cubic
] curve to virtually any series of data points, care must be
observed when exercising the fairing option. The second
inviolable characteristic of the program is that the data
points must be submitted in a monotonically sequential fashion,

i.e., the points must not be submitted in a random fashion,
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but rather as they are encountered while following the path

of the curve. The last consideration is that in order to fair

any curved line segment there must be at least six data ]
points in the continuous curved region. This is true regard-

less of the end conditions of the line as a whole or the end

conditions for a line segment.




5.2 Description of Subroutines

A flow chart and subroutine listing may be found in

Appendix F.

5.2.1 Lines Fairing

The subroutines included in this section are utilized
to calculate the faired position of the given data points,

i.e., column 3 of the CRV matrix.

5.2.1.1 Subroutine PREFAR

This subroutine takes the data in the CRV matrix
and loads all the points on a continuous curve segment into
three linear arrays; X( ), ¥Y( ) and YORIG ( ) representing the
abscissa, faired ordinate (the original ordinate for the first
iteration) and the original ordinate respectively. This
process is governed by the value of point type, CRV(I,4).
With these arrays established PREFAR calls either FARCRV or
FARLIN, depending on whether the curve segment begins with
an infinite slope.

Upon final return to this subroutine the values of the
faired position of the data points will have been calculated
and placed in column three of the CRV matrix.
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5.2.1.2 Subroutine FARCRV

This subroutine takes the data in the X, Y, YORIG
array, for those line segments which have infinite slopes,
rotates the coordinate axis 10°(w/18 radians) and then places
the transformed points, equation (4.17), in an XPRIM, YPRIM
and YOPRIM array. The subroutine then calls subroutine
FARLIN to fair the first six data points in the rotated
system. At this time subroutine SPLINE is called to determine
the slope at the third point, also in the rotated system.

The subroutine then completes fairing the remaining data
points by matching the position and slope at the third point,
in the unrotated system. That is, assuming point three to be

clamped and beginning with STRIP3.

5.2.1.3 Subroutine FARLIN

This subroutine takes the points of a continuous
curve segment and calls the various STRIP_ subroutines which
actually compute the faired position of the points. FARLIN
also calls subroutines FSTPTS and TRANS1 to fair the first

and last points in the sequence.
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5.2.1.4 Subroutine FSTPTS

This subroutine fairs the first three data points in
a sequence of data points based on the end condition. STRIPl,

2 or 3 are called as appropriate.

5.2.1.5 Subroutine TRANSl

This subroutine fairs the last three data points

based on the end condition specified. Specifically it

transforms the abscissa in accordance with equation (4.16).

5.2.1.6 Subroutine STRIPl, 2 or 3

These subroutines are described in detail in sections
4.2.2.1 to 4.2.2.3. They use, as arguments, the variables
in the X1, Yl and Y0 arrays. Additionally they require
values of TOL and ACC which place limits on the amount which
a point may be moved and the amount of mbvement
which is considered to be negligable. For the case where the
point would move by more than TOL from its original (unfaired)
position, its movement is limited by the value of TOL.

5.2.2 Lines Representation

The methodology of representing a line by a parametric
cubic equation was developed in chapter three. The actual
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sequence in which the process is executed is described in

the following sections.

5.2.2.1 Subroutine PRESPL

This subroutine examines the input data in the CRV

matrix and places elements of continuous curved line segments

into the X, Y and YORIG arrays. This assignment is based on
data point type found in column four of the CRV matrix.
Referring to figure S5.1A, the program would load the first
eight points into X, Y and YORIG. Point nine, point type 5,

would be used in conjunction with point eight to determine

the slope of the curved segment ending at point eight. The

program then calls SPLINE to carry out the actual curve

fitting algorithm.

5.2.2.2 Subroutine SPLINE

This subroutine uses the data in X, ¥ and YORIG

obtained from PRESPL and carries out the curve fitting

algorithm presented in Appendix D. Although many intermediate

terms are calculated, the only terms which are retained are

ays bi and di' these quantities are subsequently used to

calculate interpolated values of the independent variable

and slope at a point specified by the user.




5.2.2.3 Subroutine INTERP

This subroutine determines the interval in which a
desired value of a dependent variable is located. It then
passes the coordinates of the surrounding points and the
values of a; and bi for the interval to subroutine CALCY
which calculates the value of the dependent variable and

slope at the desired point.

5.2.2.4 Subroutine CALCY

This subroutine calls CALCT to obtain the value of the
parametric variable T. With the value of T the interpolated
value of the independent variable is determined. Since the
dependent and independent variables are represented para-
metrically, the slope of the curve is calculated by the

chain rule as follows:

X, E (5.1)
since the value of T is determined as being the root of a
third degree polynomial, CALCY is designed to calculate the
interpolated value of the independent variable and slope
for up to three unique and real values of T. However, the
subroutine is designed to print a warning that additional
points are needed to specify the curve if T has more than

one real value.
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$.2.2.5 Subroutine CALCT

This subroutine calculates the roots of the third
degree parametric polynomial in T using the algorithm in
reference [20]. This procedure is also presented in Appendix
E for the readers' convenience. It should be realized,
however, that only the real roots are calculated in the
subroutine, the imaginary roots lack physical significance
for the purpose of lines plotting.

Appendix G contains an example of a data set that was
first faired then splinned and then interpolated at points
equal tacene-twentieth of the domain of the independent
variable. Once again it should be emphasized that, in order
to fair a curved segment, at least six data points must be

defined in that segment, including the end points of the

segment.
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6. Conclusions and Recommendations

6.1 Hull Form Modification

When work on this thesis began, the initial goal
was to develop a series of destroyer-like hull forms for
future use in seakeeping analysis. Preliminary efforts, using
the method of longitudinally shifting sections [2,8), while
showing promise, indicated that additional work would be re-
quired if the procedure was to apply accurately to destroyer
type ships. Specifically, the method had to be adapted to
ships whose maximum beam and section of maximum area did not
lie at midships. These necessary changes were made success-
fully and the method was also extended to provide control
over the ship's centérline profile. The primary motivation
for this extension was to gain control over the hull form in
the region of a sonar dome. While there was some apprehension
about the criticality of changes to the geometry of the sonar
dome, a telephone call to the Naval Sea Systems Command in
Washington, D.C. [21], indicated that because of acoustic
and hydrodynamic considerations the dome design should be
maintained unchanged.

The resulting procedure for modifying hull forms does
provide good results for that portion of the ship below the

design waterline. However, as outlined in chapter two and
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Appendix C, there are situations where the method does not
provide exact results, e.g., when the station of maximum

beam and section of maximum area do not coincide. Another
unresolved weakness of the modification scheme is that it
still does not provide the degree of control over specific
hull regions often desired, e.g., an attempt to preserve

the configuration of a sonar dome will result in preservation
of the centerline profile only, the three dimensional geometry
of the dome will be uncontrollably altered.

In summary it has been concluded that the modification
technique holds a great deal of promise for use with automated
methods. In particular, the procedure as it currently exists,
will provide excellent results when dealing with ships for
which there is no rigid requirement to keep a specific region
fixed. Not only are the desired coefficients and characteris-
tics obtained, the resulting hull forms appear to be acceptably
fair.

As with virtually all work of this type there is still
need for additional development. Specifically, it is felt

that those aspects worthy of attention are:

l. Investigate a means of controlling the resulting
hull form above the design waterline. At present,

excessive flair or tumblehome frequently occurs,

94




AD~AGS6 6%0  NAVAL vosmuoun: SCHOOL  MONTEREY C F/6 13/10
OMPUTER AIDED GEOMETRICAL VARIATION D FAIRING OF SHIP HULL F=—ETC(U)
MAY 78 F R HABERLANOT

UNCLASSIFIED

o
- .........l..




E

Ity

"m T =

=2
122 s wee

iz

—
w
o

MICROCOPY RESOLUTION TEST CHART

s




S YR At TV o A s M i ..

i A et

R e e g

= v e R, s

0

s i g K I RN T ATSARNG Y F1h. g e LR W v 65T

Skt xS kIO e o

Investigate a means of rigidly controlling the
geometry of a specific region of the hull. This
would provide a solution to the problem of
keeping the sonar dome unaltered.

Develop a computer program to carry out the
extensive mathematical and graphical calculations

required by the method.
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6.2 Mathematical Representation of Lines and Fairing

6.2.1 Lines Representation

In chapter three it was demonstrated, by variational
calculus and by simple beam theory, that a third degree or
cubic polynomial could be used to approximate the shape taken
by the draftsman's spline. However, it was also pointed out
that the simple cubic polynomial became indeterminate if the
curves contained infinite slopes. For this reason, and also
because they are capable of representing multivalued functions,
the parametric cubic equations of reference [15) were incor-
porated into this thesis. The results obtained using this
method have proven to be excellent. Not only does the tech-
nique lend itself readily to being programmed, the parametric
form of the curve allows the user to define either variable
as being the independent variable for the purposes of inter-
polation. The benefit of this capability will become
apparent in the discussion of cross fairing.

The only disadvantage, as seen by this author, to
using the parametric equations is that they require the user
to calculate the, up to three real roots, of the polynomials
each time an interpolated value is sought. However, this
is not seen as being restrictive since a closed form solution

exists for calculating these roots and is in fact utilized in
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subroutine CALCT. Therefore, because of its great flexibility,
the parametric, or rotating spline technique of chapter three,
is highly recommended for use with a lines fairing scheme

involving the manipulation of specific waterlines and sections.

6.2.2 Fairing

The least-squares fairing criteria, as presented in
chapter four, has shown to provide an effective means of
altering the position of data points in order to obtain the
desired "fairing" effect. That is, if provided with an
adequate tolerance interval, the cubic spline passed through

the resulting points will be void of extraneous oscillations

_and generally pleasing to the eye. When addressing the lines

of a ship in the preliminary design phase, the fact that the
lines satisfy a visual inspection is likely to be sufficient.
For this reason, and also the excellent results obtained by
this method in reference [16], this author has concluded
that this scheme would be a candidate for a complete lines

fairing program for destroyer-type ships.

6.2.3 Recommendations

It is obvious that, given the capability of repre-
senting lines mathematically and also a means to fair the

points on a line, the next step would be to generate a method
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which would fair, in the three-dimensional sense, and display
an entire ship. This author has spent a great deal of time
attempting to extend the methods of reference [l16] in a more
general form to accommodate the peculiarities which arrise
in addressing displacement~type ships. The difficulty arrose
from two sources. First, an attempt was made ﬁo treat the
entire ship, i.e., the bow and stern were not truncated as
was the case with other methods examined. Second, in trying
to treat a large variety of ships, conveniently called dis-
placement-type, the author was confronted with the problem
of attempting to describe the myriad of lines of discontinuity
which one may encounter. These lines are most freguently
termed control lines and may consist of the ship's profile, in
an obéious sense, to the locust of points, longitudinally,
where rise of floor and bilge radius meet, in a more subtle
sense. Figure 6.1, for a typical bulbous bow destroyer
illustrates a few of the possibilities.

If we were to ignore the fairing algorithm itself
for a moment, it can be seen that if a waterline A-A is taken
in figure 6.1A there must be some means of communicating the
effect of control line #6 on the waterline; where the explaina-
tion of the control lines is contained in table 6.1. For this

case, the effect is to create a straight line region in A-A

as projected in figure 6.1B. A tentative solution to this
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10.
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13.
14.
15.
16.
17.
18.
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TABLE 6.1

Explaination of Control Lines

Bow profile

Locus of stern radius centers

Sonar dome profile

Main deck centerline profile

Deck edge profile

Extent of deadrise

Forward extent of parallel middlebody
After extent of parallel middlebody
Keelrise aft

Outboard transom profile

Transom centerline profile

Deck edge waterline

Forward extent of parallel middlebody
After extent of parallel middlebody
Extent of deadrise

Outboard transom profile

Deckedge transom profile

Section view of transom
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problem would be to ascribe to each control line, over a

region where applicable, a code designating the effect of
the control line on waterlines or sections at the point of
intersection. This could be easily done by assigning another
column to the CRV matrix description of the line, see section
5.1.3.

Another complication which must be resolved is:
when attempting to establish the offsets for, say an arbitrary
waterline, how do you seek out where this waterline intersects
which control lines. In the most general case, where control
lines could occur at random through a hull form this problem
could prove to be formidable at least. As seen by this
author, the only solution to this problem is to have only
certain control lines admissible for a particular class of
ship. This would necessairly limit the possible intersection
combinations. The control lines shown in figure 6.1 represent,
what this author feels, are typical of a contemporary destroyer.

The final aspect to be addressed is that of the cross
fairing algorithm itself. Reference [16] showed that by
utilizing a preassigned grid in the X-Z plane the offsets
(y-coordinates) at these points could be repeatedly by faired
and splined by both lines of section and waterlines. The
new, or faired value of each point was taken to be the mean
of that obtained by fairing the two lines. These mean values

were then used as unfair data points on the lines once again
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and the fairing piocess was repeated. This iterative pro-

cedure was continued until the movement of the points on
successive iterations was less than some predefined l1limit.
The results of this cross fairing algorithm [16] proved to
be quite good. Because of this, it is felt that this pro-
cedure would also prove satisfactory for the more general
method of lines fai:ing and representation presented in this
thesis.

As a final note, this author can envision where
the two independent aspects of this thesis could be combined
into one program of significant value. If both the fairing
procedure and lines modification techniques were automated,
it would provide the designer with the capability to sketch
out a rough design on the back of an envelope, specifying
its fundamental coefficients and dimensions, and then by
passing this information through the fairing and modification
routines a faired form could be obtained. The implications
of this, as a savings of time and resources, are quite
astounding. If the method were further extended to permit
an interactive modification of the design, an individual
could literally sit down and desién a faired vessel in a

matter of hours instead of days.




i e " e s

o e N A b e A T

REFERENCES

Loukakis, T., Chryssostomidis, C., "Seakeeping Standard
Series for Cruiser-Stern Ships"”, Transactions,
Society of Naval Architects and Marine Engineers,
Vol. 83, 1975, pp. 67-127.

Lackenby, H., "On the Systematic Geometrical Variation
of Ship Forms", Transactions, Royal Institute of
Naval Architecture, Vol. 92, 1950, pp. 289-315.

Chryssostomidis, C., "Computer Aided Ship Design”,
Paper, New England Section Society of Naval
Architects and Marine Engineers, May 1978.

Comstock, J.P., "Principles of Naval Architecture”,
Revised, The Society of Naval Architects and
Marine Engineers, 1967, New York, New York.

Coons, S.A., "Surfaces for Computer~-Aided Design of
Space Figures", M.I.T., ESL Memorandum 9442-M-139,
July 1965.

Gertler, M., "A Reanalysis of the Original Test Data
for the Taylor Standard Series", TMB Report 806,
March 1954.

séding, H. and Rabein, U., "Hull Surface Design by
Modifying an Existing Hull", Paper presented
at the First International Symposium on Computer
Aided Hull-Surface Definition, Annapolis, MD.,
September 1977.

Moor, D.I., "Effects on Performance in Still Water
and Waves of Some Geometric Changes to the Form of
a Large Twin-Screw Ship", Transactions, Society
of Naval Architectects and Marine Engineers, Vol.
78, 1970, pp. 88-150.




9. Mehlum, E., "Variational Criteria for Smoothness",
Paper for Central Institute for Industrial
Research, 0Oslo, Norway, December, 1969.

10. Hildebrand, F.B., "Advanced Calculus for Applications”",
Prentice~-Hall, Inc., Englewood Cliffs, New Jersey,
1962.

11. Higdon, A., Ohlsen, E.H., Stiles, W.B., Weese, J.A.,
"Mechanics of Materials", Second Edition, John
Wiley and Sons, Inc., New York, July, 1968.

12. Thomas, G.B., "Calculus and Analytic Geometry", Fourth-
Edition, Addison-Wesley Publishing Co., Reading,
Massachusetts, June, 1972.

13. Yeung, R.W., Class Notes, MIT Ocean Engineering Depart-
ment Course 13.50, Spring, 1977.

14. carnahan, B., Wilkes, J.E., "Digital Computing and
Numerical Methods", John Wiley and Sons, Inc.,
New York, 1973.

15. Séding, H., "Numerical Ship Lofting and Hull Form
Design", Unpublished paper, Circa 1962.

16. Kyrkos, B., "The Fairing and Mathematical Representation
of the Surface of a Ship Using a Small Computer",
(Greek) Translations from National Technical
University of Athens, Diploma Thesis, 1976. 3

17. Corin, T., "Recent Developments in Ship Lines Fairing
at the David Taylor Model Basin", DTMB Report,
Applied Mathematics Laboratory.

18. Kerwin, J., "Fitting Curves with Infinite Slopes at
x=0", Unpublished paper used for Course 13.50,
Spring, 1977.

T




ey e TAALRLE, A 3 T D3 S e iy, s MG

T e s R

e+ o =

19. Viega, J.P.C., "Hydrostatic Considerations in the
Design of Ships with Unusual Shapes", Massachusetts
Institute of Technology, Department of Ocean
Engineering, Thesis, January, 1975.

20. Baumeister, T. and Marks, L.S., "Standard Handbook
for Mechanical Engineers”, Seventh Edition,
McGraw-Hill Book Company, New York, 1967.

21. Silverstein, S., Telephone Conversation, Shipboard
Sonar Group, Naval Sea Systems Command, Washington,
D.C., Circa, November, 1977.

105

2 A e il biaet.




APPENDIX A

Calculation of coefficient ¢ and centroid of the sliver of
added area. Referring to figure 2.4.

Recall: §&6x = cx(l-x)

b 1
8¢ = f 6xdy = ¢c J x(1-x)dy
0 0

1 1, _
=c{ Jxdy - [ x"dy} = clp~2¢x]
0 0

c= 80 _ _6¢
0=20x ¢ (1-2X)

sx = —S0 ¥ (1-x) (A.1)
¢ (1-2%)

solving for centroid, h

- §x
§¢eh = [ 6x(x+1r)dy
0

1

= [ x6x dy + §x“dy
0

N =
O

substituting for &§x

1 2 1
§ooh = —8¢ ¢ (x2-x3)aysSX 7 (x%-2x3+xt)ay

¢(l1=-2%) O 2(1-2?)! 0
p e 2% - 35? . 80 (% - 32 +§2r3}
1 - 2% ¢ 1 -2%

(A.2)
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For 8¢ << ¢

(A.3)

3k2

h - 2x -

1-2x

where:

x4dy

-0

i

IRPRARINIRNEE 17: -  o
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APPENDIX B

.o

Sccrionac Anca
Cuaave . Aapnax NOT

* Q.

Le

Figure .‘5.1‘ '

Referring to figure B.l above, all longitudinal dimensions
are measured with respect to the point of maximum sectional

area. Assume:
§x = cx(1l-x)
= 8¢ __ x(1-x)
¢ (1l-2x)

For the new hull form

oL = T (Ly(8g + 66) + L (o, + 60_) (B.1)

108




PR s M A —

o o ol e R S IR

= 'Il‘ {Lz(oeié + 6.h) - L§(¢r§; +60_h) (B.2) f
L¢!
t
Also for the original hull form
¢, = l{L ¢, + L ¢} (B.3)
t L e’e r'x

We now have to apply equations (B.l) and (B.2) to obtain i
values of 6¢e and 6¢r in terms of the known quantities z
and ¢£. These quantities representing the desired values LCB

and Cp for the derived form. i

Solving equation (B.l) for 6¢e.
¢£L = Le¢e + Le6¢e + Lr(¢r + 6¢r)

§¢ 0 = L(o, + 6¢r)} (B.4)

1l v o
i {L¢t Lete

e
Substituting equation (B.4) into equation (B.2) and solving for
6¢r.

;'L2¢é = L:(¢e§; + o h,) - L:(¢rxr + 686 h)
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expanding the right hand side, R.H.S.

| 2, — 2 2, = 2

rearranging terms

2 - 2 _ .2, — - 2, — - '
Lr6¢rhr Le6¢ehe - Le¢exe Lrq’rxr z'L7¢

substituting in L.H.S.

2 2, 1 ' - =
Lr6¢rhr - Lehe r;{L¢t Le¢e Lr(¢r+6¢r)} R.H.S.

2 _ . 2 -
Lr“rhr I‘ehem’t: + Lehe¢e + LrLehe¢r + LrI‘ehe“r -
2
6¢p (L h +L Lh,) + L (L hoo, + Lehgdy = h Lég) =
1l 2, — 2, - = _2
6¢r Lzh +L L h {Le¢exe+Lr¢rxr z'L ¢é-Lehe(Le¢e+

I Y ree

Lr¢r-L¢é)} (B.S)

Equation (B.5) may be substituted back into equation (B.4)
to obtain a value for 6¢e.
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However, if the simplified form for h is not used
h = f(5¢r.5¢e)
Derivation of 6¢e from equation (1)

§¢_ = %— {L¢é - L9

r

- Le6¢e - Lr¢r} (B.6)

r e

substituting into equation (B.2) and rearranging
—re2 _ 2, = 2, = _
z2'L ¢é Le¢exe + Lr¢rxr R.H.S.
2 .
= Lgh 8¢ = Lh (Lo =L b -Lod¢o~Lyé. .}

2 ' -
= 6¢o{Lh +L Lh }-L h {Lé -L ¢-L.¢.}

,-2—_ ——lzl_
qu;rxr Le¢exe+z L ¢t Lrhr(Le¢e4

6¢e = 7 L b
Lehe+LrLehr

Lr¢r'L¢é)} (B.7)

The form of this equation is merely the transposition of
subscripts by r+e+r of equation (B.5) for 6¢r.
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Figure C.1-Section Modification

Definitions:

a = area of section

b = beam of section

d = draft of section
Subscripts:

p = parent hull form

d = derived hull form

112

L St Mot




A

x = a maximum value, e.g., bdx is the maximum value
of the beam in the derived hull form
Superscript:

bar, (—): refers to the sections in the parent and
derived form which interact to create the
derived section of maximum area.
réfers to the sections which are used to
create the section of maximum beam in the

derived form.

Purther define the following ratios:

A

Bp R

It is by selecting a section in the parent, whose
value of R is equal to that of the derived section being
sought, that the new.sections are created. lIt'should also
be evident by referring to figure C.1l, that the area of

the derived section will be as follows:




-
1
!
§ .
. - d
‘ dx dx
' a. = a_ B8 B A T
D P PX pXx

R N P

It remains to be shown that in some cases the resulting area

ratio is not always what is desired.

- 8- o Ko A, A

The following expression will also be useful.

b d
== "dx 7 dx
a aaB A ==
dx P pr dpx

a b d
d dx dx 1
Aax P PX PX T 7 de E»ddx
P By dox
a
=2 8 4
ap g A
However, the area ratio desired is:
’p_
a b d a
R BgD, = g—E% (g ) =288 (C.2)
P p_. _B_ dx dx px
px dpx
Therefore, the ratio of Ad desired to Ad obtained is:
’ a
-8 A 3 i B, D
X __ =« P Fra.-pR 4.4
%8 & a 8x B_ D _
- = = px P P
3, B T \
=R B.D (C.3) i




[N L

Define: S = —
Rp pda

D

It can be readily seen that, if the sectional area
curve and the design waterline have their maximum values at
the same longitudinal position, the value of S will be 1,
i.e., S = 1. Hence, the area curve obtained will be equal
to that desired.

If this is not the case, the designer has one option
which will permit him to create a ship with the desired values
of cp, 1CB, Cy and ICF.

*The designer must select a common longitudinal
position about which to alter both curves.
This will permit him to freeze either the
point of maximum section of the point of
maximum beam. Not both.

-The only other alternative is to carry out

the original procedure and accept slightly
different values of cp and Cw' LCB and LCF
will be as desired. The factor by which Cw

will differ is:

W= —Er-A d (C.S)
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APPENDIX D, [15]

Figure D.1r - Rotating
Spline Routine

For n intervals bounded by n+l points the curve

between points Pi and Pi+1 may be computed as follows:

l. Compute initially:

: arc tan [(yz-yl)/(xz-xl)], if X # Xy
a. g, =

/2, if X, = X,

b. P, = g1




2. Compute n times for i = 1(1)n

2 2,1/2
a- Ay =llrgyy = %)+ (ygyy - ¥y)Y)

(¥3417Y3) (37X )= (¥3=¥5.p) (X3497%;)

g, = g,_,+arc tan{ — - = =
i A TRy 7%y ) 05 =X 04 (Y300 7¥ ) ¥y =Yy y)

only if i > 1

~1/2, if i = 1
c. ky = -1 , ifi>1
24(ky_1+2)2,/%, o

3ki (Pi'gi)

d. r; = K +2

7

Pyt (1+1/Kk;), if k; # 0
e. pi.,.l = <3g —p.

-%—-i , if k =0

|

3. Compute once:

8. dp4y = 0

b. dn41 = Ppe1 ¥ 92
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4. Compute n times for i = 1(-1)n

(9]
o
"

tan(di-gi)

&
o
"

i = tanldgyy=9y)

The above procedure applies to the case where the ends

are pinned, i.e., dzy/dx2

=0 at x = x4 and x = Xo+1® If,
however, it is desired to have the beginning slope equal to tl'

the following changes must be made:

egqn. l.b. P, = tl

If it is desired to specify the end slope as tn+1:

egqn. 3.a. el ™ Ene1 ~ Ppyy
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To interpolate any point on the curve the following

parametric equations are used:
X = xi+ (xi_'_l"'xi) t- (yi,‘,,l‘y.i) t (l-t) [ai (l_t) -bit]
Yy = Yi+ (Yi+l-Yi) t- (xi"'l-xi) t(l-t) [ai (1-t) -bit]

<

for 0 < t t

Section 3.2.4 describes the actual interpolation procedure.
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The following procedure was taken from reference ([20]

5 and is that used to obtain the roots of the parametric
equations for x and y shown in Appendix D.

Given the gereral form of the cubic polynomial:
x3 +ax2 + bx +¢c=0 (E.1l)

this may be reduced to the following by dividing by

X =X = a/3:

xi = Ax1 + B (E.2)
where

A= 3(a/3)2 - b

B = -2(a/3)° + b(a/3) - ¢ (E.3)
pefining

p = A/3 and q = B/2 (E.4)
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The roots of equation (E.2) are as follows:

Case I: q2 - p3 > 0, there is one real root

1/3 1/3
= {q + /qi-p3} + {q - fhi-pg} (E.S)

x
There are also two complex conjugate roots.

Case II: q2 - p3 = 0, there are three real roots of which

two are repeated, i.e., only two roots are unique.

x, = Z(q)1/3; X, = -(q)1/3: X3 = X, (E.6)
Case III: qz - p3 < 0, there are three real and distinct
roots.

X, = 2/p cos (U/3)

x, = 2/p cos (U/3 + 2w/3) (E.7)

Xy = 2/p cos (U/3 + 4n/3)
where

cos U = q/p/P

emaabuie o 11

ISRV




NOTE: These are roots of equation (E.2). To obtain the
roots of equation (E.l) -p/3 must be added to the above

solutions.
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APPENDIX F

Figures F.l1l and F.2 are conceptual flowcharts of
the fairing and the splinning and interpolation procedures
respectively. In the program listing that follows there is
a short MAIN segment that requests the input data f§r a
specific line and generates twenty-one (including end points)
interpolated data points. While this program segment might
prove of some value, it was designed primarily to test the

various subroutines.

NOTE: The program as listed requires the use of the LEQTILF
Subroutine from the IMSL library. This subroutine is used
in STRIPl1 and STRIP2 to solve a 4x4 and a 3x3 system of
simultaneous linear equations. For these SMAT is the
coefficient matrix and T is the resultant column vector.

If this library is not available any equivalent procedure

could be substituted.

NOTE: Due to time constraints at the time of publication,
the program, as listed, will not accommodate curves with
point types three or five. It will, however, handle curves
without straight line segments and infinite slopes at end

points.
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CRV yatrix

N
"PREFAR"
Loads points on continuous
segment into X, Y and YORIG

"FARCRV" NOTE: "FARCRV"
Rotates axis to place X, calls "SPLINE" to
Y and YORIG+-XPRIM, YPRIM calculate the

and YOPRIM slope at point 3.

1

"FARI INII
Loads 4 or 5 points
into X1, Y1 and YO

"FSTPTS"
Calls STRIP1, 2 or 3
to fair first 3 points

_]

-

U"PRANSIY
Transforms abscissa
end calls STRIP1, 2 or 3
to fair leat 3 points

L

Points are int-
erior points
and STRIP1Iis called

Figure F.1 — Flowchart of Fairing
Subroutines
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CRV Matrix

" PRESPL"
Loads points on a continuous
segment into X, Y and YORIG

Places A, B and D into the
CRV matrix

"SPLINE"
Executes the rotating spline
algorithm, calculating A, B and D

X, ¥,
A, B and D

"INTERP"
Determines the interval
in which a specified
abcissa lies

lchLCYu
Calculates the desired
ordinate and slope at the
specified absclissa based
on the value(s) of
the parametric variable T

YCALCT"
Calculates the real
root(s) of the
parametric variable T

Figure F.2 — Flowchart of Splinning
and Interpolation Subroutines
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APPENDIX G

The following is an example of a typical bow section
for a ship with a bulbous bow mounted sonar dome. Although
the section is for a hypothetical ship it illustrates the
capability of the computer program to fair, spline and inter-
polate a curve having an infinite slope at an end point.

In the CRV matrix shown, the items written in block
numbers are input values while those in italics are values
calculated by the program. The elements left blank were not
used in this example. The values of tolerence, accuracy and
limit are:

TOL = 1.00
ACC = 0.05
LIMIT = 10

156




+ Original Position
o Faired Position

Figure G1.- Bow Section (Bubous)
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0.0
2.0
6.0
9.0
12.0
17.0

23.0
28.0

W ®© ~d A e W N -

30.0

. L]

31 1.0

0.0
7.0
8.0
4.0
2.0
2.0
3.0
5.0
6.0

9.0
4.1

0
é
7
4

CRV_MATRIX

3 4 5 6 7

.000 0.0 0.333 -0.480 1.570

.000 0.0 0.530 -0.675 0.802 :
.301 0.0 0.394 -0.122 -0.279 i
.999 0.0 -0.156 0.160 -0.776 g
.805 0.0 -0.242 0.241 -0.473

.609 0.0 -0.218 0.149 0.002

.934 0.0 -0.041 0.009 0.366

.086 0.0 0.006 -0.003 0.416

.954 0.0 0.407

0.0 1.1

0.0
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Th-: resulting interpolated values for increments of AX = (30-0)/

20 are as follows:

X Y DY/DX i
0.0 0.0000 AERREN
1.5 5.4206 1.3048
3.0 6.8443 0.6555
i 4.5 7.4269 0.1361
; 6.0 7.3018 <0.2867
f 7.5 6.4713 ~0.8319 i
9.0 4.9988 -0.9816
10.5 3.7259 -0.7238
12.0 2.8047 -0.5114
: 13.5 2.1714 -0.3371
15.0 1,7846 -0.1815
16.5 1.6191 -0.0415
. 18.0 1.6542 0.0867
19.5 1.8721 0.2010
} 21.0 2.2473 0.2956
' 22,5 2.7465 0.3656
24.0 3.3316 0.4116
25.5 3.9724 0.4396
27.0 4.6403 0.4476
28.5 5.3051 0.4368
30.0 5.9543 0.4308

' Figure G.1 shows the curve generated as a result of fairing

the given data points.




