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INTRODUCTION

This report covers work performed during the period from

April 18, 1978 through October 15, 1978 on the contract to study,

design, and implement improvements in the ARPANET routing

algorithm. Our progress to date is summarized in six main

sections and an appendix.

In September, a new line up/down protocol was installed in

the network, after a lengthy period of analysis and measurement.

The analysis is described in the First Semi-Annual Technical

Report. Section 1 of the present report describes the new

protocol in detail. The techniques we used to measure the

performance of the protocol are also discussed, and the results

of our measurements are presented.

As we indicated in the First Semi-Annual Technical Report,

the routines which measure packet delay in the network are an

important part of the new routing algorithm. These routines have

been designed, implemented, and installed in the network. They

are described in Section 2. The routines are highly

parameterized, and we have performed an extensive seriee of

measurements in order to determine the optimimum values for the

parameters. Section 2 also contains a report on these

measurements.

-- -
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Section 3 summarizes some mathematical analysis of the

stability of the SPF algorithm (and similar algorithms). The

analysis indicates some possible instabilities and

sub-optimalities in the algorithm. It also suggests techniques

for eliminating these problems. The full details of the analysis

are presented in the Appendix.

The new routing algorithm (SPF) requires each IMP to

maintain a data base which specifies the topology and the delay

on each network line. It is important for all IMPs to have the

identical data base, even though the data base is being

continuously updated by routing update messages. This requires a

carefully designed protocol for transmitting the updates quickly

and reliably. Section 4 describes the protocol we have designed,

and compares it to other possible protocols which we have

rejected as unsatisfactory.

We have continued our preliminary design of enhanced message

addressng capabilities for the ARPANET, as reported in Section 5.

Logical addressing, broadcast addressing, and group (or

multi-destination) addressing are discussed with particular

attention to implementation considerations.

Finally, we have begun to investigate congestion control

techniques for the ARPANET and networks in general. This topic

is one of the major open questions in networking; Section 6

-2-
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presents some preliminary thoughts on the nature of this problem

and how it interacts with routing.

I

-3-
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1. LINE UP/DOWN PROTOCOL

The previous Semiannual Report (BBN Report No. 3803, April

1978) proposed some new procedures for bringing lines down and

up. Specifically, we recommended using "k-out-of-n" counters,

denoted (k,n). During each fixed interval of time, a

line-protocol packet should be received. The (k,n) counter

triggers, causing the line state to change, if within any block

of n or fewer intervals, k events occur. For a line going down,

an event is missing a packet, and thus the line 'is brought down

if k packets are missed in n or fewer intervals; we showed that

for proper performance, k > 2 should be used. For a line coming

up, the appropriate event is receiving a packet; in this case we

recommended a consecutive counter (i.e., k = n), with n > 60.

During the past six months we have tested and implemented

these procedures on the ARPANET. This section describes in

detail the work that was performed. We begin by presenting the

technique we used to implement the proposed counters. The second

section below discusses the measurement and testing method we

employed, a method that is more powerful than conventional

simulations and that will also be employed when we test the new

routing algorithm itself. The final section summarizes the

measurement results and the current status.

-4
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1.1 Protocol Description

The technique we have developed for implementing the

recommended line up/down strategies is not symmetric for the two

sides of a line, but it is straightforward and effective, and

requires only modest processor resources. The basic idea is that

the IMP on one side of each line (e.g., the higher numbered IMP)

is considered the Master, and the other IMP is the Slave. From

information in the protocol packets, an IMP determines his

neighbors' numbers. The Slave acts as an "echo" for Bello's sent

from the Master, and the Master is responsible for declaring the

line up or down.

In a symmetric protocol, the IMPs at each end of a line

perform the same tasks, and they transmit and expect to receive

packets at the same rate. However, the clocks at the two IMPs

generally run at slightly different rates and in addition, they

are not exactly synchronized. Therefore, during the interval

between successive clock ticks at one IMP, the clock at the other

IMP usually ticks once, but may tick zero or two times. A

significant amount of protocol logic is needed to handle all

these situations. However, with the asymmetric protocol we are

using, the Master is the only time keeper, so there is no problem

with skewed clocks or with different clock periods on each side

of a line. The elimination of these potential problems is a

principal virtue of our protocol.

-5-
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SLAVE MAS TER

SEND AN IHY FOR SEND A HELLO
EVERY HELLO EACH TICK

DOWN DOWN

RCV NUP
RCV HELLO WITH CONSECUTIVE
HSTATE = UP IHYS

RCV HELLO WITH MISS K
HSTATE = DOWN OUT-OF-N IHYs
OR MISS K
CONSECUTIVE HELLOs

UP UP

Figure 1-1 Simplified Line State Diagram
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Figure 1-1 is a simplified state diagram of the protocol.

As indicated in the figure, a Master sends only Hellos, a Slave

only IHYs. A single bit can thus be used to distinguish between

Master (or Hello) and Slave (or IHY). HSTATE denotes a bit in

the Hello indicating the state of the Master. In this simplified

scenario, the Slave declares the line up so long as it receives

Hellos with the HSTATE bit indicating that that the Master

declares the line up. The Slave declares the line down if the

Master declares it down or if k consecutive Hellos are missed.

The latter provision enables Slaves to detect and bring down

lines that are actually inoperative. The Master changes the line

status according to the (k,n) and consecutive counters. (The

parameter NUP denotes the number of IHYs in the consecutive

counter.)

In a more realistic scenario we must, of course, allow for

other events that might necessitate a Slave bringing a line down

(e.g., the sudden appearance of a new neighbor at the other end

of a line, an event that occasionally occurs because of telephone

company operations). In addition, an IMP must be able to

dynamically determine whether it is the Master or the Slave on

each of its lines. Figure 1-2 shows a complete state diagram

that handles these and other situations. In the RESET state,

each IMP acts as a Master, sending a Hello each tick. By

transmitting Hellos, a Slave forces its Master to enter the RESET

-7-
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RESET

I. SEND A HELLO EACH TICK

2. IGNORE INPUT FOR K+ 1 TICKS

Q-a-

0 0

DOWN I DOWN

j RCV HELLO RCV NUP
wII

WITH I CONSECUTIVE
HSTATE=UP IHY$

I UP I PI I I I
SLAVE I MASTER

I SEND IHY FOR EVERY I SEND HELLO EACH TICK
HELLO

(1) MISCELLANEOUS CAUSE-E.G., WRONG IMP* IN PACKET
(2) MISS K CONSECUTIVE HELLOS (SLAVE) OR IHYS (MASTER)
(3) RECEIVE HELLO WITH HSTATE = DOWN
(4) MISS K OUT OF N IHYS

Figure 1-2 Complete Line State Diagram
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state. Also, after entering the RESET state, an IMP does not

respond to any input for k+1 ticks. These rules ensure that the

IMPs on each end of a line will agree on the state of the line.

In effect, the RESET state replaces the READY state discussed in

the previous Semiannual Report. The non-responsive interval is

set at k + 1 ticks to allow for possible clock discrepancies at

the two IMPs. Each Hello/IHY contains the number of the

transmitting IMP, thereby enabling an IMP to determine its status

on each line. In addition, if a Hello's IMP number is equal to

the receiver's number, then the packet is treated as an IHY; this

allows looped lines to be handled in a consistent manner.

The scheme described above depends upon the Master receiving

a response to its Hello before the next tick occurs. We must

therefore examine the delays involved with different links. The

following tabulation assumes worst-case values and a 200-bit

Hello/IHY:

Delays in Msec

230 Kbps 50 Kbps 50 Kbps 9.6 Kbps 9.6 Kbps
Land Land Sat. Land Sat.

Latency 6 25 25 130 130
Transmission 1 4 4 21 21
Propagation 20 20 260 20 260
Processing 5 5 5 5 5

2 x Total 64 108 588 352 832

-9-
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Latency is the time spent waiting for the previous packet to be

transmitted. The total of each column is doubled because the

same delays could occur in each direction. The table shows that

with terrestrial and with 50 Kbps satellite links, there is

adequate margin to use slow ticks (640 ins.) to govern the

Master's clock. For 9.6 KbpS satellite links, however, we must

use a slower clock rate; a reasonable period for this clock is

every second slow tick (1280 ins.). Finally, we note that it

might be advantageous to be able to detect problems on 230 Kbps

lines more quickly than on 50 Kbps lines because of the

potentially greater traffic volume that might be routed toward

these higher-speed lines; as discussed in Sec. 1.3 below, the

clock period for line protocol packets on these lines is

currently 128 ins.

1.2 Testing Technique

The line up/down procedures are basic to the proper

operation of the ARPANET, and therefore any change in these

procedures must be installed carefully in order to eliminate

possible degradation or disruption of service. Thus, prior to

their installation on the network, the procedures must be

thoroughly tested, and this testing must include the basic

design, the coding, the interactions with other aspects of IMP

and network operation, and the selection of parameter values.

Because of a variety of limitations, stand-alone tests and

-10-I
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conventional simulations are useful for only a small fraction of

the testing and debugging. For example, there are too many

related variables, some of their values unknown, for a meaningful

simulation; and even if an adequate simulation could be

generated, it would be very difficult to characterize

"real-world" situations that occur in the ARPANET.

Our solution to this dilemma is to use the network itself

for "simulations," obtaining performance estimates of new

techniques while the network is functioning. In other words, our

test procedures run as background tasks to normal network

operation, so that we can obtain reasonably realistic and

reliable data. In testing the line up/down procedures during the

past few months, we have found this technique to be quite

powerful, and during the subsequent months we plan to apply it as

we install the new routing algorithm itself.

The specific steps that we used were as follows: The first

pertinent IMP release contained the new line up/down procedures

operating in a so-called "phantom" mode. That is, in addition to

sending the old form of Hellos and IHYs, each IMP also sent

appropriate packets as dictated by the new protocols. The old

procedures actually controlled line status, but special messages

("traps") reported to the NCC when the new procedures would have

changed the line status, if these procedures had been in control.

These traps also contained relevant data such as the time since
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the previous up or down-trap. In addition, for each line, data

was gathered on the overall packet error rate and on the error

rates of line-protocol packets alone. The parameters controlling

the new line procedures could easily be modified, so that as we

gathered data, we adjusted parameter values to achieve proper

performance.

We are aware, of course, that our testing procedure is still

a simulation in the sense that the observed performance of the

algorithms may not be quite the same as when they actually

controlled the status of all lines. For example, since the new

protocol brings lines down more quickly, network traffic patterns

may be different from those that presently exist; and as noted

below, heavy traffic at an IMP can sometimes affect line-protocol

operation at that IMP. In other words, the new protocol could

affect routing, which in turn could affect line status.

Nevertheless, this on-line simulation technique does produce the

moat realistic data that can be obtained in a practical manner.

Moreover, by gathering data over long periods of time, we can

observe the effects of day-to-day variations and Of Occasional

unusual events.

The second pertinent IMP release contained a feature that

allowed either the new or the old line procedure to control

i ndividual lines at each IMP, with the selection determined by

the setting of a logical switch. Thus, having determined

-12-
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reasonable parameters from the first release, we could now use

these parameters in the new procedures for actually controlling

the lines, and we could observe the effect, if any, on network

operation. Recall that the old line procedures are (1) too slow

in bringing poor lines down, and (2) too fast in bringing poor

lines up. We were somewhat concerned that the new procedures

(which eliminate these shortcomings) might alter the topology

more frequently than the old, and that as a consequence, routing

might be adversely affected. We therefore switched lines in a

very conservative way in several stages:

(1) Gradually several lines were switched to the new
procedures, but with "conservative" parameters that would
bring poor lines down slowly (e.g., a (4,4) counter).

(2) The parameters on these lines were then modified to the
design values.

(3) All lines were switched to the new procedures, with
conservative parameters.

(4) The parameters on all lines were modified to the design
values.

We ran each of these stages for several days, carefully

monitoring network operation. The final stage of course

corresponds to the new procedures controlling all lines.

The third IMP release (5 September 1978) contains only the

new line procedures. This release also allowed different types

of lines to have different parameters and different protocol

clock rates. Again we proceeded cautiously, operating with

- 13 -
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conservative parameter values for several days before finally

substituting the design values. With this latest release, each

IMP sends a conventional trap to the NCC whenever the status of a

line changes. We plan to monitor line behavior during the next

few months in order to determine whether any further adjustment

of the protocol parameters is necessary.

1.3 Measurement Results

Extensive measurements were made during a six-week period of

the following quantities for each of the lines in the networks:

- the average error rate of all packets

- the average rate of missed IHYs

- the number of phantom line-downs and ups

- the number of clock periods separating the first and the

k-th tick in a line-down

- the durations of line up and line down periods

The data on packet errors was approximate (an

under-estimate) because only checksum errors, and not missed

packets, were included. Packets can be missed entirely if their

first two bytes are damaged or if the IMP is not responsive

enough. In the first case, since the first two bytes signal the

14
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start of a packet to the hardware of the receiving interface, if

these are damaged, the IMP is unaware that a packet is on the

line. (Similarly, if the last two bytes are damaged, the

following packet may be lost, and only one checksum error will be

recorded.) In the second case, if two successive packets are

closely spaced, the IMP might not have sufficient time between

the completion of the first packet and the start of the second to

allocate a buffer for the second. If this happens, the second

packet is lost.

Some of these measurements were continued beyond the

six-week period, and several will be collected during the

subsequent months. During the measurement period, the size of

the line-protocol packet was 280 bits (on the line). This size

was used because we had planned to allow 128 bits for update

acknowledgments in each packet. As discussed in Section 4, we

have since adopted a different ACK scheme, so that protocol

packets are now 152 bits. This change does not affect any of our

conclusions.

As noted earlier, the measurements were intended to aid us

in debugging the implementation and to guide us in selecting

parameters. In addition to accomplishing these goals, the

measurements also led us to an understanding of an important

aspect of network operation. Our observations were as follows:

-15-
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(1) Shortly after we initiated the measurements, we

observed that the high-speed (230 Kbps) lines went phantom down

significantly more often than 50 Kbps lines. (When the new

protocol operated in the phantom node, the line status, as

determined by this protocol, was called "phantom up" or "phantom

down.") Also, the high frequency with which they went phantom

down was inconsistent both with the measured average missed IHY

rate and with the average error rate of all packets. Moreover,

the missed IHY rate on these lines was substantially greater than

the measured packet error rate. (As explained above, the packet

error rate is a lower estimate, so we expect it be a little bit

smaller than the missed IHY rate.)

(2) After three weeks of data had been collected, we noted

which lines (excluding the high-speed lines) had gone phantom

down most often. The results are shown in the ARPANET map of

Fig. 1-3, where very heavy lines are those that went down very

often, and the mid-weight lines "moderately" often. Examination

of this map reveals that (a) the lines with the worst behavior

are those that tend to carry the most traffic; and (b) each

weighted line is contiguous with one or more other weighted

lines - that is, the problem is probably associated with the IMPs

rather than with the lines.

The explanation of both observations is the same and was

mentioned earlier: If two successive packets arrive on a

- 16 -
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particular line in short succession, then the receiving IMP may

not-respond quickly enough to a completion interrupt of the first

packet, and the second packet may be dropped. The minimum

required response time is 5-6 character-times, or roughly 0.2 ins.

on a high-speed line, 1 ins. on a 50 Kbps line. Clearly, missed

packets will be more likely on high-speed lines, but our

measurements also showed that under heavy traffic, an IMP might

have difficulty in responding to a packet on a 50 Kbps line.

Of course we had been aware of the fact that packets could

be lost because of missed completion interrupts, but prior to

these measurements, we had no data on the rate of occurrence.

Some investigation revealed that a significant fraction of the

missed line protocol packets could be traced to the fact that in

the initial release, a phantom Hello was transmitted immediately

after the periodic routing message. (That is, both packets were

sent each slow tick.) When the order of these two packets was

reversed, the number of phantom downs dropped considerably, and

the average missed IHY rate also dropped, becoming comparable

with the overall average packet error rate. (This last point

indicates that the principal cause of missed IHYs is now line

errors rather than actual missed packets; this average error rate

is quite low, approximately 2x1O -4.) Efforts are being made to

reduce the likelihood of missed packets by shortening those

segments of IMP code which run with interrupts locked out. Such

-18 -
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segments include both long sequences of instructions as well as

short sequences that are iterated many times. Despite these

efforts, we must remain cognizant of the fact that as an IMP's

traffic increases, the probability that packets on its incoming

lines will be missed also increases, and that this miss

probability is not independent on each of the IMP's lines. These

considerations in fact entered into the design of the updating

policy we have designed.

On the basis of the above considerations and the

measurements we have conducted we have currently set the

parameters on the 50 Kbps line to be (4,20) for bringing a line

down. Figure 1-4 shows an approximation for the expected number

of intervals E(N) for a (4,20) counter to bring a line down as a

function of the packet error probability p. The curve is based

upon the equations

E(N)> k/p

E(N)= [( 'k np<<

(We believe, but have not proven, that the second equation above

is also a lower bound.) Note that the knee of the curve is near

p-0.1, so that lines are allowed to remain up unless there is a

significant likelihood of a packet error. Also shown in Fig. 1-4

-19-
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Figure 1-4 Performance of Present Line Down Counters
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is an approximate and an exact curve for a (5,5) counter, which

corresponds to the old line down protocol; we used these

parameters when the new protocol was first installed in the

network. The following table compares the performance of these

two counters over successive periods of network operation:

(5,5) (4,20)

number of days 8 8
in measurement

average number 0.33 0.54
of times down per
line per day

average excluding 0.26 0.46
lines from IMP53

The averages above were taken only over the 50 Kbps lines. The

second row of averages excludes the two lines from IMP53 (EGLIN)

because these lines are exceptionally troublesome, contributing

almost 25% to the total number of line downs; that is, these

averages are more representative of overall network performance.

The measured number of line downs due to the new protocol also

includes some downs which were introduced when lines were looped

and some which were caused by the slave bringing a line down for

a "miscellaneous" reason. Thus, the averages above are slightly

greater than those caused by the line protocol alone. The data

show that (1) the new (4,20) counter does increase the rate at

which lines are brought down, and (2) the average rate of line
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downs is not excessive. (Moreover, on a typical day, one or two

different lines would contribute a significant fraction of line

downs, and thus the "average" line is somewhat better than the

above figures indicate.)

For a 50 Kbps line we have achieved satisfactory performance

with the line up counter operating with NUP:90 consecutive

IHY's. Our measurements indicated that a smaller value of NUP

provides equally good performance, but because the updating

procedure necessitates approximately a one-minute period for

bringing a line up, we are initially using a value of NUP which

guarantees this period (90 ticks takes about 58 sec).

The parameters for the high-speed lines are different from

those on the 50 Kbps lines because these lines send protocol

packets at a higher rate, and because the probability of a missed

packet is greater. The clock rate on these lines will initially

be set at five times that of 50 Kbps lines, i.e., one tick every

1/5 slow tick. Since the clock is running at a faster rate, the

expected number of clock intervals between downs must be

proportionately greater, and therefore we are currently using a

(5,5) counter. We plan to test other parameters, e.g. (8, 16) in

the coming weeks.
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2. MEASURING AND REPORTING DELAY

2.1 Delay Measurement Routines

Routines to measure the delay experienced by packets in the

ARPANET have been designed and implemented. These routines

implement the block-average smoothing discussed in our First

Semi-Annual Technical Report. That is, every n seconds, the

average delay of all packets that have been transmitted on a

given line during the last n seconds is computed. This average

delay is then compared to the reported delay for that line. The

reported delay is the value of delay that existed when an update

was last generated - it corresponds to the value of delay that

would be used in the SPF calculation. If the reported delay

differs by a significant amount from the average delay that was

just computed, an update is generated.

The measured delay values are quantized twice, once when the

delay for each packet is measured, and again more coarsely when

the average delay is computed.

The delay is considered to have changed "by a significan~t

amount" whenever the change exceeds a certain threshold. The

threshold is not a constant, but a decreasing function of time.

The reason for this is the following. Whenever there is a large

change in delay, it is desirable to report the new delay as soon

a3 possible so that routing can react quickly. When the delay

-23



Report No. 3940 Bolt Beranek and Newman Inc.

changes by only a small amount, it is not important to report it

quickly, since it is not likely to result in an important routing

change. However, whenever a change in delay is long-lasting, it

is important that it be reported eventually, even if it is small;

otherwise additive effects can introduce large inaccuracies into

routing. What is needed is a scheme which reports large changes

quickly, small changes slowly, and moderate changes in a moderate

amount of time. A threshold value which is initially high but

which decreases to zero over a period of time has this effect.

In the scheme that has been implemented, the threshold is

originally set to an initial value. Whenever a change in delay

is less than the threshold, the threshold is decreased by a decay

value, except that it is never decreased below zero. Whenever a

change in delay equals or exceeds the threshold, an update is

generated, and the threshold is reset to its initial value.

Since the threshold will eventually decay to zero, an update will

always be sent after a certain amount of time, even if there is

no change in delay. The rate at which the decay to zero occurs

establishes the minimum frequency of routing updates.

It has been decided for efficiency reasons that an update

from a given IMP shall contain the latest data on all the IMP's

lines, rather than the data for only a single line.

One of our principal goals has been to compare the effects

of different sets of parameters on the delay measuring and
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reporting process in the real network environment. Such a

comparison can only be meaningful if the input to the delay

measuring process can be held constant as the parameters are

changed. Otherwise, differences may be attributed to differences

in the input as well as the parameters. However, the input to

the delay measuring process is something which cannot be held

constant, viz., the actual delays of packets in the network.

Since there is no way for us to contol the input, there are only

two means of obtaining meaningful comparative results:

a. Collect all the input in raw form, and simulate the

effects of different parameters.

b. Maintain parallel data structures in the IMPs, so that

different sets of parameters can be applied in parallel to the

same input.

While the former procedure might seem to have the advantage of

providing greater flexibility, it has the disadvantage of being

only a simulation. One can never be as confident of results

produced by simulation as of results produced by actual network

measurement. Furthermore, there does not seem to be any

realistic way of collecting on our TENEX PDP-10 the voluminous

amount of data required (i.e., the individual delay of each

packet which traverses a particular line in the network). TENEX

does not seem to be able to accept data from the network at a
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high enough rate to enable us to gather satisfactory amounts of

data. Therefore, we have opted for the procedure of maintaining

parallel data structures. These enable us to test the effects of

different averaging intervals, different quantization units, and

different threshold parameters on the very same data. One of the

two parallel structures will be removed when the delay

measurement routines become operational.

Similarly, we have been sending updates to a single

collection point, rather than to all IMPs. When the routines

become operational, the collection mechanism shall be removed,

and replaced with the updating mechanism described elsewhere in

this report.

The following paragraphs present a precise design

specification of the delay measurement routines.

2.1.1 Parallel Data Structures and Parameters

In order to be able to run comparative experiments, we

maintain parallel data structures and parallel sets of

parameters. We refer to the parallel structures as the

A-structure and the B-structure. In general, each invocation of

a procedure will deal either with the A-structure or the

B-structure. There are also parallel sets of parameters.

-26-
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2.1.2 Stamping a Packet with its Arrival Time

The arrival time is stamped in each packet. For packets not

originating locally, the arrival time is defined as the time the

packet enters the IMP. For packets originating locally, the

arrival time is defined as the time the packet is queued for

routing.

2.1.3 Computing and Storing a Packet's Delay (Sampling)

In order to store the per-packet delays on each line for

later averaging, three words per line are needed: a count of the

packets transmitted on the line, the sum of the delays of all the

transmitted packets, and a count of the number of times the sum

overflowed. Actually, in order to maintain the A-structure and

B-structure in parallel, six words are needed for each line --

three for the A-structure and three for the B-structure.

Whenever a packet is transmitted, the packet is stamped with

the time at which transmission begins. Whenever a packet is

retransmitted, this "sent time" is overwritten with the new sent

time. When an acknowledgment is received for the packet (or when

the packet is discarded due to 32 retransmissions with no

acknowledgment), the delay is calculated as follows: subtract

the arrival time from the sent time and add in the propagation

delay (a constant for each line, depending only on line speed)

and the transmission delay (a tabled function of line speed and
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packet length). The delay will now be in units of 100

microseconds. Then the delay must be shifted right. The number

of bits to right-shift the delay is specified by a single

parameter which applies both to the A-structure and the

B-structure.

After computing and shifting the delay, the following steps

are carried out, first with the A-structure, then with the

B-structure:

a) The count of transmissions is incremented.

b) The delay is added to the sum of delays for that line.

c) If this causes an overflow, the overflow counter is

incremented.

Note that although parallel data structures are maintained

while sampling, they are treated exactly the same.

2.1.4 Taking the Average (Smoothing)

The smoothing routine will be called periodically. The

frequency with which it is called depends on the setting of two

parameters: the A-smoothing-frequency and the

B-smoothing-frequency. Suppose that the former is set to 10

seconds and the latter to 100 seconds. Then the smoother is

invoked every 10 seconds, and operates only on the A-structure

during each such invocation. In addition, the smoother is
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invoked every 100 seconds to operate on the B-structure. The

smoother operates on all lines each time it is called.

The average is computeJi by dividing the delay sum by the

transmission count. However, before an average can be computed,

the delay sum must be adjusted for overflows. If the overflow

counter contains an n-bit number, the sum is right-shifted by n

bits, and then the overflow counter is ORed into the n leftmost

bits.

It is not necessary for the average to have as much

precision as the individual packet delays. As described in

section 2.1.3, the individual packet delays are already shifted

by some amount before being added to the sum. There is another

parameter to specify how much additional right-shifting should be

done in computing the average. If there were no danger of

overflows, this additional right-shifting could be done on the

sum before the average is computed. However, after adjusting the

sum of delays for overflow, the sum may be already right-shifted

by some amount (i.e., by the amount equal to the number of bits

in the overflow count). Let n be the number of bits which the

average should be right-shifted Cover and above the amount which

the delays were shifted before being summed). Then there are

three cases to consider:
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a) The count of overflows is exactly n bits long. Then

the additional right-shifting was done in adjusting for

overflows, and no further shifting is required. The

average is computed immediately.

b) The count of overflows is less than n bits long. Then

additional right-shifting is required before the

average can be computed.

c) The count of overflows is more than n bits long. Too

much shifting has been done. Compensatory

left-shifting is done after the average is computed.

To compute the average, the sum of delays is divided by the

transmission count. Since the IMP has no divide instruction, a

version of the following division algorithm has been implemented

(note that all multiplications and divisions which appear in the

specification of the algorithm can be done by shifting):

LEFT = 0;
POSITION = 15;
QUOTIENT = 0;
RIGHT = NUMERATOR;

#ALL DIVISIONS BELOW ARE INTEGER DIVISIONS

WHILE ((LEFT > 0) 1 (RIGHT > 0))
{LEFT = 2*LEFT + RIGHT/2**POSITION; #TAKE MOST SIGNIFICANT
IF (RIGHT/2**POSITION ::1) #BIT FROM RIGHT AND MAKE

RIGHT = RIGHT - 2'*POSITION; #IT LEAST SIGNIFICANT
IF (LEFT >= DENOMINATOR) #BIT ON LEFT

{LEFT = LEFT - DENOMINATOR;
QUOTIENT = QUOTIENT + 21*POSITION;

}
POSITION POSITION - 1;
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This algorithm is just the one we usually use for long division,

except that it is restricted to binary integers. It scans the

numerator from the left. When it encounters an initial segment

of leftmost digits (bits) which, taken as a number in its own

right, is larger than the denominator, a 1 is placed in the

appropriate bit position of the quotient. (Note that 1 is the

only non-zero binary digit.) Then the denominator is subtracted

from the most significant part of the numerator, and the process

is repeated until all digits of the numerator have been scanned.

It is obvious that if the numerator is a 16-bit word, the

WHILE loop cannot be repeated more than 16 times. As implemented

in the IMPs, the algorithm can never run for more than half a

millisecond for each line, even in the very worst case.

In addition to taking averages, the smoother zeroes out all

packet transmission counters, sum of delays, and overflow

counters that it uses, thereby initializing them for the next

sampling interval.

After the average delay for each line is computed, the

sampler calls the comparer, providing it with these delays as

input. The smoother also tells the comparer whether the average

has been obtained from the A-structures or the B-structures.

Note: 1) If a line is down, the smoother reports "infinite"

(i.e., 216_1) delay. If the line is up, the delay

is not allowed to exceed 216-2.
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2) If the transmission counter for any line is zero,

the smoother reports a delay for that line equal

to the propagation delay on the line.

2.1.5 Comparing

The comparer is called directly by the smoother, which tells

it whether to work with the A-structures or the B-structures.

The other input to the comparer is a list containing the current

average delay for each line.

The comparer works by comparing the current delay on each

line with its "base delay", where base delay is the delay that

was last reported to the network, i.e., the delay that all other

IMPs think the line has. The comparer must therefore maintain a

table of the base delay for each line; rather, it must maintain

two such tables -- one for use with the A-structure and one for

use with the B-structure. On any given call, however, it uses

only one of the tables.

The comparer decides whether an update message is called for

by determining whether the absolute value of the difference

between the current delay for a line and the base delay for that

line exceeds a threshold. There is a separate threshold for the

A-structure and the B-structure. Within a structure, however,

the same threshold applies to all lines. The value of the

threshold for a given structure depends on two parameters, the

-32 -



Report No. 3940 Bolt Beranek and Newman Inc.

threshold-initial-value and the threshold-decay-value. The

threshold is initially set to the initial-value. Whenever the

difference between the current delay and the base delay for any

line exceeds the threshold, the threshold is reset to its initial

value. Whenever the difference for every line is less than the

threshold, the threshold is decreased by the decay value.

If the difference between the base delay and the current

delay for any line exceeds the threshold, the base delay is set

to the current delay, and an update message is sent.

2.1.6 Line up/line down

Whenever a line goes down, all counters and sums associated

with that line are zeroed out. The base delay is set to the

maximum value, and an update message immediately generated.

Whenever a line comes up, the base delay for that line is

set to the propagation delay for the line, and an update message

immediately generated.

2.1.7 Utilization

The present routing algorithm currently measures the

utilization on each line by keeping a count of the number of

milliseconds each modem is busy during each 640 millisecond

period.
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Before the counter is zeroed, it is added to a counter which

is zeroed only when the comparing routine is called. The values

of these counters are reported in routing update messages.

However, the counters are zeroed each time the comparing routine

is called, whether or not a message is sent. This feature will

not be part of the new routing algorithm when it becomes

operational.

2.1.8 List of Parameters which can be Modified in Experiments

1) The propagation delay for each line, in 100 usec unit

(used by the sampling routines).

2) The table of transmission delays, in 100 usec units,

indexed by line speed and packet size (used by the

sampling routine).

3. The number of bits to right-shift each packet's delay

before adding it to the sum of delays (used by the

sampling routines).

4I) The number of additional bits to right-shift the

average delay (used by the smoothing routines).

5) The frequency with which to call the averager. This

will actually be two "parallel" parameters:
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A - frequency: the frequency with which the averager

is applied to the A-structure

B - frequency: the frequency with which the averager

is applied to the B-structure

6) The comparison threshold initial value (used by the

comparer). Again, this will be a pair of A and B

parameters.

7) The comparison threshold decay value (used by the

comparer). Again, a pair of A and B parameters are

required.

2.2 Delay Measurement Experiments

In the past few months, we have been gathering data from the

network using the delay measurement routines. We have used these

measurements to test various settings of the parameters, as well

as to gather information on the relationship between delay and

utilization in an actual network. Our observations are reported

below.

2.2.1 Delay vs. Utilization

For experimental purposes, we included a means of measuring

line utilization in the delay measurement modules. Utilization
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was measured by actually computing and summing the transmission

times of all packets sent on a line during a given interval. The

transmission times were computed in 100 microsecond units, and

were reported via update packets in 1.6 microsecond units. This

enabled us to compute the fraction of time the line was busy

during the interval. The same update packets that reported the

utilzation also reported the average delay over the interval.

Figures 2-1 through 2-5 show delay plotted against utilization

for 5 data samples. The interval of measurement is 9.6 seconds.

Individual packet delays were quantized to 800 microseconds, and

the average delay was quantized to 6.4 ins.

Figures 2-1 and 2-2 show delay vs. utilization under actual

network conditions (no artificial test traffic). Both the delay

and the utilization are low, as would be expected. The amount of

scatter is somewhat surprising, as is the fact that delay shows

little tendency to increase as utilization increases. Figures

2-3, 2-4, and 2-5 show data samples in which an attempt was made

to saturate the line with artificially generated traffic for part

of the sampling time. In Figure 2-3, we see that the delay does

have a tendency to increase as utilization exceeds 0.8. However,

the data diverges from theoretical predictions in two respects.

First, there are a large number of intervals which have a

relatively low delay, even at high utilization. Second, the

delay does not seem to be increasing to infinity as utilizaton
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approaches 1.0. Figures 2-4 and 2-5 show data which correspond

more closely to theory, in that there is a much steeper rise in

delay as utilization exceeds 0.8. In both figures, however,

there is a cluster of points showing relatively low delay at high

utilization.

2.2.2 Quantization Units

As described above, delay data is quantized twice. There is

quantization in measuring the delay of each individual packet,

and further quantization in computing the average delay. All

measurements in the IMP are performed with the 100 microsecond

clock, and the only practical means of quantization is

right-shifting. Therefore, the unit of quantization is always a

power of two times 100 microseconds.

The unit of quantization used when measuring the delay of

each individual packet is not too crucial to the performance of

the routing algorithm. For the sake of accuracy, we want it to

be small reltive to the actual delay experienced by a packet.

Yet we do not want it to be so small that we risk overflowing the

field which is used to sum the delays over the averaging

interval. (The risk of overflow is reduced, however, by the fact

that the summation is done in double precision arithmetic.) We

have chosen to quantize the individual packet delays to 800

microseconds.

-42-



Report No. 39140 Bolt Beranek and Newman Inc.

The unit of quantization which is applied to the average

delay is more important to the performance of the routing

algorithm, since it is the quantized average delay which is

reported to the network. If the quantization is too coarse, the

reported average delay is insufficiently accurate. Since the

reported delays are summed up by the SPF algorithm, errors can

accumulate, resulting in poor routing. These considerations

argue for making the unit small. On the other hand, if the

quantization is too fine, then we need a large number of bits to

store the value of delay. We want to be able to store the delay

value in a small number of bits, in order to conserve memory, but

we also want the reported values of delay to be able to take on a

wide range of values. These considerations argue for making the

unit larger.

A further argument for making the unit small has to do with

the effect of statistical noise on the delay measurement process.

Our measurements show that many changes in average delay are

changes of only one unit, no matter what that unit is.

Furthermore, the size of the unit does not seem to affect the

number of these changes. Many of the one unit changes are

undoubtedly due to noise in the measurement process, and are not

real changes. As the unit of quantization gets large, noise has

a correspondingly larger effect.
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We have settled tentatively on a unit of quantization of 6.4

Ms. If we store the value of delay in 8 bits, as currently

planned, this gives delay a dynamic range of 6.4 ms to 1.6

seconds, which seems to be a large enough range to enable the

routing algorithm to distinguish between congestion and a heavy

but uncongested load. The next largest possible unit would be

12.8 Ms. Since it is possible for a packet to experience less

delay than this, this figure is probably too large to ensure

sufficient accuracy. The next smaller possibility after 6.4 ms

is 3.2 ms. Using 3.2 ms. rather than 6.4 would halve the dynamic

range of the delay values while resulting in only a small

increase in accuracy. Our collections of data from the network

show no important distinction between these two units - that is,

6.4 seems "small enough" as well as "large enough". We may, of

course, wish to revise this opinion after further testing.

2.2.3 Averaging Interval

In our First Semi-Annual Technical Report, we discussed the

extreme variability of individual packet delays, and the

consequent need for averaging. In order to obtain a meaningful

measurement of average delay, it is necessary to have a

relatively long averaging period. If the period is too short,

stochastic noise in the data is likely to make the measurement

inaccurate. On the other hand, if the averaging interval is too

long, it will take a corresondingly long time to detect changes
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in the averge delay, and the responsiveness of the routing

algorithm is slowed.

We have collected data from the network to compare the

effect of different averaging intervals. Figure 2-6 compares an

interval of 96 seconds (Figure 2-6a) with an interval of 9.6

seconds (Figure 2-6b). The data represented in these figures is

due only to User traffic - no artificially generated test traffic

was used. The reported delays never disagree by more than a

single unit of quantization. Undoubtedly the data based on the

96 second interval is more accurate, with the discrepencies being

due to noise. The noise does not seem very significant, however,

and even with the shorter interval, reported changes in delay

occur only once every 163 seconds, on the average.

Figure 2-7 compares the same two averaging intervals, but

the data was collected from a line which we attempted to saturate

with test traffic. We used the IMPs' internal message generators

to send maximum length multi-packet messages as frequently as

possible. Message generators were on from approximately minutes

20-44, and from approximately minutes 51-55. Comparing Figure

2-7a with Figure 2-7b shows several differences between the 96

second interval and the 9.6 second interval. The larger interval

gives much smoother results than the shorter. The larger

interval causes a reported change in delay once every 145

seconds, on the avera&e; the shorter, once every 57 seconds.
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However, although Figure 2-7a is smoother than 2-7b, the data

presented on 2-7b seems adequately smooth, and does not cause an

excessive number of updates to be generated. The two graphs

track each other quite well. Furthermore, the shorter interval -

has a crucial advantage over the larger, in that it reacts much

more quickly to large changes in delay. (This is quite clear if

the graphs are superimposed.) This increased responsiveness is

very important to the routing algorithm. Although the shorter

averaging interval results in more "noise" in the measurement, it

seems that this is simply the price one must pay for increased

responsiveness. It is our judgement therefore that the 9.6

second interval is preferable to the 96 second interval.

We have also investigated whether an even shorter interval

might be preferable. In Figure 2-8, we compared an interval of 2

seconds (Figure 2-8a) with an interval of 9.6 seconds (Figure

2-8b), with no test traffic. Figures 2-9a and 2-9b compare the

same two averaging intervals, with test traffic running from

minute 8 to minute 53. The two-second interval is

unsatisfactory; there is too much variability, and too many

meaningless changes are reported. The two-second interval yields

a smoothed delay which bears too close a resemblance to the raw

data which was reported on in the First Semi-Annual Report.

In Figures 2-10 and 2-11, a 5-second averaging interval is

compared to a 10-second interval. The measurements shown in
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Figure 2-10 were taken under ordinary conditions, while those in

Figure 2-11 were taken under conditions of artificially induced

heavy load. In both cases, the larger interval yields a smoother

result, while the shorter interval does not appear to have any

countervailing advantage.

Since an averaging interval of approximately 10 seconds

appears to be long enough to yield a meaningful measurement,

while also short enough to detect changes quickly, we have

decided to Use an interval of 10 seconds in our initial

implementation.

2.2.4 Threshold Parameters

There are two threshold parameters - the initial value of

the threshold, and the value by which the threshold is decreased

each time a measurement is made which does not differ

significantly from the reported delay value. The values of the

threshold parameters have two important effects. Since the two

parameters together control the rate at which the threshold

decays to zero, they determine the minimum routing frequency.

Also, they determine the responsiveness of the routing algorithm

to changes in delay.

Our measurements have shown that it is very rare for the

delay to change, on the average, more often than the minimum

updating frequency. For instance, if the initial threshold is 5
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times greater than the threshold decay value, and the averaging

interval is 10 seconds, an update (which may not, however, report

a change) will be generated once every 60 seconds. Our

measurements show that, no matter what the traffic load and no

matter what the actual values of the threshold parameters are,

the number of reported delay changes rarely exceeds one per

minute, on the average, as long as the parameters are related as

specified, and the initial value is reasonably large. This

suggests that once the averaging interval is chosen, the ratio

between the initial threshold and the threshold decay should be

chosen so as to ensure the desired minimum updating frequency.

The only additional choice to make is the actual value of the

initial threshold. This should be large enough so that only

major changes are detected, but small enough so that they are not

missed.

Figures 2-12a, 2-13a, and 2-14a show data for which the

initial threshold is 32 ins., and the decay is 6.'4 ins. Figures

2-12b, 2-13b, and 2-14~b show the same delay data respectively,

but with the initial threshold set to 641 ms, and the decay to

12.8 ins. In the data shown in Figure 2-12, the choice of

threshold value makes no appreciable difference at all. In

Figure 2-12a, there is a reported change in delay once every 68

seconds; in Figure 2-12b, once every 69 seconds. In the data

shown in Figure 2-13, the difference in threshold values is more
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significant. The larger initial threshold value resulted in one

reported delay change every 58 seconds; the smaller, once every

414 seconds. This data is unusual in that there are so Many

changes over an hour-long period. Using the larger initial

threshold, however, does gain considerable smoothness, without

losing any responsiveness to large changes in delay. In Figure

2-14, the larger initial threshold also resvults in a smoother

graph than the smaller Cone change every 82 seconds, as opposed

to one every 73 seconds). However, if Figures 2-1L4a and 2-14b

are superimposed, it is seen that the smaller threshold does

yield a somewhat quicker reaction to significant changes.

We intend in our initial implementation to use an initial

threshold value of 64 ins. and a threshold decay value of 12.8 ins.

This yields the minimum updating frequency we want (once per

minute). It gives a smoother reported-delay curve than would a

smaller value of the initial threshold, without losing much

responsiveness. While larger values of the initial threshold

would yield an even smooother curve, they lose too much

responsiveness as they get larger.

2.3 Conclusions

Although the parameter settings are very important to the

performance of the delay measurement routines, and hence to the
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SPF routing algorithm itself, there is no easy way to determine

the optimal values of the parameters. The measurements reported 1
on in this chapter have served us as very important guidelines,

but they cannot be regarded as the last word. As the new routing

algorithm is installed, it will be instrumented so that we can

monitor its performance and continue to examine the effects of

changing the parameters. The algorithm will be implemented so

that we can easily modify the parameters, if necessary, on the

basis of our future experience.

It is also important to realize that the measurements we

have taken so far were taken while the old routing algorithm was

still in control. As we emphasized in our First Semi-Annual

Technical Report, various characteristics of the network may

change drastically when the new routing algorithm takes control,

and this may invalidate previous measurements. Therefore, it

will be necessary to continue to perform measurements and to tune

the parameters after the network is cut over to the new routing

algorithm.

-68-

A.U



Report No. 3940 Bolt Beranek and Newman Inc.

3. DYNAMIC BEHAVIOR OF THE SPF ALGORITHM (SUMMARY)

During a five-week period, Prof. Dimitri Bertsekas of MIT

worked with us on the dynamic behavior of the SPF algorithm.

Although his work is strictly analytical in nature, it indicates

some possible instabilities and sub-optimalities of the SPF and

other shortest path algorithms. His analysis also indicates

several techniques that can reduce both the likelihood and the

severity of these degradations. Now that we have been alerted to

some potential problems, we are planning a variety of tests on

the SPF algorithm in real networks, in order to determine whether

these problems can arise in practice, and if so, how they can be

alleviated. This section summarizes the major results obtained

by Prof. Bertsekas. Appendix A contains a detailed description

and derivation of this material.

The basic stability problem can be most easily explained by

means of a simple example. Consider the ring topology of Figure

3-1, and assume that each node, except for node 4, sends one unit

of traffic (per second) to destination node 8, and node 4 sends u

units. Further assume (1) that the "length" of a link, a

dynamically varying quantity, is equal to the traffic flowing on

the link, plus a constant bias b; and (2) that periodically and

simultaneously each node measures the length of each of its

outgoing links, and reports that information to all other nodes.

In other words, this example could represent a simple network
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Figure 3-1 Example illustrating dynamic behavior of routing algorithm I.
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running the SPF algorithm, with simultaneous updates that are

propagated quickly and that are based upon the traffic flowing

immediately prior to the updates. Finally, let R(i), 1 < i < 8,

denote the routing pattern in which the traffic of all nodes kOi

is routed counterclockwise, with all other traffic routed

clockwise; for example RC3 means that traffic from nodes 1 and

2 flows clockwise to node 8, and traffic from nodes 3-7 flows

counterclockwise.

It is easy to see that for the assumed length function, the

optimal routing is R(4 or R(5). However, the stability of this

optimal routing, and whether or not the initial routing will

actually lead to this optimum, both depend on the choice of bias.

Some specific results, easily derived for this example, are:

- if initial routing is R(4 or R(5) and if u =0, then the

routing is stable (and optimal).

- if the initial routing is R(k), k 1 4,5, and if u = 0 and

b 0, then the routing will oscillate between R(k) and

RC9-k).

- if u 1 0 and b 0, then regardless of the initial

routing, the routing will eventually oscillate between the

two worst-case (most sub-optimum) values, RC1 and R(8;

note that this conclusion is valid even if u<(1.
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- if u 0 0, then very small bias values result in these same

oscillations; intermediate values of bias lead to stable

equilibrium, provided that the initial routing is

sufficiently near the equilibrium point; and large values

of bias guarantee convergence to the optimum.

In the Appendix, these specific results are generalized to other

traffic flows and topologies. Because the stability analysis of

discrete networks is difficult, a continuous model is developed.

The major conclusions, although derived from a continuous model,

should nevertheless be applicable to discrete networks.

The fundamental result of the analysis, suggested by the

simple example above, is that there is an interplay between the

traffic pattern, the bias value, and the stability of the

routing. Clearly, a large value of bias leads to an equilibrium

routing which is stable or, more precisely, static and which is

close to the minimum-hop routing, whereas a small value of bias

could result in an unstable equilibrium (or no equilibrium at

all). As the bias increases, however, the routing adapts less

readily to congestion, and therefore there is a trade-off

involved in the choice of bias. In general, it can be shown that

for stability, the bias should increase as the total traffic

level increases and as the marginal delay increases. The

marginal delay is defined as the additional "length" that would

be introduced by sending additional traffic on a link; (i.e. it
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is the derivative of the length function with respect to traffic

flow).

The assumptions utilized in the above example simplified the

analysis. We are in the fortunate (and unusual) position,

however, that relaxing some assumptions leads to a more

practicable implementation, results in a more realistic model,

and actually yields improved performance! Specifically, if the

reported link lengths are based upon measurements that have been

averaged over several past routings, then the bias required to

achieve a stable equilibrium is significantly reduced. A similar

reduction occurs if updates are generated asynchronously by the

nodes. The smaller the bias, the more sensitive routing can be

made to congestion. Also, even if the algorithm is unstable, its

dynamic behavior is dramatically improved by averaging and

asynchronous operation. That is, if oscillations exist (as in

the example above), they will be less violent.

The above remarks notwithstanding, the analysis indicates

that the choice of the bias value may not be an easy task. For

example, in a simple loop network it can be shown that the total

delay can be minimized by choosing the length function to be the

marginal delay, provided that the algorithm actually converges to

the equilibrium routing. On the other hand, for stability (and

good convergence), the bias must be increased if the traffic

level increases. But it can be shown that if the bias is fixed,
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then there exists some level of traffic beyond which that level

of bias is inadequate. Even if traffic levels are limited, as

they are in a real network, a very large bias may be needed to

prevent instability under all circumstances. This obvious

"solution" of using a constant high bias might result in

non-adaptive min-hop routing. Alternatively, the use of

different bias on different links may also lead to difficulty.

In order to better understand these tradeoffs and achieve good

routing performance, we plan to experiment with a variety of

schemes.
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4. RELIABLE TRANSMISSION OF ROUTING UPDATE MESSAGES

In choosing the SPF algorithm, we presupposed that all IMPs

will be able to run the algorithm from the same data base. That

is, we presupposed that there will be no period of time (except

for an insignificantly short "transition period") during which

the IMPs will disagree about the delay on any given line. If

this presupposition does not hold, the IMPs may make conflicting

routing decisions, possibly resulting in long-lasting loops.

Therefore, reliable transmission of the updates for the SPF

algorithm is of the utmost importance. It is much more important

than with the previous ARPANET algorithm. With SPF, even a

single lost update can cause a long-term loop to form, thereby

causing a catastrophic degradation in network performance.

In our First Semiannual Technical Report (BBN Report No.

3803) we argued that flooding updates through the network was a

more reliable means of transmission than using some form of

multi-address routing. While it is true that flooding is an

inherently very reliable method of transmission, it is not

sufficient by itself to guarantee delivery. It must be augmented

with a retransmission/acknowledgment scheme, to ensure that line

errors cannot prevent updates from reaching some IMP in the

network. Furthermore, there are certain situations involving

lines going up and down in rapid succession in which flooding is

not reliable. Consider the following scenario. Let A, B, and C
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be three IMPs such that A and B are neighbors, and B and C are

neighbors. Let u be an update from some other IMP in the

network. Suppose that at time to, A receives u, but the line

from A to B is down (although the line from B to C is up).

Clearly A cannot transmit u to B. Then at time tl, the line from

A to B comes up. At t2 , the line from B to C goes down. At t3,

C receives u. Now C cannot transmit u to B. Unless the flooding

scheme is augmented in some way, B may never receive u, even

though there was never any moment at which B was totally

disconnected from the network.

Augmenting the flooding scheme with a protocol to ensure

reliable transmission is not, however, sufficient to ensure that

all IMPs have the same SPF data base. It may occasionally happen

that two or more updates from the same IMP are being transmitted

around the network at the same time (because a second update had

been generated before the first had been received by all IMPs).

Once this happens, it is possible that some IMP will receive the

updates out of order. If different IMPs can receive the updates

in different orders, it is essential that they always keep the

update which was generated most recently (rather than the one

received most recently), while discarding the others. This can

be effected by having the updates carry serial numbers. However,

the addition of serial numbers gives rise to a further problem.

Suppose IMP A sends out update a with serial number s(a), and
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this update is received by IMP B. Then A and B become

disconnected due to network partition. Sometime later the

partition ends, and B receives from A update a' with serial

number s(a'). The problem is that during the partition, A's

serial numbers may have wrapped around one or more times. Thus

if B simply compares s(a) with s(a') to determine whether a or a'

is the more recent update, it may come to the wrong decision.

Some scheme must be developed to ensure that the serial numbers

get re-synchronized after a partition.

A similar problem arises if an IMP goes down and needs to be

restarted. When it comes back up it may not remember the serial

number it used last. If it starts sending updates again with a

serial number that is too low, the other IMPs may not recognize

the new update as being the most recent. So some way of

resynchronizing the serial numbers is also needed for this case.

Thus we have two different protocol problems to solve. The

first is the problem of ensuring that the most recent update from

a given IMP is transmitted reliably, and that when updates are

received out of order only the one which was generated most

recently is . cepted. A protocol to ensure this will involve

serial numbers, thereby giving rise to the second protocol

problem, that of re-synchronizing serial numbers after a

partition. Various proposed solutions to these two problems will

to discussed separately in what follows.
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4.1 Reliable transmission

We have considered three different ways of augmenting the

basic flooding scheme to ensure reliable transmission. These are

discussed 'below. An important feature of all the schemes is that

updates need not be kept buffered pending retransmission. Since

all the information in an update is kept by the IMP in its

routing tables, updates which need to be retransmitted can be

reconstructed from the tables.

I) Logical channels

This protocol is modeled on the IMP-IMP protocol. it

divides each line into NN logical channels in each direction,

where NN is the number of IMPs. When an update from IMP n is

transmitted, it travels on channel n. The channel is blocked

between the time the update is transmitted and the time an

acknowledgment (ACK) for it is received. While the channel is

blocked, no other update may be transmitted on it. If an update

receives a negative acknowledgment (NAK), it is retransmitted.

The ACK/NAKs are carried in the line up/down protocol packet

(which are sent once every 640 ms.), one bit per logical channel.

When any given update is being transmitted in a particular

direction on a particular line, one IMP is the transmitter and

one is the receiver. Each IMP must keep NN transmit bits and NN

receive bits (one for each logical channel) for each of its
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lines. (The transmit bit for a channel is also copied into each

packet transmitted on that channel.) The protocol is specified

as follows:

1) Initialization

When a line comes up, all the transmit and receive bits

for that line are set to zero.

2) Transmitter

a) When an update is ready for transmission, a check

is made to see whether its logical channel is

blocked.

i) If it is blocked, a flag is set indicating

that an update was received while the channel

was blocked (call this the "update-waiting" or

"1UW"1 flag for that channel). The update may be

processed internally, but it should not be

transmitted on that line.

ii) If the channel is not blocked, the transmit bit

for that channel must be copied into the packet,

and the packet transmitted. The channel must be

marked "blocked".

b) When a line up/down protocol packet is received, the

acknowledgment bit for each blocked channel (recall
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that each protocol packet carries one acknowledgment

bit for each channel) must be compared with the

transmit bit for that channel.

i) If the bits do not match, the channel has been

ACKed. The transmit bit must be flipped, and

the channel unblocked. If the UW flag is set,

the flag should be cleared, and the latest update

from the appropriate IMP should be

re-constructed from the routing tables and then

transmitted.

ii) If the bits match, then the channel has been

NAKed. The latest update from the appropriate

IMP should be re-constructed from the routing

table- and then transmitted. The UW flag should

be cleared. (Note that this always results in

the transmission of the most recent update.

Updates which have been superseded are never

re-transmitted.)

3) Receiver

a) When an update is received, the transmit bit in the

update packet is compared to the receive bit for its

logical channel.
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i) If the bits match, the packet is a duplicate

(i.e., a spurious retransmission). The packet

should simply be discarded.

ii) If the bits do not match, the receive bit for

that channel should be flipped. A determination

should be made as to whether the update is the

most recently received from the source IMP (by

comparing serial numbers). If not, the packet is

discarded. Otherwise the packet is processed

internally, and transmitted on all lines except

the one it was received on, subject to the

transmitter protocol described above. This is

the part of the protocol that ensures the

flooding of recent updates.

b) When- a- line_-~d~i about- to be

sent, the receive bits for all logical channels are

copied into the packet as the acknowledgment bits.

This protocol ensures reliable transmission on an IMP-IMP

basis, similar to the ordinary IMP-IMP protocol. It differs from

it in only three important respects. It does not guarantee

delivery of every update packet, but only of those update packets

which are not superseded by more recent updates before they are

NAKed. (However, this is all that is needed in the present
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context.) It does not require packets to be buffered while

awaiting acknowledgment, since all the information in a NAKed

update can be obtained from the routing tables. Finally, the

acknowledgment comes periodically rather than immediately.

This protocol shares with the IMP-IMP protocol the advantage

of being a very reliable low-overhead scheme. The line bandwidth

required is only NN bits every 640 ms. (Since the line up/down

protocol packets are sent every 640 ms. anyway, there is no

additional overhead incurred.) This is much less than would be

required by explicit ACKs. The protocol ensures that if an

update is missed due to line error, it will be re-transmitted (or

a more recent update from the same source IMP will be

transmitted) within 640 Ms., thereby making lost updates

impossible.

However, the protocol has several disadvantages:

1) It does not solve the problem discussed above where an

IMP fails to get an update because one of its lines comes up just

as another of its lines goes down. To solve this, it is

necessary to augment the protocol with a special mechanism, such

as "re-transmitting" all updates over a line which has just come

up.

2) The protocol may not respond quickly enough to missed

updates. Although a retransmission is assured within 640 Ms.,
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this is a long period relative to network transmit times. If an

update is missed due to a line error, IMPs may disagree about the

state of some lines for 640 ins. longer than they otherwise would,

which may mean an additional 640 ins. of unacceptable routing.

(On the other hand, it must be noted that the flooding scheme

will, in general, deliver more than one copy of each update to

each IMP. Therefore, Missing one copy of an update due to a line

error would not mean that the update would be totally lost, even

if there were no retransmission.)

3) The protocol is very expensive in terms of its IMP

memory requirement. It requires four flags for each logical

channel on each line of an IMP - the transmit bit, the receive

bit, the "channel-blocked" flag, and the UW flag. In an 80-IMP

network, an IMP with four lines would need 80 words just for

these flags. Furthermore, the protocol requires a great deal of

bit manipulation, which requires a large amount of code in the

IMP. Since memory in the IMPs is a scarce resource, this is a

major disadvantage.

4) Since a logical channel is blocked until an ACK arrives,

the flow of updates is artificially slowed down in some cases.

II) Exchanging Serial Numbers

A much simpler protocol could be based on the periodic

exchange of serial numbers between neighboring IMPs. Suppose
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that, at a fixed interval, each IMF prepared a packet containing

the serial numbers of the most recent updates that it has I
received from all the IMPs in the network. This packet would

then be transmitted to each of the IMP's neighbors. When an IMP

receives one of these packets from a neighbor, it compares its j
neighbors' most recent serial numbers with its own. In this way

an IMP can determine whether or not it has received an update

which its neighbor has not yet received (or, more accurately, had

not yet received a little while ago). If it has, it

re-constructs the update from its routing tables and transmits it

to the neighbor, thereby ensuring that its neighbor is at least

as up-to-date as it is.

This protocol is just as effective as protocol I in ensuring

that line errors do not cause updates to get lost. It has the

further advantage of automatically handling the case where one of

an IMP's lines goes down just as another of its lines has come

up. Since the protocol is based on a periodic exchange of serial

numbers, rather than one-time-only acknowledgments of

transmissions, Missing updates are automatically detected.

However, this protocol has quite a serious disadvantage.

The periodically transmitted packet which contains the serial

numbers is rather long, much longer than the periodic packet

required by protocol I. While this may not result in Using an

excessive amount of bandwidth, when measured in absolute terms,
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it uses the bandwidth in an unfortunate way. The periodic

transmission of long packets can have an *effect on network

performance which is much worse than would seem to be indicated

by considering just the absolute bandwidth used. (This is

discussed in our first Semiannual Technical Report.) Any scheme

using periodically transmitted long packets must be avoided.

The size of the periodic packet can be made shorter if it is

not required to send all the serial numbers at once. For

instance, if the serial numbers are six bits each, and one-sixth

of the serial numbers are sent at a time (say, in the line

up/down protocol packet) , then the utilization of line bandwidth

can be made to be exactly the same as in protocil 1. If protocol

II is modified in this way, however, it lcses much of its

attractiveness, since it becomes much less responsive to missed

updates. If it takes six intervals to cycle through all the

serial numbers, and each interval is 6410 ins. long, then a missed

update might not be retransmitted for 3.8 seconds. This is much

too long a period to wait. If the missed update causes routing

loops to form and to persist for this long a period of time,

areas of congestion can form, causing packets to be discarded

from the subnet. The situation is made even worse if one of the

protocol packets containing the serial numbers is not received

because of a line error. Another 3.8 seconds Will go by before

the protocol cycles around again to the same group of serial
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numbers. This version of the protocol does not seem to be

adequately responsive.

III) Explicit Acknowledgement by Echoing

The third protocol we considered uses a sort of explicit

acknowledgment which fits very neatly into the basic flooding

scheme. Recall the way in which floodi-*ng works. When an update

is received, a check is made to see whether that update was

created more recently than any other update which has been

received from the same source IMP. If not, the update is simply

discarded. If so, the update is transmitted over all lines

except the line on which it was input. There is no need to

transmit it over the input line, since it is known that the

neighbor on that line has already seen the update. In protocol

III, however, the updates are transmitted over all lines,

including the input line. The "echo" over the input line serves

as an acknowledgment. If the echo is not received in a given

amount of time, the update can be retransmitted. The

retransmitted update must carry a special bit (the "Retry" bit)

indicating that it is a retransmission. The purpose of this bit

is to force an echo, even if the update has been seen before and

would ordinarily just be discarded. This is needed to cover the

case where an "acknowledgment" (i.e. the echo) is missed, causing

a spurious retransmission. Unless a second echo is forced, the

retransmissions may go on without end.

-86-

OAMLA



Report No. 3940 Bolt Beranek and Newman Inc.

To implement this protocol, an IMP with k lines must

maintain k retransmission timers for each IMP (i.e., k x NN

timers). The specification of the protocol is as follows. When

an IMP receives an update from some IMP J, it first checks to see

whether the Retry bit is on. If so, it is turned off, and the

update packet is "echoed" back over the input line.

After this is done, or if the Retry bit was not on, the

serial number of the update must be checked. If a more recent

update from IMP J has already been seen, the update should simply

be discarded.

If this update is the most recent from IMP J, but has

already been seen, then it should also be discarded. It may,

however, be an echo-acknowledgment. Therefore the retransmission

timer for IMP J which corresponds to the input line should be set

to zero.

If this update is the most recent update from IMP J, but has

not been seen before, then it must be flooded. It should be

echoed back over the input line, and the timer corresponding to

the input line set to 0. It should be transmitted over all other

lines, and the re-transmission timers for IMP J corresponding to

those lines should be set to their maximum value.

Periodically (say every 25 ins. or so) all non-zero

retransmission timers must be decremented. Whenever a timer gets
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decremented from one to zero, an update must be re-transmitted

(with its Retry bit turned on).

This protocol is more responsive than either of the two

protocols previously discussed. Acknowledgements are sent

immediately, rather than periodically, and the retransmission

time-out interval can easily be tuned for best effect. This

protocol uses more line bandwidth than protocol I, but that does

not seem to be a problem. If the retransmission timers are

implemented as two-bit counters, this protocol requires only half

as much memory as protocol I. It does not have the

channel-blocking problem of protocol I, and is generally much

simpler to understand and to implement. For these reasons it is

preferred to protocol I.

It is also preferable to protocol II. Although it has the

disadvantage of requiring some additional mechanism to handle the

case where one of an IMP's lines goes down just as another of its

lines comes up, protocol II's disadvantages (discussed in the

previous section) are enough to outweigh this one relatively

minor advantage. This special case can be handled by

transmitting (as "re-transmissions") all updates over a line

which has just come up.
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4.2 Re-synchronizing after Network Partition

Suppose that cert~in IMPs become disconnected from each

other due to a network partition, and that the partition ends an

unspecified period of time later. This means that for that

period of time, certain IMPs have been unable to receive routing

updates from certain other IMPs. When the partition ends, the

IMPs in one segment of the network will remember the serial

numbers of the last updates they received from IMPs in the other

segment. However, if the partition lasted a long enough time,

the serial numbers may have wrapped around one or more times. If

there has been wrap-around, it is meaningless to compare the

serial numbers of new updates with the serial numbers of old

updates. Some method must be developed to force all IMPs to

discard the pre-partition updates in favor of the post-partition

ones.

The following scheme suggests itself immediately. The SPF

computation enables each IMP to know whether another IMP is

reachable or not. When an IMP becomes unreachable, all updates

from it shall be ignored. When it becomes reachable again, the

next update received from it shall be accepted. This

automatically resynchronizes the serial numbers.

Although the scheme seems initially attractive, it has

serious, difficulties, as would any scheme which requires some
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updates to be ignored. Recall that if there is any long-term

discrepancy in the data bases maintained by the IMPs, the SPF

calculation may result in routing loops which may make the

network useless for long periods of time. The proposed scheme

enables such discrepancies to exist after a partition ends.

Suppose (for concreteness) that the network is partitioned

East-West. When the partition ends, the Eastern IMPs will

initially appear unreachable to the Western IMPs, and vice versa.

Then updates will begin to flow across the East-West boundary.

Eventually, all IMPs will have processed updates from all other

IMPs, and they will all see each other as reachable again. The

problem arises because Western IMPs cannot begin to process

updates from Eastern IMPs as soon as the partition ends. Rather,

they must wait until the Eastern IMPs become reachable. But as

updates flow from East to West, different Western IMPs will

process the updates in different orders, and at different rates.

This means that if E is an Eastern IMP, and WI and W2 are Western

IMPs, there may be some time interval during which WI can accept,

process, and forward updates from E, while W2 must ignore them,

neither processing nor forwarding them.

The result is that it may be a very long time before updates

from E are able to reach all the Western nodes (even though they

are able to reach some Western nodes in a very short time).

During this time, the IMPs' data bases are inconsistent. Exactly

- 90 -



Report No. 3940 Bolt Beranek and Newman Inc.

how long it takes depends on which reliable transmission protocol

is used. If protocol I or III are used, then once an update is

ignored, an update from the same source may not be seen again

until one is generated at the source, possibly a minute later.

As a result, the IMPs may have inconsistent data bases for

several minutes. If protocol II is used, it may be possible to

reduce this period to several tens of seconds, but that still is

far from satisfactory.

It must be understood that the problem is not merely that it

will take a long time to re-integrate the two segments after a

partition. The point is that when a partition ends, incorrect

routing patterns may form which affect communication even between

IMPs in the same segment. For example, two Eastern IMPs which

are communicating with each other may begin routing their traffic

to each other via a series of Western IMPs. But if the Western

IMPs hold inconsistent information about the Eastern IMPs, the

traffic may never get through. As a result, some IMPs which were

able to communicate during the partition would not be able to

communicate after it ends.

This also shows that when a partition ends, some action must

be taken to ensure that the most recent updates from each segment

are immediately sent into the other. It is important not to wait

until new updates are generated. Otherwise, there may be some

long period of time during which the IMPs have inconsistent data
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bases, and the network will be useless for this period. However,

as discussed in the previous section, whenever a line comes up it

is necessary to transmit all recent updates on that line, in

order to ensure reliable transmission. This same procedure

ensures quick transmission of all updates across a partition

boundary after the partition ends.

The source of the problem with the initial scheme is that

some IMPs are forced to ignore certain updates while others are

not. What is needed is a scheme which allows all IMPS to process

all updates they receive as soon as a partition ends. The

following scheme has been suggested:

Let zero serve as a canonical lowest serial number. No

update packet shall ever carry a serial number of zero.

However, when an IMP A is determined by an IMP B to be

unreachable, B shall set its tabled copy of A's most recent

serial number to zero. Then when B next receives an update

from A, the new update will automatically be accepted as a

recent update, and can be processed normally.

The intent of this scheme is that when a partition ends and

updates begin to flow again between the segments, they can be

accepted and processed as soon as they are received. Thus the

scheme does not allow the formation of long-term discrepancies in

the data bases. However, it has a different sort of problem

which is Just as serious.
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Suppose again that the network is partitioned East-West.

Let M be an Eastern IMP which is on the border of the partition.

Let A, B, and C be three other Eastern IMPs which are connected

in a triangle, and let W be a Western IMP. Let mn be an update

from M which reports the partition. That is, the other Eastern

IMPs notice the partition as a result of processing M.

(Presumably m reports that the line between M and its Western

neighbor M' has gone down.) Let w be an update from W which

reached the Eastern segment of the network just before partition,

and let s(w) be its serial number. Now it is certainly possible

that mn gets to A before w does, and that w actually follows m

around the triangle. As update mn travels around the triangle,

IMPs A, B, and C will determine that W is unreachable, and will

set their tabled copies of W's most recent serial number to zero.

But as soon as they do this, they will receive update w. Since

zero is the canonical lowest serial number, s~w) > 0, so w always

looks like a recent update. I' is accepted and forwarded.

However, the next time A, B, or C does a routing computation,

they will again realize that W is unreachable, and reset their

copies of its most recent serial number to zero. Once they do

this, they no longer remember that they have seen w before. When

w comes around the loop again, it again looks like a recent

update (3(W) > 0), and is again accepted and forwarded. There is

nothing to stop this process, which may continue indefinitely.

In fact, w may still be traveling around when the partition ends.
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Once the partition is over, W will eventually send out another

update, w'. -This may result in w and w' being in the network at 1
the same time. If the partition lasted long enough for the

serial numbers to wrap around, then it is meaningless to compare

s(w') with 3(W). As a result', the IMPs may incorrectly believe w

to be more recent than w', and routing will be based on very old

and out-of-date information. Depending on the exact values Of

s(w) and s(W'), this problem may persist for a very long time,

causing extremely bad performance throughout the whole network

(for instance, if w' reports that one of W's lines has gone down,

lots Of traffic may be routed to a non-existent line).

We see from this that it is not enough to allow all updates

to be processed as soon after a partition as they are received.

In addition, we Must be able to ensure that if the partition has

lasted long enough for serial number wrap-around to have

occurred, then no pre-partition updates are still around. One

way of ensuring that updates do not stay around the system too

long is simply to time them out. When the last received update

from a given IMP becomes "too old", the next update from that IMP

is automatically accepted as more recent, no matter what serial

number it has. This would eliminate the problem of an old update

circulating around forever. That problem was caused by

artificially setting certain serial numbers to zero, a feature

which would no longer be required. And in the example above, by
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the time the partition ended, w would be "too old", so w' would

be automatically accepted as more recent when it is received.

The most accurate way to determine the age of an update

would be to maintain a globally synchronized clock. Each update

packet would carry the time of its creation at its source, as

well as a serial number. Then each IMP would know exactly how

long ago an update was generated, subject to the resolution of

the clock and possible inaccuracies of synchronization. (Note

that the clock-time could not be used instead of a serial number,

since it is hard to ensure that the clock time will increase

monotonically as each update is sent out.) Use of a globally

synchronized clock has several problems, however. One problem is

simply the difficulty of maintaining synchronization. But the

most serious problem is that of re-synchronizing after a

partition. When a partition forms, there is no way of ensuring

that the clocks in the two segments stay synchronized. If, when

the partition ends, updates flow between the two segments before

re-synchronization is established, the results are unpredictable.

So not only must there be a method of re-establishing sync, there

must also be some way for the IMPs to determine whether or not

sync has been re-established, so they know whether or not it is

safe to pass on updates. While such methods can no doubt be

developed, they add a significant amount of complexity to the

scheme. It is worthwhile then to investigate means of
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determining the age of an update which do not require globally

synchronized clocks.

Suppose IMP A transmits update a which is received at IMP B.

At any given time, the age of update a (as determined by B) can

be divided into two components - transit time and holding time.

Transit time is the time it took the update to travel from A to

B. Holding time is the time since it arrived at B. If we may

assume that, within a certain amount of time after an update is

initially created, its holding time at any given IMP will be very

much larger than its transit time to that IMP, then we may

neglect the transit time, and equate the update's age to its

holding time. But the holding time can be computed from a purely

local clock. No global synchronization is necessary at all.

In the ARPANET, network transit times are on the order of

100 milliseconds. We would not want to consider an update "too

old" unless it was at least a minute or so old (Justification for

this is given below). Within a minute after any update is

created, its holding time at any IMP would almost always dominate

its transit time to that IMP by so much that the transit time

could be neglected. There is only one exceptional case. That is

when an update has to be re-constructed and re-transmitted

because a line has come up. If A has held an update for 59

seconds before transmitting it to B, we do not want B to have to

wait yet another minute before regarding the update as too old. fl
The time the update was held at A must be figured in, somehow.
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This problem is resolved by having the update packets carry

around some indication of their age. Suppose we allocate a k-bit

field in each packet, and each IMP has a clock which ticks once

every t seconds. When an update is first generated, the "age

field" is loaded with 2 k-1. When an update is received, its age

field is stored, and decremented once each tick of the clock.

When a packet is re-transmitted, the current stored value of the

age field is placed in the packet. An update is considered "too

old" when its age field has been decremented to zero. This

scheme ensures that the age of an update as seen by a given IMP

is determined by the time it has been held in the given IMP, plus

the time it was held in any IMPs from which it was

re-transmitted. It must be realized though that this method of

computing the age of an update is subject to an error which is a

function of the coarseness of the resolution of the clock-tick.

These errors can accumulate if an update is re-transmitted many

times. For a given time-out period, the coarseness of the clock

resolution can be traded off against the number of bits in the

age-field. Optimum values must be determined by experimentation.

The use of a time-out scheme like the one just described

places several constraints on various parameters used by the

routing scheme. The constraints are:

a) It should be impossible for an update's serial number to

wrap around (i.e., to get half-way through the sequence number
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space) before the time-out period expires. After all, the whole

point is that old updates should get timed out before serial I
numbers can wrap around.

b) The time-out period should be somewhat longer than the

maximum period between updates from a single IMP. This prevents 1
good, recent updates from reachable IMPs from timing out.

Failure to meet this constraint may result in failure to transmit

a valid update when a partition ends. This in turn may result in

long-term data base inconsistencies.al

c) It should be impossible for an IMP to crash and be

restarted within the time-out interval. This ensures that all of

the IMP's old updates Will time out before any new updates are

sent.

41.3 Final Specification of Protocol

The following is a complete and precise specification of the

updating protocol to be used in the ARPANET. Particular values

of the parameters are chosen to meet the constraints described

above. No Claim is made that these choices Of parameter values

are optimal, but only that they seem safe enough for Use in the

initial implementation.
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1. Determining whether an update is acceptable

An update u from IMP I should be acceptable at IMP J if and

only if u was sent more recently from I than was the update from

I which J already has tabled. Acceptability will be determined

by the use of a three-bit age field and a 6-bit serial number

field. These 9 bits must be allocated both in the update packet

and in the IMP's tables (i.e., the tables must have 3 bits per

IMP for the age and 6 bits per IMP for the serial number.)

a) The age field

i) When an update packet is created, the age field in

the packet is set to a max value.

ii) When an update is received and accepted (i.e.,

judged acceptable), the age field of the packet is copied into

the tabled age field for that IMP.

iii) Each IMP will have a slow-ticking clock, which

ticks once every t seconds. This clock is local to each IMP and

is not synchronized with other IMPs. At each tick of the clock,

the tabled age field for each IMP is decremented, unless it is

already zero, in which case it shall not be further decremented.

iv) When an update is re-created from the tables in

order to retransmit it, the tabled age field is copied into the

packet age field. Updates with age 0 shall never be

re-transmitted.
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b) The serial number

Each IMP shall maintain a serial number for the

updates it originates. When the IMP is about to generate an

update, it increments the serial number by 1 (modulo 64) and

copies it into the packet. In order to determine which of two

serial numbers is more recent, the following algorithm will be

used.

Let n and m be two serial numbers. If n = m, then neither

is "more recent" than the other. Otherwize, suppose n > m. Then

n is "more recent" than m if an only if n - m < 32, and m is A
"more recent" than n if and only if n - m > 32.

c) Determining acceptability

Suppose IMP I has already accepted update u from IMP J, and

now receives update u' from J. The question is whether u' is

acceptable. There are several cases:

i) u has age 0, but u' has non-zero age. Then u' is

acceptable.

ii) u' has age 0. Then u' is not acceptable. This is

an error condition which should never occur.

iii) u and u' both have non-zero age. Then u' is

acceptable if and only if its serial number is more recent than

that of u.

100i
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d) Parameters

i) Clock ticks once every 8 seconds

ii) Maximum age =8

2. Transmission and acknowledgment

Suppose IMP i has k lines. Then i will have to maintain k

2-bit timers (one for each line) for each IMP j.

When a node receives an update from IMP .j it first checks to

see whether the RETRY bit is on. If so, it is turned off, and

the update packet is "echoed" back over the input line.

After this is done, or it the RETRY bit was not on, the IMP

must determine whether the update is acceptable. There are three

cases to consider:

a) The update is not acceptable because its serial number

is identical to the tabled serial number of the update last

accepted from IMP J (where both the age-field in the packet and

the tabled age-field are non-zero). The timer for IMP J

corresponding to the input line is set to zero. The packet is

discarded.

b) The update is not acceptable for some other reason (i.e.

serial number not recent enough, or age of zero). The packet is

discarded.

-101-



Report No. 39410 Bolt Beranek and Newman Inc.

c) The update is acceptable. Its age, serial number, and

delay informa-tion are copied into the tables. The timer for IMP

J corresponding to the input line is set to zero. The timers for

IMP J corresponding to the other lines are set to 3. The packet

is "flooded" over all the lines. Note that in the special case

where an update is first being transmitted from its source IMP,

there is no input line, and the RETRY bit is initially set off.

There is one more special case - if the packet has already been

sent over the input line because the RETRY bit was on, it need

not be sent again .

The timers for land-lines must be decremented every 25.6

Mns., and for satellite lines, once every 128 ins. When a timer

ticks down to zero, the update must be re-created and transmitted

over the line whose timer reached zero. The RETRY bit must be

turned on before the transmission proceeds, and the timer must be

set back to 3.

When a line comes up, all updates which do not have age zero

should be re-created and "Ire-transmitted" over that line, wllt

the RETRY bit on.

When an IMP crashes and is restarted, it must wait 90

seconds before coming back up. This ensures that any old updates

from that IMP have aged sufficiently so that the new updates will

be recognized as more recent.
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Each IMP must send an update at least often enough to ensure

that its most recent update does not appear to be too old (i.e.,

at least once per minute).
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5. ENHANCED MESSAGE ADDRESSING CAPABILITIES

How should one user of a network address messages to other

Users? The answer to this question is fundamental in defining

the appearance of the network to its users. For example, does

one user have to know exactly where the other is located, or just

the region of the network, or is the address Independent of

location? Can he identify himself to the network or does the

network know who he is automatically? If self-identification is

possible, can he have several addresses corresponding to several

roles or functions? Can he have multiple connections to the

network, and can he move from one location to another without

changing his address(es)? Can he send a single message to a

group or list of other users (e.g., a mailing list)

automatically? Can he set up "conference calls" with other

users, and join conferences in progress? Can he send a message

to all other users?

These questions are important for several reasons: some

addressing modes allow functions which would not be available

otherwise (e.g., the ability to send a message to a distribution

list without knowing the identity or location of the members of

the list), and which are essential for certain types of users

and applications. Furthermore, these addressing capabilities

offer opportunities for efficient implementations that would not

exist otherwise (e.g., a message addressed to a group can be
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transmitted with fewer packets than the equivalent separately

* addressed messages) .

We distinguish between the addressing mode, how the user

identifies the intended recipient(s) of a message, and the

addressing implementation, how the network processes the message.

The former is an interface between the user and the network; the

latter is a protocol within the network. It is also Useful to

distinguish between addressing, how the network selects the

destination(s) of the message, and routing, how the network

selects the path(s) over which the message travels.

Our investigations have led us to the conclusion that the

following three addressing methods would be valuable additions to

the ARPANET which now supports only physical addressing (as shown

in Figure 5-1a):

1. Logical addressing, in which a permanently assigned

logical address denotes one or more physical addresses

(see Figure 5-1b). The sender does not need to know the

physical location of the destination subscriber, and

subscribers can relocate without change of address.

bince one logical address can refer to several physical

addresses, subscribers can connect to the network by

multiple lines ("multiple homing"), increasing

reliability and traffic capacity (Figure 5-1c).
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PHYSICAL ADDRESSING
A Sends a Message To 0, Addressed To 3.2

(Node 3 ,Access Line 2)

LLi
- - -- - - to--1 

r



Report No. 39140 Bolt Beranek and Newman Inc.

LOGICAL ADDRESSING

A Sends Message To D Addressed As " D"

Figur 5-l MesgDdrsigMds- emnlg
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MULTIPLE HOMING

Subscribers D,E and F Are Multiply-Homed
Possible Traffic Flow From A to D Indicated

D Has Multiple Physical Addresses, One Logical Address
G, G1,G21 G3, Have One Physical Address, Multiple Logical
Addresses

A 4

Figure 5-1c Message Addressing Modes -- Terminology V
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2. Broadcast addressing, in which a message is addressed to

all other nodes or subscribers (see Figure 5-id). If

combined with an efficient implementation, this can

reduce network traffic significantly compared with

separately addressed messages.

3. Group addressing (Figure 5-1e) and multi-destination

addressing (Figure 5-1f), in which a message carries the

name of a list of addresses, or the list itself. When

implemented with an appropriate delivery strategy, this

also improves performance. It also facilitates

electronic mail, conferencing, and similar applications.

This section describes the implementation considerations

affecting the design of the three methods described above. The

treatment we present is general and serves as a foundation for

specific application to the ARPANET, which will take place in the

subsequent months. Where appropriate, of course, pertinent

comments are made regarding implementation in the ARPANET.

While there are many issues to be considered, we place the

emphasis on efficiency and reliability, since these are the

points that lead us to our design choices. If simplicity were

the main criterion, an all-purpose addressing mechanism with a

single implementation technique would be most desirable.

However, we conclude that a different implementation is required
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BROADCAST ADDRESSING
A Broadcasts a Message To All Nodes

A 11 -
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GROUP ADDRESSING

Subscriber A Sends To Group X C, EF)
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MULTI -DESTI NATION ADDRESSING

B2

Figre5-t esageAdresig ode - Trmnoog
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in each case to provide the best efficiency levels (to minimize

the traffic flowing in the network) and to ensure adequate

network reliability (to minimize loss of data due to errors or

network failures).

Virtual circuits (in which messages are handled as part of

connections analogous to telephone conversations) can support

very efficient logical addressing mechanisms because logical

addressing information needs to be sent only once per

conversation. On the other hand, datagrams (in which each

message is handled independently, like letters in the mail) are

less efficient for logical addressing and yet can support

broadcast and group addressing more readily because it is

unnecessary to set up a complex set of pair-wise conversations.

In fact, it may be so unwieldy to install a general

multi-destination addressing method for virtual circuit service,

due to the extensive control required for each circuit, that few

virtual circuit networks will offer this service. Since the

ARPANET supports both virtual circuits and datagrams, we will

consider the full range of addressing methods outlined above.
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5.1 Logical Addressing and Multiple Homing

A general logical addressing structure can translate many

physical addresses into a single logical address and one physical

address into many logical addresses. In a virtual circuit

network the logical address is translated by the source node once

per connection, permitting all messages in a given virtual

circuit to flow to a particular physical address. In a datagram

network, on the other hand, the addresses of messages are

translated one by one and messages can flow to any physical

address. The source node may perform the translation, or it may

leave the logical address untranslated in the message. In the

latter case, each intermediate node performs the translation

(without changing the logical address in the packet header)

before routing the message on the next line; this may result in

slightly better route selection. On the other hand, it does not

allow subscribers to refer to logical addresses as a part of a

group address (as explained in Section 5.3). In this report, we

will assume that the source node performs the translation to

permit the delivery mechanism for group addressing proposed in

Section 5.3. Logical addressing also permits multiple homing of

subscribers to network ports and the use of one network port for

the connection of several distinct subscribers. It is necessary

for the source subscriber to identify itself by means Of its J
logical address in the message header, as well as stipulating the
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destination logical address, if a completely general mapping is

desirable.

Physical addressing represents one end of the spectrum of

message addressing. One difficulty with this approach is that

changes in physical addresses must be announced to all

subscribers, with the inevitable operational problems such

changes entail. Logical addressing for every subscriber is at

the other end of the spectrum. In this case, the communications

network takes the responsibility for keeping track of the

location of each subscriber and translating the logical addresses

used by subscribers into physical addresses for internal data

routing. It is also possible to design hybrid approaches which

intermix physical and logical addressing.

5.1.1 Implementation Considerations

Logical addressing of subscr.Lbers requires some form of

"mapping table" for translation between logical and physical

addresses. These tables must be stored at one or more locations

in the network and updated when changes occur. The cost of

maintaining these tables depends on the size of the network and

the implementation of logical addressing selected. A number of

possible implementations are considered below and their costs

compared. We select among several possible locations for the

mapping tables: partial tables at each node, complete tables at
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each node, a distributed data base of tables at the nodes, and a

centralized table at one or several locations.

Physical and Logical Addressing. This is a hybrid approach

which may be useful when a network designed for physical

addressing only is modified to permit logical addressing. There

may be a transition period during which subscribers may use

either method, and there -may be a requirement to keep both

methods if certain subscribers do not implement logical

addressing. A subscriber uses either a physical or a logical

address for each message which it transmits to its node, and

identifies the type of address transmitted with an indicator in

the message header. Logical to physical address mapping is

performed at the source node for certain subscribers. The

mapping table consists of N entries giving node number and port

number, where N is the number of logically addressable

subscribers in the entire network. When N is relatively small

the cost of the table in terms of storage required is

insignificant.

One shortcoming of this hybrid approach is that it does not

solve the problem of physically addressed subscribers moving from

one port to another. Since many subscribers have to change ports

or nodes from time to time, there may be considerable operational

difficulty in keeping all subscribers informed about physical

addresses (a "telephone book" may have to be published
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regularly). The next two paragraphs suggest techniques for

permitting. all subscribers to use the logical addressing

capability.

Logical Addressing - Complete Mapping. The complete mapping

approach to providing a logical addressing capability for

subscribers extends the ideas above to include all subscribers.

The mapping table structure is the same, though its size is

considerably larger since there is one entry for each of the

subscribers. In the ARPANET, however, the IMPs do not have

sufficient memory for such a table.

Logical Addressing - Partitioned Mapping. A different

structure for the address table can be developed by taking

advantage of the fact that, for routing purposes, a source node

needs only the node information in the physical address, and the

destination node needs only the port information. Routing is

naturally partitioned into two stages; the mapping process can

be partitioned in a similar fashion. The mapping table at node X

can be divided into two tables, the first with K entries

containing node numbers, the second with M entries containing

port numbers, where K is the total number of logical addresses

except those addresses of subscribers connected to node X, and M

is the total number of logical addresses of subscribers connected

to node X. Multiply-homed subscribers would be associated with

one node at a time. The actual implementation of these two
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logical tables could be a single table with an entry for every

logical address containing a data field and a boolean variable to

distinguish node entries from port entries.

Logical Addressing - Information Service. This approach is

based on the existence of one or more information service centers

on the network. The center(s) would maintain the address mapping

information for the network subscribers and provide it to the

nodes upon demand. Under IBM's SNA, the System Services Control

Point (SSCP) provides such a function. This approach is probably

most useful for large networks in which there are a few large

central nodes and many smaller nodes with reduced capabilities.

Each smaller node might maintain a set of address transformations

used recently, together with those for its active connections and

perhaps some others, to avoid access to the service centers for

every message.

Relation to Multiple Homing. In many cases it is desirable

to connect subscribers to more than one netwo-k node to improve

reliability (and also to provide additional bandwidth over the

multiple paths if they can be used simultaneously). Several

connections to the same node can also be used. Any of the

logical addressing techniques can be used to support multiple

homing, provided that multiple entries are present in the address

translation table. There are three approaches to routing

messages over multiple access lines. The simplest approach is to
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use only one at a time. For datagram networks it is possible to

route each message to the "best" access line, e.g., the one which

minimizes delay. For virtual circuit networks an alternative

approach is to route entire virtual calls to one access line or

the other, independently selecting the access line for each

virtual circuit.

5.1.2 Efficiency Considerations

For a virtual circuit network, logical addressing can be

implemented by exchanging the appropriate mapping information

between the source and destination nodes as part of the

connection setup procedure. The result of this exchange is that

the source and destination nodes each remember the physical

address and logical address of the subscriber at the other end.

They can be used without reference to the address mapping table

for the duration of the logical connection; this is an efficiency

advantage not shared by datagram networks. Specifically, in a

virtual circuit net the packets flowing in the network can be

addressed with the physical address of the destination subscriber

only, and the message header for the destination subscriber can

be constructed at the destination node. This message header must

contain the logical address of both source and destination

subscribers. In a datagram net, the packet header must contain

both the logical address information for the subscribers and the

physical address information for network routing. Since the main
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address translation table is referenced only at call setup time

in the virtual circuit case, it may be practical to store the

logical to physical mapping table on secondary storage if

available. Thus it appears that virtual circuits, once

established, are more efficient for logical addressing than -

datagrams.

With respect to maintaining the address mapping table, the

alternatives are central vs. distributed and automatic (adaptive)

vs. manual updating. A distributed adaptive approach, similar in

concept to the ARPANET routing algorithm, is attractive. In this

method, each node is responsible for the subscribers connected to

it. When the set of subscribers connected to it changes, it

attempts to pass this information (automatically) to the other

switches in the network.

5.1.3 Reliability Considerations

The key difference between the network processing for

multiply-homed subscribers and for singly-homed subscribers is

that procedures must be defined for switching logical connections

from one line to another in case of a failure. Four cases Must

be distinguished. The dual-homed subscriber may be the source or

destination. In each case, the failure that necessitates

switchover may occur in the node or on the access line. T1'ese

four cases are explained below, where we define how failu'e is
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detected and what action is taken to re-establish the existing

logical connections via the alternate line.

Case 1 - Source node fails

The source subscriber can learn that switchover is required

by observing the flow of actual or artificial traffic exchanged

over its access line. It may have imperfect information

concerning the disposition of the messages it has sent into the

network. Subscriber level protocol should have sufficient

error-control capability so that missing or duplicate messages

can be detected.

Case 2 - Source access line fails

This Case could be treated exactly like Case 1; however,

since state information on all interrupted logical connections is

still available at the source node, a better plan of action is

possible. A special control mechanism can be added to the

network to permit the source node to forward all of its state

information on logical channels associated with the source

subscriber to another node to which the subscriber is connected.

The subscriber could then continue merely by retransmitting any

message that was unacknowledged when the access circuit failed.

Though subscriber level protocol must be prepared to deal with

Case 1, it may be more efficie~nt to deal with Case 2 at the

network level, making it invisible to the subscriber.
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Case 3 - Destination node fails or is inaccessible

The source node will learn that the destination node is I
unavailable via the network routing information. The source node 1
can decide to use the alternate address for the destination

subscriber. If copies of these messages are kept at the source

node, either the source node or the source subscriber can

initiate retransmission. The subscriber protocol must then be

prepared to handle duplicates.

Case 4 - Destination access line fails

The source subscriber can learn of the problem via a

"Destination Down" message in response to one of its data

messages. The source node can decide to Use the backup

destination access line; connection resynchronization is similar

to Case 3 except that additional state information about each

logical channel is available at the destination node. This

information may be sent to the source node (or possibly to the

new destination node, but that would be more complex) in order to

return to the source subscriber all acknowledgements queued at

the destination node. Message duplication is still a Possibility

and either the source node itself or the source subscriber might

actually effect the retransmission.
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5.1.4 Datagram Considerations

Routing each message independently to one access line or the

other satisfies the reliability objective and is attractive in

terms of the goal of providing flexible allocation of access line

bandwidth. However, there are costs associated with the more

complex routing and message processing required.

Routing. Each message is independently routed to one of the

access lines connecting the destination subscriber to the

network. The source subscriber or the source node can direct

each message to its destination; however, in neither case does

the source entity have information about the present or future

traffic over the access lines to the destination subscriber. To

eliminate these problems the network routing algorithm may be

designed to incorporate routing information concerning

multiply-homed subscribers so that each node knows its best route

to each multiply-homed subscriber. In other words, if a

subscriber has more than one access line, and if any message can

flow over any access line, then the access line selection can be

treated as a routing problem rather than an addressing problem.

The routing process must deal with choosing routes to nodes with

more than one line, so it can be augmented to deal with

multiply-homed subscribers as well. Note that the topology

tables required by the SPF algorithm might be greatly enlarged if

this technique is Used.
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Message Processing. By message processing we mean error

control, flow control and sequencing. Dynamically assigning

datagrams to access lines requires dual-homed subscribers to do

message processing themselves. Any attempt to use multiple

logical channels for a single logical data stream requires the

destination subscriber to be involved in reordering and related

functions. An error control mechanism is required to handle both

Missing and duplicate messages. Reordering at the destination

subscriber is required if either the destination subscriber or

the source subscriber is multiply-homed; sequence numbers can be

attached to messages by the source subscriber to allow the

messages to be identified and reordered by the destination

subscriber.

Switchover Management. Detection of a failure and

switchover are as described in Section 5.1.3. Since an alternate

logical connection from the source to the destination already

exists, the source subscriber needs to retransmit only those

messages whose disposition is unknown at the time of the failure.

5.1.5 Virtual Circuit Considerations

Associating all of the messages of a virtual circuit or

"conversation" with a single access circuit is a compromise which

not only provides high reliability and makes relatively efficient

Use of existing access circuit bandwidth, but also is well suited

to the logical addressing schemes described in Section 5.1.1.
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Routing. If a multiply-homed subscriber is connected to

airrerent nodes, the source node establishes a logical channel

for the entire conversation t) a destination node selected from

among alternatives in its logical-to-physical address mapping

table, based on current routing data. If a subscriber is

multiply-homed to a single node, only a single entry exists in

the mapping table at the source, and access circuit selection

occurs at the destination node. The destination node records

multiple port numbers for each of its multiply-homed subscribers

in its address mapping table and selects one when the "call

request" message associated with the conversation is received.

The structure of the address mapping table must permit multiple

nodes and ports for a given address in order to implement this

scheme.

Message Processing and Switchover. As in Section 5.1.3, no

message processing functions are required of the subscribers.

The method of detecting that logical channels need to be switched

from one access line to another and the procedure for effecting

the resynchronization are also identical to the methods and

procedures described above.

5.2 Broadcast Addressing

Broadcast addressing means the capability for one node to

send a message to all other nodes by marking it with the address
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"ALL" rather than by sending separate messages to each node.

This topic has not yet received much attention. Dalal1s 1977 j
dissertation, "Broadcast Protocols in Packet-Switched Computer

Networks" [5-1J, discusses the design and analysis of broadcast

routing algorithms for use in packet-switched computer networks.

Five alternatives are considered in terms of qualitative

implementation and quantitative performance. The SPF algorithm,

as well as many other internal network algorithms and subscriber -

applications, requires an identical data base at all nodes. For

instance, the logical addressing algorithms discussed above

assumed an identical address translation table at each node.

Although broadcast addressing can be used for the propagation of

routing information throughout the network to all nodes, for a

number of' reasons we have discarded this approach, as explained

in Section 4. In general, though, broadcast techniques can be

used to maintain a common, distributed data base, so we will

sometimes refer to the broadcast messages as "updates" in the

discussion below.

t>.2. 1 Implementation Considerations

There are two general types of approaches to the problem of

transmitting a message to all possible addresses: to route it

once to each node (termed "broadcasting" here), or to send a copy

over each network line (termed "flooding"). Flooding may be

simpler to implement, but the nodes receive multiple copies of

the message.
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Broadcasting is a system in which the source explicitly

addresses the message to all nodes, by labelling one or more

copies with the appropriate addresses for each of its output

lines, and routing them to each node along the best path (see

Figure 5-2a). Such a scheme can require as little as N-i packet

hops for the broadcast, which is optimal (N is the number of

nodes in the network). Each broadcast address is represented as

an N-bit vector, each bit indicating whether the message should

be sent to the corresponding node. The N bits are needed to

indicate which nodes have received the message so far and which

nodes have not; bits are turned off as the message flows through

the network. The source of the message sets the address of the

message transmitted on each of its lines to have bits

corretdonding to those nodes for which that line is the best

route. Other nodes receiving such messages turn off their bit

and then perform the following operation on the resulting

address: for each adjacent node, take the logical AND of the

received address and the bit vector of nodes for which the

adjacent node is the best route. If non zero, send a message

with rne resulting ANDed address to that adjacent node.

broadcasting is the basis for sending a message to multiple

destinations, as described in Section 5.3. However, in the

special case of addressing all nodes, the next method may be

preferable.
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BROADCASTING

6

to..

Figure 5-2a Broadcasting and Flooding
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Flooding, as discussed in Section 4, is a method in which

each node sends each "new" update on all its lines except the

line on which the update was received (see Figure 5-2b). A new

update is one the node has not seen before. This requires L-N+I

packet hops (where L is the number of lines in the net, counting

each direction separately), since an update will flow on all

lines except "backwards" on the N-i lines of the broadcast tree

from the source. If we define L=cN- where c=average node

connectivity, then this number of updates is cN- (N-i) (c-1)N

+1.
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FLOODING

Sequence Of Message Flow Indicated by Numbers
(I Before 2, Before 2', Before 5, Before 3', Before 4)
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5.3 Group Addressing and Multi-Destination Addressing

For reasons of convenience and efficiency, it is desirable

to provide a facility for addressing messages with the name of a

group of addresses (logical and physical addresses, singly-homed

and multiply-homed subscribers). Such a group may correspond to

an on-going conference call or distributed working group of some

kind, or it may be a simple distribution list for certain

messages. In addition to such pre-established group addresses,

it may also be useful to provide a general capability for

addressing messages to a list of subscribers. This

multi-destination addressing can cut down on network traffic and

subscriber overhead by substituting a single transmission for

several separately-addressed messages (see Figure 5-3).

!).3. 1 Implementation Considerations

In a virtual circuit net, group addressing and

multi-destination addressing are unwieldy -- both inefficien~t

and difficult to control. The two basic alternatives are to set

up (a)*(a) virtual circuits when a addresses are present in the

group, or to modify the packet header to permit multiple message

numbers, acknowledgments and allocations to flow over the same

multi-destination virtual circuit. Both methods appear to be so

complex that it is difficult to justify their implementation.

For a datagram with many addresses the problem is simply to route

the datagram efficiently to the destinations.
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GROUP ADDRESSING AND MULTI-DESTINATION
ADDRESSING jJ

Subscriber A Sends a Message to C,E and F

4 Packet-Hops Required (Instead of 6 Packet-Hops For
Separately -Addressed Messages)

7-

to C,E "

to F

Figure 5-3 Group Addressing and Multi-Destination Addressing
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The issues of formatting packets and messages with logical

addresses and multi-destination addresses deserve some

consideration. Group addressing is simpler to implement in the

network since it requires a relatively small change to the

subscriber software--the group address replaces' the usual

physical or logical address. On the other hand,

multi-destination addressing is more flexible and useful to the

subscribers but requires a fairly major change in the

subscriber-to-network format, since a new variable-length address

format is needed. Careful attention must also be given to the

interaction between logical addressing and group addressing,

since group addressing in general should permit reference to

logical as well as physical addresses. As an example of this

interaction, if a group address refers to several logical

addresses as well as physical addresses, then the translation of

logical to physical addresses must take place at the source node.

5.3.2 Efficiency Considerations

In the First Semiannual Technical Report, we showed that the

use of multi-addressed packets can result in a significant

packet-hop savings over the scheme of sending a separate packet

to each destination, even if multi-addressed packets are routed

according to the same algorithm as singly-addressed packets.

Although multiple addressing yields a significant improvement

over sending a separate packet to each destination, it may not
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result in the minimum number of packet-hops. To get the minimum

number of packet-hops, it is necessary to route the

multi-addressed packets along a minimum spanning tree containing

the source and destinations. While this would, by definition,

result in the least number of packet-hops, it would not

necessarily contain the shortest path from the source to each

destination. This can be seen by considering the 8-node network

shown in Fig. 5-41. The solid lines represent links which are on

the shortest-path tree of node 1. The dotted lines represent

links which are not on the shortest-path tree. The arrows show

how a multi-addressed packet from node 1 to nodes 7 and 8 reaches

its destination under (I) ordinary routing, and (II) minimum

spanning tree routing. We see that the shortest path from 1 to 7

diverges at node 2 from the shortest path from 1 to 8.

Therefore, if ordinary routing is used, the packet must be

duplicated at node 2, for a total of 7 packet-hops. On the other

hand, if the packet is routed along the minimum spanning tree

which contains nodes 1, 7, and 8, it need never be duplicated,

and 5 packet-hops is all that are required. However, when routed

along the minimal spanning tree, the packet must travel the link

from 7 to 8, which is not on node 1's shortest path tree. That

is, the packet does not travel the shortest distance from node 1

to node 7.
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. Multiple Ad&e*.ing with &'dinary Routing 7 Pa.ket-hp

4

I!. With Minial-S*ain,-Tr". Routing 5 Paket-hop

4E5 8

Figure 5-14 Multi-Address Routing --

Shortest Path vs. Minimum Spanning Tree
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In order to determine how great a savings can be obtained by

routing along a minimum spanning tree relative to routing via the

shortest path tree, a RATFOR program to compute the spanning tree

has been implemented on TENEX. The task of the program is the

following: given a network, and a subset of nodes (call them the

addressable nodes), create the tree which spans the addressable

nodes in the least number of hops. Note that this tree is not

necessarily included in a minimum spanning tree for the network

as a whole.

The algorithm used to create the spanning tree is the

following:

1. With all arc-lengths equal to 1, create the SPF tree for

each addressable node.

2. Reduce these SPF trees by collapsing all chains of

non-addressable nodes into single arcs. The length of

one of these new arcs is equal to the sum of the lengths

of all the arcs that make it up.

3. Form the base network by taking the union of all these

reduced SPF trees (i.e., the base network is the

network containing all and only the addressable nodes,

as well as all and only the arcs which appear in the

reduced SPF trees). Note that the base network contains

the shortest path between each pair of addressable

nodes.
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4. Remove the shortest arc from the base network.

5. If placing that arc in the minimal spanning tree would

result in a circuit, go to 4.

6. Place the arc in the minimal spanning tree.

7. If the spanning tree is complete, STOP.

8. If the arc is really a chain of non-addressable nodes,

then

a. Make the nodes in the chain addressable.

b. Replace the arc in the spanning tree with the chain

of newly addressable nodes.

c. Create the SPF tree for each of the newly

addressable nodes, as in (1) above.

d. Reduce each of these SPF trees as in (2) above.

e. Create a new base network by forming the union of

the current base network with the new reduced SPF

trees, as in (3) above.

9. Go to 4.

This algorithm is expensive in terms of computation. In

order to tell whether putting a particular arc in the spanning

tree would result in a circuit, an NxN boolean reachability

matrix is maintained. Whenever an arc is added to the spanning

.ree, the endpoints of the arc are marked reachable from each
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other, and everything which is already reachable from one of the

endpoints is marked reachable from the other. As currently

implemented, therefore, the task of maintaining the reachability

matrix is quadratic in N, and hence can dominate the computation

for large networks. (It does, in fact, dominate the computation j
for the ARPANET.)

In order to be able to select the shortest arc from the base

network, it is necessary to sort the arcs each time a new base

network is created. The time required for this sort increases

more than linearly with the number of arcs in the base network.

The number of times a new base network has to be created is

inversely related to the connectivity of the whole network. The

task of reducing an SPF tree is inversely related to the

connectivity of the network and directly related to the number of

nodes in the network.

Following are some results for different networks. The

network NcC is an n-node network of uniform connectivity c;

RING27 is a 27-node ring network. Each figure is the average for

500 runs in which sources and destinations were chosen at random.

The results show that the expected percentage savings offered by

using the minimum spanning tree are small. Neverless, the

absolute savings might be great, and we therefore discuss below

some implications of this technique.
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Network # of Destinations # of Packet-Hops
Ordinary routing Minimum Spanning
with multi- Tree
addressed packets

N8C3 1 1.81 1.81
2 3.08 2.81

3 4.24 3.71
4 5.08 4.40

5 5.82 5.17
6 6.47 6.00

N8C4 1 1.44 1.44
2 2.66 2.42
3 3.79 3.19
4 4.68 4.00

5 5.52 5.00
6 6.31 6.00

N8C5 1 1.31 1.31
2 2.42 2.14
3 3.43 3.02
4 4.40 4.00

5 5.30 5.00
6 6.13 6.00

N22C3 1 3.18 3.18
2 5.70 5.07
3 7.76 6.68
4 9.35 7.73
5 10.56 8.72
6 11.92 9.70

RING27 1 6.88 6.88
2 11.72 10.91

3 14.71 13.30
4 17.21 15.26

5 19.09 16.90
6 20.35 17.72

ARPANET 1 5.58 5.58

topology 2 9.66 8.82

of 6 3 13.07 11.46

months 4 15.98 13.b6

ago 5 18.58 15.80
6 20.58 17.27

Recent 1 5.65 5.65

ARPANET 2 9.92 9.07
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Topology 3 13.20 11.53
4 16.28 13.88
5 18.89 15.89
6 20.96 17.54

-140-



Report No. 3940O Bolt Beranek and Newman Inc.

A major difference between the minimum spanning tree scheme

and a multi-addressing scheme which uses the network's ordinary

routing has to do with the packet forwarding procedures. If

ordinary routing is used, a multiply addressed packet would

always travel along the branches of a shortest path tree.

Therefore, each node could decide on its own where to forward

such a packet, by using its standard routing tables. However,

the minimum spanning tree for a given group of nodes may not be

coincident with the shortest path tree of any node. Therefore,

if* multi-destination routing is to be done via a minimum spanning

tree, the entire tree will have to be pre-specified by the source

node, and a coded representation of the tree will have to be

carried in the packet. Intermediate nodes would route the packet

according to the pre-specified tree, rather than according to the

standard routing tables. Although a single path between two

points can be represented in a relatively concise manner,

representing an entire tree is more difficult, and can be

expected to result in a significant amount of overhead in each

packet. This large amount of overhead must be taken into account

in judging the feasibility and desirability of implementing a

minimum spanning tree routing scheme.

Apart from the inefficiency arising from this additional

overhead, there is a further inefficiency involved in performing

the computation itself. Since the minimum spanning tree
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calculation takes much longer than an ordinary SPF calculation,

it is not practical to perform the calculation for every

multi-destination packet which enters the net. However, if it is

known that a conference among n particular nodes is about to

begin, and that it will last for a length of time, then the

minimum spanning tree can be computed once and used for the

entire duration of the conference. It would only have to be

re-computed when a line in the tree fails. (Of course, some

protocol would have to be developed to handle the packets which

are already in transmission when the failure occurs.) This

implies that minimum-spanning-tree routing is less suitable for

communication which takes place in pure datagram mode than for

more virtual circuit oriented communication. On the other hand,

using multi-destination addressing with virtual circuit traffic

gives rise to the serious control and protocol problems alluded

to in Sec. 5.3.1. These problems would have to be resolved

before a minimal-spanning-tree routing scheme could be

implemented.

5.3.3 Reliability Considerations

Since we have assumed that group addressing and

multi-destination addressing are not practical for virtual

circuit service, and should be implemented only for datagrams,

the subscribers using these services must take responsibility for

providing reliable transmission for the end users. A host-level
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protocol is necessary between the sending subscriber and each

receiver to ensure an error-free, sequenced flow of messages

between each pair of subscribers.

5.4 Conclusions

The enhanced message addressing modes discussed above have

several important advantages over physical addressing. Logical

addressing provides for considerable operational flexibility and

reliability. The use of multi-destination and group addressing

has been shown to lead to significant reduction in network

traffic, even for the case of relatively few destinations per

message. One of the important conclusions from this work is that

while virtual circuit networks have some efficiency advantages

over datagram networks for logical addressing, datagram networks

facilitate the use of broadcast addressing and multi-destination

addressing. These important points of comparison have not yet

been fully considered by the network design community.
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6. INTERACTIONS BETWEEN ROUTING AND CONGESTION CONTROL

This section presents only our preliminary thinking on the

difficult subject of interactions between routing and congestionj

control. During the coming months, we hope to pursue further the

questions discussed below.

6.1 Introduction

This section explores some of the inter-relationships

between routing and congestion control in the ARPANET, and in

computer networks in general. Routing can be defined as the

process of picking the best paths for traffic flow in the

network. Congestion control can be defined as avoiding

conditions which lead to traffic being refused at one IMP and

backing up throughout the network.

One important starting point in any discussion about routing

and congestion control is the set of assumptions one makes about

the computer network. We assume that the communications links in

the network may run at different speeds and the IMPs may be of

different sizes, both in terms of memory capacity and processing

power. We also assume that this heterogeneity implies that some

IMPs may be (temporarily or permanently) underconfigured, that

is, they may not possess enough memory or CPU capability to

process all of the traffic that may flow in on their circuits

during a peak traffic period.
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This assumption is realistic for several reasons. First of

all, it may be uneconomical to configure the switching IMPs to be

able to process a continuous Stream of very short packets flowing

in on all of the circuits simultaneously. Second, the IMP may

suffer a partial failure of its processing or memory power

(especially if it is a multiprocessor) and run in a degraded

configuration for some period of time. Third, the network may

change from time to time as higher speed circuits are introduced

or circuits are remnved and added. Finally, network growth, in

traffic or in size, may result in unanticipated overloads. These

changes may not coincide exactly with retrofits to the computer

equipment at the IMPs. There may be times when an IMP will have

a very high speed line on one side and a slower speed line on the

other, or a computer configuration intended for a somewhat slower

set of circuits.

Several distinctions can be made between routing and

congestion control. Routing is inherently a macroscopic process;

that is, it should deal with average trends in traffic flow,

since it is not appropriate to change the routing strategy used

in a network to deal with momentary (second-by-second) traffic

fluctuations. For this reason, the routing procedure is best

performed by some form of global algorithm which has information

about conditions throughout the entire network. Congestion

control, on the other hand, is inherently a microscopic process,
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since it should deal with the variance in traffic flows, often in

a small section of the network, in addition to the average or

expected traffic flow. Congestion is caused when the computer

processing power, memory storage, or line bandwidth available at

a particular IMP is not adequate to deal with the traffic flow

entering that IMP. Thus, congestion control is inherently local

in nature, since it must deal with moment-to-moment fluctuations

which may be visible only at the local level. This is not to

say, of course, that a more global algorithm should not be

constructed in addition to this local control (for instance, to

detect a global traffic overload).

Routing and congestion control constitute a natural system

of checks and balances within the network, such as Must be found

in any successful computer System. On the one hand, routing is

designed to provide the best possible level of service by the

subnetwork to the subscribers (e.g., minimum delay). On the

other hand, congestion control is designed to protect the

subnetwork from traffic overloads and congestion leading to poor

performance, which might be brought on by the behavior of the

subscribers (as well as by other factors). Routing operates

continuously to identify which path(s) traffic should use;

congestion control operates during overload to identify which

subset of the traffic should Use those paths. We assume that

there is also a flow control mechanism to regulate

source-destination flows to the rate of the slower end.
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6.2 Routing Algorithms

One basic premise of network operations is that it is

necessary to make the most efficient possible use of the

available bandwidth of the circuits. Routing algorithms have

therefore been designed to avoid congestion, i.e., cases in

which the input traffic mix and the output trunk rate at an IMF

are not matched. There are two cases to consider: a momentary

mismatch and a prolonged inequality. The factors involved in the

relationship between input and output rates are, on the one hand,

the arrival and departure rate of packets, and, on the other, the

bit rate of the circuits, their error rates and failure

characteristics. The. situation with a single input line and a

single output line is simple: either the output line is

underutilized or it is oversubscribed. In the second case, the

congestion control mechanism must prevent the whole network from

filling up with packets for the oversubscribed line. An IMP with

multiple output lines must have additional mechanisms to ensure

that each output line has the highest possible effective

throughput (i.e., that the lines are not all reduced to the

effective rate of the slowest). Figure 6-1 shows the situation

in a very simple case.

The input traffic shown is in the ratio of 2 packets for IMP

3 for every 1 for IMP 2. If we assume that all the trunks have

the same capacity and a zero error rate, this is just an example
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Figure 6-1 A Switch with Multiple Output Trunks

of underutilized output lines -- utilized at 2/3 and 1/3 the rate

of the input line. However, if we assume that the other two

lines both have 1/2 the capacity of the input line (or effective

capacity, due to the presence of other traffic, line errors,

etc.), then the line from IMP 1 to IMP 3 will be oversubscribed,

while the line from IMP 1 to IMP 2 will run partially empty.

This inefficiency is due to the fact that the input traffic mix

does not correspond to the output line capacities. Clearly, the

desired solution in this case is to arrange for the traffic to be

equally balanced between destinations 2 and 3. This may not

always be possible, due to input fluctuations. Traffic flowing

between IMPs should be selected in such a way that there are no
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artificial bottlenecks or underutilized lines. The traffic must

be "metered" so that it is matched closely to the capacity of the

network trunks.

Whenever the traffic arriving at an IMP is such that the IMP

is not able to assign it to output lines without some queueing,

then a certain amount of buffering is necessary. In a short time

the IMP's buffers will fill up and any further input traffic must

be rejected. Thereafter this IMP will accept the first packet

which arrives after a buffer has been emptied. If we assume that

several traffic streams are competing for the buffers, and that

all traffic is backed up and therefore is competing equally for

line bandwidth, then the packet that is accepted is chosen at

random from the incoming traffic streams. The effect is that

traffic flows at the rate of the slowest output line (each

individual flow is proportional to the fraction of input traffic

it represents times the speed of the slowest output line). One

cannot circumvent this problem by dedicating buffers to each

output line, because the problem exists in the general case for

topologies in which the blocked traffic flows over an additional

line before the block occurs, as shown in Figure 6-2. Even an

IMP with only one output line must make the decision to accept

the other traffic but hold off the blocked traffic; the problem

is to quench according to destination IMP, not according to

output line.
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INCOMING PACKETS .

Figure 6-2 Blocked and Unblocked Traffic on the Same Trunk

Note that if the line between IMPs 3 and 4 in Figure 6-2

goes down,-there is a buffering problem analogous to that caused

by packet congestion. At the moment that the line fails, there

will generally be some number of packets queued at IMP 3 waiting

to be sent. In the time immediately following the failure, more

packets will arrive and be routed on to the line. The IMP cannot

declare the trunk to be "dead" (unusable for packet traffic)

until some finite amount of time has passed, say 3 seconds, to

differentiate a true failure from a momentary outage. During

those 3 seconds the IMP may fill up with traffic for the failed

trunk, to the point that further packets cannot be accepted. At

this stage all other output lines at that IMP are completely

150 "



Report No. 3940O Bolt Beranek and Newman Inc.

blocked. That is, for some period of time all lines are reduced

to the effective rate of the slowest, which in this particular

case is zero.

In order to be able to operate the ARPANET at high traffic

levels, it is necessary to install controls which will guarantee

the following:

1. On a long-term basis (minutes): overall network traffic

is within overall network line capacities -- excess

traffic is kept outside the network;

2. On a medium-term basis (many seconds): traffic on each

line is metered so that no network line is

oversubscribed -- excess traffic is kept outside the

IMP;

3. On a short-term basis (few seconds): problems of

suboptimal line use are left to the buffering mechanism

-excess traffic is kept inside the IMP.

The reason for the time scales above is the size of the

storage at each IMP, the magnitude of the traffic flows in the

network, and network delays. One method for providing both the

medium and long term solutions is a routing algorithm which

explicitly allocates line bandwidth to traffic flows to given

destination IMPs. Such an algorithm can be constructed to route

packets so as to maximize the effective bandwidth of the network,
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ii
and, as a by-product, to allocate the use of this bandwidth among

competing streams. Unfortunately, the design and implementation U
of such an algorithm is not possible within the scope of the '"

present contract. For this reason, we must consider explicit

congestion control techniques.
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6.3 Congestion Control Algorithms

The following principles can be put forward as basic design

goals for any congestion control algorithm:

1. The congestion avoidance mechanisms should be quick to

take effect.

2. The control of congestion should be smooth; that is, it

should be an incremental rather than a simple "on/off"

procedure.

3. The congestion control procedures should require a low

level of overhead in the network, preferably a constant

level rather than more overhead as traffic load grows.

4. Congestion control should take effect in a manner

consistent with traffic precedence classes; that is,

lower priority Lraffic should be refused before higher

priority traffic. Also, within a particular precedence

class, all traffic should be treated fairly.

These are goals which any congestion control procedure

shares in common with the routing algorithm for the network.

6.3.1 Storage Allocation Methods

We next discuss the limitations of the techniques outlined

above, a,,d the need for augmenting them with local,

packet-by-packet control techniques. The remaining problems can

be stated as follows:
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1. There is never "enough" buffering to handle extreme

cases of line errors or failures, or traffic

fluctuations;

2. There is no such thing as "perfect" routing, due to

inaccuracies in measurement, finite time delays, and

unpredictable events such as traffic surges and line

errors.

One way to view the congestion control problem is that a

successful congestion control strategy matches the incoming

traffic to the traffic handling capacity of the network.

Specifically, the following three correspondences must be made:

1. Input traffic rate must be less than output line rate.

2. Input traffic rate must be less than IMP processing

rate.

3. Input traffic variance must be less than nodal storage

capacity to hold fluctuating traffic.

Like many network flow control systems, congestion control

has been thought of as a storage-based mechanism. (We examine

this assumption critically in section 6.3.1.) Figure 6-3 shows

four possibilities for the location of controlling storage for

network packets, which dictates how the flow control system

operates in each case:
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SOURCE DESTINATION

1. DISCARDABLE Q-Q-.- -Q- 0---
SOURCE BUFFERS, RETRANSMITS IF ANY SWITCH DISCARDS

ADJACENT SWITCH BUFFERS, RETRANSMITS IF DESTINATION REFUSES

3. ALLOCATED

BUFFER ALLOCATED AT DESTINATION (WHILE PACKET HELD
AT ADJACENT SWITCH)

4. GUARANTEED 

0

PACKETS BUFFERED ON SECONDARY STORAGE DURING CONGESTION

jXz LOCATION OF BUFFERINGI

Figure 6-3 Four Possible Switch-to-Switch Flow Control Systems
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1. Discardable. In this approach, the source IMP holds a

copy of every packet sent into the network and this copy is used

for IMP to IMP flow control. Whenever any intermediate IMP

encounters a congested state (e.g., finds that it has no

buffering for an incoming packet) , it is able to discard the

packet, since the source can retransmit a copy.

2. Refusable. This approach is similar to the first, but

the copy is held at the adjacent IMP. Instead of discarding the

packet, the intermediate IMP refuses it from its neighbor. The

neighbor later retransmits the packet. This is the scheme in use

at present, with a limit of 32 refusal/retransmission cycles; the

packet is then discarded (it is not retransmitted from the source

IMP, but is dropped entirely).

3. Allocated. This scheme is based on the concept of

acquiring a buffer at the next IMP before the packet is sent

along. Since the packet must be held at the first IMP until the

next buffer is allocated, this technique tends to use more

storage than the refusable method. This can be generalized to

the concept of pre-allocating buffer space along the entire path.

4. Guaranteed. A different kind of solution to the problem

of network congestion is to provide an amount of buffering which

is essentially infinite, probably secondary storage of some kind,

in order to hold packets at moments of congestion. The routing
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in the network would still be responsible for holding traffic

levels to the point that the disk storage would be necessary only

a small fraction of the time.

What are the advantages and disadvantages of these

approaches?

1. Discardable. One advantage of this technique is that it

provides a way of dissipatirg congestion completely, removing all

blocked packets from the area of congestion. This eliminates the

possibility of the congestion backing up and causing a more

global problem, or even a deadlock. Two specific problems are

possible in this regard: direct and indirect store-and-forward

lockups. A direct store-and-forward lockup is possible when two

IMPs send packets to each other at a high rate. The lockup

occurs when each IMP fills up all its buffers with packets for

the other, and has no more storage in which to accept incoming

packets. We installed a simple solution to this many years ago

in the ARPANET: some buffers are permanently assigned to input

and output on each trunk.

Indirect store-and-forward lockup is much less likely to

occur, and much more difficult to prevent or correct. Indirect

store-and-forward lockup occurs when each IMP is filled with

packets destined for some other IMP in the network, but no IMPs

have packets destined for adjacent IMPs. A mechanism for dealing
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with this problem was designed for the ARPANET in 1971 but was

never put into practice because of its complexity and expense,

and the low probability of indirect store-and-forward lockup.

The reason to make note of this problem is that the "discard"

approach to congestion eliminates all such storage-based

deadlocks since congestion does not back up.

If the discardable approach is used for congestion control,

then a threshold must be defined beyond which incoming packets

are discarded. The threshold is probably best designed as a

combination of several factors:

1. A maximum number of packets per output line.

2. A maximum number of packets in total per IMP.

3. A maximum number of packets over an entire network path.

J4. A maximum number of packets in total in the entire

network.

No single one of these thresholds is sufficient, since congestion

can be formed if any of the thresholds are violated, and since

only one of the thresholds may be violated during a period of

congestion. When viewed in this perspective the distinction

between local control (e.g. discarding) and end-to-end control

(e.g. complete allocation) seems somewhat artificial. Congestion

control needs to be exercised at every point in the network at

which congestion can take place. Some resources are local to a
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particular IMP (e.g., the number of buffers that can be allocated

to a particular output line), and therefore control is necessary

at that point. Other resources (e.g., storage for virtual

circuits) may be dedicated to a particular source or destination

path, and congestion control is equally necessary at that point.

There are some important disadvantages of this scheme,

primarily related to performance. If the source IMP must

retransmit the packet, then it uses twice as much network trunk

bandwidth as usual. Compared to the refusable method, discarding

uses up trunk bandwidth on all circuits to the point of the

congestion, instead of only on the congested line. As a

consequence, it requires more storage as well, due to the longer

delay before receiving the end-to-end ACK. Further, there is the

question of retransmission timeout; the source IMP must determine

when to retransmit its copy, and there is an obvious tradeoff

here. Retransmitting too soon may be unnecessary, because the

packet may still be in transit; retransmitting too late causes

inordinately long delivery delays. Even if the source knows that

the packet has encountered blocking and has been discarded (via a

"discarded" reply message), it may not be desirable to retransmit

right away, since the congestion may persist, and the packet

should not reenter the congested area immediately. This problem

can be a2leviated somewhat if the IMP which discards the packet

sends a small notification packet to the source, which then
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chooses how long to wait before retransmission. The source can

even adopt a set of rules that governs the wait time as a

function of discard rate. This method has the disadvantage of

requiring more overhead as congestion grows. We note again that

discarding is intended to be a stop-gap solution only; routing

should handle the problem of network congestion on a long-term

basis, and discarding should be a rare event.

2. Refusable. The main advantage of the refusable approach

over discarding packets is that the control of traffic flow is

local to the problem, so that the response can be more rapid and

more precise. The refusal of packets can be implicit (no ACK

returned) or explicit (NAK returned), and the sending IMP can

react quickly to the problem and retry or send other traffic and

then retry. The problems mentioned above for the discardable

method, especially the inefficiency of retransmission and the

difficulty in setting the timeout value, hold true for refusable

control also. However, the problems may be simpler since

retransmission is local, and there is less variability in timing.

On the other hand, traffic is allowed to back up through the

network, which may lead directly to more congestion.

3. Allocated. This approach does not appear to have any

advantage over the first two, since it is still necessary to hold

a copy of the packet at one IMP until a buffer is reserved at the

next IMP. While this kind of technique is useful for source to
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destination protocol, it does not seem appropriate for

datagram-style IMP-to-IMP protocols. Virtual circuit networks

like Tymnet have used it with apparent success.

4. Guaranteed. The last approach, having a semi-infinite

amount of storage in which to buffer blocked packets, would be

attractive if the IMPs had disks for some other functions. Since

the secondary storage would be essentially free in that case,

guaranteed buffering would provide a way of eliminating all

storage deadlocks just as the discardable approach does, but

without any of its attendant performance drawbacks. It also

leaves control at the IMP which is local to the congestion and

best able to react to it, as the refusable method does. However,

this is not a realistic option for the ARPANET.

6.3.2 Storage Allocation--The Assumption Questioned

We next examine the conventional assumption we have been

using, that congestion control can be modeled as a storage

allocation problem. Several ideas have been put forward in

support of this model:

1. If all IMPs had infinite storage capacity there would be

no congestion control problem.

2. All congestion sooner or later causes the storage at an

IMP to fill with packets.
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3. There are only two mechanisms which can be used to

accomplish traffic control: reserving buffers in

advance (storage at the receiver) and discarding packets

which cannot be accepted (storage at the sender).

In addressing the first point, a very important technical

assumption is whether the IMP is capable of accepting all the

incoming packets and storing them in memory. This point is

related to, but not the same as, the assumption that the IMPs

have enough processing power to complete the processing for each

of the incoming packets. The distinction here is between the

capability of the IMP to store each packet in memory as it

arrives (termed "responsiveness") and the capability of the IMP

to forward each packet on some output line (termed "throughput").

The reason this distinction is important for congestion control

is that an IMP with infinite responsiveness and infinite storage

capability can avoid congestion control problems for an

arbitrarily long period of time (traffic will not back up), even

if it does not have the processing capability to be able to deal

with traffic surges. On the other hand, an IMP with very limited

responsiveness and memory capability will be susceptible to

traffic congestion in a computer network with traffic rates that

fluctuate from moment to moment even if it has enough processing

capability to be able to deal with the average traffic flow. The

only realistic assumption to make is that the IMP has limited
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responsiveness (it may "miss interrupts", and thereby lose

incoming traffic) and limited throughput (it may fall farther and

farther behind in its store-and-forward function). Both factors

can lead to congestion.

To summarize, an IMP needs both infinite storage capability

and infinite responsiveness in order to be able to copy each of

the incoming data packets into memory and prepare for the next

input. Furthermore, it is not sufficient simply to store away

all the incoming packets in memory, since the traffic flowing

into an IMP may consist of data packets at several different

priority levels as well as various kinds of control information,

including routing and congestion control data. Therefore, the

IMP must have enough capability to be able to deal with all of

the control information flowing into the IMP as well as storing

the data flowing into the IMP. If we ignore these points and

assume that IMPs are endowed with infinite storage, then we can

consider the computer network as an ideal message switching

system (as Opposed to a packet switching system) in which traffic

flows from the source through intermediate IMPs, where it is

buffered, until it reaches the destination. At each step of the

way the entire data message can be stored. Congestion control

is not a problem since each link trensmission is independent.

The entire data transmission is reduced to the rate of the

slowest intermediate link (or to the rate of the source or the

destination if either is the slowest element).
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When we relax the assumptions about an ideal message

switching system in order to model the network as a real packet

switching system, does the conclusion that congestion control is

really a storage allocation problem still hold true? The second

point raised at the beginning of this section is that any of the

several causes of congestion, namely, limited CPU processing

power, memory capacity or line bandwidth, shows up as a queue of 11
packets on the output line. Congestion control manifests itself

as excess demand for packet storage at the IMP adjacent to the

point of congestion. When a given IMP becomes congested, the

adjacent IMPs find that their queues in the direction of the

congested IMP begin to grow without limit. For this reason, it

seems that congestion control can be viewed as a storage

allocation problem. However, there are a number of reasons to

believe that storage allocation is a necessary but not sufficient

component of any successful congestion control procedure.

The following arguments can be used to show that more than a

simple storage allocation procedure is needed for congestion

control:

1. Since the IMPs have limited responsiveness (may miss

incoming packets), allocating storage at the receiver does

not guarantee avoiding congestion at the sender. V
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2. When a long queue forms in an IMP it is not possible by

examining the entries of that queue to discover which

sources or destinations of traffic are contributing to the

congestion. All that can be determined is the set of

sources and destinations which are being affected by

congestion.

3. In the case that the total level of traffic being

offered to the network is more than the network can carry,

congestion control becomes a general resource allocation

problem rather than a storage allocation problem. For

instance, the network may be limited by channel bandwidth or

IMP processing bandwidth; it is the limiting resource(s)

which need to be allocated ("scheduled").

In summary, congestion control has often been implemented by

means of a storage allocation procedure, since this is often a

simple technique to implement. However, congestion control is

actually a more general problem requiring a more general

solution.
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6.4 Effects of Routing Design Choices on Congestion Control

One of the main choices in designing a routing algorithm is

that of the objective function. What is the routing algorithm

designed to achieve? The optimality criterion used in the

algorithm (for instance, minimizing average delay) can be seen as

a congestion avoidance mechanism. Several objective functions

are possible in computer networks:

1. Maximize throughput

2. Minimize delay

3. Minimize blocking probability

4. Maximize the ratio throughput/delay

5. Maximize the function x * throughput - delay (a weighted

average of throughput and delay).

Any objective function which prefers low traffic levels on a

given link to higher levels tends to avoid congestion on that

link (but not necessarily on the network as a whole). However,

simple measures, such as minimizing average delay, may not take

into account high levels of congestion which might persist for

short periods of time when traffic overloads are permitted.

Functions which rise more sharply than linearly with delay might

be an effective technique for congestion avoidance, though they

would not be sufficient for congestion control.
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A second major design choice in developing routing

algorithms is how to insure that routing choices lead to a stable

routing flow under steady-state traffic conditions. In general,

the less stable a routing algorithm is, the more difficulty will

be encountered in designing and implementing a successful

congestion control procedure. Although this is obvious, it may

be quite difficult to develop a routing algorithm which is stable

enough not to introduce artificial levels of congestion into the

network at times when the routing procedure leads to oscillating

choices in traffic routes.

When using the discardable or allocated approach to

congestion control, one of the most important decisions to be

made is which traffic flows should be accepted and which should

be rejected. An important component of this decision is the part

of the algorithm which detects which traffic flows are causing

congestion and which traffic flows are being affected by

congestion. In other words, it is essential for the congestion

control algorithm to identify those traffic flows which if slowed

down or stopped altogether would result in an overall increase in

network traffic flow or a decrease in network delay or otherwise

improved network performance. This is a very difficult problem.

As an example of how to determine what traffic is causing

congestion, consider the relatively simple expedient of examining

the packet buffers which are queued in an IMP. This might be
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desirable, for instance, when it it necessary to discard a -

packet, or when it is necessary to send off an allocation message

for a new packet. It is very difficult to decide on the basis of

such local information which traffic flows are actually causing

congestion. If one adopts the strategy of examining packets and

identifying the most popular destination of traffic and labelling

that as a "congested destination," the congestion control

technique will proceed to discard packets for that destination,

to allocate fewer packets for that destination, or to otherwise

slow down traffic intended for that destination. However, that

may be counterproductive. It may be that the traffic for that

destination is merely blocked behind some other traffic which is

not present in such numbers at that moment at the IMP. Likewise,

any more elaborate system of evaluating buffered packets (at a

small set of IMPs) on the basis of source-destination pairs or on

the basis of source host or source IMP is also too myopic to be

effective for congestion control. Clearly a memory-less system

such as examining the buffers present in an IMP at any given time

cannot take into account the previous flow of traffic. Also a

purely local system cannot take into account the more global

causes and effects of network congestion. Therefore, it would

seem that a more complete congestion control algorithm would

involve a record-keeping system at each IMP in the network which

keeps track of traffic flowing between various sources and

destinations, and a communications procedure which distributes
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this information from each IMP to all other IMPs in the network.
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6.5 Effects of Design Choices for Congestion Control on Routing

Any congestion control technique Must be able to reject

traffic entering a given IMP if sufficient resources do not exist

for processing that traffic. Likewise, the control technique

Must be able to determine when the refusal of traffic is no

longer nece03ary. One of the main points at which congestion

control may interact with routing is the extent to which this

traffic rejection information is made available to the routing

algorithm. On the one hand, a tight coupling is possible between

congestion control and routing: when a traffic overload is

detected by the congestion control technique, the routing

algorithm is informed and a new route selection is made. On the

other hand, a loose coupling is possible: the routing algorithm

establishes certain basic routes and the congestion control

technique acts simply to control the total flow accepted on those

routes in the network. An alternate strategy within the

framework of a loose coupling might permit the congestion control

technique to alter the fractional flows on different routes if

multiple path routing is designed.

In general, it seems preferable to establish a loose

coupling between routing and congestion control so that each

technique can be developed independently and tuned independently

in practice. Then, if each mechanism is operating correctly, one

can obtain good network performance without risks to the
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stability of the traffic flows and to complicated interactions.

As one example of the effects on network performance of the

congestion control mechanism, we present a few simple numerical

results concerning packet retransmissions. Consider the case of

packet refusal between adjacent IMPs. If p is the probability

that a transmission will be refused, then the expected number of

transmissions is 1/(1-p) = 1 + p/(1-p). That is, the total

number of transmissions equals one initial transmission and

p/(l-p) retransmissions. If we further assume that the system

has some standard delay for the final successful transmission,

and a waiting time (larger than twice the delay to the neighbor

IMP) before retransmission, we can compute the total expected

delay between neighboring IMPs. The table below gives some

representative values for the increase in this delay due to

retransmissions:

Increase in Delay

p (Prob of Refusal) Wait = 2*Delay Wait 5*Delay

5% 10% 26%

10% 22% 56%

20% 50% 125%

30% 86% 215%

where Wait is the timeout period before retransmission. Clearly,

it is important to keep the rate of packet retransmission down,

probably to less than 10%. (This is also true for the discard
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approach.) In addition to the delay experienced by a packet,

refusal also increases the buffering required.

Retransmissions also impact the effective IMP-to-IMP

throughput. If an IMP is able to continue sending other packets

while timing out unacknowledged ones, the effective throughput of

a channel with capacity C will be reduced to (1-p)*C due to

packet refusal. If the IMP is unable to keep the trunk busy

during packet timeout periods (due, for example, to a small

number of IMP-to-IMP logical channels), the effective throughput

of the trunk will be reduced still further.

The overall conclusion is that the measurement procedures by

which the routing algorithm estimates network capacities and

traffic delays should take into account the effect of the

congestion control measures employed, especially retransmissions.
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6.6 New Directions for Research

One possibility which has not been explored to date is that

the routing algorithm should take cognizance, not only of average

traffic flows in the network, but also of variances in those

traffic flows. Likewise, the congestion control technique should

be sensitive not only to average traffic flows which can be

sustained at a particular IMP (a function of computer processing

power and line bandwidth) but also to variations in that traffic

flow which can be tolerated for a given period of time (a

function of peak computer processing power and memory available

for buffering traffic). If the congestion control mechanism

makes available to routing an estimate of the traffic-carrying

potential of the network, in terms of average flow and variance

of that flow, then more closely engineered traffic flow can be

obtained.
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A.1 INTRODUCTION

This report considers the dynamic behavior of the following

algorithm for routing packets in a store and forward communica-

tion network.

(A) Every x seconds a nonnegative length Dit of every link

(i, Z) becomes available to each node. Based on hese lengths

each node computes a shortest path to each destination and routes

the corresponding packets over that path during the next x

seconds.

The standing assumptions for algorithm (A) are that the

lengths Dit depend exclusively on a fixed number of preceding

shortest paths via some as yet unspecified rule, and that the

shortest path algorithm has an unambiguous rule for breaking

ties between equidistant paths.

In algorithm (A) it is also implicitly assumed that the

lengths D become simultaneously available to all nodes, that

the shortest path computation is done instantaneously, and that

the new routing takes effect immediately. In the framework of

the ARPANET, these assumptions can be nearly satisfied in practice

as will be explained in the next section.

The length D need not be the actual average delay per

packet in link (i, Z). For example a bias (possibly different

for each link) and dependent on global conditions such as for
example sum of delays over all links could be added to the actual
measured average delay per packet of a link to yield Dit. Thus

one may view in general D as a number which bears some (as

yet unspecified) relation to traffic conditions that correspond

to one or more preceding routings.
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Routing algorithms such as (A) are currently under con-

sideration for use in the ARPANET (see [A.1]). In the next

section we discuss how the assumptions underlying algorithm (A)

relate to actual operating conditions in an effort to determine

the extent to which the subsequent analysis can provide the basis

for design of a practical ARPANET routing algorithm.

The analysis is geared primarily towards studying the effect

of the choice of lengths D on the dynamic behavior of the

algorithm. Specific questions that we wish to answer, at least

qualitatively, are:

1. For a particular choice of lengths will tne algorithm

tend to stabilize to a single routing path or will it cycle

between two or more paths?

2. If it stabilizes to a single path, how close to "optimal"

will this path be? If it cycles how close to "optimal" are the

paths of the cycle?

Answers to these questions can suggest various procedures

for choosing the lengths Dit in a practical setting.

The report is organized as follows:

In Sec. A.3 we provide a theoretical framework for studying

the algorithm. We give a number of examples which show that if

the lengths D are not chosen appropriately the algorithm may

naturally tend to oscillate between bad routing paths and become

itself a major contributor to network congestion. These examples

show that proper choice of Di is probably the single most

important design aspect of the routing algorithm. They also show

that there i, a basic design tradeoff between algorithmic sta-

bility and adaptation to traffic conditions.
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For the purpose of a more refined analysis we introduce in

Sec. A.4 a model of a ring network with an infinite number of

nodes. This allows us to employ techniques of stability analysis

of discrete systems with continuous state space (see e.g. [A.2,

A.3]), and enables us to quantify the relationship between choice

of lengths and algorithmic behavior.

The ring topology is fundamental for analysis of more general

network topologies. This is shown in Sec. A.5 where the results

of Sec. A.4 are extended to arbitrary topologies and multiple

destinations.

In Sec. A.6 we transfer some of the results of Sec. A.4 to

finite node ring networks and we confirm the relevance of the

continuous model analysis. We also present computational results

that generally support the conclusions of the theoretical analysis.

The conclusions section summarizes the results of the

analysis, and suggests guidelines for experimentation with

practical routing schemes for the ARPANET.
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A.2 DISCUSSION OF ASSUMPTIONS

In the SPF algorithm [A.1] currently under consideration for

use in the ARPANET it is envisioned that nodes broadcast at

regular intervals (say x sec long) the values of measured delay

per packet on 'heir outgoing links, averaged over the preceding

x second period. This is done only if the delay value of some

link has changed by more than some threshold amount over that

period. Otherwise the update is foregone. Once an updated

delay of a particular link reaches a node in the network, this

node computes a length for that link (for example by adding a

bias factor to reported delay), and modifies its shortest path

tree to take into account the updated link length.

This mode of operation differs from that of the idealized

algorithm (A) of the previous section in a number of ways.

Algorithm (A) assumes that the link lengths Dik become simul-

taneously available to all nodes, and that the routing change

is effected instantaneously. On the other hand in the practical

setting some time elapses before the broadcast delays reach other

nodes, the nw shortest paths of these nodes are calculated and

packet transmission according to the new routing is initiated.

The propagation time of a delay broadcast, the calculation time

for a node to update the shortest path tree, and the time neces-

sary for a node to transmit the packets assigned to store and

forward buffers according to the previous routing are all very

small relative to the time interval between two updates of the

same node, and they will be neglected in what follows.

In the case where nodes broadcast their delays synchronously,

then, once the transients discussed in the preceding paragraph

are neglected, it can be seen that the broadcast delays depend
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only on the preceding routing and not on earlier routings. In

practice nodes will not possess synchronized clocks so that

synchronous broadcasting is impossible. On the other hand,

analysis of the synchronous case is of interest both because

it is simpler and because it provides a yardstick against which

performance of asynchronous schemes can be measured. In the

case where nodes broadcast asynchronously, then by associating

each node broadcast with a routing update we see that in a single

x-second period there are N routing updates where N is the

number of nodes. Thus, each broadcast average delay depends

on the preceding N routings and as a result, each shortest path

calculation is based on delays that depend on a total of (2N-l)

past routings. This follows from the fact that if BkN+I,

BkN+2,..., BkN+N are the broadcast delay vectors in the k-th

x-second period, then the delay vector BkN+N depends on the N

routings corresponding to BkN, BkN+l,-., BkN+NI, and,

proceeding backwards, the delay vector BkN+l depends on the N

routings corresponding to B(k-l)N+l,..., BkN. Thus we see that

the routing corresponding to BkN+N will be calculated on the

basis of delays that depend on the routings corresponding to

B (kl)N+l,..., BkN+NI for a total of (2N-l) routings.

Both cases of synchronous and asynchronous operation of the

SPL algorithm are covered by the subsequent analysis of algorithm

(A) provided the following additional simplifying assumptions are

made.

1. The statistics of the outside (host) traffic and the

network topology remain constant over a time interval including

several updating periods.

2. Measured link average delays equal actual link average

delays.
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3.All link delays are broadcast (perhaps asynchronously)
during each period, (i.e., the threshold change for a link

delay to be broadcast is zero).

4. The shortest path algorithm has a fixed rule for deter-

mining all link lengths D it as functions of reported link delays,
and for breaking ties among equidistant paths.

Thus the subsequent analysis of algorithm (A) should be

judged in the light of the preceding assumptions (1 through 4).
These assumptions, however, appear to be realistic enough to
allow confidence in the analytical conclusions.

For the most part of our analysis, we will also need to

assume that link average delay (in sec/packet) depends ex-
clusively on the average link flow (in bits/see), in mono-
tonically increasing fashion. This assumption is commonly
made in communication network analyses, and we do not believe
that it affects materially the basic nature of the results

obtained.
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A.3 A DISCRETE MODEL - EXAMPLES

Consider first algorithm (A) applied to a given network for

the case where the lengths Di depend exclusively on the pre-

ceding routing. Then each routing uniquely determines the

lengths Di and these in turn uniquely determine the next rout-

ing. There is a finite number of possible routings which we

denote by R1 ,R2,..., RM, where M is some integer. To any rout-

ing, say Ri , there corresponds a unique sequence of subsequent

routings Ri ,Ri ... as shown below

Ri - Ri - Ri - ..
o 1 2

Because the set of routings is finite eventually some routing

(say Ri. =R k+ ) will be repeated and once this happens the

sequence will become periodic as shown in Fig. A.l.

RiO  RiI R12  Rik Rik+ 1  Rikn 1

Ri k+

Figure A.1

Thus starting at Ri the algorithm will eventually end up cycling

through Rik,. R ik+n. Of course, it is possible that Ri

itself is part of the cycle (k=0), and that the cycle consists

of a single routing (n=l) in which case the algorithm stabilizes

at that routing.

A-7



In view of the fact that each routing uniquely determines
its successor, it follows that the set of all routings {R,**@,

RM}1 can be partitioned into a collection of cycles, and a

collection of transient routings.

If the initial routing is transient it is never repeated

by the algorithm, and if it is part of a cycle the algorithm

returns to it periodically. More than one cycle may exist.

Furthermore, each transient routing leads to some unique cycle

as shown in the example of Fig. A.2 which involves three cycles

and eleven transient routings.

CYCLE 1 CYCLE 2 C YCLE 3

LL

L JRNIErOUIG
Figure A.2

From a design point of view we are primarily interested in

the cycles since routing will eventually be confined to one of

them. The design task is to ensure that for at least most

host traffic patterns, "good" cycles result in the sense that

the corresponding routings yield small average total delay per

packet. On the other hand, the formation and nature of cycles

depends exclusively on the choice of the link lengths Di. for

each routing.
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The following examples show that if each link length is

chosen to be simply the average delay of that link, then the

algorithm will naturally tend to oscillate between very bad

routings. If each link length is obtained by adding a suf-

ficiently high bias factor to delay the algorithm can stabilize

at a single routing, or perform a small oscillation between

two routings, which lie somewhere between an unbiased equili-

brium routing and the min-hop routing. The behavior excibited

in these examples is typical as will be demonstrated by the

analysis of subsequent sections.

Example 1: Consider the following 16-node ring network where

16
S15 

1

4125 11

7 9
8

Figure A.3

all messages have node 16 as their destination. All links are

bidirectional and, for simplicity, average delay per message on

each link will be assumed equal to average flow (in bits/sec)

on that link. The results are unaffected if average delay is

assumed only proportional to average flow. Oscillatory behavior

A-9



is actually aggravated if more realistic average delay-average

flow relationships are assumed. The critical assumption is[

really I-'kat link delay is zero when link flow is zero. Ties

betwee. -quidistant paths are broken in favor of the path withL
minimum number of hops to the destination, and if this is not

decisive the counterclockwise path is chosen by the algorithm. f
Notice that under the assumption that average link delay

is equal to average link flow, the optimal (single path) rout-

ing that minimizes the sum of link delays is the mmn-hop routing.

This is true regardless of the average traffic input pattern.

On the other hand, the position of an "equilibrium" routing

which splits the flow at a point where clockwise and counter-

clockwise delay distances to the destination are equalized,

strongly depends on the traffic input pattern. This illustrates

an important point, namely that routing flow by equalizing

clockwise and counterclockwise delay distances does not lead

to a minimum total delay routing. This is true regardless of

the functional relationship between average link flow and average

link delay as will be shown and further clarified in the next

section.

Case 1:

Choice of Link Length: Equal to average delay (and flow)

on the link.

Average Traffic Inputs Each node sends one unit except for
to the Destination node 8 which sends e units where
(Normalized):

o < e«< 1.

A.A
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Figure A.4

Every (single path) routing can be characterized by the

smallest node index i which sends flow counterclockwise. We

call this routing R ias shown in Fig. A-5.

0

ROUING RI

Figure A.5

There are two optimal routings (minimizing the sum of

average delays over all links), R, and R9.
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Suppose the initial routing is R.. If e 0 then the

algorithm will stay at R. for all subsequent iterations.

However, this is a fragile equilibrium since if e > 0 the

routing sequence and corresponding flows (and delays) generated

are RB8 , Rio, ,R, 3' 16, R1 3 R16 3,E1  as shown ir Fig. A-6.

Thus for e > 0 the algorithm when started at an optimum

ends up oscillating between the two worst routings R1 and R 6..

When link lengths are taken equal to link delays (i.e.,

no bias is added), this behavior is typical for ring networks

and does not depend on the initial routing, the traffic input

pattern, or the number of nodes. It is possible to prove that,

except for singular cases, every initial routing will lead to

an oscillation between the two extreme routings (R, and R16 in

the present example). Even in singular cases where other

equilibria may form (such as when e = 0 in the present example),

these equilibria can be destabilized by addition of a small

traffic input to one or more of the nodes. This fact is proved

in Sec. A.6 under a more general hypothesis whereby the link

length D. is not necessarily equal to link flow but rather it

is any monotonically increasing function of link flow with Di

equal to zero whenever link flow is zero.

Case 2:

Choice of Link Length: Equal to average delay (and flow) on

the link plus a positive bias factor a.

Traffic Inputs to the I
Destination: Same as Case 1.
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Suppose the initial routine is Re. The flow pattern is as

shown in Fig. A.7.
7+e

/6+

r4  4+,e+ R

t3 2 3+6

Figure A.7

Clearly, node 8 will switch his traffic in the clockwise direc-

tion. Node 9 faces a clockwise distance to the destination

equal to (28+9a) and a counterclockwise distance equal to (28+

8e+7c). It follows that node 9 will not switch traffic direction

if

(28+9a) > (28+8 e+7a)

or, if

c> 4e.

In this case the next routing will be R9 . By symmetry the rout-

ing subsequent to R 9 is R., so that if >_ 4e the algorithm

stabilizes to an oscillation between the two optimal routings

R. and R .
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Notice that the threshold bias value, 4e, is the product

of the input at the "equilibrium"i (node 8) times a measure of

the equilibrium distance to the destination (this will be

interpreted as a measure of marginal delay in the next section)

divided by two. This is a special case of a more general ex-

pression for the threshold bias value that will be developed in

subsequent sections.

It would be misleading however to conclude that a bias

value of 4e would lead to good algorithmic performance. If

at > 4E the only thing that is guaranteed is that the equili-

brium is "'locally"' stable. If the initial routing is not near the

equilibrium a much higher value of bias may be needed to bring

the routing back near the equilibrium. For example, suppose

that due to some unfortunate sequence of events the initial

routing is R,. We see from Fig. A.8 that node 15 faces a
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clockwise distance to the destination of 15a and a counter-

clockwise distance of (14+e+). Thus, if 15a<14+e+a or

a < 1+ ii
node 15 will switch his traffic, the next routing will be R

and by symmetry the algorithm will again oscillate between the

two worst routings R, and R16. In fact, for this network one

can calculate that it is necessary to have

a> + 7e-2

in order to guarantee that for any initial routing the algorithm

will eventually oscillate between the two optimal routings R,

and R9 . For smaller values of a the system will end up

oscillating around the equilibrium with the oscillation becom-

ing "larger" as the value of a decreases and the initial routing

is farther from the equilibrium.

The two main points that this case illustrates are first

that a value of bias above a certain threshold can stabiZize

the algorithm around an "equilibrium," and second that a

possibly higher value of bias may be necessary in order to

guarantee that the algorithm returns to the equilibrium when

starting from an arbitrary initial routing.

The symmetry of the traffic input pattern masks another

important feature of the algorithm namely that the (stabZe or

unstable) "equilibrium" depends on the value of bias. For low

Values of bias it tends to lie near an unbiased routing equiZi-

brium while for high values of bias it tends to lie near a

min-hop routing. This is illustrated in the next case.
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Case 3:

Choice of Link Length: Equal to average delay (and flow) on

the link plus a nonnegative bias factor

Traffic Inputs to the Nodes 1, 2, 3, 4 send five units and
De tination: all other nodes send one unit as shown

in Fig. A.9.

5 0 1

55

5

Figure A.9

Routing R 6 shown in Fig. A.10 may be considered as an un-

biased equilibrium (c=O) since nodes 5 and 6 face clockwise

and counterclockwise delay distances both equal to 55. The

equilibrium is actually unstable because, due to our rule of

breaking ties in favor of the mmn-hop distance, node 6 will

switch its flow to the clockwise direction in the next routing.
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211 ii

3

Figure A.10

However, even if that rule were not adopted, it can be shown

that addition of a small s>O to the input traffic of any one

of the nodes will lead the algorithm to an oscillation between

the two extreme routings R, and R16 . On the other hand, a
straightforward but lengthy calculation shows that:

(a) If a < a < 4, the algorithm will oscillate between R and

R7 if started at R6 or R7 .

(b) If 4 < a < 8, the algorithm will eventually stabilize at R7
if started at R., R7 or Re.

(c) If 8 < a < 16, the algorithm will oscillate between R7 and

Re if started at R 7 or Re.

(d) If 16 < a, the algorithmi will eventually stabilize at R7

if started at R 7 Re, or R9.
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This example reveals that in fact there are two types of

stable equilibria to deal with in a'ring network, equiZibrium

routings and equilibrium nodes. An equilibrium routing is one

which the algorithm repeats where started at it, and an equili-

brium node is one that switches its traffic whenever the routing

is adjacent to it. As the value of the bias factor increases
15 15from -r to w the equilibrium moves from node 6 ( r <a< 4 ), to

routing R7 (4<a<8), to node 7 (8<a<16), to routing R. (16<a).

For values of bias lower than 1 there is no stable equilibrium

and the algorithm ends up in an oscillation the magnitude of

which depends on the bias and the initial routing. If no bias

is added (a=0) all initial routings lead to an oscillation

between the two extreme routings R, and R1 6. This type of

behavior will be further clarified by analysis and examples in

the next section.

The unstable behavior of the algorithm for zero or small

positive values of bias is not restricted to the case of a ring

network but rather it is typical of arbitrary topology networks

with a single destination. We present briefly two examples

where link delay is taken to be equal to link flow. A more

detailed analysis confirming this fact is presented in the

sequel.

EampZe 2: Consider the network shown in Fig. A.11 where each

node sends one unit to the destination.

Figure A.11
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Let the initial routing be as shown in Fig. A.12.

Figure A.12

Then, if bias is zero, the algorithm ends up oscillating

between the two routings shown in Fig. A.13.

Figure A.13

Example 3: Consider the network shown in Fig. A.14 where each

Figure A.14

node sends one unit to the destination.
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Let the initial routing be as shown in Fig. A.15.

Figure A.15

Then if bias is zero the algorithm ends up oscillating

between the two routings shown in Fig. A.16.

0 0

Figure A.16

Unstable behavior in the absence of a bias factor can also

occur in the case of multiple destinations as the following

example shows.
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Example 4: Consider the following 8-node ring network. There

20

35
4

Figure A.17

are two destinations, nodes 6 and 8. Each node sends one unit
to each destination and link delay is taken equal to link flow.
Let the initial routing and corresponding link flows be as
shown in Fig. A.18.

00 A

Figure A.18
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Then if bias is zero the algorithm generates the following

sequence of routings and flows shown in Fig. A.19.

0 8
SECOND ROUTING THIRD ROUTING

0(6

FOURTH ROUTING TI

Figure A.19
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Thus after two routing updates the algorithm oscillates

between the two routings that send all flow clockwise and all

flow counterclockwise respectively.

We have considered so far the case where the lengths Diz

depends exclusively on the preceding routing. A similar con-

ceptual framework can be employed for the case where Di. depends

on a fixed number of past routings. The details become more

complex and their presentation will not be undertaken. We

provide instead an example showing that if Diz is obtained by

averaging deZays of the two past routings then the stability

properties of the algorithm are considerably improved. Sub-

sequent analysis will establish this fact in a more general

context.

Example 5: Consider Example 1 for the case where each node sends

one unit to the destination except for node 8 which sends nothing.

Let each link length be the flow on the link averaged over the

preceding two routings. Suppose that the first two initial

routings are R ,6 and R,. Then a straightforward calculation

shows that the third, fourth, and fifth routing will be R8
R15 and R2 , and the algorithm settles in the cycle

Re-R 1 )R2-Re-RIS R2 - shown in Fig. A.20. This compares

favorably with the cycle R16 R1 R16 .-. obtained in the case

without averaging.

The point of view that has been adopted in this section is

one whereby the algorithm is viewed as a dynamic system with a

finite number of states (the finite collection of possible

routings). We studied via examples the manner in which the

T
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00 0

ReR 15  R2

Figure A.20

algorithm moves from state to state, i.e., the dynamic behavior

of the corresponding system. Unfortunately, the study of the

dynamic behavior and stability properties of systems with a

finite number of states is notoriously difficult. To begin

with, there is no accepted definition of equilibrium, and in

fact, we saw that in the ring network context there are two

types of "equilibria" that are of interest - equilibrium rout-

ings and equilibrium nodes. Furthermore, there are no established

methodological tools that can be of any help in a discrete system

framework. This motivates approximation of the discrete system

with a continuous system having a continuum of states. For

such systems, there is an effective and well developed stability

theory that can be used for analysis [A.2, A.3J. We take this

approach in the following two sections where we introduce a

network with a continuum of nodes. Despite the radical nature

of this step, it turns out that the analysis not only provides

informative results, but also points the way for a corresponding

analysis of the algorithm applied to the usual finite node

networks.
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A.4 THE CONTINUOUS MODEL OF A RING NETWORK WITH A SINGLE
DESTINATION

As a first step towards developing and analyzing a more

general model, we consider a continuum of nodes arranged in a

ring and sending traffic to a single destination.

1/4C )3/4

t

1/2

Figure A.21

Points on the ring are identified with their distance t from

the destination in the counterclockwise direction, where t is

normalized to take values in the interval [0,1]. Traffic can

move on the ring in both directions.

For every t in [0,1] we denote by r(t) the input density

at t. The meaning of r(t) is that for any. subinterval [t,,t 2 ]

of [0,1] the total input traffic originating at the nodes

in EtIt 2 ] is

f
2 r(t)dt.

ti
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We assume that r(t) is piecewise continuous (i.e., continuous

everywhere except at a finite number of points). We thus allow

the possibility of traffic input densities such as the one

shown in Fig. A.22 which approximate the traffic pattern of a

01

Figure A.22

network with a finite number of nodes. This corresponds to

approximating impulses of input by narrow pulses of appropriate

height.

We are interested in routings specified by points y in

[0,1) where the flow splits, i.e., points larger than y send

their flow counterclockwise (or in the positive direction) and

points smaller than y send their flow clockwise (or in the

negative direction) as shown in Fig. A.23. To a given input

CLOCK WISE COUNTERCLOCKWISE

0 y1

Figure A.23
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density function r(t) and routing y, there corresponds at every

point t a fZow in the poeitive direction f+(y,t), and a fzow

in the negative direction f-(y,t) given by

fr(T)dT if y < t

+ y
f (y,t) = (A.1)

o ift <y

0 if y:t

f-(y,t) = (A.2)

ir(T)dT if t < Y.
't

In what follows the input density will be considered constant

over time, so our notation for flow does not reflect the

dependence on r(t).

In order to introduce an algorithm such as (A) in the con-

tinuous framework we consider a delay function d(f) which for

the time being will be assumed to be a function of the flow f

only. We later allow dependence of d on y and t as well as on

f. The meaning of the delay function d is that given a routing

y and any point t, the-di-tances Do and D, from t to 0 and 1

(i.e., to the destination in the clockwise and counterclockwise

direction) are given by
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DO(y,t) - fd[f-(Y,T)]dT, (A.3)
0

D,(y,t) = [df+(yT)]dT. (A.4)

t

These distances depend on the routing y through the flows f+

and f-. We will assume that d is a monotonically increasing

function of f with everywhere continuous derivative. Further-

more, d(f) > 0 for all f > 0.

We consider the following algorithm patterned after algorithm

(A). Given a routing Yk at period k the next routing Yk+l is

determined from the relation

D0(YkYk+ )- D,(ykyk+l). (A.5)

Since we have

DO(Yk,t) < DO(yk,yk+l) = D,(yk,yk+l) < D1 (ykt) if t < Yk+l

and

DO(Yk,t) > DO(yk,yk+l) D,(yk'yk+l )  D1(Ykt) if t > Yk+l'

it follows that the routing Yk+l determined from (A.5) is such

that every point t routes its flow in the positive or negative

direction according as D0 (ykt) > D,(yk,t) or D(Yk,t) < DI (Ykt),

i.e., according to minimum distance to the destination.
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We will assume that, for every Yk' equation (A.5) has Yk~l

as its unique solution. [It is possible to show that this is

guaranteed if either r(t) > 0 for all t or d(O) > 0]. Then we

write the relationship between Yk and Yk+l as

Yk+l = g(Yk )  (A.6)

where g is the function satisfying [cf. (A.5)] for all y

D0 [y,g(y)] = D 1[y,g(y)]. (A,7)

Thus the algorithm is described compactly by equation (A.6)

EcampZe 1: Let r(t) = 1 for all t, and d(f) f for all f. Then

from (A.1) through (A.4)

Ii- y  i f y < t

0 if y<t

f-(y,t)

) y-t if t < y
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0 
t

Figure A.24

Iff y <~ t

D 0(y,t) =J(Y-T)dr y2

0

D1 (y,t) - f (r-y)dr T (1-t) 2-yCJ.-t)

t

Iff t < y

D0 (y,t) - f (Y- t + yt

0

D (Y,t) - (T-Y)dT 1-l

y

The equation Do(yk'yk~l) *Dl(yksyk+l) is quadratic in Yk+l and
can be solved to yield affter some calculation
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y y2_(l,' 2 1f

Yk+l

Y + /(1-Y )2 if 1k

Thiz equation is really equation (A.6) specialized to this example.

It completely specifies the algorithm.

We say that a routing y* is an equilibrium if

y* - g(y*) , (A.8)

or equivalently if

D0 (y*,y*) = D1 (y*,y*). (A.9)

Thus the algorithm when started at an equilibrium it remains

there. It is possible to show that if r(t) > 0 for all t, or

d(0) > 0 then there exists a unique equilibrium. We will assume

that one of these two conditions holds in what follows.

The equilibrium has an interesting optimality property

which we state as a proposition.

Propooition: The equilibrium y* minimizes over all y in [0,1]

the expression
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J(Y) = JP[f+(y,t)]dt + f p[f-(Y,t)]dt (A.IO)

0 0

where p is any function having as derivative the delay function

d, i.e.,

aP(f) = d(f) for all f. (A.11)

Proof: The proof assumes that r(t) is a continuous function

but a slight modification proves the result in general. Dif-

ferentiating J(y) we have

(y) 1 apcf+(yt)] jpcf-(yt)l
=y y dt + dt =

0 0

f ap[f+(y't)] f+(y dt + apEf-(yt)] af-(y,t) dt
a af ay af ay
o 0

(A.12)

It can be seen from (A.1) and (A.2) that

-r(y) if y < t

af +(y,t)
ay

0 if t < y (A.13)
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0 ~ if y <t

r (Y) if t < y. (A.14)

Combining equations (A.11) through (A.14I) we obtain

ay = r(y) [Id~f+(y,t)]dt + J*f-y...j

y 0

Using (A.3) and (A.4I) we finally obtain

aj(y) = r(y) [D (y,y)-D (y,y)].

If y* is the equilibrium it can be seen that we have

Do (y,y) < D (y,y) if y S <

D0 (y,y) > D1(yy) if y* < y.

Thus

aJ(y) <>0 if Y' < y*ay-

aJ(y*) 0
ay

and it follows that y* minimizes J(y). A.E.D.
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The proposition shows that we can minimize the integral of a

certain function over the ring by choosing the length function d

to be its derivative and guaranteeing that the algorithm

Yk+l=g(yk ) converges to the equilibrium y*. Thus if we wish

to minimize integral of delay over the ring we should choose as

length function d the marginal delay. Furthermore, we should

ensure that y* is a stable equilibrium, i.e., the algorithm

converges to y* at least when started close to it and, preferably,

even when started far from it. This however seems quite impos-

sible for reasons explained in what follows.

We now turn to a discussion of the stability properties of

y*. Our starting point is the equation

Yk+l =g(Yk)

specifying the algorithm. Successive iterations of the algorithm

can be described as in Fig. A.25.

The local stability properties of y* depend on the deriva-

tive ag(y*) of g at y*. If Z exists, is continuous at y* and
ay • ay

Iag(y*) < 1

the equilibrium y* is (locally) stable, i.e., there is an interval

centered at y* such that when the algorithm is started within

this interval it converges to y*. This is illustrated in

Fig. A.26.
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Ik29yk1" g (Y)
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0 k -r 'k k+2 1y

Figure A.25

Figure A.26
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If is continuous at y* and
ay

ag(y*) I> 1

the equilibrium is unstable, i.e., when the algorithm is started

close to y* it tends to diverge from it. This is illustrated

in Fig. A.27.

//

I\ / t
I \ /1

€ I / I

Figure A.27

In the marginal case where jag(Y)' 1 the situation isI y IY =
unclear and stability of y* depends on the derivative of g at

points near y*. If g(y*) does not exist or if it is not con-" Dy

tinuous, a similar but more careful analysis is possible by

taking limit of the derivative from the left and the right.
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We now evaluate the derivative ag(y) Consider the equa-
ay

tion that defines g(y)

D0[yg(y)] = D [y,g(y)].

Using (A.3) and (A.4) we can write this equation as

g(y) d[f-(y,)]dT f d[f+(y,T)]d. (A.5)

o g(y)

This equation holds for all y, so the derivatives of both sides

with respect to y are equal. Differentiation with respect to

y yields

fg(Y)dd[f-(y,T)I d + d~f-(yg(y))] ag(Y)

9Y Dy
0

I f d[f+(Y'YT)J dT - d[f+(yg(y))] ag(y)

ay ' y

g(y)

or

I
{d[f-(yg(y))] + d[f (y,g(y))]} g(Y) =y df+(Y'T)] dT

g(y)

g(Y)9d[f-(y,T)! dT. (A.16)

0
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We have

Dd~f (y,'r)] 3 d~f (Y)J 3f (Y,) (A-17)

Bd~f-(y.T)],- ad[f-(Y,T)J 3r (YT) (A.18)
ay af a

Using (A.13), (A.14~), (A-l7), and (A.18), we can write (A.l6) as

{d[f-(y,g(y))] + d[f+ (())} ag(y) (A.19)

=r(y) 3df(,fldr+ min{y~g(y)} ad~f-(y,
I f ax{y,g(y)l offD

Some caution is necessary in using equation (A.19). It holds

only at points y for which !Eexists and is continuous. Because
aya

r is assumed only piecewise continuous, the derivative ais

also only piecewise continuous. However, at points of discon-

tinuity of !Eone can use (A.19) to evaluate the left and rightay
derivatives by taking limit of 2Efrom the left and the right.Dy
As a general rule, whenever we write a derivative we implicitly

assume its existence. At the equilibrium y* we have y*=g(y*)

and f (y*,g(y*)) - f + (y*,g(y*)) = 0, so we obtain

agy) dcf .(Y*,.r)] jYad[f-(Y*,T)] t
2d(0 ay = r(y*) afdT + Iaf (AT0
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It follows from (A.19) and (A.20) that if r(y*) > 0, y* is

a point of continuity of r(t) and d(Q) = 0 then ag(y) . -m as
Dy

y - y* so the equilibrium is unstable.

If d(O) > 0 the equilibrium is stable, if -1 < ag(y*), or
ay

equivalently if

r(y*) d[f+(y*,T)] dr + dfd y dTf a f af

d(0) > (A.21)

The quantity d(O) represents bias, i.e., length at zero flow.

For equilibrium stability it should be larger than the product

of input with the integral of the derivative of d along the ring

divided by two. Note that the threshold level of bias strongly

depends on the level of input both directly and through the term

involving the integral of ad
at

Equation (A.21) is hardly the entire story on equilibrium

stability. If (A.21) is satisfied one is merely guaranteed that

the algorithm tends to the equilibrium y* when started within

some interval centered at y*. This interval can be very small

and in fact it is possible that the algorithm diverges from y*

when started outside the interval. A case in point is when

the input density r happens to take a very small value at y*

and much larger values at other points. Then (A.21) indicates

that very small values of bias can stabilize the equilibrium

which is, of course, true but a little thought based on the

examples given so far suggests that the algorithm can oscillate

violently when started far away from the equilibrium. This

leads to investigation of circumstances under which the equili-

brium is globally stabZe, i.e., the algorithm converges to it

regardless of the starting point.
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A sufficient condition for global stability of y* is that

for every y we have

lg(y)-y*j i Pjy.y*J (A.22)

where p is same scalar with 0 < p < 1 (i.e., g is a contraction
mapping). When (A.22) holds we are guaranteed that the distance

to the equilibrium is reduced with every iteration. Equation

(A.22) can be guaranteed to hold if we have for some p with

0 < p < 1 and ev~ery y

ag(y) < P

(This follows from the mean value theorem whereby we have

g(y) = g(y*) +1 (y..y*) M

where is a point lying between y and y41. Hence

lg~y-Y~ -Ig(y)-g(y*)I = I(y-y*) ay Icv)

Now using (A.19) we have

r~y) f' ad[+ (YTl T+minfy,g(y)} dfyTlT
ag(y) Im~tax{yg(y)}

DY d~f (y,g(y))J + d[f (y,g(y))]

We have since d is monotonically increasing

d[f-(y,g(y))] > d(0)



Let r* be the maximum of the input density I

r* -max r(t)
0 < t < 1

Let b be an upper bound to 2- in the range of operation. Since

r* is an upper bound to both f (y,T) and f-(y,T) a possible

(somewhat conservative) upper bound is

b = max *d(ff)

0< f < r af

Then we have

ag(y) r'b
a I 2d()

Thus if

r*b
2d( ) < 

-

or, equivalently,

d(O) > r*b2

the equilibrium y* is globally stable and the algorithm converges

to it from an arbitrary starting point.

Thus, we confirm that the threshoZd ZeveZ of bias for

stability of the equilibrium is proportional to a measure of

leveZ of traffic input and a measure of leveZ of the derivative

of d along the ring. For local stability of y* only the level

of input at y* matters but in order to guarantee globally stable

behavior of the algorithm the inputs at other points must be

taken into account. I

i
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Example I (Continued): Consider again the case where r(t) a 1

for all t, and d(f) = f for all f. Here

Y* . 1

is an (unbiased) equilibrium. From the stability criterion (A.21)

we expect that the equilibrium is unstable. Indeed we have

already calculated that

2 _ /y2_ )2 f 1

k kl-Yk -- i

Yk+l = g(Yk) =

Y + /(lYk) 2 _y if y 1 <k -Y k -f Y

from which it follows that

ag(y*) _ _=
ay

confirming the instability of the equilibrium. The graph of g

together with a typical iteration sequence is shown in Fig. A.28.

A g (y)

I/. // I

i, YO I O
\\ I

,,,

0 Yl Y*=T"YO Y2 1 y

Figure A.28
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It can be seen that the algorithm tends to an oscillation between

the extreme routings 0 and 1 for every starting point y0  y,

Consider now the case

d(f) = c + f

where a is a positive bias factor. The routing

Y.32

is again the equilibrium for every at > 0 because of symmetry of

the input density. A straightforward but lengthy calculation

shows that --

Yk+2a 1( (k+2a)2-yz+2Yk--2a if yk .

y~j y >(

kk-k
Yk+l g yk=

Yk-2M + Ayk- 2a y -2Yk+l+2a if yk 2

From (A.20) or from direct differentiation of the equation above

we obtain

ag(y*) _ 1
y2a

Thus, the equilibrium is stable for

>1

2 "
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The graph of g in this case together with a typical iteration

sequence is given in Fig. A.29. It is in fact possible to show

that in this case the equilibrium is globally stable.

1/

, STABLE EQUILIBRIUM

SLOPE

/ II I\ 3

0 Y1 Y2 Y2  1 y

Figure A.29

For

o 1
2

the equilibrium is unstable. The graph of g together with a

typical iteration is shown in Fig. A.30. It can be seen that

for every starting point except y* the algorithm will tend to

an oscillation between a and (1-a).
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Figure A.30

We now consider an example where the traffic input is not

symmetric.

ExampZe 2: Take for X > 0 and a > 0

X I) for 0 < t < 1
-2

r(t)

for 1 < t <0

r(t)

Figure A.31
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Take also

d(f) - a + f.

The equilibrium y* corresponding to any a is defined from

the equation

Do(y*,y*) = D,(y*,y*).

We have by straightforward calculation

D0 (y*,y*) = y + y

D1 (y*,Y*) = Y*2 -(a+)Y*+a+ -

By equating D (y*,y*) and D (y*,y*) we obtain

The threshold for stability can be computed from equation (A.21)

to be

x
2"

and the equilibria which are stable are only those corresponding

to levels of a above the threshold. Thus while equilibria range

from (a = to 1(a oo). stable equilibria are only those from2 27 (a to 1(a
lb 2 2 ~
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In the preceding example we see that there is a set of stable

equilibria parameterized by the bias level a which in turn ranges

from some threshold value to -. We also see that while the

threshold level of bias depends on the level of traffic X, the

set of stable equilibria does not depend on X. We explore this

situation further.

Suppose that an input density r(t) is given and consider

input densities of the form

r (t) = Xr(t)

where X is a positive parameter. We would like to investigate

the dependence of the set of stable equilibria on the parameter

X (i.e., the traffic level), for the case where the length

density is of the form

d(f) - + a(f)

where a(O) = 0 and a is a nonnegative bias parameter.

Suppose that d is of the form

a(f) - Of'

where 8 and n are positive scalars. The equation for equilibrium

is

y + fy "  I

IY + dCXf-(y*,T))dT = a(l-y*) + f dXf+(y*,T)]dT. (A.24)

It is easy to see that if y* is an equilibrium corresponding to

input r(t) and bias a, then y* is also an equilibrium corresponding
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to input Ar(t) and bias n a. On the other hand, the threshold

level of bias of (A.21) is also multiplied by Xn when :input

changes from r(t) to Xr(t). Thus we see that when d is of

the form d(f) - 8$f the set of all equilibria as well as the

set of all atable equilibria is independent of the traffic

input level X.

A n
A careful examination of the case where d(f) a 8ff shows

that the reason for independence of the set of equilibria is

that when the input is multiplied uniformly by X, then a is
multiplied by Xn, and is multiplied by n-1 In other words,af 
the factor of increase of d which affects the level of bias

necessary to produce a given equilibrium y* [cf. (A.24)], equals

the factor of increase of input times the factor of increase of

d, i.e., the factor of increase of threshold bias level

[Cef. (A.21)].

Carrying this reasoning one step further, consider a fixed

y* and consi~er for each A > 0 the value of ay*(X) of bias which

produces y* as equilibrium. The function ay*(X) is of the

general form indicated in Fig. A.32 and is obtained by solving

(A.24) for a.

ay*(X)

Figure A.32
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Consider also the expression

Xr(y*) ad[Xf+(Y*,T dT + J daf a

T *(X) Y* (A.25)

where f+ (y*,T) and f-(y*,T) are the flows in the positive and

negative direction corresponding to y, and X = 1.

If

ay*() >Ty,(X),

then y* is a stable equilibrium at input level X. If

y*(A) < Ty,(X),

then y* is an unstable equilibrium at input level X. Note

however, that ay,(X) grows roughly as d(xf) grows with X. On

the other hand T,() grows roughly as X aa(fi grows with X.a(Af)Y ^-
Thus, if A " f rowa with A faster than d(Xf) any given

equilibrium y* may become unstable for sufficiently high input

level A. For example, this is true if

when

d(Xf) - eXf  A 3a(xf) 12 e f

A-'50

.-



This observation is particularlZy relevant if one contempZate.

to take the actual average delay as the function a. As the

level of input increases every candidate equilibrium may be

destabilized if the marginal delay increases much faster than

delay as link utilization is increased. To put the same argument

in other words, for large levels of input the level of bias

necessary to stabilize the algorithm may become very large due

to large marginal delay with a routing very close to min-hop

resulting. Thus, in order to stabilize the algorithm one may

have to relinquish adaptation when it is most needed (i.e.,

when the network is congested), and this suggests that some

thought should be given to choices of d other than average delay.

A.4.1 Choosing the Bias as a Function of the Current Routing

We have dealt with the case

d(f) = a + a(f)

where a is a constant bias. Since values of a which bring the

algorithm closer to an equilibrium depend strongly on the traffic

input as well as the current routing it is of interest to con-

sider the case where bias is selected on the basis of current

information, for example, flows, delays, etc. We are thus led

to consider a length density function of the form

d(f,y) = a(y) + a(f)

where d(O) = 0. An analysis that closely parallels the earlier

one shows that given an input density function r(t) and routing

Y the next routing ik+l is given by an equation of the form
k' l Yg(Yk

~k+1 (k
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where g(y) is a function defined from the equation [cf. (A.3)
through (A.5)]

,g(y)A
ct(y)g(y) + f d~f (y,T)]dT = c(y)[l-g(y)] + acf+(y,)dr

0 g( y)

where the positive and negative flows f +, f- are given by (A.l)
and (A.2). Differentiation with respect to y yields the analog
of (A.19) which is

{2 dy)af ygy)+&Uf (yg(y)]} ag(y){2c&y)+ -(y~~y)] day

$ry F1  d~f +(y~t)] d+ min{y,g(y)} a~-yTld
= -ray) ydt + ~l d

+ El-2g(y)] aay) (A.27)

At an equilibrium we have dCf-(y*,g(y*))] = d~f' (y*,g(y*))] = 0
so that for equilibrium stability we must h'tve [cf. (A.20)]

r(y*) ~ f J.~ T ad f*,l d l(12y*) 'Y*

ct(y*) >Ydf() 0t~ c(~
2

It follows from these formulas that stability of the algorithm
will be improved by selecting at(y) so that it increases with level
of input and level of marginal delay. It is also improved by
selecting a(y) so that
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[l-2g(y)] D > 0.

ay

A reasonable choice of a(y) is to take it to be some monotonically

increasing function of

DT(Y) d [f+(y,T)JdT + fd[f(y,)JdT
0 0

for example, a quadratic function of the form

a(y) = X0 + XiDT(Y) + X2 [DT(Y)],

with coefficients X0, X, X2 determined experimentally. In the

context of the SPF algorithm DT(y) represents the current sum

of all reported link delays, so that the quadratic rule or a

piecewise constant approximation of it for selecting a(y) can

be fairly easily implemented.

We note that it is possible to make bias different for each

t (or for each link in the communication network context). It
is possible to analyze this case along the preceding lines but
it appears that no useful design guidelines can be deduced. A

procedure that is definitely inappropriate is to make the bias

of highly loaded links large, and the bias of lightly loaded

links small. This results in aggravating oscillations of traffic

from the highly loaded links to the lightly loaded links. The

reverse procedure whereby heavily loaded links receive small

bias and lightly loaded links a large bias tends to stabilize

the algorithm in a congested state. While it may be possible

to device good schemes for assigning a different bias to each

link, such schemes are not obvious and simple-minded schemes

don't seem to be appropriate.
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A.4.2 Basing the Routing Decision on More than one Past Routings

In the algorithm considered so far the routing Yk+l depends

exclusively on the earlier routing yk and we saw that it is

necessary to introduce damping into the algorithm in the form

of bias in order to avoid instability. We also saw that high

values of bias cause an undesirable equilibrium tendency towards

the min-hop routing while at the same time such high values may

be necessary to prevent instability. This motivates a search

for ways to reduce the level of bias necessary to stabilize the

algorithm. This can be accomplished by various forms of averaging

the effects of past routing decisions, some of which we describe

shortly. In the context of practical routing algorithms, such

averaging techniques are easy to implement. In fact, one of the

averaging techniques is based on asynchronous and even random

delay reporting of nodes and corresponding routing updating.

Such operation is easier to implement than the one that requires

synchronous delay reporting and routing updating of nodes.

For simplicity, we write

d(f) = + + d(f) (A.30)

where d(O) = 0, and we refer to d as delay.

Averaging Algorithm 1 (Synchronous Delay Reporting):

This algorithm is the same as the earlier one except that

distances to the destination in the clockwise and counterclockwise

direction are obtained by averaging delays over several routings.

Specifically, for a fixed positive integer n, and given a

sequence of past routings Yk' Yk-l' "0', we define for any t in

[0,1] "averaged"distances to 0 and 1 by
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Do(Yk'Yk-1.j**'Yk-n ' t ) 0 n+l n Oy-t... (Dy(k 1t

i=O

1 n
DI(yk~yk-l '*,yk-n-t) = i+l i D3 (Yk-l't)"

We can also write using (A.3), (A.4), and (A.30)

+t 1 n TJT(-1

DO(ykykl,...,yknt) = t + ( 1. df(Yki'r) ]dt (A.31)
0=

1 n

(yk l ynt) = a(l-t) + I [ d[f+(Yk-i 'T)]dT. (A.32)
t i=ot

Thus distances are calculated by integrating n- dif(ykiT)

which is an averaged delay over the routings yk,..-,Ykn, in

place of d[f(y, T)l which is the delay corresponding to the last

routing.

The new routing yk+l is obtained from the equation

D5(yk,Ykl,''',Yk-nYk+l) - D1(YkYk-l,'',Yk-nYk+l) .  (A.33)

This defines uniquely Yk+l in terms of kyk l,...,Yk-n. As

earlier we write the corresponding equation as

Yk+l = g(Yk'Yk-l''''Yk-n
) -

A routing y* is said to be an equitibrium if

y* - g(y*,y*,...,y*).
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It is clear that y* is an equilibrium in this sense for a given 7

bias level a, if and only if it is an equilibrium for the same a

in the sense given earlier in this section.

The equilibrium y* is stable if it is also a stable equili-

brium of equation (A.34) linearized around y*. It is a known

fact that this is true if all roots of the characteristic

polynomial

C(p) = pn+l - ag(y*) pn _ ag(y*) pn-I .... ag(y*) P- ag(y*)

aYk aYk- ayk-n+l 'yk-n

lie inside the unit circle (i.e., have modulus less than unity).

We calculate the derivatives ag
ayk-i

We have for a > 0 similarly as earlier for every i

g(y*) = r(y*) 1 d f+(Y*T) dT + FY*a[f-(Y*'T)1 dT
y -i 2at n+l dl f* I d

y* 0

Define

r(y*) _a f+(Y*T).I aT + _1 1 d(A 3

2a If f I f"

y* 0

The characteristic polynomial can be written as

C(p) = pn+l + U p n + 1i __n-l +.._I'_ +

n+l n+l n+l n+l
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We now use the following fact:

Lemma: Let a be a positive scalar and n be a positive integer.

The roots of the polynomial

n+l pn +ap-
p n++an + On +...+ ap +

lie inside the unit circle if and only if a < 1.

Proof: This result is probably well known, so we only sketch

a proof. Assume first that a < 1. Then the statement that the

polynomial has all roots inside the unit circle is equivalent

to the system

Yk+l = -aYk -aYk-i ..... aYk-n (A.36)

being asymptotically stable. Thus it will suffice to show that

every sequence tykI generated by the system converges to zero.

The system (A.36) can also be written as

Yk+l = (l-a)yk + ayk-n-l" (A.37)

Since 0 < a < 1, we have for all k

lYk+ll < ('-a) lYkl + alyknl ni. (A.38)

Let

ak a max{jYkil JYk-i1 ' '  lYk-n-ll}'

From (A.38) we have lYk+ll 6k " It follows that {6 k} is a non-

increasing sequence, and hence converges to a limit S. If 6 = 0

we are done, so assume 6 > 0. For an e > 0, let F be such that
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<yk1 < 6 + e for all k > - n. Take e sufficiently small so

that from (A.37) it follows that if 6 - e < lYk+ll S 6 + e then
Yk and Yk-n-I have the same sign as Yk+l and choose k> + such

that 6 - e < lyk+ll < 6 + e. It follows from (A.37) that

YiY+lI :maxflYkl, lY-n-ll } < 6 + E:

while

r-aI a a

min{IY~I, 'lY£_n-l'} _> I£I - -- max~Y1 Y_~l

> 6-e m z = 6 l-

so finally

6 - l+ct k + C'
1-at

and yi has the same sign as yi+l" Repeating the argument it

follows that, for e sufficiently small, y, Yj-I' Yk-2"*''' Yk-n

have the same sign as Y +I" This contradicts (A.36) and the

result is proved.

The reverse statement of the proposition follows by showing

that for a > 1 the system (A.36) is not asymptotically stable

via a similar argument Q.E.D.

We now apply the result of the lemma to our problem. We

have that the equilibrium y* will be stable if and only if

.< n + 1.
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It follows using (A.35) that in the averaged algorithm the bias

level must satisfy

r(y') 3d + dif f af
>

2(n+l)

in order for the corresponding equilibrium y* to be stable. If

we compare this with the earlier algorithm [cf. (A.21)], we see

that in the averaged algorithm the bias threshold level for

stability is reduced by the factor over the nonaveraged

algorithm. Thus for n - 1 the reduction is 50%, for n - 2

the reduction is 66.6%, for n = 3 it is 75%, etc. For a given

traffic input, and any given bias level, the corresponding

equilibrium can be made stable by averaging delays over a suf-

ficiently large number of periods. Note, however, that the

threshold level for bias, even if reduced, is still proportional

to level of traffic input and level of marginal delay.

In conclusion, it appears that averaging over past delays

offers significant advantages over the nonaveraged algorithm.

If the traffic input statistics are stationary over long periods,

then the averaging scheme given here or some other similar scheme

(such as a fading memory scheme) is worth adopting. The only

disadvantage of averaging is reduced sensitivity to sudden

traffic input changes (see the discussion of Sec. A.4.3).
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Averaging Algorithm 2 (Aeynohronous Delay Reporting):

Here we consider the following algorithm patterned after

an envisioned asynchronous operation of the SPF algorithm.
The set of "nodes" [0,1] is partitioned into n subsets which
we call S,, $ 2,..., Sn . At some time, say 0, the nodes in Si

report their delays averaged over the preceding n routings and

a routing update takes place. Then at time a, > 0 the nodes

in S2 do the same thing. Similarly, for i - 1, ..., n-1, at

time (a,+az+...+a i) the nodes in Si+ 1 do the same thing. At

time (a,+C 2+0..+an) the nodes in S, again report their delays,

an updating takes place and the process is repeated.

The modeling of this routing updating process can best be

understood for the case where n = 2. For normalization purposes

we assume that

Cy + =1.1 2

Assume that odd-indexed routings Y2k+l correspond to delay reports

of nodes in S,, and even-indexed routings Y2k+2 correspond to

delay reports of nodes in S2 as shown in Fig. A.33.

1- 010.2 CIJ- C2 -1- 0 1 1 2

/2k-1 Y2k/ Y2,ke Y2ke2 / 2k. 2k*4

S1 DELAY S2 DELAY S1 DELAY S2 DELAY

Figure A.33
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The routing y2+ is generated (after the nodes in S1 report their

delays)'according to the equation

Y~2k+1

+ { dCf(yk- I)]+ a d -N()]dk'(yl2+ )](d

'y (t) f irtbelong to3S)

+ a.Ca-ff)3d2 C1)- r)J

a~a~t~y2~,')] + adE2 (2kT)
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ala~f(y 2kl T)] + a2a[f-(y 2k_2,t)J I
A + A[f+(

aIdEf (Y2k-I
"T )] + ad fy2k_2,-T)].

Similarly, the routing y2k+2 is generated (after the nodes in S2

report their delays) according to the equation

Y2k+2 
"aY 2k+2  [a d[f-(Y 2k,T)] + a [1-8(T)] df-(Y2 k+lT)] (A.36)

0

+ a 8(T)d f-(y 2k-lT)]}dT =

a (l-y2k+2) + f {ad[f+(y2k')] + c'[l- (T)]a[f+(Y 2k+l',)] +

Y2k+2

+ a I (T)d^f+(Y2k-l ,T) ]IdT.

Let gl(Y 2k' Y2k-l' Y2k-2 ) be the solution for Y2k+l of (A.35)

and g2 (Y2 k~l, Y2k' )2k-1 be the solution for y2k+2 of (A.36).

Then the algorithm can be described compactly as

Y2k+2 = g2(Y2k+l Y2k' Y2k-1 )
'

Y2k+l= g1 (Y2k' Y2k-l' Y2k- 2 ).

The equations above represent a discrete-time nonlinear

system which is periodic with period two. It can be converted

into a stationary system by writing it in the form

A-62



72k+2 = g2[g,(Y2k' Y2k-l' Y2k-2 ) " Y2k" Y2k-13

2k+l = g(Y 2 k' Y2k-l' Y2k-2
)  (A.37)

Y2k = Y2k

Y2k-1 = Y2k-l"

A routing y, is said to be an equilibrium if

y* = y*, y*) = g1 (y*, y*, y*).

Note that the equilibria in the sense of the synchronous algorithm

are also the equilibria of the asynchronous algorithm. It is a

known fact that in order for an equilibrium y* to be locally

stable, it is sufficient that the system (A.37) linearized at y*

be stable. Equivalently the matrix

ag2  ag1  a92 a92 ag1  ag2  ag2  agi
+ 0

aY2k+l aY2 k aY2k ay2k+l Y 2k-l +y 2 k-i 'aY2k+l aY2k-2

a ag1  ag

aY2k aY2k-l 'y2km2MM

0 0 '0

00 0

must have all its eigenvalues within the unit circle.

A-63



We now compute the derivatives in the matrix above. We have
similarly as in earlier derivations

___= r(y*) a $T DEf4 (Y*.T)] d- + )) dT
'y2k 2a f 2a 2af

gi M - ~ * [ff(Y*,T)] 
____________(Y* T d

ay2kl1 2at 1  f' f- I af~~,)

a = - r(y*) CT I T [1-8()] +(Y*~,T)1 +
aY2k-2  2a f 2af

+ J%[1a-a8(T)],T dT

ag2  = a[-8fJ ar(Y*.T)] t

ay2k+l 2a± f

+ I 1 [-8r) aa8 r(y*,T)] dT

0

g2  r(y*) a a df yt) dT + aY aa[f~y,) dT2a J2 Jf2 a

2 r(y*) a T ad 8(r). dT +
aY2k-1 2at f j

+ ~ 1 B(T) af dT

0
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Define

Sda[f+(y* , T ) ] dT +2a ,f a f af

y* 0

Y r(y*" T) ad____________) dT + Y*s-C a~f-(y*,T U
= 2cp a f f

y* 0

and denote

a = CY

Then the matrix M can be written as

S(l-a) y(1-Y)P' -(I-a)P a cy(l-y) -OyV UUl-0) (l-y) 2 P 0

-OU -(l-a)(l-y)p 0M=

1 0 0 0

0 1 0 0

It is possible to show that if U < 1 then this matrix has all

its eigenvalues within the unit circle so that if an equilibrium

within the unit circle so that if an equilibrium is stable in

the synchronous algorithm, then it is also stable in the

asynchronous algorithm, so that in the asynchronous algorithm

the threshold Zevel of bias for stability is reduced. This

fact can also be proved in the general case where n > 2. The

extent to which asynchronous operation improves the stability

properties of the algorithm is not clear as yet. From worked

out examples, however, it appears that the reduction in threshold
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bias ZteveZ is substantial and even when the equilibrium is un-.

staletheassciaedoscillatory behavior is not nearly as

v.io lent asin tesynchronous algorithm.

The oncusio isthat asynchronous operation involves a

form of averaging that has a pronounced beneficial effect on

the dynamic behavior of the algorithm. Since it is also easier

to mechanize than synchronous node broadcasting, it should -

clearly be adopted in the routing algorithm. Asynchronous

operation can also be combined with averaging over several

past routings by using a fading memory scheme for measuring

average delay whereby the delays of most recent packets are

weighted more heavily over previcus packets. A scheme of this

form is easy to implement and from preliminary analysis along

the lines of this section, as well as computational examples

it appears to be most suitable in terms of improving the dynamic

behavior of the algorithm.

A.4.3. Time-Varying Input Statistics and Speed of Convergence

The preceding analysis was based on the assumption that

the traffic input statistics are stationary and concentrated

on investigation of conditions under which the algorithm con-

verges or diverges to an equilibrium. When input statistics

change with time, the performance of the algorithm depends

strongly on its speed of convergence. Roughly speaking, the

algorithm should converge faster than the input statistics

change in order to be able to track well the time-varying

equilibrium. The speed off convergence of the algorithm depends

on the value of Yfor the first case examined in this section,

and on the value of the maximum eigenvalue modulus of the cor-

responding matrix in the other cases. The smaller this value is,
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the f'aster the algorithm converges. Thus it can be seen that

large values of' bias and greater degrees of' averaging not

only improve the stability properties of' the algorithm but

also enhance its speed of' convergence. On the other hand, an

algorithm with large degree of' averaging utilizes heavily delay

inf'ormation that is obsolete in a time-varying input statistics

context. These two f'actors tend to counteract each other and

the perf'ormance of' such algorithms in the presence of' variations

of' input statistics is as yet unclear. Computational results

provided in a subsequent section indicate that by increasing

the degree of' averaging one does not necessarily diminish the

speed of' response to a sudden change in input traf'fic.

A-67



! rI

I
A.5 EXTENSIONS OF THE CONTINUOUS MODEL

The extension of the continuous node model of the preceding

section to the case of an arbitrary network is quite straight-

forward and will only be sketched in an informal manner. Con-

sider first the case of an undirected network with a single

destination, and let r be the input density function mapping

points on the undirected links of the network to the nonnegative

real numbers. The meaning of r again is that given any interval

I on a link the input originating at this interval is the

integral of r over I. One may view r as L separate functions,

where L is the number of undirected links, one for each link.

We assume that each of these functions is piecewise continuous.

In order to consider notions of length we associate with each

undirected link (i,l) two directions i - 1 and 1 - i. A length

function 6 is a function which assigns to each point on an un-

directed link (i,l) two nonnegative numbers, one associated with

the direction i - 1 and the other associated with the direction

1 - i. We assume that & is piecewise continuous on every link in

each direction. The meaning of 6 is that given any two points on

a link (i,l) their distance in the direction i - 1 is the integral

between the two points of 6 as defined in that direction. The

distance in the opposite direction 1 - i is defined analogously.

Similarly, we can consider paths between points on possibly

different links and define their length in one or the other

direction.

We now associate to a given length function 6 a shortest

path of every point, and an associated routing. To simplify

matters, we assume that 6 is everywhere positive. This is

actually a very mild assumption as will become evident from
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what follows. Given any point we consider the collection of

paths to the destination and-their associated distances specified

by the function 6. A path of minimum distance is referred to as

a shortest path from the point to the destination and the cor-

responding distance is referred to as the shortest distance of

the point to the destination. The routing corresponding to 6

is the set of points for which there are more than one equidis-

tant paths to the destination. A routing is said to be regular

if it does not contain any nodes of the network (in the ordinary

sense), otherwise, it is said to be singular.

Given the function 6, a shortest path of each point and the

corresponding routing can be constructed in a simple manner

along similar lines as for usual networks. We first construct

a shortest path tree for the network in the usual manner by

using as (directed) link lengths those specified by the length

function 6. (The length of the directed link (il) is the

integral of 6 along (i,l) in the direction i - 1). This gives

us a shortest path and the associated shortest distance for

every point on the shortest path tree including all the nodes

of the network. A shortest path for points on links that are

not part of the shortest path tree can be obtained as follows:

Let (i,l) be a link that is not on the tree. Let Di and

D be the shortest distances of nodes i and 1. The shortest

distance of a point t on (il) is

D(t) = minI Di + 6 1 i(T)dr, D1 + f iI(T)dT (A.38)

t t
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4

where 61i is 6 in the direction 1 - i and 6 is 6 in the direc-

tion i -+ 1. It can be seen that the routing corresponding to 6

is regular if and only if each (ordinary) node of the network

has only one shortest path associated with it. If a routing

is regular than every one of its points lies in the %:iterior"

of some link. In what follows, we restrict ourselves to regular

routings thereby considerably simplifying the analysis. Notice

that the preceding construction shows that a routing (reguZar

or not) consists of a finite number of points. The number is

equal to the number of undirected links which are not on the

shortest path tree.

Given a shortest path "tree" in the generalized sense de-

scribed earlier we can define the flow corresponding to it.

At each point, say t, of a link (i,l) there are two flows to

consider (one of which is zero in the single destination case);

the flow in the direction i o I and the flow in the direction

1 - i. Each is defined in the natural way by integrating the

input density function r over the portion of the network that

lies "upstream" from the point t, i.e., over the set of points

the shortest paths of which meet t on their way to the destina-

tion. Notice that at the finite number of points which form the

routing, the flow is zero in either direction.

Suppose now we are given a monotonically increasing, con-

tinuously differentiable function d mapping flow into the

positive numbers. Given a shortest path tree corresponding

to a length function 6 with routing Y we can define a new

length 6 which assigns to points t in any one of the two

possible directions the length T(t) = d[f(t)] where f(t) is

the flow at t corresponding to 6 in the appropriate direction.

The corresponding routing is denoted Y.
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We are now in a position to define an algorithm similar to

the one of the previous section. Given a length function So

and a corresponding routing Y0 , the next length function is

61 =0 with corresponding routing Y, = Y0 . Similarly, we

define 62 and Y 2 , and, for all k, 6 k and Yk'

We say that a routing Y* corresponding to a length function

6* is an equilibrium routing if * = P and - Y*.

Given a regular equilibrium routing Y ={y*,y*,-..,y*}

consider for J = 1,2,...,n the undirected link (i3ll) con-

taining y* and the two shortest paths from y to the destina-

tion. A simple but fundamental observation is that these two

paths meet at some point thereby forming a ring of the type

considered in the previous section. For j = 1,2,-.,n we

parameterize points on the ring containing y* by the number

in [0,1] going from smaller to larger numbers as we traverse

the ring in the counterclockwise direction similarly as in the

previous section. Thus points v. on the link (ij.lj) can and

will be identified by the number in [0,1] specifying their

position on the ring corresponding to y*. It is easy to see

now that, given Y*, any collection Y - {yl,y2,-'',y n} such

that yj lies in the interior of (ij,lj) specifies a flow fy

through each point in the network that follows the (ordinary)

shortest path tree corresponding to 6* and Y*, and on each

link (iP1l3 ) it separates in the two opposite directions at

the point yj. This flow defines a length function 6y via the

relation 6y(t) - d[fy(t)] which in turn yields in the manner

described earlier a shortest path tree and a routing denoted

by g(Y). It is easy to show (using the regularity of Y*) that

if Y is sufficiently close to Y* then the (ordinary) shortest
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path tree corresponding to Sy is the same as the one corresponding

to Y* and that the elements of the routing g(Y) lie on the links

The algorithm described earlier can now be redefined as

= g(Yk). (A.39)

The definition is local within a sufficiently small neighborhood

of Y* and is associated with the (ordinary) shortest path tree

corresponding to Y* and the associated parameterization of the

ring subnetworks containing the links (i ,l ).

Similarly as in the preceding section, we say that the

equilibrium Y* is (locally) stabZe if there is a neighborhood

of Y* (defined in terms of the parameterization of the rings

associated with Y* as discussed earlier), such that the sequence

{Y}k generated by (A.39) is well defined and converges to Y*

for every choice of YO within this neighborhood.

In order for Y* to be stable it is sufficient that the

n1n matrix gY*) be defined and have all its eigenvalues within

the unit circle. The computation of ag(y*) is straightforward

along the lines of the preceding section. Each diagonal term

ag i is given by the expression

a yJ

g ) A adf+(Y* T)l dr + f d~ f(Y*.T)] dT (A.40)
ayj 2d(O) f af f

A-7
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a gi(Y*)
Each nondiagonal term -Y) if given by the same expression

Jad

except that the integral of f is taken over the portion of

the ring corresponding to yj that overlaps with the ring

corresponding to y V If the rings corresponding to y and y

do not overlap then

agi(Y*)
=0.BY4

It is interesting to note that again it is necessary that the

bias level exceeds a generically positive threshold level in

order for Y* to be a stable equilibrium. This level equals

the maximum modulus of a matrix having as entries the inputsad

at Y* times a global measure of id divided by two similarly

as in the case of Sec. A.4. We note that a similar analysis

can be carried out for averaged versions of the algorithm, and,

as in the ring case, it appears that averaging can result in

substantial improvement in dynamic behavior.

It should be clear that the multidestination case admits

a very similar treatment. The algorithm and associated equili-

bria are defined in the same manner as in the single destina-

tion case by associating each destination with a routing.

Again, the stability criterion can be expressed in terms of

the eigenvalues of a matrix with entries similar to those of

the single destination case. We will omit the details. An

interesting feature of the multidestination case is that the

flow at an equilibrium or any routing for that matter is not

necessarily zero so that in place of 2d(0) in the denominator

of (A.40) we have the sum

A-73



d~f+(y*)] + d~f-(y*)]
I

where f+(y*), f-(y*) are the flows in the two directions at
y*. This indicates that a stable equilibrium is possible even

at zero bias level.
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A.6 FINITE NODE RING NETWORKS

Consider a ring network with N nodes arranged in a ring as

shown in Fig. A.34 . We denote

r, rN-1
r2 1 N / rN-2

r i _1  r i  r i + 1

Figure A.34

the nodes by 1,2,---,N and consider the case where N is the only

destination. The traffic input originating at node i (and

destined for N) is denoted by ri. Similarly, as in Sec. A.3,

the routing Ri, i = 1,---,N is the one for which all nodes J < i

route their traffic in the clockwise direction and all nodes

J > i route their traffic in the counterclockwise direction.

Given a routing R., the flows on each undirected link

(J-l,J) in the clockwise and counterclockwise direction are

denoted by f-(i) and f+(i) respectively and are given by
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(0 if i < j

ri_.+ 2 +. r if J < i

ri+rl+l+.-.+rj-1  if i < J

f +(i) -

0 if J < i.

We are given a deZay function d(f) mapping flows to the
nonnegative real numbers which is assumed monotonically increas-

ing and continuously differentiable. Given a routing Ri we

define the distances D-(i,j), D +(i,j) of node J to the destina-

tion in the counterclockwise and clockwise direction respectively

by

D ij)=jd[fj~)
2£-I

DN +

D+(i,J) I d[fl(-)].

We consider a shortest path algorithm whereby given a

routing Ri the next routing is Rn where the node n is such

that

D-(i,j) > D+(i,j) for J > n

+D'(i,J) < D (i,j) for J < n,

except if D-(i,i) - D +(i,i) in which case the next routing is Ri.
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Thus given an initial routing RO the algorithm generates suc-

cessive routings R1,R2,.--,Rk,Rk+l,. -, via the procedure Just

described.

The following proposition shows that if d(O) = 0 and the

first two routings are different, i.e., RO # R1 then the

algorithm ends up oscillating between the two extreme routings

R, and RN as described in Example 1 of Sec. A.3.

Proposition: Let d(0) = 0 and assume that RO # R1. Then there

exists an index k such that for all k > k either Rk = R, and

Rk+l = RN or Rk = RN and Rk+l = R1 .

Proof: Let Ri be a routing and assume that the routing sub-

sequent to Ri is Rn with n # i. For concreteness assume that

n < i. We will show that either i = N or else the routing

subsequent to Rn is Rj with J > i.

If i # N, then since Rn is the routing subsequent to Ri

we have

-(i,n-1) < D++(,n-1) (i,i). (A.41)

We also have

D +(i,i) < D +(ni) (A.42)

with equality only if rn - rn+ 1 = - 1 = 0, and

D-(n,i) < D-(i,n-l) (A.43)

with equality only if rn = rn+l = =r_ 1 = 0.
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From (A.41), (A.42), and (A.43) we have

D + (n,i) > D+ (i,i) > D-(i,n-l) > D-(n,j)

so finally

D +(n,i) > D-(n,i).

It follows that in the routing Rj which is subsequent to Rn,

node i will switch his traffic to the clockwise direction so

that J > i.

We can show using a very similar argument that if n > i

then either i = 1 or else the routing subsequent to Rn is R

with J < i.

Thus we have that the number of nodes that lie between

two successive routings is increasing at each iteration if

none of these routings is R, or RN. On the other hand, if

the current routing is R, or RN, then the next routing will

clearly be RN or R, respectively. This proves the proposition.

Q.E.D.

Notice that, if d(O) = 0, the situation R0 = RI can only

occur if D- (i,i) D+ (,i) where i is the node for which

R- R . Thus, if we add any e > 0 to any one of the node

inputs we will have RO # RI and the algorithm will again end

up oscillating between R1 and RN.

We now turn to consideration of various notions of equili-

bria and stability. We say that R is an equilibrium routing ifi

d(ri 1 )+d(ril+ri 2 )+'''+d(ril+'''+r )<d(0)+d(ri)+d(ri+ri+ )+ ' ' '+

+d(ri+..+rN-l) (A.44)
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and
d(r i)+d(r i+r i+l )+'''+d(r i+'''+rN-l )<d(0)+d(r i-l )+'''+d(r i-l +'''+r,)(.5

(A.145)

or equivalently if

D-(i,i-1) < D +(i,i-l)

and

D+(, i ) < D

It follows from this definition that Ri is an equilibrium routing

if and only if it repeats itself via the shortest path algorithm.

We say that a node i is an equilibrium node if

d(O)+d(rli-1)+..'+d(r l+'-.+r,)<d(r i)+d(r i+r i+l )+-''+d(r i+---+r N-1 )

(A.46)

and

d(O)+d(ri+l)+d(ri+1 +ri+ 2 )+'''+d(ri+l+*''+rN-l)<d(ri)+d(ri+ri-l)+...

+d(ri+...+r,) ,  (A.47)

or equivalently

D-(i,i) < D+(i,i)

and

+
D +(i+l, i ) < D-(i+l,i).
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In words, a node i is an equilibrium node if he switches his

traffic in both cases where the routing is Ri and Ri+1 .

The examples of Sec. A.3 show that both equilibrium routings

and equilibrium nodes are of interest from the point of view of

dynamic behavior.

We say that an equilibrium routing Ri is locally stable if

routing Ri+1 generates either RI or RIl through the algorithm, T

and routing Ri_1 generates either Ri or Ri+1 . We say that an

equilibrium node i is locally stable if routing Ri generates

Ri+ 1 via the algorithm, and routing Ri+1 generates Ri. The

definition of local stability is based on the idea that when

the algorithm starts "close enough to equilibrium" it should

not lead to a "growing" oscillation.

Consider an equilibrium routing R In order that it be

stable we must have that node (i-2) will not switch its traffic

when the routing is Ri+1 , and node (i+l) will not switch when

the routing is Ri_1 . The first condition can be expressed as

3d(O)+d(ri+l)+-''+d(ri+l+04*+rN-l)>d(ri+ril +ri_2 )+...

+d (rli+r il +-.+r,) (A.48)

while the second condition can be expressed as

3d(O)+d(ri 2 )+--.+d(ri 2+*..+r )>d(ri l+ri+ri+ )+...

+d(r +r +-..+r (A.49)

Inequality (A.48) can be written by using the mean value theorem

as
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2d(O)+d(r i)+d(r i+r i+i )+..+d(r i+r i+ + *-+rN-1)

[ d f ) ad(? 1~) ad(f N-1) 1

> d(r i- )+d(r i- +r 1 2 )+...+d(r i- 1+***r1 )-d(r i 1 )

+r i [ad(1-2 ) .. *. + a f ](A.50)
where ?I,'00 N-1 are some flows satisfying

r iil+**+r, rf ri +r iil+..+r,

r 1.1 +r i-2 : i-2 I r +r,_1 +r 1 2

Using (A.44L) and the fact d(r i1l) > d(0), it follows that (A.50),

and hence also (A.4~8) will be satisfied if

d(0) > r~ i N- (A~.51)

Similarly, inequality (A.4L9) can be written as

2d(0) + d(r iil) + d(r i 1l+r 1 2 ) + **+ d(r iil+..+r 1)

f dir-1  3d(i 1-)3d
+ i2~ +ad(? 1

aril af af -

±r.iad(f +l) 9 df N-(152
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where f,--.,fN-1 are some flows satisfying

12 r< f < r il+r_2 +'''+r,

-1 - - - i- - -1

0 < i-i -ri_ 1

ri+ri+l : i+l < ri-l+ri+ri+l

ri+'''+rN-i: fN-I : ri-l+ri+**+rN-i"

Using (A.45) and the fact d(ri) > d(O) it follows that (A.52),

and hence also (A.48) will be satisfied if

d )Ir i 1  N-1 ad(f )

2 z fZ=i
(A.53)

Conditions (A.51) and (A.53) represent sufficient condi-

tions for local stability of the equilibrium routing Ri. Notice

chat they have a very similar form to the stability criterion

(A.21) for the continuous ring model.

Consider now an equilibrium node i. In order that it be

stable, we must have that node (i-1) will not switch its traffic

when the routing is Ri+l, and node (i+l) will not switch when

the routing is Ri_. The first condition can be expressed as

2d(O) + d(ri+I) +.-.+d(r i+l+..+r ) > d(r i+ri -l )+ - . .+d (r i + **-+ r 2 )

(A.54 )
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while the second condition can be expressed as

2d(O) + d(ri-l)+-..+d(ri-l+..-+rl) > d(ri+ri+l)+...+d(ri+...+rN-l).

Inequality (A.54) can be written as (A.55)

d(O) + d(ri)+d(ri+ri+l)+..-+d(ri+..*.+r N) -

ad(ri) ad(?i I) ad(±N-l)1
i  f + f +'f+ Sf

> d(r i _I + -- d(r i-l+ .-+r,)+r l If _ ) + ''+ Dd f

(A.56)

where N are some flows satisfying

ri-l +''+r < f I < ri+ri-l+'''+r,

ri-1 :S fi-1 S ri+ri-1

o <fi < r i

- -- - - ir i+l+'''+r N 1 I ?N-1i i ri+ri+l+'''+r N-l•

Using (A.46) it follows that (A.56), and hence also (A.54) will
be satisfied if

r NI- ad(f)
d(O) > If (A.57)
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Similarly, inequality (A.55) can be written as

d(Q) + d(ri)+d(ri+ri l)+...+d(ri+--*+r,) -

[ad(fi+l) ]d(rN-)
> d(ri+l)+'''+d(ri+l+0.+rNl)+ri[ a' +''+J

(A.58)

Using (A.47) it follows that (A.58 ), and hence also (A.55) will

be satisfied if (A.57) holds.

Thus, local stability of an equilibrium node is guaranteed

if (A.57) holds. Notice again the similarity with the stability

criterion (A.21) for the continuous ring. This similarity

provides confidence in employing results for the continuous

model to predict behavior in the discrete model.

It is possible to obtain at least some results relating to

averaging algorithms for the finite node ring model. The analysis

can become quite complex, and this is even more so when an effort

is made to extend results to the arbitrary topology and multiple

destination case. It appears, however, that the conclusions

reached regarding averaging algorithms for the continuous model

are at least qualitatively valid for the finite node model.

This conjecture is reinforced by available computational experi-

ence, some of which we now present.
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A.6.1 Computational Results

We experimented with a 30-node ring network having node 30

as the single destination. We considered a synchronous and an

asynchronous algorithm with evenly spaced delay broadcasts. A

fading memory scheme was used to average delays corresponding

to the present and past routings. In this scheme "delays" are

computed at each iteration by means of the formula

[New Delay of Link (i,t)] = B[Old Delay of Link (i,Z)] +

+ (l-8)(0.05) 3 [Current flow of (i,j)]4 .

(A.59)

The scalar 8 is referred to as the decay factor and takes values

in the interval [0,1). Large values of 8 imply a greater degree

of averaging with delays corresponding to past routings. The

expression (0.05)ECurrent flow of (i,t)]' represents our choice

for delay function. It rises rapidly as flow becomes larger

than 20.

In the synchronous algorithm all nodes "report" their link

"delays" simultaneously at each iteration and all of these

delays are used in the shortest path computation that deter-

mines the new routing.

In the asynchronous algorithm nodes compute their "delays"

at every iteration by using equation (A.59). However, they
"report" their link delays only every 29th iteration, with

node 1 reporting at the 1st iteration, node 2 at the 2nd

iteration and so on. Thus, for example, at the 30th iteration

node 1 will report his link "delays" and the new routing will
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be computed on the basis of the delays reported by node 2 at

the 2nd iteration, by node 3 at the second iteration, and so

on. This procedure is patterned after the envisioned asynchro-

nous operation of the algorithm in the ARPANET.

The shortest path computation and corresponding routing

updating is performed by using link lengths D it, given by

D it Bias + [Most recently reported "delay" of (i,t)].

The bias has been chosen to be either constant or to depend on

most recently reported delays by means of the formula

Bias - 0.02 x (Sum of most recently reported "delays"
over all links).

(For the polynomial expression used to represent delay a linear

expression for bias seem appropriate. For more realistic delay

curves a quadratic expression for bias may prove more suitable).

The initial routing in all runs was taken to be R15 and

all initial reported "delays" were taken to be zero. These

initial conditions correspond to the situation where there is

no traffic input to the network for a long period of time and

there is a sudden change to a nonzero traffic input pattern

while the algorithm is at the mmn-hop routing R,,. Thus, the

computational results do not only show the stability properties

of the algorithm but also provide an indication on how fast the

algorithm responds to a sudden change in input traffic condi-

tions. It is interesting to note that the results indicate

that the algorithm with high degree of averaging (asynchronous
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operation 8 *0.99, 8 -0.995) responds as fast or even faster

to the input traffic change than the algorithm with low degree

of averaging (6 - 0, a - 0.98) despite the fact that it utilizes

more heavily delay information from the preceding input pattern.

This can be attributed to the faster speed of convergence result-

ing from high degrees of' averaging.

Case 1 (Constant Bias): Here the inputs are

r, **r. 5, r. * r 2 9  1

We have calculated that for the synchronous algorithm with no

averaging ($-0) the threshold level of bias for stability is

approximately 24. We have operated the algorithms with levels

of bias of 1 and 8. Tables A.1 and A.2 provide sequences of

routings generated for a variety of decay factors. A number

such as, for example, 15 means routing R,,. We have grouped 29

iterations of the asynchronous algorithm in a single entry by

providing the "minimum" and the "maximum" routing during each

group of 29 iterations. Thus, for example, an entry 10/18 in
the table means that during the 29 iterations represented by

the entry the routing was between Rand R,,, In most cases,

the routing in the asynchronous algorithm changes slowly so

that this method of reporting routings provides an adequate

measure of algorithmic performance.

The computational results confirm the theoretical predic-Itions based on the continuous model analysis. The best synchron-
ous algorithm from the point of view of stability is the one

with decay factor 0.9. The synchronous algorithm with
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decay factor 8=0.5 is inferior to the asynchronous I
schemes in which oscillatory behavior is considerably less pro-

nlounced for a wide variety of choices of decay factor. Notice

that the decay factor in the asynchronous algorithm is applied

at each iteration so that a decay factor $ in this algorithm is

comparable to a factor 829 in the synchronous algorithm. Notice

that the choice of decay factor (and hence the degree of averaging)

affects much more the synchronous algorithm than the asynchronous.

Case 2 (Variable Bias): Here the bias was chosen according to-

the formula

Bias = 0.02 x (Sum of most recently reported "delays" over all
links).

The results for a variety of network input patterns appear in

Tables A.3 through A.5. Notice that identical routing sequences

would be generated by the algorithm if all node inputs were

multiplied byj some positive constant A. This is true because

both node "delays" and bias would be multiplied by the same

constant (X4) leaving the shortest path computations unaffected.

In the asynchronous algorithm with $ - 0 occassionally there -

appeared a single routing in a 29-iteration group which was

significantly different than the others in the same group. These

iterations are marked by a * in Tables A.~4 and A-5. It appears

that the variable bias scheme combined with asynchronous operation

and averaging gives stable and congestion sensitive algorithmic

performance for a very broad spectrum of traffic input patterns.
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7. CONCLUSIONS

The analysis conducted thus far suggests the following

conclusions for the SPF algorithm with link lengths chosen as

D iz=Bias + Average Delay per packet in link (i,2Z)

where the bias value is the same for every link.

a. To each average input traffic pattern and each bias

value there corresponds an "equilibrium".

b. For a fixed input traffic pattern, a high level of bias

yields an equilibrium near the mmn-hop routing while a low level

of bias leads to an "unbiased" equilibrium where delay distances

to the corresponding destination are nearly equal along two

paths. The unbiased equilibrium is sensitive to congestion

even though it does not minimize total delay.

c. For a fixed input traffic pattern, there is a threshold

value of bias (generically positive) above which the correspond-

ing equilibria are stable and below which the corresponding

equilibria are unstable.

d. The threshold bias value increases sharply as the level

of traffic input rises and congestion develops.

e. Averaging delays over several updating periods and

updating link delays asynchronously does not affect equilibria

but significantly reduces the stability threshold level of bias

thereby stabilizing equilibria which otherwise would be unstable.

Even when the algorithm is unstable, its dynamic behavior seems

to be dramatically improved by averaging and asynchronous operation.
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if. The length of the updating period does not affect signi-

ficantly the dynamic behavior of the algorithm. It does affect

the accuracy of measured average delay arnd more importantly it

affects the speed of algorithmic response to a sudden change in

traffic input pattern.

g. There are no obvious ways to choose a different bias

for every link in an effort to improve the performance of the

algorithm.

The preceding conclusions represent the main trends in

dynamic behavior. In an actual operating environment, random

effects and deviations due to model simplifications are to be

expected.

Based on the conclusions reached we suggest the following

design guidelines as a basis for experimentation.

a. It appears that asynchronous updating of link delays

and some form of averaging of the effects of several successive

routings is definitely better than synchronous updating without

averaging. A fading memory scheme together with asynchronous

and evenly spaced node broadcasts appear most suitable.

b. A bias value should be added to each link delay. It

should probably be the same or nearly the same for every link.

One simple possibility is to keep it constant at all times

at a fairly high value which should be experimentally determined.

Another more complex -ossibility is to make bias a function of

,2urrent total delay (defined as the sum of current delays over

a*! ::nks). The function can be taken to be piecewise constant

4:-- r~ieersdetermined experimentally. Adding a high bias



to links with high delay and low bias to links with low delay

is probably a bad policy and tends to aggravate oscillatory

behavior.

c. The length of the updating period and the level of

threshold change for delay updating do not seem to significantly

affect dynamic behavior. Thus they should probably be chosen

on the basis of other considerations.

There are several areas where further analysis should be

fruitful. It is clear that a damping mechanism is necessary

to stabilize the SPF algorithm such as provided by addition of

bias and employment of averaging. The extent of damping has

not as yet been adequately quantified and further analysis can

clarify the situation. It is also possible that other effective

damping schemes will be discovered by further analysis, and these

may improve dynamic behavior and sensitivity to congestion.

It is to be expected that on-line simulation of the algorithm

on the ARPANET will reveal interesting new phenomena clarifica-

tion of which will be enhanced by further analysis. The present

report is the first attempt to quantitatively analyze the dynamic

behavior of shortest path routing algorithms and should provide

a starting point for considerable further research in this area.
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