
T 'AD-AIR6 245 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION SY--CYC F/B 9/2

MULTIPLE MICROPROCESSOR SYSTEM (MMS3 DESIGN STUDY. VOLUM4E Il.dU)p NI MAR 80 F3602-7-C-0II4
UNL7 RADC-TR-80-3OL3 ML

III ~ -L 1 r ~__ 2.5

L _ 1112.2

11011112=
111111L25 1.4l~ 1 16.6

PM!ROCOPY RUSOLUIc, T[SI CHART
NAII(N, MPIA 1 P. IANIPIR)(.h A

LEV
"KTo= o III (of four)

Muuuh 1960

MULTIPLE MICROPROCESSOR SYSTEM
1-C (MMS) DESIGN STUDY

Harris Corporaion

cr Government CoinctosSystems Division ELECTE

APROVE OR PUBLIC EULIASI;. DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
j Air Force Systems Command

Griffiss, Air Force Base, New York 13441

80 6 30 18111

This report has been reviewed by the RADC Public Aff airs Office (?A) m#
is releasable to the National Technical Information Service (NTIS). At OWI
It will be releasable to the general public, Including foreign nations.

RADC-TR-80-33, Volume III (of four) has been reviewed and is approved
for publication.

APPROVED:

MICHAEL A. TROUTMAN, lLt, USAF
Project Engineer

APPROVED:-

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER:

JONP USS
Acting Chief, Plans Off io.

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISCA) Griffiss APB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

4 *

UNCLASSIFIED -

SECURITY CLASSIFICATION OF THIS PAGE (Wlhmn Data Entered) -1

REPORT DOCUMENTATION PAGE BEFORE COPEIGFORM
1. REORT UMBE K- . GOVT ACCESSION NO. 3. RECIPIENT'$ CATALOG NUMBER

:i A TR-80-33, Vol III (of four) A - / 1L
4.- TTLE and ubtile)1. TYPE OF REPORT A PERIOD COVERED

f TIPLE*CROPRCESSOR J;STEM (nS1 Final Technical Report
ESIGNS, yS. PERFORMING ORG. REPORT NUMBER

0-yp~ ~JII N/A

Harris Corporation

Government Communications Systems Division ("1,J5 F3P6#02-78-C-Qll4-
9. PERFORMING ORGANIZATION NAME AND ADDRESS -1. PROG1RAM EL-EMENT, PROJECT. TASKC

11-11AREA a WORX UNIT NUMBERS

Government Communications Systems Divisi~p 63728F 1 jL,
PBox 37, Melbourne FL 32901 /6) 252)0 104

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE/f~) March 1980
Romie Air Development Center (ISCA) I) 1. NUMBER OF PAGES

_________________AFB_____NY___13441____ 36
14. MONITORING AGENCY NAME &ADDRESS(f diff., -I from Controlling Office) IS. SECURITY CLASS. (of this report)

Same (~ $ iP~UNCLASSIFIED
Sam /n LD 5 ECL ASSIFPIC ATQN/DOWNGRADING

N11 CHEOULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. '1 4~,

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from, Report)

Same

IS. KEY WORDS (Continue an reverse side if necessary and Identify by block number)

multiple microprocessors microprocessor
emulation distributed architecture
computer architecture performance measurement
architecture evaluation total system design

'1ABSTRACT Conlfnue on reverse side If necessary and identify by block number)

This is a design for a Multiple Microprocessor System (Mt S) to be built as
part of the System Architecture Evaluation Facility (SAEF) being developed
at RADC. The MMS was designed to be used in the modeling of a wide range of
multiprocessor configurations for the purpose of evaluating their suitability
to unique Air Force data processing requirements.

DD ,rA,1 1473 EDITION OF INOV SS IS 09SOLETE UNCLASSIFIED 2 i~~,,J
SECURITY CLASSIFICATION OF -r414 PAGE '"*~n Data Entered)

A*4

A * ,.

TABLE OF CONTENTS

Introduction iii
Appendix A "PERFORMANCE MONITORING SUBSYSTEM" A-i

1.0 PMS GOALS/FEATURES A-1

1.1 PMS Features A-i
1.2 User Interaction A-2
1.3 Overhead A-3

2.0 PMS IMPLEMENTATION A-4

2.1 Microcode Structure A-4
2.2 Hardware Requirements A-8
2.3 PMS Detection Handled by the Memory

Interface A-9
2.4 Overhead A-10
2.5 User Interaction A-I

3.0 Summary of PMS IMPLEMENTATION A-12

Appendix B "DEFINITION OF PROCESSOR IN ANALYSIS" B-I
Appendix C "PARAMETER ESTIMATIONS" C-1
Appendix D " FUNDAMENTAL CALCULATIONS" D-1
Appendix E "DEFINITION OF AN M4S CONFIGURATION" E-1
Appendix F "MMS CONFIGURATIONS" F-i
Appendix G "GLOSSARY OF ACRONYMS AND ABBREVIATIONS" G-I
Appendix H "MMIS DESIGN MODIFICATIONS FOR COST

REDUCTIONS" H-1

1.0 S4S DESIGN MODIFICATIONS FOR COST REDUCTIONS H-i

i.i Redesign Goals and Their Effects on the MMS H-I
1.2 Design changes H-2
1.2.1 Modification of the Processing Element H-2
1.2.1.1 E-Code Language H-3
1.2.1.1.1 Effects of E-Code on the MMS H-4
1.2.1.2 Local Memory Modifications H-5
1.2.1.4 PMS Modifications H-6
1.2.1.5 MI Modifications H-6
1.2.1.6 Effects of the PE Redesign on the other NffMS

Components H-6
1.2.2 Modifications of the MM4S Bus Structure H-7
1.2.3 Modifications of Broadcast Communications H-8
1.2.4 Modification of the FCP Interfaces H-8
1.2.5 Conclusion

" ... s.1 -' .

".4
F-4~

-. 'tum.

01~ 0.

V

INTRODUCTION

This volume, Volume III, of the SAEF FINAL REPORT

contains appendicies referenced in the MS analysis and PMS

discussion of Volume I. This volume also contains an appendix

which discusses hardware changes that could be implemented to

reduce hardware cost.

: iii

APPENDIX A

PERFORMANCE MONITORING SUBSYSTEM

In an effort to make the Performance Monitoring Subsystem

(PMS) a clearly defined module this paper will be broken into

3 groups: goals/features; implementation; and a summary.

The primary purpose for outlining the goals of the PMS is to

put some reasonable bounds on the implementation. The summary

is presented to help clarify the suggested method and illustrate

how it meets the goals of the PMS.

1.0 PMS GOALS/FEATURES

The key feature of the PMS is a fully integrated

monitoring of the functions of the target system (TS) that is

being emulated and specified by the user.

1.1 PMS Features

Interactive debug

- single step

- trace

- traps

- breakpoints

- examine

- continue

Software and hardware evaluation and verification

- monitoring of I/O accesses

- monitoring of memory accesses

- monitoring of shared resource use

- monitoring of register accesses

A- 1

'I~

- monitoring of instruction execution

- dumping of contents of

- registers (includes the PC)

- memory locations

- dumping data and memory addresses associated

with a particular instruction

- traps that allow control to be returned to the

user for intervention such as modification

to the monitoring capability

- dynamic changes in monitoring

1.2 User Interaction

The two primary users on which the MMS relies are the

microcode writer and the TS user. In general these users are not

the same person. Since it seems unlikely that both users can be

alleviated of any PMS burden some reasonable limit needs to exist.

The following goals have been set on what the duties of these

users should be:

- the microcode writer cannot be expected to be

aware of what the final TS user will want tc

monitor and therefore will not be burdened

with additional coding for each line of emulation

microcode that is written.

- the microcoder is, however, aware of the

fundamental workings of the microcode and

can be expected to keep up with the place-

ment of registers, instructions, etc.

A-2

i'~ '~.pj':

the TS user is responsible for deciding

which instructions, registers, etc.

should be monitored.

the TS user specifies points of interest

before or during the run, but does not

insert any hooks or in any way modify the

microcode.

1.3 Overhead

Overhead is the affect on emulation efficiency caused

by halts in pseudo-time. Since emulation efficiency is the

ratio of pseudo-time to wall time, any operation that causes

pseudo-time to lag behind wall time will cause a degradation in

the efficiency of the emulated system. When a processor is

checking PMS events or dumping data it must halt its pseudo-time

causing that processor to fall behind and possibly cause a

system halt. All of the overhead caused by performance monitor-

ing cannot be eliminated, but PMS overhead should be proportional

to the amount of performance data that is being collected. The

following are the goals placed on the overhead caused by the PMS:

- with no PMS data collection (PMS turned off)

there will be no overhead.

- when PMS is turned on there will be no addi-

tional time required to decide if an item is of
i

interest.

* -with PMS turned on and item of interest de-

tected the overhead concerned with dumping

• : ,'! ' " ' , A -3

of the data will be proportional to the

amount of data being collected.

2.0 PMS Implementation

This major paragraph concerns itself with the actual

implementation of the PMS. The major categories that it breaks

down into are:

- the manner in which the microcode will

be written

- hardware requirements

- monitoring that will be handled outside

the PE

- overhead

- user interaction

2.1 Microcode Structure

The implementation of PMS event detection in a PE

is closely tied with the instruction decoding method chosen

for the PE. The decoding process will be highlighted here for

explanatory purposes, and is discussed in further detail in

the PE conceptual design description contained in the main body

of the report.

Instruction decoding is implemented within the PE

with a CASE statement in a manner similar to that used in the

SMITE HDL. The unique feature of the MIS implementation is

that the CASE statement is implemented in a single (possibly

two) micro instruction. The hardware required for this

implementation consists of a high speed shift and mask unit

to extract a bit field from the instruction, a concatenation

unit to append additional bits to the selected bit field, and

A-4

L, "-.

an internal memory (IM) addressed by the bits obtained from the

concatentation unit. For instruction decoding the IM will

conta inte addre n control sto e for each microcode
routine

callable from the CASE statement. This address will be routed

to the control store sequencer for execution during the next

micro instruction. A flow diagram of this hardware process is

shown in Figure 1. Note that a unique IM location is used for

each step of the instruction decoding (op code cracking) pro-

cess. The IM contains the starting address of a control store

routine to execute each decoded action (i.e., instruction).

Additional width will be added to the IM for PMS purposes, as

described later. This will take advantage of the fact that a

unique IM location is used for each decoded instruction.

Decoding of register select fields within a micro-

instruction is done in a manner similar to that used for instruc-

tion decode. A flow diagram of this process is shown in Figure

2. In this case IM is used to emulate target system CPU

registers so that data out from the IM is the contents of an

emulated CPU register. This data is routed to the ALU or other

destinations as needed in the instruction execution process.

Note again that a unique IM location is used for each target

system register that is being emulated including the program

counter register.

The IM within the PE is also used for an additional

purpose. The PE executive (PEXE) provides the link between

instruction emulation code and I/0 emulation code, and also be-

tween I/0 emulation code and micro interrupts such as hardware

A-5

i.#

:~*,.

INSTRUCTION
REGISTER

Encoded
Instruction

EndingBi..
From CS -Shift and Mask Unit

Base Address @Selected Bit $ield

iConcatenation Unit

Lookup Address

Internal Memory

CS Routine

Start Address

To Control Store Sequencer

Figure 1 -- Hardware Flow Diagram

Instruction Decode

A-6

Instruction Register

Encoded
Instruction

Start Bit: - Shift and Mask Unit
Ending Bit from CS

Base Address eld
From CS or ALU Field

Concatenation Unit

{Lookup Address

Internal Memory

Emulated Register
Contents

To/From ALU

Figure 2- Hardware Flow Diagram

Register Field Decode

A--

timers and IPC's. PEXE provides these links by routing of I/O

access and micro interrupts to appropriate entry points within

I/O emulation code. This routing will be performed by table

lookup within PEXE. The table lookup will be performed through

the IM/ In this case the lookup address will be provided by the

ALU and the IM will contain entry points to I/O emulation code

which will be routed to the control store sequencer for execution.

Note again that a unique internal memory location is used for

each entry point into I/O emulation code. These entry points

correspond to: I/O access by the emulated target system; micro

interrupt requests by an I/O device; micro interrupt grants,

and similar I/O activity.

2.2 Hardware Requirements

Some additional bits will be added to the IM to

turn PMS on or off. The additional hardware is primarily a

small group of "flag bits" that indicate such things as "Is PMS

being monitored for this item?"; "Should any resulting data be

dumped?" or "Should the PC be collected?". At this point the number

of these bits is not determined, see example below for clarity.

PMS IM
Flag Bits Data Word

The ability to do this type of performance monitoring

requires the additional bits in the IM word and thus requires

additional hardware. The benefits to PMS that can be achieved

using this method (which will be discussed shortly) are sub-

t.-8

stantial reasons for the additions.

The actual PMS "checking" will cause no overhead

because the address that is accessed in the IM will be read

whether PMS is activated or not. If the "PMS collection flag"

is set an interrupt to PEXE occurs and TIEX executes the dump-

ing of the associated event code. If associated data is to

be dumped that is handled by PEXE also. The overhead for doing

these things is small. The actual "check" for PMS enabled

is done in hardware and does not require any routing to PEXE.

2.3 PMS Detection Handled by the Memory Interface

and Shared Resource Controller

Two particular kinds of monitoring will be handled

differently. The most abcious monitoring point that has not

been discussed is memory access, this will be handled in the

memory interface (MI). When a memory access is sent to the MI

a check is done to decide which block of memory is being refer-

enced. The decision is made in the manner "is the referenced

location greater than or equal to memory location X and less

than or equal to memory location Y?" All of memory will be

broken into segments of locations such as "A to B", "C to D",

etc. The user will decide the starting and ending locations of

each block and if the two locations are set equal then the

block represents a particular location. Along with the be-

ginning and ending addresses of each block are also a group

of PMS flag bits just as they were in the IM of the PE. One bit

indicates that accesses to the memory block (or location) are

important to the PMS. If this bit is set an interrupt to PEXE

occurs and the rest of the operation is handled as it was for

A-9

,o..

monitoring done in the IM.

The monitoring of shared resources is handled in

the shared resource controller (SRC). The SRC is a PE itself

with an IM as in the cases mentioned earlier. The arbitration

schemes are implemented in microcode and reside in the control

store of this PE. The routing addresses to these arbitration

schemes are located in the IM. Additional bits at each IM

location act as PMS flags. They are checked in the same manner

as in the other PE's. The PE used as the SRC has its own PEXE

which is interrupted when a monitoring point is encountered.

The entire operation is identical to the one for all the other

PE's.

2.4 Overhead

In this implementation, there is no overhead con-

cerned with the "checking" for a PMS point of interest. A

flag is set in the IM that is checked by hardware when that

location is read. If the flag is not set no degradation occurs

in emulation efficiency. This is a very important point because

it implies that PMS can be activated and assuming none of the

PMS events occur there is no degradation of emulation efficiency.

This is appropriate in many cases when the user is only con-

cerned with specific events and not all occurrences during the

run. For example, the user wants to monitor "out port 7" but

not all "out port" instructions. The checks are invisible to

the user, so PMS does not effect the run unless one of these

events occur, at which point the user is willing to give up

the time for that collection.

A-1O

" i ' :: " r ll I II 1' lllll I I['']'111 " .. . '" " " . . . - | --:. ..

There is some overhead involved in the dumping of

"associated information", such as the contents of a memory

location, the contents of the PC, a status dump, or a trace of the

execution of that instruction. The last item mentioned here needs

more explanation. The trace may involve only a few "special"

instructions. For example, when a "test and set" instruction

is executed the data and memory accesses involved in that

instruction are important. One PMS flag is set aside to indi-

cate a need to dump all memory and register accesses with their

contents and any other actions that occurred during the execu-

tion of a particular instruction. This trace is limited to the

steps required to execute one particular instruction. The user

is not burdened with dynamic changes in collection in order to

get a partial trace, nor does the user have to decide what is

needed to retrieve the necessary information.

.S User Interaction

The user is broken into two groups, the microcode

writer and the TS user. The TS user "builds" a system with the

previously written microcode modules. Since the TS user knows

what needs to be monitored none of this decision burden should

be placed on the microcode writer.

In this implementation the microcode writer keeps

a table of the locations in the IM where registers, instructions,

etc., reside. Since the microcoder made the decision as to where

the routing address would reside in IM, this bookkeeping is a

reasonable chore for him to perform. This table, which is

necessary for each microcode module, serves as documentation

A-11

•..-. 4. .

for debug and modification purposes and as the reference table

for the PMS processor to use when locating events for monitoring.

The TS user follows a different scenario in support

of the PMS. The TS user indicates which instructions, register

accesses, etc., are important and then specifies them with the

interactive PMS definition language. The PMS processor takes

the list of events to be monitored, finds these events in IM

and sets the appropriate PMS flags.

3.0 Summary of PMS Implementation

The purpose of this section is to give a concise

look at the implementation suggested here and to show how the

features and goals are fulfilled. The PMS that has been sugges-

ted is a part of the IM of each PE including the SRC and also a

part of the MI. All PMS monitoring is done in hardware while the

decisions concerning what data should be collected and the actual

data dumping are handled in PEXE, i.e., software. The microcode

contains no modifications for PMS and the microcode writer

never has to know if PMS will be used. The TS user indicates

events of interest for the PMS but never deals with the micro-

code or the hardware.

All of the PMS monitoring features are handled

using this technique. I/O monitoring, instruction monitoring,

and register access monitoring are handled in the PE, shared

resource monitoring is handled in the SRC, and memory access

monitoring is done in the MI. When a PMS monitoring point is

detected an interrupt to PEXE will occur for the actual dumping

of data. This is the only time the PE will have to stop its

A-I12

pseudo-time, i.e. the dumping of data will be the only reason

foe efficiency degradation. When the interrupt occurs PEXE

will check all of the PMS flags and decide what data to dump.

Typically this data will be readily available at the time of

the interrupt.

Take the example of a regsiter access being monitored

and the associated data being collected is the contents of

the register and the PC. When the register is accessed the code

indicating this will be available in the IM in one of the

following ways; a separate group of bits along with the PMS

flags or just the address in IM. The contents of the register is

available in the IM and the PC is easily retrieved out of the IM

also. The ease of finding the data contrasts to searching

lists of "possible data". The amount of time necessary for

the data dump will depend on how many pieces of data are

requested.

A trap represents anotner interrupt to PEXE which

allows the user to stop the system, modify it or collect data,

and restart without the initialization burden. The user could

enter the debug mode and single step or trace the next few

operations in an effort ot clearly view system operation.

The trap is a reasonable place for the user to re-

direct the data collection. This is the TS user who had to

make all the monitoring decisions before the run. Although

several events and/or times could be set up as triggers for

dynamic changes of data collection, the TS user had to decide

A-13

T,]

what new data to collect or to stop collecting before the run.

Since this user is not familiar with the microcode or the IS

hardware, he can use the "trap" feature to allow him to look at

various registers or memory locations and make a better deci-

sion as to which events are important to the PMS.

This implementation provides complete monitoring

capabilities by allowing the TS user to monitor any event with

no limitation on the number of events. This contrasts to allo-

wing the user to set a specified number of flags (a register)

each representing a particular event (monitor word). Although

the idea is virtually the same number of flags has grown from

64 or even 128 to a number that is equal to all. possible events.

Since all of the monitoring features are covered

within the PE, the SRC, or the MI, there is no need for the micro-

coder to write any additional code for PMS implementation. The

PMS processor used the microcoder's documentation to provide

the TS user monitoring capability within the TS. The TS user

will see fluctuations in the emulation efficiency according

to the amount of performance data that is collected. Monitor-

ing points that are not accessed will not show up in emulation

efficiency. This contrasts to using software for event detection.

The overhead is almost constant with software detection because

an interrupt to the executive must occur each time a PE operation

takes place. After the interrupt, a list of events being mon-

itored must be compared with the event that just occurred. The

A-14

*1!

. : , .

problem with overhead occurs when the lists contain events

that seldom happen but must be checked when any event occurs.

The PMS implementation discussed here provides the

features stated in section 1.0. Overhead is proportional to

the amount of performance data being collected. The micro-

coder must handle documentation but does not have to write

additional code or decide what will be important for the PMS.

The TS user does not need familiarity with the microcode or

the hardware. The PMS is flexible in that all events can be

monitored, the monitoring can be changed during a run, and

associated data can be collected with any event that occurs.

A-15

'~.;~ .. :

APPENDIX B

DEFINITION OF PROCESSOR IN ANALYSIS

A processor is defined according to the following parameters:

NIPS - Average number of instructions per second

executed by the machine.

BS Bit size, width of data.

MS - The total memory space that a processor

addresses for a specific application.

II0 The frequency of I/O per instruction.

IIPC - The frequency at which interprocessor communi-

cations are performed per instruction.

IMA - The average number of memory accesses per

instruction.

ESIMP The average number of micro cycles necessary

to emulate the decode, address calculation,

and arithmetic given the rudimentary PE

parameters.

IOWF - The portion of I/O that is local.

MAWF - The portion of memory that is local.

ISMP - Variables which indicate whether the processor

has shared memory or not.

IIOC The portion of I/O that can be handled by the

IOC alone.

h IMMIO The portion of I/O that is handled by block

transfer from a disk to memory and then by

memory mapping in the PE.

B-1

APPENDIX C

PARAMETER ESTIMATIONS

RANGE
PARAMETER DISTRIBUTION MEAN TWO STD DEV LOW HIGH

NP Normal 25 15 1 64

MS Normal 64K 30K 500 48MBytes

ES Discrete P(8)-n.3

P(16)-.6

P(32)-.09

P(64)-.01

NIPS 4 Normal

BS-8 350K 200K lOOK 600K

BS-16 600K 400K 200K 1400K

BSn32 1500K 400K 800K 2500K

BS-64 1500K 400K 800K 2500K

IIPC Log Normal 10-3 Factor of Ten l0-s 10-1

(Log10 Values) -3 1 -5 -1

110 Log Normal 10-2 Factor of Ten 10- 100

(Log10 Normal) -2 1 -4 0

IMA Discrete

BS-8 2.68

BS-16 2.02

BS-32 1.36

BS-64 1.36

PUE Discrete 1

IOWF Discrete 0.95

ISMP Discrete 0-No Shared
Memory

1-Shared
Memory

Processor

MAWF Binomial0.0101
Approx.

C- 1

4 :;. .*

APPENDIX D

FUNDAMENTAL CALCULATIONS

MEMORY TRANSFER RATE

lip
MTR *PUB X Z IMA. X NIPS.

i-i

SHARED RESOURCE REQUEST RATE

NP
SRRR - PUE X E ISRR. X NIPS.

ISRR. - IIPC.i + 110. (1 IOWF) +

IMA.i (ISMP. (1 - MAWF.i)

INPUT/OUTPUT TRANSFER RATE

NP
IOTR PUB X E 110. X NIPS.

ju1

INTERPROCESSOR MESSAGE RATE

NP
IMR *PUB X E IIPC. X NIPS.

D-1

,1 i r~

9

APPENDIX E

DEFINITION OF AN MMS CONFIGURATION

The following parameters specify MMS:

MCT - The cycle time associated with sequencing

through microinstructions.

ALUWD - The number of bits wide the ALU and associated

registers in the IEU are.

BWD - The width of bits of the system data bus and

the width of the memory.

LMS - The size in bits of the local memory associated

with each PE.

MCT - The cycle time available in the memory itself.

MI - The delay time needed in the memory interface

to translate and output the correct system

address.

SCRMAX - The average maximum rate at which the SRC can

process shared resource requests.

IOPMAX - The average maximum rate at which the IOP

can process shared I/O requests and environ-

mental data calculations.

BTRMAX The maximum rate at which the bus may be run.

1t E-I1

on ec v ol 01 eeo

oh oo oe o
-E - r4 -

m. t- o t- M "

C,14
z4L 4 ~ ~

o n))) U) U)UGo) U
:k -4 0

o- tXI c o ee o %

v- tccc oc c

3c' V ~

APPENDIX G

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

BC Broadcast Controller
BCC Broadcast Communication
BIU Bus Interface Unit
CPU Central Processing Unit
CS Control Store
EE Emulation Engine
EES Emulation Engine Support
ES Environmental Simulatijn
ESMAU Emulated Shared Memory Arbitration Unit
FCP Facilities Control Processor
GASP IV General Activity Simualtion Program - Version IV
HOL Higher Order Language
IEU Instruction Execution Unit
I/0 Input/Output
IOC Input/Output Controller
IOP Input/Output Processor
IPC Interprocessor Communications
IM Internal Memory
LPA Local Pseudo-time Accumulator
MI Memory Interface
MMS Multimicroprocessor System
MPT Master Pseudo-time
OCS Operating and Control System
PE Processing Element
PEXE Processing Element Executive
PMS Performance Monitor Processor
PMS Performance Monitor System
PMSI Performance Monitoring System Interface
PRICE Name for RCA's parameter cost-modeling system for computer

hardware and software cost estimates
PRIM Programming Research Instrument
PT Pseudotime
RALU Register, Arithmetic and Logic Unit
SAEF System Architecture Evaluation Facility
SBS Synchronous Busing Structure
SMITE Softdare Machine Implementation Tool Using Emulation
SRC Shared Resource Controller
TAC Time Alignment Controller
TS Target System
TSD Total System Design

G-1

I.]

Appendix H

1.0 MMS DESIGN MODIFICATIONS FOR COST REDUCTIONS

This section describes hardware design modification

of the !MS for the purpose of hardware cost reduction. The changes

described in this section do not apply to the MMS hardware speci-

fication document.

1.1 Redesign Goals and Their Effects on the MMS

The primary goal of the MMS redesign is to reduce the

hardware cost of the MMS. One way to reduce hardware costs is to

reduce the number of dips required in each component of the MMS.

The major sacrifice to be made by reducing hardware is emulation

performance.

The redesign of MMS is based on the following 3 cons-

traints:

• Sacrifice of emulation performance should result in

minimal degradation of the flexibility and ease of

use of the IMMS.

9 Removal or reduction of all MMS components that have

the sole purpose of enhancing emulation performance.

* Set the upper limit for the dip count of the PE to

300 dips.

The primary components affected by the MS redesign are:

9 The PE

* The bussing structure

e The FCP interfaces to the MMS

H-1

In the following sections is a detailed discussion of the

redesign of the various components and the overall affect on

the MMS is provided.

1.2 Design Changes

This section describes changes in the bussing structure,

modifications to the FCP interfaces, and the complete redesign

of the PE. Also provided are discussions on E-code, PMS, and the

microcode writer.

1.2.1 Modification of the Processing Element

The major goal of redesigning the PE is to reduce the

dip count of the PE from 820 dips to approximately 300 dips. The

achievement of this goal is possible, but only with vast changes

in the design concept of the PE and considerable degradation of

emulation performance.

The PE encompasses several components which are affected

by the redesign. These components and the design changes required

are as follows:

* The I?3U will be directed toward a more vertically

microcoded machine, but will still be approximately

64 bits wide.

* Control store will no longer be down laodable.

* The user will write emulators in E-code instead of

microcode.

H-2

44

* The local memory will be under explicit control of the

PE.

* The BIU will only contain a single receive port.

* The functions of the MI and PMS will be performed in

microcode.

1.2.1.1 E-Code Languages

The major changes in the PE will involve the shift from

hardware to firmware. The E-code language will represent the crux

of the change. E-code will be the only language to be emulated

by the microcode in the PE. A target system (TS) emulator writer

will not have the capability to modify the microcode

written by the vendor for emulation of E-code.

E-code will encompass such instructions as:

* Decode - Extracts arbitrarily sized field from TS

instruction and branches accordingly.

" Translate - Finds address in TS address space and

branches to code that handles the access of this

address.

" Broadcast - Forces a 16-bit word to be sent to an

arbitrary number of other PE's in the system.

" Talk - Sends an IPC to a specific PE in the ?MIS

" Arith - Executes one of sixteen arithmetic operations

on any two registers in the system.

* Shift - Executes one of thirty different shift

operations on any register in the system.

e Fetch I - Fetches a new TS instruction.

@ Fetch R - Fetches a TS register.

IH-3

* TS Codes - Transfers the specified condition codes

into the TS condition code register.

E-Code will also have definition type literals that define the TSP.

(i.e. Bit size - 16, Address byte type).

1.2.1.1.1 Effects of E-code on the MMS

The hardware emulation of exactly one language (E-Code)

will decrease the amount of hardware necessary in the PE. All ins-

truction decode logic, for example, will be specific to the E-code

format which will be designed very rigidly to reduce the amount of

decode necessary. The complexity of the microword and the bulk

of microcode written for emulation will be reduced. This will

decrease the width and length of control store needed. It will

be important to spend the time required to make the microcode

structured and efficient since the microcode will only be written

once.

Loss of flexibility is the negative aspect of using

E-code. By using a specific language the emulation writer must

follow a more rigid structure as defined by the choosen language.

This may result in the E-code writer loosing the freedom of im-

plementing a process or function in the exact manner desired. The

amount of flexibility lost by the emulation writer is completely

dependent on how well the E-code package is designed.

A possible advantage of E-code is an increase in the

ease of use of the PB for the emulation writer. By judiciously

choosing the E-code instruction set, the emulation writer may require

considerably less time to write an E-code emulation package than

a microcode emulation package.

H- 4

1.2.1.2 Local Memory Modifications

The local memory (LM) will no longer be a completely

independent unit. All LM accesses will be made through the IEU and

under explicit control of the IEU. This concept will eliminate the

need for the arbitration logic between the LM, IEU, and BIU and als(

eliminate additional hardware to control read-modify-write accesses

to the LM.

In addition to being used for storage of the user's

application code, the LM will also store the E-code package developed

by the emulation writer. By multitasking the LM the Internal

Memory (IM) will no longer be required. By utilizing the LM in this

manner performance will decline significantly. This decline will be

due to memory cycle time of the LM (700ns) being significantly

longer than the memory cycle time of control store (200ns).

1.2.1.3 Microcode Modifications

The microcode package which must be written by the vendor

will consist of the E-code emulation package and PEXE. Since this

microcode package will be unmodifiable by the user the microcode

will be storied in roms in each PE. The only access the user and

E-code writer will have into PEXE will be through MMS interrupts

and calls to PEXE from E-code.

By making the microcode package firmware significant

cost reduction can be achieved. The use of Roms allows for the

control store to be designed using fewer and cheaper parts.

Since the emulation writer will no longer be required

to write microcode, control store down load hardware along with

the microcode debug package and associated debug hardware will

no longer be required.

H-S

1.2.1.4 PMS Modifications

The PMS of the PE will be handled by firmware rather than

with hardware as in the original design. PMS will'key' on ceitain

E-code instructions to determine when monitoring must be carried

out. For instance, only when the FETCHER, or STORER instruction

is executed will a check be made for a register access. Although

the check is performed at each register access and additional time is

spent by the microcode to do this check, the PMS monitoring will still

be transparent to the emulation writer. Therefore at the expense

of performance, another cost saving will be realized without loosing

the PMS transparency ideal. PMS checks for memory access, op code

execution, I/O access, or any shared access will likewise be keyed

on their own specific instructions.

1.2.1.5 MI Modifications

The MI as a separate hardware entity will be eliminated.

The functions performed by the hardware will be readily picked up

by firmware.

The memory translation function performed by the MI is

potentially a time consuming process that must be frequently

executed. For this reason the moving of the MI from hardware to firm-

ware can be expected to produce a significant reduction in the

performance of the PE.

1.Z.1.6 Effects of the PE Redesign on Other MMS Components

In the effort to reduce the dip count of the entire

PE, dip count reduction must also be performed on the BIU. The

The major change in the BIU is the removal of the multiple rec-

eive ports for IPC's, memory communications, and broadcast

communications. These 3 ports can be replaced by a single general

purpose port.
JH -6

The major effect of this modification on the MMS is

the removal of the broadcast mode as currently defined in the

MMS hardware design. With the removal of the broadcast port in

the BIU the segment broadcast controllers are no longer required.

Some additional BIU component reduction is obtained

from the reduction of performance of the PE. The reduction of

performance results in a lower bus speed requirement which in-

turn simplifies the control circuitry in the BIU.

The effects of the PE redesign on the components

mentioned above are discussed in more detail in the following

sections.

1.2.2 Modifications of the MMS Bus Structure

The reduction of performance in the PE directly relates

to hardware cost reductions in the bussing structure. Since the

time between bus accesses for each PE will become longer, the

bus speed can be reduced. The new bus transfer rate is estimated

to be about 1.5 to 2.0 mega transfers per second.

The slowing of the bus allows for the bus cycle time

to be increased; which allows for modification of the bus pro-

tocol. Instead of requiring 2 bus cycles to complete the hand-

shaking process, a longer bus cycle allows for all the hand-

shaking to be completed in a single bus cycle.

The modification of the bus speed and protocol results

in hardware reduction in both the BIU and the Segment Bus Controller.

In order to reduce the total system cost the multi-

segment design of the MMS can be replaced by a single segment

design. However, by going to a single segment design the max-

H-7

I

imum number of PE's must be reduced from 217 to 32. Additional

PE's could possibly be added in the future but only at the ex-

pense of designing the Inter-Segment Bus Interface Unit and some

possible bus modifications.

1.2.3 Modifications of Broadcast Communications

The removal of the broadcast port from the BIU renders

the segment broadcast controller useless. However, broadcast

communications can still be performed with reduced efficiency.

One possible senario for broadcast communications

is as follows. A PE needing to send a broadcast communications

could stop the TAC; a message to the desired PE's, and release

the TAC. When the TAC is released each PE, which received a

broadcast message, could begin execution of the broadcast simultan-

eously.

However, the sending of broadcast communications in

this manner can result in significant reduction in performance.

1.2.4 Modification of the FCP Interfaces

The FCP interfaces consist of high performance hardware

designed to aid in PMS monitoring, I/O emulation, and FCP to MMS

communications. The combining of the FCP, PMS, and lOP inter-

faces into a single general purpose interface can result in a

significant hardware savings. This interface could be a PE or

specially designed hardware.

The single interface concept can be expected to reduce

system performance, but not significantly. Loss of performance

is expected to be minimal since the FCP, PMS, and lOP functions

can almost be considered mutually exclusive events.

H-8

. ,".
a- V)

When FCP communications are active the MMS is in the initiali-

zation or debug mode. When IOP communications are active the

MS is in the run mode. PMS communications cannot be eonsidered

mutually exclusive of IOP communications. However, the assump-

tion PMS is based on is that when the user is collecting PMS

DATA; emulation efficiency is considered unimportant.

1.2.5 Conclusion

Overall the modifications discussed in this appendix

are expected to reduce hardware cost by 50%. The reduction of

the number of PE's to 32 or 16, is expected to reduce hardware

cost by 10% to 20% respectively. The loss of flexibility is assumed

negligible, while the improved ease of use obtained through E-

code may prove to be a significant bonus.

It is important to note that this discussion of hard-

ware modifications does not reflect the cost of MMS software

(excluding E-code and PEXE) or the effects these changes have on

the software.

H

i H-9

MISSION
Of

Rom Air Develop~mt Center
am A WOp~~ and exatu.S JLEa w hc deveLopmesmt, t gud

LIL~e~d ~ PC9"um in 4rP*U aj CO-mind, Conww
CO-MWIM09NOM";WAnd I t e (~ C () ivLUti.s Twduiwca
and vviumgJJ AuppoJt wukb, "aeu aj technica ompetmne

pwv~d toESP Piwgum oiji'ae (P04) ond oad wi&
etawentA. The p'tinaipa technica si.ion amem we

-co-uwsiACou6, etehtOmr9ne2id gatidace and coKit iu&i-
ve4anee od glwund and aA4pace obj (et, inz qne dat
coUeeo.. n and handtinq iniomuaion 4p teeuwqy
ionoaphw~ic pRwpagation, Aotid 4ta*(4A.Q.Nc#A, ,iCUM.oie
phV4A&c and euectoic 'Leuabi u , m Im~nbity-h ad

lov,

,DATE
!I L m El

