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SUMMARY

The objective of this research was to develop a

simple methodology to test for learning using a small sample
1. size and to develop a procedure for measuring the rate of

; learning at any particular trial. For this research the time
between trials was considered insignificant in affecting
previously gained knowledge and the error between any
observation and its expected value, Z3s is assumed to be

2). 3

Assuming learning can be described by a performance ]

NID (0,0C

curve of the form » = l-at-b two linear methods and one non-
linear method were developed to test for learning by examining

the rate of learning over several trials. Since the curve

is monotonically increasing a positive slope will be

interpreted as learning and a zero slope will correspond to

&

no learning occurring. The -linear procedures are based on

testing the average rate of learning that occurs over several
trials. Several methods for estimating the average rate of
learning and the variance of the observations, oez, were
investigated. The best method for estimating the average

rate of learning, based on the minimum variance of the estimate,
was the linear least squares regression, LLSR method, and the
best estimator of oez, which resulted in the most powerful

test, was computed using the first differences of the

R Ciiathe. ek . o ; e, S il ae eaai Wi, Tl i il
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observations.
In the nonlinear method, estimates for o and the
parameters ''a" and "b'" are obtained and a test on the degree
of nonlinearity of the function is conducted using Beales
measure of nonlinearity. 1If the degree of nonlinearity is
small enough then the confidence interval for the slope at
any trial can be evaluated by using linear theory approximations.
In a comparison of the two procedures, the linear methods
were more powerful tests, however, the nonlinear method was
able to provide information on the rate of learning at each
trial when the nonlinearity conditions were satisfied and
significant learning was detected. The more powerful
linear test procedure was the LLSR method, which can
detect an average rate of learning over 15 trials of .01

at an a = .05 level 95% of the time when the standard

deviation is 0. < .05.
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CHAPTER I
INTRODUCTION

If a comparison of two or more systems is to be
meaningful it seems reasonable that each system should be
operating at its full potential. When the human factor
enters into the operation of a system, the system's full
potential is not realized until the operator(s) are "fully
learned." To determine if the operators are fully learned,
one must be able to measure the rate of learning that is
occurring over successive periods of operating the system.
Assuming learning can be described by a monotonic function,
a fully learned status would correspond to a zero rate of
learning.

When the crew operating one system is fully learned
while the crew operating a second system is not, a negative
bias could be introduced into the test results of the second
system, rendering an unfair evaluation. This bias which is
the result of a difference in the proficiency levels of
respective crews on competing systems is a major concern to
the U. S. Army Operational Test and Evaluation Agency (OTEA)

during operational testing and evaluation of contracted

equipment.

e et s kel




Background
This study was prompted by the desire of the U. S.

Army Operational Test and Evaluation Agency (OTEA) to deter-
'ﬁ mine if a crew or unit is fuily learned on the operation of
the system being evaluated.

The purpose of operational testing is to provide
information for use in an independent evaluation of the !
military utility, operational effectiveness and suitability

of the total system [1]. There are three sequential tests,

e i draa

OTI, OTII, OTIII, characterized by emphasis on testing with
typical user operators, crews, or units under realistic
conditions. Each sequential test consists of several trials.

, Data obtained during a particular segment of the sequence is

analyzed to determine if the next phase of the test should

5 be conducted or the new system rejected [2].

Operational test I, (OTI), usually is Iimited in

scope and focuses on the primary system function (i.e.,

| firepower of a weapon, mobility of a transport system, etc.).
= The type of comparison is either against a baseline system

or among competing systems. Operational test II, (OTII)

e

is broader in scope and is concerned with testing of engi-
neering prototype équipment and complete test support
packages involving entire troop units in controlled field
o exercises. The comparison is between the new system and the
; ‘ standard system which would be replaced. Operational test

[
'] ' ITT (OTIII), involves evaluating the performance of as large

Sl Tl s T SR TP




a unit as feasible, employing the new system versus the same

unit employing the current system in use. It is important,

therefore, not only to detect if learning is occurring but

to detect it early in the OT before additional time and
money is expended on obtaining possibly meaningless results.

To obtain timely information for deciding to stop the OT

will usually require an on site evaluation of the test
results. Thus any methodology developed must not only be
able to detect learning but must also be applicable in a

field environment.

Fundamentals of the Learning Curve

Assuming the performance of the system is dependent
on operator proficiency and can be described by a monotonic
function, we then have a situation which can be modeled by
the basic learning curve function.

Learning defined by improved cycle time or performance
over repeated trials can be divided into two distinct
phases: threshold learning and conditioned learning. Thresh-
0ld learning is that learning which occurs prior to the time
the operator can do the operation from memory. Conditioned
learning is that learning which occurs after the person
remembers how to perform the operation without relying on a
trial and error procedure. For this research, only the second

phase or conditioned learning will be considered.

According to the findings of previous research studies
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{31, [5), [8), [9], the learning process can be defined

by an equation of the form:

z = at™? (1-1)
: where
z = cycle time
a = a constant which is determined by the cycle time
at the beginning of conditioned learning i

t = the cycle number from the start of conditioned
learning

a constant which is determined by the rate of i
learning over trials.

[
[}

Although this function is continuous for values of t greater
than zero, learning can only be meaningfully evaluated at
discrete values of t. This particular equation describes

the learning of an operation without any interruption of i

significant duration which could have a negative effect on

previously learned information and skills. The values of the

parameters will always be greater or equal to zero.

e - K

In conducting trials during a particular phase of the
operational test at OTEA, the time between trials sometimes
varies but it is believed to have no significant effect on
retention of previously gained knowledge and skills.

Recently much interest has been focused on group
learning patterns. Several case studies have been conducted

to determine if group learning can be described by an

equation similar in form to equation (1-1). Although studies

I TR AT T D L
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in this area have been somewhat limited in their scope, it

appears on the surface that team learning exhibits the same
performance curve displayed by individual operators [i2]. ]
Another way to examine learning is by a performance

curve

z = 1-at™P (1-2)

This curve is based on the same theory as the ''cycle time"
curve except the asymptote of this function approaches the ]
value 1 (see Figures 1-1 and 1-2). The performance curve

is based on percent achieved from the total possible obtain-
able. This method of recdrding learning would be appropriate ;

when accuracy rather than time to completion was the primary

objective. The restrictions on parameter '"b'" are the same 1
as for the learning curve, however, parameter "a" will only
take on values in the interval [0,1].

! Although the theoretical asymptote for the curve is

FRReTION

one when the number of trials approaches infinity, this
function can approach any value between zero and one as a
working asymptote by using the proper combination of parame-
ters "a" and "b." A working asymptote is referred to here as
that value on the curve where the change in performance
between trials is so small that it would be considered

‘i negligible for practical purposes.

.; For example, in a given trial of an OT if a weapon

; ; is fired at a target 100 times, the total possible performance

would be 100 hits or 100 percent. If the weapon is only
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capable of hitting 75 percent of the targets when fired by

fully learned operators, then the function describing the

E learning of the operators over several trials would approach

§ an asymptote of .75 on the performance scale. The theoretical
asymptote of the function describing learning would of

course still be one; however, for evaluation purposes the
operators would be considered fully learned and the weapons

g capability assumed to be less than 100% accuracy.

In both curves, equation (1-1) and equation (1-2),

the value of the function before the first trial and between

discrete values of the trials has no significance since there
is no measure of knowledge until a trial is completed.

w Therefore, when dealing with learning curve equations,
whether cycle time or performance oriented, the primary

1 concern is the description of learning over discrete values

of t 2 1.

. Basis for a Performance Curve in Test Results

i

Before conducting any operational tests at OTEA,

the participants undergo a thorough condensed training
program on the system to be evaluated. Due to extremely
high costs in operating the system, much of the training is
conducted piecemeal under simulated conditions which may or
. may not truly represent the performance of a crew in an
: actual situation. If a crew's performance could be improved
by actually operating the system, then the test results over

1 ' several trials of an OT segment should reflect improvement

e R M PR,




through better scores. If a sufficient number of trials

were conducted the test results would eventually level off
indicating the crew's performance has peaked and that no
further learning is taking place. Thus it seems reasonable,
and OTEA test results are currently being evaluated in
support of this conclusion, that a performance curve function

can be fit to test results of this nature.

Objective

The objectives of this research are two fold. The

first objective is to devise a field expedient methodology

for testing if the rate of learning is significantly different
from zero. The second objective is to develop a methodology
which can measure the rate of learning taking place at any

particular trial. 1

General Approach

Since it is well documented that the curve describing
performance as learning progresses follows an asymptotic
curve, the rate of learning then could be analyzed by either
evaluating the first derivative of a curve fit through the
data points or examining the slope of a line between data ’

points for specified times. If the first derivative of the

curve or the slope of the line is positive, it is an indication
that learning is taking place. One procedure to be examined

will be to estimate the slope of a linear model fit to the

observations and test for its statistical significance.




The test procedure involves simple algebra and requires no

information about the parameters of the actual curve.

The test results on the slope using a linear model
S would only indicate if learning occurred during the trials
i and can provide no information as to whether the rate of
i learning was decreasing over the latter trials.

Another drawback using linear methods is that the Q
rate of learning will be tested using an estimate of the

variance obtained by fitting a linear model of the form
yi = Cc + dti + 51 (1-3)
where

y; represents the obscivation at trial i

ti represents trial i

i c is the intercept value
d is the slope of the line

§. difference between the observation and the line
at trial i

when the true model is the nonlinear function
,, y. = 1-at ® + ¢, (1-4)

The error, €55 between any observation, Yo and its

f expected value, Zis is assumed to be independent and

normally distributed with expected value of zero and variance

[
i
{
!
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of oi, NID (0, oi). If the error term such as €4 is a sum

of errors from several sources, then no matter what the
probability distribution of the separate errors may be,

their sum €5 will have a distribution that will tend more

and more to the normal distribution as the number of

components increases by the central limit theorem [13].

An error in a test observation may be a composite of a

scoring device error, an error due to a small leak in the
system, an error due to an unexpected physical ailment
affecting the operator, an error due to changes in wind
velocity and so on. The components of this error term

would not include those dependent on operator proficiency

and likely to decrease with additional repetitions or training.
This latter type of error is often used to record learning

and would be reflected by the performance curve. The error 1

terms in equation (1-3) may be larger than in equation (1-4)

due to a lack of fit of the model which will in turn inflate
any estimate of the variance used in testing for the
statistical significance of the slope, d. The closer the
trial observations are to the asymptote of the expected
curve, however, the better the estimate of the variance will
be since the lack of fit component will be decreasing.
Therefore, a linear method may be appropriate to detect
learning if the estimate of the variance is relatively
accurate.

Another approach will be to fit a curve to the
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observations using a nonlinear regression technique and
analyze the location of the trial results in relation to the
fitted curve. Although the estimate of the variance using
nonlinear techniaues will be more accurate than that using
the linear estimate, the difficulty in conducting signifi-
cance testing is that the estimates obtained using nonlinear
techniques do not have the linear properties necessary to
conduct the known significance tests. It may be possible
however to use linear theory results as approximations for
determining a confidence region for the parameters of the
nonlinear model if the degree of nonlinearity is not too |
large. If the performance function satisfies this require-
ment then the rate of learning can be determined by analyzing
the approximated confidence interval about the slope at
specified trials. This procedure then would provide a means
to determine how close to being fully learned the operators

are at each trial.

Measure of Nonlinearity

When a model is nonlinear there is an estimation
space, however. it is not defined by a set of vectors and
may be quite complex. If the estimation space consists of
all points with coordinates {f(xl,e), f(xz,e), ce
f(xm,e)} then minimizing the sum of squares function
ss(8) corresponds geometrically to finding a point p on the

estimation space which is the shortest distance to Y, the

vector of observations.
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A sample space for a very simple non-linear example

involving only n=2 chservations Yy and y, taken at x = Xy
and X = X,, respectively, and a single parameter 6 is
illustrated by Draper and Smith [6] and is reproduced in
Figure 1-3. The non-linear estimation space consists of the
curved line which contains points {f(xl,e), f(xz,e) as the 1
parameter, 6, varies, and the independent variables X1, Xy
are fixed. The point Y has coordinates (yl,yz) and p is

the point of the estimation space closest to Y. When the
linearization technique is applied to a non-linear problem,

a new origin is selected, say eo, and a linearized estimation
space in the form of the tangent line at R is then defined.

The linear estimation space contains the points {f(xl,eo) +

3f (x,,6) 9t (x,,0) _
g f(xz,eo) + —xg—— as 8 varies and X;, X, are

fixed. However if the rate of change of f(x,08) is small at

85 but increases rapidly, the units on the tangent line may

be unrealistic in terms of determining good estimates of the
parameters that will minimize the sum of squared errors
between the observations and the proposed model. Again
Draper and Smith give an excellent illustration of gross
inequalities in the systems of units. See Figure 1-4.

In Figure 1-4 the best linear approximation of the true
parameter solution from the point ¢ = 8, is the point g = Qo'
It is obvious that if the linear solution g = Qo is used
as the next starting point on the estimation space we will

be further from the best point P then was our original
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guess B = 60 = 0. If the degree of non-linearity is not too
large, it may be possible to use linear theory results to
approximate the confidence region for the nonlinear
function. Therefore we need a procedure that will determine

when linear theory results provide acceptable approximations

to the nonhlinear estimation problem.
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CHAPTER 11

METHODOLOGY

The curve describing operator performance on a
particular system is well defined in terms of the parameters
"a" and "b." This curve can then be used as a basis for

determining any given crew's performance level on the system.

Determining the Distribution of the Linear Test Statistic

A method for determining a crew’s performance level
when the curve is well defined is to examine the expected
values of the observations. The procedure would be to find
the expected value for each trial observation by minimizing
the sum of the squared errors between the observations and
the known curve at discrete consecutive trial numbers. If
the expected value that corresponds to the last observation
is at the asymptote of the curve it is assumed the crew is
fully learned. This procedure is summarized as follows.

Given n observations denoted as Y1s Y2» o5 Ypo label
their respective trial numbers k, k+1, ..., kn-l’ and find
the discrete value of k that will minimize the sum of
squared errors between the observations and values on the

curve computed at the corresponding observation trial numbers.

The procedure for this is to find the discrete value
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of k, ko’ on the known curve that corresponds to the minimum |
error between the first observation and the value of the
known function (see Figure 2-1). Retaining the same labeling
Y for the trial numbers corresponding to the observations,
conduct a search over discrete values in the vicinity of

ko, and find the discrete value for k that minimizes the sum
of squared errors (Figure 2-2). Find the corresponding trial
y number, k + N - 1, for the last observation, and then compute
value of the known function at this value, If the value of

, the function at k + N - 1 is the asymptotic value, this
corresponds to the situation in which the expected value of
the last observation is the asymptote which means a fully

” learned status.

. Another approach to determining the performance level

{ would be to conduct statistical tests on the observations.

If the distribution of the error between an observation, Yy

and its expected value, 2,, 1s NID (o, 052)’ then the

distribution of the observations at a given trial is NID

2

1> ¢ ). Due to the normality assumption, i

V= (2-1)

f where 852 is an estimate for the true variance

follows a student-t distribution. To test for learning over

a series of trials, the test statistiec would be
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t = = (2-2)

where

e

Y

asymptotic value

average value of the observations

since the expected value for y is z when the observations

c)
are at the asymptote. If the variance is unknown, then an
estimate must be found which will provide an unbiased
estimate of the variance in order to conduct the test

described in equation (2-2).

This is the basis for conducting the linear tests

discussed in Chavoter I. If E(y) = Z,s then all the observa-
tions are at the asymptote and the rate of change between
observations or the slope of the linear model will be equal
to zero. The discussion that follows in the remainder of the
section and in the next section will be devoted to obtalning
an estimate of 052 in order that the t-test may be used to
test for learning.

Assuming then that the error term, €5 in any
observation, Yi» which fits the form

_b _
y; = l-at “+eg (2-3)

is NID(O, 062), a minimum variance unbiased estimate for the

variance of an observation about its expected value would be

R e e R Y
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Sy = (2-%)

where Yy is the ith trial observation

z4 is the expected value of vy

Since 1n most cases the expected curve of the obser-
vations will be unknown, this procedure is of little

practical value.

Estimating o 2 When the Paramters Are Unknown
€

Continuing with the performance curve as defined in )}

*
equation (1-2), performance will reach an asymptote as

the number of trials increase. There is then some critical

trial number, t where further trials will show negligible

C’
improvement in proficiency.

Consider a situation where no well defined curve

exists. The expected values of the observations are
unknown. To estimate the variance using an equation similar
in form to equation (2-4), an estimate for z; must be

obtained, Consider the curve in Figure 2-3.

*

In the remainder of this research, the word asymptote
refers to the value of the curve where the rate of change
over future trials is so small (say .00001) that it 1is
considered zero for practical purposes.
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Assume the results of several trials follow the curve
described in Figure 2-3. 1If the test observations fit the

curve beyond trial ¢t the differences in their expected

c’
values would be small enough to be considered zero for all

practical purposes. The expected value for each observation
is then considered to be equal to Zos the value at the

asymptote of the curve. Since the observations in this

2

e ), an unbiased

situation are all distributed NID (zc, o

estimate for Z3 in equation (2-4) would be the average of

the observations.




N
E(y) = E[ £ (z;+e;)/N]
i=1
N
) izl E(zi+ei)
E(y) = N
N
z z5
-, _ i=1 -
E(y) = — N but 5 Z.
therefore E(y) = N 2 AN = 2

Thus an efficient unbiased estimate for the variance [11],
using the sample average as the estimate of the zi's when
the observations are all at the asymptote is

=32
(y;-y)
” i
€ N-1

n ™=z
P

When the observatidéns are not at the asymptote, this esti-
mate of the variance will be inflated since the average of
the observations, y, will no longer be an unbiased estimate
for the expected value of each observation. The amount of
bias will be a function of the distance that the expected
values of the observations are from the asymptote of the
true curve,

Since the performance curve function is non-linear,
there 1s no easy~to-apply procedure to obtain an

unbiased estimate for the variance when the parameter

N TR @ TP P N
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values are unknown.

Several alternative techniques for estimating the
variance will be examlned in terms of the expected bias
to determine a minimum biased estimator. The deviation of
several estimators is contained in Appendix B.

The three estimators to be investigated for

, 2
estimating 0. are:

N

(0BS)2 = I (yi-§>2/N-1 (2-7)
1=1
2 N-lo o
(SEX)® = (N-1) I (x,-X)°/2N(N-2) (2-8)
=1
(SER)® = (N2+1)(N+2)(MSE)/(N3-2N2+N+1) (2-9)

In summary, the expected values for the respective variance

estimators are:

p((NCe)(N-2)MSE, 2, 12 M T2
3 2 € 3 2 17 .2 %
N“-2N“+N+1 N(N“-2N"+N+1) i=1
N
LS IGIETS L N
- 121=1 -tz - Lo 2.)%]
i=1 * 1 i=1 1
N-1 .,
N-1) £ (x.-x
E {( )i= o5 } = g 2 N-1 oL 2 (ZN'Z1)2
IN(N-2] - % T INN-zT [.fl (25017230 -~
N-1 2
Z (y;-y) .
E {i=1 1 } = g 2 + 1 [N l(z _5)2]
N-T £ N-T L. i
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Note that if the expected values of the observations, the

- it

zi's, were all at the asymptote, the bias factor in all
three equations is zero. As the difference between the

3 expected values of the observations and the asymptotic value
of the curve increases however, the expected bias value

i associated with each procedure changes. The relative

usefulness of the estimators will be numerically analyzed

in Chapter III.

Variance of the Estimators of 0€2

If the variances of the estimators of 052 are not
significantly different, then the expected bias may be the
only criteria necessary to determine the best estimator
(see Figure 2-4a). If on the other hand the variances of

the estimators differ significantly, then it is possible that

i the minimum biased estimator is not the best estimator in

terms of the percent of estimates within the specified
tolerance limits (see Figure 2-4b).

When the allowable error tolerance for the variance
estimate is &, then estimator 1, in Figure (2~-4b), is the
better estimator. When the allowable error is 2§, however,
then estimator 2 is better since it has the largest percent
of its estimates within the tolerance limits.

The expected bias associated with each estimator is

a function of the expected values of the observations and is

PV et SO OGP 3s - “ND
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only affected by changes in the parameter values or the sample
size. Therefore, the difference between the expected value

2

of the estimate for o and the value of oe2 for specified

a, b, and N, will not change as the size of ¢ 2 changes.
€

2 will be a factor however, in

The magnitude of o
determining the expected bias in the estimate of o See
Figures (2-5) and (2-6). This is important since this is
the value that will be used to compute any statistical test

on the slope. As the process variance increases for specified

parameter values and sample size, the expected value of the

2

estimate of 0. approaches the true value of O+ As O

increases though, there will be a corresponding increase in
the variance of the estimator. This will affect the
dispersion of the estimates and thus could also affect the
solution of an estimator. See Figure (2-5) and Figure (2-6).
If the contribution of oez to the estimator variance
for one estimator is larger than for another, a situation
could also occur as depicted in Figure (2-7a) and Figure (2-7b).
When cez is small as in Figure (2-7a), estimator 2 is
better, however, in Figure (2-7b) where csz is large, estimator
1 appears to do as well or better than estimator 2. To
determine a best estimator then, the effect of the variance
on the estimates as well as that of the parameter values and

sample size must be examined.
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An evaluation of the variance of the estimator as

well as the expected bias factor will thus be required before

selecting the best estimator of 022' An effort was made to

obtain a closed form expression for the variance of each

2, and the expected

estimator in terms of the true variance, oe
values of the observations, the zi's. Due to the complex
forms involved, this approach was abandoned in favor of

analysis by computer simulation. The results of the simula-

tion study will be presented in Chapter III.
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Linear Methods to Test for Learning

Since the performance curve describing the progress
of training is an asymptotic function, it may be possible
to determine when a unit is fully learned by examining the
slope of a line fit through the trial observations or ¢xamin-

the rate of change between the observations. If the rate of

change is large, then learning is taking place and when the

rate of change approaches zero, a very small amount of learning

is occurring which corresponds to approaching a "fully
learned" status. An appropriate method to determine the
level of performance then would be to test if the slope of
the linear model fit through the observations or the rate

of change between observations is significantly greater than
zero,

Linear Methods of Analysis

As discussed earlier, if the rate of learning is large
and the error variance of reasonable size, it may be possible
to detect learning by examining the slope using linear
approximation methods. Several methods, which can be
solved by simple hand calculations, are examined using the
variance of the slope as a basis for comparison in selecting
which is best. Those linear approximation methods which
provide the smallest variance for the slope will be selected

for further study and possible application.
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a. "Average of Two Groups (ATG)". In order to

obtain an estimate of the slope it 1is necessary to have at
least two points. The average of two groups method divides
the data at the midpoint of the trials into two groups. The
average of the observations 1s computed for each group, and
the difference between the averages tested to determine 1if
this difference is significantly greater than zero. If there
were an odd number of observations, the middle observation

would not be considered in the computations.

average of observations in first group

-
o
ot
)

i

E
DL = average of observations in second group
dypg = D, - Dg (2-10)
then
Var(dATG) = Var(DL—DE)
N/2 N )
Var (4 = Var( I y./{(N/2)) + Var( £ y./(N/2)
ATG) 1=1 i=N/2+1 7
. (N/2)0 2 (W/2)e °
Var(d = +
ATG (N/2)° (N/2)°
Hosz
Var(dATG) = —E—— (2-11)
b. "Average of Consecutive Differences (ACD)". In

this method the average of the differences between consecutive
observations is analyzed to determine if learning is ;

occurring. ;




Var(dACD) = Var(ii:1 xi/N-l)
_ 1
Var(dACD) = EETESY-Var (y,-Y1)
Var(d ) = 2 L 2
acp’? = 20.°/(N-1) (2-13)

c. '"Average of Two Groups Using Consecutive Differences E
(ATGCD)'". This method is a combination of methods '"a'" and %
"b'". The observations are divided into two groups and the :
differences between observations are computed in each group. i
Then computing the difference between the average obtained
in the latter group with that of the earlier group one
obtains an estimate of the slope with corresponding variance
as follows:

N/2
Z iy
DE =
N/2
N
L (Yi4q-Yy)
b o N/(241) TEHL TR
L N/2
dpraep = Ppm Pg , (2-14)
1608
Var(dATGCD) = Var(DL—DE) = — (2-15)

(N-2)°
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As in the ATG method, if there 1is an odd number of observations,

the middle observation would be disgarded.

d. "Linear Least Squares Regression (LLSR)". This

method fits a line through the observations such that the
total of the distances squared of the observations from the
line is minimized. Draper and Smith [6] provide an excellent
description of the details involved. A brief summary of the
procedure is given later in this Chapter.

An estimate of the slope is defined as:

™=
i

(ty-E)(zy)

2

o
[
[a

LLSR (2-16) -

nm~m= II.

e
—

trial number i

where ti

N
[

expected value of the observation
at time 1

and the slope variance is defined as

o ° 2

_ £ - € -
Var(dLLSR) = = 5 (2-17)

z(ti-f)2 Ztiz-Zfzti+Nf
i=1 1=1

Since the trials are consecutive from 1 to N the following

closed form expressions for t can be used in the above equation

2 _ N(N+1)(2N+1)
= z (2-18)

N
Tt
=1

|




t = m.{-]i
i 2
Then 5
) i
Var(d =
LLSR N(N+1)(2N+1) N+1, N(N+1) N+1,2
5 2( 5 ) ( > )+N(—§—)
120€2
Var (d ) = —— (2-19)
LLSR N(N2+1)

For N>2, the linear last squares regression method provides
the best estimates for the variance of the slope. See Figure
(2-8). The average of consecutive differences, ACD, method
was the next best procedure. The average of two groups
method becomes the third best procedure when N=8, but the
estimate of the varlance of the slope is still quite large in
comparison to the ACD and the LLSR methods.

From the several methods considered for detecting
learning through analyzation of the slope, the two best
procedures, using the minimum variance as the selection cri-
terla, appears to be the average of consecutive differences
(ACD) method and the linear least squares regression (LLSR)
method.

To complete the analysis of the linear approximation
procedures, the expected value of the estimate of the slope
using the ACD method and the LLSR method will be examined.
Let % represent the true average rate of learning for the

process over N trials. An expression for % then 1s
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s (2-20)
a~attN.b
el s pa
The expected value of an estimate of 2 using the ACD
method is

N
E Oia1775)

= 1%
ACD] B N-1

E[d

. yyY
Eldycp) = IR
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)

(zy*ey) - (29%ey)

= El—w
_ (1-atN'b+eN)-(1-at1'b+gl)
N-1
~ a'atN-b
E[dACD] = NI since tl = 1 and E(Ei) =0 (2'21)

As expected, the estimate of the slope using the ACD method
is unbiased.
The expected value of an estimate of 2 using the LLSR

method is derived as follows:

N
%
CEldpperl = E =g

N E[(ty-8) (2 *e )+ (t,- 8 (z,%e,) + ... %

+ (tN'E)(zN+€N)]

sy I

Replacing the It
i=1

iT Bz (B (2, + L+ (tymt) 2]

;'8 with expressions in terms of N we get




12 N+1 N+1
= ——— [(t )zt (t, - H)z, ¢
s (ty - bz
_ 12 N e+ N 3

= T t.z. L z.
N(NZ+1) i=1 1 & N(N%+1) i=1 1

-b

Substituting l-at; for z; we get an expression of the form: :

N N
12 -b 6 (N+1) -b
= ——— It (1- at. ) - === I (1- at, )
N(N®+1) i=1 N(N“+1) i=1 j
J_12 N a g DLy L ON(WL) |, 6(NYD) N .-
N(NZ+1) q=1 1 4=1 1 N(N%+1)  N(N®+1) i=1 *
N
(1) Tt Dy )
3 1l2a i=1 -b+1
E[d ] = [ - It ] (2-23)
Subtracting the true value of the average rate of learning
from the estimate in equation (2-23) we can obtain the y

expected bias.
Let B represent the amount of bias in equation (2-23),

then

a-aty
ty ) - I
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When the value of b equals zero in equation (2-24) which
corresponds to the expected values of the observations all
being equal to the asymptotic value, the expected bias is
zero. The bias factor in equation (2-24) is negative which
means we should expect the estimate for the average rate of
learning using the LLS method to be less than the value
defined in equation (2-21).

In summary, we now have two methods to test for
learning which exhibit the following characteristics:

(i) The LLSR méthod provides a biased estimate for
the average rate of learning; however, it has
the smallest slope variance of all methods examined.

(ii) The ACD method provides an unbiased estimate for
the average rate of learning but, the slope
variance is larger than that in the LLSR procedure.

The bias factor in equation (2-24) will be computed
and its effect analyzed for various combinations of parameter
values and sample size in Chapter III. A discussion of the

two best linear test procedures is in the next two sections.

Average of Consecutive Differences (ACD) Method

If the test observations are at the asymptote of the

curve, the difference between the observations will follow

a normal distribution with mean of zero and variance of 2082

Given N trial observations with no information concerning the
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true variance or the parameters of the actual curve, we
examine the average of the consecutive differences in the
observations which corresponds to the average rate of
learning over the N trials.

Define x; as the difference between observation

Yisl and Y- Then

_ N-1
E(x) = E[ ¢ xi/N-l]
i=1
_ N-1
E(x) = E[_Z (yi"'l-yi)/N-l]
i=1
_ 1 N-1
E(x) = N-T ‘21 E(yi+l_yi)
1=
- 1 N'l
E(X) = N'_T )X (ZC’ZC)
i=1
'zc = expected value of an
observation at the asymptote
E(x) = u =0

From equation (2-13) the variance of the average of the

consecutive differences was defined as:
var x = 20 2/ (N-1)°

where x =

dACD

. N - - CT¢F
) it il &.M‘Mrm.k




Using an unbiased estimate of oez, the test statistic for the

differences will follow the t-distribution. A test to

determine if the average slope between observations is

significantly different from zero would be:

Ho: slope € 0 fully learned

i~ H;: slope > 0 not fully learned

Compute:

i-ux
t = (2-25)
o zsyz/(N-lT[

Testing at a significance level of g,

Reject HO

Do not reject Ho

Since it is quite possible that the trial observations

will not all be at the asymptote, our estimate of the

variance will be inflated due to bias as discussed earlier.

Using a biased estimate-of the variance will reduce the power

of the test which is defined as:

Power of test = 1.0-P [failing to reject H, when H  is false]




o

4o

The rationale for this interpretation is that using an
inflated estimate for the slope variance in equation (2-25)
increases the probability of failing to reject the null
hypothesis, Ho’ when it is not true. This is because if the

test statistic

- X-0
0
VZEst(o€2)(N-1)

t

is greater than t using a biased estimate for the

o’N=-2
variance in the denominator, it will remain greater than
ta’N—Z when an unbiased estimate is used. On the other hand,

if ty is greater than t using an unbiased estimate for

a’N-2
the variance, it may not be greater if a biased estimate is
used, thus creating a situation where we would fail to reject
Ho when in fact it is false. Therefore if the test statistic
indicates the slope is significantly greater than zero, we
can assume learning is occurring, otherwise the results
may be unreliable.

A summary of the computations required to conduct
the test on the slope using the ACD method follows:

Compute an estimate of the slope:

INY;

A
dpep = NI (2-26)

Compute an estimate for the standard error of the slope:
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3 o[ 2
‘ R st(o_ )]
3 S'e‘(dACD) 5 (2-27)
(N-1)
Compute the test statistic;
d, =0
S.e.(dACD)

Compare test statistic at desired significance level

If to > ta,N—2 Learning 1s occurring, reject H.
< .
If to Al ta,N—2 No conclusion

The Linear Least Squares Regression (LLSR) Method

As discussed earlier, this method involves fitting

"t a linear model of the form

yi = c + dLLSRti + &

]
i
|

where vy < value of the observation

ti = trial number that corresponds to Yy ]
¢ =y intercept value
dLLSR = difference between the observation and
the line at trial 1i.
61 = difference between the observation and
the line at trial i. }
through the observations, based on minimizing the sum of

squares of devlations of the observations from this line.

The slope of the lilne, dLLSR’ at the asymptote of the
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i curve is essentially the average of the differences betwecen
: the expected values of successive observations. Therefore
the test statistic for the slope of the line using the LLSR
, method follows the same distribution as the test statistic
for the differences in the ACD method, namely the t-distri-
¥ bution the test for learning would then be:
|
- Hy: slope £ 0 Fully learned
Hy: slope > 0 Not fully learned
Compute
d -0
3 LLSR
' to SV (2-30)
- 12 Sy
_ N(N2+1)
‘ where drrsgr is the estimated slope for the linear model.
i
‘ Compare at o significance level
) If t0 > ta’N—Z Learning 1s occurring, Reject HO
< . i
If to < tu,N_2 No conclusion

As the bias factor increases, the width of the confidence
interval for the slope increases or expressed another way,
the test statistic, to, decreases.

As was previously shown, using a biased estimate for
the variance versus an unbiased estimate when testing the

slope, equation (2-28), results in a less powerful test.
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This also holds true for the estimate of the average rate
of learning. As was the case with the ACD method, the test
results may be unreliable if the slope test statistic is
less than the comparison value, ta’N—2'

In the discussion of the method that follows, it 1is
assumed that the reader is familiar with the linear least
squares regression procedure. The LSSR equations required
to conduct the slope test are presented without the derivation.
(For a development of the equations, see Draper and Smith
[61.)

The slope of the line is found by minimizing the sum of
the squared errors between the observations and the fitted
line equation (2-29). By taking the first derivative of the
equation for the sum of squared errors with respect to each

of the parameters c and d it 1s possible to solve the two

LLSR’
resulting equations simultaneously to obtain an estimate

for the slope.

i

1
1 (2-31)

[

o

0

=y
M2~z

[

where
t, represents trial number i

y; represents the observation that corresponds to

trial i
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Yy
o
é t is the average of the ty
T y is the average of the '
with this estimate of the slope and replacing Sy2 in equation
 5 (2-30) with an estimate for Oe2 we can conduct a test for
learning. Using an appropriate estimate for 062, the
1 2stimate of the standard error for &LLSR is

5 s.e.(d . on) = 12 Est (o_°)/[N(V%+1)]

LLSR

E In summary, to use the LL3SR method to test for learnings,

one need only compute the following steps

(2-32)

[e TR Y
=

LLSR ~

II'MZII.MZ
’..J

b

N2
(t,-%)

-

12 Est (052)
) = ——— (2-33)

N(NZ+1)

s.e.(dLLSR

!

] Test procedure:

', Comoute:

_ %rese’” (2-34) w
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If t0 > ta’W-° reject Ho otherwise the test must be regarded

as inconclusive.

Non-Linear Method to Test for Learning

I1f the degree of non-linearity in a particular perfor-
mance curve is small enough, it may be possible to examine
the slope based on linear techniques. Measures of non-
linearity have been developed by Beale [4] which indicate
when the degree of non-linearity in a non-linear function is
small enough to justify approximations using linear theory
results. A review of Beales procedure follows,

Consider the non-linear model n = f(x,6) where § is
a (px1l) vector of parameters and X is a vector of independent

variables. Given n independent observations on the response

(yl,yz,...,yn), a least squares estimate of the parameters

D> 3

= (64, ..., 8_) is obtained. Then the tangent plane approxi-
1 P

mation to the solution locus, estimation space, in the

neighborhood of 8 is given by:

i ~ P A af(xi,é) _
T3(8) = nj(e) + X (8;-05) —ymzy—Ix i=1,2,...,n  (2°35)
j=1 ]
or T(8) = n(8) + x(6-6)

K R
where n, (6) = f(x;,6). Since 1(6) differs from the actual

point n(§) because of the non-linearity of equation [1-2], a

P . Y T ; -
i o e il o s P TR i ki G e
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crude measure of non-linearity would be

m n - = p ~ af(Xi,é) _ 2
Q= I ZIni(8) - (n; (&) - jfl (85,,785) Tlé)]
(2-36)
m - - .= 2
Q= I [In(8,) - (81|

W

Qe is defined by Guttman and Meeter [6] as the sum of squares
of the distances (in sample space) from the points ﬁ(éw) to
the associated points %(éw) on the tangent plane. By dividing
Qe by the quantity

2}2

n~m3
=
[ =1

{.

1

[ =]

. [ng (8,)-n; (8)] . 1R -n@ 1% (2-37)

W

the sum of squared distances is normalized. Guttman and

Meeter [6] go on to explain that since Qe has the dimension
of the square of an observation and the quantity in equation
(2-37), the dimension of the fourth power of an observation,

then the quantity

2

nmMs

N = ps G -T6112 8 156G -ne) ]|
8 1 W \Y w=1 NPy’ N

w
where s2 is an estimate of 02 (the variance of the observa-
tions), is a dimensionless quantity. This value of Ne

can be regarded as the estimated normalized measure of the
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non-linearity of the model when expressed in terms of the

parameters 6. Beale says that the linear approximation is

satisfactory if

A

N, < 0.01/F

6 (2-39)

OL,p,N—p

since the root mean square value of the discrepancy vector
ﬁ(éw)-%(éw) is less than one-tenth the length of the intended

vector %(éw)-ﬁ(a). (See Figure 2-9 below.)

Intended Distance

Distance

T
1
|
; Discrepancy
|

Solution Locus :

Figure (2-9). Illustration of Discripancy Distance
Versus Intended Distance

A

In our case, if the degree of non linearity, N of

e ’
the model, equation (2-3), satisfies inequality (2-39),
then the linear theory results, with an appropriate correction

factor, can be applied to find the confidence region for the

non linear performance function for given values of § using
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SS(é)-SS(g) = pst (correction factor) (2-40)
a,p,N=-p
Conversely, it will also be possible to find the confidence
limits on the parameters, 6 = (a,b), by solving equation
(2-40) when the confidence region for the function is speci-
fied. Going one step further, it will also be possible then
to compute the confidence 1limits for the slope of the curve,

where
slope = abt” (P*1) (2-41)

at any trial, t., by conducting a search over the periphery
of the joint confidence region of the parameters.
The correction factor discussed by Beale [4], in

equation (2-40) when p=2 and s’ is replaced by SS(8)/(N-p) is,

+ N(p*2) §
[1 1N8375 No]

and includes the measure of non-linearity, Ne, which allows
for the effect on non linearity on the usual linear theory
results.

As the difference between ﬁ(éw)-f(éw), for a non-
linear function (see Figure 2-9) increases within the region
where the inequality sign in equation (2-39) does not change,

the allowable size for the variance decreases. Therefore a
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restriction using linear theory avoroximation is that the
variance might have to be unreasonably small for the approxi-
mations to hold.

A study was conducted to determine the maximum size
varlance allowable for varying degrees of non-linearity of
the performance curve function for a particular o level of
significance. As the value of the coefficlent or the exno-
nent in equation (1-2) increases, the maximum allowable
variance decreases. The results are contained in tables
(3-18) and (3-19).

Procedure

To assist in following the non-linear procedure used
to test for learning, an overview of the steps required 1is
sresented, followed by a detailed discussion in Apvendix A.

Step 1: Estimate the parameters of the performance

function and the variance using non-linear
estimation techniques.

Step 2: Find the degree of non-linearity, ﬁe, for

the estimated function using Beale's
measure of non-linearity.

i. If N .01/F

IA

a.p,N=D proceed to step 3

ii. If N, > .0l1/F ston, following
aSDQN-D

procedure not valid
Sten 3: Determlne the confidence 1limits for each
Parameter of the performance function by

satisfyine equation (2-40) using a direct

technique.

b
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Step 4: Find the confidence limits for the slope at
any particular trial using a direct search
technique over the periphery of the joint
parameter confidence region. The maximum

_ and minimum values for the slope will be the

upper and lower confidence limits respectively.

Step 5: Examine the confidence limits for the slope:
(i) If the confidence interval contains

zero, do not reject the hypothesis
that learning did not occur during this
trial.

(ii) TIf the confidence interval does not
contain zero, then it can be concluded
that learning is taking place during this
trial.

Steps 1-4 are explained in greater detail in Appendix C.
A computer program is located in Appendix D.
which estimates the parameters and the variance, tests the

degree of nonlinearity and computes the confidence 1limits

on the slope at any particular trial.
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CHAPTER III

EVALUATION NF PROCEDURES

Since the accuracy of the test on the slope will depend

2

¢ » @ computer simulation

on the quality of the estimate of o©
was conducted to compare the estimators of O€2 presented
in Chapter II. By varying the parameters for any given
sample size of observations, we can simulate different

situations that could occur in an actual test.

Evaluation of the Bias in Estimating OAE

The expected bias value was computed first for each
estimator for specified parameter values and sample size.
As the exponent value, b, or the coefficient, a, increased,
there was a corresponding increase in the bias value
associated with each estimator (see Figures 3-1 through
3-6). This resulting increase in bias as the parameter
values are increased, corresponds to a more severe lack of

fit of the linear model to the actual process. The best

estimator using minimum expected bias as the selection criteria,

is equation (2-8). The expected bias of this estimator
for given parameter values and sample size was approximately
40 percent less than the expected bias obtained using the
next best estimator, equation (2-9). The expected bias

associated with equation (2-7) was 4 times larger than the

bias factor using equation (2-8).
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Expected Bias

: Figure 3-1. Expected Bias Using Equation (0-7)
to Estimate OFZ, N =6,
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Figure 3-2. Expected Bias Using Equation (2-8 )

to Estimate orz, N = 6.
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Figure 3-3. Fxpected Bias Using Equation (2-9)
to Fstimate crz, N = 6.
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Figure 3-4.

Fxpected Bias Using Equation (2-7) to
Fstimate 0,2, N 15
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‘ Figure 3-5. FExpected Rias lsing Fquatznn (2-8)
“ to Estimate 0.2, N = 15
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Expected Bias
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‘Q Figure 3-6. Fxpected Bias Using Fgquation (2-9)
! to Estimate oFZ, N = 15
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A simulation study was conducted to evaluate the

variance of each estimator f{or all combinations of sample
size I = 6, 15; standard deviation o = .03, .05, .07, .09;
and parameter values a = .1, .3, .5 and b = 0, .4, .8, 1.7.
To reiluce sampling variability in the evaluation, thec same
strean of normal randomly sgenerated observations wns usad
for each estimator. One run consisted of 1000 experiment:
for the specified sample size, parameter values and variance.
The results obtained are in terms of percent of the extimates
within the specified tolerance 1limits (0816), when usine a
narticular estimator.

Designating any estimate as good or bad depending
on whether it falls within or outside the tolerance limits
respectively, then the generating process of a particular
estimator will follow a binomial distribution. Using the
worst case for estimating the variance of the process, (i.e.
n = .5), we can approximate the variance as .25/N. To
obtain a 95% confidence interval for the percent of good
extimates, p, with limits (; + ,03), an aporopriate samnle
size would be calculated as follows:

~

p+ .03 =p + 2/pq7N

Letting p = .5




The number of experiments for each combination was set at

- 1000. The actual variance for p may be less for a given
condition since p = .5 will give the upper value of the vari-
ance for this process.

Since the number of simulation runs 1s sufficiently

f large, N = 1000, a normal approximation of the binomial

variables can be used to construct a significance test [11].

To determine if the percent of good estimates using one

;' estimator differs from the percent of good estimates using

another estimator conduct the following test:

Hot Py = py
< Hl: Py # P,

Comoute

A A~

P1Po
ZO = (3-1)
b N N

T

It z, >

Z and assume there is a significant
' 0 /2

reject HO

difference iIn the p values for the two estimators.




The actual variance of the difference between the

two succesgs ratios will be less than -——- ———- due to

N

cnrrelation between the estimates from the twe estinators.
Althouzh the assumption of independence between the variances
of the success ratios, Py and Dy reduces the power of the
test, we can gain some idea of the significance of the differ-
snce between the two estimators using equation (3-1).

The results and analysis of this studyv on the estima-
tors of o follow. When the true variance is small (062 :
.0036), the best estimator is equation (2-8), regardless of
the samnle size or parameter values of the curve. As the
variance increases however, equation (2-9) appears to perform
better under certain conditions than does equation (2-8). See
Figures (3-7) through (3-14). To examine this situation
further, the distribution of the extimates of the variance
about their respective expected values was analyzed for
different conditions. The effect of sample size appears to
be the same on each estimator, (i.e. larger N results in
smaller estimator variance) and is not significant in
determining the best estimator.

A general description of the distribution of the
estimates using equation (2-8) and equation (2-9) for a 23
design in terms of O and parameters "a" and "b" is deplcted
in Figures 3-15 through 3-22.

The results noted were:

i A il
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Specified
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(i) As the variance of the process increased for
large values of parameter b, the dispersion of the estimates
using either estimator appears to be a heavy tailed normal
distribution. This should be expected since larger estimates
of the variance are nossible which will weigh the expected
value of the estimates to the risht. It 1s also worthwhile to
voint out that when parameter "a" is small in this situation,
the majority of the estimates obtained were less than the
true variance. Thus it appears that near the asymptote, when
the variance is large, the linear model approximation using
the difference method results in a "better fit" than the true
model in terms of minimizing the sum of the squared errors.

(11) When the variance of the process was large and
both parameters small, the estimates using equation (2-8)
appeared to be more dispersed about their expected valu~ than
the estimates using equation (2-9) about their exvected
value. When the expected value of the estimates 1is near the
true value of the variance, a tighter distribution of the
23timates about their expected value can result in more
eatimates ©3lling within the tolerance limits (see Figqure
=173, For the two situations discussed in (i) and (i1)
1bave, the ostimator with the largest exvected bias «enerates
mare oot imates within the tolerance limits specified for
et s o g, Tt is easy to see in Ficures 3-17 and 3-18
trat U7 e talaranee 1imits were reduced it hecomes more

Aifrficalt s jifferentiat» between which estimator is better.

e e e o
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For all other combinations of parameters and variance size
examined, the best estimator was the one with the minimum
expected bias. The rule for selecting which estimator of
o. is better when the parameters rnd the true value of o
are known is:
If:
(1) O < .06 Use equation (2-8) to estimate O

(ii) g > .06, a 2 .5 Use equation (2-8) to estimate o

(iii) g > .06, a < .5 Use equation (2-9) to estimate O
Since the true value of the parameters and the actual variance
will not be known, we must base our rule on estimates for
and parameter "a". A general rule then for selecting the

best estimator when o and parameter ''a' must be estimated

is:
Compute an estimate of g using equation (2-8)
[ N-1 =2
(N=-1) T (xi-x)
; - i=1
€ 2N(N-1)
If
(i) 0. < .06 Use g, as computed
(ii) o, > .06, ; > .5 Use o, as computed
(iii) 88 > .06, a < .5 Use equation (2-9) to

compute an estimate O

“fecotiveness of this rule, when choosing an estimator

.111 be evaluated in conjunction with determining
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cauation (°-9)

7 -
¥ I S
’// ’IT \‘\::_ 4
oe-d o, i o§+6
F[c8 ] F[oE ]
b R
Figure 3-18. General DNescription of the Distribution of the
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equation (2-8) .
N -
\\\ equation (2-9)
\
N N\
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Figure 3-19.

fieneral Description of the Distribution of the
Estimates of o¢ Using Equations (2-8) and

(?-9) when ¢o_ is Small, a is Large, b is ;
Small € 1

eruation (2-0)
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Figure 3-20. General Description of the Distribution of the

A TS e

Estimates of og lUsing Equations ( 2-8) and
( 2-9) when o_ is Small, a is Large, b is
Large €
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iption of the Distribution of the
o¢ Using Equations (”-8) and
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Figure 3-22. General Nescription of the Distribution of the

Estimates of
{(7-9) when ¢
Large

oc Using Equations ( ”-8) and
c is Large, a is Large, b is




-

the best test procedure later in this chapter.

Comparison of the Linear Test Methods

Test Learning

The LLSR estimate of the average rate of learning
as defined by equation (2-23) was analyzed in terms of the
percent of the true average rate of learning for various
combinations of sample size and parameter values. If the
size of the sample is increased, the amount of bias in the
estimate of the average rate of learning, equation (2-20)

using the LSSR method should also increase in a negative

73

direction. Stated another way, as the sample size increases,

the expected value of the LLSR estimate of average rate of

learning decreases. This should be expected since the observa-

tions over the latter trials will be closer to the asymptotic

value which will have a negative effect on the slope of th
LLSR model.
As can be seen in Figures 3-23 and 3-24 the effect

of N on the expected value of the average slope estimate

e

using the LLSR method 1s more pronounced than its effect on

the ACD slope estimate, which is unbiased.
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Figure 3-23. LLSR Estimate of Slope in Relation to
Average Rate of Learning, Also the ACD
Estimate, when N is Small . [
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Figure 3-24., LLSR Estimate of Slope in Relation to
Average Rate of Learning, Also the
ACD Estimate, when N is Large
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In Figure 3-24, if the value of parameter b approaches ;
g zero, the ratio of the LLSR estimate to the average slope
will approach 1. When the value of b is zero, this is
equivalent to the expected values of the observations being
at the asymptote of the performance curve. We showed in
Chapter II that under this condition the LLSR estimate will
3 be unbiased. Therefore when the value of b is small, the
expected value of the LLSR slope estimate will be very close
to the actual average rate of learning; and as the value of
b increases, the expected difference between the LLSR
estimate and the true average slope will increase.

The effect of parameter a is not as intuitively obvious.
i’ Since parameter "a' can be factored out of both equation
(2-23) and equation (2-20), we see that the expected value :
:4 of the LLSR estimate and the true average slope change by an

equal multiple factor. Therefore, although the LLSR

estimate and the actual average slope values change, the

ratio of the two values is not affected. This ratio is

graphed in Figure 3-25 as a function of the exponent value, b,

and sample size, N.

To evaluate the significance of the bias in the LLSR

estimate when testing for learning, it will be necessary to

examine the effect on the computed test statistic. Recall

that the test statistic for the LLSR method is
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and for the ACD method is

ACD~

Using the same estimate of the process variance when computing
the slope variance for the LLSR and the ACD methods respectively,
" a comparison of the expected values of the test statistics

' was made, The ratio of the test statistics is graphed in

.‘ Figure 3-26 as a function of the sample size, N. and the é,
& exponential value b. It should not be surprising to find

that when the value of b is small for a particular sample

size, the ratio of the LLSR test statistic to the ACD test
statistic is greater than 1. This is because the ratio of
the estimates for the average rate of learning using the
LLSR and ACD methods 1is greater than the ratio of their
respective variances. As the value of the exponent, b,
increases for given N, the ratio of the average slope estie
mates becomes smaller and the ratio of the test statistics

decrease,.

- ————

An increase in the sample size for any particular
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value of b will also affect the ratio of the test statisties.

This 1is Adue to the fact that both the LLSR slop estimate and
the corresponding standard deviation of this slone estimate
decrease at a more raoid rate than the ACD slone estimate and
its corresponding standard deviation for increases in N (see
Figure(3-26). If the ratio of the slope estimates, LLSR vs
ACD, decreases more rapnidly than the ratio of the corresnond-
ina standard deviations of these estimates, then when N and b
assume certain values, the ACD test procedure will beccne

more powerful. Thus if we knew the parameter value b, we
could select the more powerful test procedure by examining the
samovle size N, Since b will usually be unknown and difficult
to estimate without using a computer search technique, we neel
a general rule based only on the sample size,

Recall from Chapter I, that our nurpose for develcping

the test orocedures was to test if learning is occurring

during an evaluation of a particular system. Since the people

operatine the system have undersgone extensive training orior

to the evaluation, it seems unlikely that the rate of learning
that could occur during the trials of this evaluation would be
very large. Therefore the performance curve measuring learnine
during an evaluation should rarely have a narameter value of

b > 1.0. Based on this consideration, and referring back to
Fiqure 3-26, we can expect the best linear test procedure for
detecting learning to be the LLSR method since the expected

value of the test statistic for b S 1.0 is greater than that

for the ACD method when N £ 25,

i s PP T SN el o i T




Evaluation of Linear Test Procedures

A simulation study was conducted to evaluate the
findings in the previous section concerning the more powerful
test procedure for all combinations of sample size, N = 6,

N = 15; o = .03, .05, .07, .09, and parameter values

a=.1, .3, .Sand b =0, .4, .8, 1.2. The test procedure
that results in the largest percent of significant test
statistics for a given a level when learning is actually
occurring will be selected as the better test. The study was
also designed to evaluate if any one particular method of

the three alternatives considered below was better for
estimating O .
1. Using equation (2-8 ) under all conditions
2. Use equation (2-9 ) under all conditions

3. Apply the rule for choosing an estimator based

on estimates of O and parameter '"a'" as discussed

in the previous section.

The best method of the three alternatives will be {

selected based on the largest percent of runs that a particular ‘
alternative resulted in an estimate of 0. that was closest

to the true value. One thousand simulation runs were used %

for each combination of Ocs sample size and parameter values

to insure that the true percent of detection of learning would
be within #3% of the simulation results at least 95% of the

time. To reduce the sampling variability in the evaluation,




the same stream of normal randomly generated observations was

used in evaluating each test proceduve.for all combinations
of a,b,oE,N.

The results of the first part of the simulation study,
the evaluation of the test procedures, are given in Tables
3-1 through 3-8. The labels SEX, SER, and RULE correspond
to methods 1, 2, and 3, respectively, used to obtain an
estimate of g - Each block in the table contains the

percent of times the LLSR test detected learning, tps and

the percent of times the ACD test detected learning, tps
using a particular method for estimating o, - The test
statistics for each test procedure were compared at the
o = ,05 level.

The results substantiate our earlier findings that
the ratio of the LLSR test statistic to the ACD test statistic
is a function of the sample size and parameter b. In Figure
3-26 we found that for values of b € 1.0 and sample size of
N =6 and N = 15, we should expect the LLSR test procedure
to be more powerful than the ACD test. The results in
Tables 3-1 through 3-8 suppert this. As the value of b
increases from one the ACD test procedure is more powerful
and the results also verify this. The type I error appears

to be larger using the LLSR test praocedure than the type I

error using the ACD test procedure. This is expected since

the LLSR test procedurc gets more powerful in comparison to
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the ACD test procedure as b decreases (see Figure 3-10). Also
note however, that the tvoe I error for the LLSR test pro-
cedure 1s greater than the specified a level but decreases

as N increases. A possible explanation for this is that

when parameters a and b are small, the estimates of o, are
approximately equally distributed about oE as shown in Sicures
3-15 and 3~17. If the estimate of O is smaller than T
which is the case over 50% of the time, we increase the nro-
bability of obtaining a type I error. As the sample size
increases, the dispersion of the estimates of GE about the
true value of O becomes tighter and we have fewer estimates
of O which are substantially less than the true value of S
thus decreasing the probability of a type I error. When the
type one error was sovecified at o = .10 the vower of both

test rrocedures increased. See Table 3-9.

The second objective of the simulation was to determine
if one particular method for estimating 0. was better under
certain conditions than another., The results are shown in
Tables 3-10 through 3-17. Using either equation (2-8) or
equation (2-9) instead of apolying the rule, vielded a lar-er
nercent of better estimates for almost all of the combinations
examined. It appears then, that the estimates of O and
"

vparam~ter "a” are not accurate enough to use in applvineg our

general rule.
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Table 3-1. Percent of Significaht Tests for Learning Using
Three Different Methods for Choosing an
Estimate of o for Given Values of
a, b, N, and oo. o = .05
N=2=¢6 o, = .03
b=0 b=.4 b= b=1.2
SEX tp= 069 to= 998 tR=1 000 tR=.999
tD—.042 ty= 995 =1.000 t;=1.000
a SER te= 060 tp= 994 tp=1.000 tp=.998
ty= 040 tp=.982 ty= 999 tp=.996
RULE tR=.069 tp= 997 tp=1.000 tp=.999
tp=.042 tp=.994 tp=1.000 th= 997
SEX tp=.059 tp=.913 tp=-983 tp=.982
tp=.047 ty=.859 tpy=.974 ty= 985
ae SER tp=.058 tp=.875 tp=.940 tp=.939
tpy=.039 tp=.813 tp=-929 ty= 918
RULE to= 059 tp=.914 tp=.973 1 959
tp=.047 tp=.862 tp=.966 ty=.950
tD=.043 tp=.272 tp=.415 ty= 452
o SER tp=.054 tgr=.291 tp=.442 tp= 446
ty= 038 tp=.256 tn=.395 tp= 409
RULE tp= 056 tp=.318 tp=.467 tp=.497
tp=.043 tp=.272 tp=.415 tp=.452
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Table 3-2. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimate of o for Given Values of
a, b, N, and o.. a = .05
N =6 0. = 05
b=0 b=.4 b= b=1.2
SEX tp=.086 tp=.958 tp=.997 tp=.995
ty= 067 t,=.930 tp= 991 tp= 997
- SER tR=.088 tR= 947 tp= 991 tR= 982
tD=.O70 tD= 914 tp= 980 th™ 983
RULE tR= 088 th= 958 tr= 995 tr=-990
ty= 067 tD= 936 tp= 988 tp= 990
SEX tr= 080 tR= 715 tp= 912 tr= 894
tp=.074 tp=.632 tp=.871 tp=.904
i SER tp=-076 tp=.693 tg= 863 tp=-.837
tp=.073 tp= 605 tp=.835 th= 826
RULE tR= 081 tp= 719 tR= 881 trR= 845
tp=.074 t=.636 tp=.856 ty=.849
SEX tp=.084 tp=.257 tp=-328 tp=-381
ty= 061 th= 218 tp= 285 ty= 367
A SER tR= 077 tr= 251 tp= 323 te= 374
tp=.060 tp=.214 ty=.286 ty=.355
RULE tr= 084 tR=.259 tp= 328 tR= 389
tD= 063 ty= 219 tp= 288 tD= 364
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Table 3-3. Percent of Significant Tests for Learning Using

84

Three Different Methods for Choosing an
Estimate of o. for Given Values of
a, b, N, and 0. @ = .05

N =256 o, = .07 E
b=0 =.4 b=.8 b=1.2
SEX tr= 084 tp= 823 tp= 951 tR= 968
tD=.081 tp= 762 th= 933 tp= 966
tD=.078 ty= 732 tp= 898 tp=.924
RULE tp=.083 tR= 826 tp= 934 tp= 948
tp= 081 tp= 764 tp= 918 tp=.943
SEX tp= 077 tp=-506 tg= 731 tp= 773 ]
tp= 069 tp= 436 ty= 684 tph= 754 4
o SER tR=.078 tp= 499 tR= 697 tR= 705
tD=.066 ty= 440 tp= 636 tD".699
____________________________________________ ]
RULE tr= 078 tR= 509 tR= 705 tR= 708
ty= 069 tp= 451 tph= 649 tp® 704
SEX
a= SER
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Table 3-4. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimate of o for Given Values of
a, b, N, and 0. o= . 05§
N =26 0. = .09
b=0 b=.4 b= b=1.2
SEX tp=.080 tp=.685 tp=.868 tp=.886
ty=.074 t=.631 ty= 843 ty=.874
e s SER tp=.083 tp=.658 ty=-834 tp= 831
: tp=.071 th= 594 tp=.799 tp=.831
RULE tp=.077 tp= 680 tR=.862 tr= 860
tp=.073 ty= 623 ty= 834 ty=-865
SEX tp=.089 tp= 395 tp=.596 tp=.591
ty= 082 ty=.359 th=.545 ty= 582
e 2 SER tp=.082 tp=.395 tp=.581 tp= 558
. ty=.078 tp=.351 tp=.523 tp=.548
RULE tp=.092 tp=.402 tp=.582 tp=.563
tp=.080 tp=.355 tp=.523 tp=.554
SEX tp=.079 tp=.164 tp=.199 tp=.235
tD=.071 tpy=.138 tp=.169 ty= 210
a1 SER tps 078 tp= 157 tp=.191 RE 222
tD=.O74 ty= 139 tp= 166 D= 210
RULE tp=.082 tp=.164 tp=.200 tp=.228
tp=.075 ty=.137 tp=.168 tnh=.217
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Table 3-5. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of o_ for Given a, b, N, and o .
a = .05 € €
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Table 3-6. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an

Estimator of o, for Given a, b, N, and

oe. o = .05

. t -
R R R R 1

F! a=. 5 SER - = = =
g tD .033 ty 991 tp .998 tD 1.000
e ]
¥ tp=.062 tp=1.000  t,=.999 tp=.999 j
X RULE _ - - -

tD—.O41 tD— 994 tD—.999 tD—l 000 ‘
! |
1 SEx tR= 062 tR‘ 948 tR‘ 976 tR=.966
! tn=.041 t,=.817 t,=.961 t,=.976
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Table 3-7. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of 0. for Given a, b, N, o_.

a = .05 €
N = 15 o = .07
b=0 b=.4 b=.8 b=1.2
{]
SEx tR-.gis tp=.990 tp=.998 tp=.994
ty=.047 tp=.930 t,=.994 ty=.995
: e - tp=.047 tp=.984 tp=.991 tp=-953
% tp=.041 tp=.905 ty=.968 ty=.980
73 ————————————————————————————————————————————
if CULE tp=.055 tp=.989 tp=.993 tp=.972
ﬁ ty=.047 tp=.920 tp=.973 t,=.982
! sEx tp=.064 tp=.755 tp=.848 tp=.828
~‘ tp=.035 t,=.606 tp=.807 ty=.832
ws e WD WIow
D D ° D D
_— tp=.063 tp=-742 tp=.793 tp=.752
t,=.036 ty=.589 ty=.744 ty=.781
< tp=.052 tp=.217 to=.242 tp=.233
ty=.044 ty=.170 tn=.222 tp=.242
G S S S AU
D D D D *
CULE tRf 053 tp=.226 tp=. 249 tp=.229
: tn=.043 ty=.173 ty=.214 ty=.235

i

— e
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Table 3-8. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of o for Given a, b, N, and o -

‘ a = ,05
]
N=15 o, = .09
) b=0 b=.4 b=.8 b=1.2 ’
F
S tp=.058 tp=.910 tp=.976 tp=.930
t=.052 ty=.783 ty=.943 ty=.971
‘ t,=.045 to=-879 tp=.933 tp=.850
I a=.5 SER - ou6 t.=.750 t..=.896 t,.=.915 ‘
k tD"'- D'_o D_- D . .
) - tp=.055 tp=.894 tp=.956 tp=.895
ty=.052 t=.779 ty=.913 t,=.934
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Table 3-9. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimation of o_ for Given a, b, N, and o _.
o = .10 & €
| N =6 c_ = .03

m

b=.0 b=.4 b=.8 b=1.2
]
) | - = = =
i SEX tR— 110 R—I.OOO tR 1.000 tR 1.000
tD=.094 tD= 998 tD=1 000 t~,=1.000
=5 SN0 ies tvaion0 thei.ono
D - D - D~ D
RULE tR= 110 tR=1 000 tR=1 000 tR= 999
) tD=.094 tD=.998 tD=1 000 tD=1 000
f SEx tR= 108 tR=.974 tR= 998 tR= 998 )
tD=.090 tD=.952 tD= 995 tD= 998
———————————————————————————————————————————— i
=. = =.9 =
=3 SR e Mse e cheeos
D D b D
| RULE tR=.109 tR= 972 tR= 998 tR= 996
i tD=.090 tD= 952 tD= 993 tD=.997
]
| SEX tR=.095 tR= 450 tR= 649 tR= 641 ]
; tD—.083 tD=.404 tD—.594 tD~.635 j
U
i - : .1
i s KU M e s |
i D - D D D
i RULE tRi.OQS tRi 450 tRi 649 tR= 641
5 t,=.083  t;=.404  t;=.594  t;=.635
‘ %
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The primary concern is, however, to select the method
for estimating Oc that will result in the most powerful
test for detecting learning. Comparing the test procedure
results with the estimator results it appears that using the
minimum biased estimate of O does not necessarily result in
the most powerful test (i.e. under those conditions when
either equation (2-9) or the general rule presented on page
68 provided the largest percent of minimum biased estimates of

o_, the largest percent of significant test statistics 1s

~ tair2d when equation (2-8) is used to esti-ate "o

Recall that when either parameter "a" or "b'" is small,
(a < .1), (b £ .4), the observations are all very close to : i
the asymptote. Under these conditions the rate of learning
is very small and the corresponding average slope is small.
If o is large, the probability of detecting learning is

small. When o gets smaller, the probability of detecting

learning increases. This same idea holds for estimates of

o_. Examining the distribution of the estimates for both
estimators in Figures 3-15 through 3-22 it appears that
equation (2-8) will always produce the larger percent of
smaller estimates of o Therefore using estimates of 9.
generated using equation(2—8)‘when applying the LLSR test
procedure for any combination of sample size, o and

parameter values results in a more powerful test for learning.
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Table 3-10. Results for Each of the Threce Methods for
Choosing an Estimator of oo in Terms of Percent
of Minimum Biased Estimates of OE

N =6 Oc =,03

- b=0 b=.4 b=.8 b=1.2
e;j SEX=.445 SEX=.776 SEX=.988 SEX=.999
- a=.5 SER=,555 SER=.224 SER=.012 SER=.001
¢ RULE=.447 RULE=.778 RULE=.897 RULE=. 583
|
. SEX=.442 SEX=.548 SEX=.823 SEX=.948
& v
g a=.3 SER=.558 SER=.452 SER=.177 SER=.052
: RULE=.552 RULE=.564 RULE=.775 RULE=.735
SEX=.455 SEX=.440 SEX=.471 SEX=.514
b, a=.1 SER=.545 SER=.560 SER=.529 SER=.406
RULE=.461 RULE=.459 RULE=.476 RULE=.526

Table 3-11. Results for Fach of the Three Methods for
Choosing an Estimator of o¢ in Terms of
Percent of Minimum Biased Estimates of o

e atilER)

N =6 o, = .05

i b=0 b=.4 b=.8 b=1.2

| SEX=.576 SEX=.560 SEX=.794 SEX=.952
£ a=.5s SER=.424 SER=. 440 SER=.206 SER=.048
j RULE=.486 RULE=. 584 RULE=. 667 RULE=.593
: SEX=.471 SEX=.477 SEX=.569 SEX=.714
| a=.3 SER=.528 SER=.523 SER=.431 SER=.286
. RULE=. 549 RULE=. 520 RULE=.470 RULE=.397
¥ SEX=.431 SEX=.435 SEX=.492 SEX=.4790
5 a=.1 SER=.569 SER=.565 SER=.518 SER=.521

RULE=.536 RULE=.548 RULE=.519 RULE=.533




Table 3-12.

Results for Each of the Three Methods for
Choosing an Estimator of o, in Terms of
Percent of Minimum Biased Estimates of o

N =6 c = ,07
€
b=0 b=.4 b=. b=1.2
SEX=.543 SEX=.,487 SEX=.,741 SEX=.,798
a=.5 SER=,457 SER=.513 SER=.256 SER=.202
RULE=.473 RULE=.517 RULE=.539 RULE=.547
SEX=.439 SEX=.467 SEX=.530 SEX=.556
a=.3  SER=.561 SER=.533 SER=.470 SER=.L44Y
RULE=,458 RULE=.443 RULE=. 380 RULE=. 317
SEX=.461 SEX=.438 SEX=.456 SEX=.452
a=.1 SER=.539 SER=,562 SER=.544 SER=.548
RULE=,448 RULE=.459 RULE=.465 RULE=.445
Table 3-13. Results for Each of the Three Methods for

in Teims of
ﬁstimates of Ge

.09

Choosing an Estimator of o
Percent of Minimum Biased

N 6

o =
€

SEX=.558
SER=.442
RULE=.554

SEX=.467
SER=.533
RULE=.438

SEX=.444
SER=.556
RULE=.494

93




Table 3-14, Results for Each of the Three Methods for
Choosing an Estimator of o. in Terms of
Percent of Minimum Biased Estimates of o

N = 15 o = .03
€ 4
b=0 b=.4 b=. b=1.2
' |
SEX=.426 SEX=.991 SEX=.999 SEX=1.000
a=.5 SER=,574 SER=.009 SER=.001 SER=0.00

?* RULE=.426 RULE=.989 RULE=.995 RULE=.893

| SEX=.411 SEX=.788 SEX=.991 SEX=.999
i a=.3  SER=.589 SER=.212 SER=.009 SER=.001
? RULE=.411 RULE=. 788 RULE=.992 RULE=.991
% f SEX=.397 SEX=.418 SEX=.506 SEX=.555
‘ a=.1 SER=.603 SER=.582 SER=.494 SER=.445

RULE=.397 RULE=.445 RULE=.475 RULE=.572

: Table 3-15. Results for Each of the Three !ethods for
" Choosing an Estimator of o, in Terms of

Percent of Minimum Biased Estimates of O

, N = 15 o, = .05
. b=0 b=.4 b=.8 b=1.2
: SEX=.426 SEX=.784 SEX=.991 SEX=1.000
2 a=.5 SER=.574 SER=,216 SER=.009 SER=0.000
RULE=.487 RULE=. 734 RULE=.794 RULE=. 644
SEX=.387 SEX=.509 SEX=.750 SEX=.896
a=.3 SER=.613 SER=,491 SER=.250 SER=.104

RULE=.508 RULE=.555 RULE=.586 RULE=. 542

SEX=.501 SEX=.422 SEX=.436 SEX=.474
: a=.1 SER=.499 SER=.578 SER=.564 SER=.526
" RULE=.501 RULE=.490 RULE=.506 RULE=.506




Table 3-16. Results for Each of the The Three Methods for
Choosing an Lstimator of o¢ in Terms of
Percent of Minimum Biased Estimates of o,
N = 15 og = .07
b=0 b=.4 b=.8 b=1.2
SEX=.405 SEX=.612 SEX=.893 SEX=.969
a=.5 SER=.595 SER=, 388 SER=.107 SER=.031
RULE=.430 RULE=.526 RULE=.568 RULE=.517
SEX=.434 SEX=.,467 SEX=.597 SEX=.662
a=.3 SER=.,566 SER=,533 SER=,403 SER=.338 ;
RULE=.469 RULE=,370  RULE=.263  RULE=.216 ;
SEX=.443 SEX=,411 SEX=.440 SEX=.419
a=.1 SER=.,557 SER=,589 SER=.560 SER=.581
RULE=.412 RULE=, 449 RULE=.411 RULE=. 394
N 4
Table 3-~17. Results fer Each of the Three Methods for
Choosing an Estimator of o¢ in Terms of
Percent of Minimum Biased Estimates of SR
N = 15 G, = .09
b=0 b=.4 b=.8 b=1.2
SEX=.427 SEX=.546 SEX=.736 SEX=.853
a=,5 SER=,573 SER=,454 SER=, 264 SER=.147
RULE=.490 RULE=.569 RULE=.644 RULE=.620
SEX=.422 SEX=.456 SEX=.,474 SEX=.567
a=.3% SER=.578 SER=.544 SER=.526 SER=.433
RULE=.553 RULE=,516 RULE=.478 RULE=.438
SEX=.429 SEX=.440 SEX=.440 SEX=.421
a=.1 SER=,571 SER=.560 SER=,560 SER=.579
RULE=.526 RULE=, 546 RULE=.526 RULE=.563
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Evaluation of the Nonlinear Test Procedure

A final simulation study was conducted to determine
if the nonlinear test procedure is a more powerful test than
the linear test procedures. The study was conducted under
exactly the same conditions as were used for the linear test
evaluation (i.e. same normal randomly generated observations |

were used). In order for the nonlinear test procedure to

yield a significant test statistic, two conditions must be

satisfied:

i daxe=

(i) The degree of nonlinearity of the curve must
be small enough to apply linear theory
approximation for determining confidence
limits on parameters '"a'" and "b".

(ii) The lower limit for both parameter '"a'" and
parameter 'b'" must be greater than zero for
the lower confidence limit of the slope
abt®-1 to be greater than zero.

An advantage of the nonlinear test over the linear

test procedure is that it is possible to estimate the rate

of learning at any particular trial by examining the
confidence 1limits for the true slope at that trial. Therefore
if the degree of nonlinearity is small enough, less than {

.01/F it will be possible to construct the upper

Ot’p,N—p ’
(1-a) confidence 1limit for the true rate of learning at any
particular trial. If the value of the upper confidence
limit, in terms of rate of learning is determined to be

insignificant at a particular trial then we can assume that

learning will not be a factor in any future trial results. E
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As car be seen in Tahle 3-18 when either parameter '"a"
decreases or parameter '"b'" increases, the maximum allowable
e value for which linear theory approximations on the test
of the slope will be valid, decreases. For the nonlinear
test procedure, the results in Tables 3-20 and 3-21 indicate
that the degree of nonlinearity is the limiting factor
except when parameter '"a" or "b" is small. An explanation
for this follows. When parameter "b'" is small the rate of
learning is small and the curve is approximately a straight
line. A tangent line approximation for cstimating the values
of the parameters would do very well under these conditions.
When O is large in comparison to the average rate of learning,
it will reduce the power of the test before it becomes a
significant factor in affecting the degree of nonlinearity.

If on the other hand the value of parameter "a" 1is small, this
implies that the observations are all very near the asymptotic
value of 1. Since we can never do any better than 100%,

the amount of deviation above the expected value is limited.
If O is relatively large the amount of deviation that occurs
below the expected value may well exceed the limited devi-
ation above this expected value. This would result in a
fitted curve with a negative value for b, but more important
it will also result in a lower confidence limit for the slope

which includes zero. An examination of the observations for

several simulation runs when parameter a = .1 and o, = .03

did reveal this to be the case.
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Table 3-18. Maximum Allowable Value of o, for Given Values
of "a" and "b" for Linear Theory Approximations
to be Valid at o = .05 Level

N=26
b=0.0 b=.4 b=.8 b=1.2

a=.5 o .078997 .042525 .031026

a=.3 o .047398 .025515 .018615

a=.1 w .015799 .008505 .006205

Table 3-19. Maximum Allowable Value of o. for Given Values
of "a'" and "b" for Linear Theory Approximations
to be Valid at o = .05 Level

N =15
b=0 b=.4 b=.8 b=1.2

a=.1 o .073523 .035870 .025137

a=.3 o .044114 .021523 .015022

a=.5 @ .014705 .007174 .005027




Table 3-20.
a=.5
a= .3
a = .1

Table 3-21.
a=.5
a=.3
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Percent of Times Linear Approximations can be
Used, P and the Percent of Times the Slone

Test w&é Significant, PSS

N =6 oe = .03
b=0 b=.4 b=.8 b=1.2
PLA=1.OOO PLA=1.000 PLA=.895 PLA=.023 ;
PSS= .080 PSS=1.000 PSS=.895 PSS=.623 X
PLA=1.000 pLA= .956 PLA=.399 PLA=‘200
PSS= 071 PSS= .938 PSS=.399 PSS=.ZOU
PLA= .794 PLA= .267 PLA=.056 PLA=.041
PSS= .053 PSS= .079 PSS=.025 PSS=.025

Percent of Times Linear Approximations can be
Used Py o and the Percent of Times the Slope

Test was Significant PSS

N=26 O, = .05
b=0 b=.4 b=.8 b=1.2
PLA=1.000 PLA= .951 PLA=.438 PLA=.187
PSS= .080 PSS= .940 PSS= 438 PSS=.187
PLA= .994 PLA= .579 PLA= 104 PLA=.056
PSS= .072 PSS= .439 PSS .103 PSS=.056




e 2

ey

100

The results in terms of the percent of significant
tests per 1000 runs using the nonlinear test procedure are
given in Tables 3-22 and 3-23. A8 the value of o, decreases,
the power of the nonlinear test increases when the values of
parameters a and b exceed some critical number. It appears
that this critical value may be near .2. As the sample size
increases the power of the nonlinear test decreases. This is
evident by comparing values in Tables 3-18 and 3-19 since the
maximum value of o, for given parameter values '"a'" and "b"
decreases as N increases.

A comparlson of the LLSR test procedure with the non-

linear test procedure 1s also provided in Tables (3-22) and

(3-23).

s ek e Mmoo -
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Comparison of the Percent of Significant Tests
for Learning Using the Nonlinear Procedure,
tyL, and the LLSR Procedure, tr. The results
are based on 1000 simulation runs for each
combination of a, b, N, and o_. Tests werec

conducted at a = .05 level.
N =26 c_ = .03 4
£

b=0 b=.4 b=.38 b=1.2

tNL=.080 tNL=1.OOO tyL= . 895 taLs .623
a=.5 - - = =

tp =.067 tp = .998 tp =1.000 tp =1.000

tNL=.071 taLs .938 tyL= . 399 tyLe .200
a=.3 - - = =

tp =.059 tp = .913 tp = .983 tp = .982

typ=-053 tNL= .079 tNLE .025 tNL= .025
a=.1 — - = =

tp =,056 tg = .318 tp = .415 tp = .497
Table 3-23. Comparison of the Percent of Significant Tests

for Learning Using the Nonlinear Procedure,
tNL, and the LLSR Procedure, tr. The results
are based on 1000 simulation runs for each
combination of a, b, N and o¢. Tests were
conducted at the o = .05 level.

N =6 c. = .05
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CHAPTER IV
ILLUSTRATION OF THE PROPOSED PROCEDURE

Example 1
The example problem chosen was an actual exveriment

conducted at Georgia Tech to determine the verformance of a

f viscous damped tripod. The experimental results were in

” terms of standard deviation of the error from a marked point
while tracking a moving target at a constant velocity. The
4 : curve describing these results follows the form of egquation p

(1-1). Although the linear test for learnineg can be applied

directly to the learning curve data, a conversion to the

performance curve will be made in order to apply the computer

program as writtin for the nonlinear test orocedure.

To conduct a test for learning using the performance

curve described by equation (1-2), a suitable scaling of the

f values must be accomplished. Recall when performance is in

terms of the percent of total possible that the lower 1limit

. at trial 1 was 0 and the upper 1limit of the curve at some

, future trial number was 1. A value of zero 1s what we might

expect from an operator who is totally unfamiliar with the

i . system and a value of 100% is the expected value obtained if
1 the system meets the required sovecifications when onerated by

i a fully trained individual or crew.

B RPR i v e o e
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In the viscous damped tripod experimental data,
values that correspond to the lower and upper limits for the
performance as discussed above must be selected. The upper
limit will be chosen as the minimum standard deviation of
error predicted by the manufacturer when the tripod is
operated by a fully learned individual. The value selected
to correspond to the lower limit on the performance curve
was the largest standard deviation of error value recorded
during the first two trials of the experiment. The tripod
was operated by 5 different individuals whose experience in
tracking moving targets varied. The largest standard
deviation of error over the first two trials was recorded
by a subject who was totally naive about the operation of
the tripod prior to this experiment.

The equation for obtaining the proper scaling factor

to use in transforming the learning curve data to a performance

curve is:
1.0
Ty = = (4-1)
F o Eg-Ey

where

EM represents the manufacturer's specifications

ES represents the largest value for standard deviation

of error recorded during the first two trials
TF = transformation factor for 1 unit of change in

the learning curve data.

{
i
1

adda aan e ek




ot e DB e e it -

ke o P, R £on? R NEATA - henry ReEsl ik — . s ] P
- - i -, R TN e TP NP g L o AR s e e P ey @

ol

The interprctation of the above computations is that 1 unit
of decrcase from the largest value recorded in the learning
curve data will correspond to 1-0/[ES—EM] increase from
the minimum value, zero, on the performance curve. The
equation for transforming a data point at a particular trial

on the learning curve to the performance curve is

Vo= (FS - trial result) (TF) (4-2)

v (6.522 - trial result)(.18443)

where Vp represents the corresponding value on the performance
curve.

The results in column 2 below were obtained bv an
individual who was familiar with trackineg moving objects but
who had never operated this particular type of tripod before

this experiment. A test to detect if learning was occurring

" during the first 6 trials of the experiment will be conducted

using both the LLSR test procedure and the nonlinear test
orocedure. If the nonlinear test 1s significant, the 100
(1-0)% confidence 1limits will be evaluated for the slope of

the curve at each trial to determine if the rate of learninsg

becomes insignificant by trial 6.
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. .2 -
Trial v =y X. (X.-X) (t.-t)y.

Number Result p "1 1 1 1 t

1 4.2124 .4260 .1328 .003564 -1.0650

2 3.4920 .5588 .0778 .000022 - .8382

3 3.0702 .6366 .1582 .007242 - .3183

4 2.2126 .7948 .0740 .000001 .3974

S5 1.8113 .8688 -.0773 .022620 1.3032

6 2.2306 .7915 1.9789
Applying the LLSR test procedure at a = .05 using an estimate

of o from equation (2-8) yields the following:

i <
Ho: dypsg = °

Comput=:

N(N%+1)

If ¢ do not reject HO

0= % 05,4

If tg >t o5y

Compute an estimate of ¢_° using equation (2-8)

reject HO

N

5
(N-l).Z

(xi-i) 2
i=1

2 _
0 =
2N(N - 2)

~ 2 sc.03347@= .0034843
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Compute an estimate of the slope using the LLSR method:

3 _ i=1
LLSR® —N ;
T (t.-t)
i=1 1
4 _1.458
LLSR™ I75
drrsr= 0833
Compute the test statistic, to:
_ 9Lsr™®
0
120e
N(N2+l)
- .0833
to
\/ 6(36+1)
t, = 6.07

Since t, > t05’4 we reject HO and conclude learning

is occurring during these 6 trials.
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Applying the nonlinear test procedure at o =

using the computer program in Appendix D, yields the
following results.

Estimates of the parameters and o_ are:

= 6017

b = .6425

5 = .0656
[

~

The measure of non linearity Ne was computed as:

ﬁe = .00161373

Critical Value = .001441

The degree of nonlinearity for this estimated curve is too
large to use linear theory approximations to compute 95%
confidence limits on the slope. Applying the test procedure

at a = .10, the test for learning is significant. Thes 90%

confidence interval on the slope at each trial is:

Trial
Number
1 lrwer confidence value = .1769
wpper confidence value = .7366
2 lower confidence value = .0661
upper confidence value = ,1902
3 lower confidence value = .0372
upper confidence value = .0878
4 lower confidence value = ,0247
upper confidence value = .0518
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lower confidence
upper confidence

w

6 lower confidence
upper confidence

value
value

value
value

This particular operator, even though

108

.0180
.0348

.0139
.0254

familiar with tracking

targets, still appears to be learning after 6 trials.

Therefore we would conclude that none of the 6 trial observa-

tion values are representative of the performance of this

tripod when operated by a fully learned individual.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This research involved the development of a simple
methodology to test for learning in experimental results
usine small sample sizes. In addition, a vrocedure for exam-
ining the instantaneous rate of learning at any particular
trial of an experiment was also investigated.

Assuming learning ca.a be described by a monotonically
increasing verformance curve of the form z = 1-at-b, tests
for learning were developed based on examining the rate of
learning over several trails. Since the curve 1s monotonically
inecreasing, a positive slope will be interovreted as learning
and a zero slope will correspond to no learning occurrineg.
For this research the time between trials was consldered
insignificant in affecting previously <gained knowledze ani
the error between any observation and its exvected value, s
1z assumed to be NID (0, 0€2)-

To develon a simple methodology to test for learnine anti
to provide a test that would measure the rate of learnina at
any rarticular trial, required two different avorocaches to

the prnblem. The approach to develoning a simonlified test

nrocedure involved examining four linear methods used to
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estimate the average rate of learning cover several trials.
A comnarison of the variances of the estimates of the average
rate ¢ learning for each method was made and those estimates

with minimum variance were sleected for further analysis.

The best linear method was the linear least sqguares regression,

LLSR, method and the next best linear method was the average
of the consecutive differences, ACD, method. Although the
variance of LLSR estimate of the average rate of learnine is
smaller than the variance of the ACD method, the exvected
value of the LL3R estimate contains a negative bias factor
while the exvected value of the estimate of the average

of learning using the ACD method 1s unbilased. The amount of
bias in the LLSR estimate of the average rate of learninsz

increases as the sample size or the initial rate of learning

increases. When the ratio of the LLSR estimafte of the average

rate of learning to the ACD estimate of averare rate of
learning is smaller than the ratio of their corrveseconding
standard deviations, then the ACD method becomes the more
powerful test procedure. PFor sample sizes less that 24,
the LLSR method is the best test procedure when a narameter

b i3 less than or equal to one,

In ordepr to conduct either of the linear test procedures

. . 2 .
an estimate of the process variance, T s must be obtained.

- . 2 . .
e estimators of 0€ were examined to determine which
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estimator provided estimators of c€2 which resulted in the

most powerful test for learning. These estimators were derived

using the LLSR estimate of 052’ the sum ot the squared differ-
I? ences between the observations and ilhelr average, and the sum

of the square differneces between the first difference of the

observations and their average. The estimator of Oe2 using

the first difference of the observations provided estimates

which resulted in the most powerful tests for learning.

Since the rate of learning in performance evaluations
1s not expected to exceed a parameter value of b > 1.0, the
most powerful test procedure would be the LLSR. This method
1s most powerful when the varilance of the slone estimate
is computed with an estimate of 052 obtained using the first
difference estimator. To measure the rate of learning at any
particular trial requires an analysis of the instantaneous
slope of the curve at that voint. The abproach taken was to
use linear theory approximations to estimate the slope. If
the degree of nonlinearity of the function is small enoucgh,

I it 1s possible to use a linear theory aporoximation to con-
struct a confidence interval for the true slope at any
- particular trial. 1In the nonlinear method, estimates for

' o and the parameters "a" and "b" are obtained and a test on

l the degree of nonlinearity of the function 1is conducted
% using Beale's measure of nonlinearity. If the deeree of non-
linearity is small enough then it 1s pnossible tn construct

‘] a confidence region for the parameters "a" and "b". By
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computing the estimate of the slope over the points on the
periphery of the parameter confidence region, the smallest
and the largest value of the slope estimate can be obtained
for the curve at a given trial. The smallest and largest
value of the slope estimate correspond to the lower and
upper confidence 1imits respectively on the true slope. The
width of the confidence interval for the true slone will
decrease over the latter trials until it will eventually
include the value zero which indicates a fully learned status.
Therefore if the upper confidence limit were less than some
maximum acceptable rate of learning at a certain trial, then

it would be concluded that learning would not be a factor in

——e

any future trial results.
In a comparison of the two procedures, the linear

methods were more powerful tests; however, the nonlinear

S P

method was able to provide information on the rate of learning
at each trial when the nonlinearity conditions were satisfied
and significant learning was detected. "When the degree of
nonlinearity was small enough to conduct the test, signifi-
cant learning was detected 95% of the time except when

arameter "a" and "b" were small. The more powerful linear
p

test procedure was the LLSR method, which ~an detect an
average rate of learning over 15 trials of .01 at an a=.05
level 95% of the time when the standard deviatlon is

c€ < .05,




DA+ - A L LABGIS s e M LA gl T i ol 3 s R——

113

The advantages of the linear test procedures over the
nonlinear procedure are greater probability of detecting
actual learning and the test can be applied using simple

’ arithmetic and comparing computed and tabulated values as

demonstrated with an example in Chapter IV.

:
1 Recommendations for Future Study

B |

] In order to apply the nonlinear test procedure on results
)

which follow the learning curve, equation (1-1), the data

must be transformed into data that follows the form of a
performance curve,equation (1-2). The critical factor in

the transformation of data is selecting a value from the
learning curve data that would correspond to zero performance
on the performance curve. If the value selected 1s tco small,

the scaling factor, T will be inflated and when the value

F\5
selected 1is too large TF will be deflated. The effect on
i the power of the test procedures 1s not clear since a

& deflated TF results in a larger estimate for 062 as well as

a lareser estimate for the averasge rate of learning. It is
recommended that future research be conducted to investigate
the effect of errors in this transformaticn.

If the error term in the learning curve model was
multiplicative rather than additive as assumed in this study,
the test procedures develoved may not be adequate for
X detecting learning. It may be necessary to develop a new ;

{ test procedure based on the logarithmic transform of the model,
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In(y) = 1n(a) + bln(ti) + 1n(€i)

where 1n(y) = logarithm (y)

A recommendation for future research would be to develop a
methodology for detecting learning when the errors are log
normally distributed. Assuming that ln(yi) is normally

distributed then 1n(a) and b will be normally distributed;

In(a) = a is not normally dis-

however, the distribution of e
tributed. The difficulty then 1in developing a test procedure
for this aporoach will be in determining the distribution

of the estimate of the slope, ~abt P71

If the value of parameter b is known, it would be

possible to select the test procedure which would be more
vowerful for detecting learning. It is known that if the
value of parameter b 1ncreases for a given sample size and

w_

and a given value for“a% that the average rate of learning

"a" is made

also increases. If an estimate of the value of
using the first observation and the value of N is known, then
it may be possible to determine the value of b by examinine
the estimate of the average rate of learning. Another
recommendation for future research is to study the relation-
ship between the average rate of learning and parameter b in

order to increase the probability of choosing the more power-

ful test when the true performance curve 1s unknown,
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APPENDIX A
EXPLANATION OF NOTATION
Chapter T é
zi value of the true performance curve at trial number i
052 variance of an observation about its expected value
€y error between the observation and its expected value at
trial i
Chapter IT
Vs the observation at trial number 1
2 value of the performance curve at the asvmtote 4
y average of the observations
xi the difference between Yi+1 and Yy
X average of the consecutive differences between the
observations
¢ average rate of learning
BACD estimate of the averase rate of learning using the
’ average of consecutive differences (ACD) method
8LLSR estimate of the average rate of learning using the

the Linear Lease Squares Regression (LLSR) methcd
Sv2 minimum variance untiased estimate of og

Me measure of degree of nonlinearity

ni(§) true value
values are

of the function at trial i when the narameter
e (elyez’t!\ep)
11(5) tangential approximation of the true functlion at trial

i when the parameter values are 8 = (61,92,,.,,9p)

(OBS)2 estimate of °e2 using equation (2-7)
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estimate of 082 using equation (2-8)
2
estimate of UE“ using equation (2-9)

Chapter IIT

expected value of the estimate of o_ using the
average of consecutive differences éstimator,
equation ( 2-8)

expected value of the estimate of o_ using the
linear least squares regression estimator (equation

2-9)

estimate of O using equation (2-7)
estimate of o_ using equation (2-8 )
estimate of o_ using equation (2-9 )

estimate of o applying the general rule described
on page 68 for choosing an estimator

percent of times the Linear lLeast Squares Regression
test procedure detected significant learning

percent of times the Averace of Consecutive Difflerences
test procedure detected significant learning

percent of times that the degree of nonlinearity of
the verformance curve was small enough to use linear
theory approximations

percent of times the nonlinear test procedure
detected significant learninsg when linear theory
approximations could be applied.

percent of time the nonlinear test procedure detected
sienificant learning

scaline factor for transforming learning curve data
to a2 nerformance curve

larcest value recorded 1in the learnine curve data
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APPENDIX B

DERIVATION OF THE ESTIMATORS OF 0€2

Several alternative techniques for estimating the

variance, 0. , are examined in terms of exvected bias to

dtermine a minimum bias estimator. The first technique

considered will be that presented in equation (2~6).

n
1l
o=

(yi—i)e/(m) (B-1)

i=1

writing 852 as a function of the zi's and taking exvectatinns

we have
2 N v
E(S “) = E[ £ (y;-y)/(N-1)]
€ i=1 *
N
_ 1 2 _ - =2
= N__l' E{lil (yl ZYiY"'y )
N
N T (z.+e.) £
_ 1 2 i = 171 N (z.+%.)
= N-7lE igl{(zi*‘:i) "2(z5%e;) (5 1*\3‘——~)+(.Z IN—L)Z}
= 1=1
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,
Since z; is a constant and ey ~ N10 (0,06“) the equation in

reduced form is

N
. L Z.
N N % 1 N
. 2y _ 1 2 2y . 1=1 -
FOS™) = gop [2 (25 7#B(ey) ) -2 2 (——y—)-2 I
i=1 i=1 1=1

N N N

E . Z Z. Z € -

L i N ‘o 1 N i= 1
CHECESSI IR (¢ = Sus L To= BOES

i N . N s N
i=] i=1 N
Io&y
Simplifying where E(eiz) Y ? and E(léi )2 - ez/N
N i,
, N ) NOE2 2 iil z;z
E(Se ) = .g Zs /N-1 + N-1 N-1
i=1
N
=2 2
2N o 2/N izl z No .
R £ N 5 S T PSS

where z is defined as the average of the expected values of

the observations.

ey
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Thus the farther the observations or trial results are
from the asymptote the more inflated will be our estimate of
the true error variance. A candidate for consideration as
an estimator for the variance then is equation (B-1).

Another simple to apply method for estimating the
variance of the process would be to use the first difference

of the series of observations

where Y is the observation at trial i.
Although the differences are not independent, the variance
of the xi's will contain the term 082. Therefore it may

be possible to express the variance of the xi's as:

A Var (xi) = 082 + B (B-3)
where A defines some multiplier and B represents the bias
factor due to lack of fit of the model and dependence between
the xivalues. Then a comparison of estimators can be made

in terms of expected bias. The expected bias in the estimate

2

of o using the sum of squared errors of the consecutive

differences between observations about the average

(xi-i)Z/N-Z

n
n
[ e B

PN




is derived below

; ; 2 L(xy -x)
E(S,") = El——x.7—]
s N-1 2 N-1 \
‘ 2y 1 N 15 Vi
| Bl =) = woz B2 TOqayy) - T !
!
; N-1 1
f L N1 EHGagre ) Gyre)t
| gz BU2 Mzggreg-@gte) ) N1 e
! N-1
- E{.Xl[(z i+1 %217 F§ ;) _2{(21+1 +1 Z1-61)
l=
N-1 N-1
[z5.1%€ 1725761 Y Iz5,1%€5017%57¢4)
' i=1 ) o+ (1 1 —
( N-1 N-T
‘ N
L (x;%)° N-1 N-1
=1 1 _ 2 (B=4)
i prisl oy L {E % (2¢_~%€:,-2:-€:)°-2E 7
! %= 1 = 52 i=1( I=1 %i+1 “1 ®i i1
) N
Iz +te €] N-1
| T 190 %i+1 %i+1 %1t + E 3
{ {(Zi+1 1 Z € - )( N-1 )} i=1
N-1
I lzgagtesanziteyl
(=2 )
N-1

The right side of equation (B-4) may be considered as separate

terms and the expected value of each computed.
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First term: 121
N-1 N-1 N-1
N . - - 2 = 2 2 2- -
B R TS U Ut T U e R L POl
+2(N-1)0€2
N-1
_ 2 ] 2
izl (zi+] z.)° + Z2(N 1)08
Second term:
N-1 _
N-1 -El [2549%e50y721785)
_ZE{igl [(zi+1+ei+1-zi—ei)(l — : -1}
N-1 Z,.¥E\ "2, -E
N
= S2B{ T [(2,,q%e5,q72;6) (1)
i=1
Zyo*Ep~Z, "€ N-1
_ N'°N"*17%1 )
= -2R{ (—1 ) 151 (2;,1%€5477277°€7)}
Zag*En~Zq €
_ N'ENTZ1TEq -
= -2B{ (—pq ) (zy*ey-zg7e9)}

2 2 2 ) 2 2
= - gor BlezyT*zy -2zyzy*2zgey-2zye g 22 ey 2ee gt 2z e tey ey

Taking the expected value of each quantity inside the

parentheses the following result is obtained
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2 2 2 2
= - §-1 (2y t2p -lzyrptie )
d¢ 2
= .L_ (z -z )2 - €
N-1 N ~1 N-1
Third term:
N-1
T (z,,4%€.-2.-€.) . -
N-1 i=1 1"'1 1 1 1 ]2} N Nzl [(ZN+€N Zl+€1)]2
E{ v [ N-1 i=1 N-1
i=1
1 N-1
= E§T')- 121 [zN *z, -22N21+20 ]
(zN-zl)Z 20 2
= NI Y RTT

Now substitute the simplified quantities back into equation
fa-4) to obtain

Z(:‘;:—;{): N'l
1=1 - 21 82 ) 2 2 82
2 2 2

4o (zy-27) 20

(AN(N-2) 2
N-1 9%

+

.1
N=Z
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. “X) y = 2N 2, 1 INél ( AN (zy-24)

’ xq 2 ‘N'I' OE ‘J'Zj 1=1 Zi""l Zi. N'I ]
(B-5)

Z(xi

In order to compare this estimate with that in equation (B-~1)
ve must put it in the form of equation (B-3). Multiplying

both sides of equation (B-5) by (N-1)/2N we obtain:

242 ) 2
N PO 2 N G S e ]
N TN %e ZN(N- PR A N-1

Another estimator to be considered for estimating the

variance is then

S_“ = (N-1)

[ e -4
[u

(x.-i)z/ZN(N-Z) (B-6)
i i

Another procedure for estimating the variance is to
use the sum of squared residuals obtained when fittine a
linear model through the observations using a least squares
resression technique. This estimate of the variance will
contain a bias factor due to lack of fit of the model as
discussed in Chapter I. Using the linear least squares re-
gression equation for estimating the variance, the computation

“f the exrected bias factor follows¥,

*
For derivation of the LLSR equations see Draper and
Smith [5].
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The LLSR equation for estimating the variance is:
N - -
T (t.-t)(y,-Yy)
N N 2; . i=1 1 [g ey
MSp = ([ = y;° - (z y;)/N N 5 2y fid
? i=1 i=1 T (t.-t)
i=1 1
N
 t.Iy.
i=1 * °?

—x—1}/(N-2)

Compute the expected bias factor due to lack of fit of the

LLSR model:
1 N N 1
E(MSE) = W {[ z yi ‘( )X yl) /N] - N—
‘ i=1 i=] Ty 2
3 (t;-1)
1=]1
5 £ v (B-7)
[E(iz]_(ti-t) (yl-Y) 151 tlyl)]
1 N ) N N
- N [E(Z (ti't) (}’i')’)-Z ti-E )’l/N)]}
i=1

Examine each term inside the brackets separately:

First term:

N N
2 (fy.)? 2y 1, N
ET 2 y;7-(Ty; = . €. - L 2
-i=1y1 §={1) /N] E[ifl(z *2z5e5%57) N [(i£12i+ei) ]
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Second term:
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Third term:

) N i N N
N S F‘[IE (ti't) (yi-YJiE]_ti 1§1Y1/N] =
s o(t.-t)
. 1
i=1
1 N N N N
E[ £ t.z I t.e. - ¥ tz.- % te. -
N .11 s_q 171 .- i .- 1
NC 3 ti-t)z i=1 1=]1 i=1 i=1
i=1
N N N N _ N N N N
I t.z - I t.e+ T tz+ T te]l]l t: T oz.+ 5 t. T oe.]
i=1t i=1 Y =1 i=1  i=1 ' i=1 1t g=1 toy=1 7
N N N N
- 1 (L t. T z. % tez. + (% t.)% 2 -
N 2.2 i=1 t =1 1 4= 1R Ty d
N I (t.-t)
- 1
i=1
N N . N 2 - N o N2 2
t( L zi) L ty - Nt ¢ t;o -z(z: ti) Zzi~( b tl) o
i=1 i=1 i=1 t € i=1 ' i1t i=1 €
N N N 5
+ Ntz T ti L zi + Nt ¢ tio
i=1 * i=1 i=1 t ¢
1 N N N N , N i
= rt Tz, I t.z.-t (% z.) T ot.] j
N [._ S R T | AR ¢ PR |
N T (t.-f)z i=1 i=1 i=1 i=1 i=1
i=1 1

Replacing the quantities in equation (B-7) with their

expected values:
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N N N
Ty = 1 2 - . 2‘ 2 - 1 ~ 2
ECBg) = §=3 {iflzi *N-Do o (i) N0 2 ty25)
¥ t.-t
i=1( 1 ) (B-8)
N N N N
-2 Lt I tizito 2 ) tiz - 2¢ £ t;]
i=1 * i=1 € i=1 € i=1
1 N N N N , N
+ [ ¢t T oz L t.z.-t (% z:) T t.]}
N _ soq 1 os2q71 4717 P | <-4 1
N T (tl-t)z i=1 i=1 i=1 i=1 i=1
i=1

Since the trials are consecutive integer values, a closed

form expression for t in terms of N can be made where

? _ N(N+1)
L T
j=1 1
N
Y. 2 _ N(N+1) (2N+1
ts I3
i=1
. N+1
t ==
N 2
_:y2 - N(N"+1)
LT S b A

then rewriting equation (B-8) in terms of N where applicable
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1 N 2 ('lei) 12 N 2
EMS.) = g0 { £ 2. “+(N-1)g_“- 2= - [z t.z.)
E N-2 j=1 1 £ N N(N2+1) j=1 1
N
U ON(N+1) - 2 N(N+1) (2N+1), _ 2 N+1, N(N+1)
] —7 z i:z.:ltizi+0€ ( g ) O'€ ( N )( i )]

P12 Nowy ¥ Ytz - (el NOeD),

NZ(N2+1) 2 jo1 1 o329 171 2 2

N
(I2)°N

i=1
Factoring and combining like terms:

E(MS.) = o Z[Nic2NIeNZeN o 12 B0 S
E e "NaNSeN%iaNT O N(N-2) NP1y 12 4ap 'l
N
N2+ 1) (T 22
j=1 1 N N+e1 N2
- VA - (2 tyzg - = 32307 (B-9)
i=1 i=1

Putting this in the form of equation (2-8) yields

B
N(N%+1) (N-2) EMS.] = o 2 + 12 [N3+N
: ,
’ N(NZ-2N%+N+1) E € N(NJ-2N%+N+1) @ 12
t
; N
(N2+1)( £ z.)°
‘ a1 N N
) ‘ ) i=1 (% tez. - N+1 s 2 )2,
1 12 ;=1 11 2 j=1 1
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Thus another estimator for the variance then would be

5.2 = (vFe1) (n-2)MS/ (NP -2NPene 1) (3-10)

i D)




O X R Mgt st a

s ot

i ks

APPENDIX €

NONLINEAR TEST PROCEDURE

Estimation of Parameters and Variance

Step 1. Since we know that the degree of nonlinearity
for the performance curve function is small, a linearizatioﬁ
method for estimating the parameters should work quite well
[10]. 1f a Taylor series expansion of the function f(ti,a,b)
about the point (a,b) is carried out and curtailed after the
first derivative, then an approximate estimate for the function

f[ti,a,h) is then:

- af(t,a,b)
f(ti,a,b) = f(ti,ao,bo) ey (a-ao)

2
» 2E(t,8,0) | (beby) (c-1)
o]
The model could then be written as:
3 P .
Y, = £(t,,a,b) + E(ta2u0) , E(E.a,0) . (c-2)

To solve for new estimates of the parameters, minimize the

sum of squared errors. Let

d1 = (a-ao)
d2 = (b-bo)
8 = (a,bh)
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,b
e; = [yj-f(ty,a,,b,) - §£§§LE_—lla (a-ag)
o

- af(gsa,b)l (b*bo)]z

(o]

then minimizing eiz with respect to B we get

de; 2E(t, ,
s = 2{_—b —|[y -f(t, ,e ) - :
3
af(ti,ﬁ) i f£(t ,e)
i aa 5, 1 35 '6 d 13 _
A
a
3
fe .2
l-‘].. - af(t,-e-) _ Yy -
_35— = 2{——SB~——‘§O[Y1 f(t,eo) ;
E
1
af(t 7) yE£(t,D
R AL

Then solve the two equations in two unknowns for the
direction vector that will improve the initial estimates of

the parameters

(t.,0) n 3af(t.,9) n f(t,,H)
el 4t I 5 s = I ——lg
a -a ® i=1 a2 9 % i=1 %

[yi'f(ti’go)]
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n 3f(t.,8) n 3f(t.,0) n 3f(t.,8)
Lo~ lg 1tk el 42 7 L E
i=1 dadb o i=1 o i=1
[yi-f(ti’eo)]
The minimum distance to move in the new direction D =
(dl’dz) from éo = (ao,bo) will be
®new 7 % * Vmin® (¢-3)

where Voin is evaluated as follows:

Compute the sum of squared errors for
$S(8,) = Ily,-£(t,8,)1°
: v i v

where é_v =90 +vD

and v=0,12,1
Let Q(v) = SS(EV)
then

v = 1/2 + 1/4 [Q(0)-Q(1)]1/[Q(1)-2Q(1/2)+Q(0)]

min

Using the new estimate of the parameter vector, enew' in

equation (C-3) as the next starting value, begin another

iteration.
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When the value of D = 0, or some small incremental
value, § = .000001, the best estimate is obtained for the
parameters that minimizes the sum of squared errors. The

corresponding variance would be

SS(F. ) %
g @ = d-17 (C-4)
€ N=2

th

whero 51_ represents the parameter values for the i~

1
iteration.

Step 2. Determine degree of nonlinearity. The

procedure, as discussed earlier, entails using Beale's
measure of nonlinearity to determine if the degree of non-
linearity of the performance function is less than .01/
Fu,p,N—p’ To compute the measure of nonlinearity, ﬁe ,
the function is evaluated along with the corresponding tangent
plane approximation, equation (3-34), at points éw = (a,b)

in the neighborhood of 8 = (a,b). Since there are two
parameters, a reasonable design for considering points in

the neighborhood of 6 would be a 32 design. In order to keep
the distance between éw’ w=1, 2,3, ..., 8 and g in
proportion to the size of 8 as S changes, compute the upper

and lower values of the parameters in the 32 design as

~ ~

at %(a); b+ %(b) for each parameter respectively. A

reasonable percentage value would be between 3% and 10%.
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Step 3. Confidence interval for parameters. If the
degree of nonlinearity satisfies inequality (3-38) then an

approximation for the linear theory confidence region

Ry

SS(8)-SS(9) < pIFRSIdIF, 11+ BRIy (c-5) i

can be used to find the confidence interval for each parameter.
A direct search procedure can be used to find the end points
of the confidence interval for each parameter as follows:

(i) Holding parameter "a'" at its least squares

estimated value, search along the axis of "h"
in both directions from b until equation (C-5)
is satisfied. The smallest value for b and the
largest value for b that satisfy equation
(c-5) are the lower and upper confidence limits
respectively for b.

(ii) Repeat procedure i, reversing the roles for
the parameters.

Step 4. Confidence interval for the slope. If the
joint confidence region for the parameters can be defined,
then a confidence interval for the slope can be determined.
llaving determined the confidence interval for at least

one parameter, say parameter "b'". we can conduct a search

4t incremental points within this interval along the pavameter
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axis to obtain peripheral points of the joint parameter
confidence region. The value of the slope for a given trial
at any peripheral point corresponds to either an uppner or
lower limit for the slope at those particular values of
(a,b). To determine the lower and upper limits of the slone
at a given trial for the entire joint ccnfidence resion,
select the smallest and largest value of the slone computed
over the various periphery points. The smallest and the
largest slope value correspond to the lower and upper
confidence limits respectively for the slope at that given
trial.

Appendix D consists of a computer program which estimates 4

the parameters and O tests the degree of nonlinearity and

computes the confidence limits for the slope at time ti'
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APPENDIX D

COMPUTER PROGRAM

ESTCIMPUT s OUTFUT » TEFE S TNEUT « TAFES G0
5O W VECLOr 200 e ALFHACLO) v BETAC LG o 10200

Tl LORIER s i e

COFDRC T LA SUM OF SilakE

! BROSCRET FPARAMETER ES
’ ERSTIE I CHOOSE LARGE MUMRKE
3 I W E e B,

oo By ol o CORSCT Yy L=l opd
A I O R R S
Rk @i ¢ VORI Y vk o N

[ FAakaity TFE *a . TR oy
U ARE L F Rt ks PR
FQCE DU

o

THLE PROGRAM
M A2 T
GRALTENT

Froakid - i

Fravfe b =

KT A A O N N TV

[ A O D S R S T R ¢
Q=00 0,0

Ny L Tt eN

Frdmara -0l QT TME CL Y KPP aRME D D

a3 Yo e R ARMO S CVTRME CL a0k aRMEY 2 &AL DECL QAT T OT

.

CLY = Ob e O P ARMA CTTME CT kP aRMi ey o

Lo abmle y ya s

G20t CORECTY = L O-FaRMAS CTTHE
P ONNT ENUE

TTOR THST Wl
A ANT TR
MEaTRTY .

SOLVE FOk ELEMENTS OUFDIRECTTON U
FMFPROVE OUR ESTTMATES OF FARAMET
FIMO "0 ANL "DRt BY SDLUTNG & 3

(ERE
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l
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M E
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BaRaRMEBY CWK G RKDE
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DR REaG,. 0
(EEIY

=i LS CTIME O
ACTTMECT vk
AUTIME CT 3k

B1HAS
D RAZ

RV AR SRR

BUYY G0 TD 2

.
Lit s

- GOOin La
| VIO
0019 Talei
QYOS COBSCT Lo OAls CTTME ¢T3 kR T 4y Kk
19 COMTTHUE
(YR P LN F ]
TF (Uil oL T. 00001 GO T 20

o

T ERTEL

B IV S
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IF (FARMRE JEQ. PFARMRB)Y GO TO L4
3 : RMA+UMINKWXIIL
"ARMEHUMINXWXIIR
ARME
IF (FARMR .LT. 5,00 GO TO 11
GO TO 1é
11 CONTINUE
Lo 8= (RAL/IN~2)3%%0 .0
WRITE (&el7) FARMAVFARME, &
17 FORMAT (" " /Z"FARMA= "y FLL. 85Xy "FORMEB= "y
CFLL 88X “BTI DEV= "o 11 . 8)

C CHECK DEGREE OF NON-LINEARLTY USTHG RBEALE"S METHON

GHUM =0 O
G M0, O

UGENERATE COMBINATIONS OF THE FARAGMETERS AROUT THE
ESTIMATED VALUES

_—— - —.

Bla=FaRMEB-0. OBXFARME
DO 21 Twle®
To=FarMA-0 ., OBAFARMA
AT =RIACT-12K0 . OBRFARME
TH L «LE. 33 GO TO 21
ALFHACLD VRMAHO . O8XFARMA
RETACT =BLH O -40K0 ., ORKFARME
TF or WLE. &3 GO TO 21
AL FHOCL Y =FakMa
yox G. &) G0 TO 24
Re a0y =14+ L7 3K0. OBXFARME
GO 2y
4 BETACL )=
29 IF L .
BETACL)
21 CONTINUE

BL4+2 . 0K0 « OBXEARME
. 8 GOOTO 2 :
FAFRME j

L TEST DEGREE OF NOM-LINEARLTY

Do 220 T=1e9
Ny 2% d=d N
VECT e Iyt 2 O-ALPHACD) A CTIME COyKRBETHCL )
DX CONTINUE
22 CONTINUE !
Lo 2% =148
LEM=0,0
1) 26 J=1eN ]
KeQa Q=107 CTIME CJYXRKBETACD))
Yu0u.0-ALFHACPIRALOGCL O/TIMECIIIKRCCL O/ TTME CY YRKBET &

RS T
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CoBETACDY 2K KK
SNUM=GNUMEQR
DagVECT v ) ~VE (S ) Y RK2
DEM=TEM+I
d6 0 CONTINUE
STEM=STEMAIEMX KD
SONTINUE
FOE S LI Taefok CHRK2 ) K CENLIMAGTIEM)
WRITEC(Sy 27 GNUMe GDEMy RESLLT
27 FORMATOY "y "GNUM = “vF 11 .8By8X e "SHOEM = "oF 1L .8vhn.
CORESUL T Y FLO.8)

DETERMTHE TF L INESR TH
TamaT YONs POk ParR6aMETERS

TORESUL TE CaN RE SET A% nkibie
n ‘) " ("NIl i I.‘- H

SF
GBS CRUAL Y B0 LK)

WRTTE Che 28D
REFORMAMAT " TDEGREE GF NON-L INEARTTY TO0 1 ARGE"
LU T0 &0

COMEUTE THE CONFIOEMCE LIMETS FOR O THE SLOFE AT
SPECIFTED TIME
COMPUTE THE COMPARTISZON VALUE FOR THE CONF EDENCE Va5

SHKD ) KF KL e Ok € CNK PR 0007 CR RN 0 ek sl i
DAKCN-F)

DETERMINE LOWER AND UFFER BOUNDE OM FokabETER “h
THEN CONDUCT A SEARCH aLOMGE TH1S [RTERVAL 10 DET kR
MIME UFFER ANDLDWER BOUNDS ON THE S10FE .

el Lam (o QOG0T

Tel ol
QP ARMA/ CTIME CL)XKEL)
RECTY TR ) &K2
AR J=PAR SR
A2 CONTINUE
DIFF R =

=G HE

SGE . ULLYGO TO 33

IF (DIFEH
GO TO 34
33 WRITE (69350 RI
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8 FORMATC" "/ "Rls= "eF11.8)
BU=FARME
38 BU=RURED
FARK=0.0
', no 36 I=1sN
b CRU=1 L O0-FARMAZ CTIME (T kkRLD
4 GERU= COBS L) -TURU) X%2
PFARK=FAORK+ESFRU
3 6 CONTINUE
3 DIFFRU=FARK-SSE
IF (DIFFRD (GE. UCLY 50 TO X2
GO TO 38
37 WRITE(O3X9) HU
F2OFORMATC" e "RU= "«F11.8)
M CRU-BL Y 70054

RO 4G Ke=loN

tl » COMPUTE LOWER LIMIT FOR "A" GIVEN FARTICULAR UALEE 7w

; A3 alosmdl - RET

; FARL=0.0
0o 41 T=1eN

& Gl o Qb /A CVTME CL YRR 3D
SFAL = RS CTI~CAL I XKD

- FraRL s aRkL +S5FAL

A1 CONT I

DYFF AL =FA .
TFOCUIFFAL GE« UCL) GG TO 42
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