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SUMMARY

The objective of this research was to develop a

simple methodology to test for learning using a small sample

size and to develop a procedure for measuring the rate of

learning at any particular trial. For this research the time

between trials was considered insignificant in affecting

previously gained knowledge and the error between any

observation and its expected value, zi, is assumed to be

NID (O,o 2).
C

Assuming learning can be described by a performance

curve of the form =1-at-b two linear methods and one non-

linear method were developed to test for learning by examining

the rate of learning over several trials. Since the curve

is monotonically increasing a positive slope will be

interpreted as learning and a zero slope will correspond to

no learning occurring. The-linear procedures are based on

testing the average rate of learning that occurs over several

trials. Several methods for estimating the average rate of

learning and the variance of the observations, a 2, were

investigated. The best method for estimating the average

rate of learning, based on the minimum variance of the estimate,

was the linear least squares regression, LLSR method, and the

best estimator of a 2, which resulted in the most powerful

test, was computed using the first differences of the

UWE
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observations.

In the nonlinear method, estimates for a and the

parameters "a" and "b" are obtained and a test on the degree

of nonlinearity of the function is conducted using Beales

measure of nonlinearity. If the degree of nonlinearity is

small enough then the confidence interval for the slope at

any trial can be evaluated by using linear theory approximations.

In a comparison of the two procedures, the linear methods

were more powerful tests, however, the nonlinear method was

able to provide information on the rate of learning at each

trial when the nonlinearity conditions were satisfied and

significant learning was detected. The more powerful

linear test procedure was the LLSR method, which can

detect an average rate of learning over 15 trials of .01

at an a = .05 level 95% of the time when the standard

deviation is a .05.
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CHAPTER I

INTRODUCTION

If a comparison of two or more systems is to be

meaningful it seems reasonable that each system should be

operating at its full potential. When the human factor

enters into the operation of a system, the system's full

potential is not realized until the operator(s) are "fully

learned." To determine if the operators are fully learned,

one must be able to measure the rate of learning that is

occurring over successive periods of operating the system.

Assuming learning can be described by a monotonic function,

a fully learned status would correspond to a zero rate of

learning.

When the crew operating one system is fully learned

while the crew operating a second system is not, a negative

bias could be introduced into the test results of the second

system, rendering an unfair evaluation. This bias which is

the result of a difference in the proficiency levels of

respective crews on competing systems is a major concern to

the U. S. Army Operational Test and Evaluation Agency (OTEA)

during operational testing and evaluation of contracted

equipment.

.......
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Background

This study was prompted by the desire of the U. S.

Army Operational Test and Evaluation Agency (OTEA) to deter-

mine if a crew or unit is fuily learned on the operation of

the system being evaluated.

The purpose of operational testing is to provide

information for use in an independent evaluation of the

military utility, operational effectiveness and suitability

of the total system (1]. There are three sequential tests,

OTI, OTII, OTIII, characterized by emphasis on testing with

typical user operators, crews, or units under realistic

conditions. Each sequential test consists of several trials.

Data obtained during a particular segment of the sequence is

analyzed to determine if the next phase of the test should

be conducted or the new system rejected [2].

Operational test I, (OTI), usually is limited in

scope and focuses on the primary system function (i.e.,

Ifirepower of a weapon, mobility of a transport system, etc.).
The type of comparison is either against a baseline system

or among competing systems. Operational test II, (OTII)

is broader in scope and is concerned with testing of engi-

neering prototype equipment and complete test support

packages involving entire troop units in controlled field

exercises. The comparison is between the new system and the

standard system which would be replaced. Operational test

III (OTIII), involves evaluating the performance of as large11wo b.. .
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a unit as feasible, employing the new system versus the same

unit employing the current system in use. It is important,

therefore, not only to detect if learning is occurring but

to detect it early in the OT before additional time and

money is expended on obtaining possibly meaningless results.

To obtain timely information for deciding to stop the OT

will usually require an on site evaluation of the test

results. Thus any methodology developed must not only be

able to detect learning but must also be applicable in a

field environment.

Fundamentals of the Learning Curve

Assuming the performance of the system is dependent

on operator proficiency and can be described by a monotonic

function, we then have a situation which can be modeled by

the basic learning curve function.

Learning defined by improved cycle time or performance

over repeated trials can be divided into two distinct

phases: threshold learning and conditioned learning. Thresh-

old learning is that learning which occurs prior to the time

the operator can do the operation from memory. Conditioned

learning is that learning which occurs after the person

remembers how to perform the operation without relying on a

trial and error procedure. For this research, only the second

phase or conditioned learning will be considered.

According to the findings of previous research studies

--
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[3], [5], [8], [9], the learning process can be defined

by an equation of the form:

z = at -b (-)

where

z = cycle time

a = a constant which is determined by the cycle time
at the beginning of conditioned learning

t = the cycle number from the start of conditioned
learning

b = a constant which is determined by the rate of
learning over trials.

Although this function is continuous for values of t greater

than zero, learning can only be meaningfully evaluated at

discrete values of t. This particular equation describes

the learning of an operation without any interruption of

significant duration which could have a negative effect on

previously learned information and skills. The values of the

parameters will always be greater or equal to zero.

In conducting trials during a particular phase of the

operational test at OTEA, the time between trials sometimes

varies but it is believed to have no significant effect on

retention of previously gained knowledge and skills.

Recently much interest has been focused on group

learning patterns. Several case studies have been conducted

to determine if group learning can be described by an

equation similar in form to equation (1-1). Although studies

I!

ji
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in this area have been somewhat limited in their scope, it

appears on the surface that team learning exhibits the same

performance curve displayed by individual operators [12].

Another way to examine learning is by a performance

curve

z = 1-at -b (1-2)

This curve is based on the same theory as the "cycle time"

curve except the asymptote of this function approaches the

value 1 (see Figures 1-1 and 1-2). The performance curve

is based on percent achieved from the total possible obtain-

able. This method of recording learning would be appropriate

when accuracy rather than time to completion was the primary

objective. The restrictions on parameter "b" are the same

as for the learning curve, however, parameter "a" will only

take on values in the interval [0,11.

Although the theoretical asymptote for the curve is

one when the number of trials approaches infinity, this

function can approach any value between zero and one as a

working asymptote by using the proper combination of parame-

ters "a" and "b." A working asymptote is referred to here as

that value on the curve where the change in performance

between trials is so small that it would be considered

negligible for practical purposes.

For example, in a given trial of an OT if a weapon

is fired at a target 100 times, the total possible performance

would be 100 hits or 100 percent. If the weapon is only



b6

z a

z = atb

Number of Trials

Figure 1-2. CycefTmne Curve
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capable of hitting 75 percent of the targets when fired by

fully learned operators, then the function describing the

learning of the operators over several trials would approach

an asymptote of .75 on the performance scale. The theoretical

asymptote of the function describing learning would of

course still be one; however, for evaluation purposes the

operators would be considered fully learned and the weapons

capability assumed to be less than 100% accuracy.

In both curves, equation (1-1) and equation (1-2),

the value of the function before the first trial and between

discrete values of the trials has no significance since there

is no measure of knowledge until a trial is completed.

Therefore, when dealing with learning curve equations,

whether cycle time or performance oriented, the primary

concern is the description of learning over discrete values

of t 1.

Basis for a Performance Curve in Test Results

Before conducting any operational tests at OTEA,

the participants undergo a thorough condensed training

program on the system to be evaluated. Due to extremely

high costs in operating the system, much of the training is

conducted piecemeal under simulated conditions which may or

may not truly represent the performance of a crew in an

actual situation. If a crew's performance could be improved

by actually operating the system, then the test results over

several trials of an OT segment should reflect improvement
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through better scores. If a sufficient number of trials

were conducted the test results would eventually level off

indicating the crew's performance has peaked and that no

further learning is taking place. Thus it seems reasonable,

and OTEA test results are currently being evaluated in

support of this conclusion, that a performance curve function

can be fit to test results of this nature.

Objective

The objectives of this research are two fold. The

first objective is to devise a field expedient methodology

for testing if the rate of learning is significantly different

from zero. The second objective is to develop a methodology

which can measure the rate of learning taking place at any

particular trial.

General Approach

Since it is well documented that the curve describing

performance as learning progresses follows an asymptotic

curve, the rate of learning then could be analyzed by either

evaluating the first derivative of a curve fit through the

data points or examining the slope of a line between data

points for specified times. If the first derivative of the

curve or the slope of the line is positive, it is an indication

that learning is taking place. One procedure to be examined

will be to estimate the slope of a linear model fit to the

observations and test for its statistical significance.
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The test procedure involves simple algebra and requires no

information about the parameters of the actual curve.

The test results on the slope using a linear model

would only indicate if learning occurred during the trials

and can provide no information as to whether the rate of

learning was decreasing over the latter trials.

Another drawba-k using linear methods is that the

rate of learning will be tested using an estimate of the

variance obtained by fitting a linear model of the form

yi = c + dt i + 6 (1-3)

where

yi represents the obseivation at trial i

ti represents trial i

c is the intercept value

d is the slope of the line

6. difference between the observation and the line
1 at trial i

when the true model is the nonlinear function

-b
Yi =  1-at + Ei (1-4)

The error, ei, between any observation, yi, and its

expected value, zi, is assumed to be independent and

normally distributed with expected value of zero and variance
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of2 ND(,2 .i u
of a NID (0, ). If the error term such as E. is a sum

of errors from several sources, then no matter what the

probability distribution of the separate errors may be,

their sum c. will have a distribution that will tend more1

and more to the normal distribution as the number of

components increases by the central limit theorem [131.

An error in a test observation may be a composite of a

scoring device error, an error due to a small leak in the

system, an error due to an unexpected physical ailment
affecting the operator, an error due to changes in wind

velocity and so on. The components of this error term

would not include those dependent on operator proficiency

and likely to decrease with additional repetitions or training.

This latter type of error is often used to record learning

and would be reflected by the performance curve. The error

terms in equation (1-3) may be larger than in equation (1-4)

due to a lack of fit of the model which will in turn inflate

any estimate of the variance used in testing for the

statistical significance of the slope, d. The closer the

trial observations are to the asymptote of the expected

curve, however, the better the estimate of the variance will

be since the lack of fit component will be decreasing.

Therefore, a linear method may be appropriate to detect

learning if the estimate of the variance is relatively

accurate.

Another approach will be to fit a curve to the



11

observations using a nonlinear regression technique and

analyze the location of the trial results in relation to the

fitted curve. Although the estimate of the variance using

nonlinear techniques will be more accurate than that using

the linear estimate, the difficulty in conducting signifi-

cance testing is that the estimates obtained using nonlinear

techniques do not have the linear properties necessary to

conduct the known significance tests. It may be possible

however to use linear theory results as approximations for

determining a confidence region for the parameters of the

nonlinear model if the degree of nonlinearity is not too

large. If the performance function satisfies this require-

ment then the rate of learning can be determined by analyzing

the approximated confidence interval about the slope at

specified trials. This procedure then would provide a means

to determine how close to being fully learned the operators

are at each trial.

Measure of Nonlinearity

When a model is nonlinear there is an estimation

space, however, it is not defined by a set of vectors and

may be quite complex. If the estimation space consists of

all points with coordinates {f(xl,8), f(x 2,0),

f(x m,)} then minimizing the sum of squares function

ss(e) corresponds geometrically to finding a point p on the

estimation space which is the shortest distance to Y, the

vector of observations.
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A sample space for a very simple non-linear example

involving only n=2 cbservations y1 and Y2 taken at x = x

and x = x 2 , respectively, and a single parameter 0 is

illustrated by Draper and Smith [6] and is reproduced in

Figure 1-3. The non-linear estimation space consists of the

curved line which contains points {f(xl,O), f(x 2,e) as the

parameter, 8, varies, and the independent variables xl, x2

are fixed. The point Y has coordinates (yly 2 ) and p is

the point of the estimation space closest to Y. When the

linearization technique is applied to a non-linear problem,

a new origin is selected, say e0, and a linearized estimation

space in the form of the tangent line at 00 is then defined.

The linear estimation space contains the points {f(xl,@o) +
f ) f(x(x 2 ,0o) + 2 as varies and xl, x2 are

fixed. However if the rate of change of f(x,e) is small at

o but increases rapidly, the units on the tangent line may

be unrealistic in terms of determining good estimates of the

parameters that will minimize the sum of squared errors

between the observations and the proposed model. Again

Draper and Smith give an excellent illustration of gross

inequalities in the systems of units. See Figure 1-4.

In Figure 1-4 the best linear approximation of the true

parameter solution from the point 0 = 00 is the point a = Qo"

It is obvious that if the linear solution e = Qo is used

as the next starting point on the estimation space we will

be further from the best point P then was our original
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guess e = O = 0. If the degree of non-linearity is not too

large, it may be possible to use linear theory results to

approximate the confidence region for the nonlinear

function. Therefore we need a procedure that will determine

when linear theory results provide acceptable approximations

to the nonlinear estimation problem.
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Figure 1-1. Ef fect on the Linearization Method of Gross
Inequal ities in the System of thnits
(n=2, 0=1)
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CHAPTER II

METHODOLOGY

The curve describing operator performance on a

particular system is well defined in terms of the parameters

"a" and "b." This curve can then be used as a basis for

determining any given crew's performance level on the system.

Determining the Distribution of the Linear Test Statistic

A method for determining a crew's performance level

when the curve is well defined is to examine the expected

values of the observations. The procedure would be to find

the expected value for each trial observation by minimizing

the sum of the squared errors between the observations and

the known curve at discrete consecutive trial numbers. If

the expected value that corresponds to the last observation

is at the asymptote of the curve it is assumed the crew is

fully learned. This procedure is summarized as follows.

Given n observations denoted as y, Y 2, ... I Yn, label

their respective trial numbers k, k+l, ... , k n-, and find

the discrete value of k that will minimize the sum of

squared errors between the observations and values on the

curve computed at the corresponding observation trial numbers.

The procedure for this is to find the discrete value
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of k, ko, on the known curve that corresponds to the minimum

error between the first observation and the value of the

known function (see Figure 2-1). Retaining the same labeling

for the trial numbers corresponding to the observations,

conduct a search over discrete values in the vicinity of

k, and find the discrete value for k that minimizes the sum

of squared errors (Figure 2-2). Find the corresponding trial

number, k + N - 1, for the last observation, and then compute

value of the known function at this value. If the value of

the function at k + N - 1 is the asymptotic value, this

corresponds to the situation in which the expected value of

the last observation is the asymptote which means a fully

learned status.

Another approach to determining the performance level

would be to conduct statistical tests on the observations.

If the distribution of the error between an observation, yi,

2and its expected value, zi, is NID (0, a ),then the

distribution of the observations at a given trial is NID

2(Z, a ).Due to the normality assumption,

where oa is an estimate for the true variance

follows a student-t distribution. To test for learning over

a series of trials, the test statistic would be
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_ eyzc (2-2)

where

C

, z =asymptotic value

y = average value of the observations

since the expected value for y is ze, when the observations

are at the asymptote. If the variance is unknown, then an

estimate must be found which will provide an unbiased

estimate of the variance in order to conduct the test

described in equation (2-2).

This is the basis for conducting the linear tests

discussed in Chapter I. If E(y) = z, then all the observa-

tions are at the asymptote and the rate of change between

observations or the slope of the linear model will be equal

to zero. The discussion that follows in the remainder of the

section and in the next section will be devoted to obtaining
2.

an estimate of a in order that the t-test may be used to

test for learning.

Assuming then that the error term, ci, in any

observation, yi, which fits the form

= l-at-b+Ei (2-3)

is NID(O, a 2), a minimum variance unbiased estimate for the

variance of an observation about its expected value would be
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(yi-zi)2
S 2 N (2-4)

N

where Yi is the ith trial observation

zi is the expected value of y,

Since in most cases the expected curve of the obser-

vations will be unknown, this procedure is of little

practical value.

Estimating a 2 When the Paramters Are Unknown

Continuing with the performance curve as defined in

equation (1-2), performance will reach an asymptote as

the number of trials increase. There is then some critical

trial number, tc, where further trials will show negligible

improvement in proficiency.

Consider a situation where no well defined curve

exists. The expected values of the observations are

unknown. To estimate the variance using an equation similar

in form to equation (2-4), an estimate for zi must be

obtained. Consider the curve in Figure 2-3.

In the remainder of this research, the word asymptote
refers to the value of the curve where the rate of change
over future trials is so small (say .00001) that it is
considered zero for practical purposes.
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Theoretical Asymptote
1.0

Working Asymptote zC

0

Trial Number tc

Figure 2-3. Performance Curve with Asymptote at zc

Assume the results of several trials follow the curve

described in Figure 2-3. If the test observations fit the

curve beyond trial t., the differences in their expected

! jvalues would be small enough to be considered zero for all

practical purposes. The expected value for each observation

is then considered to be equal to zc, the value at the

asymptote of the curve. Since the observations in this

situation are all distributed NID (zc, a 2), an unbiased

estimate for zi in equation (2-4) would be the average of

the observations.

N
y= E y/N (2-5)

i=l1

where yi Ze
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N
E(y) = E (zi+Ei)/N]

Ni=l 11

N

E E(zi+e i )

E (y) N

N
Sz.

-* E(y) =i=l 11
EN but zi  z

N'11

therefore E(y) = N z c/N zc

Thus an efficient unbiased estimate for the variance [ii],

using the sample average as the estimate of the zi's when

the observations are all at the asymptote is

N 2

i (yi-y)
S E N-1

When the observations are not at the asymptote, this esti-

mate of the variance will be inflated since the average of

the observations, y, will no longer be an unbiased estimate

for the expected value of each observation. The amount of

bias will be a function of the distance that the expected

values of the observations are from the asymptote of the

true curve.

Since the performance curve function is non-linear,

there is no easy-to-apply procedure to obtain an

unbiased estimate for the variance when the parameter

~~z~z~ !w~ wrr
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values are unknown.

Several alternative techniques for estimating the

variance will be examined in terms of the expected bias

to determine a minimum biased estimator. The deviation of

* several estimators is contained in Appendix B.

The three estimators to be investigated for

2estimating a are:

2 N 2(OBS) E (y.-y) /N-l (2-7)

2 N-1 -2
(SEX) =(N-i) E (x -x) /2N(N-2) (2-8)

i=1iL

(SER) 2 =(N 2+1)(N+2)(MS E /(N3 _2N 2 +N+l)(29

In summary, the expected values for the respective variance

estimators are:

E{f( +1) (N-2)MSEI = a 2+ 12 N 3 +N N 2

N3 -2N +N+l N(N -2N +N+1) i 1

2 N 2(N +1)( E Z.)2  NN

12 1 -lz N+1 N 2

N-i
(N-i) E (x.i-X)2N1 2

E iCl 2 + N-i N-iz 2 (ZNZJ1

N-i1 2

i Y-)2 1 N-i -2
Ef N-1 }ac ?7-i (zi-z))
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Note that if the expected values of the observations, the

zIs', were all at the asymptote, the bias factor in all
1

three equations is zero. As the difference between the

expected values of the observations and the asymptotic value

of the curve increases however, the expected bias value

associated with each procedure changes. The relative

usefulness of the estimators will be numerically analyzed

in Chapter III.

Variance of the Estimators of 
ac2

2
If the variances of the estimators of a are not

significantly different, then the expected bias may be the

only criteria necessary to determine the best estimator

(see Figure 2-4a). If on the other hand the variances of

the estimators differ significantly, then it is possible that

the minimum biased estimator is not the best estimator in

terms of the percent of estimates within the specified

tolerance limits (see Figure 2-4b).

When the allowable error tolerance for the variance

estimate is 6, then estimator 1, in Figure (2-4b), is the

better estimator. When the allowable error is 26, however,

then estimator 2 is better since it has the largest percent

of its estimates within the tolerance limits.

The expected bias associated with each estimator is

a function of the expected values of the observations and is
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only affected by changes in the parameter values or the sample

size. Therefore, the difference between the expected value

of the estimate for a 2 and the value of a 2 for specified

a, b, and N, will not change as the size of a 2 changes.

The magnitude of a2 will be a factor however, in

determining the expected bias in the estimate of a . See

Figures (2-5) and (2-6). This is important since this is

the value that will be used to compute any statistical test

on the slope. As the process variance increases for specified

parameter values and sample size, the expected value of the
2

estimate of a approaches the true value of a : As a

increases though, there will be a corresponding increase in

the variance of the estimator. This will affect the

dispersion of the estimates and thus could also affect the

solution of an estimator. See Figure (2-5) and Figure (2-6).

If the contribution of a 2 to the estimator variance

for one estimator is larger than for another, a situation

could also occur as depicted in Figure (2-7a) and Figure (2-7b).

When a c2 is small as in Figure (2-7a), estimator 2 is
S2

better, however, in Figure(2-7b)where a 2 is large, estimator

1 appears to do as well or better than estimator 2. To

determine a best estimator then, the effect of the variance

on the estimates as well as that of the parameter values and

sample size must be examined.
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An evaluation of the variance of the estimator as

well as the expected bias factor will thus be required before

selecting the best estimator of a E An effort was made to

obtain a closed form expression for the variance of each

estimator in terms of the true variance, a 2, and the expected

values of the observations, the zi.s. Due to the complex

forms involved, this approach was abandoned in favor of

analysis by computer simulation. The results of the simula-

tion study will be presented in Chapter III.
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Linear Methods to Test for Learning

Since the performance curve describing the progress

of training is an asymptotic function, it may be possible

to determine when a unit is fully learned by examining the

slope of a line fit through the trial observations or examin-

the rate of change between the observations. If the rate of

change is large, then learning is taking place and when the

rate of change approaches zero, a very small amount of learning

is occurring which corresponds to approaching a "fully

learned" status. An appropriate method to determine the

level of performance then would be to test if the slope of

the linear model fit through the observations or the rate

of change between observations is significantly greater than

zero.

Linear Methods of Analysis

As discussed earlier, if the rate of learning is large

and the error variance of reasonable size, it may be possible

to detect learning by examining the slope using linear

approximation methods. Several methods, which can be

solved by simple hand calculations, are examined using the

variance of the slope as a basis for comparison in selecting

which is best. Those linear approximation methods which

provide the smallest variance for the slope will be selected

for further study and possible application.
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a. "Average of Two Groups (ATG)". In order to

obtain an estimate of the slope it is necessary to have at

least two points. The average of two groups method divides

the data at the midpoint of the trials into two groups. The

average of the observations is computed for each group, and

the difference between the averages tested to determine if

this difference is significantly greater than zero. If there

were an odd number of observations, the middle observation

would not be considered in the computations.

Let D E = average of observations in first group

DL  = average of observations in second group

dATG =D - DE  (2-10)

then
Var(dATG ) Var(DL-DE)

N/2 M
Var(dATG) = Var( E yi/(N/2)) + Var( Z yi/(N/2))

i=l i=N/2+l

(N/2)a 2 (N/2)C 2

Var(dATG) -(N/2)2 + (N/2)2

4o2

Var(dATG) - (2-11)
N

b. "Average of Consecutive Differences (ACD)". In

this method the average of the differences between consecutive

observations is analyzed to determine if learning is

occurring.
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N-i
dACD = ) x/N-1 (2-12)

i=1

N-i
Var(dACD) = Var( E xi/N-1)

i=l

Var(dACD)- L .Var (y-y
(N-1) 1

Var(dAcD) = 2a 2/(N-1)2 (2-13)

c. "Average of Two Groups Using Consecutive Differences

(ATGCD)". This method is a combination of methods "a" and

"b". The observations are divided into two groups and the

differences between observations are computed in each group.

Then computing the difference between the average obtained

in the latter group with that of the earlier group one

obtains an estimate of the slope with corresponding variance

as follows:

N/2E (Y i+l-Yi)

D E = i = 1 j
N/2

N
S (Yi+l-Yi)

= N/(2+1)

N/2

dATGCD D L- DE (2-14)
16a 2

Var(dATGCD) = Var(DL-DE) = C 2  (2-15)

(N-2)
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As in the ATG method, if there is an odd number of observations,

the middle observation would be disgarded.

d. "Linear Least Squares Regression (LLSR)". This

method fits a line through the observations such that the

total of the distances squared of the observations from the

line is minimized. Draper and Smith [6] provide an excellent

description of the details involved. A brief summary of the

procedure is given later in this Chapter.

An estimate of the slope is defined as:

N
E (t -t (Zi

i=- (2-16)
dLLSR N -2

i (ti
i=l

where t. = trial number i
1

zi = expected value of the observation
at time i

and the slope variance is defined as

02 2
oa

Var(dLLSR) N N 2 (2-17)
-(t2i- Et 2 2- t -i+N2

i=l i=li

Since the trials are consecutive from 1 to N the following

closed form expressions for t can be used in the above equation

N 2 N(N+l)(2N+l) (2-18)
~ 6

i=l

N+-

• 2
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t N(N+l)
1 2

Then 2
a
G 2:

Var(dLLSR) - N(N+I)(2N+l) 111+1 N(N+l) l)2N+I N (NI )+N(N+Ib 2 - - 2 -2--

2
12o

Var(dLLSR) 2 C (2-19)
N(N +1)

For N>2, the linear last squares regression method provides

the best estimates for the variance of the slooe. See Figure

(2-8). The average of consecutive differences, ACD, method

was the next best procedure. The average of two groups

method becomes the third best procedure when N=8, but the

estimate of the variance of the slope is still quite large in

comparison to the ACD and the LLSR methods.

From the several methods considered for detecting

learning through analyzation of the slope, the two best

procedures, using the minimum variance as the selection cri-

teria, appears to be the average of consecutive differences

(ACD) method and the linear' least squares regression (LLSR)

method.

To complete the analysis of the linear approximation

procedures, the expected value of the estimate of the slope

using the ACD method and the LLSR method will be examined.

Let Z represent the true average rate of learning for the

process over N trials. An expression for 2 then is
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Slope Estimates

N (2-20)

a-at N_

The expected value of an estimate of k. using the ACD

method isV N
i=1

Eld ACD] N-I

hEjdACDJ E I N-1i
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El(zM+ EN) - (z1 +E1 )
(N-1)

(l-at N_ +EN)-(1-t 1+r
N-1

a-at N
E[dcD since t1  1 and 1(-i = 0 (2-21)

As expected, the estimate of the slope using the ACD method

is unbiased.

The expected value of an estimate of z. using the LLSR

method is derived as follows:

N
z(t.i-t)y.

E[d LLSR] F
E (t. t)

2 E(t 1 -i)(z 1 +6 1 )+(t 2 - i)(z 2 +6 2 ) +

+ (t Nt)(z N+CN)]

2 1 (t.-i)z 1+(t 2-i)(z2 + + tN )N

N
Replacing the Zt Is with expressions in terms of N we get
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- 12 -N+l + -N+1.z +

N( +1)N+

N - )ZNJ

- 12 N .Z 6(N+1) N z

N(N'+1) i=1 NCN2+1) i=1

Substituting 1-at. i-b for z . we get an expression of the form:

12 N -b 6(N+1) N -

N(N'+1) i=1 N(N2 +1) i=1 1

12 N N b+1 6N(N+1) 6(N+l) N -b

-N2+15 i~1 i=1 1  N(N +1) + ( 1 ~

(N+1) E -b N
-~ 12a i=1 1 N -b+12-3

LS N(NZ+1) ________ -~ i . 3(-3

Subtracting the true value of the average rate of learning

from the estimate in equation (2-23) we can obtain the

expected bias.

Let S represent the amount of bias in equation (2-23),

then

N b

12a () i N bl a-at N b (-4

N(N +1) - j~ t* J-(-4
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When the value of b equals zero in equation (2-24) which

corresponds to the expected values of the observations all

being equal to the asymptotic value, the expected bias is

zero. The bias factor in equation (2-24) is negative which

means we should expect the estimate for the average rate of

learning using the LLS method to be less than the value

defined in equation (2-21).

In summary, we now have two methods to test for

learning which exhibit the following characteristics:

(i) The LLSR method provides a biased estimate for

the average rate of learning; however, it has

the smallest slope variance of all methods examined.

(ii) The ACD method provides an unbiased estimate for

the average rate of learning but, the slope

variance is larger than that in the LLSR procedure.

The bias factor in equation (2-24) will be computed

and its effect analyzed for various combinations of parameter

values and sample size in Chapter III. A discussion of the

two best linear test procedures is in the next two sections.

Average of Consecutive Differences (ACD) Method

If the test observations are at the asymptote of the

curve, the difference between the observations will follow

2
a normal distribution with mean of zero and variance of 2a

Given N trial observations with no information concerning the

J ..
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true variance or the parameters of the actual curve, we

examine the average of the consecutive differences in the

observations which corresponds to the average rate of

learning over the N trials.

Define x. as the difference between observation1

Yi+l and yi. Then

N-1
E(x) = E[ z xi/N-1]

i=l

N-1
E(x) = El Z (yi+l-yi)/N-l]

i=l

1 N-1=1E(x) = - Z E(Yi+-y i )

N-1

E(X) 1 N-I z-zC

zc = expected value of an

observation at the asymptote

E(x) = ux  0

From equation (2-13) the variance of the average of the

consecutive differences was defined as:

Var x 2a 2/CN-1)2

where x = dACD ACD1



Using an unbiased estimate of a 2, the test statistic for the

differences will follow the t-distribution. A test to

determine if the average slope between observations is

significantly different from zero would be:

H : slope S 0 fully learned

H.: slope > 0 not fully learned

Compute:

x -u
to- 2 (2-25)

2S /(N-1)
y

Testing at a significance level of a,

If to > t ,N_1 Reject H0

0 t ,N- Do not reject H

Since it is quite possible that the trial observations

will not all be at the asymptote, our estimate of the

variance will be inflated due to bias as discussed earlier.

Using a biased estimate-of the variance will reduce the power

of the test which is defined as:

Power of test = 1.0-P [failing to reject Ho when H1o is false]
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The rationale for this interpretation is that using an

inflated estimate for the slope variance in equation (2-25)

increases the probability of failing to reject the null

hypothesis, H0 , when it is not true. This is because if the

test statistic

t X-0

to V2E st(Ge(N1

is greater than t ,N2 using a biased estimate for the

variance in the denominator, it will remain greater than

taN 2 when an unbiased estimate is used. On the other hand,

if to is greater than t ,N 2 using an unbiased estimate for

the variance, it may not be greater if a biased estimate is

used, thus creating a situation where we would fail to reject

H when in fact it is false. Therefore if the test statistic

indicates the slope is significantly greater than zero, we

can assume learning is occurring, otherwise the results

may be unreliable.

A summary of the computations required to conduct

the test on the slope using the ACD method follows:

Compute an estimate of the slope:

^ YN-YI

dACD 1 N (2-26)

Compute an estimate for the standard error of the slope:..... .. ..
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2[Est(a
2

s.e.(dACD) (2-27)

(N-i) 2

Compute the test statistic:

t d C-o0
S dACD (2-28)0 .e.(d AcD)

Compare test statistic at desired significance level

If t > t ,N_2 Learning is occurring, reject H.

If t 0 ta,N-2 No conclusion

The Linear Least Squares Regression (LLSR) Method

As discussed earlier, this method involves fitting

a linear model of the form

Yi c + LLSR (2-29)

where yi = value of the observation

ti = trial number that corresponds to Yj

c = y intercept value

dLLSR = difference between the observation and
the line at trial i.

= difference between the observation and
the line at trial i.

through the observations, based on minimizing the sum of

squares of deviations of the observations from this line.

The slope of the line, dLLSR, at the asymptote of the
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curve is essentially the average of the differences between

the expected values of successive observations. Therefore

the test statistic for the slope of the line using the LLSR

method follows the same distribution as the test statistic

for the differences in the ACD method, namely the t-distri-

bution the test for learning would then be:

H 0 slope jI 0 Fully learned

HI: slope > 0 Not fully learned

Compute

to -dLLSR-0 (2-30)

St-/12 Sy

VN(N 2+1)

where dLLSR is the estimated slope for the linear model.

Compare at a significance level

if to > taN-2 Learning is occurring, Reject H0

if to _ N-2 No conclusion

As the bias factor increases, the width of the confidence

interval for the slope increases or expressed another way,

the test statistic, to, decreases.

As was previously shown, using a biased estimate for

the variance versus an unbiased estimate when testing the

slope, equation (2-28), results in a less powerful test.
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This also holds true for the estimate of the average rate

of learning. As was the case with the ACD method, the test

results may be unreliable if the slope test statistic is

less than the comparison value, t ,'_2 '

In the discussion of the method that follows, it is

assumed that the reader is familiar with the linear least

squares regression procedure. The LSSR equations required

to conduct the slope test are presented without the derivation.

(For a development of the equations, see Draper and Smith

[6] .)

The slope of the line is found by minimizing the sum of

the squared errors between the observations and the fitted

line equation (2-29). By taking the first derivative of the

equation for the sum of squared errors with respect to each

of the parameters c and dLLSR, it is possible to solve the two

resulting equations simultaneously to obtain an estimate

for the slope.

N
E (ti-t)y i

i=l (2-31)
dLLSR N -2

E (t -t)
i=l

where

t. represents trial number ii

Yi represents the observation that corresponds to

trial i
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t is the average of the t

y is the average of they

with this estimate of the slope and replacing S y2in equation

*(2-30) with an estimate for a C2 we can conduct a test for

2
learning. Using an appropriate estimate for a C, the

estimate of the standard error for d LLRis

2 2s.e.(d LLSR) 12 Est(a C)/[N(\N +1)]

In sumimary, to use the LLSR method to test for learnino-,

one need only compute the following steps

d LLSR N -2

12 Est (a)
s.e.(d LLSR) =_____-(2-33)

Test procedure:H 0  LSI

H1: d LLSR > 0

Comnute:

d LLSR- 0~ ~
s.e. (d)
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If to > t ',,-2 reject H otherwise the test must be regarded

as inconclusive.

Mon-Linear Method to Test for Learning

If the degree of non-linearity in a particular perfor-

mance curve is small enough, it may be possible to examine

the slope based on linear techniques. Measures of non-

linearity have been developed by Beale [4] which indicate

when the degree of non-linearity in a non-linear function is

small enough to justify approximations using linear theory

results. A review of Beales procedure follows.

Consider the non-linear model n - f(x,e) where e is

a (pxl) vector of parameters and x is a vector of independent

variables. Given n independent observations on the response

) = (yl,y2, ...,yn), a least squares estimate of the parameters

6 = (01, ..., e p) is obtained. Then the tangent plane approxi-

mation to the solution locus, estimation space, in the

neighborhood of 0 is given by:

- p A af(x ,e)
ti(e) = n.(9) + E (0-j) 1---;-H i = 1,2,...,n (2-35)

j=l @

or T(a) (e + x(0-0)

where ri(e) = f(xi ,O ). Since T(6) differs from the actual

point n(6) because of the non-linearity of equation [1-2J, a
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crude measure of non-linearity would be

m n P af(xie) 2
= 
= w~lT i~i [ni(e w ) - (ni(e) - jl1 (8jw-eo) 20j ..l]

(2-36)

m 2
Q9 Z Hin(8 )ITO

W =l

Q9 is defined by Guttman and Meeter 16] as the sum of squares

of the distances (in sample space) from the points n(Ow ) to

the associated points (6w ) on the tangent plane. By dividing

Q8 by the quantity

m n 22 m 7 4
S{ . [=i(Ow)-i(8)] Z (6)-() (2-37)

w=l i=l w=l

the sum of squared distances is normalized. Guttman and

Meeter [6] go on to explain that since Q8 has the dimension

of the square of an observation and the quantity in equation

(2-37), the dimension of the fourth power of an observation,

then the quantity

s2 m - 11 m4

c I l l )-T((w E 5Jew ) iie)- l
w=l w=l

where s2 is an estimate of a2 (the variance of the observa-
tions), is a dimensionless quantity. This value of N

can be regarded as the estimated normalized measure of the
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non-linearity of the model when expressed in terms of the

parameters 6. Beale says that the linear approximation is

satisfactory if

N < O.Ol/F (2-39)

since the root mean square value of the discrepancy vector

i(6w )-T(w ) is less than one-tenth the length of the intended

vector TOw )-i-(0). (See Figure 2-9 below.)w

Intended Distance

Discrepancy

Distance

Solution Locus

Figure (2-9). Illustration of Discripancy Distance
Versus Intended Distance

In our case, if the degree of non linearity, N,, of

the model, equation (2-3), satisfies inequality (2-39),

then the linear theory results, with an appropriate correction

factor, can be applied to find the confidence region for the

non linear performance function for given values of 0 using

......................
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2SS(6)-SS(8) = ps F (correction factor) (2-40)

Conversely, it will also be possible to find the confidence

limits on the parameters, 8 = (a,b), by solving equation

(2-40) when the confidence region for the function is speci-

fied. Going one step further, it will also be possible then

to compute the confidence limits for the slope of the curve,

where

slope = abt (b+l) (2-41)

at any trial, ti, by conducting a search over the periphery

of the joint confidence region of the parameters.

The correction factor discussed by Beale [4], in

equation (2-40) when p=2 and s2 is replaced by SS(O)/(N-p) is,

[1+ 2) e]

and includes the measure of non-linearity, N,, which allows

for the effect on non linearity on the usual linear theory

results.

As the difference between n( w)- ( w), for a non-

linear function (see Figure 2-9) increases within the region

where the inequality sign in equation (2-39) does not change,

the allowable size for the variance decreases. Therefore a
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restriction using linear theory approximation is that the

variance might have to be unreasonably small for the approxi-

mations to hold.

A study was conducted to determine the maximum size

variance allowable for varying degrees of non-linearity of

the performance curve function for a particular a level of

significance. As the value of the coefficient or the exno-

nent in equation (1-.2) increases, the maximum allowable

variance decreases. The results are contained in tables

(3-18) and (3-19).

Procedure

To assist in following the non-linear procedure used

to test for learning, an overview of the steps required is

cresented, followed by a detailed discussion in Appendix A.

Step 1: Estimate the parameters of the performance

function and the variance using non-linear

estimation techniques.

Step 2: Find the degree of non-linearity, N, for

the estimated function using Beale's

measure of non-linearity.

i. If N < .01/F proceed to step 3

ii. If N > .01/F ,p,N- stop, following
procedure not valid

Step 3: Determine the confidence limits for each

Parameter of the performance function by

satisfying equation (2-40) using a direct

technique.
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Step 4: Find the confidence limits for the slope at

any particular trial using a direct search

technique over the periphery of the joint

parameter confidence region. The maximum

and minimum values for the slope will be the

upper and lower confidence limits respectively.

Step 5: Examine the confidence limits for the slope:

(i) If the confidence interval contains

zero, do not reject the hypothesis

that learning did not occur during this

trial.

(ii) If the confidence interval does not

contain zero, then it car, be concluded

that learning is taking place during this

trial.

Steps 1-4 are explained in greater detail in Appendix C.

A computer program is located in Appendix D.

which estimates the parameters and the variance, tests the

degree of nonlinearity and computes the canfidence limits

on the slope at any particular trial.
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CHAPTER III

EVALUATION OF PROCEDURES

Since the accuracy of the test on the slope will depend

2on the quality of the estimate of a , a computer simulation
2

was conducted to compare the estimators of u presented

in Chapter I. By varying the parameters for any given

sample size of observations, we can simulate different

situations that could occur in an actual test.

2

Evaluation of the Bias in Estimating a2

The expected bias value was computed first for each

estimator for specified parameter values and sample size.

As the exponent value, b, or the coefficient, a, increased,

there was a corresponding increase in the bias value

associated with each estimator (see Figures 3-1 through

3-6). This resulting increase in bias as the parameter

values are increased, corresponds to a more severe lack of

fit of the linear model to the actual process. The best

estimator using minimum expected bias as the selection criteria,

is equation (2-8). The expected bias of this estimator

for given parameter values and sample size was approximately

40 percent less than the expected bias obtained using the

next best estimator, equation (2-9). The expected bias

associated with equation (2-7) was 4 times larger than the

bias factor using equation (2-8).
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A simulation study was conducted to evaluate the

variance o f eqwh estimator for all combinatio:3 of samnle

size I = 6, 15; standard deviation or = .03, .05, .07, .09;

an parameter values a = .1, .3, .5 and b = 0, .4, . , 1.K

To reluc sampling variability in the evaluation, 'he s-ame

strea,) of normal randomly generated observations was useI

for each estimator. One run consisted of 1000 experimentc

for the specified sample size, parameter values and variance.

The results obtained are in terms of percent of the extimat(:s

within the specified tolerance limits (a ±6), when usin7 a£

narticular estimator.

Designating any estimate as good or bad dependinc

on whether it falls within or outside the tolerance limits

respectively, then the generating process of a particulr

estimator will follow a binomial distribution. Using tV"

worst case for estimating the variance of the process, (i.e.

o = .5), we can approximate the variance as .25/N. To

obtain a 95% confidence interval for the percent of gool

extimates, p, with limits (p ± .03), an appropriate sample

size would be calculated as follows:

p + .03 - p + 2

Letting p = .5
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N = 4pq

(.03)

N = 1100

The number of experiments for each combination was set at

1000. The actual variance for p may be less for a given

condition since p = .5 will give the upper value of the vari-

ance for this process.

Since the number of simulation runs is sufficiently

large, N = 1000, a normal approximation of the binomial

variables can be used to construct a significance test [1i].

To determine if the percent of good estimates using one

estimator differs from the percent of good estimates using

another estimator conduct the following test:

H0: l P2

H:Pl P2

Comoute

p -p

Z0 = 1 2 (3-1)
(i- i + 2(i-52)

N + N

IF Z0 > Z /2 reject H0 and assume there is a significant

difference in the p vaiies for the two estimators.



The actual variance of the difference between tho

p (1-p
two siccess ratios will be less than --- dIe to

cnrrelation between the estimates from the two estinators.

Although the assumption of independence between the vlriances

of the success ratios, p1 and P2 reduces the power of the

test, we can gain some idea of the significance of the differ-

-nce between the two estimators using equation (3-1).

The results and analysis of this study on the estima-

tors of a follow. When the true variance is small (o 2
£

.0036), the best estimator is equation (2-8), regardless nf

the sample size or parameter values of the curve. As the

variance increases however, equation (2-9) appears to perform

better under certain conditions than does eauation (2-8). See

Figures (3-7) through (3-14). To examine this situation

further, the distribution of the extimates of the variance

about their respective expected values was analyzed for

different conditions. The effect of sample size appears to

be the same on each estimator, (i.e. larger N results in

smaller estimator variance) and is not significant in

determining the best estimator.

A general description of the distribution of the

estimates using equation (2-8) and equation (2-9) for a ?3

design in terms of a and parameters "a" and "b" is depicted

in Figures 3-15 through 3-22.

The results noted were:
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(i) As the variance of the process increased for

large values of parameter b, the dispersion of the estimates

using either estimator appears to be a heavy tailed normal

distribution. This should be expected since larger estimates

of the variance are possible which will weigh the expected

value of the estimates to the right. It is also worthwhile to

point out that when parameter "a" is small in this situation,

the majority of the estimates obtained were less than the

true variance. Thus it appears that near the asymptote, when

the variance is large, the linear model approximation using

the difference method results in a "better fit" than the true

model in terms of minimizing the sum of the squared errors.

(ii) When the variance of the process was large and

both parameters small, the estimates using equation (2-8)

ippeared to be more dispersed about their expected value than

the estimates using equation (2-9) about their expected

value. When the expected value of the estimates is near the

true value of the variance, a tighter distribution of tho

-3timatps obout their expected value can result in more

estimates "allinog within the tolerance limits (see Figur-

-l7). For the two situations discussed in (i) and (1i)

"ib '-vc., th-e .-stimator with the largest expected bias 7 nerates

....pr ., 's within the tolerance limits specified for

i . s eas' t.o see in Ficvures 3-17 and 3-18

". 4.-ran, ,e limits were reduced it becomes more

lii'fi:i1t ']i:feuontiat between which estimator is better.



For all other combinations of parameters and variance size

examined, the best estimator was the one with the minimum

expected bias. The rule for selecting which estimator of

a. is better when the parameters nd the true value of a

are known is:

If:

(i) a < .06 Use equation (2-8) to estimate a

(ii) a > .06, a .5 Use equation (2-8) to estimate

(iii) a > .06, a < .5 Use equation (2-9) to estimate aE

Since the true value of the parameters and the actual variance

will not be known, we must base our rule on estimates for

and parameter "al. A general rule then for selecting the

best estimator when a and parameter "a" must be estimated

is:

Compute an estimate of a using equation (2-8)

N-I
(N-1) E)

E6:  2N(N-1

If

(i) a E .06 Use a as computed

(ii) a > .06, a > 5 Use a as computed

(iii) a > .06, a < .5 Use equation (?-9) to

compute an estimate a

'fecctiveness of this rule, when choosing an estimator

I1!1 be evaluated in conjunction with determining
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the best test procedure later in this chapter.

Comparison of the Linear Test Methods

Test Learning

The LLSR estimate of the average rate of learning

as defined by equation (2-23) was analyzed in terms of the

percent of the true average rate of learning for various

combinations of sample size and parameter values. If the

size of the sample is increased, the amount of bias in the

estimate of the average rate of learning, equation (2-20)

using the LSSR method should also increase in a negative

direction. Stated another way, as the sample size increases,

the expected value of the LLSR estimate of average rate of

learning decreases. This should be expected since the observa-

tions over the latter trials will be closer to the asymptotic

value which will have a negative effect on the slope of the

LLSR model.

As can be seen in Figures 3-23 and 3-24 the effect

of N on the expected value of the average slope estimate

using the LLSR method is more pronounced than its effect on

the ACD slope estimate, which is unbiased.
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In Figure 3-24, if the value of parameter b approaches

zero, the ratio of the LLSR estimate to the average slope

will approach 1. When the value of b is zero, this is

equivalent to the expected values of the observations being

at the asymptote of the performance curve. We showed in

Chapter II that under this condition the LLSR estimate will

be unbiased. Therefore when the value of b is small, the

expected value of the LLSR slope estimate will be very close

to the actual average rate of learning; and as the value of

b increases, the expected difference between the LLSR

estimate and the true average slope will increase.

The effect of parameter a is not as intuitively obvious.

Since parameter "all can be factored out of both equation

(2-23) and equation (2-20), we see that the expected value

of the LLSR estimate and the true average slope change by an

equal multiple factor. Therefore, although the LLSR

estimate and the actual average slope values change, the

ratio of the two values is not affected. This ratio is

graphed in Figure 3-25 as a function of the exponent value, b,

and sample size, N.

To evaluate the significance of the bias in the LLSR

estimate when testing for learning, it will be necessary to

examine the effect on the computed test statistic. Recall

that the test statistic for the LLSR method is
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aa

t d LLSR-
0

t l -O0

IN(N2+)

and for the ACD method is

t O ACD-0

o - 7

V(N-i)

Using the same estimate of the process variance when computing

the slope variance for the LLSR and the ACD methods respectively,

a comparison of the expected values of the test statistics

was made. The ratio of the test statistics is graphed in

Figure 3-26 as a function of the sample size, N. and the

exponential value b. It should not be surprising to find

that when the value of b is small for a particular sample

size, the ratio of the LLSR test statistic to the ACD test

statistic is greater than 1. This is because the ratio of

the estimates for the average rate of learning using the

LLSR and ACD methods is greater than the ratio of their

respective variances. As the value of the exponent, b,

increases for given N, the ratio of the average slope esti,

mates becomes smaller and the ratio of the test statistics

decrease.

An increase in the sample size for any particular
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value of b will also affect the ratio of the test statistics.

This is due to the fact that both the LLSR slop estimate and

the corresponding standard deviation of this slope estimate

decrease at a more rapid rate than the ACD slooe estimate and

its corresponding standard deviation for increases in N (see

Figure(3-26). If the ratio of the slope estimates, LLSR vs

ACD, decreases more raoidly than the ratio of the corresnond-

in7 standard deviations of these estimates, then when N and b

assume oprtain values, the ACD test procedure will become

more powerful. Thus if we knew the parameter value b, we

could select the more powerful test procedure by examinin- the,

samole size N1. Since b will usually be unknown and difficult

to estimatp without using a computer search technique, we nee-]

a -eneral rule based only on the sample size.

Recall from Chapter I, that our ourpose for deveicpin

the test orocedures was to test if learning is occurrincr

durin an evaluation of a particular system. Since the people

operating the system have underpone extensive training Drior

to the evaluation, it seems unlikely that the rate of learning

that could occur during the trials of this evaluation would be

very large. Therefore the performance curve measuring learninq

during an evaluation should rarely have a parameter value of

b > 1.0. Based on this consideration, and referring back to

Pi-ure 3-26, we can expect the best linear test procedure for

detecting learning to be the LLSR method since the expected

value of the test statistic for b [ 1.0 is greater than that

for the ACD method when N < 25.



Evaluation of Linear Test Procedures

A simulation study was conducted to evaluate the

findings in the previous section concerning the more powerful

test procedure for all combinations of sample size, N = 6,

N = 15; a = .03, .05, .07, .09, and parameter values

a = .1, .3, .S and b = 0, .4, .8, 1.2. The test procedure

that results in the largest percent of significant test

statistics for a given a level when learning is actually

occurring will be selected as the better test. The study was

also designed to evaluate if any one particular method of

the three alternatives considered below was better for

estimating G.

1. Using equation (2-8 ) under all conditions

2. Use equation C2-9 ) under all conditions

3. Apply the rule for choosing an estimator based

on estimates of a and parameter "a" as discussed

in the previous section.

The best method of the three alternatives will be

selected based on the largest percent of runs that a particular

alternative resulted in an estimate of a that was closest

to the true value. One thousand simulation runs were used

for each combination of a , sample size and parameter values

to insure that the true percent of detection of learning would

be within ±3% of the simulation results at least 95% of the

time. To reduce the sampling variability in the evaluation,



the same stream of normal randomly generated observations was

used in evaluating each test procedu&e.for all combinations

of a,b,a ,N.

The results of the first part of the simulation study,

the evaluation of the test procedures, are given in Tables

3-1 through 3-8. The labels SEX, SER, and RULE correspond

to methods 1, 2, and 3, respectively, used to obtain an

estimate of u . Each block in the table contains the

percent of times the LLSR test detected learning, tR; and

the percent of times the ACD test detected learning, tD,

using a particular method for estimating a. The test£

statistics for each test procedure were compared at the

= .05 level.

The results substantiate our earlier findings that

the ratio of the LLSR test statistic to the ACD test statistic

is a function of the sample size and parameter b. In Figure

3-26 we found that for values of b 1.0 and sample size of

N = 6 and N = 15, we should expect the LLSR test procedure

to be more powerful than the ACD test. The results in

Tables 3-1 through 3-8 suppnrt this. As the value of b

increases from one the ACD test procedure is more powerful

and the results also verify this. The type I error appears

to be larger using the LLSR test procedure than the type I

error using the ACD test procedure. This is expected since

the LLSR test procedure gets more powerful in comparison to
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the ACD test procedure as b decreases (see Figure 3-10). Also

note however, that the tvoe I error for, the LLSR test Pro-

cedure is greater than the specified a level but decreases

as N increases. A possible exnlanation for this is that

when parameters a and b are small, the estimates of u are

a nproximately equally distributed about o as shown in iaures
S

3-15 and 3-17. If the estimate of a is smaller than uS c

.1hich is the case over 50% of the time, we increase the oro-

bability of obtaining a type I error. As the sample size

increases, the dispersion of the estimates of a about theS

true value of a becomes tighter and we have fewer estimates

of a which are substantially less than the true value of a

thus decreasing the probability of a type I error. When the

tyce one error was soecified at a = .10 the Power of both

test orocedures increased. See Table 3-9.

The second objective of the simulation was to determine

if one particular method for estimating a was better under

certain conditions than another, The results are shown in

Tables 3-10 through 3-17. Using either equation (2-8) or

equation (2-9) instead of apolying the rule, yielded a iar7er

nercent of better estimates for almost all of the combinations

examined. It appears then, that the estimates of u and

oaramter "a" are not accurate enough to use in applvin7 our

general rlle.

- "-~-~,-.77r7,
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Table 3-1. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimate of G E for Given Values of
a, b, N, and ac. a = .05

N = 6 cc = .03

b=0 b=.4 b=.8 b=l.2

SEX tR=' 069 tR='998 tR=l000 tR='999

tD042 tD995 tD=l.000 tDl.000

a = . S R t 0 6 0 t R = 9 9 4 t R= l '.0 0 0 t R= 9 9 8

a=.5 SER RD .040 t D= 982 t D= 999 tD =.996

---------------------------------------------

RULE tR=0 6 9  tR=' 9 9 7  tR=l'.00 tR=999
tD=.042 tD=. 9 9 4  tD=l.000 tD=.997

SEX tR. 05 9  tR. 9 13  tR=. 9 8 3  tR=. 9 8 2

tD=. 0 4 7  tD=. 8 5 9  tD=. 9 7 4  tD=. 9 8 5

---------------------------------------------

a=.3 SER tR=.0 5 8  tR=' 8 7 5  tR=' 9 4 0 tR='939
tD=.0 3 9  tD=. 8 13  tD=. 9 2 9  tD=. 9 1 8

RULE tR=' 059 tR'. 9 1 4  tR:. 9 7 3  tR=' 95 9

R tD='0 4 7  tD=. 8 6 2  tD=' 9 6 6  tD:. 9 5 0

SEX tR=056  tR=.31 8  tR=' 4 6 7  tR=. 4 9 7

tD=.0 4 3  tD=. 2 7 2  tD=. 4 15 tD=. 4 52

tR='0 5 4  tR=. 2 9 1 tR. 4 4 2  tR=.446
a=.1 SER tD=.0 3 8  tD=.256 tD=. 3 95 tD=. 409

RULE tR='05
6  tR=.318  tR='.4 6 7  tR=497

tD=.04 3 tD=. 2 72 tD =.4 1 5 tD=. 4 5 2
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Table 3-2. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimate of aE for Given Values of
a. b, N, and G,: a-= .05

N=6 a .05

b=0 b=.4 b=.8 b=1.2

SXtR=.086 tR=.9 S8  tR=.9 9 7  tR=. 9 9 5

tD=.0 6 7  tD. 3  t. 9 9 1 tD=. 9 9 7

tR=.088 t R=' 94 7  tR'. 99l R.8
a=.5 SER RD'7 t D=' 9 1 4  tD=. 9 8O tD=. 9 8 3

RUEtR=.088 tR=.9 58  tR=.9 9 S tR=. 9 9O
RUEtD=.067 tD=.9 36  tD=. 9 8 8  tD=. 9 9 0

SEX tR=.O 8O YR715 tR=. 9l 2  tR=. 8 94
tjjf.O74  tD=. 6 3 2  tD=. 8 7l tD=.9 04

a=3 SRtR=.076 tR=.6 9 3  tR=.8 6 3  tR=.8 3 7

tD=.073 tD=.6O 5  tD=.8 3S D.2

tR-.081 tR=* 7 19  tR=. 8 8 1 tR=.84
RULE t =.074 tD=.6 3 6  t R = 8 S6  tDR* 8 4 9

tR=08 t=.S7 tR=. 3 2 8  tR=.3 8 1
SEX tD 06  tD=. 2 18  tD. 8

tR=.O07 7  tR= -2 S1 1- 2 t= 7
a=.1 SER tD=.06 0  tD=. 2 14  tD* 2 8 6  tD* 3 5 5

t =.084 tR= 2 S9  tR 328 tR* 3 8 9

RULE t R tD.l tD* 8

D=03 D-1 = 8 = 6
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'Table 3-3. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimate of aE for Given Values of
a, b, N, and . a = .05

N = 6 a =.07
b=0 b=.4 b=.8 b=l.2

tR=. 0 84  tR=. 82 3  tR=. 95 1 tR=. 9 68

SXtD= 0 81 tD=. 7 62  tD=. 93 3  tD=. 9 6 6

tR=.085 tR=. 79 7  tR=. 9 10  tR=. 9 33

a=.5 SER tD=.078 tD=. 73 2 tD=.898 tD=. 9 24

tR=.0 8 3  tR=. 8 26  tR=. 9 34  tR=.948
RULE tD=.081 tD=. 7 64  tD=. 9 18  tD=. 94 3

tR=.077 tR=. 5 06  tR=.731 tR=.773tR.7 3 RSEX tD=.069 tD=. 436 tD=. 6 84  tD=. 75 4

tR=. 0 78  tR=. 4 9 9  tR=. 6 9 7  tR=. 70 5

SER tD=. 06 6  tD=. 4 4 0  tD=. 6 36  tD=. 6 99

RULE tR=.0
78  tR= 509 tR=.705 tR=708

tD=.0 6 9  tD=. 4 5 1 tD=.649 tD=.704

tR=.0 9 2  tR=.1 9 7  tR=. 2 46  tR=. 24 9

SEX tD=.0 8 9  tD=. 15 9  tD=. 2 21 tD=.2 2

tR=.092 tR=.1 8 6  tR=. 2 3 4  tR=. 2 38

a=.l SER tD=.079 tD=.151 tD=.214 tD=.222

RULE tR=.095 tR=.1 9 6  tR= 2 4 1 tR=. 2 4 1

tD=.0 8 9  tD =.160 tD.1 6 0  tD=. 219D '89 D



Table 3-4. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimate of aE for Given Values of
a, b, N, and . a = .05

N = 6 a .09

b=0 b=.4 b=.8 b=1.2

t R.080 tR:. 68 5  tR:. 8 6 8  t R.886
SEX D=074 tD=.6 31 tD= 8 43 tD:874

t =.083 tt=.658 t=.834 .831
a=.5 SER

tD=.071 tD=. 5 9 4  tD=. 7 9 9  tD:. 8 3 1

--------------------------------------------

tR=.077 tR:680 tR=862 tR=.860
RULE tD=.0 7 3  tD=. 6 2 3  tD=. 8 34  tD=.865

SEX tR=.0
8 9  tR=. 3 9 5  tR. 5 9 6  tR.591

tD=0 8 2  tD=. 3S9  tD= 5 4 5  tD=. 5 8 2

tR=.0 8 2  tR=. 3 9 5  tR=.581 tR.'558
tD=,0 7 8  tD=.3 51 tD=. 5 2 3  tD=. 5 4 8

t R.092 tR. 4 02  tR:, 8 2  tR=.5 6 3
RULE tD.080 tD=. 3 5 5  tD=. 5 2 3  tD=. 5 5 4

StR=.0 7 9  tR=.1 6 4  tR=.1 9 9  tR=.235
SEX tD .071 tD.138  tD. 6 9  tD.210

tR=.0 7 8  tR=.15 7  tR=.191 tR=. 2 2 2

tD=.0 7 4  tD=1 3 9  tD=.1 6 6  tD=210

tR=.0 8 2  tR'.16 4  tR:.200 tR=. 2 2 8

RULE tD.0 7 5  tD=1 3 7  tD:.1 6 8  tD= 217

Ii
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Table 3-5. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of a for Given a, b, N, and a E

ct.05

N =15 a~ .03

b=0 b=.4 b=.8 b=1.2

SEX t R= 039 t R=l.000 tRio100 0  tRl .000
tD=.OSO tD=L.0OO tDl*OOO0 tD= 1.00

a= S SR tR=%O 3 9  tR=l.000 tRl*OOO0 tRi1.OOO
a=5 SRtD=.03 9  tD=d.000 tDl1.OOO tDloQOO0

RUL tR=' 039 tRl1.OOO tRl1.000 tR=4
0
0 0 0

RUL D=' 0S0 tD=LOOO tDl1.OOO tDl1.OOO

S tR=.O 6 4  tR=4
0
0 0 0  tRl*OOO0 tRl*OOO0

t SE D= .034 tD=. 993  tDl*OOO0 tDl*1.00

a=3 SRtR=.OSS tR=.9 9 8  tRl*OOO0 tR=O9 9 9

a=3 SRtD=.02 9  tD=O9 8 5 tD=. 9 9 9  t= 9

RUEtR=.064 tR=1.000 tR=1.000 tR=1.000

tD=.0 3 4  tD=.9 9 3  tDl*OOO0 tDl*OOO0

tR=%0 6 O tR=.6 2 5  tR=.69 4

SEX tD= .057 t R 4 6 2  tDR*= 5 9 6  tDR. 6 37

tR=.OS6  tR=' 5 98  tR=. 6 S4  t 8
a=. SE D=' 04 4  tD=.43l tD=. 5 5 6  D59

RUEtR=.6 6 0 tR=%6 2 5 tR=. 6 9 4  R63
RUEtD='057 tD=* 46 2 tD=' 9 6 tD=* 6 6 0



87

Table 3-6. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of a for Given a, b, N, and
a a = .0S

N = 15 = .05

b=0 b=.4 b=.8 bz:1.2

t R= 062 tR=1.000 t R=1.000 tR=l.000
SEX tD=. 041 tD= 99 7  tD= 9 99  tD=l.000

tR=. 06 0  tR=. 9 9 7  tR=. 9 99  tR=.996
a=.5 SER

tD= .033 tD=. 9 9 1 tD=.998 tD=l.000

tR=0 6 2  tR=l.000 tR. 9 9 9  tR.999
RULE RRR99 

R'9
t D=. 041 tD=. 9 9 4  tD=. 99 9  tD= 1 .000

t R= 062 tR=. 9 48  tR=.976 tR=. 9 66

SEX D=.041 tD=.817 t D=.961 t D=976

--------------------------------------------

tR=.060 tR=.930 tR=.9S8 t R=895

tD=.045 tD= .79 3  t D=.922 tD=.926

--------------------------------------------

t R= 062 tR=. 9 4 8  tR=.970 tR=.931
RULE R

tD.044 tD 8  tD= 9 SS 967

t = 053 tR=. 3 2 7  R=R

SEX R-R361 
R 356

tD=*055 tD=.247 tD=.320 tD=.362

a=t SER tR='054 tR='30 4  tR=' 3 4 0 tR=' 331
a=. 046 tD.2 l6D tD=216 tD=.297 tD=315

L tR .054 tR=. 33 2  tR=' 3 64  tR=' 363
tDE t=.326 t = 364

0 D D 326SD



Table 3-7. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of ccfor Given a, b, N, a.
a.05

N = 15S .07

b=0 b=.4 b=.8 b=1.2

SEXtR*05 t='90 t=9.98 tR=994

t = 047 tR=* 9 30 R R 9 9

a=.5 SER tR=07 R=94 t.=991 tR=953
tD= 041 tD=. 9OS tD=' tD=*9 8O

tR= 055 YR* 9 8 9  tR='9 tY 9 7 2

RULE ~=07 t* 2
tD'4 .= 2 tD=.973 tD= 982

t = 064 t = 755 tR= 84 8  t = .828
SEX RR D D

tD=.035 tD=*6 06  tD=.807 tD= 832

tR=059 tR=728 Y=.780 Y-741
a=.3 SER RD'3 RD'6 D' 2 D'6

itR=.063 t R= 742 tR==.793 tR= 752
RULERRtD=036 tD=589 tD=.744 tD= 781

tE Y-052 tR= 217 tR=.242 tR=' 233K SX R044 D=170 RD'2 RD= 242

t =047 t =213 t =237 t =216

a=.1 SFER R R R R
tD=.O 3 9  tD= 156 tD=.202 tD=211

tR=*053 tR=.22 6  R=24 tR=29

RULERt=24t 22
D -.043 tD 17 3  tD 2 14  tD. 2 3 5

D DDI
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Table 3-8. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimator of a for Given a, b, N, and a .
a = .05 £

N=15 cc = .09

b=0 b=.4 b=.8 b=l.2

tR=.058 t R= 910 tR=fi 9 76  tR=.930
SEX tD=.052 tD=.783 tD=.943 tD=.971

tR=.045 tR=.879 tR=.933 tR=.850
a=.5 SER tD=046  tD .750 tD .896 tD915

t=.055 tR=.894 tR=.956 tR=.895
RULE R '05 R -R t R 8 9

R D=.052 tD= 779 tD=913  tD=' 934

t R=.045 t R=.597 tR=.710 tR=.634

S D=' 0 4 6  tD=459 tD=.620 t D=.663

t R=.041 t R= 590 tR=.65 7  tR=.574

tD=0 3 7  tD=.438 tD=.563 tD= 6 0 0

--------------------------------------------

t =.042 tR=.5 9 4  tR= .664 tR= 576
RULE D=040 tD=447 tD=.567 t D=.604

t =.051 t =.165 tR171 tR174
SEX R R t R 7 .7

tD=0 49  tD=1 3 3  tD=1 74  tD=1 84

t=.052 tR=.160 tR=.161 tR= 64

a=.l SER tD=.036 tD= 108 tDffi15 4  tD=.1 7 2

tR=.0 53  tR=.1 66  tR=.1 6 6  tR=.1 6 7

RULE tD 0 40  tDll5 tD158 tD=.175

DD
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Table 3-9. Percent of Significant Tests for Learning Using
Three Different Methods for Choosing an
Estimation of a for Given a, b, N, and a
a = .10

N=6 o=.03
b=.0 b=.4 b=.8 b=1.2

t R=.11O tR=L.000 tR=l O00 tR=1.000
SEX tD=094 t=.998 tD=l.000 t D=1.000

tR=.105 tR=. 9 9 9  tR=l.000 tR=. 9 99

t D =.090 t D=.997 tD=l.000 tD=l.000

t R=.l0 tR =l.000 tR=l.000 tR=. 9 9 9

RULE tD=.09 4  tD=. 9 9 8  tD=1.000 tD=1.000

t =.108 tR=. 9 7 4  tR=. 99 8 tR=. 9 9 8

SEXt=090 tD= .2 tD=. 99 5  tD=. 9 9 8

a=.3 SER R tR= 963 tR= 9 9 7  tR=996

tD=.08 9  tD=.929 tD=. 9 9 0  tD=. 99 3

t R=.109 t R= 972 tR=. 9 9 8  tR=.996
RULERR

tD=.090 tD=.952 tD=. 9 9 3  t =.997

t R=.095 t R= 450 tR=. 6 49 tR=.641
SEX RRt.4

tD=.083 tD= 404 tD=.594 tD=.635

tR. 95  tR 445 tR.619  tR. 6O 7

a=.l SER R t095 tDRRS60
tD=.075 tD=.399 tD=573 tD=.596

t.095 tR= 450 tR:. 6 49 tR
RULE RRRO 8

6

tD=.083 tD=.404 tD=.5 9 4 tD:. 6 3 5
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The primary concern is, however, to select the method

for estimating a that will result in the most powerful

test for detecting learning. Comparing the test procedure

results with the estimator results it appears that using the

minimum biased estimate of a does not necessarily result in

the most powerful test (i.e. under those conditions when

either equation (2-9Y or the general rule presented on page

68 provided the largest percent of minimum biased estimates of

a-, the largest peroent of significant test statistics is

tai~cJ when equation (2-R) is used to est-ite -

Recall that when either parameter "a" or "b" is small,

(a - .1), (b < .4), the observations are all very close to

the asymptote. Under these conditions the rate of learning

is very small and the corresponding average slope is small.

If a is large, the probability of detecting learning is

small. When a gets smaller, the probability of detecting

learning increases. This same idea holds for estimates of

a 6. Examining the distribution of the estimates for both

estimators in Figures 3-15 through 3-22 it appears that

equation (2-8) will always produce the larger percent of

smaller estimates of a Therefore using estimates of a

generated using equation (2-8) when applying the LLSR test

procedure for any combination of sample size, a and

parameter values results in a more powerful test for learning.
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Table 3-10. Results for Each of the Three Methods for
Choosing an Estimator of ac in Terms of Percent
of Minimum Biased Estimates ofa

N -6 a .03

b=O b=.4 b=.8 b=1.2

SEX=.445 SEX=.776 SEX=.988 SEX=.999

a=.5 SER=.S55 SER=.224 SER=.012 SER=.0O1

RLILE=.447 RULE=.778 RULE=.897 RULE=.583

SEX=.442 SEX=.548 SEX=.823 SEX=.948

a=.3 SER=.558 SER=.452 SER=.177 SER=.052

RULE=.552 RULE=.S64 RULE=.775 RULE=.735

SEX=.455 SEX=.440 SEX=.471 SEX=.514

a=.l SER=.545 SER=.S60 SER=.529 SER=.406IRULE=.461 RULE=.459 RULE=.476 RIJLE=.526

Table 3-11, Results for Each of the Three Methods for
Choosing an Estimator of ac in Terms of
Percent of Minimum Biased Estimates of a

N =6 ac = O

b=O b=.4 b=.8 b=1.2

SEX=.576 SEX=.S60 SEX=.794 SEX=.952

a=.S SERh=.424 SER=.440 SER=.206 SER=.048

RULE=.486 RULE=.S84 RULE=.667 RULE=.593

SEX=.471 SEX=.477 SEX=.569 SEX=.714

a=.3 SER=.528 SER=.S23 SER=.431 SER=.286

RULE=.549 RULE=.S20 RULE=.470 RULE=.397

SEX=.431 SEX=.435 SEX=.492 SEX=.479

a=.l SER=.S69 SER=.565 SER=.518 SER=.521

RULE=.536 RULE=.S48 RULE=.519 RULE=.533
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Table 3-12. Results for Each of the Three Methods for
Choosing an Estimator of ar, in Terms of
Percent of Minimum Biased Estimates of a.E

N =6 a =.07

b=O b=4b=.8 b=1.2

SEX=.543 SEX=.487 SEX=.741 SEX=.798

a=.5 SER=.457 SER=.513 SER=.256 SER=.202

RULE'=.473 RULE=.517 RIJLE=.539 RULE=.547

SEX=.439 SEX=.467 SEX=.530 SEX=.556

a=.3 SER=.561 SER=.533 SER=.470 SER=.444

RLLJ.458 RULE=.443 RULE=.380 RIJLE=.317

SEX=.461 SEX=.438 SEX=.456 SEX=.452

a=.1 SER=.539 SER=.562 SER=.544 SER=.548

RULE'=.448 RULE=.459 RULE=.465 RULE=.445

Table 3-13. Results for Each of the Three Methods for
Choosing an Estimator of a in Teims of
Percent of' Minimum Biased ,stimates of' a

N =6 a .09

b=o b=.4 b=.8 b=1.2

SEX=.449 SEX=.498 SEX=.558 SEX=.668

a=.5 SEiP=.55l SER=.S02 SER=.442 SER=. 332

RIHLE='.443 RULE=.473 RULE=.554 RULE=.601

SFX=. 4 S3 SEX= .467 SEX=.467 SEX=.5S04

a=.3 SER=.547 SER=.533 SER=.533 SER=.496

RULE=.492 RULE=.482 RULE=.438 RUJLE=.447

SEX'.440 SEX=.454 SEX=.444 SEX=.477

a=.l SER=.560 SER=..540 SER=.556 SER=.532

RtJLE=. 498 RULE=.472 RULE=.494 RULE=.472
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Table 3-14. Results for Each of the Three Methods for
Choosing an Estimator of a. in Terms of
Percent of Minimum Biased Estimates of a

N =15 a =.03

b=0 b=.4 b=.8 b=1.2

SEX=.426 SEX=.991 SEX=.999 SEX=1.000

a=.5 SER=.574 SER=.009 SER=.O00 SER=0.00

RULE=.426 RULE=.989 RULE=.995 RIJLE=.893

SEX=.411 SEX=.788 SEX=.991 SEX=.999

a=.3 SER=.589 SER=.212 SER=.009 SER=.00l

RULE=.411 RULE=.788 RULE=.992 RULE=.991

SEX=.397 SEX=.418 SEX=.S06 SEX=.5S5

a=.l SER=.603 SER=.582 SER=.494 SER=.445

RULE=.397 RULE=.445 RULE=.475 RULE=.572

Table 3-15. Results for Each of the Three :Iethods for
Choosing an Estimator of a. in Terms ofI Percent of Minimum Biased Estimates of a

N = 1S Ge = .05

b=0 b=.4 b=.8 b=1.2

SEX=.426 SEX=.784 SEX=.991 SEX=1.000

a=.S SER=.5-4 SER=.216 SER=.009 SER=0.000

RULE=.497 RULE=.734 RULE=.794 RULE=.644

SEX=.38'7 SEX=.509 SEX=.750 SEX=.896

a=.3 SER=.613 SER=.491 SER=.250 SER='.104

RULE=.S08 RULE=.555 RULE=.586 RULE=.542

SEX=.501 SEX=.422 SEX=.436 SEX=.474

a=.l SER=.499 SER=.578 SER=.564 SER=.526

RULE=.501 RULE=.490 RULE=.506 RULE=.S06



Table 3-16. Results for Each of the The Three Methods for
Choosing an Estimator of aF in Terms of
Percent of Minimum Biased Estimates ofa

N =15 aG .07

b=0 b=.4 b=.8 b=1.2

SEX=.405 SEX=.612 SEX=.893 SEX=.969

*a=.5 SER=.595 SER=.388 SER=.107 SER=.031

R(JLE=.430 RULE=.526 RULE=.568 RULE=.517

SEX=.434 SEX=.467 SEX=.597 SEX=.662

a=.3 SER=.566 SER -.S33 SER=.403 SER=.338

RIJLE=.469 RULE-.370 RULE=.263 RULE=.216

SEX=.443 SEX=.411 SEX=.440 SEX=.419

a=.1 SER=.557 SER=.589 SER=.560 SER=.581

Rt!LE=.412 RULE=.449 RULE=.411 RULE=.394

Table 3-17. Results f-r Each of the Three Methods for
Choosing in Estimator of ac in Terms of
Percent of Minimum Biased Estimates of a

C*1N =15S .09

b=0 b=.4 b=.8 b=1.2

SEX=.427 SEX=.546 SEX=.736 SEX=.853

a=.5 SER=.573 SER=.454 SER=.264 SER=.147

R(JLE=.490 RULE=.569 RULE=.644 RULE=.620

SEX=.422 SEX=.456 SEX=.474 SEX=.567

a=.3 SER=.S78 SER=.544 SER=.526 SER=.433

RULE=.553 RULE=.516 RIJLE=.478 RULE=.438

SEX=.429 SEX=.440 SEX=.440 SEX=.421

a=.l SER=.S71 SER=.S60 SER=.S60 SER=.S79

RULE=.526 RULE=.546 RULE=.526 RULE=.563
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Evaluation of the Nonlinear Test Procedure

A final simulation study was conducted to determine

if the nonlinear test procedure is a more powerful test than

the linear test procedures. The study was conducted under

exactly the same conditions as were used for the linear test

evaluation (i.e. same normal randomly generated observations

were used). In order for the nonlinear test procedure to

yield a significant test statistic, two conditions must be

satisfied:

(i) The degree of nonlinearity of the curve must
be small enough to apply linear theory
approximation for determining confidence
limits on parameters "a" and "b".

(ii) The lower limit for both parameter "a" and
parameter "b" must be greater than zero for
the lower confidence limit of the slope
abtb-1 to be greater than zero.

An advantage of the nonlinear test over the linear
test procedure is that it is possible to estimate the rate

of learning at any particular trial by examining the

confidence limits for the true slope at that trial. Therefore

if the degree of nonlinearity is small enough, less than

.01/F, it will be possible to construct the upper

(1-a) confidence limit for the true rate of learning at any

particular trial. If the value of the upper confidence

limit, in terms of rate of learning is determined to be

insignificant at a particular trial then we can assume that

learning will not be a factor in any future trial results.

tM-
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As cap be seen in Table 3-18 when either parameter "a"

decreases or parameter "b" increases, the maximum allowable

a value for which linear theory approximations on the test

of the slope will be valid, decreases. For the nonlinear

!test procedure, the results in Tables 3-20 and 3-21 indicate

* that the degree of nonlinearity is the limiting factor

except when parameter "a" or "b" is small. An explanation

for this follows. When parameter "b" is small the rate of

learning is small and the curve is approximately a straight

line. A tangent line approximation for estimating the values

of the parameters would do very well under these conditions.

When aE is large in comparison to the average rate of learning,

it will reduce the power of the test before it becomes a

significant factor in affecting the degree of nonlinearitv.

If on the other hand the value of parameter 'a" is small, this

implies that the observations are all very near the asymptotic

value of 1. Since we can never do any better than 100%,

the amount of deviation above the expected value is limited.

If a E is relatively large the amount of deviation that occurs

below the expected value may well exceed the limited devi-

ation above this expected value. This would result in a

fitted curve with a negative value for b, but more important

it will also result in a lower confidence limit for the slope

which includes zero. An examination of the observations for

several simulation runs when parameter a = .1 and a = .03

did reveal this to be the case.
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Table 3-18. Maximum Allowable Value of oYE for Given Values

of "Va"' and "b"' for Linear Theory Approximations
to be Valid at a = .05 Level

N =6

b=0.0 b=.4 b=.8 b=1.2

a=.5 c .078997 .04252S .031026

a=.3 00.047398 .025515 .018615

a=.l co.01S799 .00850S .006205

Table 3-19. Maximum Allowable Value of a. for Given Values
of "'a" and ''b'' for Linear Theory Approximations
to be Valid at a~ = .05 Level

N = 15

b=0 b=.4 b=.8 b=1.2

a=.l 00 .073523 .035870 .025137

a=.3 co .044114 .021523 .015022

a=.5 co .014705 .007174 .005027
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Table 3-20. Percent of Times Linear Approximations can be
UsedP and the Percent of Times the Slone
TestwU Significant, PSS

N = 6 a =.03

b=0 b=.4 b=.8 b=1.2

PLA' 00 0  PLA=1 .0 00  PLA= 89 5  PL = '6 2 3

a = S5 PSS= .080 PS=1.000 PSS=.895 PSS=.623

PA1.000 P = .956 PLA= 3 99  PLA 2 0 0

a .3 P SS= 071 P SS= .938 P SS=.399 P SS=200

P 794 P .267 PLA=. 0 56  PLA= 04 1

a = .1 PSS= .053 PSS= .079 P SS=.025 PSS=.025

Table 3-21. Percent of Times Linear Approximations can be
Used PLA and the Percent of Times the Slope
Test was Significant PSS

N = 6 = .05

b=0 b=.4 b=.8 b=1.2

P I.000 P .951 PLA=. 438  PL 187
a = 5 PSS= .080 PSS .940 PSS.438 PSS.187

PLA=  994 P LA= .579 PLA=.104 PLA=. 0 56

a .3 P SS= 072 PSS= .439 PSS=.103 PSS=.0S6

PLA = .145 PLA= .154 PLA. 0 6 5  PLA=.059

a = 1 .015 P .008 PS .005 P55= .016

Low ElA
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The results in terms of the percent of significant

tests per 1000 runs using the nonlinear test procedure are

given in Tables 3-22 and 3-23. As the value of a decreases,

the power of the nonlinear test increases when the values of

parameters a and b exceed some critical number. It appears

that this critical value may be near .2. As the sample size

increases thepower of the nonlinear test decreases. This is

evident by comparing values in Tables 3-18 and 3-19 since the

maximum value of a for given parameter values "a" and "b"

decreases as N increases.

A comparison of the LLSR test procedure with the non-

linear test procedure is also provided in Tables (3-22) and

(3-23).

SI

Ii



Table 3-22. Comparison of the Percent of Significant Tests
for Learning Using the Nonlinear Procedure,
tNL, and the LLSR Procedure, tR. The results
are based on 1000 simulation runs for each
combination of a, b, NI and a. Tests were
conducted at a = .05 level.

N =6 a =.03

b=0 b=.4 b=.8 b=1.2

i tNC' 080 t NLO1.0 ~NCL 9 NL= .623
a=.5 tR =067 tR = 998 tR =1.000 tR =1.000

t NL= .071 t NL= .938 t N= .399 t NL= .200

a3tR = 059 tR = 913 tR = 983 tR = 982

t NL=. 053 tNLC .079 tNLC .025 t NC .025

a. tR =' 056 t R = 318 t R = 41S t R = 497

Table 3-23. Comparison of the Percent of Significant Tests
for Learning Using the Nonlinear Procedure,
tNL, and the LLSR Procedure, tR. The results

*1 are based on 1000 simulation runs for each
* combination of a, b, N and cc. Tests were

conducted at thea-= .05 level.

N =6a = .05

b=0 b=.4 b=.8 b=1.2

t =080 tNL .940 tNL .438 tL .187
NL N LN

a=. 5R-8 -. 5
t R-8 5 R 97 t R= 995

tNL0 7 2  tNL 439 tNL 103 tL .056

*a=.3 t R 080 t R = 715 t R = 912 t R = 894

t NL=*O01 t NL= .008 t NL= .005 t NL= -016

tR= 084 tR = 257 tR = 328 tR .381



CHAPTER IV

ILLUSTRATION OF THE PROPOSED PROCEDURE

Example

The example problem chosen was an actual experiment

conducted at Georgia Tech to determine the performance of a

viscous damped tripod. The experimental results were in

terms of standard deviation of the error from a marked point

while tracking a moving target at a constant velocity. The

curve describing these results follows the form of equation

(i-I). Although the linear test for learning can be applied

directly to the learning curve data, a conversion to the

performance curve will be made in order to apply the computer

program as writtin for the nonlinear test procedure.

To conduct a test for learning using the performance

curve described by equation (1-2), a suitable scaling of the

values must be accomplished. Recall when performance is in

terms of the percent of total possible that the lower limit

at trial 1 was 0 and the upper limit of the curve at some

future trial number was 1. A value of zero is what we might

expect from an operator who is totally unfamiliar with the

system and a value of 100% is the expected value obtained if

the system meets the required specifications when onerated by

a fully trained individual or crew.



In the viscous damped tripod experimental data,

values that correspond to the lower and upper limits for the

performance as discussed above must be selected. The upper

limit will be chosen as the minimum standard deviation of

error predicted by the manufacturer when the tripod is
:iioperated by a fully learned individual. The value selected

to correspond to the lower limit on the performance curve
'4

was the largest standard deviation of error value recorded

during the first two trials of the experiment. The tripod

was operated by 5 different individuals whose experience in

tracking moving targets varied. The largest standard

deviation of error over the first two trials was recorded

by a subject who was totally naive about the operation of

the tripod prior to this experiment.

The equation for obtaining the proper scaling factor

to use in transforming the learning curve data to a performance

curve is:

S1.0(4-1)

where

EM represents the manufacturer's specifications

ES represents the largest value for standard deviation

of error recorded during the first two trials

TF = transformation factor for 1 unit of change in

the learning curve data.
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The interpretation of the above computations is that I unit

of decrease from the largest value recorded in the learning

curve data will correspond to 1.0/[ES-EM] increase from

the minimum value, zero, on the performance curve. The

equation for transforming a data point at a particular trial

on the learning curve to the performance curve is

p (PS trial result) (TF (4-2)

V p = (6.522 - trial result)(.18443)

where V represents the corresponding value on the performance~P

curve.I
The results in column 2 below were obtained by an

individual who was familiar with tracking moving objects but

who had never operated this particular type of tripod before

this experiment. A test to detect if learning was occurring

during the first 6 trials of the experiment will be conducted

using both the LLSR test procedure and the nonlinear test

orocedure. If the nonlinear test is significant; the 100

(l-a)% confidence limits will be evaluated for the slope of

the curve at each trial to determine if the rate of learning

becomes insignificant by trial 6.
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Trial vpy 1  X. (XX) 2 (t.-t)Y.
Number Result P 1 1i1

1 4.2124 .4260 .1328 .003564 -1.0650
2 3.4920 .5588 .0778 .000022 - .8382
3 3.0702 .6366 .1582 .007242 - .3183
4 2.2126 .7948 .0740 .000001 .3974
5 1.8113 .8688 -.0773 .022620 1.3032

6 2.2306 .7915 1.9789

Applying the LLSR test procedure at o = .05 using an estimate
of a from equation (2-8) yields the following:

H0: dLLSR - 0

H0 d LLSR > 0

Compute:
dLLSR- 0

' 12a
2

N(2 +1)

if t t do not reject H0 .05,~40

if t > t reject Ho .05,4I 0
Compute an estimate of a 2 using equation (2-8)

5 -2
(N-i) E (x i-x)

2 i=1

2N(N - 2)

a 2 5 (.033449) 0034843
E 2(6)(4) 034
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Compute an estimate of the slope using the LLSR method:

6
Z (ti-t)y i

d i=l
LLSR N7 Ct.i-t)2

*1 ~i=l1

d 1.458

dLLSR =l-4-

dLLSR= .0833

Compute the test statistic, to:

d LLSR -0

t
i.|1 2aE

N(N +1)

to = .0833

t o  6 6.07

Since to > t0s 4 we reject H0 and conclude learning

is occurring during these 6 trials.
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Applying the nonlinear test procedure at a = .05

using the computer program in Appendix D, yields the

following results.

Estimates of the parameters and a are:

a = .6017

b = .6425

a= .0656

The measure of non linearity N was computed as:

N 0 = .00161373

Critical Value = .001441

The degree of nonlinearity for this estimated curve is too

large to use linear theory approximations to compute 95%

confidence limits on the slope. Applying the test procedure

at a = .10, the test for learning is significant. The 90%

confidence interval on the slope at each trial is:

Trial
Number

1 lrwer confidence value .1769
,pper confidence value = .7366

2 lower confidence value = .0661
upper confidence value = .1902

3 lower confidence value = .0372
upper confidence value = .0878

4 lower confidence value = .0247
upper confidence value = .0518



5 lower (Ionfidence value = .0180
upper confidence value = .0348

6 lower confidence value = .0139

upper confidence value = .0254

, This particular operator, even though familiar with tracking

targets, still appears to be learning after 6 trials.

Therefore we would conclude that none of the 6 trial observa-

tion values are representative of the performance of this

tripod when operated by a fully learned individual.

'I5
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This research involved the development of a simple

methodology to test for learning in experimental results

using small sample sizes. In addition, a orocedure for exam-

ining the instantaneous rate of learning at any particular

trial of an experiment was also investigated.

Assuming learning cani be described by a monotonically

increasing oerformance curve of the form z = 1-at -b tests

for learning were developed based on examining the rate of

learning over several trails. Since the curve is monotonically

increasing, a positive slope will be interpreted as learning

and a zero slope will correspond to no learning occurring.

For this research the time between trials was considered

insignificant in affecting previously gained knowledge ani

the error between any observation and its expected value, zi

is assumed to be NID (0, 02)

To develon a simple methodology to test 'for learning rni

to provide a test that would measure the rate of learnin at

any narticular trial, required two different approaches to

the problem. The approach to develoning a simolified test

procedure involved examining four linear methods used to

K- .
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, estimate the average rate of learning over several trials.

A comnarison of the variances of the estimates of the average

, rite -.0 learning for each method was made and Chose estimates

with minimum variance were sleected for further analysis.

The best linear method was the linear least squares regression,

LLSR, method and the next best linear method was the average

of the consecutive differences, ACD, method. Although the

variance of LLSR estimate of the average rate of learning is

smaller than the variance of the ACD method, the expected

value of the LLSR estimate contains a negative bias factor

while the exoected value of the estimate of the average

of learning using the ACD method is unbiased. The amount of

bias in the LLSR estimate of the average rate of learninm

increases as the sample size or the initial rate of learning

increases. When the ratio of the LLSR estimate of the average

rate of learning to the ACD estimate of average rate of

learning is smaller than the ratio of their c'rvesonhinP

standard deviations, then the ACD method becomes the more

powerful test procedure. Por sample sizes less that 21,

the LLSR method is the best test procedure when a narameter

L !:, Iess than or -qua] to one.

In order to conduct either of the linear test procedures

2an ,-,tmqite of the process variance, aC , must be obtained.

2r!:, , ,stimatorn of' a were examined to determine which
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estimator provided estimators of a C2 which resulted in the

most powerful test for learning. These estimators were derived
~2

using the LLSR estimate of o , the sum of the squared differ-

ences between the observations and -heir average, and the sum

of the square differneces between the first difference of the
2

observations and their average. The estimator of a using

the first difference of the observations provided estimates

which resulted in the most powerful tests for learning.

Since the rate of learning in performance evaluations

is not expected to exceed a parameter value of b > 1.0, the

most powerful test procedure would be the LLSR. This method

is most powerful when the variance of the slone estimate

2is comnuted with an estimate of £ obtained using the first

difference estimator. To measure the rate of learning at any

particular trial requires an analysis of the instantaneous

slope of the curve at that noint. The approach taken was to

use linear theory approximations to estimate the slope. If

the degree of nonlinearity of the function is small enough,

it is possible to use a linear theory approximation to con-

struct a confidence interval for the true slope at any

particular trial. In the nonlinear method, estimates for

a and the parameters "a"t and "b" are obtained and a test on

the degree of nonlinearity of the function is conducted

using Beale's measure of nonlinearity. If the devree of non-

linearity is small enough then it is oossible to construct

a confidence region for the parameters "a" and 'b". By



112

computing the estimate of the slope over the points on the

periphery of the parameter confidence region, the smallest

and the largest value of the slope estimate can be obtained

for the curve at a given trial. The smallest and largest

value of the slope estimate correspond to the lower and

upper confidence limits respectively on the true slope. The

width of the confidence interval for the true slone will

decrease over the latter trials until it will eventually

include the value zero which indicates a fully learned status.

Therefore if the upper confidence limit were less than some

maximum acceptable rate of learning at a certain trial, then

it would be concluded that learning would not be a factor in

any future trial results.

In a comparison of the two procedures, the linear

methods were more powerful tests; however, the nonlinear

method was able to provide information on the rate of learning

at each trial when the nonlinearity conditions were satisfied

and significant learning was detected. When the degree of

nonlinearity was small enough to conduct the test, signifi-

cant learning was detected 95Z of the time except when

parameter "a" and "b" were small. The more vowerful linear

test procedure was the LLSR method, which -in letect an

average rate of learning over 15 trials of .01 at an a=.05

level 95% of the time when the standard deviation is

c c .05.
e
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The advantages of the linear test orocedures over the

nonlinear procedure are greater probability of detecting

actual learning and the test can be applied using simple

arithmetic and comparing computed and tabulated values as

demonstrated with an example in Chapter IV.

Recommendations for Future Study

In order to apply the nonlinear test procedure on results

which follow the learning curve, equation (1--l), the data

must be transformed into data that follows the form of a

performance curveequation (1-2). The critical factor in

the transformation of data is selecting a value from the

learning curve data that would correspond to zero performance

on the performance curve. If the value selected is too small,

the scaling factor, TF1 will be inflated and when the value

selected is too large TE will be deflated. The effect on

the power of the test procedures is not clear since a

2
deflated T results in a larger estimate for a as well as

a larger estimate for the average rate of learning. It is

recommended that future research be conducted to investigate

the eff'ect of errors In this transformation.

If the error term in the learning curve model was

multiplicative rather than additive as assumed in this study,

the test crocedures developed may not be adequate for

detecting learning. It may be necessary to develop a new

test procedure based on the logarithmic transform of the model,
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ln(y) = in(a) + bln(ti) + In(ci)

where in(y) logarithm (y)

A recommendation for future research would be to develop a

methodology for detecting learning when the errors are loo

normally distributed. Assuming that in(y i ) is normally

distributed then ln(a) and b will be normally distributed;

however, the distribution of eIn(a) - a is not normally dis-

tributed. The difficulty then in developing a test procedure

for this approach will be in determining the distribution

of the estimate of the slope, -abt-b-I

If the value of parameter b is known, it would be

possible to select the test procedure which would be more

oowerful for detecting learning. It Is known that if the

value of parameter b increases for a given sample size and

and a given value for"a, that the average rate of learning

also increases. If an estimate of the value of "a" is made

using the first observation and the value of N is known, then

it may be possible to determine the value of b by examilnng

the estimate of the average rate of learning. Another

recommendation for future research is to study the relation-.

ship between the average rate of learning and parameter b In

order to increase the probability of choosing the more power-

ful test when the true performance curve is unknown,



115

APPENDIX A

EXPLANATION OF NOTATION

Chapter I

7 value of the true performance curve at trial number i

3 variance of an observation about its expected value

C. error between the observation and its expected value at
trial i

Chapter II

Yi the observation at trial number i

z value of the performance curve at the asvmtoteC

y average of the observations

x. the difference between yi+l and y

x average of the consecutive differences between the
observations

V average rate of learning

dA7D estimate of the average rate of learninq using the
average of consecutive differences (ACD) method

d LS R estimate of the average rate of learning using the

the Linear Lease Squares Regression (LLSR) methcd

Sv2 minimum variance unbiased estimate of y 2

.4 measure of degree of nonlinearity

ni (J) true value of the function at trial i when the parameter
values are 0 = (0,0 02,,, p )

T (i) tangential aDproximation of the true function at trial
i when the Parameter values are 8 = I  )

li 2'" e e P
(01-S) 2 estimate of a using equation (2-7)
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(SEX) estimate of a using equation (2-8)

: :) 2
(SERY estimate of a using equation (2-9)~E

Chapter III

E[a ] expected value of the estimate of a using the
*x average of consecutive differences estimator,

equation ( 2-8

E[5 ] exoected value of the estimate of C using the

CR linear least squares regression estimator (ecuation

2-9)

'DES estimate of a using equation (2-7)

SEX estimate of a using equation (2-7)

SEE estimate of a using equation (2-9)

RULE estimate of 3 aolying the general rule descrihed
on page 68for choosing an estimator

t percent of times the Linear Least Squares Regre,;sjorn
test procedure detected significant learning

tD percent of times the Average of Consecutive Differences
test procedure detected significant learning

PLA nercent of times that the degree of nonlinearity of
the nerformance curve was small enough to use linear

theory approximations

PS percent of times the nonlinear test procedure
detected significant learning when linear theory
approximations could be applied.

t.L percent of time the nonlinear test procedure detected
significant learning

scaling factor for transforming learning curve data
to a nerformance curve

E largest value recorded in the ].earning curve data
S
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APPENDIX B

DERIVATION OF THE ESTIMATORS OF o 2

Several alternative techniques for estimating the
2

varianee, . , are examined in terms of exoected bias to

dtermirie a minimum bias estimator. The first technique

considered will be that presented in equation (2-6).

LN
2= N 2 2B1S E (y.-y) /(N-l) (B-I)

2writing S as a function of the z. 's and taking exoectatirns

we have

N
E(Se 2 E[ - (yi-y)/(N-1)]

i=1

N
1 E N (y N (ZN

K -1 {(zi+ei)-2(z+e)(!w___) ( Z ) 2i1 i*=1 N

.1N

N z CNN ( Ii 2z+
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Since z. is a constant and -i  N10 (O,u ") the equation in

reduced form is

N
2 N Z Z z N

E(S 2) F 1 2+F 2) E z i= 1  -2N-1 [ i (zi E)j Ni=l i=l i=l

N N N
1\ Z z.Z .

iNi + E 2 N i=1 2
r + + E E( N ) ]

N1 
N

2 2 il )2 2N
Simplifying where E(s = a and E(-N 1

N

2 2 E z. z
2 N 2 Na 1E(S E zi IN-I + - NI N-

i=l

N -2 .22/ Z z Na
2N a/N i=l +

N-1 -N-i N--)

where z is defined as the average of the expected values of

the observations.

2N N
E(S2) a + [z z. -2 E z.Z + Nz]

S N-i= i 1 i= 1

E(S2 2 a 1 [zi-]2 (B-2)E(£) C N-1 i=l



Thus the farther the observations or trial results are

from the asymptote the more inflated will be our estimate of

the true error variance. A candidate for consideration as

an estimator for the variance then is equation (B-i).

Another simple to apply method for estimating the

variance of the process would be to use the first difference

of the series of observations

x = Yi+l - Yi

where v. is the observation at trial i.
• 1

Although the differences are not independent, the variance

2
of the xi s will contain the term o . Therefore it may

be possible to express the variance of the x.'s as:

11

A Var (x i) a 2 + B(B3

where A defines some multiplier and B represents the bias

factor due to lack of fit of the model and dependence between

the xivalues. Then a comparison of estimators can be made

in terms of expected bias. The expected bias in the estimate

of a E2 using the sum of squared errors of the consecutive

differences between observations about the average

2 N-1 2Sx= E (xi-x) /N-2Sx i=I



is derived below

2) (i_- ] 2

s(x

E(SX 2) E-N--

N-1 2 N-1
(xi-x) N-I (Yi+l-Yi2

i=l 1 i
El N 2 = f EE 1(yi+4 - Yi~)- N-

N-1
N-1 z (Zi+l +Ei+l)- (z+E 

)

1 +E i=l 2

N-2 E{ T 4 [(Zi+li+l- (zi+ i)}- N-i

N-12

E E{N ( E - -i 2 -2{(z zi-e i)
N-2 zi+l i+l- i -zzi+lc + i-

i=l

N-i N-I
zi+1 i+l-i -z - E .Zi+l+.i+ -s E ]

(ii Ni + (i=i 211

N-

N - 2
E (xi-x) N-1 N-1

N-2 1 {E Z (Z i+Ci+l-Zi-Ci)2 -2E FN - - i = l 1

N

(Z i i+ -Z - i E [ N-I + E N -I

i=l

N-1
z [zi+l+ i+l-Z -1(i=l )21

N-I

The right side of equation (B-4) may be considered as separate

terms and the expected value of each computed.



First term: 121

N-I 2 N-I 2 2 N-I
21 +l -z.- )  1+2 E Z.-+zN -2 zi =1i l =

+2(N-1)O 2

N-I (z + -z. 2 + 2(N-1)C

i=1l '

Second term:

N-i

N-I i [Zi+l+Ei+ 1 -Z - C]

-2F{ E [(zi+l +-i+l-Zi-i) N-1 -

N-i -1-2E{ E (zi+l +i+l-Zi-e.)( - N N 1i=1

z N+6 -l- ) N-1
- -2{( NN 1 E (Z i+l+i+l- Z- C)1

i~l

-2 E{( N N  1 £1

2
N 2 14 ]- F{ZN 2 +Z 1 2_ 2zNz1+zNN zNl zIEN CEI+zll +62

Taking the expected value of each quantity inside the

parentheses the following result is obtained

LMJ
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971- N-1N -1

Third term:

N-1

N-ij+E i- 1 i ' 2 N-1 (z +ENzl+El) 2
E [ N-1-2

Ft (N-i i=i

1Z N 2 2 2
N 1--, +: CZ z zz+c

N-1 =

Now substitute the simo1-tf'ed quantities back into equation

~B~)to obtain

~ .-X) =1 N-i1

tf J~ (z -z.) 2+2(N-l)aF 2 2 1 zz12

N-1 N-i1 T

I 1 2N(N-2) 2 +N-i1( -. 2
-

-Nj z i+ -i)

(z N-ZI) 2



Z(x i- 2 2N 2 + 1 N- 2 (ZNz 1)2

, N 2  } +'"-r % V7- (z -zi)
Si=l il1

In order to compare this estimate with that in equation (B-l)

we must put it in the form of equation (B-3) Multiplying

both sides of equation (B-5) by (N-l)/2N we obtain:

-221- 2(x i-x ) N-I 2
F 2N(N-2) [ (zi+ -z)2 ZN-Zl)S N-2 i=l N-I ]

Another estimator to be considered for estimating the

variance is then

2 ~N2

2E (N-) Z (x.-x) 2 /2N(N-2) (B-6)S€i=l 1

Another procedure for estimating the variance is to

use the sum of squared residuals obtained when fittinr a

linear model through the observations using a least squares

regression technique. This estimate of the variance will

contain a bias factor due to lack of fit of the model as

discussed in Chanter 1. Using the linear least squares re-

vression equation for estimating the variance, the computatioi

-,f the exreoted bias factor follows*.

For derivation of the LLSR equations see Draper and
Smith [5].



The LLSR equation for estimating the variance is:

N

N N 2 i=l 1 1

MSF1  E [ i yE Yi)/N ~ N 2 tIi -

i t.-l 21 ~

N
E t zy.i=l 1

N-- ]}/(N-2)

Compute the expected bias facto-r due to lack of fit of the

LLSR model:

1 N 2 N 2 1
E(MS E -- {[ yi- y1 ) IN] N

m1 1

N N(B7

i1 1 i=l

1N N N
*N[EC E (t..-t)(y.-y) z t. E y./N))}

N E ti 2 i=l 1 1 i~l 1i=l

i=l 1

Examine each term inside the brackets separately:

'Irst term:

N 2 N_' 2 N 2 2 1 N 2
Fr E i (Ei IN] Ef E (z. +2i~+- 2) +

N 2 . 2 N 2  ~ 2 N N
Z.l 1 Na~ [Na E:+ E E z izj

i1l j=l 1.



+ (N-i) E 2 I.2 N

Second term:

1N N

N 1N

i (t. )11 11 1 1 1 1

N

z= 1t 1 1 1 tj

1N 2 - N N N N

-t 2 i=1 i=1 'i1 i=1 1 i=1

2
N N 2 _ N 2 N N a

+Nzt E i Z + - ta -t -r tia E
C= = i=1 j=1 1 N

2 -

ta E t.]

1N 2 N N N 2
- 2 i=1 . 2 1 1Z 11 i= 1 Et C

E (t.i-t) i~

N 2
t E tia 3



Third term:

1 N N N
Ef(ti-t)hy.-v) E t. i Ev./N]

2i ~ll~

1N N N N

N 2 t + E t.E i ~ z - E t~.

i2 1~ ~ =

N N N N -N N N N
E tZ -z t..e + E tz + E te][ E t. i z. + E t. ECi

1N N N N 2 2
N [st. iEz.i ~t iz.+(Et.)

N ti-)2 i=1 1ii 1 i=l1 1 i=11

N 2 N - N 2 - N 2!'J N 2 2

i=1 1=1 = l=

N N N
+ Ntz E t. Z z + Nt E t ia2

1 2 N N N N 12 N

N [Tt tz it -t-. t)t2.i

Replacing the quantities in equation (B-7) with their

expected values:



I7

I N 2+ 2_IN 2 1 N 2F "Is )  N_-- f E z.+ (N-1)a /Nzi -N E ( t z )

i j=l i Ii N - 2 i=l

E (t.-t)
i=l (B-8)

N N 2 N 2 2 N

Z Et. Ft.z. + t. - E ti]
i=l 1 i=l = i=l

N N N N 2 N
[ t E z. E t.z.-t( z i) t]}

2  i=1 i=1 i 1 1 i=l
N E (t.-t)
i=l

Since the trials are consecutive integer values, a closed

form expression for t in terms of N can be made where

N =N(N+l)E t = -
i=l 1 2

N 2 N (N+!) (2N+l

N

N 2

St = 2  N(N +1)

Ei(-1 J. t

i=1

then rewriting equation (B-8) in terms of N where applicable

-

.1J



A

p2 (6

N 2
N 2 2 i N

I (MSE 2 + ( 2 i=l 12 H z t zi)2
i=1 1 N(N+1) i=1 1.

NN(

N(N+I) N+ 2 (N(N+I)(2N+1))_ 2(N+1)(N(N+1)]2z E t s iaC6E
i=l

12 [N (N+1) N N - N_(__1
N (N

N2
E zi)2]}

i=l 1

Factoring and combining like terms:

E~S2 N 4_2N 3+N2 +N + 12 [N 3+ N 2

E + 4_ 3 _2.- Z .z
E(MSE) %2 [N4-'2N 3+N2 -2N' N(N-2)(N 2) i=l 

N

(N2 ) E z i)  N N
i=l N

12 -(E tiz i - E z2 (B-9)
i=l i=1

Putting this in the form of equation (2-8) yields

2 3N NN(N +I)(N-2 E[MS 2 + 12 N +N 2

N(N _2N 2+N+) E N(N -2N2+N+I) IT- i= 1

2 N 2(N +l)( E z.) N N
il NN+ N 21

12 (z t iz i z i )
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Thus another estimator for the variance then would be

S (N2 +1) (N-2)MSE /(N3 -2N +N+1) (-U



APPENDIX C

NONLINEAR TEST PROCEDURE

Estimation of Parameters and Variance

Step 1. Since we know that the degree of nonlinearity

for the performance curve function is small, a linearization

method for estimating the parameters should work quite well

[10]. If a Taylor series expansion of the function f(tia,b)

about the point (a,b) is carried out and curtailed after the

first derivative, then an approximate estimate for the function

f(ti,a,b) is then:

f(t i a,b) = f(ti,a ,b o ) + 9f(tab) (a-a 0 )

+ "f(t'a'b)b  (b-bo) (C-i)

The model could then be written as:

= f(ti'a'b) + f(t,a,b) + f(t,a,b) (C-2)

To solve for new estimates of the parameters, minimize the

sum of squared errors. Let

d= (a-a0 )

d 2 = (b-bo)

= (a,b)

I.
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" = [yi-f(tiaobo) - af(t,ab), (a-a0 )
1 a 1 a0

af(t,a,b), (b-b0) 2

2
then minimizing 2 with respect to 0 we get

2
1~ ~ ~ f (t [y-fe) ~ 1 Lo_i______ t i f,0) .)

3a -a 0f'Oo d

f(t ,-) f(t i , 0e), 1 - I- d2]}

2a i { af(t,)
=-u 2 qb g [ i-,o) -

3f (t ,'! dI  f (t T') d
Da - - b 0 02]

Then solve the two equations in two unknowns for the

direction vector that will improve the initial estimates of

the parameters

;f (t i ,0O )  n af(t i ,O-)  n af(t i ,r)

da 1a 0 + i=l a FL 0 d2  ia 10o

[Yi-f(ti o)] 1 10



L3;

d- 1
3= a 3b 0 d1  l b @b 0d 2 = I

The minimum distance to move in the new direction D

(d1,d) from go= (a ,b0) will be

(2-)

new 0 m

where v. is evaluated as follows:

Compute the sum of squared errors for

SS (0 1, [Y ~ .f(t 2
vI

where + +v7§
V

and v 0, 1/2, 1

Let Q(v) SS(; )

then

v i 1/2 +1/4 [Q(O)-Q(l)]/[Q(l)-2Q(l/2)+Q(O)]

Using the new estimate of the parameter vector, eneit.' in

equation (C-3) as the next starting value, begin another

9 iteration.
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When the value of D = 0, or some small incremental

value, 6 = .000001, the best estimate is obtained for the

parameters that minimizes the sum of squared errors. The

corresponding variance would be

- 2 (C-4)

N-2

th
.- hpr,- reprPsents the parameter values for the 1

iteration.

Step 2. Determine degree of nonlinearity. The

procedure, as discussed earlier, entails using Beale's

measure of nonlinearity to determine if the degree of non-

linearity of the performance function is less than .01/

F To compute the measure of nonlinearity, Ne

the function is evaluated along with the corresponding tangent

plane approximation, equation (3-34), at points Ow = (a,b)

in the neighborhood of e - (a,b). Since there are two

parameters, a reasonable design for considering points in

the neighborhood of 9 would be a 32 design. In order to keep

the distance between w w = 1, 2, 3, ... , 8 and a in

proportion to the size of e as 0 changes, compute the upper

and lower values of the parameters in the 32 design as

a ± %(a); b ± %(b) for each parameter respectively. A

reasonable percentage value would be between 31, and 10%.
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Step 3. Confidence interval for parameters. If the

degree of nonlinearity satisfies inequality (3-38) then an

approximation for the linear theory confidence region

____) N(p+2)A
SS@4)-SS(9) pF [,p,Np, + NNp ep U-P NP (N'-T) p Ne0c 5

can be used to find the confidence interval for each parameter.

A direct search procedure can be used to find the end points

of the confidence interval for each parameter as follows:

(i) Holding parameter "a" at its least squares

estimated value, search along the axis of "b"

in both directions from b until equation (C-5)

is satisfied. The smallest value for b and the

largest value for b that satisfy equation

(C-5) are the lower and upper confidence limits

respectively for b.

(ii) Repeat procedure i, reversing the roles for

the parameters.

Step 4. Confidence interval for the slope. If the

joint confidence region for the parameters can be defined,

then a confidence interval for the slope can be determined.

Having determined the confidence interval for at least

one parameter, say parameter "b". we can conduct a search

at incremental voints within this interval al.ong the parametpr



axis to obtain peripheral points of the joint parameter

confidence region. The value of the slope for a given trial

at any peripheral point corresponds to either an upper or

lower limit for the slope at those particular values of

(a,b). To determine the lower and upper limits of the slope

at a given trial for the entire joint confidence re7ion,

select the smallest and largest value of the slope computed

over the various periphery points. The smallest and the

largest slope value correspond to the lower and upper

confidence limits respectively for the slooe at that given

trial.

Appendix D consists of a computer program which estimates

the parameters and a , tests the degree of nonlinearity and

computes the confidence limits for the slope at time t i
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APPENDIX D

COMPUTER PROGRAM

HI S l ii I N 'f 11J j

I:: IF-'II il, iiH i iH ii ) !li . A : .li 'J .J 'i{ li l: F F, "J i lri .. .'i ( l :. . l.. .. - .

I t:" I If, . , NC::

IM E If ii i I
I il i I ,, ( I Y F' I * 1, . I F F I> 1 L. I I I

1*I0 i. 1. 1t~ LI N PChI (IMP .)*:IA
I** IJ ''I If 'F' 1B1. C 1

I..r I I. ':.. I :' I: )I* p' I.. i' i P N. IiI. I s li[ !i :'I) ' I :: IKI ' I if[:] ' N" I" l 
I

: ' I ) K I:' 1 I A' I :. I .

Il :i .F : 1 ..) I 4 F.I 1. V 1 ]1J 0 K i ( 'I : H- F. :.y FAr
(4U: I I"1 I ,I ( C

( I F: ' "L 0 ("I R"( A, F l 'i J : ' A F *I , "T1 ).T,

0'.N. . N I I F" :" l. :' .

IF" c.' I •F M' -.f F:. "F'" (): p M I:I F:I"I." A N
F::" 1, N: 11 D' . f') 1.? I' I: :: i H:l f;;

1 6: T Iil 11 GO H') 1"'.1

IJ[l 11 (3 ' 1



137/

1::

C4 U 2 511
1.4 D1 0 1. 1,
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