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PREFACE

The U. S. Coast Guard is engaged in a long-term program to evaluate the potential
and develop the technology for precision navigation using Loran-C. The basic method
is to use Loran-C in the repeatable mode for real time 2 or 3 line-of-position precision
navigation, or piloting, in the vicinity of surveyed positions. This method can be
awgmented by offset or proportional differential corrections. The Coast Guard has
taken a three-pronged approach to harbor and harbor entrance (HHE) navigation—user
equipment development, time difference (TD) surveying, and grid stability analysis.
These three aspects of HHE Loran-C navigation were addressed in separate papers-
presented in October, 1979. This report updates and consolidates the three papers, and
is intended to serve as a source document on the Coast Guard's approach to HHE
Loran-C navigation.

Section 1 presents the paper by Ligon and Edwardsl on user equipment develop-
ment. The PILOT (Precision Intracoastal Loran Translocator) equipment described
represents an effort to produce a commercially-realizable precision Loran-C
navigator. A basic philosophy in PILOT's design is the minimization of real-time
computations. Many of the required parameters are pre-computed and stored on a
cassette tape which includes as well the definition of the channel, navaids and
geographic features of a waterway. Included in this section are the results of a brief
evaluation of PILOT conducted on the St. Marys River during October, 1979. Several
additional sets of this equipment are presently being produced for a 1980-1981
evaluation by various government and commercial interests. Appendices A-I present
the development of the algorithms used within PILOT.

RAGING Cgwi S AN

i Section 2 presents the paper by Sedlock? on time difference surveying. A survey
is required to determine the repeatable Loran-C TDs which define a waterway, and
which are encoded onto cassette tapes for PILOT. A Time Difference Survey Set
(TDSS) and accompanying statistical algorithms provide the means for conducting the
survey. Several examples show survey data gathered on the St. Marys River.

Section 3 concludes the report with a paper on grid stability analysis by Olsen and
Isgett3. Grid stability is fundamental to precise navigation using repeatable Loran-C
coordinates. The paper concentrates on the St. Marys River Mini-Loran-C Chain, and
mentions the extension of the instrumentation and analytical techniques to other HHE

- .

1 areas around the country.
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Section 1

USER EQUIPMENT DEVELOPMENT
LORAN-C PILOTING '
Introduction

As a navigator proceeds from the Coastal Confluence Zone into harbor entrances,
harbors and rivers, his requirements for both positioning accuracy and timeliness
increase on the order of 500 times. The number of information sources also increases
and the navigator must integrate the data from all of these sources. He has crossed
the boundary separating piloting from navigation.

Large areas of the U.S. Coastal Confluence Zone (CCZ) are presently, or will shortly
be, covered by Loran-C signals which are charted to an accuracy of 0.4 km. It is
known that these signals are repeatable to within a few tens of meters. These signals
are also present in harbors and harbor entrances and potentially form the basis for a
precision navigation system., This section discusses a method for exploiting these
Loran-C signals and describes the PILOTing hardware which is the keystone for this
exploitation., The name PILOT—Precision Intracoasstal Loran Translocator—is not
meant to imply automatic piloting, but rather to highlight the significantly different
frame of reference which exists in the piloting domain.

Loran-C PILOTing

The first two words forming the acronym "PILOT" refer to the environment; the last
two refer to the method.

Intracoastal waters are typically characterized by visible or physical features: channel
boundaries, visual aids-to-navigation, coastlines. They are also characterized by
significant overland Loran-C propagation paths and warped time difference grids. In
these waters, positioning in an absolute, geodetic sense (latitude/longitude) is of little
value. Also, the orientation of the vessel is as important as its position. Precision
must be relative to these intracoastal realities—"precise" enough for safe, speedy
vessel operation.

The method is basically Loran-C translocation. Given a reference site and its
corresponding Loran-C time differences, estimate the location of a Loran-C receiver
at another site in the vicinity of the reference site, based upon the time difference
measurements taken there. This is essentially the same as the method used in
conventional satellite position translocation and in many loran waypoint navigation
systems.

|
|




ENVIRONMENTAL REQUIREMENTS
Calibration

If the latitude and longitude of all the essential navigation features in a particular
river or harbor were known, and if there were a perfect propagation prediction model,
then calibration would be unnecessary. There are over 100,000 visual navigation aids
installed in the U.S. intracoastal waters, and the latitude and longitude are known for
very few of them; yet, they serve their purpose. In the past, attempts have been made
to utilize the most accurate Loran-C prediction methods in the piloting environment,
but unfortunately these require a larger geological data base than the corresponding
loran data base for river and harbor "calibration" by measurement, and still do not
provide sufficient accuracy.4

When calibration is by measurement, coding delays or System Area Monitor reference
time differences are held constant and the time difference field is measured as it is.
No attempt is made to adjust the coding delays to cover the service area in some sort
of "least squares" error sense to fit the imperfect propagation model. Calibration by
measurement brings up five questions: the questions of density of survey, of
coordinate conversion algorithm, of positioning, of survey time difference
measurement, and of temporal stability. The questions of density of survey and
coordinate conversion algorithm are very tightly coupled. On the St. Marys River, a
survey interval of approximately 3 kilometers coupled with navigational aid relative
position taken from the river charts and processed using the PILOT coordinate
conversion algorithm provided "sufficient" navigational accuracy. That is, the PILOT
showed the vessel to be in the center of the channel and passing the proper
navigational aids when it appeared to the observer that thic was the case. The
remaining three questions have been addressed and are discussed in greater detail in
Sections 2 and 3, and in the paper by Johlerd. In summary, there is a very effective
method for surveying the Loran-C time differences relative to the visual aids and
features used by the pilot himself, and the stability question is vital and is ultimately
solved by a form of differential corrections.

Reliability and Speed

The piloting environment places constraints upon navigational equipment that do not
exist in the more open waters.’ The pilot needs much higher accuracy and reliability.
The safety of his vessel cannot tolerate the loss of a fix caused by failure of one of the
navigational transmitting stations. In Loran-C this translates to 3-LOP fixes, with
drop-back 2-LOP fixes, including those when the Master station has a casualty.

The pilot does not have time to convert numbers to a position on a chart. His
navigational display should provide him with an immediate picture of his situation so
that he can rapidly respond to it. This translates to a visual plan display with
navigational aids, channel boundaries and some shoreline features indicated.

Other Issues
It is possible, and PILOT is the demonstration case, to meet the requirements of the

piloting environment with a compact user equipment for approximately $20,000,
including the cost of a "better grade" Loran-C receiver. The pilot will probably not be
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able to obtain satisfactory operations using a low-cost CCZ Loran-C receiver.
PILOT
Description

The PILOT, developed for the U.S. Coast Guard by the Applied Physics Laboratory of
Johns Hopkins University, is an electronic aid for piloting vessels in harbors and
rivers. Prerecorded tape cartridges, containing a sequence of chartlets and other
navigation information, provide the PILOT with a degree of "local knowledge." The
vessel's present position and heading, continuously determined from a loran receiver
and the vessel's gyro, are displayed on the current area chartlets. Chartlets of two
different scales (master and detail) are always available for operator selection.
Position information relative to waypoints (intermediate destinations) is displayed to
the left of the chartlet. A horizontal bar graph, representing the vessel's relative
cross track position, can be displayed along the bottom of the CRT. A predictor option
displays the ship's future position, based upon present course made good and turning
rate, for any operator selectable time period.

There have been many systems constructed for similar purposes in the past. The
earliest was probably the Decca track plotter in the early 1960s. Modern track plotters
are found on many fishing vessels. Table 1-1 lists some of these coordinate

TABLE 1-1, COMPARISON OF VARIOUS TYPES OF USER EQUIPMENT

- XY EA
REPRESENTATIVE CONVERSION OF | FEATURES
TYPE EQUIPMENT METHOD USE | DISPLAY DISPLAYED COMMENTS
rea 10 Totter one, TD of | CCZ |Strip sired. |Distorted chart X-Y
(Cir 1962) 1and boundary Chart’
) redicted
Track- [ Several rece{vers| None CC7 [Kpha- ~—None {stances given In micro-
1ine TD | and devices numeric or seconds. Could be used in
. analo HHE with waypoint survey.
Track- [ C-LAD, User ], Inverse (o044 a- None Use Latitude & Longitude
Tine X-¥} LONA, several Prediction numeric or In HHE could be used
recefvers analog used with TD waypoint
survey, but cannot be used
Lat-Long or X-Y,
Area COGLAD, several {Inverse CLZ [X-Y None Use Latitude and Longi-
X-Y track plotters Prediction HHE |plotter tude or X-Y.
User 11 Inverse WE {Video As desired. |Shows vessel position and
Prediction Graphics orientation. Ultimately
& Alpha- required intensive survey.
numerics Primarily an R/D device.
Ver‘-y long chartlet change
time.
WodiTied User 1T | Inverse CoTor As desired. [Color graphics and
Prediction Graphics |Data on disc|RAYDIST and Miniranger
& Alpha- {memory. sensors added.
numerics
PILOT atrix ) Rs desTred. |Shows vessel position and
with flat graphics [Display and [orientation. Uses way-
earth hyper- chartlets [conversion |point and Yimited navaid
bolic grid analog, & |data on tape|survey information.
alpha- cassette. Rapid chartlet change
numerics and display update.
Built to demonstrate
technology.
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conversion/display devices and comments upon their features as they relate to the
harbor and river environment. As can be seen, the PILOT is a logical progression from
these devices. It solves the coordinate conversion problem which had in the past been
the major obstacle to HHE implementation, and it demonstrates the feasibility of
reliable PILOTing using a single, compact video display terminal.

Navigational Charts

The PILOT is basically a data processor. All coordinate conversion constants and
navigational background information are provided on a cassette which is, in effect, a
Loran-C navigational chart on a magnetic tape medium. A single cassette can contain
as many as 150 to 200 of these chartlets—more than enough to permit a complete
transit of the St. Marys River, which is approximately 100 kilometers long. Section 2
contains a deeper discussion of the chartlet calibration. In summary, the method
involves the creation of a linked mosaic of ideal flat-earth hyperbolic Loran-C grids
fixed at the calibration points, with aids and geographic features charted onto these
grids. This implies a slight distortion of the physical world if the real Loran-C grid is
distorted. On the St. Marys River, this distortion was small enough to be unnoticeable,
even with calibration point separations as great as 10 kilometers. Had the distortion
become too great, additional survey points would have been necessary. Since the
identical model is used within the PILOT for coordinate conversion, the charting
accuracy is as good as the repeatable accuracy.

HARDWARE DESCRIPTION
Graphies Terminal

The nucleus of the PILOT system (Figure 1-1) is a Hewlett Packard 2649A
microprogrammable graphies terminal. This OEM device was selected because it has a
separate graphics processor with memory, dual tape cartridge units, and an 8080
microprocessor that could be modified and programmed as required. Modifications to
the HP-2649A terminal included: converting the 8080 microprocessor from software
math to hardware math by adding an Advanced Micro Devices (AMD) 9511 arithmetic
processing unit, developing a two-receiver interface board to mount inside the
terminal, developing an interface board to connect to the ship's gyro and to a time
difference bias (differential correction) box, replacing the large general purpose
keyboard with a small predefined keypad, and building a short base for the terminal to
serve as a cable junction box. The system block diagram is shown in Figure 1-2.

Receiver Interface Board

The dual receiver interface board is designed around an 8085 microprocessor and a
second AMD 9511 math unit. This microprocessor performs the following functions:
input, convert, identify, edit, filter and dead reckon (DR). The use of two loran
receivers permits cross chain position fixes. The data format of most receivers can be
accommodated (up to 50 parallel lines per receiver) by changing the input software
module. A serial receiver interface board has been designed, and will be used to
operate PILOT with the forthcoming Internav model LC-404 Loran-C Navigation and
Monitor Receiver, a microprocessor version of the presently-used Internav MK IN
receiver,

1-4
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ﬁ FIGURE 1-1. PILOT

r‘ INTERNAV MK I1] SMALL
3 LORAN-C RCVR KEYBOARD
; 23 KEYS
h HP 2649A
TS EOvNE 08 MICROigg“(/S“RNAANll_MABLE
LORAN-C RCVR
W/GRAPHICS
DUAL TAPE UNITS
DIGICOURSE AMD 9511 MATH PACK
t MAGNETIC HEADING
( GYRO »{ DUAL RCVR KEYBOARD |_
COMPASS > /0 BOARD 1/0 BOARD
; — 0N o——»{ HEADING AND PRINTER/PLOT HP 2631G
l ConanG —0 BIAS 1/0 BOARD | PRINTER/
TD BIAS BOX 1/0 BOARD (HP-1B) PLOTTER

FIGURE 1-2. PILOT SYSTEM BLOCK DIAGRAM
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FIGURE 1-3. PILOT FUNCTIONAL DATA FLOW DIAGRAM
Heading and TD Bias Board

The heading and TD bias board includes a 10-bit synchro-to-digital converter and can
accept heading information from either a gyrocompass or a magnetic compass with a
shaft encoder. Storage registers on this board can store three sets of TD bias numbers
(+ 7999 nanoseconds). These registers can be loaded either by the operator from the
keypad or from a remote box or modem via an interface cable.

Keypad

Operation of the PILOT terminal was simplified by replacing the HP keyboard (105
keys) with a small keypad (23 keys) having eleven function keys plus twelve numerical
and cursor control keys.

SOFTWARE DESCRIPTION

Figure 1-3 is the PILOT functional data flow diagram.

Memory

Approximately 17,000 bytes of machine language code were developed at APL for the
PILOT terminal, and an additional 40,000 bytes of the original HP code was retained.
Structured programming and assembly language was used for maximum efficiency.

TD Filtering

Digital filtering is used on each TD as part of the preprocessing performed on the

receiver interface board. An alpha/beta filter was modified to induet turning
acceleration feedback. For receivers with relatively slow data rates (i.e., less than
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two sets of TDs per second), the TDs are dead-reckoned every 100 milliseconds using
the last known veloeity and turming acceleration. Three different filter time constants
may be selected by the operator from the keypad. The development of PILOT's filter
algorithms is given in Appendices D-H.

Coordinate Conversion

The 8080 microprocessor performs a full order, iterative transformation approximately
twice per second. When three good TDs are available, a 2x3 minimum variance "G"
matrix is used. Each term of the matrix is preweighted to produce a best fit with the
expected relative signal strength. When only two TDs are available, one of three 2x2
unweighted matrices is used. The development of the "G" matrix and the iterative
exact solution to the non-linear loran equations are presented in Appendices A-C.

Chartlet Cassettes

Chartlet cassettes contain an index file, master files and detail files. The index file
contains a title block and a list of all master chartlets on the cassette. Each master
file contains the graphics for 8-16 miles of track, the area matrix coefficients,
transmitter coordinates and supplemental data such as display origin, scale, rotation,
and geometric dilution of precision (GDOP—developed in Appendix I). Each detail file
contains the graphics for 1-2 miles of track, the TDs and x-y coordinates of the
current waypoint, bearing angles to and from the WP and supplemental data.

Master chartlets provide "look ahead" by showing the next several waypoints; detail
chartlets provide a closer view of the vessel's current situation. Each master file is
followed by one or more detail files. North-up or track-up chartlets may be used.

Chartlets can be developed using a digitizer, minicomputer or calculator, plus the
PILOT terminal reconfigured as a "stock" HP-2649A terminal. The original chartlet
cassettes for the St. Marys River were produced at APL, and the Coast Guard
Research and Development Center is currently setting up a system for producing them
for other locations.

INITIAL TEST RESULTS

The PILOT system was initially tested on the St. Marys River during the first week in
October 1979.

The Receiver

The Loran-C receiver used was an Internav MK III Survey Receiver. The receiver had
been previously tested in the laboratory and could typically be expected to provide an
accuracy of 30 nanoseconds under a variety of signal conditions. The St. Marys River
signal environment was so benign that performance in the 10 nanosecond range
(relative to a reference Austron-5000 monitor receiver) was observed.

The PILOT

Overall performance was excellent. The PILOT successfully combined the receiver TDs
with survey data taken during August and September and chartlets prepared from the
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NOAA navigational charts to provide accurate position and situation information. The
references in most areas were visual ranges and buoys, and were quite good. The
navigational solutions were based upon waypoint surveys, and the chartlets were
calibrated by using the surveyed location of a single aid on each one. Quantifiable
accuracy tests will be completed next year, but visual accuracy was excellent. There
was no noticeable grid warp—possibly the result of the low conductivity of both the
fresh water and the Laurentian Shield upon which the area is located. A repeatable
mode error budget is given in Section 3.

WINTER DEPLOYMENT

Following the preliminary field tests, the PILOT system was installed aboard the U.S.
Coast Guard Cutter Katmai Bay for operational deployment during the winter of
1979-1980. Receiver and PILOT operation was easily mastered by all members of the
ship's bridge crew. The display of alphanumerics, graphies and the eross-track distance
bar offered something for each of the various levels of interest, from commanding
officer to helmsman. PILOT was shown to be useful in thick fog and for starting turns
based upon the distance to go. Though the expiration of the winter navigation program
limited icebreaking activities, the consensus is that PILOT should be a useful aid in
breaking channel edges not marked with buoys.

THE FUTURE

A data logging capability is planned for PILOT, whereby a record of a voyage will be
recorded on the second tape drive of the HP-2649A terminal. The remaining
development tasks include interfacing to the LC-404 Loran-C receiver and installing
the algorithms to allow a fall-back Master independent 2-LOP capability.

PILOT will be reinstalled aboard the Katmai Bay in June 1980 for further evaluation
and for demonstration to commercial shipping interests. Several PILOT systems have
been offered to the carriers for evaluation aboard their vessels in the St. Marys River
and on the Great Lakes between August and December 1980. These deployments will
be followed by quantitative and human factor tests.

A "stripped-down" version of PILOT, designated PLAD for Portable Loran Assist
Device, is presently under development at the Applied Physies Laboratory. PLAD will
use a simple digital display in a hand-held data terminal in lieu of the graphical display
of the HP-2649A, and will store waypoint information in semiconductor memory. The
device is planned for initial testing on the Delaware Bay during the winter of
1980-1981.

CONCLUSION

The PILOT opens an entirely new area for precision Loran-C navigation.




Section 2

TIME DIFFERENCE SURVEYING
INTRODUCTION

The Coast Guard is currently engaged in a development program for precision Loran-C
navigation in harbor areas. The key element in this program is the PILOT user
equipment described in Section 1. PILOT provides position estimates based upon
Loran-C time difference (TD) measurements, a flat-earth hyperbolic grid (FEHG)
coordinate conversion algorithm, and chartlets stored on a magnetic tape cartridge.
The chartlets contain position and TD coordinates for waypoints, a description of
channel boundaries and aids to navigation, and computational constants for the FEHG
algorithm. If harbor areas were accurately surveyed (in the geodetic sense) and
Loran-C propagation models were highly accurate, the data necessary to produce
chartlets could be directly calculated. Since neither is true, a technique has been
developed to survey the TD coordinates for waypoints and to test for TD grid warp
which could affect the accuracy of the navigation solution. This survey technique
applies to a wide range of navigation scenarios including relatively wide open areas
such as San Francisco Bay and severely restricted channels such as the St. Marys
River. In addition, the survey technique is cost effective, and data reduction and
analysis can be accomplished in the field as the survey progresses.

CLASSIC APPROACH

The classic approach to the survey problem is to use a high accuracy reference system
to position a survey vessel at a point and simultaneously record position and TD
coordinates. This is the basic approach that was used in initial attempts to survey
waypoints on the St. Marys River. Several difficulties arise with this approach. An
accurate geodetic description of channel boundaries and aids to navigation does not
exist, and where accurate coordinates do exist, they are not always consistent with
geodetic control points ashore. Often existing geodetic control points ashore are not
recoverable or are in locations unsuitable for locating the reference system
transponders, and additional control points must be surveyed. The cost of establishing
the necessary geodetic control ashore, operating the position reference system, and
performing the TD survey are substantial. As the navigation channel becomes more
restrictive the inconsistency between survey coordinates and coordinates for channel
boundaries and aids to navigation becomes intolerable. The costs both in time and
dollars for a geodetic survey of channel boundaries and aids to navigation for an entire
harbor are totally prohibitive.

A NEW APPROACH
The basic problem producing chartlets for precision Loran-C navigation is relating the

Loran-C TD grid to the navigation situation of channel boundaries, shoals,
aids-to-navigation, ete. This section describes an approach which has been developed
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for determining TD coordinates of the physical features of a harbor by surveying. In
addition, analysis tools are used to obtain position coordinates which deseribe the
spatial orientation of the physical features consistent with the TD grid. Although
these position coordinates are accurate enough in a local sense that deviations from
geodetic coordinates are imperceptible, no attempt is made to tie the position
coordinates to a geodetic reference.

Since visual aids-to-navigation form the basic position reference, the approach has
been termed the Visual Grid Survey. A TD measurement set has been developed by the
Coast Guard Research and Development Center to accurately and efficiently measure,
record and process TD information. Analysis tools include the techniques for
determining waypoint TDs and x-y coordinates using the FEHG algorithm developed for
the PILOT user equipment. The FEHG algorithm calculates position relative to a
reference waypoint based upon the difference between observed TDs and the TDs for
the reference point.

General Procedure
The general procedures for a Visual Grid Survey are:

a. Choose waypoints from harbor charts and estimate the waypoint coordinates
(e.g. latitude, longitude). '

b. Compute the FEHG parameters for these positions.

c. Estimate the positions of surrounding features needed for PILOT chartlets
relative to the waypoint, i.e. construet first cut chartlets,

d. Survey the TDs of ranges, shoals, channel edges, aids-to-navigation, ete. in the
area of each waypoint.

e. Define the TDs of each waypoint,

f. Refine the actual position offsets of charted features with respect to each
waypoint using the FEHG algorithm and channel edge TD data.

g. Link the chartlets from a central or major waypoint by calculating the position
of adjacent waypoints from the surveyed waypoint TDs and the FEHG algorithm.

This procedure results in chartlets that are locally exact models of reality. Charting
and chart-pickoff errors are removed but local grid warp and TD survey errors remain.

Waypoints

As outlined above, the first step in the survey chartlet preparation process is the
selection of waypoints. The waypoints are defined based upon navigation charts and
the knowledge of traffic patterns. The intersection of two ranges, intersection of two
channel centerlines, intersection of right half channel centerlines, or the intersection
of two commonly used tracklines all define possible waypoints. There are two general
approaches to determining waypoint TDs. The first approach is used where the
waypoint is defined by the intersection of two visual ranges. The visual ranges provide
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very precise crosstrack information. In a small region near the waypoint the Loran-C
TD grid can be approximated by the linear model below:

TDX-TDX,, = a11(x-x,) + a12(y-yo) + nx (2-1)
TDY-TDY, = a21(x-x3) + a99(y-yqo) + ny (2-2)
TDZ-TDZ, = a31(x-X,) + agaly-yo) + ny (2-3)

where
TDX, TDY, TDZ are observed TDs
TDX,, TDYq, TDZ, are waypoint TDs
X, y are position coordinates of the observation
Xgy Yo are waypoint position coordinates of the waypoint

aj j are coefficients of the gradient matrix (directional derivatives of the TD grid)
Ny, Ny, Ny are error terms due to noise and nonlinearity

Along the centerline of a visual range,
(y-yo) = m(x-x4) (2-4)
where
m = arctan (course line)

Substituting equation (2-4) into equations (2-1), (2-2), and (2-3) results in a set of
equations for the trackline in TD space.

(TDY-TDY,) = C1(TDX-TDXy) + nq (2-5)
(TDZ-TDZ,) = Co(TDY-TDY,) + ng (2-6)
(TDX-TDX,) = C3(TDZ-TDZ) + n3 (2-7)

where

Cq = (agy+agom)/(ayq+ayom)
Cq = (a31+agom)/(agy+ajgm)
Cj = (ay1+a19m)/(agg +agom)

ny =ny- n,Cq
ng =ny - nyCo
n3 = ny - n;C3
Linear regression can be used to fit a straight line to TD data collected along each of

the tracklines using a visual range as a position reference. The resultant regression
lines of TDs are in the form:

(TDY-TDY;) = a;(TDX-TDX;) (2-8)
(TDZ-TDZ;) = b{TDY-TDY; (2-9)
(TDX-TDX;) = ¢;(TDZ-TDZ;) (2-10)




where
TDXj, TDY;, TDZ; are averages
i=1,2 (i.e. trackline 1 and trackline 2)

Each of the above pairs of simultaneous equations can be solved to estimate the
waypoint time differences. Two estimates for each of the waypoint TDs are obtained.
The agreement of these estimates is one measure of quality of the survey.

The quality of the resultant waypoint survey is a function of several factors. The
location of the ranges is an important consideration. In the ideal case, both sets of
range markers are near the waypoint. The ability of the operator to determine when
the survey vessel is on the range decreases as a function of distance from the range
markers. The confidence bounds on the regressive lines are minimum at the mean
values; therefore the ideal survey pattern is an "X" centered (approximately) at the
waypoint. This pattern is not always realizable since there may be insufficient water
beyond the waypoint, or range markers may become obscured shortly after the
waypoint is passed. The survey tracklines should be kept short to insure linearity of
the TD grid over the survey area. Several runs are made on each trackline to
randomize errors in positioning the survey vessel on the trackline.

The crossing angles of the survey lines also affect the accuracy of the solution. In
general, when the tracklines cross at a shallow angle on the navigation chart, the TD
tracklines will also cross at shallow angles.

Figures 2-1, 2-2, and 2-3 illustrate the determination of waypoint TDs based on TDs
measured on two intersecting ranges on the St. Marys River. This is almost an ideal

TDY (microsec)

TDX (microsec)

FIGURE 2-1. TDY VS TDX MEASURED ON TWO INTERSECTING VISUAL
RANGES WITH RESULTING REGRESSION LINES
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TDZ (microsec)

TDY (microsec)

FIGURE 2-2. TDZ VS TDY MEASURED ON TWO INTERSECTING VISUAL
RANGES WITH RESULTING REGRESSION LINES

TDZ (microsec)

§ TDX (microsec)

1 FIGURE 2-3. TDZ VS TDX MEASURED ON TWO INTERSECTING VISUAL
] RANGES WITH RESULTING REGRESSION LINES




case. Both sets of range markers were near the waypoint and it was possible to
bracket the waypoint in an "X" survey pattern. The crossing angles are near ideal
(50-88 degrees). The resultant solutions display excellent agreement as shown in Table
2-1.

TABLE 2-1. COMPARISON OF WAYPOINT CALCULATIONS FOR EACH
PAIR OF REGRESSION LINES SHOWN IN FIGURES 2-1, 2-2 & 2-3

DATA SET DX DY hiyd
TDX/TDY  11260.256 22332.410 -

TDY/TDZ - 22332.410 33299.094
TOX/TDZ  11260.257 - 33299. 092

Unfortunately not all channels are marked by ranges. The approach in this case is an
interactive one which utilizes the FEHG algorithm and the survey officer's judgement.
The first step is to survey the TDs of the channel features (channel edges,
aids-to-navigation, shoals, ete.) in the area around the waypoint. A fathometer can be
used to detect channel edges and shoals. Buoys and fixed aids are marked by cireling
or stationing near them. An initial estimate is made of the waypoint TD from a simple
prediction program and the FEHG algorithm can be used to plot the channel features
surveyed. If the estimate of the waypoint is incorrect, the location of the waypoint
with respect to the channel features will appear offset. The correction which should
be applied to correct this offset in x-y coordinates translates into a TD correction for
the waypoint. The procedure can be repeated until the survey officer is satisfied that
the waypoint is positioned correctly. This procedure works particularly well when one
of the channels is marked by a range.
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FIGURE 2-4. PLOT OF CHANNEL
EDGE FEATURES REFERENCED TO
INCORRECT WAYPOINT TDS

.

FIGURE 2-5. PLOT OF CHANNEL
EDGE FEATURES REFERENCED TO
CORRECTED WAYPOINT TDS
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Figures 2-4 and 2-5 illustrate the above approach applied to a waypoint on the St.
Marys River where neither channel was marked by a range. The waypoint in this
example was defined as the intersection of the centerlines of two adjacent channels.
In Figure 2-4 the buoys on the east side of the channel for the southern trackline plot
appear to lie almost on what should be the centerline. On the northern trackline, the
channel centerline and western edge coincide. Figure 2-5 shows the result of moving
the waypoint such that the tracklines are properly centered in both of the channels.

Channel Features

Once the TD coordinates of a waypoint have been determined, the next step in the
survey is to determine the position offsets of channel features with respect to the
surveyed waypoint. A plot is made using the TD data for the channel features near a
waypoint transformed by the FEHG into planar coordinates. The survey officer then
digitizes and stores the relative x-y locations of channel edges, shoals,
aids-to-navigation, etc.

Figure 2-6 illustrates a typical plot of channel edge features in x-y coordinates in the
area around one of the waypoints on the St. Marys River. Figure 2-7 is a portion of the
navigation chart covering the same area.
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Daisy-chaining Chartlets

The next step in the survey process is to calculate the position of each of the
waypoints based upon the survey data. A central, well-established waypoint is defined
as the reference point for the overall survey area. The positions of the waypoints
adjacent to the reference waypoint are calculated based on the reference waypoint
position and TDs and the surveyed TDs of the adjacent waypoints. Successive waypoint
positions are calculated in the same manner from each adjacent waypoint. The
differences between projected waypoint positions and the original positions estimated
from nautical charts are due to original charting errors, chart pickoff errors,
cumulative Loran-C grid warp waypoint-to-waypoint, and TD survey errors.

Short-distance Grid Warps

While the procedure of daisy-chaining waypoints absorbs the effects of long-distance
grid warps, there may exist short-distance grid warps along tracklines. This error can
be minimized by introducing trackpoints, which are reference points located between
two waypoints. Both the position and TDs for a trackpoint can be estimated from the
channel feature data.

Survey Equipment

A Time-Difference Survey Set (TDSS} was fabricated at the U.S. Coast Guard
Research and Development Center to permit collection and analsis of Loran-C TD
data. The TDSS consists of an Austron-5000 monitor receiver interfaced to a Hewlett
Packard 9845 calculator. The TDSS provides real time data display, processing, and
storage during the data collection phase, and provides data reduction and analysis
during post mission analysis. During data collection, three sets of TDs are processed
and stored. The TDSS provides a real time display of the data in the form of a TD-TD
plot on the calculator's CRT display. Cumulative statistics are calculated as the data
is collected and are displayed in two forms. A bar graph on the CRT display indicates
the confidence bound on the regression lines calculated. The survey officer may also
obtain a printout of the cumulative statistics on command, At the end of a data run
the calculator outputs a hard copy of the plot and a printout of the statistical data. If
a waypoint is being surveyed using two ranges, the survey officer may calculate the
mean waypoint TDs on location. Depending on the results of the calculation, he may
choose to resurvey one or more of the tracklines or to move on to the next task. TD
data coliected along channel edges may be translated to x-y coordinates and plotted on
the CRT on location for an on-scene check of the data collected.

A fathometer and highly maneuverable shallow draft vessel complete the equipment
necessary for a "visual survey." With the fathometer and suitable vessel, it is a
relatively simple task to find the dredged channel boundaries and maneuver along
them. The shallow draft and maneuverability features of the vessel simplify the task
of marking aids to navigation and collecting data on ranges outside channel
houndaries. A typical survey crew is comprised of a survey officer, equipment
operator/technician, and vessel operator.
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AUGMENTATION TECHNIQUES

The line where a harbor area begins and the Coastal Confluence Zone ends is a fuzzy
one. Areas such as the approach to New York Harbor, areas of Puget Sound,
Chesapeake Bay, Delaware Bay, ete., may not be suitable for using Visual Grid Survey.
In general, such areas are relatively wide open and there are a minimum of aids
marking channels, The problem is more to survey channel separation zones rather than
well marked restricted navigation channels. Inconsistencies as large as several
hundred feet between positions estimated from navigation charts and a position
reference are undetectable by the mariner in such situations. In these areas it may be
more efficient to use a survey system which incorporates a position reference. Two
such systems have been conceptualized.

Inertial Survey System

As its name implies, the Inertial Survey System (ISS) uses a survey grade inertial
navigation system (INS) incorporating special operating procedures and post mission
data analysis as a position reference, and a helicopter as the survey vessel. Loran-C
TD dats is collected as the helicopter hovers over the waypoint. The helicopter pilot
receives guidance information from a navigation display driven by the INS. Waypoint
positions input to the INS are estimated from the navigation charts for the area being
surveyed. Position corrections to account for inertial drift between updates are
calculated at the end of the data collection period, The Loran-C TDSS used for visual
survey is too heavy and bulky for helicopter deployment, and a helicopter TD
measurement package will have to be developed to fill this need.

The ISS using a helicopter as the survey platform has the advantage of being able to
cover a large area in a short time. The biggest disadvantage is cost to lease and the
availabjlity of inertial survey services., Geodetic control points must also be
established as update points for the ISS. This adds to the total survey costs and time
to implement.

Microwave Survey Reference

The microwave survey system conceptually consists of the Loran-C TD measurement
system used for the visual survey system with an added position reference system
input. As in the ISS approach, waypoint positions are estimated from navigation
charts. Instead of hovering over the waypoint, the survey vessel records TD and
position data while maneuvering in a cloverleaf pattern about the waypoint. The
position of the waypoint and the location of the vessel are displayed on the calculator
CRT. Waypoint TDs are calculated by reflecting the measured TDs to the waypoint
using a linear transformation.

TDp = TD + A (Zp-2) (2-1)
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where
TDp is the estimated waypoint TD vector
TD is the measured TD vector
Zp is the waypoint position vector
Z is the position veetor at the measurement point

A is a gradient matrix which is a function of the positions of the Loran-C
transmitting stations and the waypoint.

Individual samples are averaged until the confidence bound of the mean is within some
preset tolerance level.

Data is also collected along tracklines between waypoints and perpendicular to the
tracklines using the positioning system as a reference. This data is used to determine
the presence of grid warp and to bound the navigation errors.

SUMMARY

The Visual Survey Method is the ultimate approach for Loran-C TD grid survey in
restricted waterways. This approach ties together the Loran-C TD grid and the world
of the mariner. The result is a set of waypoint position and TD coordinates and
relative position coordinates for harbor features such as channel edges and
aids-to-navigation which are incorporated into chartlets for Loran-C user equipment.
The position coordinates for these channel features are calculated from TD
measurements based on waypoint TD and position coordinates. The waypoint positions
are calculated in a daisy-chain fashion from a central waypoint based on the difference
in TDs between adjacent waypoints. This procedure eliminates charting and chart
pick-off error and absorbs long range grid warp. The remaining error sources are due
to errors in the TDs for the waypoints and channel features and local grid warp. The
effects of local grid warp are minimized by establishing trackpoint(s) as necessary
between waypoints.

In some areas it may not be feasible to apply the visual technique. Two approaches
have been conceptualized to survey these areas. At this time it is not clear whether
these approaches will be required. The accuracy of relatively simple propagation
models may be more than adequate to calculate waypoint TD coordinates in these
cases.
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Section 3

GRID STABILITY ANALYSIS
INTRODUCTION

Precise position determination with Loran-C depends on the existence of a stable,
repeatable time difference (TD) grid. Grid stability analysis, together with the
development of user equipment and TD surveying techniques, constitute the Coast
Guard's three-pronged approach to harbor and harbor entrance (HHE) navigation. The
Coast Guard's signal stability measurement program has concentrated on the St. Marys
River mini-chain.

Data was first collected over the mini-chain's service area between fall 1977 and
spring 1978 as input to the design and calibration of a grid prediction algorithm.8 TD
variations at several sites were unusually large, with an average of 300 nanoseconds
and a maximum of 850 nanoseconds.’! These instabilities, if true, could render the
mini-chain unusable for precision navigation on the St. Marys River. Although
reasonable care was taken in performing the measurements, the data remained suspect
due to the equipment and methodology used. A careful recollection effort was deemed
necessary to verify the chain's performance and to definitively judge its navigation
capabilities.

PREPARATIONS

Preparations for a one year in-depth study of the mini-chain's stability were completed
in early May 1979. The major tasks involved the creation of three fixed monitor sites
plus the improvement of equipment and staffing at the System Area Monitor (SAM)
station. Figure 3-1 shows the layout of the chain.

Fixed Monitor Sites

The new monitor sites are on the south end of the river at DeTour Village, mid-river at
Dunbar Forest, and at Point Iroquois near the river's northermn end. Each site has a
35-foot whip antenna with a groundplane and multicoupler. DeTour (Figure 3-2) and
Dunbar are equipped with a Magnavox AN/BRN-5 receiver plus an Internav LC-204
receiver. Point Iroquois (Figure 3-3) has two LC-204 receivers. This setup enables
each site to monitor all three baselines.

System Area Monitor

Figure 3-4 shows the SAM site, which has been converted to a Coast Guard standard
suite, Control had previously been achieved using an Internav Model 303 monitor
receiver, a short whip antenna, and an early prototype CALOC (Calculator Assisted
Loran Controller) system. Since 4 May 1979, control has been performed using the
35-foot whip antenna and Austron 5000-CALOC system that is becoming standard
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FIGURE 3-1. LAYOUT OF MINI-CHAIN WITH RECONFIGURED M-X

equipment for long-baseline Loran-C chains. The mini-chain's group repetition interval
was slowed from 4930 to 5930 to satisfy the Austron 5000's processing time
requirements, and has since been changed to 6980 to preclude interference from the
Canadian East Coast Chain.

Chain Reconfiguration

The final step in preparation for the stability study was accomplished on 9 May 1979
when the Master and Xray station designations were interchanged. The switch was
made to improve Master station availability. Prime power failures have been more
frequent at the Gordon Lake, Canada site than at the Pickford, Michigan site. Power
failures are significant since the transmitters have no emergency generators for
backup. Also, repairs can be effected more quickly at the Pickford site due to the
shorter travel times involved.







FIGURE 3-4. SYSTEM AREZ MONITOR

PRELIMINARY STABILITY ANALYSIS

The basic analysis reliess upon one hour averages, termed the System Samples,
collected at midday and midnight. The initial analysis period includes not only
environmental changes, but also the above-mentioned refinements in the monitor and
control equipment. The data cannot be considered the final measure of the
mini-chain's performance, but are nonetheless informative. Figure 3-5 shows the
midday TD fluctuations for one baseline at the three monitor sites. The worst case
variation is approximately 180 nanoseconds.

Variations Model

The TD data has been analyzed by a rather simple yet elegant model:

A1),
C

Z=A x (3-1)
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FIGURE 3-5. MASTER-ZULU MIDDAY TIME DIFFERENCE VARIATIONS

where Z is the observation matrix containing the three TD records at each of the three
monitor sites, A is the transformation or geometry matrix deseribing the position of
each site with respect to the baselines and the control station, ATD is a uniform
change in propagation velocity, C is the common error matrix containing variations
seen only by and corrected by the control station; and ¢ is the matrix containing local
errors, unique to each site. The common variations are erroneous in the sense that no
other site detected the changes that were compensated by the resulting transmitter
timing adjustments. Any non-uniform propagation effects will be ineluded in the local
error terms. The least squares solution to the model is:
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TABLE 3-2. TYPICAL UNIFORM

TABLE 3-1. COMMON CONTROL ERRORS VELOCITY TIME DIFFERENCE
CHANGES (NANOSECONDS)
Nanoseconds M-X MY M2
(RMS) GT’OS Cap 40 - 126
|Cx Cy Cz (North End) 88
22 Feb-8 May 1979 | 46 18 28 fh"" M“seAm;"‘ 1 -2 9
11 May-24Sep1979 | 7 7 6 De:' Lot
eTour Lig _
(South End) 48 % 132

Table 3-1 lists the common control errors extracted from the data for the periods
before and after the chain reconfiguration and monitor station upgrade. Considerable
improvement can be seen in the second set of numbers.

Figure 3-6 shows the uniform velocity of propagation effects extracted from the data,
in units of nanoseconds per kilometer of difference distance (differential
Master-Secondary distance of point of interest vs SAM). The propagation component is
extracted as an estimate, based upon how each site would react to the postulated
uniform propagation change. Such a change is expected to be primarily caused by
temperature affecting the vertical lapse rate of the index of refraction®:v,

The peak-to-peak propagation veloeity change extracted from the data to date is
approximately two nanoseconds per kilometer. The corresponding time difference
variations are obtained by multiplying the plotted values by the difference distances
for each site. (The difference distance is zero for a site on the same hyperbolic TD
line as the SAM and increases with distance from this line.) Typical values are listed
in Table 3-2.

The uniform propagation changes are interesting in that they represent a fundamental
performance limit in the system. The significant point is that the information provides
a bound on a physical effect which cannot be improved upon through equipment or
procedural changes at the SAM, but which might be improved with an "altimeter
correction" applied within the user equipment.
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FIGURE 3-8. UNIFORM PROPAGATION VELOCITY CHANGES
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FIGURE 3-7. WINTER PROPAGATION VELOCITY CHANGES

Figure 3-7 shows the mid-February to mid-April propagation velocity changes,
superimposed with a plot of temperature recorded at the SAM. The correlation
coefficient for these plots is approximately 0.7. This relatively high correlation
confirms the expected temperature dependency. The correlation diminishes rapidly
during late April and early May, after which there is negligible correlation with
temperature. This diminishing correlation is expected, since the temperature
dependency of the vertical lapse rate is predominantly a winter effect.8,9

Error Budget Analysis

Knowing the nature and source of the grid variations is interesting, but of no
immediate value to the user. However, having determined the expected TD
fluctuations, it is now possible to calculate the positioning errors that would result.
Figure 3-8 is the plot of an error budget analysis for a series of points along the St.
Marys River. A user's time difference error has been allocated to three sources:

1. Uniform Propagation Velocity Changes. The maximum variation experienced
to date (two nanoseconds per kilometer of baseline length) is used, recognizing that the
river might be surveyed during one extreme and navigated during the opposite
extreme. The narrower portions of the navigation channel are nearer the SAM and will
experience the smallest variations, as can be seen from Table 3-2,

2. Control Errors. The "erroneous" control station adjustments are applied as
normally distributed random numbers with a zero mean and a standard deviation equal
to the smaller RMS values from Table 3-1.

3. Receiver Offsets. Assuming the use of a survey-quality receiver, 15
nanoseconds is allowed for the offset between a user's receiver and the calibration
receiver which surveyed the river. The sign of the offset is allowed to vary randomly
for each of the three TDs.

Radial error values are determined by computing a minimum variance three-TD "fix"
according to the "G-Matrix" algorithm developed in Appendix B. The 99 percent curve
was determined by running a Monte Carlo simulation and plotting the resulting
probability histogram. Also plotted is the half width of the navigation channel. It can
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be seen that the 99 percent error is well within this half-channel distance for the
entire river. This makes an interesting comparison, but the intent is not to imply that
the half-channel width is an acceptable error in a radionavigation system. Allowances
must a;so be made for navigation error and the half-width of the user's vessel (up to 16
meters).

HARBOR MONITOR PROGRAM

The Office of Research and Development is responsible for evaluating the
effectiveness of the Loran-C system in providing the accuracy necessary to serve as a
reliable, all-weather radio aid within the HHE environment. The desired technical
approach is to extract the inherent accuracy of the system through improved
understanding of the bounding physical elements. This understanding will be developed
through analysis, model development, testing and verification.

The objective of the Harbor Monitor Program is to characterize the stability of the
existing grid in the HHE areas of the United States. Quantification of the year-round
t:r;lporal variations is required as input to an error budget analysis for each HHE area
of interest.

Several sets of equipment have been developed previously for monitoring the operation

of both the West Coast chain and the St. Marys River mini-chain. The Coast Guard
Research and Development Center has constructed a prototype monitor system (Figure
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3-9) consisting of hardware and software
to allow remote dial-up access to the
daily System Samples. These prototypes
are presently deployed at the St. Marys
River monitor sites.

Improved versions of the remote moni-
toring hardware will be installed in each
harbor area studied. Up to ten sets will
be installed during 1980. Two monitoring
sites should be sufficient to characterize
the grid stability in most regions. Boston
Harbor, the Delaware Bay and the
Chesapeake Bay have been chosen for
the first installations.
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CONCLUSIONS FIGURE 3-9. HARBOR MONITOR SYSTEM

The preliminary results have established that the grid is reasonably stable, and that
earlier reports showing much larger variations were apparently incorrect.

An analysis of the data has revealed a limiting physical effect in the form of changes
in the velocity of propagation, uniform throughcout the chain. These propagation
changes have been as large as 130 nanoseconds at the ends of the river, but are much
smaller near the control station.

An error budget analysis has projected three-TD fixes that are well within the
half-width of the river's navigation channels. However, the addition of navigation
error and the half-width of a typical vessel preclude making the implication that the
mini-chain is capable of providing safe electronic-only navigation in every section of
the St. Marys River at all times.

PROGNOSIS AND FUTURE EFFORTS

The mini~chain stability study has recently been completed (May 1980), and analysis of
the additional data collected since September 1979 should enable a definitive
judgement to be made on the navigation capabilities of the St. Marys River mini-chain.

The geometry of the Great Lakes Loran-C chain is excellent in the St. Marys River
area. Consideration is being given to providing precision coverage of the river by
supplementing the long-baseline chain with a single mini-Loran-C station — a much
more cost effective approach — in lieu of providing an entire mini-chain. Present
plans call for terminating the mini-chain concept after the St. Marys River is closed to
navigation for the 1980-1981 winter season. The Gordon Lake station will then be
brought on-air as a low-powered secondary on the Great Lakes rate (8970). A new
experiment will be developed to verify the validity of this augmented coverage
concept. Data collection for this new experiment was started on the Great Lakes
chain at several of the St. Marys River monitor sites during the 1979-1980 winter
season, and was recently expanded to include all sites.

3-9
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December 6, 1978

TO: J. G. Wall
FROM: L. J. Levy
SUBJECT: Definition of G Matrix Analysis for USCG LORAN-C

HEE Navigation Program

REFERENCES: 1) APL/JHU Technical Program Plan for the USCG ;
LORAN-C Harbor-Estuary Navigation Program, {
Enclosure (1) of AD-7599 ;

2) LORAN-C HHE Navigator, Handwritten Notes by
Cmdr. Don Feldman, USCG

AT

The program plan for the USCG LORAN-C Harbor-Harbor-
Entrance (HHE) Navigator program in Ref, 1 states that APL is to
"Perform the 'C' matrix analysis...". Based on discussions with
Lt.Cdr. Dan Garrison, USCG, discussions with the USCG at the
December 4 meeting, and the notes in Ref. 2, the G matrix analysis 3

to be performed by APL can now be defined.

The objective of the G matrix study is to 1 .commend to
the USCG an algorithm to calculate the G matrix under the follow-

ing three conditions:

a) 2TD Case
Given the location of the master, two slave staticns,
and a surveyed point, calculate the unique G matrix
for that surveyed point.

b) 37D, Weighting Vector Case

Given the location of the master, 3 slave stations,
and a surveyed point and a set of TD weighting para-
meters, reflecting the confidence in each TD, calcu-
late a G matrix for that surveyed point using a
veighted~least-squares criterion on the TD residual.
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c)

Additionally,
1)

2)

SN

3)

PR R vt

4)

5)

7)

S2R-78-307
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3Th Statistical Minimization Case

Given the location of the master, 3 slave stations,
and a surveyed point, calculate the G matrix for
that surveyed point such that the statistical mean
square error in estimating X and' Y is minimized.

It is to ke assumed that the noise level into the
LORAN receivers is equal and Gaussian. APL will
provide an algorithm for computing the required TD
error covariance matrix to be primarily based upon
calculated signal strength and assumed background
noise considerations.

it is assumed that:

All G matrices will transform TDs in units of nano-
seconds to position in the X-Y coordinate system
in units of yards.

Since it was agreed that the generation, tape stor-
age, an use of new G matrix coefficients could be
easily .ccomplished for each waypoint, no linearity
analysis or sensitivity analysis need be performed
over tracklines not including the waypoint used in
the calculation of a particular G matrix. Only a
linearity analysis over the adjacent tracklines will
be performed to determine if an additional waypoint,
with associated new G coefficient, is needed.

APL will also provide to the USCG an algorithm to
evaluate linearity and an algorithm to evaluate the
covariance performance.

A limited amount of covariance performance analysis
will be done for each case to show the utility of the
covariance analysis algorithm.

A Geometrical Dilution of Precision (GDOP) number
will be calculated for each waypoint.

The algorithms presented to the USCG will be in
standard mathematical equation form. Non optimized
coding of these algorithms may be supplied if re-
quested by the USCG.

Grid warpage will be controlled by insertion of ad-
ditional trackpoints to be determined by the USCG.
Decisions as to the choice of G matrix algorithm is
the responsibility of the USCG.

The APL report, recommending the algorithms for the three
above cases, plus providing the associated linearity and covariance
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f analysis algorithms will be submitted to the USCG by January 15,
1979. A follow-on report providing the linearity analysis of item
(2), the limited covariance performance analysis of item (4), and
: the GDOP analysis of item (5) will be provided to the USCG by
: February 30, 1979.
! \- / '.::"’\'
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January 19, 1979

TO: J. G. Wall

FROM: L. J. Levy/V. Schwab

SUBJECT: G Matrix Analysis for USCG Loran-C HHE Navigation
Program

REFERENCES: 1) Loran-C HHE Navigator, Handwritten Notes by
Cmdr Don Feldman, USCG

2) Definition of G Matrix Analysis for USCG Loran-C
HHE Navigation Program, S2R-78-307, by L. J. Levy,
December 6, 1978

3) C-LAD - A Low Cost Loran-C Assist Device; Vol II -
- Software, L. M, Marshall, C. R. Edwards, APL/JHU
: CP034B, June 1974

INTRODUCTION

g The G Matrix technique, as defined in Reference 1, is

‘ essentially a method for converting 2 or more measured TDs into
horizontal navigator position. It yields a linear estimate refer-
enced to the surveyed values of a "near" waypoint or track point

3 as
3 £ =2 +G{TD -TD ) (1)
e P Q ]
]
3
i where
Z ~ surveyed position vector of point P, a
Y P nearby TP (track point) or WP (waypoint)
1 Z ~ eséimate of receiver position vector at
| Q point Q
‘ TD ~ vector of surveyed time differences at
P point P
! TD ~ vector of measured time differences from
- Q receiver at point Q
'y
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G ~ G matrix which transforms the vector TD
residual into vector position residual in
some optimal fashion

In general, the G matrix is a function of the surveyed
position of the WP or TP, surveyed position of the master and
slave stations, an assumed estimation error minimization criterion,
and possibly of the expected relative error characteristics or
quality factors of ggo. Its validity is based upon the assumption
that the residual TD vector (measured TD vector minus the surveyed

TD vector) is linearly related to the position residual (position
of navigator minus surveyed position of the WP or TP).

The significance of the G matrix technique is that the
G matrix can be precomputed for each WP or TP, thereby significantly
reducing the amount of real time computation of the navigator in
transforming measured TDs into navigator position.

The objective of the G matrix analysis is to recommend
to the USCG the algorithms to calculate the G matrix under the
three conditions specified in Reference 2. This report will present
these recommended algorithms along with the associated covariance
and linearity analysis algorithms.

l. General G Matrix Solution

This section will define the navigation problem and pre-
b sent the general G matrix solution. Given an m-vector of measured

i TDs, TD , at navigator position Q; the corresponding vector of

E surve;zg TDs, ggp, for a nearby point P; and the surveyed position
4 2-vector, Ep' of the nearby point P; determine the position of the
| navigator. From Appendices B and C, it is shown that when point Q
§ is sufficiently near point P,

Uu=Ax + e (2)

B-2
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where A is a function of the positions of the master, slaves, and

the surveyed point P,

(3)

=
]
-3
o
1
-3
w)

x=2 -2 (4)

and e is the m-vector of TD measurement errors at point Q. Since
z,, is known, then an estimate of x, X, will yield an estimate of

4 Z , b
Y

&

Q P

%>

As shown in Appendix A, the general form of the estimate of X is
given by

X =Gu (6)
where

1

G = (aTw A) " 1aTw (7)

For the 2 TD case, m=2, the G matrix reduces to

weighted and Egs. (6) and (7) yield the standard least squares
estimate of X, For a general W, we have a weighted least squares
estimate. For w=R-1, where R is the covariance of e, we have the

‘ G = A_l. (8) é
X !
-q Otherwise, the specific value of the G matrix is dependent upon %
. the weighting matrix, W. If W=I, the measurements are equally E

s

4 minimum variance estimate.

AL e

T et it
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Combining Egs. (3), (5), and (6) we obtain the desired
result of estimating the navigator position at point Q via Eq. (1).

2. Specific Algorithm for the 2 TD Case
Given the location of the master station, (xm,ym); the

slave stations, (xsj’ysj)' j-1,2,3; and the surveyed position of

the WP or TP, (xp,yp); calculate the unique G matrix for each 2 TD
case. Here (x,y) are the components in the planar coordinate frame.*
(For the St. Marys River system the coordinate center (i.e., point
of tangency) is at the Loran monitor station (46° 28.1244' N,

84° 17.9343' W)). At the coordinate center x is east and y is

north. For the 2 TD case, G is given by

Ixi ng
G(i,j) = | (9)
Iyi Iyj

xth station TD (k-i,j) into the a position

where ok transforms the
coordinate (o=x,y). The G(i,j) matrix transforms the i and j sta-

tion TDs into the x and y position estimates. Now from Appendix B,

ry =\/pr-xm)2 + (yp-ym)2 (10)

_ _ 2 _ 2 Lo
r2j—ﬁxp xsj) + (yp ysj) : 3 1,2,3 (11)

where ry is the slant range from the surveyed point P to the
master station, r2j is the slant range from the surveyed point P
to the jth slave station. The gradient matrix values are

* Planar coordinate frame defined in Reference 3, pp. 30-35, 141-144;
x=p sin¥, y=p cosY, where p=geodetic arc length from origin to
desired point, ¥=heading angle of geodetic arc.

B-4
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1 [*p'xai > *m
a = = - 1 3 =1,2,3 {12)
jix v \ Y Xy
1) ¥ ¥sy  Yp¥m\ | .
a, = : 3 =1,2,3 (13)
3y v r2j xr, e

ajx is the derivative of the jth TD with respect to xp,

ajy is the derivative of the jth TD with respect to yp,

v 1is the propagation velocity.

and for G(i,j)

Al(i,j) = a; ajy - aiy ajx
(14)
for i=1 j=2, i=1 j=3, i=2 j=3
9y = A5,/80 5 )
- - A for i=1 j=2
Iy = aiy/A(x,J) (15)
i=1 j=3
Iyi = "33,/8(1.3) i=2 §=3
gyi = aix/A(i,j) J

Thus, 3 separate and distinct G matrices are possible for the 2 TD
case. Note, for instance, that 91 in G(1,2) does not equal 9.

in G6(1,3).

Finally, note that if x and y are in units of yards,

v in units of yards/nanoseconds, then the elements of the G matrix
are in units of yards/nanoseconds. Equations (9) through (15)

B-5
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comprise the recommended algorithm for calculating the three G
matrices for the 2 TD case.

3. Specific Algorithm for the 3 TD, Weighting Vector Case

Given the location of the master, 3 slave stations, a
surveyed position at point P, and a set of TD weighting parameters,

(16)

£
I
~N

w

- 3.

reflecting the confidence (i.e., large w, implies high confidence
in the itP Tp) in each TD, calculate the G matrix for the surveyed
point P using a weighted-least~squares criterion.

First of all, it must be noted that the weighting para-
meters do not need to be normalized (i.e., wl+w2+w3=1) although it
may be meaningful from an interpretation standpoint. This can be
seen by substituting oW for W in Eq. (7) where a is a scalar. The
value of G remains the same.

For this case we set the weighting matrix by

W= 0 Wo 0l- (17)

We see by Appendix A that this will result in weighting the square
of each TD residual according to our respective confidence in each
TD in the weighted-squared-residuals function that is minimized.

B-6
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The resulting least squares estimate is given by the G matrix in
Eq. (7) using Eq. (17). The specific result using Eq. (17) in
Appendix C and taking into account the zeroces in W,

bxj = ajx wj j=1,2,3 (18)
., = a.. W, j=1,2,3 19)
Pyi = 25y Y5 ImEe sy (
3 3
c = X LA,
X% j=1 Xj ix
{
3 |
= I b a. {
ch j=1 X) JY 1
(20) j
3 f i
= I b, a = C i
“yx T 4oy v TIx T Cxy :

— 1 it

vy T 4oy v3 3y

2

A = C xx cxy J 4

-1 \ ]
Cox = cyy/A :

-1
c = -c__ /A

x

d Y } (21)
c -1 - c -1
yx xy

-1 _

‘ cyy cxx/A )
B-7
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then
_ -1 -1 .
I%j = xx bxj * Sxy bYJ 3=1,2,3
(22)
gus =c,. Tb,, +c. 1o j=1,2,3

Note that the a, , a. , g_.,
Jx JY X)
resulting G matrix for this case is

and gyj are defined in Section 2. The

Ix1 gx2 gx3
G(1'213) = (23)

9 g9 g9

vyl y2 y3

Equations (10)-(13), (18)-(23) comprise the recommended algorithm
for calculating the G matrix for the 3 TD weighting vector case.

4, Specific Algorithm for the 3 TD Statistical Minimization Case
Given the location of the master, 3 slave stations, and a
surveyed point P, calculate the G matrix for that point such that 3
the variance of the error in estimating the navigator position is
minimized. It is to be assumed that the noise into the 4 tracking
loops, measuring receipt times of the 3 slave and master pulses, are

b e 3

equal and Gaussian.

From Appendix A, the minimum variance criterion results in
setting W=R-1 in Eq. (7). An accurate determination of R requires
specific knowledge of the signal-to-noise ratios at the receiver
antennae (which are receiver configuration independent), and many
additional parameters that are specific to the receiver configura-
tion. Thus, each different receiver configuration would require a
;i detailed error analysis to ultimately yield a specific G matrix.

We believe this to be impractical and will strive to obtain a G

o

e i

matrix for this case that is configuration independent.
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The constraint that the noise into the 4 tracking loops
are equal can be justified under the following assumptions:
a) The dominant noise into the tracking loop is
external noise (receiver noise is negligible).

b) RF receiver input bandwidths are equal (if the
RF gain from antenna input to the tracking loop
differs between receivers, the signal-to-noise
ratios for the external noise remain the same,
yielding the same relative noise performance be-

tween receivers).
Also, it is assumed that the relative noise performance
between tracking filters from the tracker filter input to the input

to the G matrix transformation remains invariant. This can be
satisfied if:

1) all tracking filters are equal,

2) quantization noise in the counting process is
negligible,

3) any further smoothing beyond the counting process
is equivalent between receivers.
Under assumptions (a)-(c), (1)-(3), the G matrix is receiver con-
figuration invariant and dependent only on the effective transmitted
power of each slave station, Pi' i=1,2,3, the effective transmitted
power of the master station, and the slant ranges, rzj; j=1,2,3 and
. From Appendix D, the calculation is

r,. r
2i 1 . is
R,y kl ( P, + ) ¢ i=1,2,3
m
2 (24)
1
Rig =k (50 14

where k1 is arbitrarily set so that the above elements of R are
roughly around unity. (It is shown in Appendix D that only the
relative values of Rij will affect the G matrix.)

B-9
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Then
i 1
Ry
L = R -1
12
-1
L?ls
with
a = Ry1RyoR33
2
= Ry3 Ry,
-1
Ryy ~ = (RypReq =
3 -1 _
! Ry © = (Ry3Ry,
'§f
3 R, .-1 - _
: -1
Ry = = (RyyRyq =
-1
5 Ryz — = (RyoRy3
!
J R,. L = (R,R,, -
33 11R22

3

by = I, 2ix Pij

3
b

From Appendix C, substituting M=R ~,

S2R~-79-008
Page -10-
-1 -1
Ry, R
-1 -1
Ry, R
-1 -1
R23 R
\
+ 2 Ry,Ry3Ry3
2 2
= Ry Ry3 = RyRy5
2
Ry3 )/

- R,.Ry,) /A rR.,L
33k 21
RaaR,.) /A R, 1
22R13 31

2
Ry3 )/
- R..R..)/0 R, !
11R23 32
2
Ryo )/A y
1
3 =1,2,3
"l 3=1,2,3

yd "~ 121 %1y Rij

B-10
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The rest of the required equations are given by Egs. (20)-(23).

Equations (10)-(13), (24), (26), (27), (20)-(23) comprise
the recommended algorithm for calculating the G matrix for the case
considered in this section.

S. Linearity and Covariance Analysis Algorithms

From Appendix A, the general form of the error covariance
is C=GRGT, where G is any G matrix of the form in Eq. (7) with any {
W, and R is the actual covariance of TD measurement error vector ‘

(not necessarily the R matrix computed in Section 4). Define

Ax = XQ - xQ
Ay = YQ - YQ
then
<bx?> <Ax Ay>
i
<Ax Ay> <Ay >
For
R R ‘
ii ij :
R(i,3) = :‘
.. R.
Rij 33

with G(i,3j) given by Eq. (9), then
cli,§) = G(i, PR, PG, T (28)

for any pair of Tbs, 1i,j.

B~-11

¢

4
1

4

S e




'I"1'“"“--========:=zn ey——— g st o rimassiplianail . — pusiiirseain . bbb N “‘!‘

THE JOHNS HOPKINS UNIVERSITY :
APPLIED PHYSICS LABORATORY ;

LALKEL MAKUAND SzR-79-008
Page ~-12-~ !

T

For any 3 TD case, set

i (R)y R Ry
R=1R2 Ry Ry
LRy Rp3  Ryy
E with G given by Eq. (23), then C = GRG'.
" The linearity of G, generated for surveyed point P, is J

evaluated at point Q as follows:

1) Use GP computed for particular 2 TD case, along
with surveyed TDs at point Q and point P, and
surveyed positioq, EP’ in Eq. (1) to get EQ'

2) Linearity error at point Q relative to point P
is given by differencing the surveyed position

EQ with EQ.

3) Repeat steps (1) and (2) for each 2 TD case and
single 3 TD case.

o’y Fmy

L. . Loy

LS balb

V. Schwab

IJIL/VS:nt
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Appendix A

LINEAR ESTIMATION
(Derivations of Formulae Due to S. T. Haywood)

A set of m linear equations in n < m unknowns will be
represented by

(A.1) Uu=AXx + e

in which we define:

mxn matrix of rank n

nxl noise vector

mxl vector of true values of the state variables
nxl vector of observations or measurements

e Xl o »

In (A.1) u and A are presumed known; e and X are unknowns.

The problem to be considered next is that of obtaining
an estimate of x. Let

(A.2) d=2Ax - u
where

a nxl vector of residuals
x mxl vector representing an estimate of x

In classical least squares estimation an estimate of x is obtained
which minimizes the scalar

B-A-1

it
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T 2 2 2
dd=1]al =8 +686 + ...+ 6.
1 2 n

We shall now derive the weighted least squares estimate

of x which minimizes d?w&, where W=Wm > 0 is the weighting matrix.
Ordinary least squares estimate will be obtained as the special
case, W=I.

% From (A.2) we obtain

Q

-3
-]
o))
fi

(Ax-u)TW(Ax-u) = (xTAT-ux)W(Ax-u)
F = x'ATWAX - X"ATWu - u'WAX + u'Wu ’

xT (ATWA) x + u'Wu - xTATWU - uTWIAX

xT(ATWA)x + uWu - ZxTATWu

Let s=s(x)=d'Wd. Then s(x+h) = (d+Ah)TW(a+Ah) and

8 (x+h)-8(X) = A*Wa+hTATWA+d WAh+hT AWAh-d'Wa

hT ATWAh+2h" (ATWAX-A Wu)
The first term on the right above is always non-negative. The

second term vanishes if

(A.3) % = (ATwa) “taTwa

Thus if % has the value given by (A.3) s(§+h)-s(§) > 0 for any mxl ;
vector h. Therefore x is the desired weighted least squares esti-

mate of X. The ordinary (unweighted) least squares solution is

y given by

(A.4) x = (aTa) ~1aTy.

B-A-2
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We next consider the statistical properties of the
noise vector e which enters into the determination of the co-
variance matrix associated with the error in the estimate of
x. We shall assume <e>=0 and <eeT>=R>0. In other words, we
assume the noise in the measurements has zero mean and covari-
ance matrix denoted by R.

Now, from (A.3),

1. T

% = (aTwa) "1aTwu -1,T 1,T

(ATwa) ~'aTwax- (aTwa) “1aTwe

%- (aTwa) ~1aTwe.

Therefore
(A.5) <x> = X.

Equation (A.5) asserts that x is an unbiased estimate of X.

The covariance matrix of the error in the estimate x
is denoted by C and given by

(A.6) C = <(%-% (207> = (aTwa) ~2aTwrwa (aTwa) 1.

We next consider the problem of finding the estimate X
which makes C a minimum.

A

Let X = Bu = BAX + Be
Then <%> = B<u> = BAX = X

Therefore BA = I

% = X = Bu-x = BAX + Be-x = Be
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C = C(B) = <(%-%) (x-X)T> = BRBT

Next, let H be any matrix having the same dimensions as B.
I = (B+H)A =1 + HA

Therefore HA = 0

Then C(B+H)-C(B) = (B+H)R(BT+H') - BRB®
= BRB® + BRH® +HRB' + HRH® - BRB'
= HRH® + BRH® + HRB®
Let B = MATR™!
Then BRHT + HRBT = MATR™1ruT + HRR™laM®
T T T

MA"H™ + HAM

Since HA = 0, C(B+H)-C(B) = HRH' > 0

I = BA = MATR 1A
(aTr"1a) 1

(aTr™1a) “1aTgp"1

Therefore M

Therefore B
and, the estimate, X, which minimizes C is given by

(A.7) % = (aTrR"1a) " 1aTr Ly,

The minimized covariance matrix is given by
(aTr"1a) "1

(A.8) Coin =

B-A-4

M it s

Then




THE XIHNS HOPKINS UNIVENRSI Y

APPLIED PHYSICS LABORATORY
LA L MALEEAND SZR"79-008

Appendix A
Page =5~

The estimate given by (A.7) is known as the minimum
variance estimate. It may be noted that the minimum variance
estimate is obtained as the weighted least squares estimate
when W = R™1.

The general expression for the covariance matrix C
is given by

(A.9) C = BRBT

in which B can be any nxm matrix of the form

B = (atwa) " laTw

In the special case where m=n (number of equations‘equal
to number of unknowns) and the matrix A in (A.3) and (A.4) is in-
vertible, then

T

(aTwa) "1aTw = a1 (aTw) ~1¢

ATw) =

!
e

Accordingly (A.3) and (A.4) reduce to

(A.10) 2 =2ty

and (A.9) reduces to
T

(A.11) c = alr(a”}

when m=n.
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Appendix B

2 TD Case

In Fig. B~1l the master station is at M, a slave station
at Sj and an arbitrary way point at P.

Fig. B~1 !

Since we are considering 2 slave stations the index j assumes
‘ the values 1 and 2.

The coordinates of M will be denoted by (xm,ym); P by

H L] h i F. -
, (xp,yp), Sj by (xsj'ysj) The three slant ranges shown in Fig
B-1 are given by

B-B-1
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[~ _ 2 2 T
r, = J(xp-xm) + (yp—ym)
_ 2 2 .
(B.1) 25 = J(xp xsj) + (yp ysj) » 3= 1,2
_ 2 2 .
r3j = (xsj"'xm) + (ysj-ym) 3 =1,2

The time differences in the signal receipt

are denoted by T, and T, and given by

times at P

1
(B.2)

where the §t1s denote

The derivatives of T
appear as elements in a 2x2 A-matrix.

p-

a1

(r31+r21-r1)/v +.611

(r32+r22-r1)/v + +612

the absolute emission delays of the slave

stations and v denotes the speed of signal propagation.

and y

and 1., with respect to xp

1 2

These are given in

[+ 7
(=]

0,
»
<=

1

p
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Let Ax and Ay denote the coordinates of an arbitrary
point Q (i.e., navigator) relative to the way point P as shown
in Fig. B-2.

Ay

Then the time differences observed at Q can be expressed by

£€ Ty Ty a5, a12 Ax €y
E; (B. 4) = + +
| 2 T2 a3 222 | 8¢ €2
Q P P Q Q
‘ in which €1 and €, represent noise terms present in the observa-
tions of .3 and T, made at Q.
{
! In (B.4) let
N1 1 Tig ~ Tip ;
u = - - |
T2 T2 T2 - T2p i
Q P |
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a1 232
A=
21 222
Ax
X =
Ay
i
€
e =
€2

Then (B.4) is seen to have the linear form
us=AX + e

of Appendix A in which u and A are known and x and e are unknowns.

In Appendix A it is shown that

* (B.5) x=aly
) _
. is the least squares estimate of x when m=n=2,
We shall next proceed to write explicit formulas for Ax

and Ay. The G matrix is defined by

B-B-4

A " NI T S
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(B.6)
Therefore,
(B.7)
where
A
a-l
11
a—l
12
a-l
21
a-l
22
and where
f; Therefore,
’ (B.8)

o>

S2R-79-008
Appendix B
page -5~

= Gu

= A-l

311322 © 31232

a,,/8 =91,
- a3,/8 = 9;,

- ay1/8 = 9y

ayy/4 = g9
911 912

G = 3
921 922

8x = gy (T10=Typ) + 935(T9"T2p)

By = 9p1(Tya=T1p) *+ 922(T20"T2p)

B-B~5
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Appendix C

3 TD Case i
(based on definitions and assumption stated in Appendix B)

In the case where 3 TD signals are employed the slant
range equations are given in

ry J;xp-xm)z + (yp-ym)2

(c.1l) r

2 2 L
23 J(xp-xsj) + (Yp"'ysj) . J=1,2,3

2

2
‘ﬂxsj-xm) + (ysj-ym)

Lr3j = . j=1,2,3
.; The three time delays are ;
_” (C.2) Tj = (r3j+r2j-r1)/v + GTj ’ J=l,2,3 }
The six elements of the 3x2 A-matrix are ' ’
a =z - J=1,4,
1l . ’
b v i r2J ry ]
(Cc.3) -
Y. <Y Y. <Y
1l
b s zj o

The linear expansion of the three measured time dif-
ferences made at an arbitrary point Q relative to a way station
at P is given by

B-C-1
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Equation (C.4) will be recognized as the linear form

u=2AxX + e

of Appendix A in which

TTi-

T2

rle

S2R-79-008
Appendix C
Page -2-
h
22
Ax
332
Ay
a32

- TZP

"ﬂ-m-—-—-—-u-wnuuunu-nnq-q‘
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In Appendix A it is shown that the weighted least
squares estimate of X and the minimum variance estimate have
the same algebraic form which we shall represent here by

(c.s) x = (aTMa) "1aTmy

To obtain the weighted least squares estimate we set M=W, the

least squares weighting matrix. The minimum variance estimate

of ¥ is obtained when M=R~l where R = <eel>.

We shall next obtain explicit formulas for the solu-
tion of (C.4) in the form (C.5). Either the weighted least
squares or minimum variance solutions may then be obtained by
making the appropriate substitution for the matrix M.
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a a
b11 b12 b13 11 12
T _ _ _ .
A "MA=BA=C = asy ay,
b b b
21 22 23 agy a3,

T T

0
"

11 = P11211 * Pyp2s; + Py333;

Cy5 = b1ya15 + Pyyayy + byjay;
Cyy = byya3y) * Dyyayy + byadyy
Cyg = Pyyd15 + Dyyayy + Dy3dy,
A = cy3617 €201

-1

)y = Cpp/h

-1

€y =G5/

-1

Cyy =-C31/8

-1

Cyp = ©1y/8
6 =clp = (aTMaT! aTM
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(Y]

[}

!

Q
N
=

Finally we obtain

Ax =
(c.7)

S2R-79-008
Appendix C
Page -5~

911(T197T1p) + 912(T50 T2p) * 913(T307T3p)

8Y = 951 (1107T1p) + 9p2(Ty0 Top) + 9p3(T35=T3p)

[P

B-C-5




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
VAL L MAK G AN SZR-79—008

Appendix D

Calculation of R—l for 3 TD Equal Gaussian Noise Case

From Appendices B and C, R was defined as
(D.1) R = <eel>

where e was the vector of time difference measurement noises, as-
sumed to be zero mean. Therefore,

(D.2) Pei}

.
H where € is the noise on the ith time difference measurement. Now,

¥ since each time difference measurement, T,, is essentially the re-
5 ceipt time of the ith siave pulse minus the receipt time of the
master pulse, then

(D.3) €. =n, - n

where ng is the tracking filter noise jitter on the receipt time of
the ith slave pulse and n. is the tracking filter noise jitter on
the receipt time of the master pulse.

Now in actuality, each '1‘i has additional noise added to it
due to the quantization process of each time difference counter. It
is assumed that it is negligible. There may even be additional
smoothing (averaging) of each Ti after the counting process. In any

B~-D-1
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event, we assume that the relative noise performance between
Tye Tpe Ty
Therefore, it is sufficient, for G matrix purposes, to consider

remains the same through these additional processes.

the tracking filter noise jitter since only the relative noise
statistics will affect the G matrix.

Assuming <ni> = 0, <nm> = 0, then

(D.4) Ry Ry o Ry,
R=<eeT> =l R R R
12 22 23
LR13 Ry3  Ria
where 1
_ 2. _ 2 2 .
{D.5) Rii = <ei > = <ni > 4 <nm > i=1,2,3
3 R,. = <€,6.> = <n_2> i#j i=1,2
b ij ij !
\ j=2,3

since it is assumed that <ninj7 = 0. Now there are many formulae
for calculating noise jitter performance out of a tracking filter.
They differ according to the order and bandwidth of the tracking
loop and the specific mechanization of the phase error detector.
We assume that all tracking filters are identical so that

{ (D.6) n,2 = ko/(S/N) i=1,2,3,m

1 1

, where ko is a function of the specific tracking filter implementa-
tion and (S/N)i is the power signal-to-noise ratio at the input

to each tracking loop. Since atmospheric (external) noise is dom-
inant (receiver noise negligible) and since we assume the RF re-
ceiver input bandwidths are all the same, then the noise presented

B-D-2
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to each tracker is the same (even if the RF gains from antenna
input to tracking loop input is different between receivers, the
signal-to-noise ratio remains the same). Therefore,

5 kN
(D.7) <n, %> = =2 i=1,2,3,m

i Si

so that the relative tracking jitter performance is only a func-
tion of the signal powers, si' into the receiver antenna input.

A

(D.8) Si = Pi (T‘,?Tz—.-) i=1,2,3
i
and
A 2
(D.9) Sm = Pm (ﬁ_r_]:)

where Pi ig the effective transmitter power of the ith station;
A= wavelength of carrier frequency; Iyg and r, are the slant

ranges defined in Appendices B and C. Therefore,
L ,' ( 2
(D.10) 7> = i=12,3
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The value of k, is unimportant except that it would be good prac-

1
tice to set it so that the elements of R are near unity. We let

(D.12) - -1 -1 -11
Rj1 Ri2 Ry3
-1 -1 -1 -1
R = =1Ry, Ry Ry
-1 -1 -1
R R R
| 713 23 33 |
then
e
(D.13) A = Ryy Ry, Ryy + 2 Ry Ryy Ryg
2 2 2
= Ry3 Ryy; = Ryp Ry3 = RyjRy3
Q -1 _ 2
: Rin = (Rpp Ry3 ~Ry37)/8
| { R.. ! = (Ri, R,, -Ry,R..)/A
i 12 13 Ry3 ~R33Ry,
R.. Y = (R.. R.. -R..R Y /A
13 12 Ra3 “RyoRy3
R.." Y = (Ry, R.,. -R,.2)/A ;
‘ 22 = (Ry; Ry3 -Ry32), |
|
R.. ! = (Ry, Rys =Ry R..)/A 5
[ ‘ 23 12 R13 “Ry3Ro; |
i
,‘ -1 _ 2 \
’ L R33 = (R Ry -Ry57)/4 |

Note that since the elements of R are directly proportional to kl’
then the elements of R-1 are inversely proportional to kl' For

B-D-4
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this case, from Appendix A,

¢ = (aTrR" I~ AT
T -1 ., . . . T -1,,-1

Therefore, A™R is inversely proportaional to k1 while (A"R 7A) H

is directly proportional to kl, resulting in G being independent

of kl.
3

]
|
!
B~-D-5
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TO: J. G. Wall
FROM: L. J. Levy and V. Schwab
SUBJECT: Methods for Obtaining Approximate and Exact Solutions

to a LORAN Navigation Equation

REFERENCE: [1] APL/JHU S2R-79-008, G-Matrix Analysis for USCG
LORAN-C HHE Navigation Program, by L. J. Levy and
V. Schwab, January 19, 1979

The G-Matrix technique proposed by the U.S.C.G. is a
computational method for converting two or more measured LORAN
TDs into horizontal coordinates of navigator position. It yields
a linear estimate of position referenced to the surveyed values of
a 'near' waypoint or track point and employs a precomputed G-matrix
to transform the TDs.

In the winter and spring of 1979 the proposed linear
G-Matrix scheme as applied to the LORAN mini-~chain in the St Marys
River was simulated on the IBM 3033 computer at APL. It was then
discovered that the navigation errors resulting from the high grid
curvatures were much too large to be tolerated; a modification of
the linear G-Matrix technique was then sought which would reduce
the navigation error to an acceptable level.

, Two modifications were studied. The first of these involved
‘ the iterated application of a second-order correction to the linear
! G-matrix solution. The second-order correction greatly reduced the
" first-order navigation error, but the residual errors were still
| above an acceptable level. It was then apparent that the exact
solution of the LORAN TD equation was needed and also within easy
reach if an iterative process for obtaining it were admitted. The

method for obtaining the exact solution which was devised retains

c-1
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the linear G-Matrix solution for its starting estimate of navigation
position. It therefore also retains the important feature of the
surveyed TDs anG locations of the waypoints.

The remaining five sections of this memorandum elaborate
on the remarks above. Section 1 contains a derivation of the basic
LORAN equation relating the TD vector and navigator's position vector.
Section 2 defines the linear G-Matrix solution of the LORAN equation.
Section 3 contains a derivation of the second-order correction to
the linear G-Matrix solution. The exact solution is presented in
Section 4. The three methods of solution are compared quantita-
tively in Section 5 where they are applied to navigation in the
LORAN-C mini-chain of the St. Marys River.
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l. General Form of the LORAN Time Difference Vector

In this section we shall develop the general form for the
LORAN time difference vector upon which the three navigation solu-
tions derived in subsequent sections are based.

The cartesian coordinates of the LORAN receiver aboard a
ship are denoted by X and Y and these are the components of the
vector

z= . (1.1)

Either two or three time differences (TDs) are measured
and for the sake of being definite we shall assume in this memoran-~
dum the number is three. The time difference or TD vector is given
by

po

2

TD = TDz (1.2)

TD3

L -

The slant ranges from the ship to the LORAN slave and
master stations are given by

7y o= x4 expHY, ie1,2,3,m (1.3)

!
!
!
!
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in which i=1,2,3 denotes the three slaves and i=m the master LORAN
station.

The part of the time difference vector due to geometry
alone (i.e., the ideal part, ignoring biases and noise) is denoted
by h(z) and given by

B I "
(rl-rm)/v h,

h(z) =] (ry-x ) /v |= hy (1.4)
L(rB-rm) /V‘ Lh3_‘

in which v denotes the propagation speed of the LORAN signal.

The matrix of partial derivatives of the elements of h
with respect to X and Y is denoted by A and given by

phwt ik WS

ﬂ
[ahl ah,
X Y8 1
A(z) =] %y  3h, (1.5)
‘ X W 3
4 3h, 3h,
| o
}

Let z, and 2, represent two different values of z. The
vector difference, E(EQ) - E(Ep)' can be resolved into a linear com-
ponent equal to the vector AP[EQ - EP] and a residual non-linear

Cc-4
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component, denoted by the vector E(EP'EQ)' The non-linear component
will be defined by

£(z5,25) = hizy) = hizp) - Ay lzy-2,) (1.6)

At a waypoint P a measured TD vector is represented by

D, = EﬁEP) + ¥p + n, (1.7)

'L'-l

in which ¥y represents biases and warpage in the measurement and
Iy represents zero-mean noise. Similarly, at an aribtrary nearby
point Q the measured TD vector is represented by

= h(zj) + Wy + n,. (1.8)

13

The surveyed TD vector at z=z, is the mean of many TD
measurements of the form (1.7) and is denoted by !Eb. Since o, has
zero mean we have

= h(zp) + Wy (1.9)

5]

If P and Q are sufficiently close it may be reasonable to assume

(1.10)

68
’Lt
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If we assume (1.10) we find from (1.8) and 1.9)

- T

O

D, = h(zy) = hizp) + n,. (1.11)

However by means of (1.6) we are able to eliminate h(z)
from (1.11) and obtain

TD, = ID, = Aplz, - zpl + £(2,,2,) + n,. (1.12)

In (1.11) ancl(l.lz)_g.P represents the surveyed position of
point P. The difference between the mean of many TD measurements
made at P, fﬁé, and hlgy) is, by definition, the warpage or bias at
P w@ich is denoted by ¥p in (1.7). All three of these vectors are
known for each waypoint. ]

TER S e .

i The problem of LORAN navigation is to determine the position
vector z, given the measurement vector TD,. The different ways in
which this has been done are explained in the following three sections.

‘ 2. Linear G-Matrix Navigation Solution

1 The linear G-Matrix solution to the LORAN navigation pro-
' blem represented by (1.12) is obtained under the assumption that

-f—(-z-P l_zlo) =0, or

? g - T5p = Aplzgzyl 4 ng:




THE JOHNS HOPKINS UNIVERSITY d
APPLIED PHYSICS LABORATORY

LAUREL MARYLAND S2R~-79-162
Page -7-

In the notation of Ref. [1l] let

R = Cov(e)

W positive definite, symmetric weighting matrix.

Then (2.1) takes the form

u=Ax + e. (2.2)

A solution of (2.2) is represented by

= G u (2.3)

%i>

in which

G = (ATwa) ~1aTw. (2.4) ,;

Note from (2.4) that GA=I. The solution given by (2.3)
is called the ordinary least squares solution when W=I; the weighted
least squares solution when
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the minimum variance solution when W=R-1. In any case the solution

of (2.1) is denoted by = X + z_ and is given by

2 Zp

+ G, [TD, -

2y p 1. (2.5)

6& >
[

3. G-Matrix Solution with 2nd Order Correction

In Appendix A we obtain the second-order expansion of a
vector function (TD) of two variables (X,Y). The result is expressed
by (A.6). When we apply this result to (1.12) we £find

10eTBp = RplZg %) * B

acnsi

T

3
+ (1/2) izlgi[go-_z_l,] Bp [20-2p) (3.1)

in which
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" .2 2. ‘
a’n;  2°n,
ax*  axay
By = , i=1,2,3 (3.3)
2 2
2‘n;  9%ny
| axay  ov? |

and A, is defined by (1.5).

The solution of (3.1) is obtained through an iterative
process., In the first iteration we compute the linear approxima-
tion defined by (2.5), i.e.,

+ Gy ITD, - TD,1. (3.4)

~1
20 =% T %l

The corresponding second-order correction term is denoted by é
# and given by

g al= (1/2) % v, 125217 B_, [2}-2,] (3.5) ;
; 2 g5 H1'%07% pi‘Zg~%p 1
: i
[ In the second iteration we have i
.‘ 1
, gé = zP + GP[?_QQ-F_D:P-QI] = gé - Gpél (3.6)

: and

. a2 = (1/2) % v, (22-2.17 B, (22-2.) (3.7) ;
| g Ly 215075 Pi 'SQ7°P ;

c-9 i
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In general,
™1 = (1/2) % v, 12271z 1T B (2P7i-z ) (3.8)
- j=1 —1 -Q -p Pi =0 ~P
and
n _ 21 An=1
Zo = 25 - Gpa . (3.9)

The iterative process may be terminated when the change in é from
the previous iteration becomes negligible.

4, Ezxact Solution of the Non-Linear LORAN Equation

We shall present in this section an iterative scheme for
obtaining an exact solution to the non-linear LORAN equation given
by (1.12) or

TD, = Aplzo-2zp] + £(z5,25) + n,. (4.1) '

E Again we use the linear G-matrix solution as the starting estimate i
in the first iteration. Thus we have

D, - T, 1. (4.2)
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For the second iteration we find 4

82 -z, +6, I, - T, - 1 =2 - 6,2} (4.4)
and

£ - E@é) - hizp) - Apléé - Zp). (4.5)

In general, %%

gl - 9_(38'1) - hiz,) - A [23'1 - 2] (4.6) |
and

% - :z-é 62"~ (4.7

A simpler scheme than that represented by (4.6) and (4.7)
can be obtained by avoiding f and dealing with h alone.

1

In (4.4) if we substitute from (4.3) for i we obtain

i

éczﬁéé‘% [.*l‘ié) - h(z;)] + Gpa, [_3_(12-_2_1,]

or, since GPAP= I,

~2 a1 Al
25 = 2z5 - zp - Gp [h(zy) - h(zp)]. (4.8)

Cc-11
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For the third iteration we find from (4.7)

= 2 -Gg. (4.9)

From (4.9) and (4.5) we obtain

~3 ~1l a2 A2
23 = 25 - GpIh(zD) - h(zp)) - A IZ] - 2]
= Zp + 22 - zp - G [B(Z) - hizp)). (4.10)

If we add the term

] al _ 1 aly aly
i Zy -2 + G EIEQ) GPEIEQ) 0

g to the right-hand side of (4.10) and apply (4.8) to the result we
3 find

a3 Al ~l - A2 ~1

-2 -z - SRy Thp) + B -

~

a2 a1l
or
A3 a2 1 a2, ! a3 §
29 = 225 - z; - Gplh(zy) - h(z))]. (4.11)
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In general,
oD = oon=1 _ 2n-2 _ on=ly _ n-2
2 250 Z, Gp[ﬁ(EQ ) E(EQ Y] (4.12)

The iterative scheme represented by (4.12) may be terminated when
the change in 2 from the previous iteration is sufficiently small
to be negligible.

5. Comparison of the Navigation Solutions Obtained by Means of
the Linear, Linear with 2nd Order Correction and Exact Methods
of Solving the LORAN TD Equation

A comparison of the results obtained by the three methods
of solving the LORAN TD equation (1.12) has been made for navigation
between selected waypoints in the LORAN-C mini-chain in the St. Marys
River connecting Lakes Superior and Huron.

In Table 5-1 the integers NWAY denote waypoint numbers; S
represents the distance from a waypoint P to a point Q on the
straight line joining waypoint P with the next waypoint. When S=0,

Q is at P; when S attains its maximum value at a waypoint (e.q.,
S=11.19 at waypoint 1) Q is at the next waypoint. ATE and CTE denote
the along-track error and cross-track error in navigated position at
point Q.

Each row in Table 5-1 represents a navigation run. The
distance S, of point Q from Point P is increased until the next
waypoint is reached.

The three double columns of ATE and CTE contain the naviga-
tion errors which result using the linear G-Matrix solution defined

c-13
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in Section 2; the iterative G-Matrix solution with second-order
correction defined in Section 3; the iterative exact solution de-
fined in Section 4.

It may be seen from Table 5-1 that the navigation errors
increase with increasing S except in the case of the exact method
of solution. Also, while the second-order correction achieves a
considerable reduction in navigation error over the straight linear
method, the errors remain unacceptably large especially when the
_distance between waypoints is great.

¥ T
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.

3 TABLE 5-1. COMPARISON OF METHODS OF SOLUTION

4 Linear _2nd Ordér Correction Exact

' NW £Y S (KYDS) ATE (FT) CTE (FT) | ATE (FT) CTE (FT) | aTz (r1) TTE (7)
3] 0.0 0.0 0.0 2.0 0.0 0.0
1 1.1€6€0 ~118.0 10.0 -9.1 0.05 -0.01
1 2.20000 ~468.6 35.2 -1.3 0.03 -0. 00
1 3.300C0 -1044.3 86.1 -4.5 -0.11 0.01
1 4.40000 -1824.7 146.5 -11.3 0.28 -6.03
1 5.50000 -2827.4 225.4 -22.9 6.21 -C.02
1 €. 6C0CO -4008.1 313.1 ~40.8 0.20 -0.02
1 T.7G000 -53¢€l.6 40S.6 -66.3 .23 ~0.02
1 €. EGCO0 -6871.9 512.1 -1C0.7 0.28 -0.02
1 9.50000 -e5z2.5 6117.¢ -145.) 0.27 -0.63
1 11.00060 -10298.7 724.5 -20d.4 0.5 -0. 0t
1 11. 15034 -10E1T. & 742.8 -211.2 -6.37 0.03
2 0.0 0.0 0.0 0.2 0.9 0.0

3 2 1,0C0C0 -48,2 ~25.5 -0.8 0.00 0.00
2z 2.00060 -155.0 -105.2 ~6.3 -C.01 -5.01
2 3. C00C0 ~443.4 ~244.2 ~26.7 0.02 5.01
2 4,0C0C0 -7¢6.1 “~447.4 -48.1 -0.03 -G.02
2 5.00000 -1255.5 -71S.4 -91.8 C.0u 2.03
2 5.41751 -1480.3 ~854.6 =115.% 0.03 0.05
3 €.0 0.0 0.C 6.9 -0.¢0 -0.00
3 C. 86375 -20.5 -23.2 -0.6 -0.02 -0.02
4 0.0 0.0 C.0 0.0 -0.00 -0.00
4 1.60000 11.5 7.8 ~0.% 0.00 0.00
4 1.56471 z8.¢€ 1€.¢ -1.5 €.01 0.02
5 6.0 0.0 0.0 0.0 0.0 -0.00 -0.00
s 1.00000 -11.5 -31.¢ 0.2 -1.1 0.00 ¢.00
3 2. 00000 -45.1 -131.0 2.0 -8.9 £.03 0.0¢
5 3, 00CG0 ~€9,5 -305.2 7.1 -23.7 -0.GC2 ~0.03
5 4.00000 ~173.5 -560.5 18.0 ~69.3 0.02 C.0z
5 4. 2E515 -158.0 ~649.6 22.5 ~84.8 0.03 5.04%
6 0.0 0.0 0.0 0.0 3.0 -0.90 -5.00
€ 1. 000C0 =-39.2 -35.1 (VR 0.4 6.00 V.00
€ 2.000¢0 -155.1 ~13€.7 3.1 3.3 0.04 G.02
6 3.00000 -244.6 -307.0 12.8 12.5 -0.c2 -3.01
€ 2.5%5¢6 ~-45Q.5 =436.4 13.8 1.8 -0.0¢& -0.04
7 0.0 0.0 0.0 2. 0.0 6.0
7 1. 000¢CC ~34,5 ~12.4 1.3 -¢.02 -3.00
7 2.00000 -125.2 -46.0 7.7 0.01 0.09
7 3,00000 -297.4 -S5.4 25.6 -C.00 =2.09
7 2. 256€2 ~356e7 -112.4 33.9 -G.C1 -6.00
8 0.0 0.0 0.0 3.0 0.9 6.0
£ €.50921 -4.3 13.3 J.2 -0.30 0.00
S 0.0 0.0 0.0 2.9 2.9 0.0
s l.cceco -12.3 1646 Cob -6.00 J.04
9 290000 -48.1 6706 2.0 0.0UV -0.CD
s 2.€25C7 -49.4 69.4 2.5 9.00 -u.00
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APPENDIX A

Expansion to the 2nd Order of a
Vector Function of Two Variables

To the second order in h and k the Taylor expansion of

the scalar function f(x,y), where x and y are independent variables,
is given by

£(z+h,y+k) = £0x,y) + (BE (x,9) + k £ (x,))

0 12 2 .
+ (1721) {h £ox(Xe¥) + 2hKE(x,y) + k fyy(x,y)}

(a.l)

We define the 1x2 matrix A, the 2x2 matrix B and the 2xl1 vector v
by the expressions in

A= [?x f;]

fxx fxy h

B = v (aA.2)
fo YY k

1l

The matrices and vector defined in (A.2) permit us to write (A.l)
in the form

£(x+h,y+k) = £(x,y) = Av + (1/2!) v By (a.3)

C-A-1
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To verify (A.3) observe from (A.2) that

Ay =(hf_+ kfyj

| he, + ke,
Bv =

1 + k
hE . + kE o

+

vy = [h ] Mt Ky = n?t  + 2nke  + kg

g 52 e XX Xy Yy

+ £

xy © Yy

and note that these results agree with (aA.l).

Consider next the 3xl1 vector function F(x,y) defined by

r.fl(xt!c')ﬂ1 %

| j

E(x,y) =| £,(x,y) (a.4) i

£.(x,y) i

K B |

L . i

‘ Again we wish to form the second-order Taylor expansion of F(x,y). ’
i

For this purpose we define the 3x2 matrix A, the 2x2 matrices Bi' ;

‘ i=1,2,3 and the 3xl vector *1' i=1,2,3 in i
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-
flx fly?
fixx fixy
£ £ fixy  Fiyy
3% 3y_‘
, ;
1 0 0
¥, ={ 0 ¥, =11 Y3 =0 (A.5)
0 0 1
Then, to the second order in h and k,
~ I .
F(xth,y+k) = E(x,y) = Ay + (1/2!) ] y,v'B,v (A.6)
3 i=])
£
3 ;
where v has been defined in (A.2).
'
C-A-3 ]
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TO: J. G. Wall

FROM: L. J. Levy/V. Schwab

SUBJECT: Design, Simulation and Performance of Digital TD and
Heading Filters for the USCG LORAN-C HHE Navigation
Program

REFERENCES: (1] APL/JHU TYA-0-002, Compilation of Characteristics
of the Second-Order Digital Filter, by R. J.
McConahy, August '2'9'_1'3'3'3‘_—,
{2] IRE Transactions PGAC, Vol. AC-7, July 1962,
Synthesis of an Optimal Set of Radar Track-while-

scan Smoothing Equations, by T. R. Benedict and
G. W. Bordner

[3] APL/JHU S2R-79-162, Methods for Obtaining Approxi-
mate and Exact Solutions to a LORAN Navigation
Equation, by L. J. Levy and V. Schwab, October 8,
1979

The time difference (TD) measurements made in the USCG
LORAN-C HHE Navigation Program may be expected to contain zero-mean
noise errors ranging in size up to tens of nanoseconds. Since the
TD measurements are converted directly to display ship's position
on a scope, it is desirable to filter out large fluctuations in the
TDs before computing position.

In the absence of ship's maneuver (turning) the TDs can be
effectively filtered by a conventional second-order digital filter
which has zero velocity lag. However large velocity lags and posi-
tion errors are introduced by this filter during the frequent turns
required on the St. Mary's River. It has been demonstrated that this
deficiency of the conventional filter can be essentially eliminated
by the addition of a first-order filter which provides a filtered
value of acceleration normal to the ship's course. The raw accelera-
tion measurement is obtained from differential measurements of ship's

D-1
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heading angle which, in turn, measure the turning rate of the ship. 5

The main body of this memorandum is divided into three |
parts: i

I Filter Design
II Filter Simulation
III Filter Performance :

The section on filter design is divided into two parts.
The first part reviews the theory of the conventional second-order
digital a,b-filter; the modification to the filter required when
aged measurements and display delay are present; the reduction of
velocity lag by means of acceleration-aided prediction in the filter.
The general filter equations developed in the first part are applied
in the second part to the particular problem of filtering LORAN TD
measurements.

The section on filter simulation contains a fairly de-
tailed description of a digital simulation prepared for the IBM 3033
Computer at APL in the spring of 1979. The purpose of the simulation
was the provision of the possibility of the computation of filter
performance in order to confirm the choices of filter gains and
other optional system parameters.

The section on filter performance presents a small repre-
sentative sample of the simulation runs which were made on the 3033
Computer. The particuiar series of four runs were chosen to show
! the effect on filter performance of variations in the gain of the

‘ heading (acceleration) filter. These runs show clearly: (1) the need
} to greatly reduce velocity lag; (2) the ability of the heading filter
’ to essentially eliminate velocity lag.

3

2y Z

L. J. Levy

V. S beab
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I-1.1 The Conventional a,b-Filter

The following description of a second-order digital filter
used for filtering and estimating the rate of change of a digital
data sequence follows closely the excellent account given in Ref [1].
The sequel is often nearly but not precisely verbatim and the
notation of the present text also differs slightly from that of
Ref (1].

Suppose one has a sequence

x*(n), n=0,1,2,...

of input or raw data. We suppose this sequence is measured (or de-
livered) at a sample period of At seconds. Then x*(n) would be the
measurement of the quantity 'x' at time t=nAt.

Obviously the individual measurements will contain noise.
It is often desirable to smooth them so that the system functions
which use the data will not operate wildly and erratically, as they
might if nothing were done. But, more than this, there is usually
a desire to estimate the rate of change, i, of the quantity x. This
is very useful in case there is a sudden fade in the data sequence
x*(n) and we are forced to ‘'coast' awhile.

One of the simplest filtering or estimation schemes that
will allow us simultaneously to smooth the data and estimate rate of

ﬂ change is the second-order filter defined by

)

1 r(n) = x*(n) - x'(n)

F x(n) = x'(n) + a r(n) (1)

A

i k(n) = %'(n) + 2er(m) 1
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and

;'(n+1) = ;(n) + §(n)At

(2)

~ A

x'(n+l) = x(n)

in which

x(n) is the smoothed estimate of x at step n

%x(n) is the smoothed estimate of x at step n

x'(n) is the predicted value of x at step n and usually
made at step n-l

x'(n) is the predicted value of x at step n and usually
made at step n-l

a position smoothing gain
b rat<z smoothing gain

: The equations in (1) update the predictions (primed quanti-
1 ties) made for step n to estimates of x and x. The quantity r(n) is
the error in the prediction of x(n) referenced to x*(n). Note that
if a=0, x(n)=x'(n) and no weight is given to the measurement x*(n);
however if a=1l, x(n)=x*(n) and the measurement at step n is given
full weight. The eqﬁations in (2) define the prediction for one time 1
step in advance. .

Equations (1) and (2) can be reduced to the second-order
difference equation

%(n+2)-(2-a-b)x(n+tl) + (l-a)x(n) = ax*(n+2) + (b-a)x*(n+1).

i e v gl

The performance of the second-order filter depends on the choice of
the smoothing gains a and b. '

For stability of x(n) and i(n) it is required that

D-1-2
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The filter is:
underdamped if 4b > (a+b)2:
critically damped if 4b = (a+b)>;
overdamped if 4b < (a+b)2.

The filter is said to be optimum if a and b satisfy the
relation

which results in a slightly underdamped filter.

We shall now explain what is meant above by the term 'opti-
mum filter'. Assume the noise on each input sample has 2ero mean,
variance (mean square) cé and that the noise on different samples is
uncorrelated. The ability of the filter to smooth the data is fre-

E/ quently measured by the index 1

R (0) = Variance in smoothed position output 1
b4 Variance in raw position input

which is referred to as the variance reduction ratio. There is also
‘1 a variance reduction ratio for the smoothed output velocity seguence,
) %(n), which is denoted by R*(O). For any stable combination of a and b

ot ik

_ 2a% b(2 - 3a) |

ald - b - 2a) :

Rx(O)

D-I-3
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2 i
1 2b :
R, (0) 2 a(d -~ b -2a)° ;

It is a general characteristic of the second-order filter
that, given sufficient time, it will settle onto a linear input
sequence, i.e.,

x*(n) = An + B

with negligible error. That is

lim [;(n) -x*(m)} =0

n+ o

for such a linear sequence. This property is usually referred to
as 'zero velocity lag'.

A useful index is one based on the unit-ramp response. Let
h (n) = %(n) for x*(n) = n

assuming the filter is initially at rest. Then the index is

] o
2
c, = nzo (n - h (n)*,

Sofn's ra\eal i

One can, similarly, define a velocity index

T 2
c. = (1 - ho (
5 nzo 5 (n)

D-I-4
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A

hy (n) = x(n) if x*(n) = n.

For any stable combination of a and b

(2-a) (1-a) 2
ab{(4 - b - 2a)

C =
b 4

cr = L _a2(2-a) +_2b(l-a)
X at° ab(4 - b - 2a)

The indices Cy and Rx(o) each depend on the variables a

and b, and one might compute contours of these functions in the a,b-
plane using the formulas given above. The following problem in opti-
mization is posed by the two indices and may be formulated in terms
of two questions:

(i)

(ii)

For what values of a and b is Cx minimized for a given
desired value of Rx(O)?

Conversely, for what values of a and b is R, (0) minimized
for a given desired value of cx(O)?

The same two questions can be asked with the velocity index

Ri(O) replacing Rx(O) and Cg replacing Cer It is proved in Ref. (2]

that all four questions have the same answer:

above. It is in this sense then that the relationship of position
and rate gains stated above define an optimum filter.

b=a2/(2-a), as asserted
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In Table I-1 there are listed some characteristics first,
of a critically damped and then an optimum second-order filter. 1In
each case six values of the position gain are specified in column 1
and the corresponding value of the rate gain, b, computed by means
of the formula given at the top of the table, appears in column 2.
The quantities 9pos and gy, are the square roots of Rx(O) and R;(O)
defined above. The values of the filter time constant were deter-
mined using formulas for the position response function given in
Ref. [1l] but not reproduced here.

I-1.2 Conventional Filter with Aged Measurement and Display Delay

Assume that at time tn=nAt the measurement x* has an age
AtAlo (i.e., the measurement is made at tn-AtA) . Also assume that
the measurement will not be displayed until after a delay Atbzo at
tn+AtD. The equations for updating the estimate at tn-AtA are

r(n-4t,) = x*(n-AtA) - §'(n-AtA) (3)
x(n=at,) = %'(n-At,) + a r(n-At,) (4)
2 >, b

x(n-AtA) = X (n-AtA) + it r(n-AtA). (5)

The forward predictions to the next update time tm_l-AﬁA are made
by

A - [
x (n+1-AtA) = x(n-AtA) + x(n-AtA)At (6)

§'(n+1-AtA) - §(n-AtA) (M

D-I-6
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The forward predictions to the display time tn+AtD are made by:

§°(n+AtD) = X(n-at,) + §(n-AtA)(AtA+AtD) (8)

X0 (neatp) = §(n-AtA). (9)

We shall next arrange the equations above so that updating
is done at t *At,. First we evaluate (8) and (9) at th+1titp and

obtain
RO (neleat) = R(n+l-dty) + k(n+l-at)) (At +ht) (10)
§D(n+1+AtD) = §(n+1—AtA). (11)
Next we evaluate (3), (4) and (5) at tn+l-AtA and find
r(n+l-8t,) = x*(n+l-8t)) - X' (n+l-dt,) (12)
x(n+1-0t,) = x'(n+l-At,) + a rinsl-ot,) (13)
§(n+1-AtA) = §'(n+1-AtA) + %gr(n+l-AtA) (14)

By means of (13) and (14), (10) and (l1ll) become

AD - Ay - -
X (n+1+AtD) = x (n+l AtA) + a r(n+l AtA)

A b
+[(x (n+1-AtA) + Kir(n+l’AtA)](AtA+AtD) (15)
§D(n+1+At ) = §'(n+1-At ) + E—r(n+1-At ) (16)
D A At PN
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Then, by means of (6) and (7), (12), (15) and (16) be-

r(n+l-AtA) x" (n+l AtA) x(n AtA) x{(n AtA)At (17

~D P 2
x (n+1+AtD) = x(n—AtA) + x(n-AtA)At + a r(n+1-AtA)

2 b
+[x(n-AtA) + KEr(n+1'AtA)](AtA+AtD) (18)
;D(n+1+At ) = ;(n-At ) + E-r(n+1-At ) (19)
D A At A’

R _

Equations (8) and (9) can be used to express (17), (18) and (19) in
the forms

* AD <D
r(n+1-AtA) = X (n+l-AtA) - X (n+AtD) + X

(n+AtD)(AtA+AtD)
§ 2D
v - X (n+AtD)At

* °D
= x (n+1-AtA) + X (n+AtD)(AtA+AtD)

- xP(neaty) + XD(n+ar ) At (20)

§°(n+1+AtD) - §°(n+AtD) + iD(n+AtD)At

b
+ (a +K§(Ata + AtD)] r(n+1-AtA) (21)
io(n+1+At ) = §(n+At ) + B-r(n+1-At ) {(22)
D D At A

D-1-8
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2
At,, = At, + AtD. (23)

aD

The predicted values at time tn+l+AtD are

FaY L ~ ~

%P (n+1+4t ) = xP(n+aty) + :'cD(m-AtD)At (24)
~p' 2D

x (n+1+AtD) = % (n+AtD) (25)

Then by means of (23), (24) and (25) equations (20), (21) and (22)
become

r(n+l-at,) = x*(n+l-at,) + iD(n+1+AtD) bty

]
- §D (n+1+AtD) (26)
D D' b
X (n+lepty) = x (n+leptp) + [a + KEAtAD]r(n+1'AtA) (27)
§D(n+1+A ) = §ﬁ'(n+1+At )+ 9—:(n+l-At ) (28)
% p)* 2t D -

I-1.3 Addition of a Filtered Acceleration Measurement to Aid
Prediction

While the second-order filter defined by (26), (27) and
(28) is a zero-velocity lag filter it will develop a lag in the pre-
sence of a non-zero acceleration, %. If acceleration can be measured
and introduced into (26) by the addition of a term

2A
0.5 AtAD*
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the lag due to acceleration can be greatly reduced. However a
noisy measurement of acceleration, #*(n), would first have to be
filtered. To accomplish the filtering we propose the first-order
acceleration filter represented by

f(n) = $(n-D+ c[x*(n) - %(n-1)]. (29)

Note in (29) that if the gain c=0, no weight is given to the accel-
eration measurement and §(n)-§(n~l)=o; however, if c=1, §(n)-ﬁ*(n)
and the measurement receives full weight.

I-2. Application of the Acceleration-Aided Second-Order Filter to
tEe Problem of FIIte;ing LORAN TD Measurements
In Ref. [3] the LORAN TD (time difference) is given in

‘exact' form by Eq. (1.12) and in linearized form by Eq. (2.1) or
the expression

my = T + Mplzg - 21 + 1

in which TD denotes a vector of two or three TDs; Z denotes a two-

# dimensional horizontal position vector of the navigator; n is a |
' vector of zero-mean noise errors in the TD measurement; A is a matrix 1
of first-order partial derivatives of the TDs with respect to the

navigator's position coordinates. Subscript P denotes a variable

whose value is known and associated with a fixed waypoint with co-

ordinates Z=Z,. Subscript Q denotes a variable associated with the

variable point Q with the generally unknown coordinates gfgo. From

the measurement TDy. @ 'navigated' value Zq is to be inferred.

If we consider a single TD rather than two or three as in
the vector equation above we can use the equation

A e U QI vl

D-I-10
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'rnQ = TD, + all(xo-xp) + ‘12(YQ'YP’ +n (30)

in which all quantities are scalars,

There are four time intervals which appear explicitly in
the equations representing the TD and heading angle (i.e., accelera-
tion) filters. These are:

ATK Time interval between TD measurements

ATL Time interval between heading measurements

dT, 1Incremental time step in dead reckoning computation
* in TD filter

ATA Time delay in the measurement of TDs.

In addition, there is a time delay, dTW’ in the measurement of ship's

heading angle; however this quantity does not appear explicitly in
the filter equations which follow. '

In the time interval between TD measurements, i.e., when a
TD measurement is not available, predictions are made by means of the

formulas
A - . > & 2
TD; = TD;_; + TDy_,dT, + 0.5 TD 4T, (31)
¢ ¢ a
TD; = TD;_; + TD dr,. (32)

When a TD measurement, denoted by TD;, is available the
following computations are made:

LRl
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; rk TDk + A'rA TDk + O.SA‘I‘A Yo TDk (38)
~ N ’ ‘
TD, = TD, + (a + b(AT‘/ATK)lrk (36) f
o S
TD, = TDy + (b/A'rK) Ty (37)

The function of the heading filter is to provide the
filtered term TD appearing in (31) and (35). From (30) we have

TD = allﬁ + a129
and by geometry

x=v sin ¢ 1

¢y = v cos ¥

where v denotes the constant (i.e., slowly changing) speed of the
ship and ¢y is ship's heading angle measured clockwise from north.
The accelerations

% = v cos¥

¢ = vy siny

3 can be approximated using measurements w; and w;_l made ATL seconds
apart. The normal acceleration measurement

s i e

* * » =
a, = vy, - ¥, 1787 !

e

is filtered in the first-order filter
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a,=a _, +cla -a I (38)
Then 1
A » *, 2
™D = [allcoswn - alzsinwn] a . (39)

Equations (31) through (39) represent the TD and Heading
Filter applied to a single TD. These equations are based on the 1
second-order filter with acceleration aiding which is described in
Section I-1l. The equations are used in the filter simulation program
described in Section 1II.

A i

D-I~13
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Table I-1

Summary of Some Characteristics of
The Second-Order Filter

PR R T T

g - A

L

Critically Damped Filter: 4b = (a+b)>2
[FILTER TIME CONSTANT |
a b g o *
POS VEL No. of ats | (SEC)
.6400 .1600 .7130N .1770N/At 1l .5
.3392 .0350 4870, 04690, /8¢t 4 2
.1800 .0089 .3450N .01560N/At 10 5
.13642 .0050 .2980N .00990N/At 13 6.5
.1100 .0032 .267aN .00700N/At 17 8.5
.04422 .0005 .1670N .0017aN/At 44 22
Optimum Filter: b = az/(z-a)
FILTER TIME CONSTANT
a b c c *
POS VEL No. of Ats (SEC)
.6400 .3010 7380y .3420N/At 1 .5
.3392 .0690 .5190N .0930N/At 2 1
.1800 .0178 .3730N .0310N/At 4 2.0
.13642 .0100 .3240N .01980N/At 5 2.5
.1100 .0064 .2900N .01410N/At 6 3
.04422 .0010 .183aN .00340N/At 17 8.5
*aAssuming At = 0.5 sec
Og =0 of measured noise At = time interval between updates
D-I-14
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II FILTER SIMULATION

The digital simulation of the filters defined in Section I
imposed the requirement that we also model the ship's course as a
function of time in order to provide a basis for computing the ideal
(geometric) TD as well as ship's heading angle. It was decided to
simulate the typical pattern of ship maneuver in a river channel: a
straight-line segment, followed by a turn and then another straight-
line segment. By repeating this pattern it would be possible, if
f desired, to simulate the passage of a ship over a course of arbi-
trary shape and length. Obviously the sudden imposition and removal
of an acceleration normal to the ship's course at the start and at
the end of the turn will reveal the dynamic response of the filter.

The organization of the filter simulation program is re-
presented by the nine blocks in Fig. II-1 which have some, but not
all, of the properties of a flow chart. Each row in the blocks of
the figure is divided into two or three columns. The number in the
left-hand column represents a point of entry into the block; the
number in the right-hand column represents a point of entry in the
same or a different block to which control is passed. The center
column, when it is present (blocks 1, 2, 7, 8) represents the set-
ting of control paraﬁeters or the testing of variables (generally
not explicitly indicated on the figure) for control purposes.

Sections II-1 through II-9 describe in appropriate detail
| the operations performed in the nine blocks of Fig. II-1. The
Y principal symbols used in these sections are defined in the follow-
” ing glossary and table of input parameters.

D-II-1
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Glossary of Symbols

Cartesian position coordinates of the ship relative to
the master LORAN station.

First time derivatives of x,y. Velocity coordinates
of the ship.

Acceleration coordinates of the ship.

Ship's heading angle, measured clockwise from north.
Ship's turning rate

Normal acceleration of the ship.

At any waypoint, the angle between the lines of bearing
to the preceding and succeeding waypoints. (The ship
must turn through the angle ¢ at each waypoint.)

Time variable.

Time difference between the arrival times at the ship
of LORAN pulses from a slave and from the master station.

Time derivative of TD.

Second time derivative of TD.

Filtered values of TD, TD and TD.

Error in Qp. GTD-TD-TD where TD denotes the true value.
Error in TD. GTD-TD-TD where TD denotes the true value.
Value of TD at an arbitrary waypoint, P

Cartesian position coordinates of an arbitrary waypoint,
P
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Input Parar :ers

v Ship's speed.

L] . .

wmax Ship's maximum turning rate.

&ri Incremental time step in TD filter

dTw Time delay in the measurement of ship's heading angle

AT, Time delay in the measurement of TDs.

ATK Time interval between TD measurements for TD filter

ATL Time interval between measurements of ship's heading for

Heading Filter.

A Gain in TD filter (position gain).

B Gain in TD filter (rate gain).

c Gain in Heading Filter
g NSIGMA Standard deviation of noise in measured TDs.
( i
{

D~-II-3
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I1-1 Controller

The TD filter simulation consists of three consecutive
phases: (1) a straight-line run of the ship; (2) a constant-radius
turn; (3) a straight-line run. Each phase requires the precompu-
tation and setting of initial values of certain parameters. These
initializations are accomplished in Section II-2, II-3 and II-4.

The function of the controller section is to route con-
trol of the computation to the appropriate section as each of the
phases is completed. At the end of the simulation control is passed
to Section II-9 where the tapes for generating the CALCOMP plots
of the TD and TD errors are created.

II-2 Initialization (Straight-lLine Segment Preceding Turn)

L’ Input Parameters: v, lpll xlr Y]_: TS

Output Parameters: Ygr Xgr Ygr Xgr Yo %, ¥,

A

- ¢
TO, TMAX, TDi_ll TDi_ll an_ll wn_l

At the start of the TD filter simulation the ship is on
a straight-line, constant~speed course of duration TS seconds. This
is followed by a turn at the same constant speed and also at a con-
stant angular rate. The values of y, x and y at the start of the

turn are precomputed and are denoted by wl, Xy and Yq-

The initial conditions for the straight-line segment are
given by:
wo = wl (2.1)

Seo = v siny (2.2)
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Yo = V cosy (2.3)
Xy = X3 = X, TS (2.4)
Yo = ¥y - 90 Tq (2.5)
X =0 (2.6)
¥y =0 (2.7

The times at the start and at the end of the straight-
line segment, TO and TMAX are given by

TO = 0 (2.8)

TMAX = Ts (2.9)
The quantities fbi-l and fbi_l are required in Section
II-7 to initialize the TD filter. These are obtained from

i TD,_, =TD , T = -dr, (2.10)

3
(=
n

in which the TD and TD computations are made in Section II-6.

1 Initializing values required in Section II-8 for the Head-
‘ ing Filter are given by
1
4 a_ =0 (2.12)
Lt

Vne1 = Yo (2.13)

D~-11-5
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II-3 1Initialization (Constant Speed and Radius Turn)

Input Parameters: v, wmax' ¢
Input Variables: X,Y,¥,T

Output Parameters: 4y, Xgr Ygr Vgr @, TO, TMAX 1

At each way station in the chain, the angle, ¢, between
the lines of bearing to the preceding and succeeding way stations
is the angle through which the ship must turn in the neighborhood

of the waypoint. We assume the turn is accomplished symmetrically 1
about the waypoint and at the maximum turning rate of the ship, ‘
&max‘ Then for the turning segment the ship's turning rate is

v = wmax. (3.1)

The normal acceleration of the ship is
a = vy, (3.2)
The initial values of x, vy, ¥y and T are obtained from current values

of the simulation (i.e., at the end of the first straight-line seg-
ment) and these are denoted in

1 x, = X (3.3)
7 Yo = Y (3.4)
, by = ¥ (3.5)

TO = T (3.6)

TMAX, the value of T at the end of the turn is given by
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TMAX = TO + ,¢/?pmax.

II-4 1Initialization (Straight-lLine Segment Following Turn)

Input Parameters: v, TS

Input Variables: X, ¥, V» T

Output Parameters: xo, yo, io’ &o, TO, TMAX

(3.7

At the completion of the waypoint turn, the ship proceeds
in a straight line again for a prescribed period of time, TS' where-

upon the simulation run is concluded. The initial conditions for

this segment are obtained from the simulation variables and given by

X, = X%
Yo © b4
wo =19
TO = ?
xo = v sinwo

Yo =V cosw°

The terminating value of time is given by

TMAX = TO + Ts

D-I1I-7
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II-5 Track Generator

Input Parameters: Xor Yor *o' §°. TO, Vg Y, v, a

Input Variables: T

'

Output Variables: x, y, X, v, %X, ¥

The Track Generator computes the position, velocity and
acceleration coordinates of the ship for prescribed values of the
time. Two cases are considered: (1) constant speed and heading
of the ship; (2) constant speed and turning radius of the ship.
For the case of constant speed and heading, the formulas for the
position coordinates are:

x=x, + xo(T-TO) (5.1)

Yy =y, + i'o(T-TO). (5.2)
In (5.1) and (5.2) T denotes an arbitrary time and TO denotes the

(injtial) time at the start of the straight-line run.

For a constant speed and constant turning rate the formulas
are:

Vo= y, + b(T-T0) (5.3)
X = v giny (5.4)
Y = v cosy (5.5)
% = a cosy (5.6)
Yy = -a siny (5.7
X=X, = y/b + (v/@)coswo (5.8)
Y = ¥, *+ %/V = (v/¥)siny, (5.9)

D-I1I1-8
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II-6 TD Generator

Input Variables: X, Yo x, §

Output Variables: TD, TD

The input variables to the TD Generator are the 'true'
position and velocity coordinates of the ship obtained from the ]
Track Generator. A TD (time difference) and its time derivative
are computed as the linear combinations in

TD = TDP + all(x-xp) + alz(Y'YP) (6.1)
TD = a;; X+ a,, V. (6.2)

The coefficients a), and ay, in (6.1) and (6.2) represent

any of the two elements in the (two-or three-rowed) A-matrix which
‘ gives the linear relationship between TDs and ship's position co-
_; ordinates. In other words, any of the two or three TDs may be re-
g presented in the simulation by the linear forms in (6.1) and (6.2)

The values of TD and TD given by (6.1) and (6.2) represent
the geometric part of these variables (assuming noise, truncation
errors and biases are not present) for the purposes of the simulation.
They are alsq‘used as the references or 'true' values for computing
the errors 4TD and §TD defined in Section II-7. They are not to be 1
confused with the surveyed TDs denoted by §§é in Ref. [3]. :

II-7 TD Filter with Dead Reckoning ‘

Input Parameters: dTi, ATA, ATK, A, B, NSIGMA

Input Variables: T, ™D, TD, TD i

- Output Variables: TD, TD, §TD, 6TD

: ‘ D-11-9 o
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Loran TD measurements are generated at intervals of A‘rK
sec. A TD measurement available at time Ty is delayed or stale by
ATA sec. The TD measurement is derived from ten equally-spaced TD
samples, each of which is truncated to 10 nanosec. The TD measure-
ment is taken to be the average of the ten samples, also truncated
to 10 nanosec. The ten sample times, Tj' j=1,...,10, are given by

Tj =T - (ATA+0.45ATK) + (j-l)drj (7.1)

in which

. is the time interval between TD samples. The time intervals ATK, ;
' AT s dmj and the discrete times Tye T, and T, , are illustrated in !
Fig. II-2.

Let TD., denote a true value of a TD at time Tj and XRANj
the error in the TD sample. The TD sample, truncated to 10 nanosec
(with the 5.0 nanosec truncation bias removed), is denoted by TDSj
and given by p

'rnsj = lO[O.l(TDj+XRAN )] + 5.0 (7.2)

3

in which [x] denotes the integer part of x.

Finally, the TD measurement, which is the mean of the ten‘
samples, truncated to 10 nanosec, is denoted by TDM and given by

10
TOM, = 10(0.1(1/10) ] TDS,] + 5.0. (7.3)
I=1

3

e kT TS -

In the filter simulation the TD error XRAN was represented by a
normally distributed random variable with zero mean and standard
deviation denoted by NSIGMA.

D~I1I-10
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The integration time step in the TD filter is denoted by
dTi' During intervals between TD measurements dead-reckoning equa-
tions are used to produce the filter outputs, denoted by fbi and
fbi, every dTi seconds. The dead-reckoning equations are:

fbi = ébi_l + (£B1-1+°'5 D ar,)dr, (7.4)
f%i = 4%1-1 + ég ar, (7.5) %
TD, ; = TD; (7.6) |
T, , = TD, (7.7)

The value of fb used in (7.4) and (7.5) is taken from the current ]
output of the Heading Filter.

When a new TD measurement first becomes available a differ-
ent set of filter equations are used to modify TD, and TD,. 1In this
circumstance the seven applicable filter equations are:

TD, = TD, (7.8)
f%; = fbi (7.9)
2, = TDM_ + ATA(fB;+o.5 aT, D) - fb; (7.10)
TD, = TD) + (A+B(aT, /0T ))Z, (7.11)
f%k - 55; + (B/AT )2, (7;12)
b, = 7D, (7.13)
4;1 = f%k (7.14)
D-II-11
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Finally, the errors in the outputs of the TD Filter are

given by
STD = -r'bi - TD (7.15)
8TD = '1"1:>i - TD (7.16)

II-8 Heading Filter

Input Parameters: NTL, C, all’ 312' v

Input Variables: v, X, ¥
Output Variables: w%, TD, §TD

The Heading Filter uses a measurement of ship's heading
angle to produce a filtered value of ship's normal acceleration
from which is obtained f% used in.the dead-reckoning computations
in (7.4), (7.5) and (7.10) of the TD Filter. The time interval
between heading measurements (and hence updates in the value of
f%) is denoted by ATL and the measurement of ship's heading angle
is delayed or stale by dTW'

The true value of ship's heading angle at time t=tn is
denoted by wn and expressed in radians. To express the heading angle
in degrees we write

vy = v, (180/m). (8.1)

The measured y is expressed in degrees and truncated to the nearest
whole degree. We convert this measured value back to radians and
denote its value by w:. We have

D-1I-12
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| o = 1021 (n280) (8.2)
' n n [ ]
and
ve_y = WS_,1(r/180) (8.3)

where w:_l denotes the previously measured value of § at t-tn- ATL.
Let

Lt et e

ap® = gt -yt . (8.4)

The filtered value of ship's normal acceleration, denoted by 3, is
then given by

3, =4 _; +civiavtser)-a ). (8.5)

The components of Qn are

8 A t

%, = a cos y, (8.6)

§ = -a_ sin yt. (8.7
n n n

Then the filtered value of fb is obtained from

(8.8)

and
™ = X a3, + ¥ a,,- (8.9)

The error in TD is given by
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TD.

(8.10)

(8.11)

(8.12)

At the conclusion of the simulation control is passed to
block 9 in which the tapes for creating the CALCOMP plots are made.
In this block the means and standard deviations of the TD error and
its derivative are also computed.

After a plot tape is made the program reads the input tape
to see if there is another simulation to be made.
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III FILTER PERFORMANCE

The waypoint chosen for the sample simulations presented
in this section was numbered 2 in the numbering scheme employed in
] the spring of 1979. This was the second waypoint on the downbound
summer route and required a turn through 64.5 deg.

Numerical values of system parameters common to all simu-
lations reported here are given in Table III-l. The turn, executed
at 0.5 deg/sec, required 129.0. sec. Straight-line runs of 10 sec

ol de Loy

preceded and followed the turn. Therefore asimulation run extended
over an interval of 149 sec.

In Plots 1, 2, 3 and 4 the gain C in the Heading Filter
is given the values 0, 0.2, 0.5, 0.9, respectively. The means and
[ standard deviations of the TD error and its derivative for these

four simulations are tabulated in Table III-2,

In each of the four plots the scale for the TD error in

nanosec is given at the left of the plot and the TD error scale in
A nanosec/sec is on the right. Observe the changes in scale which
f occur in going from plot to plot.

In each plot the lower curve, which also has the larger-
amplitude, high-frequency oscillations, represents the TD error.

In Plot #1 the gain C in the heading filter is 2zero, so ]
that this run corresponds to the conventional second-order filter
without acceleration-aiding. Note the large velocity lag (TDDT
error) which exists at the end of the run. The TD error is nearly
240 nanosec - a value much too large to be tolerated. 3

In Plots #2, 3, and 4 as the gain C is increased the TD
error is correspondingly decreased.

While the runs shown in the plots represent the case of
a critically damped filter (compare values of A and B in Table III-1

3

D-III-1
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with a and b in Table I-1l) we do not intend to imply that this is
the 'best'choice of filter gains for an operational system. They
are presented because they indeed exhibit the behavior one might
expect of a critically damped filter and thus add to our confidence

in the simulation.

D-III1-2
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Table III-1

Numerical Values of System Parameters

v = 10.0 knots
wmax = 0.5 deg/sec i
d‘I‘i = 0.01 sec

dTw = 0.5 sec
ATA = 0.5 sec
i ATK = 1.0 sec
3 AT = 1.0 sec
4 L se
7 A = 0.04422
B = 0.0005
NSIGMA = 5.0 nanosec

D-III-3
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Table III-2

Mean and Standard Deviation of
TD Error and TD Error

TD ERROR* TD_ERROR**
Plot C Mean Std. Dev. Mean ?Std. Dev.
1l 0 ~128.107 85.655 -7.200 3.656
2 0.2 -10.273 5.855 -0.468 0.319
3 0.5 ~-4.974 3.361 -0.215 0.180
4 0.9 -3.390 2.643 -0.142 0.137
* Nanosec

** Nanosec/secC
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APPLIED PHYSICS LABORATORY
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ZT70S2R0
October 30, 1979

TO: C. R. Edwards
FROM: V. Schwab
SUBJECT: The Effect of Uncompensated TD Truncation Biases

on TD and TD Errors in the USCG LORAN-C HHE
Navigation Program

REFERENCE: S2R-79-166, Design, Simulation and Performance of
Digital TD and Heaaiingllter for the USCG LORAN-C

HHE Navigation Program, by L. J. Levy and V. Schwab,
October %2, 1979

In the USCG LORAN-C HHE Navigation Program a l0-nanosec
truncation is performed on each of ten egqually-spaced TD samples
which are then averaged in the receiver. The average of the ten
truncated samples is itself then truncated at the l0-nanosec level
to produce a TD measurement. The truncation of the samples pro-
duces a S.0-nanosec bias in the average and the truncation of the
average creates an additional 5.0 nanosec bias in the TD measure-
ment for a total bias of 10 nanosec.

It is desirable to compensate for these biases and quite
easy to do so. A compensation of $.0 nanosec should be added
either to each TD sample in the receiver or to the average of the
ten TD samples before it is truncated. Then the truncated average
should be compensated by the addition of 5.0 nanosec. However if
separate 5.0-nanosec compensations are not made to the samples and
the measurement, a single 10.0-nanosec compensation may be added to
the measurement with almost equal beneficial effect.
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IBM 3033 Computer Simulations Which Show the Effect of Compensated
and Uncompensated Truncation Bliases

The USCG TD Filter Simulation Program described in the
reference was used to study the behavior of TD and TD errors in
the presence of biases, uncompensated and compensated, resulting
from TD sample and measurement truncations.

In Table 1 the results of five simulation runs are shown.
The filter gains and system constants, defined in the reference
memorandum, had the same values indicated in the Table in each of
2 the five runs. What was varied from run to run were the compensa-
tions made for the biases resulting from the sample and measurement
truncations.

In Run 1 no compensation is made for truncation bias and
the mean of the TD error is 11.268 nanosec - close to the total
10.0-nanosec bias present in the TD measurement.

In Runs 2 and 3 the sample and measurement truncations
are compensated, but not both in the same run. As a result the
mean TD errors are not far from the expected 5.0 nanosec bias.

{ The proper compensations for the truncation biases are
made in Run 4 and here the mean TD error is less than a quarter of
a nanosec.

The single 10.0-nanosec compensation made in Run 5 is
not quite as effective as the dual compensations of Run 4; still,
the mean TD error in this case is only a little greater than one
nanosec.

- _

The simulations in Table 1 were made for a stationary ship
(v=0) and no heading filter was used (C=0). The filter was slightly

underdamped (B>0.005).
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November 20, 1979

TO: C. R. Edwards

FROM: L. J. Levy/V. Schwab

SUBJECT: Formulas for Making Short-Range Predictions of
Ship's Course in the USCG LORAN-C HHE Navigation
Program

REFERENCES: [1] APL/JHU S2R-79-~162, Methods for Obtaining

Approximate and Exact Sclutions to a LORAN
Navigation Egquation, by L. J. Levy and
V. Schwab, October 8, 1979

{2) APL/JHU S2R-79~166, Design, Simulation and
Performance of Digital TD and Heading
Filters for the USCG LORAN-C HHE Navigation
Program, by L. J. Levy and V. Schwab, October
22, 1979

It may prove helpful to a pilot in steering his ship to
provide him with pictures (CRT displays) of the predicted position
of the ship a short time into the future. By observing how the
predicted position responds to changes in engine speed and rudder
position he may be significantly aided in anticipating the maneuvers
required to follow a prescribed or desired course.

The purpose of this memorandum is to provide the- -formulas
for making simple short-range predictions of ship position based on:
present ship's velocity alone; present ship's velocity as well as
present turning rate. We consider how the initial conditions of posi-
tion and velocity might be derived from LORAN-C measurements. It is
proposed that initial turning rate be obtained from filtered dif-
ferences of gyrocompass readings.

1. Formulas for Predicting Ship's Course

We define the following terms:

4 e Rl e R Y KSRGS e
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X5¢Y present cartesian position coordinates of the ship

i0,§0 present velocity coordinates of the ship

wo present heading angle of the ship (measured clock-
wise from north)

@o present turning rate of the ship

Ve present speed of the ship

T time interval over which course predictions are to
be made

D distance interval over which course predictions are
to be made

At time interval between predictions

t(k) time of kP prediction (k=0,1,2,...,KMAX)

Ax (k) ,Ay(k) predicted coordinates of the ship at time t(k) rela-
tive to predicted position at time t{k-1).

Initially (t(0)=0) the ship is at x=x, and y=y,. At t(l)=
At the predicted coordinates are xl=x0+Ax(l) and yl=y0+Ay(l); at
t(2)=2At, x2=x°+Ax(l) + Ax(2) and Y,= yo+Ay(1) + Ay(2). We shall
compute the increments 4x(k) and Ay(k) rather than Xy and Yy since
the CRT plotter makes use of these increments. We consider two cases:
one in which the prediction is based upon the ship's present trans-
lational velocity alone and the other in which account is also taken
of the present turning rate of the ship.

Given: xo,yo,io,Qo,T or D
Compute:

At=T/KMAX or At=D/(KMAX vo)

F-2
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Given:

Comgute :
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DO 1 K=1, KMAX

t(K) = KAt
Ax(K) = iOAt
Ay (K) = §0At

S2R-79-187
Page -3-

xoryoliol.yolﬁ’or T or p

At = T/KMAX or At
AY = ioAt

- . 2 o
Vo =V X *+ Y

cos Y, i'o/vO

sin Ay

cos Ay

DO 2 K=1, KMAX

sin ¢

cos Y

t(K) = KAt

= D/ (KMAX vo)

Ay - AW3/31 + ...

1 - ay2/21 4 ...

sin wd cos Ay + cos wo sin Ay

cos wo cos Ay - sin wo sin Ay

Ax(K) = (vo/@o)[cos Yo = cos vl

F-3
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BY(K) = (vy/¥g) [sin ¥, - sin y]
sin wo = sin ¢ |

2 cos wo = cos VP

2. Source of X5 and Yo

The present horizontal coordinates of the ship, Xq and

Yo are obtained as the exact solution

(x4
=3
Yo =

of equation (4.1) of Ref. [l]. The iterative scheme for obtaining

EQ is given by (4.12),

3. Source of X, and Yo

It would be possible to produce %, and yo as the exact

solution EQ, of a LORAN rate equation analogous to (4.1). PFor the
intended purpose that accuracy is not required and the computational
burden could not be justified. On the other hand the linear G-matrix
approach would probably result in errors that are larger than we can

stand.

Instead we recommend that the x- and y- outputs of the
LORAN equation be differentiated and then passed through a first-
order filter to produce *0 and 90‘ In Ref. [2] the time interval
between TD updates is denoted by AT,. We shall assume here that

K
predictions based on the updated values of Xq and Y, are to be made

F-4
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at the same time frequency. We denote the differentiated LORAN

position outputs, X, and Yo by i; and i; and write

xo(t) - xo(t - ATK)

i = 0
0 ATK
Yo BTy

The filtered velocity coordinates io(t) and &o(t) are then obtained
from the first-order filter equations

. . LR 3 -
xo(t) xo(t - ATK) + H[xo - xo(t - ATK)]

Yolt) = ¥olt = 8Tp) + Hlyy - vt = AT,)]

in which the gain constant H will be chosen to produce the desired
performance of the predictor. H will depend on the gain settings

in the TD filter which control the noise levels in X, and Yo-

4. Source of wo

The first-order heading filter which supplies a filtered
value of TD is defined by equation (8.5) of Section II of Ref. [2]
and is reproduced below:

+ C[v(Awt/ATL) -a

n n-1 n—ll'

F-5
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In the equation above a, vy is the filtered acceleration normal
to the path of the ship, C is the gain constant, v denotes ship's
speed, ATL is the time interval between 3n and Sn_l and Awt denotes

é the difference of truncated gyrocompass readings.

One possibility for obtaining &0 for the predictor would
be to use the formula

by = 8, /vy = 3/ %2 + 3,2
The possible disadvantage r?sulting from this source for io is

the value of C used in the a-filter. For the TD-filter a large
value of C (near unity) is to be preferred in order to obtain a
rapid response to a turn. For the predictor application, a smaller
value of C might prove to be a better choice. Therefore we recom-
mend that the following separate io-filter be employed for the pre-
dictor:

K. ' - ¥ - t - N -
wo(t) = wo(t ATL) + K[Ay /ATL wo(t ATL)].

In the egquation above K denotes the gain constant and Awt is the
same term which appears in the heading filter.
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1
TO: C. R. Edwards .
FROM: V. Schwab
SUBJECT: Additional Per‘ormance Evaluations for the Second-

Order a,b-Filter

REFERENCE: S2R~79-166 Design, Simulation and Performance of
Digital TD and Heading Filters for the USCG LORAN-C
HHE Navigation Program, by L. J. Levy and V. Schwab,
October 22, 1979

In Table I-1 of the reference, reproduced in this memo-
randum, we present evaluations of some of the performance charac-
teristics of the a,b-filter used to filter LORAN TDs in the USCG
HHE Navigation Program. Table I-1 offers examples of two filter
designs: (1) a critically-damped filter defined by the gain rela-
tion, 4b=(a+b)2; (2) an optimum filter, defined by the gain rela-

tion, b=a2/(2—a), which results in a slightly underdamped filter.

We have added to Table I-1 a third case in which the rate
gain b is chosen to be the mean of the values of the first two
cases, i.e., b=0.5{2-a- 2/1-a + az/(2-a)}. ]
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Table I-1

Summary of Some Characteristics of
The Second-Order Filter

Critically Damped Filter: 4b = (a+b)?

FILTER TIME CONSTANT
a b o] a *
POS VEL No. of Ats (SEC)
.6400 .1600 .7130N .177oN/At 1 .5
.3392 .0350 -4870y -04690, /At 4 2
.1800 .0089 -3450, | .01560, /At 10 5
.13642 -0050 | .2980, | .00990, /4t 13 6.5
.1100 -0032 | L2670 .00700, /At 17 8.5
.04422 | .0005 -1670y | .00170 /0t 44 22
\
Optimum Filter: b = az/(2—a) |
FILTER TIME CONSTANT }
a b o c * i
POS VEL No. of Ats (SEC) ;
{
.6400 .3010 . 7380y -3420, /bt 1 .5 )
.3392 L0690 | .5190 | .0930, /At 2 i1
.1800 | .0178 | .3730y | .03lo /At 4 2.0
.13642 © .0100 | .3240y | .01980, /At 5 2.5
.1100 .0064 - 2900 01410, /At 6 3
.04422  .0010 -1830y .00340, /At 17 8.5
*Assuming At = 0.5 sec
0,, = ¢ of measured noise At = time interval between updates

N
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Table I-1 (Cont'qd)

Mean of Critically Damped and Optimum Filters
b = (1/2){2-a - 2 /I=a + a’/2-a)}.

FILTER TIME CONSTANT
a b Gpos Ovel No. of Ats (sec)
.64000 .23059 . 7250, . 2580, /At 1 .5
.33920 .05214 .5040, .0700, /At 2 1
.18000 .01336 .3590, .0230, /At 4 2.0
1 .13642 .00749 .3110, L0150, /8t 5 2.5 i
§ .11000 .00480 -2790 .0110, /At 7 3.5 j
; .04422 .00075 -1750y - 00260, /At 18 9.0 %
3 . 1
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TO: C. R. Edwards
FROM: L. J. Levy/V. Schwab
SUBJECT: Exact Method for Obtaining Horizontal Components of

Ship's Velocity from TD Measurements

REFERENCES: [l1] S2R-79-187, Formulas for Mak;;g Short-Range Pre-
dictions of Ship's Course in the USCG LORAN-C
HHE Navigation Program, by L. J. Levy and
V. Schwab, November 20, 1979

[2] S2R-79-162, Methods for Obtalning,Approxzmate
and Exact Solutlons to a LORAN Navigation Equ.
tion, by L. J. Levy and V. Schwab, October 8,

[3] S2R-79-008, G-Matrix Analysis for USCG LORAN-C
HHE Nav1gat10n Program, by L. J. Levy and
V. Schwab, January 19, 1979

In Ref. (1] we proposed that the horizontal velocity com-
ponents of the ship be determined by passing differentiated navi-
gated positions through first-order filters. The alternative method,
much to be preferred if the computing capacity is available, is to
make use of the relation

in which TDQ is the vector of TD time derivatives obtained from the

IORAN TD filter and GQ is the G-matrix evaluated at EFEQ' the current

navigated position of the ship. 1In this method, the velocity compu-~
tation is performed after the position fix has been obtained (i.e.,

after the value of EQ has been determined by means of the iterative

procedure outl%ned in §ection 4 of Ref. [2]). The relation given

. \ , 1 =2 .
above between gQ and TDc is exact since GQ is evaluated at 2 EQ It
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therefore fully exploits the velocity information contained in the
TDs that are generated by the TD filter.

In the following sections we list the computations required 3
EQ for the cases where there are three and two TD measure-
ments available. '

to produce

1. Velocity Computation Employing Three TDs

In the notation of Ref. [3], the linearized relation be-
tween horizontal position, represented by the 2xl1 vector Z, and
LORAN time differences, represented by the 3xl vector TD, is given by

TD, - g)p = Ap(_Z_Q - gp). (1.1)

In (1.1) the elements of the 3x2 Ap-matrix depend upon Ep and the
coordinates of the master and slave stations. If we 'solve' (1l.1)
for (EQ-EP) we obtain

2. -2 =G (T - TD 1.2
Zq p( Dy, p) (1.2)
-1.T
A.
p
Equations (1.1) and (1.2) are linear approximations in

T
h G =(A_A
in whic o ( o p)

i

which p denotes a fixed waypoint and Q a variable nearby point. If
we differentiate (1.2) with respect to the time we obtain the ap-
proximation

Zq * G, ID,. (1.3)

However, at p=Q equation (1.3) becomes exact, i.e.,

Zg = G g

H-2
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