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ABSTRACT

A fully macroscopic description of semiconductors is presented

which includes the boundary conditions at the surface of the semicon-

ductor that are required for consistency with the usual diffusion-

drift current equations. As in all field theories, e.g., electro-

magnetism, both the boundary conditions and the differential equations

are obtained from the same governing integral forms. The new boundary

conditions relate the jump discontinuities in the chemical potentials

across the interface to the forces exerted by the lattice on the charge

carriers which prevent the carriers from leaving the solid. The expres-

sions for the forces in the static case are found and the values of the

material surface coefficients appearing therein are obtained from quasi-

static MOS C-V measurements for some particular Si-SiO2 interfaces.
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1. Introduction

The basic understanding of the behavior of semiconductors arises from

the semiclassical description of the motion of electrons in a periodic

1-3potential . This model of the semiconductor has proven invaluable in

interpreting a host of phenomena in the infinite lattice. Nevertheless,
4

when the electron number density varies appreciably , as it often does near

boundary surfaces, or in cases of inhomogeneous doping, a macroscopic

description, which is not related in a precise quantitative way to the

5-7above-mentioned microscopic model, is rmployed5 . This standard macro-

8scopic description , consisting of diffusion-drift current equations, the

charge balance equations and the electrostatic constitutive equations, is a

continuum field theory, i.e., a system of partial differential equations

containing dependent macroscopic field variables as a function of space and

time. However, a complete field theory must also have a set of consistent

boundary conditions. These are obtained from integral forms of the governing

equations just as in electromagnetism, where electromagnetic boundary con-

9-10
ditions are obtained from the integral forms of Maxwell's equations . In

contrast to electromagnetism, however, the integral forms and the associated

boundary conditions have never been obtained for the standard macroscopic

5-7theory of semiconductors

A well-defined macroscopic model of a semiconductor has been presented

in the literature along with the integral forms obtained from that model.

The integral forms have been shown to yield the conventional diffusion-

drift current differential equations plus the associated boundary conditions

across the surface of the semiconductor, which are missing in the existing

macroscopic semiconductor theory. However' since the equations appearing

in Ref.1l are unduly complicated by the inclusion of mechanical deformations
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in the descripti!on and, for other reasons, are not in a convenient form, we

rederive the equations and obtain the more useful form here. The macroscopic

12
model from which the field theory follows is chosen to permit electronic and

hole conduction in interaction with the electrostatic field. Although the

model can readily be extended to incorporate electric polarization 11, we

do not bother with this refinement and include polarization in the usual

linear way. Also, in the interest of clarity all resonance phenomena are

expressly excluded from the treatm~ent by ignoring the mass of all moving

components in the model. Accordingly, the model consists of three suitably

defined interpenetrating continua, -which are called the lattice continuum,

the conduction electronic continuum and the hole continuum. The lattice con-

tinuum does not move and contains a charge density representative of the

fixed ionized impurities responsible for extrinsic semiconduction. The con-

duction electronic and hole continua are inertialess charged fluids which

move through the lattice continuum while experiencing a force of resistance.

In addition, each conducting fluid interacts with neighboring elements of

the same fluid by means of defined fluid pressure forces. Furthermore, charge

exchange is permitted between all three continua in order to allow for re-

combination-generation phenomena.

As in all such descriptions, the application of the laws of balance of

charge and momentum yields the equations of motion of the matter, which,

with the equations of electrostatics, constitutes an underdetermined system.

The system is completed by the addition of various materially descriptive

constitutive relations 13whose allowed functional forms are determined from

14thermodynamic arguments . Tbe differential forms of the equations of motion

for the conduction electronic and hole fluid. along with linear constitutive
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assumptions yields precisely the usual diffusion-drift current equations

containing the material coefficients of mobility and diffusivity.

The boundary conditions at the surface of the semiconductor, which are

required for the solution of semiconduction problems involving bounded media,

are obtained from integral forms of the semiconduction equations. As with all the

other differential equations and their associated boundary conditions, this

procedure ensures consistency between the semiconduction differential equa-

tions and the semiconduction boundary conditions. These boundary conditions,

1-71
which do not appear in any of the existing literature on semiconductors -7

relate the jump discontinuities in the electronic and hole chemical potentials

across the surface to the forces per unit area per unit charge densities

exerted by the lattice continuum on the respective fluids that keep the

15
electrons from leaving the solid . The thermodynamic arguments in

Appendix A indicate that the forces per unit area per unit charge densities

are functions of the electric field on each side of the surface of the semi-

conductor and the respective charge densities of each fluid at the surface.

The expressions for the forces per unit area per unit charge densities con-

tain material surface coefficients which are to be determined from measure-

ments just as the mobility and diffusivity coefficients in the differential

equations for the semiconductor are often measured. Presumably, the material

surface coefficients could be calculated from a more fundamental-

quantum mechanical model by means of electronic surface structure calcu-

lations 6 17  ut the available results seem to indicate that for quanti-

18 19
tative detail such calculations would be prohibitively complicated'
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The missing boundary conditions have not deterred workers from treating

problems concerning semiconductors with boundaries analytically2 0 . To be

sure, many authors have circumvented the difficulty by imposing various

boundary conditions in order to provide the additional condition required

for the solution of the boundary value problem. For example, some have

simply disregarded the existence of surface charge on the semiconductor

21
surface .others, especially those interested in computer aided

22 23-25
design have assumed apriori the value of the surface charge . Another

attack has been that of Kroemer 26 , 7Ywho used the concept of a "control char-

acteristic" in treating certain aspects of Gunn effect phenomena. Many

additional examples may be cited 28* Although some of these procedures are

based on reasonable assumptions over certain ranges 29, in a number of cases
30

results have been obtained which are clearly at variance with experiment

In addition, none of the previous approaches have formulated the boundary

value problem without assuming boundary conditions not deduced from funda-

mental principles. In the procedure presented here when the newly defined

material surface coefficients have been found from measurements of a partic-

ular material surface, the new boundary conditions enable the solution of

semiconduction boundary value problems.

In the final section of this paper an illustration of this purely

macroscopic description of surfaces of semiconductors is presented by

treating the often analyzed semiconductor-insulator interface. Much work 3 1 3 3

has been done with the purpose of understanding and describing the

semiconductor-insulator junction, especially in the case of the Si-SiO2

interface 34. Microscopically, this boundary is an immnensely complex struc-

ture. Even in the case of the much simpler semiconductor-vacuum interface

electronic surface structure calculations have yet to yield good quantitative
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35
agreement with microscopic measurements Undoubtedly, the connection of

the microscopic calculations with the essentially macroscopic measurements

of capacitance and conductance, which are frequently made in studying

semiconductor-insulator interfaces using the MOS structure, is even further

away. Although these measurements are usually expressed in terms of inter-

face state densities, it is clear that there is actually no real correspond-

ence between such measurements and microscopic quantities. We believe that

the approach presented in this paper, which depends crucially on the new

(missing) semiconduction boundary conditions, affords a purely macroscopic

quantitative description of semiconductor interfaces that can be used to

advantage in categorizing semiconductor interfaces. More specifically, as

already noted, in this approach the semiconductor interface is characterized

by a set of macroscopic material surface coefficients which are to be

measured. In the case of the semiconductor-insulator junction MOS quasi-

static C-V measurements provide a means of evaluating these coefficients, as

is exhibited in the last section for the Si-SiO 2 interface. Among other

things, a knowledge of the values of these material surface coefficients can

provide a detailed quantitative understanding of the influence of the surface

on the performance characteristics of devices. For example, in the case of

a MOSFET the range in which the values of the surface coefficients must remain

with aging in order to satisfy some circuit performance criterion can be

36
established

2. The Macroscopic Model of the Semiconductor

As indicated in the Introduction the macroscopic model of the semicon-

ductor consists of three well-defined interacting continua, which are present

at each point of space and time. The three continua are defined as follows:



1. The (combined) lattice continuum, denoted by the superscript i,

may have either a positive or negative charge density corre-

37
sponding to the ionized impurity density . This continuum

does not move and contains the macroscopic elements that

38
account for polarization

2. The conduction electronic continuum, denoted by the super-

script e, corresponds to the conduction band electrons and is,

of course, negatively charged. This continuum is an inertialess,

conducting, compressible fluid that experiences a force of re-

sistance from its motion with respect to the lattice continuum.

3. The hole continuum, denoted by the superscript h, corresponds

to the absence of valence band electrons and is positively

charged. This continuum also is an inertialess, conducting,

compressible fluid that experiences a force of resistance from

its motion with respect to the lattice continuum.

The Cartesian components of points in the lattice continuum are denoted

by x (i =,2,3), which, of course, denotes the components of the same

point in the conduction electronic and hole fluids also. The charge den-

39 i e hsities associated with the three continua are denoted p , p and p

respectively, and are functions of space xi and time t in general. The

three continua are permitted to exchange charge with one another through

i e h
defined charge source densities labeled y , y and y . These allow for the

possibilities of bulk generation/recombination of carriers by means of

either changes in the degree of ionization of impurities or electron-hole

pair gereration or recombination. Then, in order to satisfy the conserva-

tion of total macroscopic charge at each macroscopic point, we must have

+y + Y = 0. (2.1)
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Now, each conducting fluid interacts with the lattice continuum at the

macroscopic point xi by means of defined material electric fields designated

Ee and E , respectively. These cause equal and opposite forces ± p Ee and

p h h to be exerted between the lattice continuum and each of the respective

conducting fluids. The macroscopic forces -p e and -phEh exerted on the

lattice continuum by the fluids are assumed to be sufficiently small that
40

any motion they tend to produce may be ignored for our purposes . Each

conducting fluid interacts with neighboring elements of the same fluid by
eh

means of pressure forces labeled pe and p , respectively, which act on the

surfaces of separation between elements of the respective fluids. The quasi-

static Maxwell electric field E exerts forces on all elements of charge, but we note

that since the lattice continuum does not move,only those forces exerted on the

conduction electronic and hole fluids are of any importance in this work.

3. The Macroscopic Equations for the Semiconductor

Since the two conducting fluids have different velocities yet occupy

the same region of space as the lattice continuum which does not move, it is

advantageous to write the integral forms of the balance equations with respect

to a stationary element of volume. Accordingly, we write the charge balance

equations for the lattice (impurity), the conduction-electronic and the hole

continua in the respective integral forms

p p'dV y J ydV , (3.1)
at V

f j pedV + r n vePedS = f YedV, (3.2)

V S VV -
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where n is the outwardly directed unit normal to the surface S enclosing the

arbitrary volume V fixed in space. The vectors v and h denote the veloci-

ties of the conduction electronic and hole continua, respectively. The local

differential forms resulting from (3.1) - (3.3) are obtained in the usual way

by employing the divergence theorem to convert the surface integrals to

volume integrals and by employing the fact that the volume V is fixed in

space and is arbitrary, with the result

api/at = Yi (3.4)

pe ee) e
aip /6t + V (pe = (3.5)

h hh hp/6t+ V (PV) = . (3.6)

Clearly, the total charge, p, and the actual current density, J, at any

point are given by

e h i (37)
pfp +p +p,(37

j e e hh = e jh (3.8)

where Je and j are the conduction-electronic and hole current densities,

respectively. Adding (3.1)- (3.3) and employing (2.1), (3.7) and (3.8),

we obtain

pdV+ n 9 JdS=O, (3.9)
V S

which is the usual integral form of the conservation of total electric charge.

From (3.9), with the aid of the divergence theorem and the arbitrariness of V,

we obtain

ap/?,t + V J=0, (3.10)
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which is the usual local differential form of the total charge balance equa-

tion. Note that Eq. (3.10) may equally readily have been obtained by adding

(3.4)- (3.6) and employing (2.1), (3.7.) and (3.8).

In this work we need the usual charge and circulation equations of

electrostatics, which take the respective integral forms

f n DdS= f p dV (3.11)
S V

E 9 dr =0, (3.12)

C

where D is the electric displacement vector. E is the Maxwell electric field

vector, S is an arbitrary surface enclosing the volume V and C is an arbitrary

closed curve. From (3.11), with the aid of the divergence theorem and the

arbitrarino- of V, we obtain

S* D = p, (3.13)

which is the local differential form of the charge equation of electrostatics.

Furthermore, Eq. (3.12), with the aid of Stokes theorem and the arbitrariness

of the area enclosed by C, enables us to define the usual scalar electric

potential cp such that

E= Vp. (3.14)

We now note that since the lattice continuum does not move the balances

of linear momentum and mass of the lattice continuum may be ignored in this

work in which the lattice continuum simply serves as the entity that provides

the reactions to the actions of the two conducting fluids. Furthermore,

since the conducting fluids have been defined as being massless, the balance

of mass of these constituents is not needed. The equations of the balance

of linear momentum for the conduction-electronic and hole continua take the

respective integral forms



10.

5 JpdaS + p'( + E) dV 0, (3.15)

I

S V

Zfphd+Jph(E +Eh) dV= (3.16)

S V

From (3.15) and (3.16), with the aid of the divergence theorem, the arbitrari-

ness of V and (3.14), we obtain the local differential forms of the semicon-

duction field equations for the respective continua

-yp - p Vc+p E =0, (3.17)

_1h h (3.18)
-yp -P zc+hph

At this point we note that the governing differential equations consist-

ing of (3.10), (3.13), any two of (3.4) - (3.6), (3.17) and (3.18), with

(2.1), (3.7), (3.8) and (3.14), constitute an underdetermined system, i.e.,

there are more dependent variables [31, (10 scalars and 7 vectors)I than equa-

tions (18). As usual in any macroscopic description of this nature, materi-

ally descriptive constitutive equations are required in order to obtain a

determinate system. Constitutive equations consistent with the model are

obtained by writing the equation of the conservation of energy for the

combined material continuum, from which the first law of thermodynamics is

obtained, and employing the second law of thermodynamics. However, in order

not to obscure the main purpose of this work, which is to indicate the

importance of the boundary conditions as well as the differential equations

in the macroscopic description of semiconductors, we give the derivation of

consistent constitutive equations from the thermodynamics in Appendix A

and simply present the resulting constitutive relations here. In accordance

with Appendix A the constitutive equations must take the following functional

forms:
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e epe, h hph,
p e= p ,T) , p = p T) , (3.19)

Ee=Ee(p, eET), Eh= E h(p hv ,ET) , (3.20)

De= De(ET) (3.21)

e e e h h hy =Y (p ,p ,V ,v ,ET) ,

h h e h e hY =y , ,E,T) , (3.22)

where T is the (here uniform) absolute temperature. As in all macroscopic

theories, e.g., electromagnetism and elasticity, the functional forms and

the values of the material coefficients (dielectric constants, elastic

constants, etc.) are to be determined from experiment. Any functional form

depending on the variables shown in (3.19) - (3.22) will be consistent with

the model provided that (A7) is satisfied. For example, the important forms

usually chosen for (3.20) are

e e e h h hE V =- 1E v /P 1 (3.23)

e h
where ,e and p are the measured mobilities of the conduction-electronic and

hole fluids, respectively. At high electric fields, it is well known that

41
E dependent terms become necessary . Similarly, the form usually chosen

for (3.21) is

D = esE, (3.24)

where e is the permittivity for the semiconductor.
Ts

Before proceeding, we note that a significant simplification in (3.17)

and (3.18) may be achieved by employing certain relations between the

e h
gradients of the pressures p and p and the gradients of the well-defined

e eeh hh

chemical potentials cp e.CPe (peT) and cp -cp (p ,T), which are derived in

Appendix A and are of the form
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(1/pe)ZPe=VT (1/ph )ZP CPh (3.25)

The substitution of (3.25) into (3.17) and (3.18) yields

_(:e+,P) + Ee=0 ' 1.6

- V(=0 (3.26)

_V(CPh +p) + Eh=0, (3.27)

which, as we shall see, are very useful forms of the differential equations

for the semiconducting fluids. Substituting from (3.23) for the respective

fluids into (3.26) and (3.27), respectively, and employing (3.14), the

e e e h h h
definitions in (3.8), the fact that cp =cp (p YT) and cP =(P (p T) and the

assumption of uniform temperature, we obtain

e =-,e P E - De (3.28)

Jh hh Dh h
, = p p E-h p , (3.29)

where

e e e e h h h h hDe  pe ,Pe/,p , D =+ p p cp/ph, (3.30)

are the diffusion coefficients. Equations (3.28) and (3.29) are the standard
43

diffusion-drift current equations for the conduction-electronic and hole

fluids, respectively, and (3.30) contains familiar expressions also4 4 .

Appropriate forms for (3.22) are well known
4 5.

At this point we note that we now have a determinate theory, which by

appropriate substitution can readily be reduced to 10 equations in the 10 de-

pendent variablese h J and je. The 10 equations are any two of

(3.4)-(3.6), (3.10), (3.13) and the three each of either (3.26) and (3.27) or

46,47
(3.28) and (3.29) 4 ' In order to have a complete field theory, the

boundary (or jump) conditions across surfaces have to be adjoined to the sys-

tem of differential equations. However, before we discuss the boundary
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conditions we note that the particularly useful differential forms for the

semiconducting fluids are equivalent to the integral forms

n (rn( e + )dS +rEedV . 0, (3.31)
S V

n l(Ch + cpdS + jEhdVmO0 (3.32)
S V

because the local differential forms in (3.26) and (3.27) can readily be

obtained fromt the respective integral forms in (3.31) and (3.32) when the

field variables are differentiable. Moreover, we now take (3.31) and (3.32)

to be valid even when the field variables are not differentiable and (3.26)

and (3.27) cannot be obtained, such as across surfaces of discontinuity.

Of course, all the other integral forms are taken to hold across surfaces

of discontinuity also. For purposes of obtaining boundary conditions in this

work, the integral forms (3.31) and (3.32) replace (3.15) and (3.16), respect-

ively, because they are considerably simpler forms that result in more con-

venient boundary conditions.

The pertinent boundary (or jump) conditions are obtained by applying

the integral forms (3.9), (3.11), (3.31), (3.32) and any two of (3.1) - (3.3)

to an arbitrary pill box region encompassing a portion of the surface of

discontinuity and taking the limit of the region as the volume shrinks to

zero faster than the area in the usual way 48, while assuming that the

volumetric densities either remain bounded or become unbounded in a specified

way. The boundary (or jump) condition obtained from (3.12), which contains

acirculation integral, is determined instead by taking the circulation around

an arbitrary area normal to and intersecting a portion of the surface of dis-

continuity and taking the limit as the area enclosed by the circuit collapses

48to the surface of discontinuity in the usual way . The jump conditions
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obtained from any of (3.1) - (3.3) are not of interest in the present work

(because only total surface charge is of interest) and consequently, are not

obtained here. From (3.11) in the above mentioned way we obtain the well-

known condition

n . [D] = , (3.33)

where we have introduced the conventional notation [C] for C , n denotes

the unit normal directed from the - to the + side of the surface of discon-

tinuity and a is the surface charge density, which is defined by

a dS= lim f pdV. (3.34)
S V_0 V

Similarly, from (3.9) with the aid of the time derivatives of (3.33) and (3.34),

we obtain

n e [bR/t + J] = 0. (3.35

From the circulation integral (3.12) in the above mentioned usual way, we

obtain the well-known condition of electrostatics

n X [E] = 0, (3.36)

which, with the aid of (3.14), enables us to obtain the boundary condition
4 9

( pi - 0. (3.37)

The application of (3.31) to the arbitrary limiting pill box region

in the aforementioned manner yields

n[cp e+., f epn, (3.38)

where

fe n ds- lir Eedv, (3.39)

S V-0 V

and we note that the force per unit charge Ee exerted by the lattice continuum

on the conduction electronic fluid at the interface must be permitted to become
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unbounded in the manner indicated in (3.39) because there must be a force

exerted by the lattice continuum on the conduction electronic fluid at

the boundary which prevents the electrons from leaving the semiconductor.

Substituting from (3.37) into (3.38) and omitting the n, which is unneces-

sary, we obtain

e = fe (3.40)

which states that the jump in the chemical potential of the conduction electronic

fluid across a surface of discontinuity is equal to the restraining surface

interaction force exerted by the lattice. Clearly, from (3.20)land (3.39),

the constitutive equation for fe must be of the form

fefe pe ve E T
e=f (pe ,v e,,T) (3.41)

In a similar way, from (3.32) and (3.37), we obtain

(h, = fh (3.42)

where

f fhnds= lim E ef V (3.43)
SV- 0 J

S V

and from (3.20)2 and (3.43) we must have

fh (p , vE, T). (3.44)

Equations (3.40) and (3.42), with (3.41), (3.44) and the functional depend-

e h e h
ences of cp and cp , respectively, on p and p are the previously discussed

required semiconduction boundary conditions, the existence of which along

with the application in the next section constitute the main point of this

work. Appropriate specific forms for (3.41)and (3.44) are discussed in the

application in the next section and expressions for

e e e h h h
V =CP (p ,T), Cp Cp (p T) (3.45)

are discussed in Appendix B.
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4. Application to Si-Si02 Interfaces

As noted in the Introduction, the purely macroscopic equations for the

semiconductor, which have been developed here, are particularly well-suited

for the description of the influence of the properties of the surface of

the semiconductor on gross sample behavior. The MOS quasi-static C-V experi-

ment provides a cohvenient means of demonstrating some of the advantages of the

purely macroscopic description. As already mentioned, this experiment

provides a means of evaluating some of the macroscopic material surface

coefficients that occur in expressions to be written for fe and P.*

The values of these coefficients for a particular semiconductor

surface are obtained by solving a straightforward one-dimensional problem

corresponding to the experimental setup and deriving an expression for an

observable consequence in terms of the unknown material surface coefficients,

from which the values of the coefficients are determined by comparison with

measurements. in order that our model of the actual MOS quasi-static C-V

experiment be valid, the following requirements must be satisfied s

1. The geometry should be such that the assumption of one-
51

dimensional dependence holds

2. The thickness of the semiconductor should be sufficiently large

tha'. one end can be assumed (in the problem) to be at infinity.

3. There should be no fixed or mobile oxide charges.

4. The static form of the equations should be applicable 5

5. The semiconductor properties should be macroscopically uniform.

6. The oxide capacitance should not be much smaller than other

capacitances in order that the surface behavior be detectable
53by a total capacitance measurement

A schematic of the modelled MOS structure with associated coordinate system

i a shown in Fig.l1.
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Under the assumed static conditions we have

v e.v h=0 e=Y h=Y 0  (4.1)

and the dynamic equations consisting of (3.5), (3.6) and (3.10) are satis-

fied identically. The nontrivial equations remaining are (3.13), (3.28)

and (3.29) in the absence of je and J . Since in the problem under consid-

eration we have one-dimensional, i.e., x-, dependence only, from (3.13),

with (3.7), (3.14) and (3.24), we have

2 2 e h i
dcp/dx =- (/es) (p +p +p , 0 x, (4.2)

and (3.28) and (3.29) take the respective forms

p edcp/dx= (De/,e )dpe /dx, 0 < x , (4.3)

p hdp/dx = - (Dh /ph )dp h/dx, 0-<x. (4.4)

Since the charge density vanishes in the oxide, we have

d2/dx 2 =0, -A,<x 0. (4.5)

As a consequence of condition 2 above, we have

p-0, cp-0, dcp/dx-0, asx--. (4.6)

The boundary condition to be satisfied at the interface between the oxide

and the metal is

=o - MOS' at x=-L, (4.7)

where cPM0 is due to the potential jumps arising from possible double layers

at the metal-oxide interface and the metal-semiconductor interface and

co is the applied (gate) voltage relative to a metal "ground" plate.

From (3.37), (3.40) and (3.42) we see that the additional boundary conditions

to be satisfied at the interface between the oxide and the semiconductor are

(pox Mcpsemy at x=0, (4.8)
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[ e= -fe(pe dcp/dxIox d/dX:sem T), at x=0, (4.9)

( h] =fh(ph dcp/dxox, dcp/dx sem T), at x=0, (4.10)

where the electric field terms are evaluated on either side of and immediately

adjacent to the oxide-semiconductor interface, and we note that

Sox(0) = Csem (0) - Ps' (4.11)

54
where cps is the surface potential of the semiconductor . Integrating (4.3)

and (4.4) and employing the boundary conditions (4.6), we obtain

h h h
-- - -e log p /P h 0 : x, (4.12)h

where pe and p are the constant charge densities of the respective fluids

at infinity. From (4.6)1, condition 5 and (3.7) we have

e h i (4.13)pcn+pW+p =0. (.3

e hi
Solving (4.12) for p and p in terms of cp, substituting in (4.2) and

eloying (4.13), we obtain a single nonlinear differential equation in the

single dependent variable cp, a first integral of which may be written in

the form

e P- h D
, 2 r De ( e /De Be _De i) hA e ' h, / Dh + h - i>1/2

dz D eD

(4.14)

where the integration constant has been found from the boundary condition

at infinity given in (4.6)3. The sign of dc/dx is undetermined at this

stage. quation (4.14) may be reduced to a quadrature immediately. In

order to evaluate the integration constant and fix the presently unknown

sign in (4.14), we must employ the heretofore unknown (missing) boundary

conations in (4.9) and (4.10). Since these boundary conditions involve
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e adh
the chemical potentials T0 and c0 , we digress with a derivation of some simple

expressions for e and h in the static case. By virtue of (3.30), (4.3)

and (4.4) can be written in the form

dt/dx + de /dx = 0, 0x, (4.15)

dcp/dx + d h/dx = 0, 0< x, (4.16)

which are just the one-dimensional versions of (3.26) and (3.27) in the

absence of , which vanish when the velocities of the conduction

electronic and hole fluids vanish.

Clearly, Eqs. (4.15) and (4.16), which are the same as (4.3) and (4.4),

can be integrated immediately to obtain

e e
p+ CP =p, T 0x, (4.17)

h h (4.18)cp+p =p, 0<x,4.8

e h
where %an cpa are the constant values of the chemical potentials away from

the space charge region, and we have employed (4.6) 5 5. Now, the left-hand

sides of (4.9) and (4.10) are

e= e e h h he] e °ex' (4.19)(P[m-'0x I -- %sem ' ox '

e h
into which we can substitute from (4.17) and (4.18) for CD and se

Subtracting [PhI from [qe,we obtain,

e h e h e h~PCP0 -0  CCW + CP0,+! I1I, (4.20)

e hwhere, of course, Wox and 'pox are the constant chemical potentials in the

oxide. The four constants appearing in (4.20) are presumed known and,

e htherefore, in the static case fP I and [p I and, of course, from (4.9) and

(4.10) fe and fh are not independent quantities. Consequently, in the

static case (4.9) and (4.10) are not independent boundary conditions, which

is not surprising since only one integration constant remains undetermined.
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Since fe and f differ only by a constant and the functional dependences for

e 

that the functional dependences of fe and f on p and ph must be through
e1 e hh

the respective variables log p /p and log p /p because the Qcnditions (4.9),

e adh(4.10) and (4.20) hold for arbitrary p and p . In view of the foregoing,

from (4.9), (4.11); (4.17) and (4.19), the one required boundary condition

at the semiconductor-oxide interface in the static case must be of the form

Se =  ( s,dT/dxl ox dcp/dxJ ,sem , T) (4.21)

Equation (4.21) provides a relation between the surface potential s and the

electric fields on either side of the interface and, as noted earlier,

contains material surface coefficients, which are to be measured and are

characteristic of the particular interface. When the material surface

coefficients are known, Eq. (4.21) provides the one independent condition

which enables the one remaining integration constant to be found and, thus,

the solution to the posed problem to be obtained.

In the case of the static one-dimensional problem being treated here

calculations are greatly simplified owing to (4.14), which may be evaluated

at x= 0 to obtain dcp/dxlsem explicitly as a function of cps . By satisfying

(4.5), (4.7) and (4.11) for the oxide portion of the problem, we find

dcp/dx) ox = (c0s - c0+ 0MOS)/I, (4.22)

and, hence, (4.21), with (4.14) and (4.22) provides a direct relation between

co and e s at constant temperature. The aforementioned simplification in

the calculations also causes a weakness in our ability to obtain definitive

values of the material surface response coefficients from MOS quasi-static

one-dimensional C-V measurements and to distinguish conclusively between
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field and surface potential (charge density) terms in the expression

efor fe. In this paper, where we intend only to illustrate the completely

macroscopic approach to semiconductor interfaces, we are content merely

to provide reasonably convincing (but not definitive) evidence for the

forms chosen for (4.21).

In establishing a form for fe and determining the values of the

attendant material surface coefficients that arise, experimental data is

utilized. In the quasi-static C-V experiment the total capacitance is

measured directly as a function of the applied voltage. The Berglund inte-

gration56 of the capacitance may be used to give reasonably accurate values

57for cps vs co over certain ranges of cp s. The aforementioned simplification

of (4.21) resulting from the existence of (4.14) makes this (s vs cp) data
58

preferable . it is also to be recommended by the fact that this data is

a direct measure of semiconductor surface response, whereas total capacitance

is not. At this point it should perhaps be mentioned that the procedure of

using the C-V data to generate [-(l/q)d/dcp s], which is commonly referred

to as Nss, the surface state density, is unnecessary insofar as the determin-

ation of macroscopic surface coefficients is concerned. However, in a number

of cases we have used this data since it is the form usually presented in the

literature.

now, an explicit representation of fe in (4.21) is found by choosing a

suitable simple expression in the variables shown and obtaining the material

coefficients in the expression from experimental a vs (s or da/dcps vs ps data.
595

The wide range of variation in measured surface response seems to indicate

that the possibility of obtaining one form for fe for all Si-SiO2 interfaces

is unrealistic. However, for annealed MOS structures, interface response

is found to be qualitatively similar and hence for these interfaces a single
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e fe 61form for f appears to be appropriate. The expression we choose for is

fe % A1 (Ts I +A 2 (T ) C 2  + A 3 (T)p + A4 (T)cps +
ox S xsem (4.23)

where all coefficients are functions of temperature, which is constant in the

present work. We note that the electric field terms must be present in (4.23)

because the dependence of Ts on c00 arises only through the dcp/dXjox term and

unless a dependence on cp0 appears in (4.23), (4.21) reduces to an equation for

PS independent of the external conditions. Only terms linear in dp/dx on each

side of the interface are retained in (4.23) because the electric field is

the force per unit charge. Further specification of (4.23), as to which terms

are to be kept and the values of the coefficients Ai. is accomplished by use

of a regression analysis (including plots of residuals) of the experimental

data. The goal here is to achieve reasonable accuracy in the representation

of fe while employing the minimum number of terms 6 2 . However, it is important

to realize that, ultimately, the level of accuracy required in the representa-

tion of fe is dictated by the particular problem under consideration. It is

found that although the surface coefficients A and A2 can depend on ysy no

dependence on cps is required in order to obtain reasonable agreement with the

experimental data considered in this work. However, such a dependence can

improve the accuracy of the representation. The remaining terms in the expres-

sion for fe are a power series in cps. The number of terms retained in any

polynomial approximation depends on the accuracy desired. We have found that

typically no more than three terms in the power series are necessary to give

adequate agreement.

For the purpose of obtaining the material surface coefficients A. from

experimental data of a vs cps or da/dps vs CpsP the solution can be put in a
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particularly useful form by employing the constitutive relation for the

oxide

D = C o dcp/dx, (4.24)

where e is the permeability of the oxide. By substituting from (3.24)

ooxand (4.24) into (3.33) we obtain an expression for dcp/dXl ox which is inserted

into (4.23). The resulting expression for fe is substituted into (4.21),from

which for A1 P&O we obtain

o=B + B2 + B (4.25)
o dx semB29s+ 3PS+

where

B ox 1e eB = - CP- ) , B-

BO ox (1 A. e

B2 -i 1+A 3 ) , Bi=- A-- ox' i 3 , (4.26)
1 1 ox.

and we have taken the liberty of omitting the temperature dependences.

Although (4.25) is a particularly convenient form for use in this work, it

should be noted that the A. are to be regarded as fundamental here and not the
1

derived B. . In existing work on sericonductor interfaces the coefficient B1 o

64
is often called the surface state charge . We also remark that since Nss

data is proportional to do/dcps it does not provide a measure of B .  In

Fig. 2 some experimental do/dcp vs data65 is presented along with a reasonably

accurate fit to that data using the cps derivative of (4.25). The non-zero B.i

and Ai coefficients determined from this fit for this particular Si-SiO2

interface are also shown
6 6

23
An equation similar to (4.25) has been used elsewhere2 as the addi-

tional boundary condition required for the solution of a boundary value problem

to be obtained. However, as noted in the Introduction, assumed conditions, such
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as that in Ref.23, are used simply because something is needed and are

not obtained from fundamental physical principles dictated by the field

67
thcory as is done here . Furthermore, the assumed condition of Ref. 23

is a static condition and not dynamic (as it is used) as shown by the deriva-

tion of (4.25). Moreover the condition employed in Ref.23 does not contain

the B1 term appearing in (4.25). The appearance of the B1 term in (4.25) is

guaranteed by the fact that the terms linear in the electric field must be

present in (4.23), as noted earlier. Nevertheless, it is entirely possible

that the B1 (field) term could be much smaller than the other terms and,

hence, negligible. It is to be expected that if the B1 term is ever import-

ant., it would be when very high fields exist near the surface, which is the

case when large voltages are applied or when the semiconductor is heavily

doped and subject to moderate voltages. This expectation is also consistent

with the fact that high fields tend to cause many quantities to be field

dependent, e.g., mobilities. The regression studies appear to support

this expectation. However, as already noted, on account of a weakness in

the static one-dimensional problem no definitive experimental evidence of

the necessity of the B term can be obtained in this way.

Figure 3 presents a comparison of fits of the s derivative of (4.25), both

with and without the B1 (field) term, to a particular data set6 8 . As was

typically the case for the data considered in this work, inclusion of the

field term yielded a better fit with fewer terms needed. In addition in

strong accumulation or inversion it is the field term which constitutes the

dominant contribution to fe, whereas for n-type semiconductors if our sole

interest is in the surface potential range -.55VCp 0 .0 V, the field

term may be accurately expanded in a few ts polynomial terms. We note that

for the particular sample of Fig.3 the surface field dcp/dxl in strong
sem

accumulation is - 106 volts/cm
6 9.
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The findings presented here concerning values of material surface

coefficients and of the actual expression used for fe in (4.23) should be

regarded merely as illustrative. Extensive and systematic experimentation

would be needed to definitively establish a "best" form for fe for annealed

samples. With the aid of such a form, a catalogue of the values of surface

coefficients along with the sample preparation techniques necessary to achieve

or alter those values could be obtained and would constitute the complete

macroscopic description of the Si-SiO2 interface. As an illustration,

Table I gives a tabulation of values for material surface coefficients for

a specific Si-SiO2 interface 70 the da/dcps vs cps curves of which are shown

in Fig.4, based on the form of fe in (4.23). Each sample underwent the same

preparation technique except that different metals were used for the front

contact in each case.
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equations are obtained are the pressures abandoned in favor of more
convenient variables.
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e h
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78. When spatially inhomogeneous cases are considered it turns out that a e
different from e can be defined such that (1/pe)ve= .~e T Be in

the "ideal" gas case is related to cpe by ce=pe + Ec/q. In the event that
Ec is constant everywhere except for jumps in value across interfaces -
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differential equation (3.26) on either side of apy interface, but the
boundary condition (3.40) should be written as [pe] = fe. Since in this
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course, all the corresponding expressions for holes are treated
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(n) (n)
E (-l/q) E Y ie., (-l/q)EF defined here is equal to the "electro-

chemical" potential in accordance with the conventional terminology.

80. Ref. i, Ch. 10.

81. Ref.7, p. 4 6 8 .
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Table 1 The Material Surface Coefficients Found for the
Si-SiO 2 Interfaces Studied in Ref.70 where Dif-

ferent Front Contact Metals were Used on Other-
wise Identical Samples

Contact Metals

Cr Al Mg

A1 (cm) - 4.lXlO - 5.OX10 - 7.X10

A 2 (cm) 1. 4 X104  1. 7 x 10 4  2.4 X10-4

* 3  - 2.8 - 2.5 - 3.0

-1A4 (volts --2.1 - 1.7 - 2.8

A 5 (volts - 2 ) - 3.6 - 2.9 -3.9



FIGURE CAPTIONS

Figure 1 A Schematic Diagram of the MOS Structure

Figure 2 A Comparison of Experimental Data from Ref.64 with the
Theoretical Curve Obtained Using the Expression for fe
Given in Eq.(4.23). The B. coefficients are:

B= 1.6X 10 - 8 coul/cm (assumed), B1 =+ 1.2X 10 - 1 4 farad/cm,

B =- 4.3X 10 - 8 farad/cm2) B3 = - 1.4X 10 - 7 coul/V 2 cm,

B4 =-5.2X 10
- 7 coul/V cm . The A. coefficients are:5 ~ 11

A, =-7.6X10 - 5 cm, A2 2.4X10 3  101

A =- 3.3X101 V- 1, A =- 1.2X102 V- 2 .

Figure 3 A Comparison of Two Theoretical Curves Obtained Using
Eq. (4.25) with Data from Ref.68. Curve 1 is obtained in-
cluding the field term while Curve 2 is obtained without
the field term. The non-zero B. coefficients are:-2 -8
Curve 1: Bl=l.9X 10 farad/cm, B 2=3.4X10 farad/cm

B 3=8.0XI0- 8 coul/V 2cm 2 .  Curve 2: B 2=-6.4X10 - 8 farad/cm2 y

B =-4.4X10 - 7 coul/V 2cm2, B4 =-1.8X10 6 coul/V3 cm2
-42 -52

B5 =-3.1Xl 0r o coul/V cm , B6 =-2.X coul/V cm .

Figure 4 A Comparison of Theoretical Curves with Experimental Data
from Ref.70 Showing the Variation of Response with the use
of Different Front Contact Metals on Otherwise Identical

Samples. The non-zero material surface coefficients for
each case are given in Table 1.
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APPENDIX A

71
THERMODYNAMIC CONSIDERATIONS

The integral form of the conservation of energy for the three-component

combined continuum, consisting of the two conducting fluids plus the polarizable

lattice, states that the time rate of increase of total stored energy in the

three continua in any fixed volume is equal to the rate at which work is done by

the fluid pressure forces minus the rate at which stored energy flows out

of the fixed volume plus the rate at which energy is supplied to the combined

semiconducting continuum by the electric field, which enables us to write

ee (+pee+ph h e e hn h e e e
Ft~ e Wp 1- ndV * -n0 n Vp e
V S

n h v h edS + EdV, (A.1)

V

where e is the stored internal energy per unit volume in the lattice con-

e htinuum, e and e are the stored internal energies per unit charge of the

e e h hconduction electronic and hole fluids respectively, -p n* v and -p n * v

are the rates at which work is done per unit area by the pressures acting

on the two charged fluids, n v eee and n v p heh are the rates of efflux

of stored internal energies of the two fluids from the fixed volume and E is

the rate of supply of energy per unit volume to the combined semiconducting

continuum from the electric field. The quasistatic Maxwell electric field

acting on all charged elements in the macroscopic model of Section 2 supplies

energy according to

dP
pe vh  E (A.2)

where the third term containing the electric polarization P would arise from

a detailed treatment of polarization in the macroscopic model but is here

merely taken as a plausible assumption.



A2.

Taking the time derivatives in (A.1), substituting from (A.2), employir.j

the divergence theorem, (3.5), (3.6), (3.17), (3.18), the arbitrariness of V.

the defined material derivatives

d b de  B e dh  h
Tt d =tF + Y' dt V = +V *V, (A.3)

and in accordance with the modelmaking the plausible assumptions

e e(e, h h (h
e =e (p IT) I =e (p hT) I (A.4)

we obtain

de + ( P e - Pe) dee + ( p h h h)2!2 + (Pe e+ ph 's d T

dt eEe e v e h h h)
-- =- p E 0 V v e(L_+e h(Ph+h) (A.5)

p p

where we have made use of the fact that VT is E 0 since T is uniform in this

work. Equation (A.5) is commonly called the first law of thermodynamics for

the thermodynamic system under consideration.

Since the first law of thermodynamics for the combined continuum is

of the form shown in (A.5) and only the terms on the right-hand side are

dissipative, the expression of the second law of thermodynamics may be

written in the form
7 2

de +(e , e + ( ph hhh

Fp e P t b dt

e be e h b -dT dP

- =T dt dt dt I(A6)

where f is the entropy per unit volume. Then,for a uniform temperature

state, the entropy inequality takes the form
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at T- [Pe + pe h +h e + h h)] (7
p p

and dj/dt is the rate of entropy production.I
Equations (A.6) and (A.7) ,which arise from the laws of thermodynamics

as applied to this continuum, are the basis for the generation of two types of

constitutive relations: those from the former are termed recoverable and

from the latter dissipative.

In obtaining the recoverable constitutive equations it turns out to

be convenient to define a thermodynamic state function X by,

X1e -E * P-fT, (A.8)

the substitution of which in (A.6) yields

,ee e e hhhh dE
at (e 'ape p (at P P a

dtI P +e e~ e dt k h h N dt

)T + P Th =
0R (A.9)

Since (A.9) is a state function equation, we must have

X = x(E,T). (A. 10)

Taking the total time derivative of (A.1O) and substituting it into (A.9), we

obtain
dE ,e e e e h h h

QEX +Z 3-p p P t'p b p h d

e e h
+ JX+ +p _-r+p _ !T=0 "  (A.11)

Since all the time derivatives appearing in (A.11) are independent and (A.11)

holds for arbitrary values of those time derivatives, each coefficient must
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vanish separately, which yields

e bh
e p  -)P - p 2-6 (A. 12)

e e2 bee h h)2 Beh

pP = (p ) . (A.13)
" 

Th

Equations (A.12) and (A. 13) are the recoverable constitutive relations for

e h eP, TI, p and p h The substitution of the functional dependences for X), e and

h
e shown in. (A.4) and (A.10) in (A.12) and (A.13) and the appropriate use

of the definition of D give rise to the functional forms in (3.19) and (3.21).

As usual, chemical potentials are defined in terms of ee and h as73

e e h he = 6(pee h =( e(hh

- e ' = h ' (A. 14)

where cp and 0 are the chemical potentials of the conduction electronic

and hole fluids, respectively. These are clearly related to the fluid

74pressures through (A.13) . A useful relation between the gradients of the

chemical potentials and of the pressures in the respective fluids is readily

found by taking the gradients of (A.13) and (A.14), with the results

S e e h (A.15)

p p

which have been used in Section 3.

Equations (A.13) and (A.14) enable us to write Eq. (A.7) in the form

ee e hh h ee hh
p E .~ +p E "v +y cp +yV %0 O . (A.16)

Since c0 is a function only of p and T, and P only of p and T and (A.16)

must always be true in order that the laws of thermodynamics not be violated,

we must have the dissipative constitutive relations
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h e  h e h
E =E (p ,p ,v ,v ,T) ,(A.17)

e e e h e h
=Y (pe,p , ,v T) t

Yh Peh, Ve vh T),

along with certain conditions dictated by the inequality in (A.16) which

are not of particular interest to us here.

However, since the recoverable constitutive equations (A.12) and (A.13)

depend on E, there is no logical reason to exclude E from the dissipative

75
constitutive equations in (A.17) . Also, since the fluids have been chosen

e an
to interact solely through the generation/recombination terms y and y , we

exclude the dependence of Ee on h vh Eh e v e .on pand y and ofE on p and. The func-

tional dependence of the dissipative constitutive equations may then be

written in the form

Ee Ee ee h h hhEe--Ee(Pe IVeYET) Eh=Eh(phv ET)

e. e h e h h he h e h

which were given in (3.20) and (3.22).



APPENDIX B

SOME RELATIONS BETWEEN THE MACROSCOPIC DESCRIPTION
AND CONVENTIONAL SEMICONDUCTOR THEORY

The macroscopic theory can be further specified (beyond Section 4) by making

particular choices for the energy functions e e and e h which, as usual, will

76 e h
contain macroscopic material parameters . However, since e and e are de-

scriptive of the conducting fluids in the interior of the semiconductor these

parameters may be related to and calculated with reasonable accuracy from the

usual quasi-microscopic model based on a semi-classical view of the infinite

periodic lattice. By making the specific selections
E e

c _" -&- Io,.L..11l , (B. 1)q qe - q q L \-qNc/ j

h v kT
e = ~-+ -Io i-l1 (B.2

q q 
(B.2

where N and N are the quasi-microscopically defined "effective densities of
c v

states" in the conduction and valence bands, respectively, we can deduce the

6Maxwell gas approximation for the electrons and holes in the semiconductor

Equations (B.1) and (B.2) give the energies per unit charge for this particular

model. The use of (B.1) and (B.2) in (A.13) and (A.14), respectively, allows us

to obtain 77  e = hkTe h kh (B.3)

= -- I 1

q q \-qNc/ c

h v kT J v kT
qP +q lo - + - Io4 , (B.4)
q q qv q q v

where n and p are the electron and hole number densities, respectively.

Differentiating (B.4) with respect to the charge densities and comparing

the result with (3.30), we can obtain the Einstein relations for the Maxwell

gas model.
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When no electron current is flowing Ee= 0 and hence (3.26) can be

integrated, with the aid of (B.4)I, to yield
7 8

ee -k Z (B. 5)

where nb is the electron number density in the bulk of the semiconductor

and cp has been assumed zero in the bulk. In the conventional quasi-

microscopic theory for nondegenerate situations at thermal equilibrium an

expression for nb may be written in terms of the Fermi energy E and the

conduction band energy Ec. The expression is

nb = N exp[(E F -E )/kT] (B.6)

Consequently, when no electron current flows we may combine (B.5) a:,d (B.6)

to obtain

e 1
q + " - EF) ' (B. 7)

where it is to be noted that when electron current flows the left-hand side

of (B.7) remains well defined while the right-hand side does not. However,

(B.7) may be extended to include current flow situations by employing (B.7)
79(n) wt

to define a quasi-Fermi level79 for electrons E with

^Fe

E (n) E -Cp-cp . (B.8)
q F q c

The relations (B.7) and (B.8) with (B.4)1 substituted are in agreement with

expressions in the literature80 .

Equation (B.7) [or (B.8)] may be used to exhibit the connection between

the boundary condition (3.40) and the conventional semiconductor nomenclature.

For the semiconductor-vacuum boundary (an oxide interface is treated ana-

logously) we have (for the no current situation),
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fe [ e .e ^e 1
se- c (E -E -, (B.9)

- -sem (vac q c F s

,e

where vac has been taken to be identically zero and cs is the surface

potential. We may rewrite (B.9) in the form,

fe 9 1 E E 1 ,  (B.10)
q F q

where E is the "bent" conduction band energy, Yf is the work function and
c

X is the electron affinity. Equation (B.10) provides a ready understanding

of fe in the conventional semiconductor terminology. When an n-type semi-

conductor is in accumulation r is small and hence fe is small. This reflects

the fact that in accumulation the energy of the near surface electrons has

been lowered and, hence, less force need be exerted by the lattice to keep those

electrons in the crystal. In inversion the reverse is true. The effects of

changes in temperature may be argued in a similar manner. It is important

eto emphasize that while (B.9) or (B.10) allow the interpretation of f

within the framework of conventional semiconduction theory, in order to use

(3.40) in the solution of semiconductor boundary value problems it is neces-

fesary to provide an expression for f in terms of the dependent variables as

is done in Section 4. For holes expressions analogous to (B.5) - (B.10)
80

may easily be found and are in agreement with the literature .

We conclude this Appendix by utilizing the above expressions to obtain

relations for the two constants e and o which appear in (4.21) and are

required for the conversion of the Bi coefficients in (4.26) to the funda-
1I

mental Ai coefficients in (4.23). Since no current flows (B.7) gives

inimediately

^e 1

qi (Ec- ) .55 V in intrinsic silicon. (B.lI)
S(B.11)
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Concerning the oxide, we view insulators simply as semiconductors with

zero mobilities. As a result of this assumption, with (3.23)1 and (3.26)

e e .e
we can assume uniformity of Y i.e., qe= cpox const even when a field

Sis applied. Hence 8

icoxe = q (Ec P ) 4.0 V in silicon dioxide. (B.12)

Expressions for e h and co may be found in a similar manner.


