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ABSTRACT

A novel transform is presented which maps continuum

functions (such as probability distributions) into disc-

rete sequences and permits rapid numerical calculation

of convolutions, multiple convolutions, and Neumann

expansions for Volterra integral equations. The trans-

form is based on the Laguerre polynomials, associated

Laguerre functions, and their convolution properties.
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LAGUERRE TRANSFORMATION AS A TOOL FOR THE NjMERICAL SOLUTION
OF INTEGRAL EQUATIONS OF CONVOLUTION TYPE

J. Xeilson and W. R. Nunn

ABSTRACT

A novel transform is presented which maps continuum func-

tions (such as probability densities) into discrete sequences

and permits rapid numerical calculation of convolutions, multiple

convolutions and Neumann expansions for Volterra integral equa-

tions. The transform is based on the Laguerre polynomials,

associated Laguerre functions and their simple convolution prop-

erties. A second transform employs Erlang functions as elements

of the basis. The limitations and advantages of the two trans-

forms are discussed. Numerical inversion of Laplace transforms

relates simply to the Erlang transform. The deconvolution of

two functions, i.e., the solution of a(t) = x(t)*b(t) may also

be obtained quickly in this way.



INTRODUCTION

One often encounters in applied studies integral equations [16]

either of form

f0 a(x - x')f(x')dx' = b(x) (1)

or of the form

f(x) - f a(x - x')f(x')dx' = b(x) (2)

0

where a(x) and b(x) are specified functions and f(x) is to be

found. Equations (1) and (2) are said to be Volterra integral eq-

uations of convolution type of the first and second kind respective-

ly. The Neumann series solution of (2) has the form [19]

f(x) = b(x) + b(x) * ( k ) (x) (3)

V (k)
where the asterisk denotes convolution and a (x) is the k-fold

convolution of a(x) with itself.

co

The entity 1 a ( k ) (x) and matrix variants associated with
0

systems of integral equations of convolution type arise in opera-

tions research [6 ], engineering[ 7 ], and biological studies [10].
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Sometimes, differential-integral equations give rise to expressions

such as

s -0e X OT)k (k+l)(T(4s(t) = e- a )r (k ) (4)

k=0 (k + 1) a

which describes the busy-period density for certain MIGJ1 queueing
systems [18].

In easy cases the integral equations may be solved analy-

tically via Laplace transformation, and full answers may be obtained

when the Laplace transforms are invertible. More often than not,

such transforms cannot be inverted and expressions such as (4) are

of limited value when they cannot be evaluated explictly. The

Laguerre transformation techniques developed in this paper may

then be of value.

The deconvolution problem of finding f(x) from (1) when

a(x) and b(x) are known numerically, say, is particularly

troublesome, and start-up difficulties described below may make

conventional numerical procedures useless.

The Laguerre transform techniques described map continuum

functions into sequences, and map the continuum convolution opera-

tion into lattice convolution of these sequences. Such discrete

convolutions are well matched to modern computer competence, and

the inversion mapping back to the continuum is direct.

0-2
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Laguerre transformation has been developed as a tool for the

solution of differential equations [12]. The applications of

interest here are quite different and new tools have been needed to

convert the underlying simple idea into a flexible working proce-

dure adapted to computer requirements.

The first section introduces the Laguerre transform

T: f(t) - (fLt) 0  in a form convenient for our needs. One has
nO0

f(-) = fLt n () (5)
n=O n n

for any square-integrable function f(T) on (0,-), where Zn(T)

L (t)e- T/2  are the classical orthonormal Laguerre functions andn

Ln(T) are the Laguerre polynomials. The notation of Abramowitz

and Stegun [1 ) is employed throughout. Orthonormality provides

the inverse transformation

j.
fLt = f(T)/n(T)dT • (6)

n 0

C,

Let Tf(u) = n be the generating function of fn Then

0 n

one has, as shown in Section 1,

T Lu(u) 1 - +u\ (7)

0-3
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where 0(s) is the Laplace transform of f(T). This relationship

permits evaluation of fLt for many important f(T).
n

Section 2 provides simple examples of the transform, and

Section 3 discusses the structure of TLt(u) in the complex u-

f

plane. Such insight into structure in the complex plane is crucial

to many of our algorithms and theorems.

It is often desirable to work with an expansion of the form

n n
f f(T) f 0 n fET e-T/  (8)

whose basis functions have convolution properties of comparable

simplicity to the Laguerre functions. The mapping T: f(T) - (fEt )o
n o

will be called an Erlang transform. The set of functions so repre-

sentable is more limited than that for the Laguerre basis. They

must be integral functions of T of order at most one, so that

2
f(T)= e- I for example is excluded. The nature of the Erlang

transform and its relationship to the Laguerre transform is des-

cribed in Section 4.

The square integrability requirement on f(T) for the

Laguerre transform is nr., an intrinsic limitation. An exponential

transformation is describ .d in Section 5 which avoids such diffi-

culties.

0-4



Even though square integraDiliry suffices in principle for

the Laguerre transform, practicability of the method requires

that the coefficients (Lt)" fall off quickly with n so thattha th coffiiens f n /0

computer time is not excessive. In Section 6, rapidity of disap-

pearance of (fLt) with n is related to the smoothness and con-

n

centration of f(r). In particular, it is shown that "rapidly

decreasing" f(t) for which rq(d/d )Pf(-r) - 0 as T - for all

non-negative q,p are associated with rapidly decreasing (f for

which n KfLt - 0, n - for all positive K.

n

Algorithms for the calculation of the Laguerre coefficients

are presented in Section 7. Section 8 is devoted to a discussion

of the deconvolution problem.

A variety of numerical examples of the method are treated in

Section 9, and the implementation of the procedure is discussed.

Section 10 describes interpolation methods and problems when

the known functions are known only numerically.

A final section deals with possible generalizations of the

method to special families of functions.

0-5
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1. The Laguerre transform.

Let f(x) be any function in L2 (o,-), i.e., any square

integrable measurable function on (o,-). Then f(x) may be ex-

panded in terms of the Laguerre functions

n(x) = e - x L (x), (1)

where Ln (x) are the Laguerre polynomials having the Rodrigues

formula

L()= ~-- e --' {xne - x } . (2)In ,n !x dxn e(2

Classical properties of the Laguerre polynomials and functions are

given in an appendix. The Laguerre functions tn(x) are ortho-
n

normal on (0,-), i.e.,

S m(X) (x)dx = {0, mn} (3)
f iO n 1, m=n

ansd provide a complete basis for L 2  in the associated Hilbert

space metric. For f(x) E L 2 , one has the Fourier-Laguerre

expansion

f(xI = ft (X), (4)
0 n n

1-1
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where, from (3)

f = f f(x) t (X) dx . (5)

Equation (5) describes a mapping of the function f(x) on

the continuum (o,-) into a sequence , i.e. into a function' no

on the non-negative integers. This sequence will be called the

Laguerre transform of f(T). It should be noted that "Laguerre

transform" is often used to denote the mapping

F(x)ex n (x)dx F(x)ex/2 Ln (x)dx. This mapping has
00

been employed as a tool for the study of differential equations[ ll].

From (5) one has the Parseval relation

(1)2 = f f2 (x)dx . (6)|• o

Two useful results from analysis are needed. The Laguerre func-

tions have the generating function

I C (x) u l x)- {-_I -
F, = exp -, x (l+u)(l-u) 1) o u < 1, (7)

1-2



and Laplace transform

In(S) = e-SX (x)dx = sL s+h (8)

0

From (8) one may verify the basic convolution property of the

Laguerre functions

fo x
Zn (x)* m (X)= J n (x-y)Zm (y)dy (9)

0

= o (x)*tm+n (x) m+n(x) - tm+n+l(x)

This convolution property underlies the Laguerre transform and its

utility. For any f(x) in L2 with Laguerre transform

we define a pair of related generating functions Tf(u) and T (U),f f

and the transform sequence (f#) by
no

t ~ 00-t n (10a
0

Tf (u) (1-u) fn o<Iul<l (10b)

The reason for the factor (1-u) in (10) will soon be clear. From

t #(6) one has fn * o, as n--, so that Tf(u) is regular in the

1-3
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interior of the unit circle iuv, 1 in the complex u-plane. From

(10b) one has

f fn f - n >1; f 0 f 011

so that the sequence (f # is squ~are suxnmable as well. Employment
n

of (5) in (10) gives

T (u I-) un f(x)t W dx, o < u <.

When f(x) is integrable on (o,-D) ,since iten~ <1. the order

of summation and integration may be interchanged. Hence from (7)

one has

Tf(u) =g f(x)exp { x (l+u) (1-u) -l dx
I0

. - -

f (u) = (1 +u) (1-u) ) o < U < 1,(12)

where O(s) f e sx f(x)dx is the Laplace transform of froW

x0

Let fg = f f (x-y)g(y)dy. Since f*q(s) (s) (s) one
0

has from (12)

1-4
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Tf*g (u) T f(u) Tg9(u) (13)

for functions f,g that are both integrable and square integrable

on (o,-). It follows from (13) moreover that

n n
(fgn Ffn-m g m "(14)

0

The value of the Laguerre transform is now clear. The transformation

via (9) and (11) maps functions f(x), g(x) into sequences (f #

n
(g# ,and their continuum convolution f(x)*g(x) is mapped into

a lattice convolution, and thence back onto the continuum via

f t f# and the representation (4). The advantage of the procedure
n m

0

for numerical convolution of two functions known only numerically

is moot. But its value for iterative convolutions and multiple

convolutions of a function f(x) with itself, and weighted sums of

such multiple convolutiods (i.e. (0.4)) via machine computation is

apparent. Some of the applications of such computation in statistics

and applied probability will be presented subsequently. The trans-

form also has analytical value, as we will also attempt to show.

1-5



2. Some Elementary Laguerre Transforms

Exponential and Ezlang Functions

The simplest and most basic set of Laguerre families is that

for the exponential functions f(t) = e Here, since OS(s) =
-l

(8+S) , we have from (1.12)

# (1-u)Tf (u) = (e+ ) - (8- )u(1

4f

and hence

f t I O -k )n(2n 2

The Erlang densities for scale parameter e are correspondingly

simple, since they arise from convolutions of the exponential den-

sities. They are given in the table of transforms.

Laguerre Functions

A related set of transforms of special interest is that for

the Laguerre functions.' Here from (1.10) we see that

Tn  #- T(u) (l-u)u n  (3)
n f)

in particular

0c(U) T (u) = (1-u) (4)

2-1
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so that for its N-fold convolution

[e- -/2 ] (N )  "' N- 1  e " /2  T U :U 5(N (N-i), e 4-- T (u) = (l-u)N15

For this family of functions and finite mixtures thereof, the trans-

form g.f.'s T#(u) are polynomials and the transform sequences
f# terminate. The value e=h thus provides a natural scale for
n

computation in which convergence is most efficient. This will be

discussed further subsequently.

2-2



-13-

Structure of T (u) in the complex plane.
f

When f(t) c L2
t o,-), Equation (1.6) implies that

(fn)2 '< c so that f 0, as n and O ftu n  Tf(u) is
n ' n f

regular inside the unit circle, i.e. for 0 < lul < 1. Moreover

#fW - 0 (and is square summable) so that Tf(u) is regular for

0 < oul < 1, as may also be seen from Tf(u) = (l-u)Tf(u). It may
be noted that Jul = 1 maps into the line Re(s) = 0, i.e. the

imaginary axis in the s-plane, and that the point u = 1 corresponds

to s

For the representation f(t) = Z fn t(t), where t n(r)I < I,

speed of convergence is promoted by a geometric decay rate for 
f%
n

and hence by regularity of Tf(u), Tf(u) in a region containing

the unit circle in its interior. This requires (cf. (1.12)) that

*(s) be regular at s = - and have a negative abscissa of

convergence [20] . Such behavior in the s-plane of 4(s) also

assures regularity of T (u) and Tf(u) in and on the unit circle.

The situation is summarized by the following theorem.

Th'm If f(T) e yT L1 (o,-) for some 'y > o and if

- f(T)e- T/w dT is regular at w=o, and vanishes there,
0

3-1
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then Tf(u)- *( (l+u)(1-u)- ) and Tf(u) are regular in the

circle o <Juj< c, some c > 1.

Some examples may be of interest

Ex. 1 f(T) = e ; ¢(s) = 2~(s+B)

T# u) = 1 +

f 2~~ 1-u

which has a pole of order 2 at (2 +i)/(2 -l), and is regular

elsewhere. T#(u) has radius of convergence R > 1.

Ex.- -at/2 1F a-3/2.7 2 2E.x... 2 f = e'/; 'Ns) =. ("" s+ -)

# (u) 1-4 1 + a

and this has a branch point at u = . So Rc =.

Note that f(T) is real analytic on (o,-) and falls off

rapidly in example 2, but that Rc = 1 for T#(u). We will return

to such behavior in Section 6.

3-2



4. The Erlang Fam.il of Functions, and the Erlang Transforr.

The class of functions L2 (o,-) is too broad for some numerical

work. The functions one deals with are often highly smooth and such

smoothness permits representation by sequences (an) which fall off

quickly as n - . An alternative to the Laguerre building blocks

may then be available as we next describe.

Tm
Definition. Let e (i) = - e , and let E be the familym M!

of functions (entire functions as we will see)

E= {a(T): a(T) = a*e (T)} (la)
0 I

where

0 se (lb)

This family of functions will be called the Erlang family.

As will be seen condition (lb) permits use of generating func-

tions and discrete convolution related thereto. We note that E is

a linear space. Tt follows from (la), and (lb) that

e (am/m.)T is a power series with infinite radius of

convergence and is therefore an entire function. Hence a(T) is also

entire.

4-1
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Definition. Let a(T) C E. The sequence (a*)°  will be
m 0

called the Erlang transformt of a(r).

Since a(T)e /2 =E aTm/m! is entire and hence regular at
m

T= 0, it follows from the Taylor expansion that

m 1= ) (T)e/ 2 T=0 = m. [Lk \ * mam d [a0 ]L k!) ik j
i.e. that

•a* {2 (n a(n-m)(o)

Equation (2) provides the Erlang expansion of any function a(T) in

the Erlang family from its Taylor expansion about t =0.

The Laplace transform of a(T) is given from (1) by

a(s) = a (s+ ) (3)
0

and this series will converge absolutely when the real part of s is

sufficiently large. Let

TE (w) = a*wm; Ta (w) w Fa*wm (4)aa m
0 0

Then

Ta  s = E(s), (5a)

tThe transform might equally be called a Maclaurin transform. The
name Erlang has been used because the Laplace transform structure
of the Gamma densities and Erlang densities suggested the method.

4-2



le.

Hence we again have, for a(T), b('r) C E

SE#(w) TE TE#(w) (6)
T*b(W) a b

Again, as in Section 1, (6) permits study and evaluation of continuum

i- convolution via lattice convolution.

The validity of the transform TE#(w) requires that this be
a

regular in w at w = 0, and this will be assured when a(s) is

regular at w. Indeed such regularity provides an alternate charac-

terization of members of the Erlang family, as we see next.

Theorem 4.1

A B

a(t) E E <> The Laplace transform u(s) of a(t) is
regular at infinity and vanishes there.

Proof. We have seen that A => B. Suppose conversely that B is

true. Then a(s) regular at c implies a(s- ) regular at ,

i.e.

t(s- ) = fa)e / 2 } e-STd V' C 1(s)m+l

where the power series on the right has a positive radius of

convergence. But Cm (1)m41 is the Laplaca transform of
0

4-3
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F (Cm/m!)tm which must equal a(T)e since Laplace transforms
0

are one to one, and the conclusion follows.

Closure properties of the space E are also of interest, and

follow at once from Theorem 4.1.

Theorem 4.2. Let a1 (t), a 2 (t) E. Then

(1) c1 aI (t) + c 2 a 2 (t) E

(2) aW(t)e1 - c E , for all real I

(3) aW(t) * a 2 (t) E (closure under convolution)

We observe that the Laguerre functions n(T) and finite

linear combinations thereof are all elements of E. But other

elements of E need not be in L2 (o,-) nor even go to zero as
2 -3

t - -. Thus for a(T) = t , x(s) = 2s which is regular at

infinity. Similarly every polynomial in T is in the space E.

It may be seen that the order of a(i) is at most equal to

1. Hence E is a proper subset of the set of entire functions and
_2

e- cannot be in E.

Note that the space E is not closed under limits. Thus

UN(s) = (1 + s/N) converges to e - , i.e. a sequence of Laplace

transforms regular at - converges to one which is not.

4-4
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A subspace of E of special intcrezt is EL the intersection2

of E and L2 (o,-). If a(kL) c EL2, it will have both an Erlang

transform and a Laguerre transform. If the Laguerre related func-

tion T # (u) of (1.10b) is designated by TL # (u) 1 + we have
a a l-u)

from 5b)

TE# (w ) = TL # (1- w), (7)
a a 7

Ta (u) T a %1-u) (8)

The module functions {e (T) ) and 4n (T) } of the two

transforms are easily related. From (7), (8), since e n(T)

[to( T)](n+l) we have TE#(w) wn+l and T L(u) (l-u) n + l so0e n  'en n

that

n
en (T) = enrZr(T) (9)

0

where n = (n) (-) r. Similarlynr r

n
i n(r) = er (10)

That ( mn) is its own inverse is a classical result. (See for

example, Riordan [15). If one has a(t) c EL2, then

4-5



a(T) = ate(T) = ae () (l1)
0 0

and the sequences (aC and (a*)°  are interrelated by

a* E ate (12a)m n=m

at E a*6 (12b)an m mnm= n

For any such function in EL2  the Erlang transform coefficients

a* obtained from (2) provide a stepping stone to the Laguerre
m

transform (a ) via (12b).n o

The Erlang transform method for evaluating convolutions is

closely related to the method of phases employed by Neuts and others

[13,14] for the numerical evaluation of functions arising in stochas-

tic models. Indeed the method of phases provides an intuitive frame-

work for understanding the Erlang transform method. The latter

method is more general than the method of phases in several respects.

a) It is applicable to convolutions of functions of mixed

sign, and hence to the response functions of electrical engineering

arising in circuits and propagation, for example.

b) For positive functions no auxiliary Markov chains models

are required. Indeed, certain simple probability density functions,

4-6
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such as Ke-aT [1-cos btj, cannot be related to chain models, as pointed

out by D. R. Cox [41. Such functions present no difficulty for the

Erlang transform method.

c) The method of phases requires, in principle, integrable

functions. A function such as 10 (t)e
- , where I0 (T) is the modified

Bessel function, is unacceptable. The Erlang method may be employed

even for functions which grow exponentially.

4-7
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5. Extension of the L&querre Transform to Non-Integrable
Functions Via Exponential Transformation

Our applications of motivating interest center about the

convolution operation d(t) = a(t) * b(t). When a(t) and b(t)

are not in L2 (o,-), they do not have Laguerre transforms. We

note however that when a(t) and b(t) are Laplace-transformable,

one has 6(s) = a(s)B(s) for s sufficiently large. Then

a(s+e)8(s+e) = 6(s+ e, 6 > 0, i.e. as(t) * be(t) = de(t), where

a 8 (t) = a(t)e , etc. When a ,, b. c L2' they may be convolved via

Laguerre transform methods to give de and one may then find d(t)
ete

from d(t) = d(t)e . Such exponential transformation extends

thereby the scope of Laguerre transform methods. Note that the same

procedure may be employed for the integral equations of convolution

type of the introduction. For example the equation

h(t) = b(t) + a(t) * h(t)

becomes

he (t) = be (t) + a (t) * he (t)

under such transformation, and the Laguerre transform method may be

used when a6,be c L2 even though a,b L2 .

5-1
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6. The rate of convergence of the Laguarre coefficients

It is well known that a Fourier series expansion of a peri-

odic function f(t) = a ein t has coefficients a which fall
n n

off rapidly with n when f(t) is sufficiently smooth [ 5 J. A
similar behavior for the coeffic;ients f' of (1.4) and f of

n n

(1.11) is available and of key importance to the methods we desire.

We first observe that the square summability of (f), i.e.,
74 n

(fl) 2 < . implies that (f-0 as n - '. Our methods re-

n no

-t
quire convolution of sequences (f ), (g'). As remarked in Section

3, for accuracy of calculation we would like the coefficients to

fall off rapidly, and geometric decay of the coefficients would be

desirable.

It may be noted that summability i fnI < - implies the
0

continuity of f(t) in (1.4). The argument is along classical

lines. Since I(t) _< 1, one has Itn(t + h) - tn (t) _ 2.

Hence by dominated convergence

lir f(t + h) - f(t) = lir f1 {n(t + h) - t (t)) = 0.

h-0 
h-o o

and f(t) is continuous.

it then follows that when f(t) is not continuous for all

t in (0,), that ( is not sumrnable. For example the

6-1
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function f(t) = 1, 0 < t < 1; f(t) = 0, 1 < t, has coefficients

which are square summable but not summable and hence rather slow in

convergence to zero. Dominated convergence also leads to the con-

clusion that f(T) = (fT) goes to zero as T - when

SIfl < -n

The argument can be generalized to the following theorem.
k

Let C (R+) be the linear space of functions f(T) with contin-

uous k'th derivatives on (o,-), such that lir f(k) (T) = 0.

Theorem 2.1. Let f(T) = fm eM(T). Then
0

1>I fI) E k (R+), k = 1,2,....K. The proofMO mm=0

is based on the following lemmas.

Lemma 2.2 I(k) (T) I < It W (0)1

m-i
Proof. The standard identity L' (T) = - L L ) implies

in-1 m
that -t'( )= m (T) + E Zr(T)= e ter (T) where 8 =0 r=0

8 mr= 1, 0 < r < m-i. Hence, by induction (-l)ktm(kbr) =

(k r () where 0 = (6) is the associated lower trian-

gular matrix and 0k is non-negative for all k. Hence

( , (k)

6-2
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Lemma 2.3 (k) < (-l)kZ(k) (0) < m+kk m - k

C-1
Proof: Eu tm (T) = (1 u)-  exp{- t l + u)/(l - u)] ->

0
Go k k

umt (k)() (i u) k (k)ur(l -u)-kl.
(m) + = kr ( u) --

=O (1-U)r=0

Hence (l)k(k)()= (h) k (k)(m+k-r r )k k m+rH e c e ( - ) m ( )( ) (r ) k ) ( ) (r ) ( k ) " B u t
r=0 r=O

,m m+r (m+k k k 2k,
(k) < k )r <  k )  0 < r < k, and k ( ) =2 so that the

lemma follows.
m+k.k

Proof of Theorem 2.1. Clearly* ( k ) < (k + 1)m k , k m > 1,

so that i[(k) (T)I/m k < k + 1, and it(k) (T)I/mK < k + 1,[+m -- m -

K, m > 1. Consider f(T) (f mK) K + f 0t
1 m

and f(T+h) - f(T) f t m K f+h (y)dY +fo oT+h) t- ('T)

h -hJ Ko hm= l T n

By dominated convergence, we have f' (T) = t m(,) and
0

f'(T+h) - f' (T) = t [fC" ( +h) - r')] , so that f' (T) is

continuous and goes to zero as T + o. The argument may then be

repeated for all derivatives up to and including the K'th. deriva-

tive .0

_____ _____ __+__ k _ _ _ _ _

* (m+k) = (m+l)(m+2) .... (m+k) < mk  2.3 .... (k+l) = (k+l)mk1.2% ... .k - 12 .... k

6-3
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A simple extension of the theorem will be of interest sub-

sequently.

Definition (an) £ SK <-> E nKjan <C
0

Theorem 2.4a. Let f(T) = f t tn(T), and let (fn) C Sn n K
I

(d p 0, q >0
Let dP (g f ( - fn (Pq)n(T); p  q < K. Then

n K>i1

(f (P ) C K(p+q)

Proof. The theorem is proven by showing that differentiation

lowers K by at most one, and multiplication by T lowers K by

at most one.

Thus let g(T) = Eg n n(T), with nK g < G, K > 1.

Then g(T) £ CK(P+) and h(T) = g' (T) = t h t (.0
0 0

where Ihn < Z Igm , as in the proof of Lemma 2.2. Then
m=n

nK-l hI < I O nK-igm I Im nK-I K  IgmtImK <
n <C

0 n=O m=n m=0 =o m

6-4
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Similarly let s(T) = CgtT gn t with (gtC S
n fn n K'

K> 1. Then s(T) F t(T) = n {(2n + i) (t) - (n + lt (ii -

(n+1n n+1(T
nso(, so that (s ) is summable. Then s - (2n + l)g -

-in n n

-n+l + ngn- and E nK-Isn < co as needed.

Corollary 2.4b. EnKIfnI < -p-> )q f(T) C CK-p-q(R+)

K>l, p,q>O
p+q < K

Let us now see how smoothness in f(t) induces rapidity of

convergence in (f ) The Laguerre function t (t) satisfies [1 ]n "n

the second order differential equation

t Vn(t) + e' (t) + (n+ -kt)I (t) =0 ()n n

for 0 < t < = . This may be written in the form

t -d t d tn(t) = t - W(t) (2)

= L t (t)

(n+ ) t (t)

n

I
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It is easily seen that the operator L is self-adjoint in the

sense that

g(t) [Lh(t] dt = [Lg (t)] h(t) dt (3)

under simple conditions, (4a) and (4b) given below. Indeed one

may employ the identity

g(t) Dh(t) - h(t) Dg(t) = h(t) Lg(t) - g(t) Lh(t)

d [ dh h t
St dt

and integrate by parts to obtain (3) provided that the function

g t dh - h t vanishes at t = 0 and - and the integrands in
g t dt

(3) are in L1 (0,-). Thus (3) is assured whenever h(t) = In(t),

n > 1, and

g(r) (t) is continuous and bounded on (0,-): r = 0,1,2

(4a)

One further condition on g(t) is needed as will be seen in a

moment. This is the condition

Lg(t) = htg(t) - tg"(t) - g'(t) E L2 (0,-) (4b)

From (2), (3), and (4a) we have for g - = g(t) tn(t) dt,
0

6-6
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g t g(t) L tn(t ) dt (n+ ) (5)

= n+ ) - I  Lg(t)] (nt) dt

If g(t) satisfies (4b), then Lg(t) = Z (Lg)n t (t) and
$n 0

(Lg) n = o(1). Hence from (5) g (n+ )1 o(l) o(n-)"

The operator Lk = (1t - D)k is also se-f-adjoint under

similar conditions on the boundary. From (2), one hasr!
k kL tn(t) = (n+ ) £n(t) (6)

If both sides of (6) are multiplied by g(t), successive integra-

tions by parts gives

!(+)k Cor (t) L

(n+)g = n(t) Lkg(t) dt (7)
0

provided that g(t) arid L g(t) satisfy conditions (4a,b) for

m = 1,2,...,k-l. These conditions will be assured if g(r) (t) is

continuous and bounded on (0,-) for 0 < r < 2k. We again re-

quire that L g(t) E L (0,-), and then have, as above,

n = o(n k, n . (8)

These conclusions are summarized in the following

6-7
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Theorem 2.5. If

a) f (r) (t) is continuous and bounded on (0,w), r = 0,1,...2K

b) L rf(t) c L2 (0,-), r = 0,1,...,K , (9)

then

f = o(n-K) n 0 (10)
n

It may be noted that (9b) requires in general the existence of a

2Kth moment for f2 (t), i.e. that f t2K f 2 (t) dt < w. Thus the

coefficients fn decay quickly to the extent to which f(t) is

smooth and localized about t = 0.

Of particular interest is the situation where f(t) is real

analytic on (0,-) and falls off quickly enough at - so that (10)

can be true for all K. The class C,(R I) of "rapidly decreasing

functions" of interest to Fourier transforms (see Dym & McKean, 15),

p. 87) is defined by: f(x) e C'(RI ) def xq ()dP f(x) is

bounded on R for all non-negative integers p,q. We may speak

correspondingly of the class C (R+) of rapidly decreasing functions

on ]R+(0,- ) for which xq (d)P f(x) is bounded on R for all

non-negative integers p,q. Then as a corollary to our previous

theorem and of the. earlier Theorem 2.4 we have

6-8
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Theorem 2.6. A) f(t) C CC(R+) if and only if B) nKf t  0,
n

n * for all positive integers K.

Definition

When (B) holds, (f n)o is said to be a "rapidly decreasing

sequence" [5].

Note t1hat (B) implies that nKfn = nK (ft+l- t ) - 0, n *
n n~-fn

and indeed that n q DPft 0, n =, where D is any forward, cen-
n

tral or backward difference operator. The name rapidly decreasing

K nsequence is therefore appropriate. Such functions as n 6 and
K 2

n e n  are rapidly decreasing, for 0 s e < 1.

It is important to note that smoothness of f(t) alone does

not assure that nKf t - 0 for all K. As an example, letn

f(t) = 1/(l+t) c L2. Then f(P) (t) - 0, t =. We have

f= +-- OD n (t) dt

f e-  6 ( + t ) i n(t) d6 dt

O I - n e-8

Se u-1 (1 u- u 1) n e u du
9

6-9



-32-

eh o2  nU1

= f { (1 - u) u- e - /u du
0

n

For n- 2k, 12k = du+ { )du}e

e f2 (1 - U)2k u 1 el/u du

For 1 < u < 2, e e-l/u , hence 1 2k > x2kdx k l
20 2k 2fxd (2k+l)-02

Hence f t is not rapidly decreasing.

n1

6-10
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7. Calculation of the Laguerre Coefficients via Taylor Series.

We have seen that when a(-,) E L TL#(u) = +u is

regular about u = 0. There are two different Taylor series of value

in calculating the Laquerre coefficients. The first valid in

principle for all a(T) in L2 (R+ ) proceeds as follows: We may

write

+ a(. + a()e - T/2 e- T{u/l-u) 1dT
I i -u' e

The function 6(u) = u/(l-u) is regular at u 0 and a(h + 6)

is regular at 6 = 0. ThusCO f 0T/(T/ok
(I(.! + ) = a(T)e-T/2( -/ - u (k= 0  k: dr i(7.

k=Uk
k- k 1uk

But

= kul)U (7.2)
=

Hence

L# n-i (7.3)
n  'k k-7

I 7-1
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and similarly, since

Thus one has

IcI

Theorem 7.1. If a(Tj i 2 ( R + ) , its Laguerre coefficients

are given by (7.3) and (7.5).

Example% a(T) = te - B  > 0 has ;k = ( k ~e-1S+ )-rdT

= (r+k) (_.I) k (,+,) - m - k - I  and

n2

_ Lt n-- n

ak==(0*5) a n ( )mk)

Note that Theorem 7.1 is useful when the k coefficients are

available. in some circumstances a Taylor expansion of a(s) about

s = 0 is more convenient because the Taylor coefficients there are

available. Thus if

a(s) g y ( a ()e-7STd

0

I 7-2
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is regular for 0 < Isl < A, A > , the point s = h lies inside

the circle of convergence of the Taylor's series of a(s) about

s =0. If we write a(s) = Ea n s n , then
0

1 l+u 1 u (1 u n(a L- = a (I + ui) = .u ( 
+  u/ n

2i. 1-u~ 2 1- Ean 2 1-u
0

Snnk ngnk
0 0 k=O _F

It is then easy to show (see below) with the help of the Cauchy

inequality that the series

a = agk
n=O

provides an absolutely convergent representation of the Laguerre co-

efficients (an L#). The coefficients an are given by

nn

a (-i)n

n n! tn

where

p n = f a ( T )Tn dT
0

7-3
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1 U nflgn~

and (+- ) = u n , 9 < i .
2 1-u kOnku

Thus from the Binomial expansion and

r k- 1u kr >

r = - _

we have g = ( ) and,

r n)(1)n-r (k-1r k 1
r=1I

_2

When a(T) = T > 0, A = , and the coefficients may be

obtained in this way. Similarly, when a(T) = 1, 0 < T < 1, the

calculation is easy.

Theorem 7.2. Let a(s) be regular for 0 < Isj < A, A > .

Let a(s) = S and let + u (-u) = . Then
0 0

Eangnk is absolutely convergent.
n

Proof. By Cauchy's Inequality, ilI < M1 /Rn where M= max la(s) I,s l

1< R < A. Also

7-4
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gkI u= 6 2k 1-u< :

~ max i Umax

By taking- 6 sufficiently small, we may assure that max6 + u

< R 2 v R 2 < R., and the theorem follows.

7-5
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B. The deconvolution problem

Let b(t) = a(t)*f(t), i.e.,

tb (t) = f f (t')a(t - t')dt' I

0

where b(t) and a(t) are known and f(t) is sought. This will be called

the deconvolution equation. When b(t) and a(t) c L2 (0,-) and b(t) =

Sbn (t), a(t) = a t (t), and f(t) = I fnt (t) we have fromVn nn n n

Section 1,

(b) # (a #)*(f)

i.e.,

n
b # f #(2)Safm n-m0

A formal solution of (1) via Laplace transformation has the form

O(s) = 8(s)/a(s) (3)

and this may be solved simply by analysis in some easy cases.

We note from (3) and the uniqueness of Laplace transforms that

(1) has a unique solution if it has any solution. A solution is

usually guaranteed by physical considerations or by the mathematical

origins of the problem.

8-1
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Difficulty arises when a(t) and b(t) are known numerically

from data, say. Numerical solution of (1) is most naturally

attempted by discretizing the continuum, but there are often serious

difficulties, as we will see.

The numerical solution of the lattice deconvolution equation

(2) is in principle trivial when the coefficients an and are

known. For one has

#: # #b0 a0 f0 '

b# a # + a#f#
1 0 1 1

so that, recursively,

-n-l a l a)=# - aE #a# (4 )
m=O n

provided a# # 0. Now0

+ * -t/2d(5
a0 = a0 = f a(t)L (t)dt = f a(t)e d 5

0 0

and one may expect, in-general, that a* 0$ 0. one could have

a = 0 if a(t) is in the space orthogonal to t (t).
0 0

The deconvolution equation (1) has start-up difficulties in

discretization approaches when

a(t) J Km , t 4 0+ , K > 0 (6)

8-2
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for some positive integer m. Note, however, that this does not

cause trouble in the Laguerre procedure, as may be seen best from

aem . f( te at, a(s) = (s+a)- 2 and T (u)

aneaple. Tf (t)ada() = 12
2 1u

with = T (0) - 2 > 0. So that there are no start-up
0 a (a +)

difficulties.

In those instances where a# = 0, 0 < m < M-1, one will also
mu- -

have from Tb(U) = T#(u)T # ( u ) that b #  0, 0 < m < M-1. Then T b (u)/T (u)
b a f mb a

u-MT (u)/u-MTa (u), and the lattice deconvolution proceeds normally.

When a(t) and b(t) are integral functions with Laplace

transforms regular at infinity of order at most one, it may be de-

-. sirable to represent a(t) and b(t) in terms of the Erlang

functions of Section 4. This procedure has the advantage that the

Erlang building blocks are naturally ordered by their behavior at

two in that tme-t/2  is smaller near zero than the-t/2 when

m>n. Note that O(s) = $.(s)/a(s) is regular at - when a(s)

and 8(s) are regular at - and b(t)/a(t) is bounded near zero.

The condition is required for the existence of any solution by

reasoning similar to that of the previous paragraph, since

OD (~) o -(rn-) - (M-NEb m-(m+l ams (a M /b )S N), Is where aMp b No 0

are the leading coefficients and M>N is required. The solution

f(t) will then itself be in the Erlang family, and lattice decon-

volution of the Erlang coefficients is viable.

8-3
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9. Numerical Examples of the Iethod

We present some numerical examples of the transform methods

for the calculation of multiple convolutions as well as for the

solutions of Volterra equations (0.1), (0.2). All computations

were done on a Burroughs 6750 computer in a time-sharing mode using

APL as a programming language. The computations were in single

precision (11 digits). Relevant formulas were usually coded in

an "obvious", straightforward way, with no attempt made to opti-

mize the subroutines for speed or accuracy. In spite of this, the

results displayed in this section were typically gotten with CPU

times measured in seconds, and with no evidence of numerical prob-

lems such as roundoff, truncation, underflow, etc.

The Laguerre functions were calculated using the recursion

relation (see Appendix A)

tn (t) = [2 (t+l) ]zt n()
n+l n+l n n+1 n-i

with 0(t) = exp(-vt) and t1 (t) = (l-t)exp(-vt). Similarly,

en (t) = (!)enl(t), with e 0 (t) exp(-vt). The use of the scale

factor v is recommended for computational flexibility. When v = ,

the above-mentioned Laguerre and Erlang functions are obtained. When

v - 0, the Laguerre functions become the Laguerre polynomials and

the Fourier-Erlang series reduces to the Taylor series. The use of

the scale factor v 'is equivalent to the use of the exponential

9-1
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transform of Section 5, for if (t) = f(t)e - t, then

f = fe-VtL n(t) for v = e + . Hence the use of v'z  is

justified:providing f(t) is Laplace transformable and f(t) L2.

Typically, the computer will give the same answer for any v in

the vicinity of h, and the user may choose a value of v empirically

to get the best numerical accuracy.

The Laguerre and Erlang coefficients for exp(-at) are needed

frequently in applications and are derived here for easy reference.

For f(t)exp[(v- )tl E L2 (0,-), (1.5) becomes

f L(v) = f f(t)exp{(v- )t)} (t)dt (I)nl 0n

(in which t (t) is the classical Laguerre function) and for
n

f(t) = exp(-at), we recognize the Laplace transform of n (t) evalu-

ated at a + - v. From (1.8),

L-t (a-v)(v) =' n = 0,1,2, ... . (2a)
(a+l-v)n+l

For the Erlang transform we have

f(t) = exp(-at) = IfEt(v)(tn/n!)exp(-vt)n

so that [ fEt(v)(tn/n!) = exp(v-a)t, andn

f, n = 0,1,2,... (b
t (v) (v-a) n2 (2b)

9-2



These coefficients for the exponential function serve as useful

building blocks for calculating coefficients of more involved func-

tions. For example, if f(t) is an Erlang density, its coefficients

may be easily computed by recognizing f(t) as an integral numbex of

convolutions of an exponential density.

Example 1: Server Busy Period Density

This example illustrates the use of the transform methodology

for the evaluation of multiple convolutions. Reference [3] illus-

trates the numerical effort that may be required to perform multiple

convolutions by numerical methods. When the function being convolved

has rapidly decreasing coefficients, our method yields a fast and

accurate algorithm.

Consider a single server M/G/l queueing system [18] having a

Poisson stream of customers at rate X and service time distribution

which is absolutely continuous with density a(t). The server busy

period density s(t) is well known [18] and is given by

s(t) = exp(-Xt) ( )n(n(nll)(n+l) ! a~nl Ct) .(3)
0

The study of s(t) has been hampered by its relative numerical intract-

ability. Only when a(t) is a pure exponential is a closed form answer

available. We take a(t) to be

a(t) 2(e- t -e 2 t) (4)

9-3
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i.e., a(t) is the density of the sum of two independent exponentially

distributed variables, one with parameter 1, the other with parameter 2

The Laguerre or Erlang coefficients for a(t) are written down imme-

diately using (2a) or (2b). By inspection, we see that the best

value of v for the Erlang coefficients is 1.5, and that the best

value of v for the Laguerre coefficients will be between 1 and 2

(turned out to be about 1.3).

To perform multiple convolution, we make use of (1.13) and$i

(4.6), which state that for either Laguerre or Erlang building blocks

wehaveT**g fg Hence T# = (T ) , where h(t) = a (t) and we
wef hfv gg h aTm m

have the following algorithm for the multiple convolution of a(t)

using Laguerre building blocks:

I. Generate or store in the computer the Laguerre coefficients

{a+}N for a(t). Note that this is a finite set.nO0

II. Convert {a I to {a }. Since T (u) = (l-u)T , this corre-n n a a
sponds to a simple differencing operation.

III. Perform -fold discrete convolution on {a . nNIII Pefor m-olddisret covoltio on{an ) 0 Retain

only the first N+1 terms in each convolution. The result

is the sequence {h #n

IV. Convert {h to {h+ ). This is the inverse of the differ-n n

encing operation, i.e., summation.
N +

V. Sum the series I h nn(t) to get h(t).
0

A completely analogous procedure is used for the Erlang building blocks.

A few remarks may be helpful:

9-4

ZL



-45-

(1) The steps involve a finite number of computer operations

on discrete sequences. The cperations are things that a computer

does well. The steps are easy to program and are typically done

with high speed and accuracy.

(2) In applications, step III was done using the formula

n
(f*g) I(fgn 0 [ kgn-k

0

Since N is typically less than 100 and frequently less than 50, the

use of sophisticated techniques, e.g., Fast Fourier Transform, for

the discrete convolution does not seem warranted.

(3) A typical sequence of operations is to make a trial run

with N = 30, repeat for various values of v to get the most rapid

convergence, then increase N as needed to get the desired accuracy at

all necessary values of t. Thus, working with the computer in an

interactive mode is ideal for this methodology.

With this algorithm, the functions a (n+l) (t) may be computed

for desired values of t, starting with a 1 (t) = a(t). Figure 1 dis-

plays s(t) for X = .2 and A = 1. For both the Laguerre and Erlang

building blocks, accuracy was best near the origin and decreased

with increasing values of t. Three digit accuracy, i.e., sufficient

to plot figure 1, was gotten by using N = 30 for all the convolutions

(either set of building blocks) and using the first 6 terms of the

infinite sum for s(t). When high accuracy was desired, the Erlang

9-5
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building blocks proved superior to the Laguerre building blocks.

Using N = 40 for all convolutions, accuracy to about 10 digits after

the decimal point was attained out to t = 10 using 23 terms in the

infinite sum expression for s(t).

The service time distribution has mean 2/3, so that for X = .2,

s(t) represents an honest density, i.e., it integrates to unity.

For A > 2/3, the formula for s(t) remains valid but integrates to

less than unity since there is positive probability that the queue

will never empty after the first customer arrives.

Example 2: Solving a renewal equation

This example illustrates the transform methodology in the solu-

tion of a Volterra integral equation of type 2, e.g., a renewal equa-

tion. The use of series methods in the solution of renewal equations

has been used with some success by previous authors, e.g., [8), [16),

who have typically restricted themselves to the Taylor series. As

this paper makes clear, the use of the Taylor series is a special

case of a much more general approach.

In a reliability context, suppose an item has failure time

density a(t), and suppose that the maintenance policy is to replace

the item at random times, whether it has failed or not. Let the

replacement times be exponentially distributed with rate parameter

A, and let s(t) be the density of the resulting effective failure

time distribution. Then probabilistic reasoning gives

9-7
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s(t) = b(t)*{6(t) + c(t) + c(2) (t) + ... )

= b(t)*i c(k) (t) (5)

0

where b(t) = a(t)exp(-At) (6a)

c(t) = Aexp(-Xi) f a(y)dy (6b)
t

and 8(t) is the Dirac delta function. It is clear that s(t) obeys a

renewal equation

s(t) = b(t) + c(t)*s(t) (7)

The multiple convolutions in (5) could be evaluated as in the preceding

example, but the direct solution of the renewal equation (7) is much

more economical and accurate.

To solve (7), we note that (7), (1.12), and (4.5b) imply that

T #  T T# + T #T #

s b C s

which implies the discrete renewal equation

{(s1- {b# I + {c #)*{s #)
n n n n

n

i.e., s = b # + c#s# (9)n n 0  k n-k 0-
Equation (9) can be solved for sn recursively, starting with s = b

providing that c#0  1. The algorithm for solving (7) is hence steps

9-8
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I - V of Example 1, except that step III requires the solution of

the discrete renewal equation (8).

We choose a(t) = 2(e- t - e- 2t) as in Example 1 so that (6a),

(6b) become

b(t) = 2e - (l+A)t - e- (2+A)t]  (10a)

c(t) = 2 Xe
- (l+A)t - (e(2+)t (10b)

The Laguerre or Erlang coefficients for b(t) and c(t) may be written

down immediately by using (2a), (2b), respectively. The resulting

s(t) is displayed in figure 2 for X - .2 and A = 4. As expected,

the mean time to complete the message transmission increases as the

mean interruption rate increases. Using N = 4,0, both sets of building

blocks give about 4 digits of accuracy after the decimal point in the

time interval [0, 101 for A = 4. For X = .2 and N = 40, we get 5

and 10 digit accuracy, respectively, for the Laguerre and Erlang

building blocks.

Example 3: The deconvolution problem

The deconvolution problem involves jolving an equation of form

b(t) = a(t)*f(t) (11)

with a(t), b(t) known and f(t) unknown. This problem is discussed in

section 8, and equation (8.4) provides an algorithm for solving the

discrete deconvolution equation (8.2), which is of the form

#) fa' )*{f) . (12)

n n n

9-9
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It should be noted that (12) can be recast as a renewal equation,

i.e.,

{f #  -- {b# + [6(n) - {a# ]*I f#
n n n n

where 6(n) =1 n 0

[0 n

Hence, a subroutine for solving a discrete renewal equation also

serves to solve the discrete deconvolution equation.

In an M/M/l queue setting, let sn (t) be the density of the time

for the queue to empty, given a start with n customers. It is known

[9] that sn (t) satisfies

-n (t)= sn (t)*g 0(t) (13)

where gn(t) = (/W)ne-(X+.i)tI n(2 v/7t), n = 0,±1,... (14)

with X the arrival rate and u the service rate. The density sn(t) is

known 19] to be equal to (n/t)gn(t), but we solve (13) numerically

to illustrate the deconvolution technique.

When A = P = 3, (14) simplifies to

gn (t) = e-t in(t).

We expand I (t) in'a Taylor's series and immediately get a natural

expression of gn (t) as an Erlang series with v = 1. The deconvolution

9-11
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algorithm proceeds with no difficulty and figure 3 displays s1 (t).

The density is integrable, but has a very heavy tail, i.e., it has

no moment, Twenty terms in the series provides more than enough

accuracy to make the plot, but more terms are needed for large

values of t. Sixty terms gave about 5 digits of accuracy after

the decimal point at t = 50, with 10 digits at t 20.

When A = .25 and = 1, (14) becomes

(t) = ( )n -' 25t n (t)

Again, the expansion of I n(t) in a Taylor's series provides a natural

expression of gn(t) as an Erlang series, this time with v = 1.25.

Figure 3 also displays sl(t) for this case. The tail is very light

and 30 terms in the series gives an accuracy of about 8 digits out to

t = 10.

9-12
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10. Interpolation Methods and Problems

For the solution of integral equations of form (0.1) or (0.2)

where the given functions a(x) and b(x) are only known numerically

at some finite set of points, interpolation procedures are needed.

Interpolation of the data via spline functions may or may not be

suitable for the methods we have described. The discontinuities

in the derivatives at the knots intrinsic to those methods preclude

the Erlang transform methods of Section 4 since a(x) and b(x) cannot

b then be integral functions. Laguerre transforms are possible, but

the functions will not be rapidly decreasing and hence, as shown

in Section 6, the Laguerre transform coefficients are not rapidly

decreasing and the tails of a could be excessively long. A suffi-
n

ciency of data points could permit spline interpolation of high

order, and corresponding accuracy. The difficulties surrounding

such finite data set problems, and the accuracy of our methods when

applied to such problems, require further study.

10-1
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11. Generalization of the Method to Other Families of Function

The basic method can be extended to other classes of functions.

Consider any sequence of functions (an ()) O with Laplace transforms

(a (s)) for which an(s) has the form

C = (s) a (s) ((Is))n 0

Suppose further that under the change of variable w = $(s),

g (s) becomes, p(w), i.e., ao(-0 (w)) = p(w), where p(w) is

regular at w = 0. Let g(t) = Egnan(t), h(t) E h na n(t). Then

L[g(t)] = gnan (s) = a.O (s) Egn0o (s)]nl p(w) gn w n ' and 14h(t)] =

p(w) I hnwn. In our previous notation, we then have for Tt (w) = wn
gn

T-t 1*
p(w) Th = p(w) T (w) p(w) Th(w). (2)g*h g

Hence

T (w) = T (w) Th(w) (3)g*h g

where T# (w) = p(w) T g (w), and the framework for computation developed
g g

in Section 1 for the Laguerre transform carries over.

There are many classes of functions a n(t)} having the

necessary algebraic structure for an (s). Two such classes quite

different in form from the Erlang class and Laguerre class are of

interest. In the first the building blocks are the functions

I11-1
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a n(t)= n exp {-n2 /4t (4)
4}t3

which arise in the theory of diffusion. For these functions one

has

an(s) = en / (5a)

8(s) = e , co(S) = p(w) = 1. (5b)

The second family has Bessel function building blocks

an(t) = Jn(t) , (6)

for which [I]

(s) = I s2+-_ s}n/ 2+1 (7a)

8(S) = { _ S} (7b)

ao(S) - (s2+1)- ;. p(w) = 2w/(l+w2). (7c)

For any of these families (an(t)) we may use instead (an(t)e-YT)

since the necessary properties are preserved.

In special contexts, such as underwater sound signals, a

particular family might be more appropriate than the Erlang family

or Laguerre family. Each family of functions has special advantages

and special limitations and computational algorithms appropriate

to that family are needed.

11-2
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12. Inversion of Laplace Transforms

The operational framework we have developed for convolutions

also provides formulae for inverting Laplace transforms in terms of

the building blocks. Two such formulae of general interest are pre-

sented in this section. Other formulae may be obtained from Section

11 for special classes of functions.

When a(s) = f eSta(tdT is regular at infinity and vanishes
0

there, inversion of a(s) as a series is implicit in Theorem 4.1.

This may be worth stating formally. The result is given in a more

restrictive setting by D. V. Widder [20).

Theorem 4.3

If: (a) a(s) is regular at and vanishes there

(b) a(s- ) = 1)m+lm s
~0

then a(r) is entire and given by

0 ma(T) = cmj CT.

where the series is absolutely convergent for all T.

Note that the Taylor expansion of TL (u) about u = 0 togethera

with (1.4) also provides an explicit inversion formula for Laplace

transforms. Specifically, one has:

Theorem 4.4

Let a(T) c L2 (0,-) and let a(s) = L[a(T)I. Then a(T) is given by

12-1
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(13) a(r) m 1 L (()
m=O I u=O

Numerical inversion of Laplace transforms via numerical inte-

gration techniques has received considerable attention, e.g., in

the book by Bellman, Kalaba, and Lockett [2]. Such techniques do

not appear to exploit analytically founded accuracy as fully as

our procedures and are placed in jeopardy by ill-conditioning 12,

p. 33]. An extensive comparison of the two procedures is needed.

The idea of inverting Laplace transforms via the operational

tools of Laguerre functions goes back, to the authors' knowledge,

to Lanczos in his book, Applied Analysis [11). The presentation

there is somewhat obscure and the scope of the procedure and its

legitimacy are essentially undeveloped. Feller presents explicit

inversion formulae for Laplace transforms [6] of largely theoretical

value. Neither Feller nor Widder nor Bellman refer to Lanczos'

method.

Acknowledgment. The authors wish to thank H. Ross for helpful com-
ments, U. Sumita for his extensive and generous technical assistance,
and Ms. L. Ziegenfuss for editorial contributions.

*tThe reader may wish to examine the papers by A. Papoulis, "A new

method of inversion of the Laplace transform," 0. Ap. Math. 14,
1957 and R. V. Churchill, "The inversion of the Laplace tran--orma-
tion by a direct expansion in series," Math. Zeitschrift 42, 1937.
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Appendix A

Classical properties of the Laguerre polynomials L n(x)

and functions n (x) Ln (x)e -x/2 (cf. [11)

1. .e-XLn(X)Lm (x)dx = 6mn
0

2. f I n(X)m (x)dx = 6
0n

3. unL (x) = (1-u)-l expu- x-

0 1-U

i 1 ]+ xiu,u.0 n(x) = (1-u) exp -

n ki1 n xk

5. L (x) = n (-) 1, (k)

k=O

- n
.x = (1 k 1 (n)L(x)

k=0IF kk

1 ns- n
7. f e- (x)dx = s+ " ; f (X)dx = (-1)n.2

o no+,S+-

8. Ln (0) = 1n (O ) =1

x n -x/2
9. t (x) -~e X x -

1e x (I)nx
10. L (x) 1 xd n xne-x

nl n dx

t (X n!

1 0 1 x T U J 2 -
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12. xt nx W (2n+l).t (x W (n+i)Z t x -~ n.C (x)

n-1

0
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0. Introduction and Summary

In a previous paper, hereafter designated by [A], a description was

given of a Laguerre transformation which maps a function f(T) in L2 (0,-)
#00

into a sequence (fn0 on the nonnegative integers. Moreover, for two

such functions f(T), g(x), the convolution f(T)*g(t) is mapped into the

lattice convolution (f*g) fng = ((f#)*(g )) One obtains therebyn n-n m m m n(k

an algorithmic basis for the computation of multiple convolutions f (T)

and related infinite series of importance to statistics and applied proba-

bility.

Such Laguerre transforms have one-sided functions as their natural

domain because the Laguerre polynomials L n(T) and Laguerre functions

n (T) = L n(T)e - / 2 are associated with the one-sided weight function

e-T on (0,-). Nevertheless, the methods have a simple extension to two-

sided functions on the full continuum (-c, w) via the same Laguerre

functions as we will see.

A variety of applications exist to statistics, operations research,

and engineering. In statistics, for example, one has need for multiple

convolutions of two-sided distributions unavailable analytically, that

of the logistic distribution, for example. Even relatively innocuous

distributions such as the Laplace distribution convolve with difficulty.

In operations research studies dealing with queues, inventories and

storage systems, one encounters as a structural entity [3] the extended

renewal density h(x) = a(k)(x), where a(x) is a probability density

function with two-sided support. For many densities of interest, evalua-

tion of h(x) has been resistant.
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In the earlier paper [A], the crucial role of the complex plane in

the formulation of the algorithms was evident, even though the algorithms

were entirely in the real domain. For the bilateral transform, the com-

plex plane is again very much present, with Laurent expansions, bilateral

Laplace transformation and conformal mapping entering as crucial tools.

The first section extends the earlier formalism to the full continuum.

That this extension is natural, and not just an artificial piecing together

of the formalism for each half-line, will be clear from (1.9), (1.12) and

(1.13). The harmony of the basis will also emerge vividly in Section 3,

which deals with the extent of the transform coefficients, and associated

uncertainty relations. The topic of extent is crucial to the utility of

the Laguerre transform method as a numerical tool. Numerical examples are

presented in Section 5. A table of contents provides the reader with an

overview of the paper.

Two references (V. I. Krylov and N. S. Skoblya [8], and W. T. Weeks [12])

have come to the authors' attention subsequent to publication of [A]. Both
deal with the use of Laguerre functions for the numerical inversion of one-
sided Laplace transforms.
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1. The bilateral Laguerre transform

In this section the one-sided methodology of [A] will be recast in

a natural way to provide a corresponding representation of two-sided func-

tions. In this extended setting the one-sided functions will be a special

subcase.

Let f(T) be any function in L2(-ww). Let U(T) = 1, T > 0, U(T) = 0,
2

< 0. Then f(T) = f+(t) + f_(T) where f+() = f(r)U() is in L2 (0,-) and

f (t) = f(r)U(-T) is in L2(--, 0). The discrepancy at T = 0 may be

ignored. Clearly, one may write, employing the notation in [A],

(11 f() I f ft t (tr)U()
+ 0 nl+ n

(1.2) f(T f n n ( )
0

and

t
(1.3) f(T) = fmhm') t 0,

-00

where

(l.4a) hm(T) = tm(T)U(T) , m - 0

(1.4b) hm (T) = -Z_m_ (-T)U(-T) , m < 0

The puzzling minus sign in (1.4b) plays an important role which will

emerge soon. We see that

(1.4c) hm(t) = -h_ml (-T) , all m,T
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Note also from (1.1), (1.2) and (1.3) that

(1.4d) f = n+ . n >O0; ft=nft<O
n n n (-n-l)-'.

The set of functions {h m(T)}00 form a complete orthonormal system for

L 2(-, Consequently, one has

t 0,

(.) f~ m f f(z)h m ()dT =

f(-)C (T)dT , Mn < 0

From the orthonormality, one has the Parseval relation

(1.6) f f 2 (T)dT f +2

We know that Bilateral-Laplace transformation gives for n 2: 0 (cf.[A)

(1.7) L8( (T)U(T)] =f e- T Z(T)U(T)dT
[tn-n

=(s - 1 / 2 )n/(s + 1 / 2 )n~ Re(s) > - 112

and

(1.8) L B[_f (-'r)U(-T)] = (s + 1 12 ) n /(s - 1/2 )n , Re(s) < 1/2

It then follows from (1.4a) and (1.4b) that, for all n (explaining the minus

sign remark below (1.4b)),

(1.9a) L B[h Jr)) (s - 1/2) n/(s + 12 ~

-< n < -1/2 < Re(s) < 1/2



-S-

From (1.4) and (1.9) we have the interesting identity

(1.9b) hm ()*hn (T) = 1(-)*h m+n(T) ; all m,n,T

which may be compared with eq. (1.9) of [A]. For f(T) E L2(-.,m), with

(ftn) C 1 , i.e., IfI < -, we have formally from (1.3) and (1.9a)

(i.I0) CB(S) def Lljf(T) = f+(S-112)n 12

(.0 B nLTJ ns +1/2) s+112

A discussion of the domain of validity of (1.10) will be given in the

next section. The ideas and results are a two-sided extension of the corre-

sponding one-sided results presented in [A]. As we will see, the series in

(1.10) will be absolutely convergent in some strip -A_ < Re(s) < A+, A > 0,

A+ > 0, when f+(T) and f (T) are sufficiently smooth and "rapidly decreasing"

as in [A]. It then follows from (1.10), that in the corresponding domain D

in the complex u-plane, containing {u: ul = I}, one will have for the dagger

generating function Tf(u)

-- f m u(1 +u(1.11) Tf(u) de m 1u~1u

and

(1.12) T f(u) def (1u)Tf()= (1 l+u

For bilateral convolution it is known that LB[f(T)*g(T)] = C(S)-Y(S). Hence

we have from (1.12),

(1.13) T*g (u) = Tf(u)T (u)

It then follows that as in [Al, bilateral convolution may be mapped into

lattice convolution via the two-sided Laguerre transform
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f = f f() [h n() - h nl(t)]dT

i.e.,

(1.14) f# ft - ftn n n-i

The validity of (1.10) in a convergence strip containing the imaginary

axis in its interior will permit T~f(u) to be regular in an annulus contain-

ing the unit circle in its interior, when CB(S) is regular at infinity as

we will see in Section 2. The situation is somewhat modified in the absence

of such regularity.

Note that f(t) even, i.e., f(T) = f(-T) implies that B(s) is even in

s. It then follows from (1.12) that

(l.15a) f(r) = f(-T) f# = f#
n -n

i.e., f(T) even in T implies that f# is even in n. Similarly, one has' n

(1.lSb) f(T) = -f(-i) <=> ff -

The reader will verify from (1.1) and (1.2) that when f(T) is even
(so that f (T) = f_(-T)), then ft = ft It then follows from (l.4d)

+ n+ n-

that

(1.16a) f(r) = f(-T) <- f t ft
n (-n-l)

(l.16b) f(r) - _f(_T) <-> f = ft

n (-n-1)

i.e., the daggers have their symmetry about n = - 1/2.
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It is clear from the simplicity of the form of (1.13) and from the

relative simplicity of the symmetry relations (1.15a,b) for f# over those
n

of (1.16a,b) for ft that the sharp coefficients f# are a more naturaln n

vehicle for our algorithms than the daggar coefficients f . Nevertheless,n

the latter are of algorithmic and theoretical importance. Indeed, they

are needed for a final inversion f(T) = fth (T) returning to the func-
-. 0 n n

tion sought.

As in the introductory paper [A], the general setting for the trans-

form is the L(c-, cas for w2 hich , so that (f ) E Z As

for the one-sided functions, however, the methodology is of value algo-

rithmically only for functions sufficiently smooth, e.g., "rapidly decreas-

ing" (cf. §2). Summability of (ft ) is of special importance. We note,
n

therefore, that

(1.17) (f+)-E => (f E) >L f = 0

as seen immediately from (1.14), and fn = f - f t Moreover,
A n A-

(1.18) (fn)-- => fn'
-O n+l

and (1.18) then permits one to go from (fn# to (fn). We also note from (l.4d)

and (1.14) that for all (ft) E

fn+ , n>

(1.19) f# f#o *# , =

f # n < 0(-n)-



Consequently one has

n. (n)- 0 nl+

T (u) T # ~ #X#

(1.20) Tf (u) Tf -+A U)
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52. Rate of convergence of the Laguerre coefficients; regularity structure
in the complex s and u planes

A. Structure for the one-sided case

The bilateral Laguerre transform will be a useful tool for the mechaniza-

tion of convolution if the sequences (f ) CO and ( #) fall off rapidly asn -® (n) alofrpdya

in [A]. The definitions employed there will be repeated for convenience.

DEF 2.0a. (fn C (N+) K f n 0, O n - 0 for all non-negative integers

K.

DEF 2.0b. f([) E C +(R+) T()Pf(T)j < .M, for all non-negative
q,P

integers q,p.

1' 00
One then says (fn)O is a rapidly decreasing sequence and f(T) is a

rapidly decreasing function on R+.

If, in particular, f+(T) is "rapidly decreasing", then as in [A], Theorem

6.6, (fn)O and (f#)0 will be rapidly decreasing, e.g., one will have nKift 0,

n -0 all positive integers. K. Similarly, if f (-T) is rapidly decreasing

on (0,0), then (f n )0 and (f # )O will also be rapidly decreasing.-n-1i -n-1 0

A systematic development of the extension of these ideas to the two-

sided setting will be given soon.

P2.1

(fn)0 € C4 (N+) (fn) 0 c C(N+) A> f(T) E CO(R+)
+
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Proof: -> is immediate from f = f - ft in (1.14).
n n n-1

cA. Kjft I = Al 1 1 Kl# C
mK I f I < - 0 as n

n n~ + m nn+1 ni-i

for all K

B
<B: Restatement of Theorem 6.6 in [A]. 0

We need to relate our smoothness conditions to a radius of convergence

for Tf(u). We define the following set.

DEF. 2.2

GR {(fn)0 i lfnIRn <
n=0

We then have

P2.3a. If a sequence has a radius of convergence larger than unity, then

$ the sequence is rapidly decreasing, i.e.,

00
(2.1) GR c C 4(N+) , any R > I

Proof
K • K

n ~f () If R' < C a--i- 0 as n- .n Rn-n Rn

P2.3b. (ft) GR <> (fn) E GR , for any R > 1

Proof: The direction => follows at once from (1.14). The direction <= is

an immediate consequence of T(u) = (1-u) -l 1(u) relating the generating

functions. Since (fn)0 E GR, R > I => T (u) is regular for 0 < Jul < R,

the point u = 1 lies in the domain of regularity of T#(u). Moreover,

T#(1) = 0. It then follows that u I is a regular point for Tf(u), etc.



Remark 2.3c. We note that C+(N+) c GI1 and is a proper subset of GI, as
1

may be seen from (f ) with f = 1 We also note that the unionnO0 n 1 n+2

of the sets GR with R > 1 is a proper subset of C+(N+), as in theOf te ses CRas i theexample

=en 
00 #

We will see that over-convergence of T (u) = f~un, i.e., the avail-
0

ability of a radius of convergence greater than one is associated with over

convergence of the Laplace transforms *(s) in the presence of a simple con-

ditiop at infinity.

P2.4. Let f(T) E L2(0,-) with O(s), Tf(u) defined for Re(s) > 0, lul < 1.

Then for the analytic continuation one has

{4(s) = f e-f(T)dT is regular at s = and 0( ) = 0} -
0

{T#(u) is regular at u = l and T #(1) = 01

# 1 = +u) and (s) # 2s-1
Proof: From (1.12), T = ( 1-u - f 2s T By setting

1, €( = T(2-w). ihus *( is regular at w = 0 and vanishes there
w f2#+ -w -w#

if and only if Tf(u) i's regular at u = 1 and Tf(1) = 0. 0

The situation is significantly modified when 4(s) is not regular at

infinity. Some simple bilinear mappings from the s-plane to the u-plane

are needed to understand the modified behavior. We state the basic results

which follow from standard results of conformal mapping theory [9].

P2.5.
I l+u

(A) Let s(u) = -- and A = {u: R, 5 Jul : R2) , where 0 s R1 5 1 R2. Then

A maps into s(A) in the complex s-plane, the complement of the two dis-

joint circles possibly tangent, as shown in Fig. 2.1.

i im



-12-

(B e ~) 2s -1I 1
(B) Let u(s) = -2s and B = Is: RI 5 isj ! R21, where 0 R < R2 .

Then B maps into u(B) in the complex u-plane, as shown in Fig. 2.2.

(C) Let u(s) = 2s - I and D = Is: 61 ! Re(s) < 621, where 61 0 62 Then2s + 1 1 2 1 -2"

u(D) for two key cases is as shown in Fig. 2.3a,b.

Two key theorems for the one-sided functions may now be stated.

Theorem 2.6

Let T (u) 2 P- ). Then the following (A) and (B) are equivalent.

(A) (fn)0 E GR for some R > 1.

(B) 4(s) is regular in {s: 6 < Re(s)} for some 6 < 0. 4(s) is also regular

at s and *( ) = 0.

Proof

The theorem follows from P2.5 and simple argument in the complex plane.

Details are omitted.

If the regularity condition of 4(s) at s is dropped in (B) of Theorem

2.6, T #(u) is no longer guaranteed to be regular at u = 1. The resulting

regularity structure is described next. The proof is as before with details

omitted.

Theorem 2.7

Let T #(u) 4 -)u Then

(1) The following (A) and (B) are equivalent.

(A) Tf(u) is regular inside a circle c containing every point of the
f*

set {u: Jul = 1, u * 1) in its interior, with the circle c tangent

to the unit circle at u = 1.

(B) f(s) is regular in E6 = {6: 6 < Re(s)) for some 6 < 0.



Fig. 2. 1

A f u: R1  Jul R 2 i s(A) where s(u) I +
2 1-u

Fig. 2. 2

t~s- B s 1  R Is 2}
u(B) where u(s) = 2s-

Fig. 2.3a

u()we ~)=2s+1 D f s: 61< Re(s) < 62

- < 61 < 6 2

u (D) where u (s) =2s-1 D = s: 6i< Re(s) < 62

Compe u-plane COMPlex s-plane
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(2) Let s c E be such that s = S * iT. Then (B) implies lim *(S + iT) =
# ~T-O.-W

lim T f(u) = 0, the limit being taken along the unit circle.
u-+l

Corollary 2.8

If O(s) is entire, then T#(u) has only one singularity at u 1.

This corollary also can be seen directly from T#(u) = 14 l+u)

B. Structure for the two-sided case

Theorems 2.6 and 2.7 can be easily extended to the two-sided case in a

natural way. First we give the following definition.

DEF

* defgC()E

(2.2a) f(T) E C (R) W f+(T) E C +(R), f_(-T) E C (R)

(2.2b) (f*n C (N) W (fn)0 C+(N+), (f_ n)0 E C {N*)

Remark 2.9: The definition implicit in (2.2a) requires no continuity at T 0

for f(T). The asterisk distinguishes this class from the ordinary class CO(RI) K
of rapidly decreasing functions which are differentiable to all order at

every T.

These definitions with P2.1 yield the following immediately.

P2.10

(2.3) ( f C4 (N) <=> (f) E C$(N) <=> f(T) E C (R)

We also have as a simple extension of the one-sided case:

P2.11

(ft), => (f#)0* IE tand~ f# 0n _CD n -o n 0



IF

Proof

E f implies that f ) Et 1 and (fn)Et 1 and that

(f)~ ~t
n- 1

Since T#(u) =T # + T # (u-1  from (1.20),f f+ (u f_

(2.4) 1 f# f L f =0

n=-  n n=0 n0

The extension of Theorems 2.6 and 2.7 to the two-sided case now follows.

Theorem 2.12

# Iu 1l+uLet T ()l(uf Then the following (A) and (B) are equivalent.
S ) B( u

(A) TO(u) is regular in AR = {u: R < Jul < R+} where 0 < R < 1 < R4.

(B) 08(s) is regular in E = {s: -A- < Re(s) < A+} where A > 0, A+ > 0, as

well as at s = w, where *B(_) = 0.

Proof

Details omitted.[]

We note that from P2.3a,b and P2.10 that either (A) or (B) of Theorem

2.12 implies f(T) E C (R). The two-sided counterpart of Theorem 2.7 is given

next.

Theorem 2.13

Let T#(u) 1 (Ti-U Then

(1) the following (A) and (B) are equivalent.

(A) Tf(u) is regular inside the region C = C2 - C1 where:

(a) C2 is a circle containing every point of the set
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{u: lul = 1, u 9 11 in its interior;

(b) C1 is a circle where C1  { 11 is contained in the

interior of the set fu: lul : 11;

(c) both C1 and C are tangent to the unit circle at u = 1.

(B) OB(s) is regular in E = {s: -A < Re(s) < A+) where A > 0 and

A >0.
+

(2) Let s = S + iT for S E E. Then (B) implies that lim 0B(S + iT) =
# T-*±_o

= im Tf(u) = 0, the limit being taken along the unit circle.
u-1

Proof:

Omitted.0

C. Rapidly decreasing functions on the full continuum

P2.10 says that f(T) c C+(R) if and only if (n Kf) E L for all non-
P2.1

negative integer K, or equivalently (nK f ) E t for all nonegative integer
n 1 11negteiner

d r d rK. But this permits the discontinuity of ( -) f(T) at T = 0. When (dt) f(T)

is continuous at T = 0 for all r = 0,1,2,..., one finds surprisingly that

all the moments of f* and f# vanish. We remind the reader that I (t) satis-n n n

fies the operator relation (cf. Eq. (6.2) of [A])

1 .(2.5a) L[/r(T)] = (n + 1)/n(T)

where

1 d d
(2.5b) L T -~ d- cT

From (l.4a) and (2.5) we have L[hn T)] = (n + 1hn(T) for n a 0. For n < 0,
n -nl-)Ln z)UC-T) = (n 1- hnZ

L[hn(r)] = -L[/_nC (-T)U(- )] = - (-n- 1 + t/-n-(

Consequently one has
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Lr r

(2.6) [h n ] -- (n + h (T) for all n and r = 0,1,2,....

We also verify trivially from equation (l.4a,b) that

(2.7) n = h (0+) - h (0-) = I for all nn nn

It follows that for f(T) E C (R
(2.8) Lrf(T) + (n +l, r n

0++ 
. k 

_C
o

:m' "  where a(T) 0+ = a(0+) - a(0). Legitimacy is assured by (n knft E t for

all k _t 0 (cf. Theorem 6.6 of [A]), the uniform boundedness of (k) (T) on

R1 (cf. Lemma 6.2 of [A]) and the dominated convergence theorem. Similarly,
CO

when Ef) e C*(N), (2.8) will be valid. The following theorem can now

be proven.

Theorem 2.14

Let

n- * nk *  0, k=012

(2.9) A = {f(T): (f) E E C+(N) , n = 0 k 0,1,2...

Then

C (R I= A

We note that A is a proper subset of C (R1) which is equal to {f(T):. (f C

C (N)}. It differs in that its elements have all moments equal to 0. The

class CO(R I) contains real analytic functions of great interest in mathematical

statistics and probability theory, e.g., e- /2 and (cosh x)-1. The vanish-
ing of 7 nkfn and as we will see of I nkn for such functions is of corre-

sk~ada e ilseo n

sponding interest. Two lemmas will be employed to prove the theorem.

E==
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Lemma 2.15

n ff n 0, k n 0,f,. n> k 0, k =0,1,2,...

Proof

# .t i
(=>) Immediate from f# = f - f and the binomial theorem.n n n-I

(<=) One has

Tft(u) Tf#(u) i(2.10) k for u =e , e 0
(1-u) (1-u)

The limit of the expression on the right exists and equals 0 as u 1 1 by

repeated application of L'Hospital's rule. A similar application of

L'Hospital's rule to the expression on the left, then gives via induction

on K, I nKft = 0 for all K as required.On

Lemma 2.16

(a) - f(T) exists at 1 = 0

d

f(T) e A => (b) L f(T) E Ad

d r

Proof

We first show that f(T) c A implies that L f(T) exists at T 0.

This is easy since from (2.5b) and (2.8)

d 0+ f 10~+1
" f() =L[f()] = I (n + )fn = 0

Since f(r) E C,(R 1) implies that.f(T) is differentiable in (--, 0) and (0, -),

differentiability on R follows.

We must now show (b) of the Lemma, i.e., that !- f(T) c A. One has

... T
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for continuously differentiable f(T) that

d # it ±f
(2.11) [d- f(t)] = '(f n + fn-I

from Theorem 4.4 of Section 4. From (2.11) and the binomial theorem, we have

(2.12) nKft + K 0

[- f(T)]n = n - [  {(n-) + nI
-00 -00-C

Finally, from (2.12) and Lemma 2.15, one has

nK -T f(i] = 0 , K = 0,1,2,... proving (b).

-00

Since (c) follows immediately by induction, the Lemma is proven.O

Proof of Theorem 2.14

(->) f(T) E C7(RI) => Lrf(T) E Co(R 1 ) so that Lrf(T) =0. Thus

(n + .)f 0 from (2.8), whence I ff = 0 for all K.n 'fnn"

(=) It is easy to see that

(2.13) f(T) E C'(R1) <=>

dtf~xj 0, r =0,1,2,...

Consequently we need only verify that every derivative of f(T) : continuous

at T = 0. The theorem therefore follows from Lemma 2.16 and (2.13).[

Remark 2.17: It is natural to ask how, in the setting of Theorem 2.13, the

continuity of f(T) and all its derivatives at T = 0 modifies the behavior of

#B(s) in its convergence strip. The answer is given by Theorem (a) of 52.2

in Dym and McKean [1] which says that the Fourier transform of a function

in CY(R1) is also in C+(RI). For us this means that * (u) = *B(iu) is in
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C,(R1 ), i.e., that uP( k-)q0(u) , 0 as lul + . It is clear from

Se'STe'aT f(T)dT = B(s+a) that every function B(a + iu) for a in the

interval of absolute convergence of the bilateral Laplace transform will

also be rapidly decreasing.

Remark 2.18: A discussion of rate of convergence of the Laguerre transform

coefficients for functions having only finite number of drivatives may be

developed along the line of Section 6 of [A]. This development will be

omitted.

t J
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3. The extent of the Laguerre transform coefficients

The accuracy of the algorithm based on the Laguerre transform depends

on one's ability to represent the functions present compactly, i.e., with
K

vectors (fn)_K of reasonable length. Correspondingly, some measure of
- K

-t +extent of the sequence (f )-K may be useful and feeling for the relation-

ships between the extent of the approximating sequence and that of the

function helpful. In general, there are inverse relationships between

these two extents as in the Heisenberg inequality of Fourier transforms

(cf. Dym and McKean [1], §2.8). In what follows, we discuss only rapidly

decreasing functions f(T) in either C (R) or C (R). This condition may

be weakened, as mentioned in Remark 2.18.

We first exhibit such inequality for the dagger transform (f ) O. To
n 0

dagger transorm (fe-exdfinedobythe
do so, we require the following notation. Let 1 be the extent of the

11

dagger transform (f)T defined by

(3.2) @I = f 111f2(T)dT/f f2 (t)dr

Finally, let

n

(3.3) &= I Inlf () 2dt/f f 2 (r)dr

-C-w

Then one has the following theorem.

.OC
. . :' (3 2) - fII I I I I f 2 IT T fI f2 .. ...... . .. ..... .
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Theorem 3.1

Let f(T) E C (R). Then

(1) R - - +

(2) N1 > l4T 1 > 1

1 2

Proof
OD

From (2.6), L[f(T)] I (n + })hn(T) so that

OD.2
f L[f(T)]f(T)dT = (n + 1 00+ n=> n

and

0- -1 t2
f L[f(T)]f(T)dT = X (n + ) < 0
-C nn-n

We note from integration by parts that

co 1 - d '
f L[f(T)]f(T)dT = f {I- T f(T) - Tf ( f)f(T)dT
0+ 0+

f Tf2(lr)dr + f Tf 4T) 2dT
0+ 0+

Similarly,

0- 0- df L[f(T)]f(T)dT = f { (-T)f(T) + U- Tf (T)}f(T)dT

0- 2  
0- 2

f 00 .Tlf2 .. )d.., + f O I-1 (T)2dT
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Hence,

S1 ft2 2

- n n=0 -

4 -

2o 2
Dividing both sides by f f2(T)dr = T fn, one has

-t 1- -+ S
(3.4) N = I T I ++
proving part (1). To prove part (2), we first note the identity

(3.5) f Tf (T)f(T)d-r = - f 2- (f)dT f f2(TdT
-Cc 2d -0 -T 2 -CO

By Schwarz's inequality,

1 f f2 (i)dT ! 5 IlHf'(i)Ijf(T)IdT
2-0

J I f 2 T()d T  J jTIf(T) 2  
'

so that

(3.6) TO,

Substituting (3.6) into (3.4), one has the desired result.[J

Remark 3.2

We see from Theorem 3.1 that when 1becomes infinite or when , goes

-t
to zero, N becomes infinite. The methodology therefore cannot tolerate
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functions f(T) too closely concentrated at zero or functions f(T) too

great in extent.

The inequality of Theorem 3.1 has a counterpart for the sharp trans-

form (fn) of equal interest. As we will see, the sharp transform is
V n

less sensitive to concentration of f(T) at T = 0, a useful and important

advantage. The following identity underlies the inequality for the sharp

transform.

Theorem 3.3

Let f(T) c C (R). Then

I Ini#n2 = f IIf 2 (T)dT

Proof

Let v(T) = h0(T)*f(T) so that f(T) = v (T) + *-v(T). Then

(3.7) f ITIf 2CT)dT -f ITI{v (T) 1V(T)} 2 dT
-00 -00

- 1V1 (T) 2 d + 1-f ITjv(T) 2 dT + f IW1v (T)v(T)dT

Since v(T) is continuous at T = 0, as we will see in Theorem 4.2 of

Section 4, one has vt = f# for all n. Hence from Theorem 3.1, the sum of the
n n2 c #2

first two terms in (3.7) is equal to In+ Vn = I In + -ifn On the

other hand, the third term becomes, by an analogy to (3.5),

Co , 0 0 ,

f II vC)v(idC )d= f TV (T)V(T)dT - f TV (T)v(T)dT
-00 0 -00o

1 W2 d + 1 0-
= - f v2 -(')dT 2 f V T)dT

0 _0D



1 1

0 -

2 #2 1 0 2 I I 2

Since n + I If = Inf n  + vn -n I vn one has from (3.7) that
-0 -00 0-Cc

k ~U f#2

f IT~f2(T) = I InIf n

Theorem 3.3 now leads to the counterpart of Theorem 3.1 for Lhe sharp

transform (f~ n . As in (3.1) for the dagger transform, we define for the

sharp transform

-# #2 oof2

(3.8) = Inif n

Theorem 3.4

Let f(T) E C (R). Then

0# n2 W #2
(1) = pT1  where p = f/I f#

-# 1 T-
(2) N1 > 1-

Proof

Part (1) is immediate from Theorem 3.3. For part (2), one has from

Schwarz' s inequality

00 #2 = t ft 2  2
n = [  (f-f 1 ) 4~ f

1

so that p 2 :-. The result then follows.0

k . .4
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Remark 3.5

We see from Theorem 3.4 that when T1 becomes infinite, so does N1  But

in contrast to dagger transform, concentration of a function f(T) near zero

does not necessarily imply that N1 becomes infinite. This point will be

seen vividly through the following example. Let

f(r) = fee-OU(T)) + fee 60rU(-T)} , e > 0 .

We note that the larger 6 is, the more f(T) is concentrated near zero or,

equivalently, the smaller e is, the greater the extent of f(T) is. One finds

readily that

t 2(3.9) f n 6

(3.10) [ InIf n  f ITIf(ldT = 1- , for all 6 > 0
-Cc -CO

(3.11) # 2  4e(6+1)/(20 1)2

From (3.9), (3.10) and (3.11), one has

(3.12) T1 = L
1 26

(3.13) # 1 (26+1)
2

2(26+1)

(3.14) 
P= (26+1)

4(6+1)

We see easily that p is a monotone increasing function of 6. At e = 0,

P = 1/4 and therefore p Z 1/4, as expected. We note that the inequality (2)

of Theorem 3.4 is thus sharp. As 6 -+ 0, both and 1 go to +-. But as
# -- i ..64 ., -1 1/2 while N1 -* + since ?1 0.

. . ...r nm ............... ....... .. 1 1i . . ' - l .... ....... . ....... III
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The relation v - f # with v(T) ho(t)*f(T) played a key role in the
n n 0C f2

proof of Theorem 3.3. This also enables us to evaluate f # in a closed

form. The relation gn= nfn with g(T) = L[f(T)] - f (T) given in Theorem
n2#2

4.6 of Section 4 leads to a closed form of I n f n

Theorem 3.6

Let f(T) E C (R). Then

W f#2 oo k T

(1) 1fn f 7 e-hi rf(T)dT where rf(T) =

Furthermore, if f(T) is in C+(R),

iCt

(2) n2 f Tf(T)dT + f  T (t) dT

Proof

Let V(T) = h (t)*f(T) so that v = f as before. Then0n n

-f f2 {ho( )*f( ) 2 d Tn

CO _O _CO

0-w

Let O(u) = f elltf(T)dT and h(u) f eiUTh 0 (T)dT. By the Parseval identity,

one has

O 2 CO
f l__2 ih(u)I

2 10(u)1 2 du

Go

f 7 {h0 (T)*ho(-T)}{f(t)*f(-T))dt

= 7 e' [tlr(T)dt

A, ,.. I ' - . . . .. . . .... . . . . . . . . .. . , . .. [ u .= . - -- 7 . ' = % n : : 7 . . + ,. . . . . . , - ,. .



-28-

proving (1). To prove part (2), we let g(T) = L[f(T) - f Ct)]. Then, as

given in Theorem 4.6, one has g nf for f(T) E Co(R). Therefore, againgivn n here 46,on hs n' n

by the Parseval identity,

Go n2f# 2  fo

Y n f {L[f()] - (T)}2dT

1 7 +2
I-f + u2 ) f (u) 2du

1 0 2f2 ' 2f- T (T)dT + f {f(T) + rf (T)1 dT

f Tf(T)dT + 2 f (T) 2dT D
-0-

Theorem 3.6 gives relations for the second moments of the extent of the

sharp transform and the original function. Let

(3.15) R 2 = n 2f #2

(3.16) t2  f T2f(T)dt/f f2 (T)dt
-00

(3.17) B2 
=  [2f'( )2dr/ f 2 ('T)dT

One can easily show that

T2
(3.18a) N2 I

(3.l8b) '1? :"

F1 lr. . . . . . . . .. 2. . . . . . . . . . .1 .. . . ... ... . . ..
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Theorem 3.7

Let fCi) E C (R).

1-#

(1) N2 = P( 7 T2 2

()N2  1-P (T
(2) - = (I T2 + B)

N1  42 21
1- -0

(3) #T N - (4 T2 
+B2)/TI4) 1 1 -# --

(4) N2 r + T)Nl where r=T 2 /TI

Proof

Part (1) is immediate from Theorem 3.6. From Theorem 3.4, = and

part (2) follows. From (3.18a),

# <2 1-N1 -# 4- = T2 2) I

N 1

1 -#
T -  N1 is proven in Theorem 3.4, and therefore part (3) is shown. To prove

part (4), we first show the inequality

(3.19) 1 22

Let sign (T) = 1 for T - 0 and sign (T) = -1 for T < 0. Then

f sign(T)f'(T)f(T)T2dT f I t2 f(T)f(t)dT - f T 2 f(T)f(T)dT
-00 0 -00

Integrating by parts, one has

f2f' ()f(T)dT T 2- f 2 ()dT = - (f2 T)d
0 (tT0
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Similarly, f T Tf (-)f(T)dTr = f Tf(Tdrf Tf 2 (T)dT, so that

fI T If 2(T) dT f -Sign(r)f' (T)f(T)T dT

Hence, by Schwarz's inequality,

IT IIf 2 (T)dT T T dT T ~(7T)dT

Dividing both sides by f 2(T)dT and then squaring, one has (3.19). Part (4)

follows from Part (2) and (3.19).D
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4. Operational prcperties of the bilateral Laguerre transform

In principle, operational rules for the bilateral Laguerre transform

can be obtained from the rules for one-sided support (cf. [A], Appendix C).

One works on f+ (T) = f(T)U(T) and f_(T) = f(T)U(-T) separately and then

patches the results together carefully. In particular, f f(y)dy may be

evaluated in that way only, when f f(T)dT e 0 and f f(y)dy j L2 (-c, w).

The operational rules for the bilateral Laguerre transform are of separate

interest, however, as we will see. They contain those for one-sided support

as a special case. We also derive some new results which are of theoretical

and practical value. As in Section 3, we discuss only rapidly decreasing

functions f(T) in C.(R). All the results are summarized concisely in a table

in Appendix A.

We first extend (1.15) and (1.16).

P4.1

Let f(T) E C . Then

4t

g(T) = f(-T)'<=> gn -n gn -(ni)

Proof

5+12 n ISince y -S) ('+(f I1T one has
B B- n s--

# 1ll+u I it-n # .
T (uu f u - n  Tf(u-)

1 #(u -() = C1 u n f

Similarly, T (u) - (u) uf

When a function is convolved with one of the building block functions

h m(T), the dagger coefficients of the resulting function become the sharp

coefficients of the original function shifted by -m. We see this next. For

sequence (an)_., the first difference will be denoted by Aan a - a n-l'



-32-

and the second difference by A2 a =Aa - Aa a 2a + an n n- an - nl n-2

Theorem 4.2

Let f(T) C C (R). For all integers m, one has
# = . f#

g(T) h (T)*f(T) <=> gn Af #- f #

Proof

It is easy to see that T# (u) = (1-u)um for all integers m. Then T#(v) =

#hm g
(1-u)umTf(u) and the result follows.0

Of particular interest is the case m = 0, which provides a closed form
cco #2

of f I as given in Theorem 3.6. The next corollary is immediate from
- n

Theorem 4.2.

Corollary 4.3

Let f(T) E C (R). The.

# f# . t f-
(1) g(T) = f(T) - (T)*f(T ) <=> g f n-

# # t t
(2) g(T) = f(T) + hI(t)*f(T) <=> gn n+l ; gn = fn+l

The bilateral Laguerre transform of a derivative of a function is a

straightforward extension of the one-sided case with slight modification.

Theorem 4.4

Let f(T) E C (R). Then

# It t

n+ n-I - O +  f(O)}

g(T) d2f(T) <=> I T 2 ft n 0
m=n

f n + fm' n<O0

iiiiiiiiiiiiil
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Proof

This is immediate from the corresponding rule for one-sided support

([A], Appendix C).0

We have seen in Theorem 4.2 that gn f with g(T) = h0)*f(t). The

next theorem gives the reversed relation of this, i.e., functions g(T) and

# +
f( ) related by gn . f "

Theorem 4.5
t

Let f(t) c C (R). Then

# t
n fn 6n,{f(O+) f(0-)}gn = n nO:

dT1 f(T) f(T) <=>

-n If - 6 ' f( f(0-)}]n+] 11

Proof

From Theorem 4.4,

# 1 t 1 1 #
g=-(fn + n) - 6{f(+) f(0-)1 + f
gn_~ n + n-i n,0 2 2n

= f+ - 6n{f(O+) - f(0-) . 0
n ,

1 d d
We recall the operator L - [T U-dT d- given in (2.5b). For functions*~T j

f(x) C C*(R), one has immediately from (2.6) that

(4.1) g(-) L L f(T)] g # n{(n + 1/2)rf t; g = (n + 1/2)r f
n n n n

for r = 0,1,2,.... .This leads to the following theorem which is of theoretical
2f#2

value, providing a closed form of n given in Theorem 3.6.

Theorem 4.6

Let f(T) E C (R). Then
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S#= nf # 6n{f(O+) - f(O-))

g f(T) <=>

tg= - I [mfr + 6 m{f(O+) - f(O-)}1].

Proof

From (4.1) with r = 1 and Theorem 4.4,

# t- 1 (f 4- +fn (n + 1/2 )f - (n - 1 /2)f f 6 f(+ ) + f0-)
n ~ ~ ~ nm-1 n -I n,

= nAf + n {f(O+) - f(O-)} = nf + 6 {f(0+) - f(O-)) . [
Di n,O n n,O

The bilateral Laguerre transform of Tf(T) is exactly the same as for the

one-sided case. The proof is straightforward and omitted.

Theorem 4.7

Let f(T) E C+(R). Then

# - 2  # ng(T) =Tf(T) <=> gn A 2[(n+l)fnl gn A[(n+l)f +1
n (nle n n+l

From Appendix A of [A], one finds that

(4.2) hn (T)Un exp[- lun 1--uf 2 --uf

with the understanding chat Eq. (4.2) is valid for Jul < 1 when T 2! 0 and

for lul > I when T < 0. This leads to the operational rule for shifting

given in Theorem 4.9. A preliminary remark is needed.

Remark 4.8

Even though (hn(T)): 2 one sees easily that

(4.3a) (Ahn (T)). t 2
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(4.3b) (h(T )) = i

(4.3c) JhnJ(T) < I for all integers n, T x 0

These statements follow from

t(4.4) [ho(T - T)] = Ab (T)

as the reader will verify, and

(4.5) f 2 2(T)dT(h 0 ( - W)d = f h0 1

Theorem 4.9

Let f(T) 6 C (R). Then

g(t) = f(T - T) <=> g= f Ah (T) • gn 7 g#
nn-m m n = + " •

Proof

Clearly YB(S) = e-C S ) so that

#g1 TIhu #f
T (u) = (1-u) -L- exp{- 2 1-u}T (u)

(1-u) h (T)u T'(u)

(= h (n)) un' Tf(u)

and the result follows. 0
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5. Applications

In applied probability theory and statistics, the prevalence of a
k

random variable Sk = I Ej, where E. are i.i.d. random variables, is
j=l

familiar. One also often encounters the ergodic green density g(i)

6(T) + I a(k)(T) in expressions for the ergodic distributions of homo-
k= 1 (k)

geneous processes modified by boundaries [4], [5]. Here a (T) denotes

4 the k-fold convolution of a two-sided p.d.f. a(T) with itself. The
bilateral Laguerre transform method provides an algorithmic basis for

calculating multiple convolutions of functions with two-sided support and

thus enables one to evaluate the distribution of Sk or the ergodic green

density g(T) numerically. This in turn is the key to numerical evaluation

of a variety of results in applied probability that have been available

only formally.
K

In the expression SK = E 5, when E. are centered, the centralj=l

limit theorem says that SK with suitable normalization converges to a

standard normal random variable in distribution. In some applications,

the question of importance is "How fast is the convergence to normality?".

This can be also answered by the method directly via computation of the

required multiple convolutions.

In this section we discuss the algorithmic procedure for the calcula-

tion of multiple two-sided convolutions and present a numerical example.

This procedure is then used to quantify the Lindley process. For the pro-

cess in queueing contexts, the ergodic waiting time distributions for M/G/l

and G/G/I systems are evaluated thereby. All computations were done on a

DEC 10 computer in a time-sharing mode using APL as the programming language.

The DEC 10 APL implementation is a double precision system, which uses a
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precision of 18 decimal digits. Relevant formulas were usually coded in

a straightforward way, with no attempt made to optimize the subroutines

for speed or accuracy. In spite of this, the results displayed here were

typically obtained with CPU times in seconds to at most a few minutes and

with no evidence of numerical problems.

Example 1: Multiple two-sided convolutions

Two-sided convolutions are usually handled by Fourier transform

methods. There does not appear to be any significant literature devoted

to numerical evaluation of two-sided convolutions. When the function being

convolved is rapidly decreasing, i.e., in the class C4 (R) defined in Section

3, our method yields a fast and accurate algorithm. To generate multiple

convolution, we make use of (1.13) which states that T#,g(u) = T#(u)T #(u).

# (# (inm heft) =a(mn)Hence (f) (an) where f(t) = a (t), and one has the following

algorithm:

I. Representing a(t) as a(t) = a+(t) + a (t) as in Section 1, generate

t N t Nor store in the computer the coefficients (a n)O and (a n)0 , usually

obtained analytically as in [A].
t t #

II. Convert (an+) and (an ) to (an+) and (a_), respectively. This

corresponds to a simple differencing operation on each set of coefficients,

since T# (u) = (1-u)Tf(u).

# N # # # #
III. Obtain (an)-N by setting a a for n > 0, a a- andn _N n n+ - 0

# #
a = a for n < 0, as in (1.19).

# N

IV. Perform m-fold discrete convolution on (an)_N. Retain only 2N+l
(fiN

terms, centered at n = 0, in each convolution. The result is (f N

k~~~~~ -N' , 
=

,
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V. Convert (f) to ( by (1.18). This is the inverse of the differ-

encing operation, i.e., summation.
Nft ftN

VI. One has f f for n 2 0. Hence, sum the series I ften(t) to
n+ n n=0

get f (t). Similarly, one has fn = -fn- for n < 0, by virtue of (1.4d).• ' n- - -
N

Hence, sum the series - I ftn- _Zn(-t) to get f_(t).
n=0

This procedure is only slightly more complicated than that for the one-

sided convolutions given in [A], but the CPU requirements for the new pro-

Fcedure is increased approximately by a factor of 2. When a function a(t) is
symmetric about zero so that a+(t) = a_(-t), however, one can evaluate

multiple convolutions by working only on one side, as the reader will verify.

Then the CPU requirements will be almost the same as for the one-sided con-

volutions.

We illustrate the procedure with a(t) = {2e- 2tU(t)*{e tU(-t)). (an+)

and (an_) are available analytically from [A], Appendix B. Fig. 5.1 displays

a() (t) for 1 5 in 7 and -10 5 t 5 10. Two hundred terms each for a+(t) and

a (t) provided an accuracy of at least 12 digits after the decimal point

uniformly over the interval -10 5 t 5 10.

The procedure is also applied in (11] to numerical evaluation of multiple

convolutions of the Logistic variate with the p.d.f. a(t) = e-t/(l + e- )2 ,

-- < t< . The Laguerre transform approach appeared to be more systematic

and efficient than an existing method [2] which relied on the special analytic

feature of the Logistic variate. The Laguerre method also evaluated multiple

convolutions of the folded Logistic variate as a by-product, which the exist-

ing method could not provide..
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a(k)
0.7-

83.665

0.6

ass a(') ={2e_ U(T)1*{e U(-T))

8.4- k=

8.3S-

0.3-

0.26- 3

0.2-

0.165

8.1
7

-18 -8 -6 -4 -2 0 2 4 6 8 Is

Fig. 5.1. Multiple two-sided convolutions a ((I
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Example 2: The Lindley process

Consider the Lindley process [6], i.e., a random walk on the nonnegative

half line defined by

U +
(5.1) Wk 1 = + k+l]+ , k = 0,1,2,...

., where [X] = max{O,X}. W0 is a random variable with known distribution and

Ek are i.i.d. and independent of WO. We assume that the common distribution

of Ek is absolutely continuous with density function a(x) e L2 (--, -). We

see that the distribution of Wk+1 is the convolution of the distributions of

Wk and k+l' modified by the [ ]+ operation. The effect of this operation

is to "sweep up" the probability to the left of the origin into a mass point

at the origin. Let

(5.2a) Ek f P[Wk = 0]

<-x =I0 x < 0

(5.2b) Fk(X) = P[Wk : x {

E k + f fk (Y)dy x 2! 0

0

If we define W . 1 
= Wk k+l' then the density of W" is givenk+1l ks gen kby

(5.3) f+l (x) = Eka(x) + fk(x)*a(x)

Hence if E and the Laguerre sharp coefficients (an) and (f #(k))o are

known, one has

(5.4) f#(kl) E ka# + a n-mfn k) n
M=O
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Obviously, f (x) fH (x)U(x). Hence, since IF= 0 (cf. (1.17)),k+l k+l 0n

0
(55) f(k+l) fH4(k+l) f# (k+1) =H(kl) n 1II

Finally, E k+l I f f k+l(d 1 yl- 2 n (nf(kl) since fJLn(xd
0 n=n 0=

(-1)n2 (cf. (A], Appendix A). This leads to

(5.6) Ek 1 = 1 + 2 f2n+l (k+l)
n=O

Hence, if E0, f0(x) and a(x) are known, we have an iterative schema for calcu-

lating Ek and fk(x) via (5.4), (5.5) and (5.6).

We illustrate the procedure in a queueing context. A stream of customers

arrive at a single-server queue at a sequence of arrival epochs To i Tip etc.,

the k-th customer arriving at epoch Tk. The interarrival times Tk = T kl - k

are i.i.d. with common distribution T(x). The service times Sk required by

the k-th customer form a separate sequence of i.i.d. random variables with

common distribution S(x), where Sk and Tk are independent. If Wk is the

time the k-th customer must wait in queue for service, then one has [6]

(5.7) Wkl =[Wk + Ek~l]+ ; k+l = Sk - Tk, k = 0,1,2,...

This process is called the Lindley waiting-time process. Clearly, the common

density of &k is given by

(S.8) a(x) = (s(x)U(x)}'{t(-x)U(-x)l

where s(x) and t(x) are the density functions for the service time and
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interarrival time variables, respectively. When the system starts with

an empty queue, one has E0 = 1 and f0 (X) = 0.

The iterative schema (5.4), (5.5) and (5.6) was first tested in the

M/M/i setting for which the limiting distribution of Wk as k goes tok]
infinity is analytically available [7]. For the traffic intensity p = 0.5,

an accuracy of 7 digits after the decimal point was attained at k = 50, 'I
while for p = 0.67, k = 128 was needed to attain the same accuracy level.

4
The procedure was then applied to the M/G/I queueing system with s(x) =- x 2/2 -2X

xe , the Rayleigh distribution and t(x) = . The survival functions2

of Wk for various values of k are displayed in Fig. 5.2. This shift from

fk(X) to Fk(X) = f f (y)dy is immediate using an operational property of
x

the Laguerre transform [A], Appendix C. The results were compared with the

numerical results obtained from the Khinchin-Pollaczek formula [7], again

via Laguerre transform based calculation. The difference between the two

-8 -12results was bounded by 10 at k = 100 and by 10 at k = 200.

Fig. 5.3 displays similar results for the G/G/i queueing system with

s(x) = 2 e"  2 the folded normal distribution (Chi distribution with 1

d.f.) and t(x) = xe"  , the Rayleigh distribution. For this G/G/il setting,

no analytical results in the real domain are available.

Even though the traffic intensity for the M/G/Il example (p = 0.63) is

less than that for the G/GI example (p = 0.64), the convergence in M/G/l

is much slower. We note that Pk( 0+) - p as k - in the M/G/l example,

while this does not hold in the G/G/Il example.

The Laguerre dagger coefficients of the folded normal density were

generated by an efficient recurrence formula developed in [10]. Those for

the Rayleigh density were then derived using an operational property of
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the Laguerre transform [A], Appendix C. In the computations 250 terms were

used in each of the Laguerre series (1.1) for s(x) and t(x).

x

06"

0.66" M/G/l

05 "

.4S- 
xe- x /2

. 5x) : -e-

S. 26"

9.2-
k 60

9.15

x
0 2 4 19 I

Fig. 5.2. The survival function of the waiting time of the k-th customer

0,5 fs f fk (Y)dY

0.4 GIG/i f2
0 35"

0.3' "S(X) = e- 31x

0.26' t(x) = xe" 21

0.2'

k 20

k=l 10

* 2 4 a

Fig. 5.3. The survival function of the waiting time of the k-th customer
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APPENDIX B

Some useful identities for the Laguerre coefficients (f t) and (f*)

As before, f(T) 6 C+(R) is assumed.

(1) f(t) = fnhn (t)

(2) f+ f hn(T)

(3)1 = f  f 2 ()dT

-- 0

(4) f# ft ft f - f : f
n n n-1 n m nlm

~ 00- n+1

(5) T#(u) fu n1+u ) T

(6) T#,(e ') = cot

Kn =D 0B0 B s) =  eSfxd

(7) 1 ft - nf#.- f(O+) f(O-)
n n

(8) 1 f# = 0

-00w

(0) 2 (_)nft I (_~f ffTd

n

-- r

mt(10) (l)nnfT = L j Tf(T)dT

i 16co(1)" _~ n 2 f# 1 f T2f (T)dT
(II) (-I) n fn-"6-
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(12) 1. = e- rf(T)dT ; rf(T) =f()*f(-T)

#o 2 co

(13) I f f Ilf2()dj

* n~f I l z2£(r)d T  "

2 ( 2 o 2 2(14) n n T (T)dT + f Tf (T) dT

For (12), (13) and (14), f(-) CO(R) is assumed.

F,

. ......- --
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