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T ABSTRACT

3 A novel transform is presented which maps continuum

functions (such as probability distributions) into disc-
- rete sequences and permits rapid numerical calculation

of convolutions, multiple convolutions, and Neumann
expansions for Volterra integral equations. The trans-
form is based on the Laguerre polynomials, associated
Laguerre functions, and their convolution properties.

Part 1 of this paper deals with functions having
support only on [0,%). The resulting unilateral _
Laguerre transform finds applications in convolution of o

;. such functions, inversion of Laplace transform, and in
¥ solution to renewal and reﬁated Volterra integral
LTI,

Part 2 6f this paper deals wifh functions having

! equations, -~ '~ ¢

support on (—;,w) via a bilateral Laguerre transform
which is an extension of the unilateral transform.

Applications of this technique include convolution of
such functions and analysis of the Lindley process.
Part 1 has been published in Applied Mathematics
and Computation and part 2 has been submitted for pub-
lication in that journal.
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LAGUERRE TRANSFORMATION AS A TOOL FOR THE NUMERICAL SOLUTION
OF INTEGRAL EQUATIONS OF CONVOLUTION TYPE

J. Keilson and W. R. Nunn

ABSTRACT

A novel transform is presented which maps continuum func-
tions (such as probability densities) into discrete segquences
and permits rapid numerical calculation of convolutions, multiple
convolutions and Neumann expansions for Volterra integral equa~
tions. The transform is based on the Laguerre polynomials,
associated Laguerre functions and their simple convolution prop-
erties. A second transform employs Erlang functions as elements
of the basis. The limitations and advantages of the two trans-
forms are discussed. Numerical inversion of Laplace transforms
relates simply to the ﬁrlang transform. The deconvoluticn of

two functions, i.e., the solution of a(t) = x(t)*b(t) may also

be obtained quickly in this way.
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INTRODUCTION

One often encounters in applied studies integral equations [16)

either of form
X
‘[ a(x - x")f(x')dx' = b(x) (1)
0
or of the form
X
f(x) - J[ a(x - x")f(x')dx' = b(x) (2)
0

where a(x) and b(x) are specified functions and £(x) is to be
found. Equations (1) and (2) are said to be Volterra integral eg-
uations of convolution type of the first and second kind respective-

ly. The Neumann series solution of (2) has the form [19]

£(x) = b(x) + b(x) * 2. a®)(x) (3)
. 1
where the asterisk denotes convolution and a(k)(x) is the k~-fold

convolution of a(x) with itself.

The entity 2. a(k)(x) and matrix variants associated with
0

systems of integral equations of convolution type arise in opera-

tions research [ 6 ], engineering[ 7 ], and biological studies [10].
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Sometimes, differential-integral equations give rise to expressions
such as

w X
(1} = kzo o= AT _(_}%5:_)_1_)_7 A (k+1)

(4)
which describes the busy-period density for certain M|G|l gqueueing
systems [18].

In easy cases the integral equations may be solved analy-
tically via Laplace transformation, and full answers may be obtained
when the Laplace transforms are invertible. More often than not,
such transforms cannot be inverted and expressions such as (4) are
of limited value when they cannot be evaluated explictly. The
Laguerre transformation techniques developed in this paper may
then be of value.

The deconvolution problem of finding £(x) f£from (1) when
a(x) and b(x) are known numerically, say, is particularly
troublesome, and start-up difficulties described below may make
conventional numerical procedures useless.

The Laguerre transform techniques described map continuum
functions into sequences, and map the continuum convolution opera-
tion into lattice convolution of these sequences. Such discrete

convolutions are well matched to modern computer competence, and

the inversion mapping back to the continuum is direct.
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Laguerre transformation has been developed as a tool for the
solution of differential equations [12]. The applications of
interest here are quite different and new tools have been needed to
convert the underlying simple idea intc a flexible working proce-

dure adapted to computer requirements.

The first section introduces the Laguerre transform

T: £(1) - (f§+); in a form convenient for our needs. ©One has

_ v Lt -
£(1) = ngo £ £, (1) (5)
for any square-integrable function £(1) on (0,«), where £n(r) =

Ln(T)e-T/z are the classical orthonormal Laguerre functions and

Ln(r) are the Laguerre polynomials. The notation of Abramowitz

and Stegun [1 ] is employed throughout. Orthonormality provides

the inverse transformation

£ = f £(1) L, (Ddt - (6)
n 0

[
Let T?*(u) = z:fi+un be -the generating function of fﬁf. Then
o

one has, as shown in Section 1,
Lt - 1 1 1+
Te W =1 ¢’<2 ‘1‘-"‘6) (N

0-3




where ¢(s) is the Laplace transform of £f(t1). This relationship

permits evaluation of f§+ for many important f£(r1).

Section 2 provides simple examples of the transform, and
Section 3 discusses the structure of T?f(u) in the complex u-

plane. Such insight into structure in the complex plane is crucial
to many of our algorithms and theorems.
It is often desirable to work with an expansion of the form

hasd n
£(1) = Y. ffl* gTe'T/z (8)
; .

whose basis functions have convolution properties of comparable

simplicity to the Laguerre functions. The mapping T: £(1) - (fif):

will be called an Erlang transform. The set of functions so repre-
sentable is more limited than that for the Laguerre basis. They
must be integral functions of 1 of order at most one, so that 4

2 .
f(t)= e 1 for example is excluded. The nature of the Erlang

transform and its relationship to the Laguerre transform is des-
cribed in Section 4.

The square integrability requirement on £(t1) for the
Laguerre transform is nr: an intrinsic limitation. An exponential
transformation is describa:d in Section 5 which avoids such diffi-

culties.




Even though square integrabilicy suffices in principie for

the Laguerre transform, practicability of the method reguires

that the coefficients Gif) fall off quickly with n so that
' 0
computer time is not excessive. 1In Section 6, rapidity of disap-

+ . .
pearance of (fi ) with n 1is related to the smoothness and con-~
centration of £(1). In particular, it is shown that "rapidly

decreasing”" f£(t1) for which 13(a/d1)PE(1) » 0 as 1 + = for all

non-negative g,p are associated with rapidly decreasing (fi } for

which an§+ + 0, n~+ o for all positive K.

Algorithms for the calculation of the Laguerre coefficients
are presented in Section 7. Section 8 is devoted to a discussion
of the deconvolution problem.

A variety of numerical examples of the method are treated in
Section 9, and the implementation of the procedure is discussed.

Section 10 describes interpolation methods and problems when
the known functions are known only numerically.

A final section deals with possible generalizations of the

method to special families of functions.




1. The lLaguerre transform.

Let f£{x) be any function in L2(o,°), i.e., any square
integrable measurable function on (o,»). Then £(x) may be ex-

panded in terms of the Laguerre functions
= o kX
ln(x) =e Ln(X)' (1)

where Ln(x) are the Laguerre polynomials having the Rodrigues

formula

l!—‘

ex dn
! dxn

Ne™%y ., (2)

Ln(x) = {x

o]

Classical properties of the Laguerre polynomials and functions are
given in an appendix. The Laguerre functions Zn(x) are ortho~

normal on (0,«), i.e.,

® _ (0, m#n
S tatot e = (g pny (3)
and provide a complete basis for L2 in the associated Hilbert

space metric. For f(x) ¢ Lz, one has the Fourier-Laguerre

expansion

£(x) = %j fnzn(x), (4)




where, from (2)

: f f (x) ln(x) ax . | (5) ]

©

£

Equation (5) describes a mapping of the function f(x) on

(- -]

the continuum (o,«) into a sequence (%;) , i.e. into a function
o

on the non-negative integers. This sequence will be called the

Laguerre transform of £(1). It should be noted that "Laguerre

transform" is often used to denote the mapping v

-~} o
J[ F(x)e * Ln(x)dx = J( F(x)e°x/2 Kn(x)dx. This mapping has
o o]

been employed as a tool for the study of differential equations[ll].

From (5) one has the Parseval relation

) (f::)2 - f £2(x)ax . (6)

(o] [0}

Two useful results from analysis are needed. The Laguerre func-

tions have the generating function

1

i

> £ (x) u” (l—u)-lexp {—% x (1+u) (1-u) "} ; o < u <1, (7)
o

1-2
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and Laplace transform

= ¥ -sx -1 (s-%n
A, (8) JZ e "L (x)dx = = (=) (8)

From (8) one may verify the basic convolution property of the

Laguerre functions

X
Ln(x)*lm(x) = J£ ln(x—y)lm(y)dy (9)

=2 (0%, (x)

n

L (x) - £ l(x)

m+n m+n+

This convolution property underlies the Laguerre transform and its

utility. For any £(x) in L2 with Laguerre transform (f:)
(o]

we define a pair of related generating functions T;(u) and Tz(u),

and the transform sequence (fi): by
T; (u) = Zf"'un , 0 < lul < 1 ; (lOa)
5 n
4 —~ 4 n —~ .t n
Te(w = T fou’ = (- %;fnu , o<lul<l . (10b)

The reason for the factor (l1-u) in (10) will soon be clear. From

(6) one has f; + 0, as n+», so that Tz(u) is regular in the




interior of the unit circle |{u;< 1 in the complex u~-plane. From

(10b) one has

$_ ot Lt e
go=f - f . ,n>1; £ =% (11)

so0 that the seguence (fi) is sguare summable as well. Employment

of (5) in (10) gives
Tz(u) = (l-u) %: un[) ’ff(x)ﬁn (x) dx , 0o < u < 1.

When f(x) is integrable on (o,w) , since lln(x)lil the order
of summation and integration may be interchanged. Hence from (7)

one has

Tz(u) = f fix)exp {-% x (l+u)(1-u)_l} dx
o

i.e.'

Tt = s 0 wa-w™hH L ocuc<, (12)

where ¢(s) = f e "% f(x)dx is the Laplace transform of f£(x).
o

X
let f£*g =f f(x~y)g(y)dy. Since ¢f*q(s) = ¢>f(s) ¢g(s) , oOne
o C

has from (12)




= Ty G e e

$ #

Theg(w) = T3 (w) T;(u) , (13)

for functions £f,g that are both integrable and square integrable
on (o,~), It follows from (13) moreover that
SN R
(f*g)n = 2; fn-m 9 (14)
The value of the Laguerre transform is now clear. The transformation
via {9) and (11) maps functions £(x), g(x) into sequences (fz),
(g:), and their continuum convolution f£f(x)*g(x) is mapped into

a lattice conveolution, and thence back onto the continuum via

n
f; = ¥ f:l and the representation (4). The advantage of the procedure
o

for numerical convolution of two functions known only numerically

is moot. But its value for iterative convolutions and multiple
convolutions of a function £(x) with itself, and weighted sums of
such multiple convolutions (i.e. (0.4)) via machine computation is
apparent. Some of the applications of such computation in statistics
and applied probability will be presented subsequently. The trans-

form also has analytical value, as we will also attempt to show.
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2. Some Elementary lLaguerre Transforms
Y

Exponential and Erlang Functions

The simplest and most basic set of Laguerre families is that

for the exponential functions f£{t) = e-eT. Here, since ¢(s) =

(e+s)-l, we have from (1.12)

4

Ts (u) (1-u)

(6+%) - (6-%)u (1)

and hence

to 1 [e-n)"

£n = 6+ (6+!5) (2)
The Erlang densities for scale parameter 6 are correspondingly L
simple, since they arise from convolutions of the exponential den-

sities. They are given in the table of transforms.

Laguerre Functions

A related set of transforms of special interest is that for

the Laguerre functions.  Here from (1.10) we see that
£ (1)« Thu) = (1-w” (3) |

in particular

T

- e-1/2

£ (1) w hw = (1w (4) o
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so that for its N-fold convolution

_ (N)  ._N-1 -
[e m] = s o e i = e (5)

For this family of functions and finite mixtures thereof, the trans-
form g.f.'s Tz(u) are polynomials and the transform segquences

fﬁ terminate. Thewvalue 6=¥% thus provides a natural scale for
computation in which convergence is most efficient. This will be

discussed further subsequently.




+
3. Structure of T?'(u) in the complex plane.

When f£(t) ¢ L2{o,w), Equation (1.6) implies that

é;(f;)z < o, so that f; + 0, as n -+ «,
regular inside the unit circle, i.e. for 0 < |u| < 1. Moreover
f; + 0 (and is sguare summable) so that Tz(u) is regqgular for
0 < Jul <1, as may also be seen from Tz(u) = (l-u)T;(u). It may
be noted that |u|l = 1 maps into the line Re(s) = 0, i.e. the
imaginary axis in the s-plane, and that the point u = 1 corresponds
to s = o,

For the representation £(1) = L fzzn(r), where ]Ln(1)| <1,
speed of convergence is promoted by a geometric decay rate for f;,
and hence by regularity of T;(u), Tz(u) in a region containing
the unit circle in its interior. This requires (cf. (1.12)) that
¢(s) be regular at s = » and have a negative abscissa of
convergence [20] . Such behavior in the s-plane of ¢(s) also
assures regularity of .Tz(u) and T;(u) in and on the unit circlei
The situation is summarized by the following theorem.

Th*m If f£(1) e'' ¢ L, {(o,o») for some 7y > o and if

1

w0
ow d) = jr £(1)e" ™Y dt is regular at w=o, and vanishes there,
O
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then T(w = ¢((1+w) (1-w)™?

) and Tz(u) are regular in the
cvircle o <|u|l< ¢, some c > 1.

Some examples may be of interest

Ex. 1 T (1) = Te—BT: o(s) = ——l—-i ;
(s+8)
¥ _ (1 l+4u -2
Tf(u) = (3 i3 + B)

which has a pole of order 2 at (2B+1)/(2B-1), and is regular

elsevhere. Tg(u) has radius of convergence R, > 1.

Ex. 2 £r) = YT 2% pie) = 3 VT (7Y

% Lo §ltu ~3/2
Tf(U) = 27 {-l—.TJ"" a} /

and this has a branch point at u = 1. So R, = 1.
Note that f(1) is real analytic on (o,~) and falls off
rapidly in example 2, but that R, = 1 for Tz(u). We will return

+o0 such behavior in Section 6.




S

4. The Erlang Fariily of Functions, and the Erlang Transform.

The class of functions Lz(o,m) is too broad for some numerical
work. The functions one deals with are often highly smooth and such
smoothness permits representation by sequences (an) which fall off
quickly as n -~ «. An alternative to the Laguerre building blocks

may then be available as we next describe.

Definition. Let e (1) =z e '°  and let & be the family

of functions (entire functions as we will see)
E= {a(t): af1) = § a*e (1)) (la)

where

§" < », some £ > 0. (1b)

This family of functions will be called the Erlang family.

As will be seen conditicn (1b) permits use of generating func-
tions and discrete convclution related thereto. We note that E is

a linear space. Tt follows from (la), and (lb) that

/2 _ T * m . . . P .
a1t)e =} (a,/m!)1" is a power series with infinite radius of

o

convergence and is therefore an entire function. Hence al(t) is also

entire.
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Definition. Let af(tr) € E. The sequence (a;): will be

called the Erlang transform+ of a(1).

/2

w
Since al(t)e ==z:a;Tm/m! is entire and hence regular at
o

T =0, it follows from the Taylor expansion that

(k) -k
d .m T/2 ) 2
a7 [a(T)e / ]rso = m! (E—ETLQ—) * ( k!) _

* & §1 /n\ _(n-m)
a = — a (o) . (2)
n ng% {Zm (m)

Equation (2) provides the Erlang expansion of any function a(1) in

1]
»
i
I

the Erlang family from its Taylor expansion about <1 = 0.
The Laplace transform of a(t) is given from (1) by
- 1
als) = %:a;‘ (s+3%)™™ (3)

and this series will converge absolutely when the real part of s is

sufficiently large. Let

Tgf(w) = g a;lwm: Tg# (w) = w ?ax"'lwm ()
Then
et (s—}g) = a(s), (sa)

*The transform might equally be called a Maclaurin transform. The
name Erlang has been used because the Laplace transform structure
of the Gamma densities and Erlang densities suggested the method.

4-2




W = (Elﬂ) i (5b)

2w
Hence we again have, for af(t), b(1) € E
E# _ E# E#
Tanp (W) = T " (w) T 7 (W) (6)

Again, as in Section 1, (6) permits study and evaluation of continuum
convolution via lattice convolution.

The validity cf the transform Tg#(w) reguires that this be
regular in w at w = 0, and this will be assured when af(s) is
regular at «. Indeed such regularity provides an alternate charac-
terization of mempers of the Erlang family, as we see next.

Theorem 4.1

A B
alt) ; E <=, The Laplace transform a(s) of a(t) is
regular at infinity and vanishes there.
Proof. We have seen that A => B, Suppose conversely that B is
true. Then oaf(s) regular at « implies oa(s-%) regular at «,

i.e.

m+l

a(s-%) = [flatnie™?) ¢™%ax = c_(1/s)

ols

where the power series on the right has a positive radius of

l)m4l

S is the Laplace transform of

o«
convergence. But Q. Chp
o
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/2

[-
2:(Cm/m!)tm which must equal af(71)e since Laplace transforms
<)

are one to one, and the conclusion follows.
Closure properties of the space E are also of interest, and
follow at once from Theorem 4.1.

Theorem 4.2. Let al(t), az(t) ¢ £. Then

(1) clal(t) + c2a2(t) e E ;
(2) al(t)eYT ¢ £, for all real vy ;
{(3) al(t) * az(t) ¢ E (closure under convolution)

We observe that the Laguerre functions ln(r) and finite
linear combinations thereof are all elements of E. But other
elements of £ need not be in Lz(o,w) nor even go to zero as
t - », Thus for af(1) = 12, a(s) = 25—3 which is regular at
infinity. Similarly every polynomial in 1t is in the space E.

It may be seen that the order of a(1) is at most equal to

1. Hence £ is a proper subset of the set of entire functions and
e cannot be in E.
Note that the space E is not closed under limits. Thus

uN(S) = (1 + s/N)mN converges to e ®, i.e. a sequence of Laplace

transforms regular at = converges to one which is not.




A subspace of € of special interest is EL2

of t and L2(o,w). I{f af1) ¢ EL,, it will have both an Erlang

transform and a Laguérre transform. If the Laguerre related func-

tion T#(u) of (1.10b) is designated by TL#(u) = Q(l liE) we have
a a 2 1-u
from 5b)
E¥ oy - oL# o
T, (W) = T " (1-w), (7)
L4 _ oE#
Ta (u) = ia {1-u) (8)

The module functions {en(r)} and {En(r)} of the two

transforms are easily related. From (7),(8), since en(r) =

[20(1)](n+l) we have Tz#(w) = wn+l, and Tg#(u) = (l—u)n+1 so
n n
that
n
en(r) = %;enrﬂr(T) (9)
where enr = (?)(—l)r. Similarly
n
£ (1) = 2; Gnrex(t)_ (10)

That (emn) is its own inverse is a classical result. (See for

example, Riordan [15]. If one has af(1) ¢ EL,, then

the intersection




L0

orls

a%e (1) (11)

a(t) = é; antn(r) = m

t, o © .
and the sgquences (an)o and (ar*rfl)o are interrelated by
a* = SE ale . (12a)
m nepm b onm
al = i a* o (12b)
n ~ m mn
m=n

For any such function in EL2 the Erlang transform coefficients
a; obtained from (2) provide a stepping stone to the Laguerre
transform (a:): via (12b).

The Erlang transform method for evaluating convolutions is
closely related to the method of phases employed by Neuts and others
[13,14) for the numerical evaluation of functions arising in stochas-
tic models. 1Indeed the method of phases provides an intuitive frame-
work for understanding the Erlang transform method. The latter
method is more general thén the method of phases in several respects.

a) It is applicable to convolutions of functions of mixed
sign, and hence to the response fanctions of electrical engineering
arising in circuits and propagation, for example.

b) For positive functions no auxiliary Markov chains models

are required. Indeed, certain simple probability density functions,

ey

i
l
¢
h
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such as Ke-aT[l—cos b1}, cannot be related to chain models, as pointed

out by D. R. Cox [4]. Such functions present nc difficulty for the
Erlang transform method.

c) fhe method of phases requires, in principle, integrable
functions. A function such as Io(t)e—t, where I,(t) is the modified
Bessel function, is unacceptable. The Erlang method may be employed

even for functions which grow exponentially.




5. Extension of the Laguerre Transform to Non-Integrable
Functions Via Exponential Transformation

Our applicatiorns of motivating interest center about the
convolution operation d(t) = a(t) * b(t). When a(t) and b(t)
are not in Lz(o,w), they do not have Laguerre transforms. We
note however that when af(t) and b(t) are Laplace-transformable,
one has 6(s) = a(s)B8(s) for s sufficiently large. Then
o(s+8)R(s+8) = &(s+8), 8 > 0, i.e. ae(t) * be(t) = de(t), wvhere
ag(t) = a(t)e %%, etc. When a,r by € L,, they may be convolved via
Laguerre transform methods to give de and one may then find d4d(t)
from d(t) = de(t)eet. Such exponential transformation extends
thereby the scope of Laguerre transform methods. Note that the same
procedure may be employed for the integral equations of convolution

type of the introduction. For example the equation
h(t) = b(t) + a(t) * h(t)

becomes
ha(t) = bg(t) + ae(t) * hg(t)

under such transformation, and the Laguerre transform method may be

used when ae,be € L2 even though a,b f L2.
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6. The rate of convergence ©f the Laguzrre coefficients

It is well known that a Fourier series expansion of a peri-
odic function f£(t) - E:aneint has coefficients a which fall
off rapidly with n when £(t) 4is sufficiently smooth [ 5 ]. &
similar behavior for the coefficients f; of (1.4) and f: of

{1.11) is available and of key importance to the methods we desire.

We first observe that the sguare summability of (f;), i.e.,
o 1,2 +,2
z:(fn) < = implies that (f )"0 as n + «. Our methods re-
o

guire convolution of sequences (f;), (g;). As remarked in Section
3, for accuracy of calculation we would like the coefficients to
fall off rapidly, and geometric decay of the coefficients would be
desirable.

[- ]
It may be noted that summability E:If;] < » jimplies the
o

continuity of £(t) in (1.4). The argument is along classical
lines. Since |€ (t)| <1, one has [£ (t + h) - L ()} < 2.
Hence by dominated convergence
x 1_
lim f£(t + h) - £(£) = lim § £  {€ (¢t + h) ~ £ (t)} = 0.
n n n

h~+0 h-+o o

and f({t) 1is continuous.

It then follows that when f(t) is not continuous for all

t in (0,«), that (f;) is not summable. For example the

T
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function f£(t) =1, 0 <t <1l; £(t) =0, 1< t, has coefficients
which are square summable but not summable and hence rather slow in

convergence to zero. Dominated convergence also leads to the con-

clusion that f£(1) = i:f:Zn(t) goes to zero as T - « when
NEMIERS
n
The argument can be generalized to the following theorem.
Let CE(R+) be the linear space of functions f(1) with contin~

uous k'th derivatives on (o,«), such that 1lim f(k)(r) = 0. |
T - ]

Theorem 2.1. Let f(1) =

or+ls

-t.
fmtm(r). Then ?

z: mK|f+| < o => f(1) ¢ X (R), k=1,2,....K. The proof
nso m 4

is based on the following lemmas.

temna 2.2 ¢ ()| < [£{%) (0|

m-1 ‘
Proof. The standard identity L!(1) = - PN L_(1) implies !
)
m=-1 m
that -£' (1) = %¢ (1) + g £.(1) = r);joemrzr(r) where 6 _ =3,

bpr = 1+ 0 £ r < m-1. Hence, by induction (-l)klm(klr) =

(Qk) £.(1) where © = (6 ) is the associated lower trian-

mr mn

oz

gular matrix and Qk is non-negative for all k. Hence

n .
18 () < L @y = 165 (0]

6-2
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Lemma 2.3 (1) < (-1%e®) (o) < (MK
Proof: L w4 (1) = (1 - w7 exp{-kr(l + w)/(1 - w) =
o)
T W™ (o) = mk A WE L yk { Kyut(r - w7k?
=0 n (1 - uy=td r=0 ¥
k, (k) X m+k -r) LS m+x,
Hence (-1)%¢M ()= ¥ *¥)¢ ) = ¥ E ™D, Bt
r=0 r=0
< m+x (m+k < < k X k k
() Oy ) 2 )y 0<r <k, and g(r)=2,sothatthe

lemma follows.

m+k

Proof of Theorem 2.1. Clearly* ( ) < (k + l)mk, m>1,

so that 2K (1) |/nF <k + 1, ana H’_n(\k)('r) /X <k o+ 1,

® £ (1)
1<k <K, m>1. Consider £(1) = L (£m) B + £72 (1)
1l m
o t T+h '
ana ElTHh) - £(0 _ § (£ midy 4 Llmm) - 4, ()
h =1 h K o h
= m
By dominated convergence, we have f£'(t1) = Z:f; 26(1) and
— +
£ (1+h) - £'(7) = ozf’;‘ [en(r+n) - £2(0)] , so that £'(1) s

continuous and goes to zerc as T + . The argument may then be
repeated for all derivatives up to and including the K'th. deriva-

tive.l

A

* /m+k im+l) (m+42).... (m+k) kK 2¢3....(k+1) - k

I-2....k
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A simple extension of the theorem will be of interest sub-
sequently.
o0

. e as K
Definition (a ) € S, <=> g n Ianl < @

- -
- + ¥
Theorem 2.4a. Let £(t) = §fn Ln(‘r), and let (fn) € SK'

@ P>0,92>0
Let <P (g—t)q £(1) = Y. f:(p'q)t (1y;: p+ g <K, Then
o n K>1

t(p.q)
5 ) € Sy (p+q) *

Proof. The theorem is proven by showing that differentiation
lowers K by at most one, and multiplication by 1 lowers K by
at most one.

Thus let gl1) = Zgzzn(‘r), with znxlggl <w, K >1.

Then g(1) € CT(R_'_) and. h(t) = g'(1) = gg; Lr'u(ﬂ =§h:;£n('t)

where |h:| < % Ig;I , as in the proof of Lemma 2.2. Then
m=n

oM

K-1, + o o K-1, %, _ t, & K-l +, K
n | o< );.0 mgnn la, | = mgo lg,, | ngo n o< Gy glgmm < o

RN



Similarly let s(1) = 1g{t) = z:g; Tln(T) with (g;) € Sgo
)

K21 Then s(0) = Ls £() = Taf {(2n+ 1 (1) - (n+ DL, (1) -

_. Ty + i
nt (1)}, so that (s;) is summable. Then s, = (2n + g

©

—(n+l)g;+l- ng;_l , and & nK-lls
)

+

nl < @ as needed.

J" - -
Corollary 2.4b. Ln¥|f)| < of => ()T £(n) ¢ cKPd (g,
K>1, p.,q20
ptq < K

Let us now see how smoothness in £(t) induces rapidity of

convergence in (f;). The Laguerre function £ (t) satisfies[1 ]

the second order differential eguation
“ ] - =
t Zn(t) + £n(t) + (n+% kt)zn(t) 0 (1)

for 0 <t < =» . This may be written in the form

a 4 ' _ 1
[lxt -Gt a‘E] 2 (t) = [».t - n] 2_(t) (2) |
= L £ (t)
= (n+3) £n(t)
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It is easily seen that the operator L is self-adjoint in the

sense that

f ‘g (t) [Lh(t)] at = f [Lg(t)] h(t) dt (3)

o o

under simple conditions, (4a) and (4b) given below. Indeed one

may employ the identity

g(t) Dh(t) - h(t) Dg(t) = h(t) Lg(t) - g(t) Lh(t)

= =8 dh _ dg
°dt[gtdt htdt]

and integrate by parts to obtain (3) provided that the function

gt %% -ht g% vanishes at t = 0 and <« and the integrands in

(3) are in Ll(o,w). Thus (3) is assured whenever h(t) = Ln(t),

n > 1, and

g(r)(t) is continuous and bounded on (0,«): r = 0,1,2

(4a)
One further condition on g(t) is needed as will be seen in a

moment. This is the condition

Lg(t) = Xtg(t) - tg"(t) - g'(t) € Lz(O,w) (4b)

From (2), (3), and (4a) we have for g; = ’( g(t) Zn(t) dt,
. °
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g;: = [f gl(t) L £ (t) dt] (n+y) "1 (5)
° A

= (n+k) "1 f [Lg(t)] £ (t) at

(o}

If g(t) satisfies (4b), then Lg(t) = T (L)} £ (&) ana

orls

(Lg); = o(1). Hence from (5) g = (n+k) To(1) = o(n™ 1)

+
n

The operator X = (%t - D)k is also se.f-adjoint under

similar conditions on the boundary. From (2), one has
k _ k
L Zn(t) = (n+k) £, () (6)
If both sides of (6) are multiplied by g(t), successive integra-

tions by parts gives

meom* ot = [ 2 0 tigee) ae (7
o

provided that g(t) ard ng(t) satisfy conditions (4a,b) for
m=1,2,...,k-1. These conditions will be assured if g(r)(t) is
continuous and bounded on (0,») for 0 <r < 2k. We again re-

guire that Lkg(t) € Lz(o,m), and then have, as above,
g; = on™), n e (8)

These conclusions are summarized in the following

6-7
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Theorem 2.5. If

»

a) £{T) (¢+) is continuous and bounded on (0,=), r = 0,1,...2K

b) LYE(t) € L,(0,®), T =0,1,...,K, (9)
then
f; = o(n'K), n-+ (10)

It may be noted that (9b) reguires in general the existence of a

2Kth moment for fz(t), i.e. that _[' tzK fz(t) dt < «. Thus the

o
coefficients f: decay quickly to the extent to which f£(t) is
smooth and localized about t = 0.

Of particular interest is the situation where f(t) is real

analytic on (0,«) and falls off quickly enough at = S0 that (10)

can be true for all K. The class C:(Rl) of "rapidly decreasing

functions" of interest to Fourier transforms (see Dym & McKean, [5],

def

p. B7) is defined by: f£(x) ¢ CT(R)) S°f 4T (GpP £ s

bounded on Rl for all non-negative integers p,g. We may speak
correspondingly of the class Cf(R+) of rapidly decreasing functions
on R+=(0.¢) for which x% (g;)p f(x) is bounded on R for all

non-negative integers p,q. Then as a corollary to our previous

theorem and of the earlier Theorem 2.4 we have




Theorem 2.6. A) £(t) ¢ C{(R,) if and only if B) n“f, » 0,
n + « for all positive integers K.

é Definition

; when (B) holds, (f

L . ) .
n)o is said to be a "rapidly decreasing
segquence” [5}.

-

. . K,.t _ K ¢t
Note that (B) implies that n Af = nU (£ f;) + 0, n+ e

[ep—
ot ;o

and indeed that anpf; - 0, n + o, where D is any forward, cen-

i? tral or backward difference operator. The name rapidly decreasing
E; sequence is therefore appropriate. Such functions as nKen and
!1 nxe" are rapidly decreasing, for 0 <= & < 1.

ﬂ% It is important to note that smoothness of f£f(t) alone does
% not assure that an; + 0 for all K. As an example, let

f(t) = 1/(1+t) ¢ L,. Then f(p)(t) + 0, t =+ o, We have

®
th = j; 1+t £,(8) dt

= f j e-e(l+t) ln(t) de dt
o Yo

T 1 Je-x]™ -o
= j(; 5% [m} e ds

e f vl - uhHPe™ qu
]




2
- .{ (1 - w2k o=l ~lu g
1

1
-1/u -1 1 1 2k 1 -1
For 1 <u < 2, [.;5 e / u ] 2 % + hence Iy >3 é X7Tdx = 5(2k+1)

Hence f; is not rapidly decreasing.




7. Calculation of the Laguerre Coefficients via Taylor Series.

' . - L# _ 1 1l+u
We have seen that when a(7} € Lz, T, (u) = “‘f I:E)

is

regular about u = 0. There are two different Taylor series of value

in calculating the Laguerre coefficients. The first valid in

principle for all af(r) in L2(R+) proceeds as follows: We may

write
1l 1l4+u, _ 1 u _ ® -1/2 -%t{u/l-u)}
3(3 T:EJ = u(f + I:G) = JQ a(t)e e ar

The function 6(u) = u/(l-u) is regular at u =0 and oa(% + §)

is regular at 4§ = 0. Thus

1 u _ -1t/2(=1/2) u
0(2 + -—l-u) = ké:o {-/(; a(r)e ——k!—d'r} m
= i L (2K

But
u .,k & me- !
(o) = Z; (-
m_
Hence
L# n-1
a, © o (k-l)

(7.1)

(7.2)

(7.3)
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and similarly, since

k =)
u m, m
(1--3.1)“1 :;k k
ai* = ;Z% ) (7.5)

Thus one has

Theorem 7.1. If a(t, * LZ(R_,'_), its Laguerre coefficients

are given by (7.3) and (7.5).

Bt = (::‘i?—')k f Tm+ke-(8+%) Td't':

Example: af(71) = tme- + B> 0 has Ck
o
= k) (-0 (B4 TKTL ang
Lt _ % , 1,k -m-k~1 n
ag = I (=37 (8+%) () (mek)t .
k=0
Note that Theorem 7.1 is useful when the Ty coefficients are

available. 1In some circumstances a Taylor expansion of a(s) about
s = 0 is more convenient because the Taylor coefficients there are

available. Thus if

(-]
f a(rye %Tar
o

a(s)
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is regular for 0 < |s| <A, A >k, the point s = & lies inside

the circle of convergence of the Taylor's series of a(s) about

8 = 0. If we write oa(s) = Eunsn, then
o

1 l4u, _ 1 u - 1 u n
o3 IR T elgt 1R ;an(§+i-_u)
= a g ., u = a_g u

It is then easy to show (see below) with the help of the Cauchy

inequality that the series

%I;'# = i t’Lngnk

n=0

provides an absolutely convergent representation of the Laguerre co-

efficients (aﬁ#). The coefficients a are given by

where

©
o]
n
(o] »
8
[\ ]
-~
A
o/
(o7
A
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1 u n _ :?: K
and (5 + I:G) = 9k v 0 < ful < 1.

Thus from the Binomial expansion and

ii (k r T 21

)n

(l-u)

(

and,

N =

we have 9.0

By (T *Th

Ik ~ (r k-’ ! k21

H
L]
[

2
when af(t) = e T , T >0, A= and the coefficients may be

obtained in this way. Similarly, when a(t) =1, 0 <t <1, the
calculation is easy.

Theorem 7.2. Let af(s) be regular for 0 < |s| <A, A > k.

o0 (-2
Let af(s) = Zansn, and let [% + u(l-u)-l]n = Zgnkuk. Then
o o

lg:angnk is absolutely convergent.

Proof. By Cauchy's Inequality, Ianl < Ml/R? where M, = max la(s) |,




' lg dk , 0 <8 <1

!

: By taking: & sufficiently small, we may assure that m:x | % +’TB_|
; -u

< RZ' Rz < Rl’ and the theorem follows.
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B. The deconvolution problem

Let b(t) = a(t)*f(t), i.e.,

t
b(t) = J £(t")alt - t")at' , (1)
0

where b(t) and a(t) are known and f(t) is sought. This will be called
the deconvolution equation. When b(t) and alt) ¢ LZ(O.@) and b(t) =

-,-
Ible (t), alt) = a2 (t), and £(t) = I £1¢ (t) we have from

Section 1,

#, _ ¥ #
(bn) = (an)*(fn) '
i.e., 1
. i
R
bn g amfn-—m (2)

A formal solution of (1) via lLaplace transformation has the form
¢(s) = B(s)/a(s) (3)

and this may be solved simply by analysis in some easy cases.
We note from (3) and the uniqueness of Laplace transforms that
(1) has a unique solution if it has any solution. A solution is

usually guaranteed by physical considerations or by the mathematical

origins of the problem.
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Difficulty arises when a(t) and b(t) are known numerically
from data, say. Numerical solution of (1) is most naturally
attempted by discretizing the continuum, but there are often serious
difficulties, as we will see.

The numerical solution of the lattice deconvolution equation

¥ #

(2) is in principle trivial when the coefficients a, and bn are

known. For one has

# .4

+ al 0 't

so that, recursively,

-1
R I | #,-1
= [bn - mio fman-m] (2p) (4)

~.

provided ag # 0. Now

at = ay = [ a(t)g (t)at = / a(t)e Y %at (5)
0 0 0

and one may expect, in general, that ag # 0. One could have

¥

&

= 0 if a(t) is in the space orthogonal to Zo(t).
The deconvolution equation (1) has start-up difficulties in

discretization approaches when

a(t) VRt , t+ 0+ ,K>0 (6)

8-2
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for some positive integer m. Note, however, that this does not

cause trouble in the Laguerre procedure, as may be seen best from

- -at -2 # 1
an example. 1If a(t) = te” 2%, a(s) = (s+a) and T_(u) =
: ‘ a 1 1+u, 2
(@ + 3 1%
with at =1t = 2 > 0. So that th
0 a ?;—:—;77 2 0. o at ere are no start-up

difficulties.

#

In those instances where a, =0, 0 <m < M-1, one will also

have from Tf (w) = TH(w)Tfiu) that b} = 0, 0 <m < M-1. Then ¥ w /¥ (u)

b
-M -M .
u Ti(u)/u T:(u), and the lattice deconvolution proceeds normally.

When a(t) and b(t) are integral functions with Laplace
transforms regular at infinity of order at most one, it may be de-
sirable to represent a(t) and b(t) in terms of the Erlang
functions of Section 4. This procedure has the advantage that the
Erlang building blocks are naturally ordered by their behavior at

~t/2 Ng=t/2 hen

t=0 in that t"e is smaller near zero than t
m>n. Note that ¢(s) = B(s)/a(s) is regular at « when a(s)
and B8(s) are regular at = and b(t)/a(t) is bounded near zero.
The condition is required for the existence of any solution by

reasoning similar to that of the previous paragraph, since

gbms-(m+l)/§ ams'(m+1) n (aM/bN)s-(M-N), |s| » = where a,, b,

are the leading coefficients and M>N is required. The solution

£(t) will then itself be in the Erlang family, and lattice decon-

volution of the Erlang coefficients is viable. -
8-3




9. Numerical Examples of the Fethod

We present some numerical examples of the transform methods
for the calculation of multiple convolutions as well as for the
solutions'of Volterra equations (0.1), (0.2). All computations
were done on a Burroughs 6750 computer in a time-sharing mode using
APL as a programming language. The computations were in single
precision (11 digits). Relevant formulas were usually coded in
an "obvious”, straightforward way, with no attempt made to opti-
mize the subroutines for speed or accuracy. In spite of this, the
results displayed in this section were typically gotten with CPU
times measured in seccnds, and with no evidence of numerical prob-
lems such as roundoff, truncation, underflow, etc.

The Laguerre functions were calculated using the recursion
relation (see Appendix A)

(t+1)

= - AL - 12
£n+l(t) = [2 n+l ]ﬁn(t) [n+l]£n-l(t)

with Zo(t) = exp(-vt) and Ll(t) = (l1-t)exp(-vt). Similarly,

= i = -
e (t) = (Fle _,(t), with ey(t) = exp(-vt). The use of the scale

factor v is recommended for computational flexibility. When v = k,
the above-mentioned Laguerre and Erlang functions are obtained. When
v = 0, the Laguerre functions become the Laguerre polynomials and

the Fourier-Erlang series reduces to the Taylor series. The use of

the scale factor v is equivalent to the use of the exponential




transform of Section 5, for if £ (t) = f(t)e_et, then
£,(t) = )) f;e-Vth(t)'for v =206+ % Hence the use of v = & is

justified:providing f(t) is Laplace transformable and fe(t) € L2.
Typically, the computer will give the same answer for any v in
the vicinity of %, and the user may choose a value of v empirically
to get the best numerical accuracy.

The Laguerre and Erlang coefficients for exp(-at) are needed
frequently in applications and are derived here for easy reference.

For f(t)expl(v-%)t]) ¢ LZ(O,N). (1.5) becomes

£27(v) = [ f(t)expl (v-y)tde_(t)de (1)
0

(in which ln(t) is the classical Laguerre function) and for
f(t) = exp(-at), we recognize the Laplace transform of ln(t) evalu~-
ated at a + ¥ - v. From (1.8),

(a-v) "
(a+l-v)n+l

L+

n n = 011’2'.-. . (za)

£ (v) =

For the Erlang transform we have
_ E+ n
f(t) = exp(-at) = J£ ' (v) (t'/n!)exp(-vt) ,
so that ) fﬁ*(v)(t“/n!) = exp(v-a)t, and

E+t

o) o= (v=a)?, n=0,1,2,... . (2b)

£




e

These coefficients for the expornential function serve as useful
building blocks for calculating coefficients of more involved func-
tions. PFor example, if f£(t) is an Erlang density, its coefficients
may be easily computed by recognizing f£(t) as an integral number of
convolutions of an exponential density.

Example l: Server Busy Period Density

This exampie ililustrates the use of the transform methodolegy
for the evaluation of multiple convolutions. Reference [3] illus-

trates the numerical effort that may be required to perform multiple

convolutions by numerical methods. When the function being convolved J
has rapidly decreasing coefficients, our method yields a fast and
accurate algorithm.

Consider a single server M/G/1 gueueing system [18] having a
Poisson stream of customers at rate ) and service time distribution
which is absolutely continuous with density a(t). The server busy

period density s(t) is well known {[18] and is given by

) n
, it 1 .
s(t) = g exp(=xt) _E_IIT;T-)—! a(n+ )(t) . (3)

The study of s(t) has been hampered by its relative numerical intract-
ability. Onlyv when aft) is a pure exponential is a closed form answer

available. We take a(t) to be

a(t) = 2(e"t - &7%% _ (4)
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i.e., a(t) is the density of the sum of two independent exponentially )
distributed variables, one with parameter 1, the other with parameter 2,
The Laguerre or Erlang coefficients for a(t) are written down imme- i
diately u;ing (2a) or (2b). By inspection, we see that the best
value of v for the Erlang coefficients is 1.5, and that the best
value of v for the Laguerre coefficients will be between 1 and 2
(turned out to be about 1.3).
To perform multiple convolution, we make use of (1.13) and

(4.6), which state that for either Laguerre or Erlang building blocks
we have Tz*g = TzTg. Hence Tﬁ = (T:)m

have the following algorithm for the multiple convolution of a(t)

, where h(t) = a(m)(t) and we

using Laguerre building blocks: :
I. Generate or store in the computer the Laguerre coefficients

{a;}g for a(t). Note that this is a finite set.

II. Convert {a;} to {aﬁ}. Since T:(u) = (l—u)T;, this corre-

sponds to a simple differencing operation.

III. Perform m-fold discrete convolution on {aﬁ

only the first N+l terms in each convolution.

}g . Retain

The result
. #.N
is the sequence {hn}o.

Iv. Convert {hi} to {h;}. This is the inverse of the differ-
encing operation, i.e., summation.
N
V. Sum the series | hzln(t) to get h(t).
0

A completely analogous procedure is used for the Erlang building blocks.

A few remarks may be helpful:

9-4
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(1) The steps involve a finite number of computer operations
on discrete sequences. The cperations are things that a computer
does well. The steps are easy to program and are typically done
with high'speed and accuracy.

(2) In applications, step 11I was done using the formula

n

Since N is typically less than 100 and frequently less than 50, the
use of sophisticated techniques, e.g., Fast Fourier Transform, for
the discrete convolution does not seem warranted.

(3) A typical sequence of operations is to make a trial run
with N = 30, repeat for various values of v to get the most rapid
convergence, then increase N as needed to get the desired accuracy at
all necessary values of t. Thus, working with the computer in an
interactive mode is ideal for this methodology.

With this algorithm, the functions a(n+l)(t) may be computed

for desired values of t, starting with a(l)(t) = af{t). Figure 1 dis-

plays s(t) for » = .2 and » = 1. For both the Laguerre and Erlang
building blocks, accuracy was best near the origin and decreased
with increasing values of t. Three digit accuracy, i.e., sufficient
to plot figure 1, was gotten by using N = 30 for all the convolutions
(either set of building blocks) and using the first 6 terms of the

infinite sum for s(t). When high accuracy was desired, the Erlang
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building blocks proved superior to
Using N = 40 for all convolutions,
the decimal point was attained out
infinite ;um expression for s(t).
The service time distribution

s(t) represents an honest density,

the Laguerre building blocks.

accuracy to about 10 digits after

-
=

to t 10 using 23 terms in the

has mean 2/3, so that for A

i.e., it integrates to unity.

For X > 2/3, the formula for s(t) remains valid but integrates to

less than unity since there is positive probability that the queue

will never empty after the first customer arrives.

Example 2:

Solving a renewal eguation

This example illustrates the transform methodology in the solu-

tion of a Volterra integral equation of type 2, e.g., a renewal equa-

tion.

has been used with some success by

who have typically restricted themselves to the Taylor series.

this paper makes clear, the use of

The use of series methods in the solution of renewal equations

previous authors, e.g., [8], [1l6]},
As

the Taylor series is a special

case of a much more general approach.

In a reliability context, suppose an item has failure time

density a(t), and suppose that the

the item at random times, whether it has failed or not.

replacement times be exponentially

maintenance policy is to replace
Let the

distributed with rate parameter

A, and let s(t) be the density of the resulting effective failure

time distribution.

Ther probabilistic reasoning gives




s(t) = b(t)*{s(t) + c(t) +c‘?(t)y + ...}
= b+ ¥ (t) (5)
0
where b(t) = a(t)exp(-At) (6a)
c(t) = xexp(-ri) Z a(y)dy (6b)

and 6(t) is the Dirac delta function. It is clear that s(t) obeys a
renewal equation

s(t) = b(t) + c(t)*s(t) (7)

The multiple convolutions in (5) could be evaluated as in the preceding
example, but the direct solution of the renewal equation (7) is much

more economical and accurate.

To solve (7), we note that (7), (1.12), and (4.5b) imply that

which implies the discrete renewal equation

tshy = why + (chirish (8)
$_ 4T 4 4
i.e., s, =b + g CxSrox (9)

Equation (9) can be solved for s: recursively, starting with sg = b#,

providing that cg # 1. The algorithm for solving (7) is hence steps




I - V of Example 1, except that step IIX requires the solution of
the discrete renewal eguation (8).
We choose a(t) = 2(<=_~"t - e-zt) as in Example 1 so that (6a),

(6b) become

e-(l+A)t - e-(2+A)t]

b(t) = 21 (10a)

ZXe-(1+A)t _ Ae-(2+x)t

c(t) . (10b)

The Laguerre or Erlang coefficients for b(t) and c(t) may be written
down immediately by using (2a), (2b), respectively. The resulting
s(t) is displayed in figure 2 for » = .2 and X = 4. As expected,

the mean time to complete the message transmission increases as the
mean interruption rate increases. Using N = 40, both sets of building
blocks give about 4 digits of accuracy after the decimal point in the
time interval [0, 10} for » = 4. For A = .2 and N = 40, we get §

and 10 digit accuracy, respectively, for the Laguerre and Erlang
building blocks.

Example 3: The deconvolution problem

The deconvolution problem involves solving an equation of form
b(t) = a(t)*f(t) (11) 3

with a(t), b(t) known and £(t) unknown. This problem is discussed in
section B, and eguation (8.4) provides an algorithm for solving the

discrete deconvolution equation (8.2), which is of the form

why = aheeh L ' (12)

9-9
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It should be noted that (12) can be recast as a renewal eguation,

i.e.,
tghy = wh « e - @hiweh
1 n=290
where §(n) = .
0 n#~o

Hence, a subroutine for solving a discrete renewal eguation also
serves to solve the discrete deconvolution equation.

In an M/M/1 queue setting, let sn(t) be the density of the time
for the queue to empty, given a start with n customers. It is known

[9] that sn(t) satisfies
g, () = s (t)*g, (%) (13)

-{A+u) t

where gn(t) = (A/u)&ne In(Z/TEt), n=20,%1,... (14)

with A the arrival rate and u the service rate. The density s, (£) is
known [9] to be equal to (n/t)g_n(t), but we solve (13) numerically
to illustrate the deconvolution technigue.

When » = pv = %, (14) simplifies to

g, (t) = e‘txn(t) )

We expand In(t) in’a Taylor's series and immediately get a natural

expression of gn(t) as an Erlahg series with v = 1. The deconvolution

9-11
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algorithm proceeds with no difficulty and figure 3 displays sl(t).

The density is integrable, but has a very heavy tail, i.e., it has

no moment. Twenty terms in the series provides more than enough
accuracy to make the plot, but more terms are needed for large
values of t. Sixty terms gave about 5 digits of accuracy after
the decimal point at t = 50, with 10 digits at t = 20.

When A = .25 and u = 1, (14) becomes

n -1.25t
e

g, (t) = (%) I (t)

Again, the expansion of In(t) in a Taylor's series provides a natural

expression of gn(t) as an Erlang series, this time with v = 1.25.

-Figure 3 also displays sl(t) for this case. The tail is very light

and 30 terms in the series gives an accuracy of about 8 digits out to

t = 10.

9-12
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10. Interpolation Methods and Problems

For the solution of integral eqguations of form (0.1) or (C.2)
where the given functions a(x) and b(x) are only known numerically
at some finite set of points, interpolation procedures are needed.
Interpolation of the data via spline functions may or may not be
suitable for the methods we have described. The discontinuities
in the derivatives at the knots intrinsic tc those methods preclude
the Erlang transform methods of Section 4 since a(x) and b(x) cannot
then be integral functions. Laguerre transforms are possible, but
the functions will not be rapidly decreasing and hence, as shown
in Section 6, the Laguerre transform coefficients are not rapidly

decreasing and the tails of a;

could be excessively long. A suffi-
ciency of data points could permit spline interpolation of high
order, and corresponding accuracy. The difficulties surrounding
such finite data set problems, and the accuracy of our methods when

applied to such problems, require further study.

10-1




&5

11. Generalization of the Method to Other Families of Function

The basic method can be extended to other classes of functions.
Consider any sequence of functions (an(T))z with Laplace transforms

(un(s))° for which an(s) has the form

a (s) = a(s) (s, (1)

Suppose further that under the change of variable w = f(s),

o (s) becomes p(w), i.e., uo(s—l(w)) = p(w), where p(w) is
regular at w = 0. Let g(t) = Zgnan(t), h(t) = Zhnan(t). Then ]
tsw)] = Tope,(e) = agte) Lo [5,0e)]" = pw) Lgw”, ana L[n(v)] =

plw) ] hnwn. In our previous notation, we then have for T;(w) = E:gnwn J
T + t
p(w) Tg*h = p(w) Tg(w) p (w) Th(w). (2) |
Hence
# = m¥ #
Tg*h(W) Tg(w) T, (W) (3)

where T;(w) = p(w) T;(w); and the framework for computation developed
in Section 1 for the Laguerre transform carries over,

There are many classes of functions {an(t)} having the
necessary algebraic structure for an(s). Two such classes quite
different in form from the Erlang class and Laguerre class are of

interest. 1In the first the building blocks are the functions

11-1
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which arise in the theory of diffusion. For these functions one

has

-n/s

a,(s) = e
B(s) = e-/g » o (s) = pw) = 1.
The second family has Bessel function building blocks

an(t) = Jn(t) p

for which [1]

qn(s) = { 52+l - s}n/ V52+1 (7a)

s2

B(s) = { +1 - s} {7b)

o, (s) = (s2+1)7% ; . pw) = 2w/ (1+w?). (7¢)

For any of these families (an(t)) we may use instead (an(t)e_YT),
since the necessary properties are preserved.

In special contexts, such as underwater sound signals, a
particular family might be more appropriate than the Erlang family
or Laguerre family. Each family of functions has special advantages
and special limitations and computational algorithms appropriate

to tha£ family are needed.
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12. Inversion of Laplace Transforms

The operational framework we have developed for convolutions
also provides formulae for inverting Laplace transforms in terms of
the building blocks. Two such formulae of general interest are pre-
sented in this section. Other formulae may be obtained from Section
11 for special classes of functions.

When a(s) = ? e Sta(t)ar is regular at infinity and vanishes
there, inversion gf a(s) as a series is implicit in Theorem 4.1.
This may be worth stating formally. The result is given in a more

restrictive setting by D. V. Widder [20].

Theorem 4.3

If: (a) a(s) is regular at = and vanishes there

(b) a(s-y) =] ¢ (H™!
0

then a(t) is entire and given by

m
c I er/2

alr) = m m!

o1 8

where the series is absolutely convergent for all r.

Note that the Taylor expansion of Tgf(u) about u = 0 together
with (1.4) also provides an explicit inversion formula for Laplace
transforms. Specifically, one has:

Theorem 4.4

Let a(t) ¢ L,(0,=) and let o(s) = L[a(x)]. Then a(1) is given by

[T
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= 7 A Eyml 3
(13) a(r) = mzo 7 15 o5 =) og (T

Numerical inversion of Laplace transforms via numerical inte-
gration techniques has received considerable attention, e.g., in
the book by Bellman, Kalaba, and Lockett [2].* Such techniques do
not appear to exploit analytically founded accuracy as fully as
-our procedures and are placed in jeopardy by ill~-conditioning [2,
p. 33]. An extensive comparison of the two procedures is needed.

The idea of inverting Laplace transforms via the operational
tools of Laguerre functions goes back, to the authors' knowledge,

to Lanczos in his book, Applied Analysis [l11]. The presentation

there is somewhat obscure and the scope of the procedure and its
legitimacy are essentially undeveloped. Feller presents explicit

inversion formulae for Laplace transforms [6]) of largely theoretical

value. Neither Feller nor Widder nor Bellman refer to Lanczos'

method.

Acknowledgment. The authors wish to thank H. Ross for helpful com- [
ments, U. Sumita for his extensive and generous technical assistance,
and Ms. L. Ziegenfuss for editorial contributions.

*The reader may wish to examine the papers by A. Papoulis, "A new

method of inversion of the Laplace transform," Q. Ap. Math. 14,
1957 and R. V. Churchill, "The inversion of the Laplace transforma-
tion by a direct expansion in series,” Math. Zeitschrift 42, 1937.
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Appendix A

Classical properties of the Laguerre polynomials Ln(x)

and functio

T -x
1. g e Ln(x)Lm(x)dx

N
L[]
O 8

£n(x)£m(x)dx = §

(1-u)”

(W
L]
or~18
o
o]
|
o]

%

i

(1-u)”

ns Ln(x) = Ln(x)e""’(/2

=5mn

mn

lexp{~ %%E}

1+u

lexp{-% x 1)

n
_ 1kl mo X
5. L (x) kZO (-1 57 GIx
n
n _ _13k 1_/n
6. x' = k£0 -7 7 (L x)
L] - 1 - (-]
7. bfe SXp (x)dx = rres (ET’; n ; é ln(x)dx
8. Ln(O) = £n(0) =1
n
-%X/2
9. 2 (x) ~ X X2 % s
10. L (x) = %T ex(gi)n{xne-x}
v Un ’u -kx
11. g ln(X) T " ee JO(Z/EG)

et kR T N

(cf.

(11)

(-1)".2




12. xln(x) = (2n+1)£n(x) - (n+l)£n+l(x) - nln_l(X)

' n-1
13. =L (x) = %2 (x) + (Z) £ (x)
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EXPLANAT Y OF SOME ENTRIES IN THC TABLE OF OPERATIONAL PROPERTIES NF {AGUERRE TRANSFORMS
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0. Introduction and Summary

In a previous paper, hereafter designated by [A], a description was
given of a Laguerre transformation which maps a function f(1) in L2(0,m)
into a sequence (fﬁ); on the nonnegative integers. Moreover, for two
such functions f(1), g(1), the convolution f(t)}*g(1) is mapped into the

n

# # # #
I £ g = ((£)*(g))).. One obtains thereby
0 m m n

#
. . « -
lattice convolution (f g)n nemfn

an algorithmic basis for the computation of multiple convolutions f(k)(T)
and related infinite series of importance to statistics and applied proba-
bility.

Such Laguerre transforms have one-sided functions as their natural
domain because the Laguerre polynomials Ln(r) and Laguerre functions

t/2

Zn(r) = Ln(r)e' are associated with the one-sided weight function

e’ on (0,»). Nevertheless, the methods have a simple extension to two-
sided functions on the full continuum (-», =) via the same Laguerre
functions as we will see.

A variety of applications exist to statistics, operations research,
and engineering. In statistics, for example, one has need for multiple
convolutions of two-sided distributions unavailable analytically, that
of the logistic distribution, for example. Even relatively innocuous
distributions such as the Laplace distribution convolve with difficulty.

In operations research studies dealing with queues, inventories and
storage systems, one encounters as a structural entity [3] the extended

o0

renewal density h(x) = ) a(k)(x), where a(x) is a probability density
1
function with two-sided support. For many densities of interest, evalua-

tion of h(x) has been resistant.




In the earlier paper [A], the crucial role of the complex plane in
the formulation of the algorithms was evident, even though the algorithms
were entirely in the real domain. For the bilateral transform, the com-
plex plane is again very much present, with Laurent expansions, bilateral
Laplace transformation and conformal mapping entering as crucial tools.

The first section extends the earlier formalism to the full continuum.
That this extension is natural, and not just an artificial piecing together
of the formalism for each half-line, will be clear from (1.9), (1.12) and
(1.13). The harmony of the basis will also emerge vividly in Section 3,
which deals with the extent of the transform coefficients, and associated
uncertainty relations. The topic of extent is crucial to the utility of
the Laguerre transform method as a numerical tool. Numerical examples are
presented in Section 5. A table of contents provides the reader with an

overview of the paper.Jr

+Two references (V. I. Krylov and N. S. Skoblya [8], and W. T. Weeks [12])
have come to the authors' attention subsequent to publication of [A]. Both
deal with the use of Laguerre functions for the numerical inversion of one-
sided Laplace transforms.
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1. The bilateral Laguerre transform

In this section the one-sided methodology of [A] will be recast in
a natural way to provide a corresponding representation of two-sided func-
tions. In this extended setting the one-sided functions will be a special
subcase.

Let f(t) be any function in LZ(-m,w). Let U(t) =1, Tt 20, U(t}) = 0,
T < 0. Then f(1) = f+(r) + f (1) where f+(r) = f(1)U(1) is in LZ(O,w) and
f (1) = £(1)U(-1) is in Lz(-w, 0). The discrepancy at t = 0 may be

ignored. Clearly, one may write, employing the notation in [A],

1.1 £,(0) =] £ L (U
0

n+ n

(1.2) £ (1)

g £ £ (-0U(-1)

and

1.3)  f£() = 3:; fh (1), =0,
where

(1.4a)  h (1) = £ (U(x) , m20

(1.4b)  h (1) = -£_ (-0U(-T) , m<O

The puzzling minus sign in (1.4b) plays an important role which will

emerge soon. We see that

(1.4¢) hm(T) = 'h-m-l('r)" all m,t

[ RS —————




Note also from (1.1), (1.2) and (1.3) that

-+

+ S S
nz0; fn = f(-n-l)- ,

]
h

(1.44d) fn n<o

The set of functions {hm('r)}f°° form a complete orthonormzl system for

Lz(-w,m). Consequently, one has

[ £(0)& (1)dt , m=20
o 0 m
(1.5) £ = [ £(0)h (1)dr =

-0

-g f(-t)l_m_l(t)dt , m<0

e —

From the orthonormality, one has the Parseval relation

-]

(1.6) [ fde=] £7

-0 -0

We know that Bilateral-Laplace transformation gives for n 2 0 (cf. [A]),

-]

[ 7T En(r)U(t)dt

-00

[

1.7 Lyl (U]

(s - /20" (s + Y™ | Re(s) > - 172

and
(1.8) Lpl-2 (-1)U(-1)] = (s + 172"/ (s - 17/2)™1 | Re(s) < 172

It then follows from (1.4a) and (1.4b) that, for all n (explaining the minus

sign remark below (1.4b)),

(1.98)  Llh (D] = (s - 2"/(s » /2™

; - 1/2 < Re(s) < 1/2

-® < < ®
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From (1.4) and (1.9) we have the interesting identity
(1.9b) hm(T)*hn(T) = hO(T)*hm+n(T) ; all m,n,t

which may be compared with eq. (1.9) of [A]. For f(t) ¢ LZ(-w,w), with

@

(f:) e by, ie., )) |f;| < =, we have formally from (1.3) and (1.9a)

-0

+(s - 1/2)n 1
n's + 1/2 s +1/2

(1.10)  op(s) € Lple] = ] £

A discussion of the domain of validity of (1.10) will be given in the
next section. The ideas and results are a two-sided extension of the corre-
sponding one-sided results presented in [A]. As we will see, the series in
(1.10) will be absolutely convergent in some strip -A_ < Re(s) < A,, A >0,
A+ > 0, when f+(1) and f (1) are sufficiently smooth and "rapidly decreasing"
as in [A]. It then follows from (1.10), that in the corresponding domain D
in the complex u-plane, containing {u: |u] = 1}, one will have for the dagger

generating function T;(u)

oo

def

t tm_ 1
(1.11)  Tgw "= zm £l = v G ) \
‘\
and
# def + - 1 l+u

For bilateral convolution it is known that LB[f(T)*g(t)] = ¢B(S)YB(S). Hence

we have from (1.12),
# # #
(1.13) Tf,g(u) = Tf(u)Tg(u)

It then follows that as in [A], bilateral convolution may be mapped into

lattice convolution via the two-sided Laguerre transform

akaiionik,
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i.e.,

K
1.14) £ = £ - £ |

The validity of (1.10) in a convergence strip containing the imaginary
. s s . . . . # . .
axis in its interior will permit Tf(u) to be regular in an annulus contain-
ing the unit circle in its interior, when ¢B(s) is regular at infinity as
we will see in Section 2. The situation is somewhat modified in the absence
of such regularity.
Note that f(t) even, i.e., f(t) = f(-1) implies that ¢B(s) is even in

s. It then follows from (1.12) that

#

(1.15a)  £(1) = £(-1) <> £ = £

. R . . # . . ..
i.e., f(1) even in t implies that fn is even in n. Similarly, one has

(1.15b)  £(1) = -£(-1) <> £ = £

The reader will verify from (1.1) and (1.2) that when f(1) is even

(so that £ (1) = £_(-1)), then £, = £ .

It then follows from (1.4d)

that

(1.16a) f(x)

"

t
flor) <= £ =

-f(-1) <= et o gt

(1.16b) f(T) n f(-n-l) ’

i.e., the daggers have their symmetry about n = - 1/2.

LR v g




It is clear from the simplicity of the form of (1.13) and from the
relative simplicity of the symmetry relations (1.15a,b) for fﬁ over those
of (1.16a,b) for f: that the sharp coefficients fﬁ are a more natural
vehicle for our algorithms than the daggar coefficients f:. Nevertheless,
the latter are of algorithmic and theoretical importance. Indeed, they

[

are needed for a final inversion f(t) = z f;hn(r) returning to the func-

a0

tion sought.
As in the introductory paper [A], the general setting for the trans-

o

form is the Lz(-w,w) class for which Z f;z < », so that (fn)f°° € £2. As
for the one-sided functions, however, the methodology is of value algo-
rithmically only for functions sufficiently smooth, e.g., "rapidly decreas-

ing” (cf. §2). Summability of (f:) is of special importance. We note,

therefore, that

+_ o # o #
(1.17)  (F) e & => (F) el = gw £=0
B4 _ .t
as seen immediately from (1.14), and Z fn = fB - fA-l' Moreover,
A
1.18 S g e e el T
(1.18) (f) o€ 4y => £ = o nep ™

and (1.18) then permits one to go from (f:) to (f:). We also note from (1.4d)

and (1.14) that for all (f;) < L,

#
fn+ s, h >0
# # #
(1.19) fn = fo+ + fo_ , n=20
f# n<2o0

rremawesre S T




Consequently one has

o 0 ©
# # n # #
Te(u) = gm fu = ] £y u g £ o,

-0

(1.20)  Tp) = Tp, + 10 @™




§2. Rate of convergence of the Laguerre coefficients; regularity structure
in the complex s and u planes

A. Structure for the one-sided case

The bilateral Laguerre transform will be a useful tool for the mechaniza-
) #
tion of convolution if the sequences (f:)_m and (fn)oj°° fall off rapidly as

in [A]. The definitions employed there will be repeated for convenience.

DEF 2.0a. (fn); € C:(N+) Qg; nKIfnl + 0, n » « for all non-negative integers

K.

DEF 2.0b. f(1) ¢ C:(R+) def ITq(g¥pr(T)| < Mq,p for all non-negative
integers q,p.

One then says (fn): is a rapidly decreasing sequence and f(r) is a
rapidly decreasing function on R+.

If, in particular, f+(r) is "rapidly decreasing", then as in [A], Theorem
6.6, (f;); and (fi); will be rapidly decreasing, e.g., one will have nKlfII + 0,
n » = all positive integers K. Similarly, if f_(-t) is rapidly decreasing
on (0,*), then (fin-l)g and (fﬁn_l)g will also be rapidly decreasing.

A systematic development of the extension of these ideas to the two-

sided setting will be given soon.

(f:)‘; e o) A (f:): ¢ TN £ £1) « CT(R)



. , . #
Proof: A> is immediate from fn = fn

-10-

-r

-+

- f in (1.14).

-1
C

mK+1|f#| <K 0asn+e
1 m n

A, Kot K, o .
< nff ] =n|- ] |
n n+l m n

<

=1
+e~18 3

for all K .

<B,. Restatement of Theorem 6.6 in [A]. O

We need to relate our smoothness conditions to a radius of convergence

for T:(u). We define the following set.

DEF. 2.2

(-] . poy n -
6g = {(£), : L OJE IR < =}
n=0
We then have

P2.3a. If a sequence has a radius of convergence larger than unity, then

the sequence is rapidly decreasing, i.e.,
o
(2.1) GR c C+(N+) , any R>1

Proof

K| ot K (et n*
n |fn‘ = (iﬁﬁlfniRn <C ;H-* Oasn-+=. [

+ . ™ #_ oo
P2.3b. (fn)O € GR <> (fn)0 € GR , for any R > 1 .

Proof: The direction => follows at once from (1.14). The direction <= is
an immediate consequence of T;(u) = (l—u)°1T;(u) relating the generating
functions. Since (f:); ¢ Gg, R> 1 => T:(u) is regular for 0 < |u] <R,
the point u = 1 lies in the domain of regularity of T:(u). Moreover,

¥
Tf(l) = 0. It then follows that u = 1 is a regular point for T}(u), etc. O
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Remark 2.3c. We note that C,(N+) < G, ¥
may be seen from (fn)z with fn - 5 - We also note that the union
. l+n
] of the sets GR with R > 1 is a proper subset of C+(N+), as in the example
; oy
E e .

fn =

and is a proper subset of G,, as

. # # . .
We will see that over-convergence of Tf(“) = z fnun, i.e., the avail-
0
ability of a radius of convergence greater than one is associated with over

= convergence of the Laplace transforms ¢(s) in the presence of a simple con-

" 4
g‘. ditiorn at infinity.

2 ¥

- P2.4. Let (1) € L,(0,=) with ¢(s), Tg(u) defined for Re(s) > 0, |u] < 1.

- Then for the analytic continuation one has
3 T st .

b {¢(s) = [ €7 f(1)dr is regular at s = w and ¢(=) = 0} <=

3, 0

3

4 # . #

¥ {Tf(u) is regular at u = 1 and Tf(l) = 0}
B - 4
k- . # _ el 1+u _ ot 2s-1 . v
v Proof: From (1.12), Tf(u) = ¢(2 I:GJ and ¢(s) = Tf(EE:TJ. By setting

= 1 1, . # 2-w . 1, . _ )

- W= ¢(;ﬂ = Tf(2+w)‘ ihus ¢(;J is regular at w = 0 and vanishes there {
= #

- if and only if Tf(u) i's regular at u = 1 and T;(l) = 0. 0

! The situation is significantly modified when ¢(s) is not regular at

y infinity. Some simple bilinear mappings from the s-plane to the u-plane

are needed to understand the modified behavior. We state the basic results
which follow from standard results of conformal mapping theory [9].

P2.5.

1+u
1-u

(A) Let s(u) = % and A = {u: R1 < Ju| < RZ}, where 0 < R, £ 1 < R,. Then

1 2
A maps into s(A) in the complex s-plane, the complement of the two dis-

joint circles possibly tangent, as shown in Fig. 2.1.




2s - 1 . 1
(B) Let u(s) = 5——yand B = {s: R, = Is] = Ry}, where 0 < R, < > < R,.

Then B maps into u(B) in the complex u-plane, as shown in Fig. 2.2.

_ 25 -1 - .
(C) Let u(s) = 35 + 1 and D = {s: 51 < Re(s) = 62}, where 51 <0< 62. Then

u(D) for two key cases is as shown in Fig. 2.3a,b.

Two key theorems for the one-sided functions may now be stated.

Theorem 2.6

Let Tg(u) = ¢(%-%;%J. Then the following (A) and (B) are equivalent.

# o
(A) (fn)0 € GR for some R > 1.

(B) ¢(s) is regular in {s: & < Re(s)} for some 6§ < 0. ¢(s) is also regular

at s = » and ¢(=) = 0.
i{ The theorem follows from P2.5 and simple argument in the complex plane.
Details are omitted.(

If the regularity condition of ¢(s) at s = = is dropped in (B) of Theorem
2.6, Tz(u) is no longe? guaranteed to be regular at u = 1. The resulting
regularity structure is described next. The proof is as before with details
omitted.
Theorem 2.7

Let Te(u) = ¢(3 T2). Then
(1) The following (A) and (B) are equivalent.

(A) T;(u) is regular inside a circle c* containing every point of the

*
set {u: |ul = 1, u # 1} in its interior, with the circle c¢ tangent

to the unit circle at u = 1.

(B) +¢(s) is regular in E& = {8: 6§ < Re(s)} for some 6 < 0.
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= . o { _ 1 1+u
A= {u: R1 5 |u, < RZ) s(A) where s(u) = 7 i
. ¢ < R1 s 1x R2
;{‘ AAi_,J
Fig. 2.2 BLUFANE
4 1
. .
i
A , B={s R1<]s]<R2}
. 5-1
u(B) where u(s) = X7 1
S 0 < Rl < 5 < R2
T Fig. 2.3a L
. 2s5-1 )
u(D) where u(s) = 5ol D= {s: 61 < Re(s) <« 62}
+3 1
b - % < 61 <0 < 62
A
Fig 2.3b —>
u(D) where u(s) = 251 D= {s: 6, <Re(s) < 6.}
2s+1 | 2

1
Yoz c0cs,

Complex u-plane Complex s-plane
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(2) Let s ¢ E6 be such that s = S + iT. Then (B) implies lim ¢(S + iT) =
T+t )
lim T:(u) = 0, the limit being taken along the unit circle.
url

Corollary 2.8

. . #
If ¢(s) is entire, then Tf(u) has only one singularity at u = 1.
This corollary also can be seen directly from T:(u) = ¢(%—%;§J.
B. Structure for the two-sided case

Theorems 2.6 and 2.7 can be easily extended to the two-sided case in a
natural way. First we give the following definition.

DEF

(2.20)  £(0) e C,R) £ (1) € TR, £(1) € R
© * dgg o o ) )

2.20) (€)%, c ;) 48 (57« Ty, (£ )] € T

Remark 2.9: The definition implicit in (2.2a) requires no continuity at 1 = 0
for f(t). The asterisk distinguishes this class from the ordinary class CT(RI)
of rapidly decreasing functions which are differentiable to all order at
every T.

These definitions with P2.1 yield the following immediately.

P2.10

(2.3) (D7, e L <= (EN7, € C ) <=> £(1) € C,(R) .

We also have as a simple extension of the one-sided case:

P2.11

= _ #. o hs 4
(fn)_e° € ll => (fn)_°° € 21 and Z fn =0

a2

bt A -




F

Proof

t. .o
h",

(f#)°° e £

n’ -« 1

(2.4)

;‘ Theorem 2.12

# 1
Let Te(w) = 4307 T

1+u)_

-15-

. . t | t \»
€ 21 implies that (fm)0 € 21 and (fn_)0 € Ll and that

N |
Since Tf(u) = Tf+(u) + Tf_(u ) from (1.20),

The extension of Theorems 2.6 and 2.7 to the two-sided case now follows.

Then the following (A) and (B) are equivalent.

(A) T;(u) is regular in Ap = {u: R_ < lu] < R,} where 0 < R_< 1 <R_.

(B) ¢B(s) is regular in E = {s: -A_ < Re(s) < A+} where A_ > 0, A, > 0, as

well as at s = «, where ¢B(w) = 0.

Proof

Details omitted.[

We note that from P2.3a,b and P2.10 that either (A) or (B) of Theorem

*
2.12 implies f(1) € C+(R).
next.

Theorem 2.13

l+u
)

Let T:(u) = ¢

1
8(7 T35

The two-sided counterpart of Theorem 2.7 is given

Then

(1) the following (A) and (B) are equivalent.

*x L] *
(A) T:(u) is regular inside the region C = C2 - Cl where:

*
(a) C2 is a circle containing every point of the set




=
v
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{u: |u] = 1, u # 1} in its interior;
* *
(b) C, is a circle where C1 - {1} is contained in the
interior of the set {u: |u| s 1};

* *
(c) both C1 and C are tangent to the unit circle at u = 1.

(B) ¢B(s) is regular in E = {s: -A_ < Re(s) < A+} where A_ > 0 and

A+ > 0.
{(2) Let s =S + iT for s ¢ E. Then (B) implies that lim ¢B(S + iT) =
Tate
= lim T;(u) = 0, the limit being taken along the unit circle.
u-+l
Proof:
Omitted.O

C. Rapidly decreasing functions on the full continuum

P2.10 says that f(t1) ¢ C:(R) if and only if (an:) € £1 for all non-
negative integer K, or equivalently (an:) € Zl for all nonegative integer
K. But this permits the discontinuity of (g—t-)rf(‘t) at T = 0. When (g—t)rf('r)
is continuous at T = 0 for all r = 0,1,2,..., one finds ;urprisingly that
all the moments of f: and f: vanish. We remind the reader that Zn(t) satis-

fies the operator relation (cf. Eq. (6.2} of [A])

(2.52)  L[E(D] = (0 + L (1)

where
1 d _d
(2.50) L=[z771-3-7g]

From (1.4a) and (2.5) we have L[hn(r)] = (n + %ahn(t) for n 2 0. Forn <0,
L[bn(t)] = -L[t_n_l(-t)U(-t)] = - (-n -1+ %Dl_n,l(-T)U(-T) = (n + %Jhn(t).

Consequently one has




(2.6) *[h (0] = (n + 2™h (1) for all nand T = C,1,2,.

We also verify trivially from equation (1.4a,b) that
(2.7) Gn = hn(0+) - hn(O-) =1 for alln .
It follows that for f(1) € C:(Rl),

L5 b e o

= —-00

(2.8) LT£(1)

where a(t) gt = a(0+) - a(0-). Legitimacy is assured by (nkfg)fm € 21 for

all k 2 0 (cf. Theorem 6.6 of [A]), the uniform boundedness of lﬁk)(r) on
R1 (cf. Lemma 6.2 of [A]) and the dominated convergence theorem. Similarly,
when (f:)fw € C:(N), (2.8) will be valid. The following theorem can now

be proven.

Theorem 2.14

Let

(2.9) A= {f(0): (£)7

o

*

ey, ¥ oot=0, kx=0,1,2,...)
¥ n

Then

CT(R)) = A

* [
We note that A is a proper subset of C+(R1) which is equal to {f(1): (f:) €

*
C+(N)}. It differs in that its elements have all moments equal to 0. The

class C:(Rl) contains real analytic functions of great interest in mathematical

2
statistics and probability theory, e.g., e  * /2 and (cosh x)'l. The vanish-
ing of | nkf: and as we will see of | nkf: for such functions is of corre-

sponding interest. Two lemmas will be employed to prove the theorem.

i
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Lemma 2.15
I onfel s 0, k=0,1,2,... <= ] 0l =0, k=0,1,2,...
Proof
. # + + . f,
(=>) Immediate from fn = fn - fn-l and the binomial theorem. |
1
(<=) One has ,
|
(2.10) %= 8] for u=e , 820 . 7
(1-u) (1-u)

The limit of the expression on the right exists and equals 0 as u + 1 by
repeated application of L'Hospital's rule. A similar application of

L'Hospital's rule to the expression on the left, then gives via induction

-]
on K, ) an: = 0 for all K as required.[]

-0

Lemma 2.16
r d

(a) a f(1) exists at 1 = 0

f(t) € A => '(b) %? f(t) ¢ A

L © 7 A 1

Proof
We first show that f(t) € A implies that %? f(t) exists at t = 0.

This is easy since from (2.5b) and (2.8)

e {01 MERTEION D ENCE FA

Since f(1) € C:(Rl) implies that f(1) is differentiable in (-=, 0) and 0, =),
differentiability on R1 follows.

We must now show (b) of the Lemma, i.e., that %? f(t) ¢ A. One has
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for continuously differentiable f(r) that

(2.11) [g;-f(r)]i = %{f; VI

from Theorem 4.4 of Section 4. From (2.11) and the binomial theorem, we have

(2.12) z nK[%? f(T)]i = %-z anI + %—Z {(n-1) + I}Kf;_l =0

- 00

Finally, from (2.12) and Lemma 2.15, one has
-]

K.d o _ X
zm n [3? f(T)]n =0, K=0,1,2,... proving (b).

Since (c) follows immediately by induction, the Lemma is proven.[

Proof of Theorem 2.14

(=>) £(r) € C;(R)) => L™£(r) € C](R)) so that L"£(1)|)’ = 0. Thus

z (n + %Jrf; = 0 from (2.8), whence X an; = 0 for all K.

(<=) It is easy to see that
*
f(1) ¢ C+(Rl)

(2.13) f(1) ¢ CT(RI) <=>
d.r 0+
(g0 (). =0, T =0,1,2,...

Consequently we need only verify that every derivative of f(t) .= continuous

at 1t = 0. The theorem therefore follows from Lemma 2.16 and (2.13).0

Remark 2.17: 1t is natural to ask how, in the setting of Theorem 2.13, the

continuity of f(t) and all its derivatives at t = 0 modifies the behavior of
¢B(s) in its convergence strip. The answer is given by Theorem (a) of §2.2
in Dym and McKean [1] which says that the Fourier transform of a function

] ) *
in C+(R1) is also in C+(R1). For us this means that ¢ (u) = ¢B(iu) is in
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o . *
C+(R1), i.e., that up(gaiq¢ (u) > 0 as |u| » =. It is clear from

-]

/ e 3T f(1)dr = ¢g(s+a) that every function ¢y(a + ju) for a in the
-0

interval of absolute convergence of the bilateral Laplace transform will

also be rapidly decreasing.

Remark 2.18: A discussion of rate of convergence of the Laguerre transform

coefficients for functions having only finite number of drivatives may be

developed along the line of Section 6 of [A]. This development will be

omitted.
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3. The extent of the Laguerre transform coefficients

The accuracy of the algorithm based on the Laguerre transform depends
on one's ability to reprasent the functions present compactly, i.e., with
vectors (f;)f; of reasonabie length. Correspondingly, some measure of
extent of the ;equence (f;)_; may be useful and feeling for the relation-
ships between the extent of t;e approximating sequence and that of the
function helpful. In general, there are inverse relationships between
these two extents as in the Heisenberg inequality of Fourier transforms
{cf. Dym and McKean [1]}, §2.8). In what follows, we discuss only rapidly
decreasing fun;tions f(t) in either C:(R) or CT(R). This condition may
be weakened, as mentioned in Remark 2.18,

We first exhibit such inequality for the dagger transform (f:)fm. To
do so, we require the following notation. Let NI be the extent of the
dagger transform (f:l)u_oen defined by

o 2 @ 2
=1 Insa2ld /gm £

-00

-+
(3.1) N

Similarly, let Tl be the extent of the original function f(t), i.e.,

o

[ 1t P od

00

(3.2) T

L}

-0

Finally, let

0

(3.3) B, =/ |tf (0] f(n)de

-0 -0

Then one has the following theorem.
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Theorem 3.1

Let f(1) e C:(R). Then

4+ 1 = -
(1) Ny =77y +B
1, 1 1
(2) Ny 230+ =) 235
T
1
Proof

From (2.6), L[£(x)] =] (n+ Dh (1) so that

© © .2
[ LIE@If(dr = T o+ et 50
0+ n=0 2

and
0- -1 P
[ LIf(0)1f(t)dt = § (n+ N, <0
-0 NnN=-o

We note from integration by parts that

[ LIEMIEMET = [ {7 of(0) - o' (0))E(ndr
. O_"

= %—f sz(T)dT + f Tf'(T)sz
0+ 0+

Similarly,

0- 0- 1 d '
- [ LIf@If(ddr = (F(-0E() + 3o tf (1)} (x)dr

- 00

1 9

4

0- []
=2 1@+ [ |1l (0%

- 00
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Hence,
ot 2 = 2 -l 2
I In+ %4f: = 20 m+Dft o] s %Jf;
-0 n: -
= %—f ITIfZ(T)dT + f |T|f'(1)2dt .

0 2
Dividing both sides by f fz(r)dr = Z f: , one has

-

<t 1t g
(3.4) Nl = Z-Tl + Bl s

proving part (1). To prove part (2), we first note the identity

(3.5) [ tf (0f(r)dr = %-{m v & f(de = - I £2 (1) dr

-0 o0

By Schwarz's inequality,

[ ]

[t @£ |a

A

L
2

1 S——

£2 (1) dt

In

[ 1@ /[ e mPar
so that

(3.6)

ES
IN
-3
o

171
Substituting (3.6) into (3.4), one has the desired result.]
Remark 3.2

We see from Theorem 3.1 that when Tl becomes infinite or when Tl goes

to zero, ﬁ; becomes infinite. The methodology therefore cannot tolerate

| | o - | i‘i
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functions f(1) too closely concentrated at zero or functions f(t) too
- great in extent.

The inequality of Theorem 3.1 has a counterpart for the sharp trans-

»: form (f:)fw of equal interest. As we will see, the sharp transform is

{: less sensitive to concentration of f(1) at t = 0, a useful and important
22, advantage. The following identity underlies the inequality for the sharp
'?‘ transform.

§ Theorem 3.3

Let £(1) € C:(R). Then

2 ©
#
I Inlel =/ |rl€(oar

Proof

Let v(1) = ho(T)*f(T) so that f(1) = v'(r) + %-v(r). Then

(3.7) f !T]fz(r)dT = [ lTl{v'(T) + %—v(r)}zdr

- 00 -

(-]

=f |1|v'(1)2d1 + %-f |r[v(r)2dt + ITIv'(T)V(T)dT

Since v(1) is continuous at t = 0, as we will see in Theorem 4.2 of

1.

Section 4, one has v, = fz for all n. Hence from Theorem 3.1, the sum of the

5 1, +2 S 1 4
first two terms in (3.7) is equal to ) |n + Sl = Y In+ /£ . On the

-0

other hand, the third term becomes, by an analogy to (3.5),

o ' @ ' 0 '
[ Ity ()v(m)dr = [ v (Dv()dt - [ v (1)v(1)dt
0

2

0
= - [ Vmar + 5 [ V(o

oOv— 8




]
\

Rof =
o~ 3
:’<+
+
(ST
o~
<

2 -1 +é
) v, » one has from (3.7) that

'
DO s

© 2 o 2 bl
. 1, # # 1 +
since | |n+z|f =] |n|lf -+ 5-% v

-0 -0

[ llff =1 Inlel . 0

- 00

Theorem 3.3 now leads to the counterpart of Theorem 3.1 for che sharp
transform (fﬁ)f@. As in (3.1) for the dagger transform, we define for the

sharp transform
(3.8) N

Theorem 3.4

Let £(1) ¢ C:(R). Then

1) K = of, wh -3 f*Z/E s
1) ] T pYy where p = o S
4] -
(2) N1 > Z-Tl
Proof

Part (1) is immediate from Theorem 3.3. For part (2), one has from
Schwarz's inequality
o 2 © o 2
#° + + 42 +
¥ £ = Y O(F, - £ )7 s 4 ] f

n
- - -0

so that p 2 %u The result then follows.[
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Remark 3.5

We see from Theorem 3.4 that when Tl becomes infinite, so does ﬁ:. But
in contrast to dagger transform, concentration of a function f(1) near zero
does not necessarily imply that Ni becomes infinite. This point will be

seen vividly through the following example. Let
-6t o1
f(tr) = {6e " U(T)} + {6e U(-1)}, ©>0

We note that the larger 6 is, the more f(1) is concentrated near zero or,
equivalently, the smaller & is, the greater the extent of f(t) is. One finds

readily that

© +2

(3.9) ;w £ =0
© #2 o0 2 1

(3.10) ) |n|fn = [ |t]|£°(1)dT = 5, for all 8 > 0 ;
-0 -0

© #2 2
(3.11) I £ = 48(6+1)/(20+1)

From (3.9), (3.10) and (3.11), one has

- 1
(3.12) ) =5
2
f _ 1 (26+1)
(3.13) Ny = 7 78(5+D)
5 14  (2041)2
(3.14) ® o)

We see easily that p is a monotone increasing function of 6. At 6 = 0,
p = 1/4 and therefore p =z 1/4, as expected. We note that the inequality (2)

of Theorem 3.4 is thus sharp. As 6 + 0, both T, and N: go to +=. But as

0 + +m, N: + 1/2 while NI + 4o since T; + 0.

Y




The relation v; = fﬁ with v(t) = hO(T)*f(T) played a key role in the
w 2
proof of Theorem 3.3. This also enables us to evaluate ) fﬁ in a closed

t
form. The relation g: = nf: with g(t) = L{f(1)] - £ (vt} given in Theorem

', © 2
k. 4.6 of Section 4 leads to a closed form of } nzf# . ;_
Theorem 3.6
23
i3 Let £(1) ¢ C,(R). Then
o© #2 o —!il‘rl .
03] gm £ = {m e re(1)dr where r (1) = £(1)*£(-1) |
Furthermore, if £(1) is in cj(R),
5 S o242 17 2.2 T2 2
' (2) J n £ = Z-f T°f°(1)dt + [ 1TF (1)%dr

Proof
Let v(1) = hO(T)*f(T) so that v: = f: as before. Then
) 2 ) 2

A B {m thy (1) *£ (1) }odr

-0 -0

Let ¢(u) = f elqu(r)dr and ﬁ(u) = f eIUThO(r)dr. By the Parseval identity,
one has
Tt 1T 2 2
gw £ = 5;.{m th(u)|“]¢(u) | “du !

[ 1hg(x)*hy(-o) HE(R)*£(-1) bt

= | e'%lTlrf(r)dt ,




-28-

L}
proving (1). To prove part (2), we let g(t) = L[f(1) - £ (1)]. Then, as
given in Theorem 4.6, one has g:.= nfi for f(1) ¢ C:(R]. Therefore, again
by the Parseval identity,

o 2 © . '
) nzf: [ LIED] - £ (1))

=5 Grudig e

= %‘f Tzfz(T)dT + [ {f(1) + rf'(r)}zdr
s3] PEma s [ P (k. 0

Theorem 3.6 gives relations fur the second moments of the extent of the

sharp transform and the original function. Let

w 2 2

# 2.4 8
(3.15) N, = ?m n“f /gm £
(3.16) T, = [ f(dr/f £9(1)dt

-00 -0

- 00 ' (- -]
3.7 By = [ (i) e
One can easily show that -

(3.18a) ﬁg > N

—

’ 2
(3.18b) 12 2 Tl




Theoren 3.7

Let f(1) € cj(n).

3 # 1 = =
E: (1) Ry =p(gT,+ 35,
" %o
2 @ 5= G T B
& 1
3 1a _of 1
¥ () Ty =Ny = (GFT,+ B/
F 4

| 1,4 e
. (4) N2 (Fr+ PN where r = T,/T,
i

Proof

Part (1) is immediate from Theorem 3.6.

part (2) follows. From (3.18a),

]

Z
—

= (%'Tz + BY/T

in
b
—_— N B

we first show the inequality

ﬁsfé

(3.19) 2B,

Let sign (1) = 1 for v 2 0 and sign (1) = -1 for v < 0.

L] ' © 0
[ sign(n)f (1)f(r)t%dr =

-® 0 -t

Integrating by parts, one has

[ 1% (f()dr =
0

N =
O 8
-

N
Q-lﬂ-
-

L

N

~
-

St

a.
-~
n

0

A P eT Iy TN V) ST YT BT At

From Theorem 3.4, N

- f sz(T)dT

#
1

Then

is proven in Theorem 3.4, and therefore part (3) is shown.

pTl and

To prove

[ 2% (f(dr - [ 1 (DE(0)dr
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0

0 2. 2 0 2
Similarly, - f v f (t)f(1)dr = f £ (1)dt = - f ]T]f {t)dt, so that

-t -00 -00

[ Jt)€3(odr = [ sign()f (1) £()1dt

-t -0

Hence, by Schwarz's inequality,

[ 1t £ (e s///} 28 M [/ e

-0

Dividing both sides by f fz(T)dT and then squaring, one has (3.19). Part (4)

follows from Part (2) and (3.19).0
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4. Operational prcperties of the bilateral Laguerre transform

In principle, operational rules for the bilateral Laguerre transform
can be obtained from the rules for one-sided support (cf. [A], Appendix C).
One works on f+(r) f(1)U(T) and £ (1) = £(1)U(-7) separately and then
patches the results together carefully In part1cu1ar f f(y)dy may be
evaluated in that way only, when f f(1)dt # 0 and f f(y)dy ¢ L L=, =).
The operational rules for the bil;teral Laguerre tr;nsform are of separate
interest, however, as we will see. They contain those for one-sided support
as a special case. We also derive some new results which are of theoretical
and practical value. As in Section 3, we discuss only rapidly decreasing
functions f(t1) in C:(R). All the results are summarized concisely in a table
in Appendix A.

We first extend (1.15) and (1.16).
P4.1

*
Let f(1) ¢ C*. Then

- T S

g(t) = f(-1) <=> B~ f_n H gn R CTS)) _‘

Proof
i Y = - T tsthn
Since YB(J) = ¢B(-s) = gm fn(s-%) s one has
U B U N 1, % otoen _ o -1
rg(u) = B(z l-u) = (l - -l,-l) gw fnu = Tf(u )
- LV QU [T | '

Similarly, Tg(u) s ey Tg(u) = -3 Tf(“ Y. O

When a function is convolved with one of the building block functions
hm(r), the dagger coefficients of the resulting function become the sharp
coefficients of the original function shifted by -m. We see this next. For

a sequence (an)fw, the first difference will be denoted by Aa =a - a

n-1’
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and the second difference by A a = Aan - Aan_1 =a - 2an:1 ta .
. Theorem 4.2 '

*
Let f(1) ¢ C¢(R). For all integers m, one has
N . ) h + o H
& g(t) = h ()*f(1) <=> g =2af 5 g =£ _
r
ii' Proof
r # #
vy It is easy to see that Th (u) = (l—u)um for all integers m. Then Tg(u) =
m

(l-u)umT:(u) and the result follows.[

§ Of particular interest is the case m = 0, which provides a closed form
~ 2

(-]
, # . . L. .
r of z fn » as given in Theorem 3.6. The next corollary is immediate from

-0

Theorem 4.2.

Corollary 4.3

- g ety

Let £(1) € C:(R). The- ;

(1) g(1) = £(1) - hy()*E(0) <=> g' = £ ;g = £ ,
(2) g(0) = £(x) + h_(U*F(x) <=> gb = £ 5 gf =g

The bilateral Laguerre transform of a derivative of a function is a
straightforward extension of the one-sided case with slight modification.
Theorem 4.4

Let £(1) « C:(R). Then

R LS i St Y M T T § ST ST S TP T

gt =361 4 €1 ) -6 (£(0%) - £(0-)) ]
80 = I £ <= L
m=n
g =
- gu £, n<o

a
E
:
%
g
?
t
!
|
{
;,»
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Proof

This is immediate from the corresponding rule for one-sided support
([A], Appendix C).O
#
We have seen in Theorem 4.2 that g: = fn with g(t) = hO(T)*f(T). The
next theorem gives the reversed relation of this, i.e., functions g(t) and
# +
f(1) related by g, = fn'

Theorem 4.5

Let £(1) « c:(m. Then

gy = £ - 6 (E(O4) - £(0-))
g(t) = %? f(t) + % f(1) <=>
ef = - T [E -6 i) - £021] .
n+l >
Proof
From Theorem 4.4,
gn = UL+ £ 1) - 6 ((£(04) - £(0)) + 3 £
= f - an,O{f(b+) - £(0-)} . D
We recall the operator L - [% T - %? T %;J given in (2.5b). For functions
f(x) ¢ C:(R), one has immediately from (2.6) that §
, i
@D g@ = L] e gl = st UDTEY 5 gl = 0+ UDTE]
for r = 0,1,2,... . This leads to the following theorem which is of theoretical

= 2 . .
. # .
value, providing a closed form of X n2fn given in Theorem 3.6

Theorem 4.6

*
Let f{(1) « C¢(R). Then

R R



g = nfl + 6 (£(0%) - £(0-))
d
g(1) = L[£(0)] - 37 £(1) <=>
. #
g: = - ngl[mfm + Gm,o{f(0+) - £(0-)}].

Proof

From (4.1) with r = 1 and Theorem 4.4,

(m+ 1/20f - m- 2t cLe v £ ) s s (£04) - £09))
n n-1 " 2%n n-1 n,0 L

0Q
[}

+

naf’ + 8, o0 - £(0-)) = nfi 8, olF(0%) - £(0-)) . D

The bilateral Laguerre transform of 1f(1) is exactly the same as for the
one-sided case. The proof is straightforward and omitted.
Theorem 4.7

Let £(1) ¢ C:(R). Then

1.

Y (TSI

g(1) = t£(1) <=> g = - A2 [(me)E) ] g

From Appendix A of [A]; one finds that

° n 1 1+u
(4.2) Z hn(r)u = T:G-exp[- %-Ttﬁ]

-0

with the understanding chat Eq. (4.2) is valid for |u] <1 when 1 2 0 and
for |u] > 1 when 1 < 0. This leads to the operational rule for shifting
given in Theorem 4.9. A preliminary remark is needed.

Remark 4.8

Even though (hn(T))Tw ¢ £,, one sees easily that

(4.33) (&b ()7, € &,
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2
I (ah () =1

-0

@ (4.3b)
(4.3¢) IAhn(T)I <1 for all integers n, T = 0

These statements follow from

L
(4.4)  [hy(x - DI = sh (1) ,
-t as the reader will verify, and
(4.5 [ (- myde - [ n2(rdr = 1
) ‘e O ‘e 0

Theorem 4.9

b, Let £(1) « C:(R). Then

(M

# <«
8(1) = £(x - T) <=> g =] £ ah

Proof

Clearly ygh(s) = e'ST¢B(5) so that

T l+u, #
7 —l—-u}Tf(U)

n

# 1
Tg(u) (1-w) Tu exp{-

"

(1-u) gw hn(T)unT:(u)

I (b Mu"-Ti)

- 00

and the result follows. [

.
b4

€n
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5. Applications

In applied probability theory and statistics, the prevalence of a
k
random variable Sk ) Ej’ where Ej are i.i.d. random variables, is
j=1
familiar. One also often encounters the ergodic green density g(1) =

6(t) + ) a(k)(r) in expressions for the ergodic distributions of homo-
geneousk;;ocesses modified by boundaries [4], [5]. Here a(k)(r) denotes
the k-fold convolution of a two-sided p.d.f. a(x) with itself. The
bilateral Laguerre transform method provides an algorithmic basis for
calculating multiple convolutions of functions with two-sided support and
thus enables one to evaluate the distribution of Sk or the ergodic green
density g(t) numerically. This in turn is the key to numerical evalﬁation
of a variety of results in applied probability that have been available
only formally.

In the expression SK = .il gj, when Ej are centered, the central
limit theorem says that SK wi;h suitable normalization converges to a
standard normal random variable in distribution. In some applications,
the question of importance is '"How fast is the convergence to normality?".
This can be also answered by the method directly via computation of the
required multiple convolutions.

In this section we discuss the algorithmic procedure for the calcula-
tion of multiple two-sided convolutions and present a numerical example.
This procedure is then used to quantify the Lindley process. For the pro-

cess in queueing contexts, the ergodic waiting time distributions for M/G/1

and G/G/1 systems are evaluated thereby. All computations were done on a

DEC 10 computer in a time-sharing mode using APL as the programming language.

The DEC 10 APL implsmentation is a double precision system, which uses a




precision of 18 decimal digits. Relevant formulas were usually coded in

a straightforward way, with no attempt made to optimize the subroutines
for speed or accuracy. In spite of this, the results displayed here were
typically obtained with CPU times in seconds to at most a few minutes and
with no evidence of numerical problems.

Example 1: Multiple two-sided convolutions

Two-sided convolutions are usually handied by Fourier transform
methods. There does not appear to be any significant literature devoted
to numerical evaluation of two-sided convolutions. When the function being
convolved is rapidly decreasing, i.e., in the class C:(R) defined in Section
3, our method yields a fast and accurate algorithm. To generate multiple

convolution, we make use of (1.13) which states that T;*g(u) = T;(u)Tz(u).

#, (m)

Hence (f:) = (an) where f(t) = a(m)(t), and one has the following

algorithm:

I. Representing a(t) as a(t) = a+(t) + a_(t) as in Section 1, generate
or store in the computer the coefficients (a:+)g and (a:_)g, usually
obtained analytically ;s in {A].

II. Convert (a;+) and (a;_) to (ai*) and (ai_), respectively. This
corresponds to a simple differencing operation on each set of coefficients,
since T (u) = (1-w)T,(u).

#

. # N . # # # #
III. Obtain (a“)_N by setting a, =a., for n > 0, ay = ag, *ag, and

et
n = %(-n)-

IV. Perform m-fold discrete convolution on (aﬁ)TN. Retain only 2N+1

for n < 0, as in (1.19).

. . . #
terms, centered at n = 0, in each convolution. The result is (fn)TN.

| .’
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V. Convert (fi) to (£]) by (1.18). This is the inverse of the differ-
encing operation, i.e., summation.

N
VI. One has | = £1 for n = 0. Hence, sum the series ) ££ (t) to
n+ n n=0 nn
1-

* get £ (t). Similarly, one has f;_ = 'f-n-l for n < 0, by virtue of (1.4d).

1.

N
Hence, sum the series - )} f_

n=0
This procedure is only slightly more complicated than that for the one-

£n(-t) to get f (t).

sided convolutions given in [A], but the CPU requirements for the new pro-

cedure is increased approximately by a factor of 2. When a function a(t) is

symmetric about zero so that a+(t) = a_(-t), however, one can evaluate

multiple convolutions by working only on one side, as the reader will verify.

dauis

Then the CPU requirements will be almost the same as for the one-sided con-

volutions.

We illustrate the procedure with a(t) = {2e'2tU(t)}*{etU(-t)}. (a# )

n+

#
and (an_) are available analytically from [A], Appendix B. Fig. 5.1 displays

a(m)(t) for 1 sm< 7 and -10 < t £ 10. Two hundred terms each for a+(t) and
a_(t) provided an accuracy of at least 12 digits after the decimal point
uniformly over the interval -10 < t < 10.

The procedure is also applied in [11] to numerical evaluation of multiple
convolutions of the Logistic variate with the p.d.f. a(t) = e't/(l + e't)z,
-» < t < », The Laguerre transform approach appeared to be more systematic
and efficient than an existing method [2] which relied on the special analytic
feature of the Logistic variate. The Laguerre method also evaluated multiple

convolutions of the folded Logistic variate as a by-product, which the exist-

ing method could not provide.
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atk) (qy

B.6S

©.6-
.55 a(1) = {2e72Tu(r) I {eTU(-1)}

8.51

Fig. 5.1. Multiple two-sided convolutions a(k) (1)

e

P
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Example 2: The Lindley process

Consider the Lindley process [6], i.e., a random walk on the nonnegative

half line defined by
+
(5.1) wk+1 = [wk + €k+1] , k=0,1,2,...

where [X]+ = max{0,X}. Wy is a random variable with known distribution and
£, are i.i.d. and independent of Wy. We assume that the common distribution
of Ek is absolutely continuous with density function a(x) ¢ Lz(-w, =), We
see that the distribution of Wk+1 is the convolution of the distributions of
Wk and a1’ modified by the | ]+ operation. The effect of this operation
is to "sweep up" the probability to the left of the origin into a mass point

at the origin. Let

(5.2a) E_=P[W, = 0]

(5.2b) F(x) = P[W, < x] =
X
E, + g f,Ndy  x20

If we define WE+1 = Wk + gk+l’ then the density of WE+1 is given by

(5.3 £, = Bl + (%)

Hence if Ek and the Laguerre sharp coefficients (az)fm and (fﬁ(k)); are

known, one has

' £ T
(5.4) f: (k+1) = Ekan + mzo an_mf;(k) , =®<n<
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. . #
Obviously, f,,,(x) = f:+1(x)U(x). Hence, since ) £ =0 (cf. (1.17),

-0

0
(5.5) fg(k+1) - nZ- fﬂ#(k»l) ;£ (keD) = fﬂ”(k+1) , n21

x©

i T T n_t T
Finally, E, ., =1 - é £ dy =1 -2 nZO (-1)7f (k+1) since g L (x)dx =
(-1)™2 (cf. [A], Appendix A). This leads to

(5.6) E,.,=1+2 ] f#n
ne

Hence, if EO’ fo(x) and a(x) are known, we have an iterative schema for calcu-
lating Ek and fk(x) via (5.4), (5.5) and (5.6).

We illustrate the procedure in a queueing context. A stream of customers
arrive at a single-server queue at a sequence of arrival epochs Tor Tp» etc.,
the k-th customer arriving at epoch Ty The interarrival times Tk = Tpe1 - %k
are i.i.d. with common distribution T(x). The service times Sk required by
the k-th customer form a separate sequence of i.i.d. random variables with

common distribution S(x), where Sk and T, are independent. If Wk is the

time the k-th customer must wait in queue for service, then one has [6]

+
(5.7 Wey = [N+ Egd 5 &y = S - Ty s

This process is called the Lindley waiting-time process. Clearly, the common

density of £y is given by
(5.8) a(x) = {s(x)U(x)}*{t(-x)u(-x)}

where s(x) and t(x) are the density functions for the service time and
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interarrival time variables, respectively. When the system starts with
an empty queue, one has EO = 1 and fo(x) = 0.

The iterative schema (5.4), (5.5) and (5.6) was first tested in the
M/M/1 setting for which the limiting distribution of Wk as k goes to
infinity is analytically available [7]. For the traffic intensity p = 0.5,
an accuracy of 7 digits after the decimal point was attained at k = 50,
while for ¢ = 0.67, k = 128 was needed to attain the same accuracy level.

The procedure was then applied to the M/G/1 queueing system with s(x) =
xe x2/2, the Rayleigh distribution and t(x) = %-e‘%x. The survival functions
of Wk for various values of k are displayed in Fig. 5.2. This shift from
fk(x) to Fk(x) = ? fk(y)dy is immediate using an operational property of
the Laguerre tranzform [A], Appendix C. The results were compared with the
numerical results obtained from the Khinchin-Pollaczek formula [7], again
via Laguerre transform based calculation. The difference between the two

8 12 0t x = 200.

results was bounded by 107" at k = 100 and by 10~
Fig. 5.3 displays similar results for the G/G/1 queueing system with

—’ '
s(x) = v2/n e X , the folded normal distribution (Chi distribution with 1

-‘/xz
d.f.) and t(x) = xe *?

, the Rayleigh distribution. For this G/G/1 setting,
no analytical results in the real domain are available.

Even though the traffic intensity for the M/G/1 example (p = 0.63) is
less than that for the G/G/1 example (p = 0.64), the convergence in M/G/1
is much slower. We note that ?k(0+) + p as k > » in the M/G/1 example,
while this does not hold in the G/G/1 example.

The Laguerre dagger coefficients of the folded normal density were

generated by an efficient recurrence formula developed in [10]. Those for

the Rayleigh density were then derived using an operational property of
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the Laguerre transform [A], Appendix C. In the computations 250 terms were

used in each of the Laguerre series (1.1) for s(x) and t(x).

Fig. 5.2. The survival function of the waiting time of the k-th customer

es1 [ £ (y)dy
ARl
8. 451

G/G/1

2
_ 1
s(x) = //% e”

t(x) =

i
>
o

8.2
9.16-
.14

8.08

T ™ )

Fig. 5.3. The survival function of the waiting time of the k-th customer

e em e —— . - —— g — v WW e ey o

SRS S SR g s o E e s B oo s SO




‘'t Uol}ddS ur uaald
daB suor3ledIyIpow paxtnbox ayl -, YiTm payIew suorjdouny asoyy Ioj 3dadxs pedueyoun

ale aAoqe sa[na reuoriexado ay3z .ﬁmu+u 3 (1)3 uayy ‘pounsse sY ﬁmv+u 3 (1)3 “(1)3 :930N
* <«

i oazem Lney ve.w iy e
_ TN v direl BT L g SUNTE-E S RUSR -3 3 Leod IR C U (1-224
™ - ™ w—..«ﬂ dn-1) -
Lyosale - { cw:z& ~ * (W (-1 (MG ((n-P- (263 - (2132
- o™ YESE ORI A BT AR A (Yo (%-5) | (Y - [a8) ._«
tavan » -1 -\
ﬂw |..W - Hw ?:*.r — .suu.r Pﬂl ()% (K +5) (ny ..m. + Cuwww
- wain w, T - [V
PR (T | AT | AR T | ores (4%
-
_ W w0 | ean | ean | o3| eeese
3
e "y ("1 n m31 (9% (S35) | arars-of
YanN(T445)
.\.Hw lu.wq »S:.U- N {(n-H Aiutwnf o (n-y) i ()% ﬁl w \ (D » q&l“.
(LT L w- G o (™) 3 9 R
W3 % RN L (s% (2}
-t-owh tome -t n
‘W .IH* N .M _ .“P f“w Iw A’aﬁﬂx—l.’«h&kﬁ’leu »4&'nP ﬁﬁd.w.P ﬂVJﬂ” nﬂuo.r AP«W » AN‘
- _ . - - A 0
ArI™Y O lm mw v ?.&...r Hr.!_ " «ww sf_h.u ¥ =, w...N e} e.-vlm Au.vw
5 R oL SN &% e
sriIojsued] oxdonie] ledoiejrr jo satizodoxy pruorzeasadp
V XIAaN3ddV
- ) N - PP e rn‘r’.‘..ﬁn PONGIIRTE Y N dlinstin il _ il




-45-

APPENDIX B

Some useful identities for the Laguerre coefficients (f+) and (fil

-

TR Y e,

- F x,,v,“.-qq-:wv:

—

e

——

w2 i e

(1)

As before, f£(1) ¢ C:(R) is assumed.

£(x) = ] £ (1)

) £ =] £(h (1)dr
© 'fz oo 2
(3 1 £ =[] £(0dr
#o_ oot ot t_v T
) £ =f -f ,; f=1f ! f
-0 n+1
(5) Tew =] fu" = 031D 5 ey =

(6)

(7)

(8) gw f: =0

() 2 ?w -1 - ?w -1t = ?m £(1)dr
(10) iw (-1nfh = 1 ?w £ (1)dr
(11) ?m (-1l - %3'?, 2 (1) dr
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2 o

* (12 J fﬁ = [ e'%]rlrf(T)dt ;ore(t) = £(x)*£(-1)
@ #2 co 2

=3 ) Inlg = [ || (0)dr
Y247 1% 2.2 T 2.0 2

* (4 ] nf - 7/ TEdr + [ %F (%

* For (12), (13) and (14), £(x) ¢ cf(n) is assumed.
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