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INTRODUCTION

by

Dr. Sherman S. Weidenbaum, Principal Investigator

U.S. Coast Guard Academy Research Project

69X0243 RDCGA 6 Entitled

"Investigation of Material Alternatives for Deep Water Mooring Cable"

The material contained in the Review which follows was prepared

by Dr. Walter Paul working in close cooperation with the United States

Coast Guard Academy Research and Development Group, and the National

Data Buoy Development personnel in Washington, D. C. This work came

about when Dr. Paul was contacted in connection with the above mentioned

research project.

This research had many purposes. In its own right it was to

provide new knowledge concerning the behaviour of rope which Is needed

as the exploration of the ocean depths gains momentum. In addition,

it was to be part of the educational program of the United States Coast

Guard Academy. Through association with this project, Coast Guard

Academy cadets who wished to do original research projects as "Academy

Scholars" or to become aquainted with research techniques .through a new

course which was being offered had an opportunity to do so.

As the work progressed it became evident from the enthusiastic

responses of both the industrial manufacturers of rope, the personnel

at oceanographic research institutes, and others at universities and

government institutions (including the Navy and NASA) that the areas

of technology being studied were of considerable interest and that

there was a strong need for this work.

Also, it became apparent that certain steps were necessary
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to transform the art of rope selection to the science of rope technology.

One of these was to collect in an orderly fashion scientific and

engineering data pertaining to ropes. This could be done concurrently

with the research projects pertaining to rope and both efforts would

benefit by interacting with one another. Thus, during the period

while Dr. Paul was preparing this Review he was in residence at the

Coast Guard Academy several days a week so that the cadet research

work and the Review were coordinated through the framework of this

Research Project. Suimmaries of cadet research work are given at the end

of this introduction.

It is hoped that this Review of Synthetic Fiber Ropes and the

Research Program now in progress at the Coast Guard Academy will

contribute towards building the science and technology of synthetic deep

water mooring lines.

Throughout this work the sustained support of the Superintendent

of the U. S. Coast Guard Academy and his staff has been of great help.

In particular, the Dean, the Commvandant of Cadets, the Head of the

Department of Physical Science and the Director of Research have all

been instrumental in making facilities and opportunities available

whereby cadets could carry out work and have the oppo~rtunity to meet

people outside the Academy in industry, at Universities, at government

agencies, and in various research organizations. Equally Important

has been the superb cooperation from the Office of Research and

Development of the Coast Guard in Washington, 0. C. starting with the

warm support of the Chief, Research and Development and extending

throughout the Project Manager and staff of the Data Buoy Project in

part icular. Also special thanks are due to the Commanding officer



and staff of the Coast Guard Base, New York at Governor's Island

where some of the rope testing machinery mentioned in one of the

research reports was built. Finally, there has been a generous

outpouring of help and advice from experienced members of the rope

industry, researchers at various oceanographic and other research

institutes, universities and people in various gove-nment agencies.

All of these people took the cadets under their wing and made of this

research project a unique educational experience. To all of them we

would iike to express our appreciation.
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SUMMARY OF CADET RESEARCH WORK AT U. S. COAST GUARD ACADEMY

Academy Scholars, May, 1970

Theoretical Determination of Fatigue Life
For a Wire Strand in Buoy Moorings

M. D. ALLEN

A simple load model for a wire strand component of a single point
buoy mooring is developed. This model is combined with the various wire
rope stress theories to define the internal stress state of the strand.
Particular attention is paid to the critical areas of wire contact within
the strand. Combined stresses within these areas are related to multiaxial
fatigue criteria. Two criteria are used to show that the unlaxial stresses
equivalent to the combined stresses in the critical areas are under the
fatigue limit of the wire. Limitations and ideas for expansion of this
work are discussed.

Creep Tests on Synthetic Mooring Lines

M. F. FLESSNER
(Referred to in Sections 2 and 4)

Synthetic ropes are an important part of mooring lines for data
buoys in the deep ocean. The tensions produced by the action of the buoy
and by the general nature of the moor cause a time-dependent elongation of
the rope in addition to the instantaneous elongation which occurs when a
new rope is loaded.

Equipment was designed and constructed to measure these elongations
quantitatively. The equipment, data collected, and its interpretation
are discussed. Included in this are calculated least squares equations
which were programed on an IBM 1620 computer, some significant corrleations
of the data and what these mean both mathematically and in physical terms.

Recommendations are given concerning equipment modifications, data
collection and analysis, dynamic tests, wet tests, and mathematical
modeling of creep tests.

Undergraduate Papers in Course entitled
Special Topics in Scientific Research, May, 1970

An Investigation of Means of Protecting Deep Sea
Mooring Lines from Fishbite

J. T. ARMSTRONG
(Referred to in Section 2)

The different types of fishbite damage to mooring lines and species
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of fish responsible for this damage are summarized. Theories as to
why flshbite are presented. The effect of geographical location is
discussed.

Methods of preventing fishbite damage are summarized, with special
attention to the criteria for selecting an effective plastic jacket.

An analytical method is given which can help in selecting a plastic

coating best suited for fishbite protection while at the same time
allowing a specified flexibility for the coated rope.

Application of Photography to Creep Measurements

K. S. CALLISON

A general overview of the photographic field is given. Specific
applications to the creep testing program are presented. A photographic
measuring technique which was developed is described and results are
given. Recommendations are made on how this method can be further
developed as a tool for creep measurements.

Wet Creep Testing of Synthetic Ropes

T. M. GEMMELL

Experimental measurements of creep in Samson Double Braid and
Columbian Plimoor ropes in a wet environment are described. - Comparison
is made with the dry creep testing of similar ropes. The inadequacies
of the present wet test system and proposals for an improved wet test
system are discussed.

Application of Computer Techniques to the Analysis

of Experimental Creep Data

L. H. HAIL

This work involved analysis of experimental creep data by numerical
methods. Various equations that might fit the data were programmed for
a computer solution. Computer generated graphs were obtained for the
results. The bulk of the work was performed on the IBM 1620 computer.
Some work was also done on an analog computer. The results of the
program are mathematical relationships between variables based on

experimental data (i.e., elongation vs time, etc.).

'.1



Effect of Braid Angle on Strength and Creep Properties
of Braided Rope

W. G. JOHNSON

This is a theoretical approach to analyze what happens to the
strength properties, in particular the creep behaviour, of a rope if
the angle of the strand axis against rope axis is varied.

These properties depend.upon the geometry of the rope, the internal
deformation of the rope elements such as fibers, yarns, multi-plies and
strands and the load elongation properties of the fiber material. Using
these concepts the theoretical results show the influence of the rope
construction (here varied by changing the strand angle) and the
material properties on the strength, and in particular, the creep
behaviour of the rope.

A Study of Synthetic Rope Fibers

J. H. JONES

A study was made of synthetic fibers of Nylon, Dacron, polyester,

polypropylene, and polyethelene including a review of the chemical and
physical characteristic of the fibers. Experimental measurements were
made of breaking strength, breaking length, and creep for individual
fibers. Some work was also done to illustrate how individual fibers
behave under stress in a controlled environments. The study is part
of an overall project concerned with physical properties of synthetic
fibers which are used to make rope, with the ultimate aim of finding a
relationship between how fibers behave individually and when combined
to form rope (i.e., how does the strength of a rope compare with the
sum of the strengths of the individual fibers that comprise it?).

A Geometrical Model of Columbian Plaited Rope

J. G. MILO

The key problem in investigating theoretical stress-strain
behaviour of a plaited rope, or any other rope, is to establish
mathematical relationships between the deformation of the stretched
rope and its components.

This is done by setting up the ideal geometry of the unstretched
plaited rope in order to get the position of the various rope components
such as strands, multi-plies and yarns. Then the change in the rope
geometry under rope stretch is defined. The results of the combination
of both steps are mathematical laws relating the elongations between
strands, multi-plies, yarns and the rope.
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A Study of Mooring Line Static Load Models

C. E. SIBRE

A general discussion of static load models and computer simu-
lations for deep sea mooring lines is given. One model is analyzed
in detail. The work presented here is a prelude to a planned In-
formation matrix for the static case which will be developed next
year, and which will take into account all known static models.
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SUMMARY

Though fiber ropes belong to the oldest man made products,

little is known about their mechanical behaviour and about factors

influencing this. Rope manufacturing and the use of rope in various

fields is heavily based on accumulated experience, which was

inherited and improved during many centuries of rope use. However,

its general use did not involve rigorous scientific and engineering

analysis until fairly recently.

With the introduction of synthetic fibers and new rope

constructions within the last 30 years and numerous new applications

of ropes in engineered systems, scientific methods are required more

and more to describe and predict the mechanical behaviour of ropes

in general and synthetic fiber ropes, in particular. This Handbook

will give up to date information on the work which has been done

to establish what may be called rope physics or rope mechanics.

The goal is to turn fiber ropes into engineering tools with

predictable mechanical response to appl ied forces and strains and

to environmental conditions.

* The Handbook starts with an introduction into the basic

* characteristics of ropes, explaining them as mechanical models

and as textile structures. The mechanical properties of rope such

as strength, weight, breaking length, are explained next, giving

special attention to the fact that fiber ropes stretch considerably

under applied loads and thus absorb mechanical energy. Reaction

of ropes to loading and stretching in use is covered next. An

explanation is given of the often confusing response of the rope

to static and cycling loads, shock loads and constant or cycling
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strains, along with a discussion of the visco-elastic nature of

the synthetic fibers composing the rope. The change of rope

properties due to environmental influences is also covered.

The structural mechanics of fiber ropes is introduced in the

next section. This includes the textile structure of the rope

itself and the structure's reaction to applied stresses or strains.

By setting up the rope geometry and definition of deformation

assumptions, the stretch of the rope components at any rope stretch

can be determined. With the known load-elongation behaviour of the

material used, the load reaction of the rope components can be

determined and, by summation, the calculated rope load response

to the applied stretch is obtained. The theoretical influence of

construction changes on the load elongation reaction can be seen.

Comparative data on twisted ropes of 5 different materials and 16

different constructions each are given, showing te t results and

their comparison with the theoretical curves. This method gives

much insight into the structure and mechanics of the twisted rope,

and should be developed for other rope types.

Finally, some recommendations for measuring and handling

in particular oceanographic ropes are given and some terms used

frequently in combination with ropes are explained.

The report tries to establish engineering methods to control

the structure of fiber ropes and the rope's reaction to external

loads and deformations. The reaction of visco-elastic macromolecular

synthetic fibers in their complex arrangement in rope structures

is a wide-open field for theoretical and experimental studies.
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NOTATION SECTION I + 2

A total cross section of a rope

BL breaking length

BS breaking strength

C aweight constant in air

C b  strength constant

C value to express load carrying cross section of
Cc a rope - A/d2

C wf weight constant in fresh water

C wsweight constant in salt water

d, d rDrope diameter

E Young's modulus

E pot, E kin' E r  mechanical energy (potential, kinetic, rope)

g gravity

I exponent

K elastic constant
e
I length of rope

L load

m exponent

p exponent

Pe constant

P pretension

s strain = elongation/original length

s -b strain at break
.6S/s °  elastic strain '

ASo/So 0 0 permanent strain

S initial rope length
0
SG wspecific gravity water

SSG r  specific gravity rope fibers

t time

' It r  recoil time

• TE total extension

TT e AT tension on a rope

v speed

w weight
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w weight/unit length of a rope in aira
w r weight/unit length of a rope general

wf weight/unit length of a rope in fresh water

w wweight/unit length of a rope in salt water

x stretch

stress

elastic strain

permanent strain

5deformation speed
A/5 o  fractional elastic strain increase

ivI
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NOTATION SECTION 3

General: All figures describing conditions in the unstretched

state have the subscript', the figures describing the

stretched condition have no subscript.

a0 , a distance rope axis-strand axis

b, bco buckling of the center multi-plies in a strand
c c
d, d strand diameter = 2r

so s
F axial force in the multi-ply
m
F axial force in the strand
s
F axial force in the roper
ho h helix length of the strand (=helix length of the

multi-plies in the strand)

h ro h rhelix length of the rope - helix length of ther strands in the rope

I r I ro length of a rope

Is, I so length of a strand

Mm I mo length of a multi-ply

M strand moment
s

Mr rope moment

Mt  total resulting rope moment

m ratio h /d
r s

m , mi, mc  number of multi-plies in the outer layer, layer i
or center layer

r. , r. radial distance of the multi-ply axis of layer i
to the strand axis

ro, rs  strand radius

b extension by bending in %

mc extension of the multi-plies in the center of the strand

emi extension of the multi-plies in layer i of the strand

mo extension of the multi-plies at the outside layer
of the strand

Es extension of the strand

et" extension of the rope

"7r length of stretched rope/length of unstretched rope

VI
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7. length of stretched strand/length of unstretched
strand

'7Lm length of stretched multi-ply/length of unstretched
multi-ply

foreturn ratio (additional twist put into the
strand on the rope twisting machine to compensate
twist loss of the strands by forming a helix
opposite to their own twist in the rope)

helix angle of strand axis against rope axis

ioi helix angle of multi-ply layer i against strand axis
before being manufactured into a rope

iro' (ir helix angle of multi-ply layer i against strand
axis after having formed the rope

helix angle of the outer multi-ply layer against
o 00 PO the strand axis before forming the rope

ohelix angle of the outer multi-ply layer against
the strand axis after forming the rope

,,co' (cro' cr as above, but for the center layer of multi-
ply

angle of inclination multi-plies against rope axis

angle depending on the number of multi-plies
in a strand layer

Ii



Section 1

MECHANICAL PROPERTIES OF SYNTHETIC FIBER ROPES

1. INTRODUCTION

1.1 WHAT IS A ROPE?

1.1.1 Basic Characteristics of Ropes

Fiber ropes as well as wire ropes and chains can be described

as flexible connecting links used to transfer tensile stresses

between two masses. In this book we will deal mainly with ropes

made from synthetic fibers, from which we expect the following

properties. 1) 2)

1. The greatest possible tensile strength

2. flexibility, knotability, ease in handling and gripabillty

3/ a compact cross section which retains its form during

use

4. elastic behaviour, dampening of shock loads - absorption

of mechanical energy

5. stabile load elongation properties in use

6. light weight

7. fatigue resistance

8. abrasion and cutting resistance

9. resistance to chemicals and corrosion, temperature

stability

10. ease of splicing or attaching reliable terminations

I. low cost

12. torque balanced or better yet torque free construction
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Ropes and chains are bodies, whose symetrical, mostly circular

cross sections, are small compared to their lengths. They are able to

transfer tensile loads only along their axes. They cannot transfer

bending moments or transverse forces of any magnitude and are unstable

under compressive loads, they will bend out.

While chains hardly stretch at all and wire ropes very little

(under 5%) under applied tensile loads, fiber ropes often show

considerable elongation. Some fiber ropes can be stretched over

50% of their original length before they break. Compared with

wire ropes, fiber ropes are very flexible. This accounts for their

knotabil ity.

1.1.2 Ropes as Mechanical Models

Ideal trusses or cables, with which ropes may be compared in

mechanics, are bodies consisting of an infinitely large number of small

unextensible solid segments, connected by frictionless joints, 3 )

lying in a single plane.

These trusses or cables (See Figure 1-1) would be completely

flexible, inelastic, and unable to transfer bending moments or

transverse forces. This ideal model is nearly correct in explaining

the behaviour of a chain.

Real wire ropes, which stretch slightly under tensile loads

and have a fairly high resistance to bending, may be described as

large number of inflexible, hard (high modulus) springs, connected by

joints which develop rapidly increasing friction at growing inclinations1 of the two adjoining spring axes. To include certain viscous reactions

of wire rope under sustained or repeated loadings in the mechanical
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model, viscous dampeners, socalled dashpot elements, should be Included.

(See Figure 1-1).

(b) (b) (b)

7(c(C()

FIGURE(]-1)

Mechanical Model of an ideal cable, a wire rope and a fiber rope.

The model is composed out of small solid bodies connected by joints(a).
The solid bodies are composed out of elastic elements (b), here
symbolized by an ideal elastic spring; and out of viscous elements (c)
here symbolized by a "dashpot". This model can be used to explain
the mechanical behaviour of cables and ropes.

(1) ideal cable: The joints (a) are frictionless, the spring
(b) and the dashpot (c) are inextensible (Young's modulus E w 00,
coefficient of viscositya7 =0 0

(2) wire rope: The joints (a) have a high coefficient of
friction, growing exponentally with increasing inclination of two
adjoining solid bodies, since wire ropes have a pronounced bending
resistance. The springs Sb) are stiff and have a high Young's
modulus E of 8 to 13 x lOb psi, also the coefficient of viscosity'
is very high.

(3) fiber rope: the joints (a) bend easily. The spring (b)

is soft with a Young's modulus of about 5 to 50 x 104 psi; the dashpot
is fairly inextensible or 1 is high, estimated around 5 x 105 psi x sec.

Fiber Ropes, which stretch considerably under tensile loads

and have a fairly low resistance to bending, can be described as a

large number of soft (low modulus) springs, connected by joints

developing only a small amount of resistance against displacements.

Viscous dampeners should also be included to explain some yieldlnq

or time depending hehaviour of fiber ropes under sustained and
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repeated loadings or strains.

Though these models are not perfect, they do explain ropes and

chains as mechanical units with distinct, characteristic response to

stresses and strains. The models do not show torque, which is present

in some rope structures.

Pronounced elongation to load along the rope axis and great

flexibility typify the mechanical behaviour of fiber ropes. It should

be mentioned that ropes react differently in directions parallel to

and at right angles to their axes. This behaviour is known as mechanical

anisotropy. Usually, only their reaction along the rope axis Is of

interest.

1.1.3 Fiber Ropes as Textile Structures

Ropes are structures made of textile fibers, as are weaves, and

knits. Rope structures are designed to obtain the maximum utilization

of fiber strength from a compact rope cross sectional area in order

to produce certain rope breaking strength and elasticity while

using a minimum amount of fibers. Since fibers are very fine elements,

sometimes less than 10-2 inch but usually around 10- 3 inch in

diameter or width, they have to be set up in large bundles to

use their combined strength in a rope. The usual way to obtain

strength and compactness in a fiber bundle is to twist the fibers

together, that is to wind them around one another. A yarn is

formed by this method. Larger structures are obtaiied by twisting

yarns together to form a multi-ply. Again larger structures are

formed by twisting multi-plies together to form strands. Finally

by twisting strands together a rope is produced.
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Due to the twisting process, the components of the twisted unit

form a fairly compact, mainly cylindrical structure at the sacrifice

of some of their tensile strength. The rope itself has to be

torquefree or at least torquebalanced. Since the twist can have either

a left hand or a right hand turn, torquefree structures can be built

up by taking the same number of right and left hand components,

arranging and interlacing them symetrically into a cross section.

This is the basic construction principle of plaited and braided rope.

Another way to build a rope is to employ three or four equally

sized strands having the same twist direction and turn them together

to form rope twisted in the opposite direction. This is the principle

used to produce a twisted rope.

A third way to combine a larger number of single fibers In a

cross section and thus to produce a rope, is to arrange parallel fibers

in a circular cross section and to keep them there by extruding a

hollow plastic jacket over the fiber bundle. This principle can be

used to produce ropes with fairly small diameters which are sold under

trade names like nolaro or parafil. Figure 1-2 shows the four basic

rope constructions described.

In all cases ropes are slender textile structures whose

symetrical, frequently circular cross sections are small compared to

their lengths. They are composed of a large number of single fibers.

The fiber bundle has to be arranged to form a torquefree or torque-

balanced structure. At the same time the structure has to produce a

maximum utilization of the fiber strength and sufficient flexibility

and elasticity.

*A nylon rope of 1 3/8" diameter contains about I million fibers of

6 denier.
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FIGURE 1-2

Standard Rope Types

(a) Twisted - three strand rope
(b) Plaited - eight strand rope
(c) Double braided rope (core - cover braid)

- (d) NOLARO or PARAFIL rope

Since fibers are anisotropic, and vary in their properties

according to the direction they are measured, ropes also are anisotropic

or better orthotropic or transversely isotropic. The later two terms

are used to indicate, "that there is no difference in properties

AV 
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between different directions at right angles to the fiber-axis,

although these are different from the properties parallel to the fiber

axis" 4. This can be assumed at least for torquefree fiber rope

constructions.
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Section 2

MECHANICAL PROPERTIES OF ROPES

2.1 INTRODUCTION

Fiber ropes change their dimensions and load-elongation properties

in use. Therefore, new and used ropes will be described seperately.

Available test data from rope manufacturers usually deal with new

ropes only, load-elongation curves mainly show the reaction of new

ropes under standard test conditions and standard test atmosphere.

Little is known about the behaviour of fiber ropes in use, but it is

known that with different loading conditions and environments, the

reaction of fiber ropes to loads and strains can change considerably.

The need for a thorough investigation of rope reaction under typical

use should be emphasized. These uses have to be simulated in

laboratory tests under carefully defined and controlled conditions.

With this procedure the various factors which influence the rope

behaviour, like temperature, humidity, load and stretch conditions

and energy influences can be determined. Only with this procedure,

* can reactions of ropes under complex loading situations be predicted,

since the influencing factors of rope reactions to detailed

situations are controlled. Section 2.2 summarizes the standard

information on new rope and its behaviour, while in Section 2.3

rope reactions to different Influences in use will be discussed.
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2.2 NEW ROPES

2.2.1 Weight, Strength, Breaking Length

2.2.1.1 Weight Properties of Typical Fiber Ropes, Wire Ropes and Chains

The weight of the mooring follows a square power law with

regard to the nominal mooring diameter.

Measurements are usually given in weight per unit length

such as lbs-wt/ft., or gram-wt/meter. The weight per unit length

(in air) can be written as:

W a = C ad 2  .. .(1-1) 1

a a . e

where W is the weight per unit length in air in lbs-wt/ft., ora

g-wt/meter, d the nominal diameter of the rope or chain steel

in inch or mm, and C = weight constant for a given rope or chaina
lbs -wt

type and material in air. C will be measured in i-' t ora inz x ft

gram-wt . Values of C are listed in Table 2-I. Values for rope
2 a

mm x m
weight constants in fresh and ocean water are also listed in this

table. C a must be multiplied by (I-SGw/SGr), to obtain rope and chain

weight constants Cwf and Cws where SGw is the specific gravity of the

water and SGr the specific gravity of the rope fibers. Cwf is the

weight constant for fresh water, and C for salt water. Table 2-1ws

shows, that the weight of the synthetic fiber ropes in water Is greatly

reduced or becomes negative in case of the floating polypropylene. Wire

ropes and chains show only a small weight decrease.

2.2.1.2 Breaking Strength of Ropes

Assuming equal breaking stress for all rope sizes, the breaking

strength of ropes of the same material and construction will increase

2-2
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with the square of the rope diameters. The breaking strength

BS of a rope can be expressed as:

BS - Cb x d r  .... 2)

where Cb is the strength constant in lbs/in 2 and dr the rope

diameter. Values for Cb are listed in Table 2-2 for various types

of ropes and chains.

Actually the breaking strength of a rope does not exactly

follow a square power relationship. Small ropes show a higher

strength efficiency than large ropes. This was first pointed out

by Moseley for manila ropes. The number of fibers in a rope

increases with the square of the diameter. They also exhibit in-

creasingly greater inclinations with respect to the rope axis, and

thus suffer a drop in strength efficiency. In chains the dropping

strength efficiency with growing diameters is found too and is probably

due to less uniform strength carrying capacity of the larger cross

sections. Wire ropes also show this tendency. Equation (2-2) may

therefore be modified to:

BS = Cb x dp ... with 2> p> 1.7 .... (2-3) 7

Vilues of p can be obtained by drawing strength versus rope diameter

data on double logarithmic paper. They plot as straight lines having

different inclinations and distances from the two axes d and BS.

The tangent of the angle of inclination is the exponent p. Values

for p are listed in Table 2-2.

As a first assumption in determining the breaking strength of a

mooring; the square power relation of Equation (2-2) is sufficient.

For more precise calculations Equation (2-3) should be used. The
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values of C b are based, as far as possible, on recent standards

or manufacturers' strength data. Individual strength test results

are not as uniform. Changes in the construction of a distinct rope

can change the strength to a considerable degree. Strength changes

up to 30%, due to construction changes, have been reported for

twisted ropes of various materials. 4) 5) In rope standards a

minimum breaking strength is specified which can be obtained by

manufacture within the dimensional allowances and the properties of

the available rope fibers. Some of the strength data are still

under discussion. It takes some time until the figures for breaking

loads of the newer, synthetic fiber ropes are reliably established.

A list of rope standards is given in Section 2.2.3. These laws in

general do not apply to Nolaro or Parafil ropes, which are manufactured

only up to 1" diameter. At smaller rope diameters, the percent of

non load carrying jacket to the strength carrying center fiber bundle

is considerably higher. The strength to diameter2  ratio grows

within this diameter range for this type of rope.

Table 2-2 shows a wide variety of strength constants for the

different materials. In combination moorings, equal breaking strength

of various mooring members is not always the correct criterion for

size. The working load limits of fiber and wire ropes are defined

as percentage of the breaking strength, while in chains the limit is

set as percentage of the proofload. Dynamic conditions, which can be

dominant in buoy and ship moorings may dictate mooring combinations

based on equal energy absorption, not breaking loads. This concept

is discussed in some detail later. Also, the strength to weight ratio

2-4
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of moorings is very important, particular in buoy mooring systems.

The ratio of breaking strength to weight per unit length will be

discussed in the next section. This ratio In combination with the

specific gravity of the mooring material in air and in water will

help to get a broader view of the problem. Further attention should

also be given to the elongation of various ropes and chains. This

is directly related to the energy the rope can absorb.

2.2.1.3 Breaking Length of Moorings

The breaking length is "the length of a specimen, whose weight

is equal to the breaking load.6 This is a term frequently used to

describe strength properties of textile structures. The breaking

length is obtained by dividing the breaking strength, in lbs-wt

(or kilogram-wt), by the weight per unit lergth in lbs-wt/ft

(or gram-wt/meter). The result is the breaking length in ft. (or

kilometers), the length of suspended rope or chain which will break-

under its own weight. In buoy moorings this term becomes conspicuous.

Often, a considerable mooring length is suspended from the buoy.

Excessive weight loads may be experienced in wire rope and chain

moorings, thus, limiting their use in deep waters. Breaking lengths

for ropes of I" diameter can also be computed by taking the strength

constants C b out of Table 2-2 and dividing them by the weight constants

Ca9 Cwf , or Cws to get the breaking length in air, fresh and salt

water. This is done in Table 2-3. A wide variety of values is shown.

*In textile publications the breaking length is often given as

gr-wt/denier. It is 9 gram-wt/denier - I kilometer. The kilometer
is also expressed as gr-wt/tex.
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Generally, all fiber ropes used in buoy moorings show such long breaking

lengths that their weight can be neglected in the design of a mooring.

Wire rope has a fairly large weight In water. Each 540 to

1180 feet of rope results in a weight load of approximately 1%

of the rope's breaking load. Chain weight is a severe handicap in

designing deep ocean moorings. Only 100 to 150 ft. suspended chain

generates a weight equal to 1% of the chains breaking load. For

oil rigs in the ocean, a maximum water depth of 600 to 800 ft. has

been reported for chain moorings. 7 The weight limitations of the

different moorings types are easily seen with the help of the breaking

length computation.

2.2.2 Elastic Properties of Moorings

2.2.2.1 Elongation Properties of New Ropes

Thus far strength and weight properties of moorings have been

discussed. Equally as important is the stretch which different

moorings exhibit under applied loads. A mooring between two ships

could be made of:

a) a chain

b) a wire rope

c) a fiber rope

d) a rubber cord

Assuming equal strengths we can draw the elongation reaction of these

moorings (Figure 2-1).

Obviously each type of mooring reacts differently to the applied

loads. Fiber rope standards allow for a maximum elongation of the

2-6
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Figure 2-1

Load extension reactions for various new moorings (*for chain and
wire rope the reaction is based on the elastic load limit, for all
other on the breaking strength.)

new rope tested under standard conditions. The zero load lengths

in a fiber rope is unreliable, since fiber ropes without tension can

be squished to many different "zer6" lengths. It is common practice

now to measure the "zero" length under a slight pretension. The

pretension is given as P - 200D 2 in (lbs], where D is the diameter

of the rope in inches. For most ropes P comes out to be about

1% of the rope strength. Usual breaking elongations, under standard

test conditions, for chains artz less than 1%, for wire rope 2.5

to 5%, for Nolaro ropes 10-15%, for braided synthetic fiber

ropes 15-35%, for plaited and twisted synthetic fiber ropes

30-60%. The fairly wide range is due to the different materials

used and tolerance in the construction. Generally, nylon ropes

will stretch 1.5 to 2 times as much as ropes from polyester or

polypropylene of comparable constructions. Thin ropes will stretch

2-7
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less than thick ropes. Each mooring can be compared, in its reaction

to applied loads, to springs with different stiffnesses. Under

sudden ioad increases a straight chain will immediately transfer

the load without any dampening effect, all other moorings transfer

the loads more or less delayed. The rubber string can be stretched

several 100% before noticeable load is built up. Stretch behaviour

is a significant factor in the selection of moorings for different

applications. Any delayed transfer of stresses, due to stretching,

will absorb shock loads. Towing or mooring of ships or buoys in

waves would be impossible without the dampening effect of the rope

stretch (or the dampening effect of the change of catenary con-

figuration of the moorings).

2.2.2.2 Energy Absorption of Moorings and Snapback

Potential energy is defined as load times the displacement

along which this load is working. Moorings which stretch under load

therefore absorb mechanical energy which is equal to the work done by

the external loads on the mooring. Since E JL dx , the absorbed
po t f

energy can be expressed by the area under of mooring load elongation

curve.

The actual length which the rope elongates is important, a

rope that is twice as long will stretch twice the distance under

the same load and thus will absorb twice the energy.

The energy absorbed by the mooring can thus be expressed by

the area under the load elongation curve.

Epo t  C e x L x x s. . . . (2-4)
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Where:

E absorbed energy in [ft x lbs-wt, kllogram-wt x meter]

Ce shape factor of the curve. For a straight line, (Hooke's)

as in wire ropes, C = 1/2. For fiber ropes C is

approximately 1/3.

L load of the mooring [lbs-wt, kilogram-wt]

1 initial length of the mooring [ft, meters]

s strain under load = A1/

A large amount of energy is stored in long lengths of ropes and

in highly stretching ropes. If by overstressing ropes break,

the stored potential energy is converted into kinetic energy which

causes the dangerous snapback. The broken rope parts accelerate

to high speeds. The potential energy of a mooring at break is

Epo t = Ce  sb ..................... (2-5)

where BS is the breaking strength and sb the strain at breaj. This

potential energy is converted to the kinetic energy of the broken

rope.2

E = 1W v /(2 g) ................. (2-6)

W is the weight of the rope per unit length in lbs-wt/'ft or

gram-wt/meter; g = gravity and v is the snapback velocity of the

rope in ft/sec or meter/sec. Setting Epo t = E kin we find the rope

snapback speed as
v = ( g C BS sb 2 /Wr ) 1/2 (2-7)

The snapback speed is independent of the rope length. By substi-

tuting BS/W r by the breaking length BL of the rope, we can write:
V = ( e Bb................. (2-8)

2-9
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ch n

0

0 ire rope r

elongation

Figure 2-2

Energy absorption of moorings of equal length and strength.

The evaluation of Equation (2-8) shows, that the recoil speeds can

approach the sound speed in air, Figure 2-3 shows this for different

breaking lengths BL and breaking strains Sb -

After failure during snapback the rope starts to oscillate

violently. The recoiling rope will be slowed considerably by the air

drag. Air drag on a recoiling and oscillating rope has, to the

writers knowledge, not been determined yet.

When long, horizontally used rope lengths fail the time of

recoil may be large enough to allow the rope to fall an appreciable

distance due to the influence of gravity. If in a towing operation

the broken rope end will hit the water, the drag will substantially

increase and reduce the recoil speed considerably. The recoil time

t would be:

t = failed rope length/recoil velocity I/v [sec]
r

I 
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recoil speed in m/sec
for breaking lengths of

1000 . .
a fiber rope. 40 km

b ....... .30 km
c . . . . . . 20 km
d . ...... lo km

e wire rope 20 km 400
f wire rope 10 km E

3 breaking lengtin kilometer a -
-o - - 0 3 0 0

050O08u

i 0 200

4 3 .. 5 000

4 wie ropee 100

' 50 000

recoil speed in ft/sec.

00 0 U

10l 20 30 40 50I0 20 30 40 5
. mooring extension at 50 mooring extension at 5

Sbreaking point in %; breaking point in%

Figure (2-3) RecoilI speed f or f iber and wi re ropes wi th d if ferent
breaking lengths and breaking strains.

The drop of the broken rope without air drag will be g t r 22or -

(2 2......502

16.1 12/V 2 . Air drag should considerably increase the dropped

Sdistance so the rope will touch the water earlier. Additional

weights at the rope end, shackles or thimbles, will increase the

the rope mass which has to be accelerated at failure. This reduces

the recoil speed and increases the dropping rate of the rope.

with g in ft/secp , I in ft and v in ft/sec.
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The danger of snapback should be emphasized. The damage which

recoiling ropes can do to protective screens and barriers was

8)
described by Wesler and Parker , who also studied the snapback in

field tests with high speed photography. Numerous often severe

or fatal injuries of men have been caused by parting ropes.

Protective barriers should be designed to take serious impacts.

The magnitude of the energy released by a breaking rope can

be demonstrated by comparing the energy of a moving car and a rope

having the length of a car. A car weighing 2,000 lbs. and traveling

at 60 mph = 88 ft/sec will have the kinetic energy

E = m v 2/2 = 24 x 104 [ft-lbs] ...... (2-9)Ekin

a rope, having the length of this car will have an energy at break

of Epot  = Ce  BS I S (ft-lbs ............. (2-5)

We determine the breaking strength of a rope, which at assumed

breaking strains Sb, absorbs the car's energy from Equation (2-5)

and Equation (2-9). It is
2

BS m v [Ibs] .......... (2-10)
2 Ce I Sb

which with the above values, C = 1/3 and I = 20 ft (car = ropee

length) will give BS = 3.6 x 10 4/Sb [lbs]. For an assumed low

breaking strain of Sb = 0.25 we obtain BS = 144,000 lbs. For a

high breaking strain of Sb = 0.5 the rope has to hold only

72,000 lbs. For a nylon rope, the latter case would require a

rope of about 1 5/8 inch in diameter to stop the car in 10 ft.

The lower stretching rope with 25% elongation at break would be

2 3/8" in diameter and should stop the car in 5 ft. In the case of

2-12
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wire rope with a stretch at break of around 2.5% and C e  1/2, the

rope has to hold 960,000 lbs. This would require a 3 1/2" diameter

high grade plow steel IWRC rope. These examples illustrate the

tremendous impacts which recoiling ropes cause. The importance of

proper mooring design, to avoid failures in towing and other marine

uses, is more than necessary.

Two Moorings Combined a) For Equal Strength, b) For Equal Energy Absorption

a) Equal Strength

Under static load conditions two moorings should be

selected with equal breaking strength. The diameter of the second

rope is obtained with Equation (2-2) as:

d2  d (Cb/ Cb) 1/2 .......... (2-11)
1 2

b) Equal Energy Absorption

Under dynamic stresses component moorings may be designed

so that each component absorbs equal mechanical energy. This is

done to avoid overworking of one of the ropes. We can decide to

use ropes of the same strength as in a) and adapt the lengths of

the components to absorb equal energy or to combine equal long ropes

with strength data matched to have equal deformation energies. The

practical situation is usually a compromise.

The line (rope) dimensions for each of the three assumptions

-"are obtained as following:

b-1) Moorings 1 and 2 have equal breaking strengths. How

long must rope 2 be to have energy absorption equal to rope 1?

Equation (2-5) is rewritten as:

2-13
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1= Ce1 SbI
e b2 1. (2-11)

- 1e 2  b2

where C are the shape factors of the load elongation curves ande,2

Cbl the strains at break.,2

b-2) Both moorings have the same length. What diameter of

mooring 2 is needed to absorb mechanical energy equal to rope I?

Ce Sb

Equation (2-5) gives BS2  BS e, and with Equation (2-2)

2e 1I/2 Ce2b2

d2  C d I e Sbl CbI :2 2  2

b-3) Given the length of both mooring components 11 and 12

and the breaking strength of mooring 1. How strong does mooring 2

have to be to absorb equal energy?

Equation (2-5) will give

BS = BS eI bi 1 and with Equation (2-2)
S2 = B I Ce2  Sb2  12

it is:

C ,Sb iib 1/2

d2  = dl Ce S I Cb2 T2 .......... (2-14)

2 b2 b2)

Comparative data for a), b-l), and b-2) are listed in Table

(2-4) for a combination mooring of twisted or plaited nylon rope (1)

and a 6 x 7 high plow steel wire rope (2) with the following data:

2-14
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Nylon rape: Ce 1/3, Sb .25, C = 2.5 x 10 4lbs-wt/in2
1 b

KWire rope: C e 1/2, S b - 025, C b = 9 x 10 4lbs-wt/in2
22 2

Situation a) equal b) equal energy absorption
strength b-l)equal b-2) equal long ropes

s trang
ropes

wanted value diameter 2 length 2 strength 2 diameter 2

known nylon d IBS d
rope dimension I 1 I1

wire rope, d 2 1 2 BS 2 d2
ase imnin 0.53 d 1  6.67 11 6.67 BS1  1.36 d1I

Table ( 2-4 ) Comparative dimensions of a combination nylon-wire
rape mooring for a) equal strength and b) equal
ability to absorb mechanical energy.

It is seen, that a) and b) lead to completely different

dimensions, care has to be taken in the choice of design assump-

t ions.

2.2.3. Specifications

The U.S. Government specifications relating to fiber ropes

may be classified in two groups as rope standards and test stan-

dards. The rape specifications are documenting far each fiber rope

type strength, weight and other data for the various rope diameters.

The second group is giving the test methods to be used to control

the required rape data, given in the rope standards.

Additional regulations and recommendations may be necessary

in specialized end uses of a rope, since the rope specifications

are fairly general and may not be strict enough for specific
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applications. These specifications are usually prepared by the

Technical Commnittee of the Cordage Institute in New York City in

cooperation with the federal and military standard institutions.

In other countries similar organizations are responsible for the

set up of national standards on ropes and test procedures. In

Western Europe currently all rope standards are combined in

international ISO (international Standard Organization) regulations, .
superseding the previous national standards in various European

countries. It would be desirable to agree on the same rope

standards worldwide. The U.S. standards are listed in Table (2-5).

TABLE (2-5)*

U.S. - Specifications Concerning Fiber Ropes

Group 1. U. S. Government Specifications for Synthetic Fiber Ropes

Specification No. Date Product

MIL - R - 17343d 6-2-67 Rope, Nylon

MIL - R - 4398 9-16-52 Rope, Nylon, (Glider Tow)

MIL - R - 1688c 2-16-66 Rope, Climbing, Nylon

MIL - R - 24337 6-17-68 Rope, Nylon, Plaited

MIL - R - 4316 9-20-63 Rope, Nylon (Spun)

MIL - R - 24049 3-28-66 Rope, Polypropylene

MIL - R - 30500 12-5-62 Rope, Polyester
+Amendm.

MIL - R - 24335 6-20-68 Rope, Polyester (film)

TL -411b 5-26-64 Shot (for) Lines Throwing Guns

MIL - R - 24050A 1-20-67 Rope, Nylon, Double Braid

(TR-605b + Amend. 12-13-63 Rope, Manila and Sisal)

*The assistance of Mr. F. J. Haas of Columbian Rope Company in
compiling this list is thankfully appreciated.
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TABLE (2-5) Group I1: Federal Test Method Standard #191, Textile

Test Methods Relating to Cordage Tests

Methods No. 1000 - 1999, Identification - Qualitative Analysis

1240, 41, 50, 51 Identification of various natural fibers

1530; 33, 34, 1600 Identification of various synthetic fibers

Methods No. 2000 - 2999 Quantitative Analysis

Methods hereunder determine the content of fibers, chemicals,

moisture, acidity a.s.o. in textiles or fibers themselves.

2050, 51, 60; 2530; 2600, 01

Methods 4000 - 4999 Yarn, Thread, Rope and other Cordage

deal with determination of weight, twist, strength and elongation,

abrasion resistance, water absorption, colorfastness; mildew,

weathering and leaching resistance of yarns, threads, ropes and

other cordage like webbings. Methods used are: 4010, 50, 52,

54; 4100, 02, 04, 06, 08; 4308; 4500, 02, 04; 4800, 04, 30, 32

Methods 5000 - 5999 Cloth

Some of the test methods for cloths may apply to cordage. They

are 5010, 41; 5630, 60, 62, 71, 72; 5750, 60, 62

Methods 6000 - 6020

deal with some particular rope tests, which sometimes seem to

*overlap with the 4000 - 4999 methods. They are mostly additional

test methods for synthetic fiber ropes. It is not always

obvious at this moment, which method in case of overlapping will

be finally agreed upon. The methods are 6000, 01, 02, 03,

04, 10, II, 15, 16 and 20.

Some of the standards currently are undergoing changes,

the tests should be done under the newest standard regulations

and at Government authorized laboratories only.

I
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2.3 ROPES IN USE

2.3.1 Introduction to the Tensile Properties of Ropes

The response of fiber ropes to applied forces, energies, and

deformations is their most important technical property. The rope,

as a textile structure, reacts to an applied stress or strain with a

combination of structural and material deformations. Its reaction

thus depends on the structure and fiber material used. A wide

variety of mechanical properties can be chosei for a rope, by

selection of the rope structure and the fiber material.

The rope structure is a fairly complex arrangement of rope

fibers ;n a multi-helical structure. The rope fibers are arranged

in helical structures whose axes form again helixes in a larger

structure. Often the larger structure is again arranged in a

larger helical structure. These helical structures stretch fairly

easily by becoming longer and thinner, as a spring does under tension.

They will snap back if the tension is removed. At the same time

the structural deformation causes stresses in the fibers to which

they respond by stretch. The fiber stretch reaction depends

entirely on the load elongation properties of the fibers used.

In a rope composed of material having very low elongation, nearly

all the stretch of the rope will be structural. In a rope constructed

the same way of highly stretchable fibers, the material stretch will

be an important percentage of the rope elongation. It can become

up to 50% of the total (See Figure 2-4). Both construction and

*We deal, if not extra pointed out, with all rope constructions

except Nolaro ropes.
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material deformation have to be considered in order to understand the

rope's reaction to applied tensions. Both structure and material

deformation follow their own particular laws and often interfere

with each other.

a structural extension
- -- -b material extension, fiber I

c total stretch, rope made of
fiberI

(Ud material stretch, fiber 2
0e total stretch, rope made

from fiber 2

I Figure (2-4.) Structural and
material stretch

I in a rope.

Structures usually tighten in use after several loadings, but they

may be opened by action of the material used, for example by

swelling or shrinking processes after immersion in water or exposure

to heat. The fiber material itself is viscoelastic and thus changes

dimensions and load elongation behaviour due to loading processes

I and environmental influences. At the same time these changes

may interact with the arrangement of the fibers in the rope structure.

Each of the different fiber types show their own particular

reaction towards applied tensions, strains, and different environmental

conditions. Higher stretching fibers will much more interact on
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the rope structure - which correspondingly has to stretch more

than low stretching fibers. Any fiber could be taken to make

a rope, but since ropes are mainly strength carrying, energy

absorbing "connection links", high-tenacity fibers with various

degrees of low stretch are used. The high tenacity synthetic fibers

used for cordage manufacturing are nylon, polyester, polypropylene,

polyethylene and for some applications glass fibers. These fibers

are described in Section 2.3.2.5.

Knowing both the material load elongation characteristics

and modification of these characteristics possible with various

rope constructions, the proper combination of structure and material

can be chosen to build a rope which best fits a known end use.

Similar rope behaviour can be obtained by arranging highly stretch-

able fibers in a low stretching structure or low stretching fibers

in a high stretching rope structure.

Since the load-elongation behaviour of both structure and

material undergoes considerable change in use, the final goal is

to predict with sufficient accuracy the long term behaviour of the

rope under known loading and environmental conditions. The

various factors which influence the load elongation behaviour of

fiber ropes in use will be discussed in the next section. We will

start with a look at the rope fibers themselves. The factors which

change the characteristics of constructions, such as different

twists of the rope components, will be considered in some detail

later.
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2.3.2 Synthetic Rope Fibers in Use, An Introduction

2.3.2.1 The Viscoelastic Nature of Fibers

Synthetic and natural fibers are viscoelastic. They react

to loads or strains with spring-elastic recoverable deformation and

viscous non recoverable stretch. Part of the fiber reaction follows

the elastic performance of a spring. Part of it follows the

behaviour of a viscous fluid. The term elastic describes "that

property of a body by virtue of which it tends to recover its original

size and shape after deformation". 9 The opposite performance,

retaining a deformed size and shape after stretching, is called

plasticity.

All fibers consist of large macromolecules, which by drawing

processes. become oriented parallel to the fiber axis. The vis-

coelastic behaviour of macromolecules under stress and strain is very

complex. It depends on the type of polymer, the degree of poly-

merisation, the attracting forces between molecules and the degree

of orientation. It is impossible, within the limits of this report,

to go into the details of the nature of the macromolecules in fibers.

Thei- deformation behaviour has been described in depth by numerous
10

authors. The response of a fiber to applied stress and strain is

time dependent, since all position changes within the macromolecular

fiber substance need time to take place. Temperature, humidity

and previous load history also influence the load elongation

behaviour of the fibers.

2.3.2.2 Typical Viscoelastic Fiber Reactions

Viscoelastic reactions of fibers modified in rope reactions
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under constant loads, constant extensions, cycling loads and

extensions will be described in Section (2.3.3). The different

fiber reactions themselves are listed here.

1) Under constant load, a fiber will show an immediate

extension and a delayed, time depending extension called creep.

After removal of the load, there will be an immediate length

recovery, some delayed recovery and some permanent deformation.

See Figure (2-12).

2) Under constant deformation, the initial load response of

the strained fiber will gradually decrease with time (load relaxation).

After removing the deformation, the fiber recovers from part of

the elongation instantaneously and from some after a delay. It

will also show permanent deformation. See Figure (2-14).

3) Under cycling loads, the fiber will show hysteresis loops

between the loading and unloading stress-strain curves. It will

quickly proceed to a continuously repeated "master-hysteresis",

loop. See Figure (2-15). The "master-hysteresis" loop has a

considerably higher Young's modulus than at the first cycles. The

recovery of the fiber between cycles depends on the cycle frequency.

4) Under cycling strains, the load response of the fiber will

taper off similar to load relaxation under constant deformation,

- thereby forming hysteresis loops in the load-elongation curves.

The loops are highly dependant on the cycle frequency.

Under cycling loads or strains, the hysteresis loops will

generate heat. In some instances this heat may be large enough

to melt the fiber. In each of these loading conditions the
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viscoelastic behaviour of the fibers will allow for more stretch

if more time under load is available. It will also show more stretch

recovery, if more time after load removal can be used. The position

changes in macromolecules need time to take place. Immediate

deformation response to an applied load is mainly elastic and

recoverable, while delayed response is to a considerable degree

plastic and unrecoverable. If loads are applied quickly and shortly

only elastic deformation occurs. If load last longer, viscous

deformation has time to develop and thus permanent stretch takes

place. At prolonged cycle tests under high loads the elastic

elongation and recovery tends to decrease and the permanent

elongation continues to increase even further. Similar considerations

apply to the time dependant influence of strain on the load response.

5) In tensile tests, the deformation rate will influence the

test result considerably. At slow test speeds the fiber will show

more deformation under comparable loads than in tests with faster

deformation speeds. The viscous deformation has time to react.

The fiber also will break at lower loads than under faster defor-

mation speeds, as shown in Figure (2-5). A distince time until

break or a constant speed of deformation has to be met, in

order to be able to compare textile data. The influence of the

test speed in nylon fibers on the rate of extension is shown in

Figure (2-6).

6) Often fibers are subjected to other than tensile loads

or strains. In particular bending, torsion and shear is often
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12

stressing fibers , frequently in combination with tensile loads.

For rope applications this can become important, seen by the low knot

strengths which ropes and fibers show. The fibers will also show

viscoelastic reactions to these non-tensile stresses, e.g. as bending

recovery and permanent bending deformation. The shear resistance

of fibers is usually very low, caused by the high degree of

anisotropy of the oriented fiber structure.

Co 50 1096

a 2 269
.E 22

Uo
b.0

L

0 0

0-0 ]~

extension

extension in %

Figure (2-5) Figure (2-6)

Schematic stress strain curves Stress strain curves of nylon at
of a synthetic fiber at various various test speeds, the figures
test speeds. refer to the rates of extension
a) high test speed in per cent of the sample length
b) low test speed per second

*There are also instruments using a constant rate of loading
to test the strength of fibers, which can show considerable difference
in the test results. The most widely used and recommended method is to
strain the fibers with a constant speed of deformation and to measure
the resulting load response, see'.
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2.3.2.3 Mechanical Models to Describe Viscoelasticity

A convenient, though imperfect way to describe the deformation

behaviour of viscoelastic fibers is to construct a model composed

of elastic springs and viscous dampers. These simple models combine

elastic springs following Hooke's law, stress = E x j, and viscous

dashpots following Newton's law, stress ds/dt , where E is the

Young's modulus and q the coefficient of viscosity. The components

can be arranged in series shown in Figure (2-7). They show permanent

deformation which equals secondary creep, after instantaneous extension

under sustained load. Spring and dashpot may also be arranged

parallel as in Figure (2-8). E'&

spring dashpot

o 0

time time

0

. X
t ime t ime

Figure (2-7) Figure (2-8)
Spring and dashpot in series; Spring and dashpot parallel;
reaction under load and after reaction under load and after
load removal. load removal.
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Then they will show delayed deformation and recovery. But even

a combination of numerous spring-dashpot models together will not

describe the typical viscoelastic behaviour of macromolecules under

strain. Therefore, Eyring, in his three element model, (Figure 2-9)

uses a dashpot with a hyperbolic sine law for viscous deformation.
13

14
In the Poynting Thomson model, described by Juilfs, the dashpot

and springs, Figure (2-9), are non linear. Viscosity and elastic

moduli are "modulus functions'.'. "They exhibit a complex dependance

on the test conditions.
''14

Figure (2-9)

Eyring's three element model, using Hooke's springs and a dashpot
with a hyperbolic sine law for viscous deformation. Also: Poynting
Thomson model, with both springs and dashpot non-linear.

2.3.2.4 Modulus Functions For a Non-Linear Poynting-Thomson Model

Modulus functions for the non-linear viscous and elastic

14
elements have been developed by Juilfs and Zidan. They studied

a test situation combining a tensile loading up to a certain point

and relaxation after reaching this load. The functions Young's

moduli of the two springs and the function of the viscous modulus

are given as curves for various deformation speeds depending on the

elongation value. See Figure (2-10) for a nylon material, and
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Figure (2-11) for a Polyester fiber, showing the non-linearity and the

pronounced changes obtained for the modular functions. These curves

are presented to show the reaction of these fibers when only the

deformation speed is changed. Or, as Julifs writes "The complex

deformation behaviour of highpolymer fiber substances can, in its

reaction to stress, only be described by a careful analysis of

suitable test results. Individual data like breaking strength,

breaking elongation can give in this connection only indicative,

roughly comparative information." (translated)

2.3.2.5 The Main Synthetic Cordage Fibers

Only high tenacity fibers with fairly low stretch behaviour

are used to manufacture regular ropes. The fibers have to be highly

elastic and have to show minimum viscous deform'tion behaviour.

Fibers with small viscous influences, or a high modulus of viscosity,

will have a high degree of instantaneous and delayed elastic

recovery. Therefore, they will show fairly small hystersis loops

under cycling loads or strains. This will reduce the tendency to

heat up the fibers due to frictional energy loss. Since all high

tenacity fibers are produced by giving them a fairly high degree

of orientation, these fibers also show a pronounced mechanical

anisotropy which results in knot strengths of these fibers in

ropes of 45-60% of the breaking load. The main synthetic cordage

fibers are nylon 6.6, nylon 6, polyester, polypropylene, for

uncritical uses polyethylene, and for special applications sometimes

glass fibers. Typical properties of these fibers are listed in

Table (2-6).
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General information has been published about these fibers in

such a braod scale, that only some references are given for further

interst in this matter.l5 6 7 8 9

It is difficult to conclude from these data the optimum fiber

for a given rope use. The stress strain properties are widely

modified due to the rope structure, and change considerably in use.

Generally, it could be recormmended to use nylon fibers whenever

high strength, high stretch and stretch recovery and high shock

absorption is required for the rope. Polyester should be used,

where low stretch, high strength and a maximum prediction in the

long term load elongation behaviour is required. Polypropylene

should be used where the main goal is floatability of the rope and

where strength and elongation behaviour is not critically. Glass

fibers, after improvement of their properties, should be used only

where dynamic loads are negligible and low stretch and high strength

is required. Polyethylene should be used only in uncritical

applications.

INFLUENCE OF WATER

Though none of the fibers mentioned above is deteriorated by

water, nylon shows a significant strength loss of about 15%~ when

wet and tends to shrink when immersed or exposed to heat. Water

splits up hydrogen bonds, which are formed between some CONH

groups of the nylon molecules. These hydrogen bonds are weaker

than the inter-atom valency bonds but stronger than the attracting

van der Waals forces between molecules. They contribute to the
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strength of the nylon material in dry conditions, but since they are

split by water due to their hydrophilic nature, do not respond to

strains on the wet fiber. Because of thts, the wet strength of

nylon is only 85 - 90 per cent of the dry strength at 65% relative

humidity. At the same time the wet nylon molecules have less

resistance to stress, which results in more stretch under comparable

loads at higher humidities. This is to some degree caused by

previous shrinkage in this condition, which can be compared with

folding and thus shortening of the structure. If the shrunk

structure is put under tension, the "folded" regions have to be

stretched out thus increasing the elongation of wet nylon fibers.

The folding can be avoided by putting a tension higher than the

shrinkage tension (as high as 1O% of its breaking strength) on

the fiber while exposing it to the shrinkage causing environment.

No other cordage fiber discussed here is affected this way

by water. Care has to be taken when using nylon, to consider the

changes in length, elongation, and strength between wet and dry

usage. Despite these disadvantages nylon still is a superb fiber

for cordage use.

Temperature stability: All synthetic fibers consist of thermoplastic

materials, so there is a natural tendency of strength decrease and

elongation increase at growing temperatures. Within tle range

of 32'F to l00'F there is a fairly small change in all fibers

discussed here, except polytheylene, which, due to its low melting

point shows considerable strength changes. The strength drop
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Material tempe- tenacity breaking work of initia"" yiela" yie)'"rature extension rupture modulus stress strain

[g-wt/tex [-we1 [9W I-  -wt [ % ]

loC] =km] I % I tex tex tex

nylon, - 57 79 11 4.2 1010 15 1.9
210 den. 21 65 13 4.0 450 7 1.5

99 46 14 2.2 226 5 2.0
177 26 29 4.7 108

- 57 78 8 3.3 1370 27 1 .1
Dacron 5
7acron 21 56 . 8 2.8 1070 17 1.7

99 41 10 1.4 261 5 2.5

177 26 19 2.3 45 4 5.8

work of rupture = area under the load-elongation curve for unity
length
tangent of the stress strain curve at the origin

* the yield point as defined by Coplan is the crossing point
of the initial modulus tangent with the tangent on the curve having
the least slope - which will not lead to a realistic point at all
fiber load elongation curves. The stress at this point is the yield
stress, the strain the yield strain.

TABLE (2-7) Effect of temperature on tensile properties 20)

and extension increase for nylon and Dacron polyester over a wider

temperature range is shown in the above Table (2-7)20). The changes

should be more pronounced for polypropylene - which at 1770 C is molten

already - and less pronounced for glass fibers. Temperature changes due

to hysteresis deformations may alter the fiber reactions considerably.

Light stability: All synthetic cordage fibers suffer strength losses

when exposed over a period of time to sunlight, in particular the

ultra-violet and infra-red radiation of it. Polyethylene and polypropy-

lene fibers deteriorate so rapidly, that they can be used only when

they contain reliable ultra-violet light stabilizers. 22) Much

testing has been done. The results depend on factors like fiber
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diameter, fiber material, stabilizers, dyes, geographical location

of the test site (sunshine hours and sunshine intensity). The

strength loss decreases with increasing fiber diameter, in ropes

the loss is much less pronounced since only the surface fibers

are effected by radiation. A Dacron polyester rope of 1/2" diameter

lost after 1 1/2 years exposure 10 %, a Dacron yarn during the same

period 85 % of its original strength. 23) If possible, fibers and

ropes should not be exposed unnecessarily to the sun. Cordage made

from fibers with light stabilizers should be prefered for use in

outdoor applications.

2.3.3. Rope Response to Standard Loading and Unloading Conditions

The typical performance of ropes under in-use conditions in

laboratory tests will be discussed first. In the laboratory, the

test speeds are usually slow and the rope samples are conditioned

in a standard atmosphere. Later we will deal with the change in

performance from standard reactions due to change in test condi-

tions, test speeds and environmental conditions.

As do the fibers described in the previous section, the rope

reacts to stresses and strains as a viscoelastic body. The deforma-

tions are largely modified by the arrangement of the fibers in the

rope structure. Both plastic and elastic deformations can be measured

under defined testing conditions. There are six basic loading and1deformation conditions under which ropes can be used and under which

deformations can be measured. These conditions are:

1) constant load
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2) constant deformation

3) cycling load

4) cycling between different stretch conditions

5) stressing or straining in other than rope axis directions

6) shock loads

The test method used to predict rope behaviour has to be chosen

according to the end use of the rope.

Method 1) may be applied in buoy moorings, where a taut connection

between an anchor and a subsurface buoy is planned. The

reaction under zero or known current conditions has to be

investigated.

Method 2) may be chosen, where a taut mooring between anchor or

subsurface buoy and surface buoy shall be used and the

reaction under zero or known current conditions and neglect-

able wave and tidal influences have to be predicted.

Method 3) may be chosen where the rope is used to hoist distinct

loads at known time intervals like in standard cargo

handling operations.

Method 4) may be applied, where a ship or buoy moored to a fixed

point will cycle with known excursions in a sea state.

Method 5) has to be used to study rope reaction e.g. on bollards,

sheaves or in splices or other end terminations.

Method 6) should be applied where ropes are subjected to sudden

load pickups like in mountaineering, at the upper end of

a buoy mooring, or in some cargo handling and salvage
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uses. The shock load may also be transverse to the rope

axis like in aircraft arrestor systems.

Each of these loading or deformation conditions of a rope

can exist either for itself or combined. A typical combination

would be (1) plus (4) for a moored ship or buoy which is exposed

to a constant current or wind drag and known cycling excursions

in waves. In addition environmental conditions - in particular

humidity and temperature - may have to be simulated in the test

in order to predict actual reactions of the ropes under the various

loading and deformation conditions.

Much work was done on the reaction of various textile fibers

under possible loading and elongation conditions. Little has been

published on similar performances of ropes. As a general rule how-

ever it can be stated, that there is a remarkable difference between

the load elongation reaction when the rope is new and when it has

been taken into use. The setting or tightening of the rope structure

under the first loads will lead to a pronounced permanent elongation

and some diameter reduction of the rope. This in combination with

the fiber reaction to stresses and strains gives a rope behaviour

with considerably higher Young's modulus in use than when new. As

a rule of thumb under standard test atmosphere fiber ropes in use

will only stretch 1/2 the amount of a new rope under the same load.

Similar behaviour is observed with wire rope. The different loading

and elongation conditions which can simulate actual rope behaviour

in use, will be discussed in some detail in the following chapters.
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2.3.3.1 Ropes Under Constant Load

If a constant load is applied to a rope and maintained, the

rope will show an instantaneous elongation, but will also continue

to stretch as time goes on. This time dependant extension under an

applied load is called creep after removing the load, the rope will

show an immediate recovery and some delayed recovery. It will

maintain some non recoverable stretch or permanent deformation. This

behaviour is illustrat6d in Figure (2-12).

b c Figure (2-12)

Ropes under constant load
oand recovery under zero

load; showing instantaneous
extension a-b, total creep
b-c, instantaneous recovery

---- c-d, delayed recovery or
a d I" -- d.. or primary creep d-e, per-

f manent deformation or
secondary creep e-f. Dotted
lines: If the rope is held

C . after load release in d, the

load will build up and relax
U along the dotted line.

e

t ime

It is seen, that the instantaneous extension is followed by creep

and that after removing the load there is an instantaneous recovery

and a time delayed recovery. The latter is also called primary

creep. S.cundary creep is the unrecoverable deformation which is

left over. Total creep and primary creep slow down with time.

The creep-time behaviour follows a logarithmic law. Flessner2 4
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has shown the logarithmic creep-time behaviour of double-braided and

plaited nylon ropes under various loads in standard test atmosphere.

He found that at least 80% of the creep has taken place in the

first 72 hours of the test and that the creep was mainly fiber

reaction and independent of the rope construction within the

measuring tolerances. The two rope types tested showed remarkable

differences in the instantaneous elongation. The total extension

TE under 30% of the rated breaking strength after a time t is given

by Flessner for 2 in I nylon double braided rope as

TE = 0.1689 log e  (time) + 16.50 .......... (2-15)

and for 8 strand plaited rope

TE = 0.2210 log e  (time) + 24.30 .......... (2-16)2 4

where the instantaneous extension at a slow extension rate of

3"/min is 16.50% for the double braided rope and 24.30% for the

plaited rope. Flessner's creep curves are given in Figure (2-13).

The total amount of creep was also found to be independent of the

load height, as found by Leaderman 25 for high loads in nylon fibers.

The delayed recovery of the rope also follows a logarithmic law.

Once the final permanent deformation or secondary creep for a given

test load has nearly been reached, a rope will recover almost completely

from any subsequent loading below this test load. Its reaction will

be completely elastic. This situation is also known as mechanical

conditioning in fiber technology. 26  For information on the behaviour

of various synthetic fibers under constant loads see Morton and Hearle. 27

*manufactured by Samson Cordage Works, Boston, Mass.
**manufactured by Columbian Rope Company, Auburn, N.Y.

2-37



35- %

p~ted %

3 0 I

C0o Figure (2-13)

b ded Creep curves, taken
rfrom Flessner's Figure

S33; showing extension
25 d 0 % versus log. (time)

behaviour of Columbian
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The practical results of these creep tests should give

information about how great a constant load can be held by various

- 24
rope types without failure. Flessner showed that properly

spliced nylon ropes will hold 80% of their advertised breaking

strengths over prolonged periods of time in undisturbed lab tests

but are very sensitive to any changes in test conditions under this

load and never should be subjected to these high loads in use.

It is known that polyethylene ropes will "flow away" much earlier.
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Polyethylene fibers of the best quality (Ziegler and Philips Type)

will flow away at room temperature under 40% of their breaking load

after 10 to 12 days. 28This is due to very pronounced secondary

creep, sometimes called "cold flow"

The measurement of instantaneous elongation, total creep,

instantaneous recovery, delayed recovery and permanent deformation

is no basic problem. Since creep and creep recovery are very

pronounced at the beginning of the loading or unloading operation,

frequent measurements, on the order of fractions of a minute, have to

be made during the initial period of creep or creep recovery

measurements. Later in the test, measurements can be reduced to

daily intervals.

If the rope would be held at the extension d in Figure (2-12)

showing zero tension immediately after load release, it will be

observed that tension will build up to a distinct value again with

time. This load build up is caused by the energy still retained

in the rope fibers, which otherwise would cause the delayed creep

recovery or primary creep, if the rope would be allowed to contract

freely. This effect is often noticed, when a rope is hauled in

under tension over a capstan and then, after load release by the

capstan, is wound loosely on a drum. Since the rope can not

contract on the drum, it will build up tension with time. This

tension leads to jamming and wedging of the rope layers on theI spool. It can be high enough to cause crushing or flange popping

of the drum.
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2.3.3.2 Condition 2: Ropes Under Constant Strain

This condition of a permanently stretched rope can be

used to predict the rope tension in a taut mooring, with a scope

less than 1, in calm water. Whenever a rope, textile fiber or

any viscoelastic material is held prestretched over a period of

time, the tension experienced by the material will gradually

decrease, and may under certain conditions disappear completely.

This reaction is known as relaxation and is schematically illus-

trated in Figure (2-14). The reaction shows a diminishing

strength drop rate with increasing test time. Ultimately a

nearly constant load will be experienced by most materials used

in this test. If the load relaxation is plotted versus a logarithmic

time scale, many fibers and fiber ropes show linear load reductions

similar to creep.

B C Figure (2-14)

Load relaxation of a rope
c of fiber held at a constant
o elongation over a period of
C time; and recovery after

-removal of the elongation.

E If the rope is held at D,
A where after stretch release

time the load is first 0, a load
will build up and relaxB along the dotted line.

C

A LA D

time
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Relaxation tests are apparently not as common, as creep

tests with fibers. 29 For ropes, no relaxation tests have come to

the attention of the author. These tests could be used to obtain

permanent deformation and delayed recovery data on ropes after

constant elongation tests. If we measure the elongation when

the rope load first becomes zero in D of Figure (2-14), we obtain

the instantaneous relaxation from load C. The rope is then allowed

to recover under zero load or pretension, until at E, no noticeable

further length decrease is observed. Then the permanent deformation

or secondary creep E-F of the rope after relaxation tests can be

measured as well as the delayed recovery D-E. EF and DE may differ

from the corresponding results of a creep and creep recovery test.

The "load build-up after release" effect becomes apparent when the

rope is held at deformation D (temporary no-load condition).

The recovery D-E would then be impossible and a load buildup, as

indicated by the dotted line, would become effective. The test

results would be modified for most fibers and fiber ropes, due to

changes in the environmental conditions, in particular immersion.

2.3.3.3 Condition 3: Ropes Under Cycling Loads

Wire ropes, fiber ropes, textile fibers and yarns show a

characteristic behaviour under cycling loads. If a new rope is

put into use and cycled between zero and a distinct working load,

it is observed, that the initial load elongation curve is never

reached again in subsequent loadings.

A typical set of load elongation curves under cycling loads

is given in Figure (2-15).
2-41
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Figure (2-15)

first cycl

o 1 2 After a few cycles the

rope will follow its
"master" or "conditioned'
hysteresis loop X - Y

AC E X extensio

After the work load has been reached at the first loading,

(point B) is released, the unloading curve BC follows a much

steeper downward slope than the loading curve AB. The curve will

not return to its original starting point. Repeating the cycle,

the rope will start at C and move to D on a much steeper curve

than the initial loading. It will return, after load release to

a point E. Repeating these cycles several times will quickly

show the curves following the same cycle XY. This cycle may have

a slight drift towards higher elongations, particularly for materials

with high creep values and at large number of cycles. At each of

the load cycles a hysteresis loop has been formed, indicating

conversion of some part of the mechanical energy necessary to stretch

the rope into internal friction. The final or semifinal hysteresis

loop X-Y may be called the conditioned or master hysteresis loop.
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The master hysteresis loop is phenomenon found at all cordage fibers,

at all different rope types tested so far, as well in fiber ropes

as wire ropes. There are differences of course in the stretch

behaviour of wire and fiber ropes. Fiber ropes will stretch much

more. They do not follow Hooke's law, but shape and tendency of

the hysteresis curves are similar.

For cycling tests on new twisted nylon ropes of 8 and 9 inch

circumference, it was found that the ropes followed their "master"

hysteresis curve after three load cycles,30 when loaded up to

75% of their breaking strength. Under the same loading conditions

ropes from multifilament polypropylene (Ulstron) needed about five

cycles. From cycle number five to 120, slight drift of about 2%

to the right of the elongation axis was observed.
3 1

Nylon double braided ropes of 7/16" and 2 1/4" diameter

were tested intensively in load cycles with four deformation

speeds between 1.67 and 16.7 per cent of sample length per minute

wet and dry to obtain more data for this report". The ropes were

cycled between a pretension of 200D 2 and 10%, 20%, 40% and 80% of

the rope's breaking strength. They cycling was started with the

highest test speed till a 'master hysteresis loop' was well

established, then the tests were repeated with the next slower speed

till the master hysteresis loop stayed constant and so on. It was

found that there was no complete mechanical Conditioning of the ropes

at these tests, though the change was small. The total elongation

*The cooperation of Mr. K. Fogden and Mr. A. Thomas Jr. of Samson
Cordage Works Shirley Laboratory, who ran and evatuated these test
series, is thankfully appreciated.
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with increasing number of cycles stayed about constant, but

the portion of the elastic elongation decreased, while the permanent

and semipermanent deformation is growing accordingly. This means,

that the upper portion of the hysteresis loops stays constant, but

the starting point is moving slowly to the right - like from E to X

in Figure (2-15). The ability to absorb shock loads of the rope

in use will thus decrease, since the elastic stretch becomes smaller.

The different test speeds showed no noticeable effect on the test

results, but the wet rope - which had been shrunk before the start

of the test - showed after subtraction of the shrinkage always

more stretch than the dry rope under the same load.

Since the rope will generate heat at each cycle due to the

frictional loss of mechanical energy equivalent to the area of the

hysteresis loop, the cycle speed and the environment of the rope

become important. If the energy generated during one cycle can not

dissipate completely into the environment, the rope will heat up

more and more at subsequent cycles. This will change its load-

elongation behaviour. The rope may become so hot that it starts

to melt. Ropes which are cycled frequently in use are often subject

to work hardening caused by melting of some of the inner parts

of the rope. Some part of the work hardening may be caused in

*nylon ropes by shrinkage. The 2 in I nylon ropes just mentioned

only showed work hardening after being cycled to 80% of their

breaking strength in the dry condition for at least 40 cycles. No

other cycle situation within the range of test speeds affected

these ropes. For some barge towing operations in England, work
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hardening has caused rejection of nylon and polyester ropes. 32

Immersed use of ropes under cycling stresses, possible in ocean

towing and mooring, will greatly reduce the danger of overheating.

Systematic cycling tests of ropes using different cycle speeds

and loads should show results similar to the cycling tests on

nylon yarns done by Kelly.33 It was shown, that at loads in excess

of 71 to 76% of the breaking stress the yarn samples failed in less

than 1000 cycles at fairly low frequencies between 2 and II cycles

per minute.

It is obvious that only rope fibers which show fairly "thin"

master hysteresis loops will be useable for cycling rope applications,

particularly at "higher" frequencies and loads. Cordage fibers

must therefore be highly 'spring-elastic', with very little viscous

reaction to load.

2.3.3.4 Generalized Stress Strain Behaviour of Ropes Under Cycling Loads

The pattern of the "master" hysteresis loop formation and its

shape have led Wilson3 0 to develop formulas describing the elastic

reactions of ropes under cycling loads. He first obtained generalized

stress strain behaviour for various rope types by separating the elastic

and permanent deformation of the ropes tested. The limitation is that

each set of load-cycle curves is only valid for a given, constant

cycling load situation. In particular, the relaxation time which is

available between cycles will greatly influence the starting point,

inclination and size of the hysteresis loop. 34 The more time between

cycles, the greater the delayed recovery of the test sample and vice

versa. Different rope diameters in a given construction and material
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have to be tested, since the elongation tends to become larger with

increasing rope sizes. In addition, environmental influences have to

be considered, particularly immersion in water. So a large series

of generalized stress strain curves have to be measured in order to

cover the many different combinations of cycle speeds and stress acting

on various types of ropes, of various materials, working in different

environments.

Wilson's curves 35 were taken from undefined cycling tests run by

British Ropes Ltd., Plymouth Cordage Co., and a South African test

facility. Wire ropes, three strand coir and nylon ropes, which are

redrawn here in Figure (2-16) and (2-17), were tested. They show the

same tendency as the schematic Figure (2-15).

50- (A) (B) broke
new rope

c -53.5 tons

040 - old rope , broke 44.0 tons4.
2 >' broke 39.6 tons

030. 30
0

.520 2G

10- 10

2 2

extension in % extension in %

Figure (2-16) Repeated load-extension tests for wire ropes35

(A) 3 1/2" circumference steel wire mooring rope, 9 ft long
(B) 4" circumference steel wire mooring rope, 9 ft long

"Sin~e coir rope (made from coconut fibers) has only 10% of the

strength of nylon rope, and is little used, it is omitted here. It
generally follows the same deformation tendency as nylon ropes
except poorer recovery.
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after 3
cycles _

o4- after 3

,

u.5I.u 5 cycles-

first c cl

o /first cycle
20 -20

10 20 30 40 10 20 30 40
% extension % extension

Figure (2-17) Repeated load extension tests for twisted nylon 35

ropes. (A) 3" diameter (9" circumference)
(B) 2 5/8" diameter (8" circumference)

The values of permanent and elastic elongation at various

stress levels were taken by Wilson to draw separate curves for the

permanent and elastic elongation under a specific cycling situation.

In Figure (2-15) for the hysteresis cycle load the elongation AX would

be permanent, the elongation XY would be elastic. Curves for

wire and nylon rope are redrawn in Figures (2-18) and (2-19). In

Figure (2-19) the curves for double braided nylon are added.

As seen in the wire rope curves in Figure (2-18), the permanent

elongation tends to grow indefinitely near the breaking point,

expressing the yielding of the rope wires. The elastic elongation
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/d ultimate load at break
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6
. 75 %of

! 5(A) loadin

key diegram

50 % of

loading(E
.7SO

(B))
C,)

C p=permanent extension .(eati exnso

0.4 0.8 1.2 1.6 e
0.4 0.8 1.2 1.6 2.0 2.4 2.8 p

Figure (2-18) Generalized stress-strain curves for wire ropes
A) permanent strain; B) el-astic strain

a) 5/16" diam. double braid
b) 7" circumference double braid, dry.
c) 7" circ. double braid; wet.

3. C d) 8" and 9" circ. twisted rope 3.0-
T "T 2

/dd

- dry
Ca a Y

20b b

d d

1.0 1.0

permanent extension elastic extens. L , S "  ,, P elastic extension

10 20 30 16P 10 20 C e

Figure (2-19) Generalized stress-strain curves for various nylon ropes
A)permanent strain; 8) elastic strain
see key diagram in Figure (2-18)
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follows a straight Hooke's line in the upper region. At the beginning

of the elastic curve geometric influences are probably responsible

for the lack of linear behaviour. In the nylon rope (Figure 2-19)

the tendency of the permanent elongation to grow indefinitely near the

breaking point, is much less pronounced. Yielding is not that

pronounced in the nylon fibers. They react more rubber like or

spring elastic, even at high loads. The elastic elongation nearly

follows Hooke's law at the upper end of the load region.

These results led Wilson 3 5 to the schematic relationship

between stresses and strains under cycling loads in Figure (2-20).

It is approximated here, that the axes of different hysteresis

loops, a'g and c'h, run parallel, and thus have the same Young's

modulus, though c'h applys at a higher load. At the stress bg the

elastic strain is a'b, the plastic strain Oa'. At the higher stress

of the elastic strain is c'e and the plastic strain OC'. Wilson's

Figure 10 (our Figure 2-21) compares the elastic elongation for nylon

and wire rope in double logarithmic scale. (valid only for cycle

tests according to Figure (2-16) and (2-17).

From Figure (2-20) and (2-21) Wilson approximates the elastic

elongation a S/S under the tension T by the general equation0

T/d2 = K (AS/S )m...... (2-17)T/ r e o. . .( -7

where K is an elastic constant of proportionality and m a numerical

exponent. The relation between the load carrying cross sectional

area A and the rope diameter d can be introduced with C = A/d2 tocI 2
compare stresses, not T/d values. In combination with Equation

(2-17) this gives
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Figure (2-20)
Schematic diagram of stress-
strain relationships for a
typical mooring rope

o? 50- 
-- b~o

Xbb Figure (2-21)
CN 20 Comparative stress-

41,. - -A - elastic strain relation.-
N' I ships for steel wire,

5 nylon and coir ropes.

> 0.

0.D

.I

log (extension) in NI]

T/A = K e/C c(AS/S 0)m... .... (2-18)

Typical values of C c and KeICc for wire and nylon ropes

spted according to Wilson's figures in Table (2-8) with values

P brd~ded nylon ropes added.
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type of mooring lastic constant eponent area modified elastic
rope K constant constant K /Ce m e c

lbs-wt/sq.inch] Cc [lb-wt/sq.inch]

teel wire 3.9 x 107  1.5 0.405 9.63 x lO7

nylon twisted 2.2 x 106 3 0.630 3.53 x 106

dito, altern. 4.0 x 105 2 0.630 6.35 x 105

ylon 2 in I dry 1.45 x 106 2 0.75 1.94 x 106

ito, wet 4.3 x 106 3 0.75 5.7 x 106

Table (2-8) 'Constants' for mooring ropes, Equations (2-17);(2-18)

The values of K and m are fairly flexible, since the curves don'te

follow with sufficient accuracy logarithmic laws. The values of Ke

and m given here are for the upper part of the load-elastic elongation

curves. The area constants C are not precise either. But for approxi-c

mate calculations Ke, Cc and m may be sufficient. It is suggested

that the breaking lengths or tenacities are introduced in these equa-

tions instead of the stresses to obtain more precise values to express

the ropes' mechanical properties.

Under cycling loads the conditions change slightly. Following

Wilson's example we try to find the stress-strain ratio. As in Figure

(2-20), the rope is under a constant stress g-b or T /A and cycles

with an amplitude 4T/A around T /A. This means that the rope will
e

" stretch under the peak stress (Te +z T)/A along its original load

elongation curve from g to f. According to the general performance,

the relaxation will now occur along a hysteresis loop with the axis

i-h-f. This axis coincides with the Young's modulus E of the rope

at the stress T /d2 under cycling loads. Based on the original
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rope length S and a strain increase between T /A and (T + AT)/A
O e. e

off,&/So, the Young's modulus of the loop axis i-h-f is:

E = aT/A So/A T....... .... (2-19)

Differentiating Equation (2-18) will give

m Ke 'A/S l l a (-0
&T/A = C o(S/S0 ) Aso (2-20)

which combined with Equation (2-19) will finally give:

E m Ke (AS/S )m- . . . . (2-21)
c

Taking this equation it is possible to draw Young's moduli for the

various degrees of loading of the different rope types. This is done

in figure (2-22), redrawn from Wilson's Figure 11 30

C

10

Figure (2-22):

6-- Dependence of elastic
10 modulus for mooring

ropes on extent of
loading.

i pe

10 -

0 20 40 60 80 i00
load in % of BS

By combination of Equations (2-2) and (2-17) and introducing

&S/S = = elastic strain, we obtain0

Te/BS = K/ C Fm ........ ... (2-22)
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Wilson then eliminates 6AS/S° in Equations (2-21) and (2-22), to

get the most general expression for the Young's modulus under dyna-

mic loads, as

E = pe (Te/BS) . ............ .(2-23)

with m K rnI
p = e (Cb/Ke) m ...... (2-24)
Pe be.. .

and I. = (m - 1)/m ... .......... (2-25)

In Equation (2-23) the Young's medulus is depending on the ratio

applied tension Te to breaking strength BS, a constant pe and an

exponent i. Based on the previously given values m, Cb9 Cc and K' c e

values for i, pe and Young's moduli at 25 % and 50 % of the moor-

ings breaking strength are listed in Table (2-9).

type of mooring numerical elastic Young's modulus in
rope exponent constant [lb-wt/sq.inch] at

i Pe 25 % 50 %
[lb-wt/sq.inch] of BS of BS

steel wire 1/3 1.76 x 107 1.1 x 107 1.4 x 107

nylon twisted a) 2/3 5.3 x 105 dry 2.1 x 105  3.3 x 105

(Wilson) 4.75 x 105 wet 1.9 x 105 3.0 x 105

555
b) 1/2 3.2 x 10 dry 1.6 x 105 2.2 x l0

2.9 x 105 wet 1.5 x l05  2.1 x l05

nylon 2 in 1 1/2 (dry) 5.4 x 105 dry 2.7 x 105 3.8 x l05

double braided 2/3 (wet) 5.4 x 105 wet 2.1 x 105  3.'1 x 105

Table (2-9) Constants for elastic moduli of moorings, Equation (2-23)

Taking the more precise strength to diameter ratio of Equation

(2-3) instead of Equation (2-2), would change slightly the preceding
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Equations (2-17) through (2-25) except (2-22). Ultimately this would

yield smaller values of Pe for increasing rope diameters. (For the

modified formulas see 36).

These generalized formulas of Wilson for the stress-strain

behaviour of ropes under cycling loads which seem to give Young's

moduli up to 30% too high - were given here in some detail,

since it is the first attempt (to the writer's knowledge) to describe

the reactions mathematically. More work in this field would put

this procedure on a broader and more precise base. In particular,

the dependency of these results on cycle speed, amount of load, rope

type, fiber material and environmental conditions has to be investigated.

Before test series have derived general stress train behaviour rules,

it is suggested that the mooring application be simulated as closely

as possible on a testing machine to get the reaction of a specific

rope under specific environmental conditions. This is the only way

seen at this moment to obtain reliable data for rope performance in

a specific use. The complex viscoelastic behaviour of the rope fibers

modified by a complicated rope structure, precludes general predictions

at this time.

2.3.3.5 Condition 4: Ropes Under Cycling Extensions

Frequently ropes have to sustain cycling extensions within

their working elasticity. Typical examples of this are ships surging

back and forth in seiches moored in a ports open to the ocean,or. a

ship moored to a buoy, surging in waves,or a large buoy cycling in a

seastate. In each of these cases it would be impossible to hold the

ship or buoy on a spot, since forces generated in an attempt to do so
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would exceed by far any holding power of existing ropes. So the

moorings have to allow the ships' or buoys' motions within their

elastic limits, which in some cases are broadened by configuration

changes of catenary systems. If surge excursions of a ship in a

sea state exceed the elastic stretch of the rope, the mooring will

fail due to overextension. This problem has been investigated in

some detail by various authors.
37

The "rope-question" in this subject: What stresses will be

generated within a mooring under known cycling extensions? Or

how has a mooring to be designed to allow distinct cycling

extensions within its working limit? The latter problem is mainly a

question of rope length, since rope stretch is s times rope length,

where s is the allowable strain for a particular rope type within

its working limits. The first question is similar to that of cycling

loads. Taking Figure (2-15) under cycling extensions will show that

there is a relaxation process with time, since in particular new ropes

will develop permanent extension, thus becoming longer and less :aut.

Depending on the type of mooring this should have different results.

If a ship is moored to a pier in the usual way, with bow and stern

lines and various springs - and will be subjected to cycling motions

due to waves, the whole system will tend to become looser, since

the ropes become longer and thus slacker. If however, the ship is

connected to a fixed point by a single point mooring and subject to

a cycling extension, assuming that current or wind will keep the

rope taut, the rope also becomes longer in use and will have less

percent elastic elongation. In the usual elongation ranges of rope
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elasticity, in this special case the difference between total new

rope stretch and used rope stretch is neglectable. The rope will

allow about the same amount of total stretch if new or used.

Only when the rope creeps considerably the total stretchable rope

length will become larger. As a rule of thumb in regular ship to

pier moorings, the load response to given excursion cycles becomes

less while for a single point mooring the load response will either

stay constant or decrease. This excludes catenary influences,

and rope stretch due to the environment. As in previous conditions

it is to recommend that sample tests be run for a given application.

Simulate field conditions as closely as possible.

2.3.3.6 Ropes Stressed in Directions Different from the Rope Axis

Ropes are frequently stressed in directions different from the

rope axis. Typical situations are ropes stressed around capstans,

chocks and bollards, ropes forming splices, loops and knots.

In all these cases additional stresses are put on the rope by

bending it. Some of the total rope stretch is used to take the

bending stretch, which accordingly reduces the ability of the rope

to take tensile loads. The sharper the bend and the smaller the

stretch of a rope, the larger will be the drop in tensile strength.

*According to Figure (2-15) a rope stretches (I + F) new, where 6 is

the extension of the new rope. Used it will get a total
permanent stretch of t (I +'and will stretch elastically along
the axis a'g and will ?hus becomet (1 +Co+F) = Z (1 +FS) or
the total stretch stays constant. 8 nly if the used Ourve would have

a higher stretch than the new curve, then the stretch of the usedj. rope would be higher, provided nobody shortened the rope to keep
the same distance to the anchoring point.

2-56



In knots of fiber ropes a load of only 40 to 60% of the rope strength

is necessary to break them, the smaller value applies to low stretching

polyester ropes. Similar drops are found in the loop strength of

ropes. Eye splice strength of a rope is 85 to 90% of its breaking

strength. A bending radius of a rop! of at least nine times the

fiber rope radius is necessary to maintain full rope strength. For

wire ropes sheaves or drums should have diameters of 31 to 72 times

the rope diameter 38 or under certain conditions minimums of 18 to

42 times the rope diameter 39 depending on the wire rope construction.

In a spliced eye the minimum bending radius of the splice loop

around a bollard or hook or thimble can be about 4 times the rope

diameter only, since the load on each "arm" of the eye splice is

only 50% of the rope load.

The stressed bent rope causes contact pressure on the drum,

40
sheave etc., which was discussed recently in some detail by Heller.

Occasionally torsional effects can reduce the life of ropes, in

particular if two ropes with different torsional characteristics

are shackled together without a swivel.

Generally, it can be said that all stresses of ropes not

reacting along the rope axis cause reduction in the tensile

strength of a rope which often can be very dangerous. A proper

design of hardware used for rope is necessary and will avoid the

often dangerous overbending.

2.3.3.7 Ropes Under Shock loads

Ropes in use may be subjected to impact loads along their axis

or transverse to it. Ropes used in mountaineering, in some
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load hoisting procedures and as upper part of a buoy mooring cable
4 1

may suffer often severe impacts along the rope axis. A typical

situation where transverse impacts hit ropes is the use of nylon

pendants in aircraft arrestor gears. In both impact directions

critical oscillations and strain waves may occur.

The example of a mountain climber, falling into his rope, may

show, that his allowable weight w compared to the ropes' breaking

strength is only a fraction of the static safety figures. In

Figure (2-23) the worst condition of a shock load is shown. The

rope is fixed at M to the mountain. The

Wclimber is standing the total rope length I

above point M, looses control and falls down

the distance 2xl. The potential energy of the

tman is

E W x 2xl .......... (2-26)pot

I The energy the rope absorbs is

E = 1/3 BS I sb ........ (2-5)

The rope will break if E potE . For E pot E

Figure (2-23)
Maximum drop of a W = 1/6 BS x sb .......... (2-27)

mountaineer, held
by a rope. For different values of the rope's breaking

extersion, the weight W is determined in Table (2-10), which will

just break the rope. The weight is independant of the rope's length.

The use of wire rope - which may extend at break 3% - is

not feasible, since a weight of only 1/2% of its breaking strength

can destroy it. Usual mountaineering ropes are made of nylon and

stretch at break 20 to 30%. With a safety figure of 4 this would
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rope extension at break in % 3 10 20 30 50

weight W in % of rope strength 0 1.7 3.3 5.0 8.3
that will break the rope 05O

Table (2-10) Mountaineer's weight, able to break climbing rope in
case shown in Figure (2-23)

this would mean, that the weight of the mountaineer shall be I % of

the rope's breaking strength, giving for average climber weights

nylon ropes of 5/8" to 3/4" diameter.

Under high impact speeds the elongation of a rope decreases,

while the strength increases, - see Figure (2-5). The frequency of

the impacts can become critical in particular in the upper part of

a buoy mooring rope 4 l , 42. Further investigation in this field is

necessary.

2.3.4. The Influence of the Environment on the Load - Elongation

Properties of Ropes

2.3.4.1. Water and Humidity

The influence of water on the rope behaviour in naturally

similar to its influence on fiber behaviour - see Section 2.3.2.5.

It has its most pronounced influence in nylon ropes, where the

strength loss of the nylon fibers and their shrinkage due to pro-

longed exposure to humidity or immersion may cause pronounced differ-

ences in the load elongation behaviour of these ropes. The strength

drop of about 15 % in the wet rope is equal to the loss in the fibers.

Any elongation changes due to the wet fiber are magnified due to the

arrangement of the fibers in the rope structure. In conventional rope

constructions the fiber stretch will result in a rope stretch of 1.5
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to 3 times the fiber stretch, depending on the material and construc-

tion used. A rope will contract due to shrinkage which is much more

pronounced than fiber shrinkage. This will often lead to the hardening

of the nylon rope structure to a degree that the rope becomes too

stiff to be handled properly. This is also observed when the rope is

stored in humid climate for some time. The nylon rope therefore is

often stabilized. Stabilization is done by exposing the rope to shrin-

kage causing conditions under tensions larger than the shrinkage

Lension. This process will result in a nylon rope much more stable

to changes in the humidity in use. European rope standards now

require stabilization of nylon ropes, while in the corresponding U. S.

43
standards stabilization is expressly prohibited. The shrinkage

and stabilizing process is a complex molecular reaction.
4

Cycling tests with 2 in 1 nylon ropes of Samson Cordage Works

have shown, that rope samples which were shrunk by boiling them in

water for 5 minutes and then cycled to 30% of their breaking load

exhibit the same load elongation curve as the new rope. The dry

rope cycled to the same load limit shows about half the stretch

of the new dry or cycled preshrunk rope under equal loads.

As mentioned earlier no other cordage fiber shows noticeable

water influence at room temperature, though higher water temperatures

may change their properties considerably, caused by thermal effects.

Synthetic fiber ropes other than nylon ropes do not noticeably change

their properties with humidity since these fibers absorb little or

*boiling of a nylon rope will shrink it down to its probable

long term maximum shrinkage in use.
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no water. Polypropylene ropes may show 2 to 5% higher breaking loads

when wet due to the reduction of fiber friction in the rope by the

water around the fiber itself. It shows no change in stretch.

2.3.4.2 Effect of Sunlight

As mentioned before all synthetic cordage fibers suffer

often severe strength losses when exposed to sunlight, particularly

to ultra-violet and intra-red radiation. This effect is considerably

weaker in ropes specifically at large rope diameters, since only

the surface fibers are affected by the radiations.23 Comparative

weather resistance data for nylon and polyester ropes of 1/2" diameter

exposed in Florida are given by DuPont. 45 They show strength drops

after 18 months exposure of 5% for Dacron polyester ropes; 40%

for other polyester ropes, 37.5% for DuPont nylon 6.6 type 707 ropes

(15% for dyed ropes) and 55% for nylon 6 ropes. In polypropylene

ropes ultra-violet stabilizers should make their performance comparable

to those of nylon and polyester.

Whenever possible ropes should not be stored over longer periods

of time in direct sunlight. Thin exposed ropes like flaglines or

halyards, particularly under tropical sun, should be made out of

fibers with built in additions to protect against deterioration

by ultra-violet rays. In ropes of polypropylene and golyethylene

this is most desirable, otherwise radiation quickly starts to

crack the chain molecules. This becomes visible by a pronounced

embrittlement of the surface fibers leading to a condition where

they can be ground between two fingers into dust. Exposed thin

polypropylene ropes may reach this condition after less than six

months, but if proper stabilizers are added, don't show visible
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deterioration after several years.

2.3.4.3 Temperature

The strength decrease and elongation increase with rising

temperatures is found in the ropes as well as the fibers covered

in Section 2.3.2.5. Dangerous heat build up can easily start to

melt ropes with low melting points, particularly ropes made of

polyethylene and polypropylene (melting or sticking points 2400

and 300'F). A rope slipping under tension while wound around a

capstan may quickly build up enough heat to melt the rope.

Polyethylene and polypropylene ropes should not be used where frequent

handling on winches is unavoidable. The danger of overheating under

cycling loads or strains caused by hystersis effects was mentioned

previously. The pronounced influence of immersion into hot fluids

should be remembered. Boiling water will cause greater reaction than

hot air at the same temperature. At cold temperatures all fibers

increase their strength and reduce their elongation in tensile

tests to a degree that brittleness is observed in some fibers below

a distinct temperature. Polyester and nylon fibers tested at -57'C

by Coplan 2 0 do not show embrittlement, the probable limit should be

much lower. Cook 16 reports that polypropylene remains flexible until

-70'C, while polyethylene becomes brittle (reference ASTM Method 0

746-55T) at less than -114'C. Since ropes may be used under cold

conditions such as mountain climbing or in parachute ropes, it is

important to know this limit. In a cold temperature test, a wet

7" circumference nylon rope was frozen in a zig zag form at -70'C,
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the bonestiff zig zag rope was cycled under load on a tensile

testing machine. The rope straightened out under load, but returned

to the zig zag form after load release. After a longer cycling time

the ice started to melt and the rope began to straighten out.

Otherwise, no detrimental effect of the ice in the rope was

observed in particular no cutting of ice particles and the rope

behaviour under cycling load was normal. With some caution one

can recommend the use of the conventional synthetic fiber ropes at

a temperature range between -70*C (-94F) and +900 C (+194F)

without expecting any difficulties.

2.3.4.4 Effect of Chemicals, Rust, Rot and Mildew, Marine Microorganisms,

Fishbite

Synthetic cordage fibers and ropes made out of them are

remarkably resistant to agressive chemicals, they are stable to

most acids and alkaline substances. For special information see. 46,47,48,

However, it should be noted that rusting iron or steel degrades
49

ropes rapidly, "Sometimes in a period as short as one or two weeks."

Proper design and material selection for rope hardware, thimbles,

shackles, blocks can avoid this hazard. Synthetic fiber

ropes do not rot. Mildew, which may grow on the ropes, is not

harmful. Synthetic fiber ropes were not attacked by marine microorganisms

in deep oceans, while cotton and manila ropes suffered severe damage
I 50

by them in parallel exposure tests. Fishbite, in some areas, has

seriously limited the use of thin synthetic fiber ropes in deep sea

*done by Samson Cordage Works in 1969.

**90C for polyethylene ropes is too high already and critical for

polypropylene ropes.
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buoy moorings. A small group of fish, among them one species of

sharks, attack the ropes in geographically limited areas and in the

upper 1500 meters water depth. The danger is obviously much larger

for thin ropes. Some protective coating and armouring for synthetic

fiber ropes has been developed and much is still under development.

For further information in this area see.S],S2.53, 41
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SFCTION 3

STRUCTURAL MECHANICS OF ROPES

3.1 GOALS AND BASIC PROCEDURE

Rope load elongation behaviour depends on the fibers used

and their arrangement in the rope, the rope construction. Changes in

material and construction can greatly change the load elongation

behaviour of the rope itself. Prediction of load elongation

behaviour is possible with the help of a series of tensile tests

but the method is slow and expensive. The tests only supply the

external load reaction to external applied elongations or elongation

reactions to applied rope loads. Usually, the only comparative

figures available are the load elongation curves of the fibers, yarns

or multi-plies, from which the rope is made. The influence of the

rope construction can not be detected with the experimental procedure.

This does not give much insight. Since changes in rope construction

may change the rope strength by more than 30% for one fiber and

show hardly any change for another fiber, more should be known

about the apparently important structural influence. This is

done with the help of structural rope mechanics. Structural rope

theories are yet incomplete.

The structural mechanics analyze the influence of the

structure under deformation. The theories define deformation of

the components of the rope under known external deformation of the

structure itself. The theoretical procedure then enables us to

calculate stress response of the components of the rope fibers, yarns,

multi-plies strands. Finally the stress or load reaction of the
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rope itself can be computed. Thus we can analyze the effect of

different materials or construction changes on the final rope

reaction. The actual tensile test will be an important proof of

the validity of the theoretical assumptions. Only the reaction of

the rope structure to simple axial strains is described here, but

the procedure may be expanded to compute reactions of stretched ropes

* in a bent configuration, or under the influence of tension plus

torque.

Since fiber ropes are textile structures, the basic methods

established for textile structures like yarns and fabrics can be

used to compute theoretical load elongation reactions of fiber ropes.

The basic methods have been developed mainly at the University of

Manchester in England since about 1955. They can be adapted for

the theoretical load-elongation mechanics of rope as follows:

1. Model the geometry of the rope in the unstretched condition.

2. Compute, with assumed deformation laws, the deformation of

the geometry of the rope structure under external stretch to obtain

the stretch of the rope components or the internal deformation.

3. Introduce the load reaction of fibers to their stretch

as rope component to obtain internal loads under internal deformation.

4. Sum up the internal loads to obtain their resulting external

load reaction as rope load under stretch.

With these four steps, the theoretical load reactions of a

rope are obtained. The reactions to applied stretch depend on the1 rope's structure, step 1, 2, 4; and its material, step 3 and 4.

By repeating these steps for a large enough number of strain values,
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enough load or stress reactions can be computed to be able to draw

theoretical load elongation curves. These curves have to be verified

by tests. The dependence between the theoretical and the experimental

method is shown in Figure (3-!).

Though the basic procedure looks simple, a number of detailed

problems have to be solved to make it workable. The difficulties

and limitations of the general procedure can be seen by the problems

which were encountered in developing the structural mechanics

for one of the simplest textile structures, the yarn, as summarized

by Hearle.I

More information on the four steps is given in the following

sections.

tensile testing 
machine

+ s a 
m p l e y n m ly

external (=rope)riena andRaNTAL t externald-
extension eaANALYTICAL (=rope) load

Steetr spe to sum up.J the internal loads

defrmaion..=v- th efrato

deformti, ?either direct or

defo-rma-tion l oads eeg

l oad-extens ion curve of'

the internal component
(fiber or yarn or multi-ply) l

Figure (3-1): Experimental and analytical procedure to obtain load-

elongation reactions of fiber ropes. (instead of loads

stresses or specific stresses can be used).
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3.2 SET UP OF THE ROPE GEOMETRY

3.2.1 Basic Procedure

To be able to look Into the rope mechanics, it is necessary

to model the geometry of the rope in the unstretched condition in order

to obtain a reference or starting point.

The geometry will give us the positions and thus the angles

of the axes of the rope components with reference to the rope axis.

To ease the mathematics, the procedure is set up to describe the

various components as seperate geometric units. Then one will

take the subordinate unit and arrange it, usually as a helix, in the

next higher structural element. So for example, one will take

multi-plies with known dimensions and properties and arrange them in

a strand structure with a straight strand axis. The next step will

be to arrange strands with known dimensions in the rope. The

knowledge of the basic rope construction and the strand dimension is

used to determine the radial positions and the helix angles of the

strands in the rope.

Ropes are composed of flexible elements. Compressive forces

can easily cause small deformations and thus change the geometrical

set up. So flattening is possible, particularly at zero load and low

twist. The flattening usually disappears under load, due to

solidifying of the cross sections. Rope geometry has to use the

idealizing assumption of neglecting the deformation by flattening.

This because these deformations are fairly unpredictable and usuallyI dissapear after loading.

Since we deal with fibers, yarns, multi-plies, strands and ropes,
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it is necessary to consider the geometry of each of these units in

order to build the rope structure. It may be advantageous to

restrict the geometry to strands and rope itself, since it is

possible to get sufficient data and dimensions as well from fibers

as from yarns and multi-plies either by own tests or from the fiber

manufacturer. So the largest known unit is taken to build the

rope geometry, for twisted and plaited rope it is the multi-ply,

for braided ropes the yarn and the fiber for nolaro ropes.

This will simplify the operation since it reduces the total

number of steps to be taken to set up the rope geometry to two

operations. The first step would then be to set up the strand geometry

composed of multi-plies with known dimensions for twisted and plaited

rope, and yarns for braided ropes, and fibers for nolaro rope.

The second step then will be to establish the geometry of the strand

in the rope, which is the rope geometry. The second step is obsolete

for the nolaro rope.

At this time the mechanics of the twisted rope has been put

2
together and proofed by tests , and more recently a similar study

on plaited rope was done by Milo 3 , which still needs broader proof.

Braided rope mechanics have not yet been worked out. Nolaro rope

mechanics would be oversimple, since its structure is just a bundle

of parallel fibers. Without going into much detail some of the

mechanics of the twisted rope will be given in the following sections.

The geometry of the twisted rope is described first.
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3.2.2 Geometry of the Twisted Rope

3.2.2.1 Geometry of the Rope Strand

The rope strand is constructed from multi-plies arranged in

annular patterns around the strand axis. It's construction is the

same for strands of twisted, plaited ropes, and braided ropes except

that braided rope strands are composed of yarns, not of multi-plies.

A rope strand is a textile structure. It is a smooth

4"macroyarn" with zero migration where the fibers are replaced

by multiplies. The strand is formed by twisting a given number of

multi-plies of known, usually equal, dimensions and properties around

one another. The multi-plies are arranged against their own twist

direction in concentric layers around the strand axis. The strand

twist helix length is constant. So the strand is a system of

multi-plies, arranged in coaxial helixes of equal helix length

but different radial distance from the strand axis.

Therefore, the angle of inclination of the multi-plies, with

respect to the strand axis, decreases the closer the plies are

located to the strand axis. In the strand center the angle of

inclination is zero. The angle of inclination, Pio = helix angle

of the multi-plies of the layer i in the strand in the unstretched

condition is:

tanPIO3  = 2W r io/h s . .. .. .. .. .  (3-1)

where r. is the distance multi-ply axis - strand axis and h

the helix length of the multi-plies along the strand axis, both for

the unstretched condition, indicated by the subsctipt ." For the
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stretched condition no subscript is used. A schematic view of the

rope strand is shown in Figure (3-2)

_L

5 hrr

Figure (3-2) Schematic view of a rope strand

To avoid overtwisted or too loosely twisted strands, the strand

helix length for the flexible textile multi-plies should be within

4.2 to 7.4 times the diameter of the strand. The stiffer the material

becomes, the looser the strand can be twisted without having a

sloppy, saggy structure. The multi-plies form layers of annualar

cross sections around the circular center. Each layer has about

eight plies more than the next inner one, so that the outer layer

always completely includes and covers the next inner layer.

The number of multi-plies for a given strand diameter is known

or can be approximately calculated. The arrangement is known and

therefore the distance r. of the multi-ply layers in the strand

cross section. The geometry of the rope strand is defined.
5

With a first approximation of the distance of the different layer

centers from the strand axis, the preliminary helix angles Pi are

computed, along with the area, which the multi-plies need in the

strand cross section. With the known area of the annular layers,

more precise distances of the multi-ply layers from the strand axis
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can be calculated. With these more precise radii, the improved

helix angles of the multi-ply layers in the strand are finally

obtained for use in the further calculation.

After forming the rope, the strand looses twist due to the

formation of a helix in the strand axis opposite to its own twist

direction. At the same time the strand gains twist due to the so

called foreturn, which is applied to the strand at the moment the

rope is formed to maintain the firmness of the strand structure.

Without foreturn the strand would form soft, sloppy structures in

the rope. With afterturn the strands stay firm, springy and maintain

6
surface hardness and torsional balance in the rope Due to this

change of twist the helix length of the multi-plies in the strand

usually decreases and causes the center multi-plies to form small

buckles due to the shortening of the strand helix length. For a

foreturn ratio of/" the angle Pio changes to Piro as

tan i= tan i0 [ I + h cosco ( A - coso )/h I . .(3-2) 7

Pir0  i so 0/ 0 ro

where Piro is the multi-ply helix angle of layer i after having

formed the rope, hro is the rope helix length ando( the rope

helix angle. All values are for the unstretched condition. With

foreturns over abt. 0.8 Ai(<Airo. The buckling of the center

multi-plies due to the shortening of the helix axis for a foreturn

ratio of I : 1 is:

b I -cosfb O co(3)
b co r. x 100 . . . . . . . (3-3)

cos~o cosP r
CO Oo 0  FO Cr 0
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where bco is the buckling of the center multi-plies in perccnt,_(O

*O the helix angle of the outer layer of multi-plies with respect

to the strand axis before and after forming the rope and f ' fcr0

the corresponding helix angle for the center multi-ply layer.Pco

and Pcr may be zero, if the center layer is just a parallel multi-

ply. The buckling can be 5 % or more, the degree of buckling has to

be known, since at the beginning of the rope stretch the center

multi-plies will first not contribute to the stress response of the

strand for they will stretch by unfolding.

The geometry of the strand before and after forming the rope

is thus known.

3.2.2.2. Gcometry of the Twisted Rope Itself

The twisted rope is constructed of three strands of equal,

circular, cross sectional area. The strand axes describe helixes

around the rope axis with equal distance a from the rope axis. In the

rope cross section - shown in Figure (3-3) - the strands form ellipses

with a small axis equal to strand radius r and a large axis equal to

r /cos&o.
s

" ir
hr

Figure (3-3) Geometry of the twisted rope.

cross-section C-C,
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So the equation for the elliptical cross section of the strand in

the rope is: 2 cos+ 2  2x co e+ y = r 5 . .. .. .. .(34
s

The radius of the strand axis helix a is computed in Equation (3-5)

with the help of the tangent equation of an ellipse under 300 tan-

gent angle due to the arrangement of three ellipses around the rope

center. 1/2

r 3 cos +

The helix angle of the strand axis versus rope axis is

tan& = 2 1 a/h .... ............ .(3-6)r

wtich in combination with Equation (3-5) leads to
sin&= ~ 2 2 -1/2

sino = 4-"r r [ 3(4-1"2 r 2 + hr 2 1 (3-7)

It is convenient to express the helix length of a rope as a multiple

of the strand diameter d = 2 r . With h = m d Equation (3-7)s s r S

becomes sic "r[3(12 + 2 1/-I2
sino(= 2-7r[ 3 OT 2 +m )] . . . . (3-8)

Equation (3-8) is illustrated in Figure (3-4). Himmelfarb9 gives

the relation the relation between rope helix length h and helixr

angleOc as
sino/ = 3 d /h = 3/in ........ ... (3-9)S r

This equation only shows the length of the projection of the strand

along the rope axis without considering the distance a in relation

to the helix angle O. But it will be equivalent to the more correct

Equation (3-8) when the maximum helix angle is reached. Then the

projection of the three strands along the rope axis is equal to the

3-10
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.6.0

III

0

Z I!~Equat itbn (3-9
5.0 - E

i iI E

30 35 4%
rope helix angle o(

Figure (3-4) Rope helix angle for different ratios m = h /dr

helix length. Then h in Equation (3-9) is equal to h in Equation
hlxlnt.Tehr r

(3-7). With Equation (3-9) = Equation (3-7, and substitution of a

out of Equation (3-5) we get for o/, max:

' 2 ~ 1/2 1
3o; 9li orO .5 ° .. (3-w) O

Cos 0 max / 2 - 1/ or 0C max4o .

This would be the maximum angle at which a three strand rope could

be formed without distortion of the rope strands. The distortion

and thus an even tighter angle could be possible at very long helix

length of the multi-plies in the strand and a low foreturn, which

would lead to loosely packed sloppy rope strands. The minimum

rope lay angle for regular strand materials is around 280. Less

flexible strand structures would allow for smaller helix angles and

still maintain a compact rope structure. Wire rope strands will

resist any tight laying in the rope due to their bending stiffness.

Preferable, six wire strands are arranged around an equal sized center
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to avoid sharp bending of the strands in the rope.

3.2.2.3 Bending and Torsional Deformation in the Twisted Rope

Structure

Due to the helical arrangement of the multi-plies in the

strand and the strands in the rope, considerable bending elongation

is induced in the multi-plies arranged in the strand and in the

strands themselves twisted together to form the rope. The bending

strains increase with larger helix angles and with decreasing number of

multi-plies in the outer layer of the strand. The bending elongations

in a wire rope strand have been determined by Shitkow and Pospechow.

The elongations depend on the twist angle and number of wires per

strand layer, corresponding to the multi-ply layers in a twisted

fiber rope. The formula used to obtain the bending elongation

of the outer wires is:

r
b sin2  + (tan f/cosoo) x 100 ...... (3-11)

Where. ° is the helix angle of the outer wire or multi-ply, 6b

is the bending extension in percent of the outer fiber of the outer

layer and 900 - 180*/n o , where no is the number of wires

or multi-plies forming the annular cross section in the strand.

With Equation (3-11) the bending elongations have been computed.

Their dependancy on fiber rope helix angles and number of wires

or multi-plies is given in Figure (3-5).

7The actual bending elongation in the multi-plies is difficult

* to define, since more multi-plies than wires can be pressed into

3-12
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Figure (3-5) Extension of the outer fibers of the multi-plies
by bending due to arranging them in the outer layer
of a strand depending on the number of plies in the
outer layer and the twist angle. (Equation 3-11)

one layer due to their deformation into wedge shaped ribbons. The

multi-plies will try to avoid the maximum bendinr elongation at

* the outside by packing themselves closer toward the strand center,

thus automatically making the cross section more compact. The

neutral flexure axis, which is tacitly assumed to be in the center

of gravity of the multi-plies, may not be positioned there in

reality. The yarns are positioned as helixes around the multi-ply
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axis, therefore, they will probably stretch only about /3 of the

theoretical value of Figure (3-5). Finally the filaments travel as

helixes around the yarn axes in the multi-plies and will come into

the position of the outer fiber with the maximum bending elongation

even less often.

So the fiber bending elongation will be only a small fraction

of the values of Figure (3-5), although additional bending elongations

are caused by the arrangement of the filaments in the yarns and the

yarns in the multi-ply. Depending on the inter-fiber friction

some of the bending elongation will be compensated by reduction

of the bending compression zone. So neglect of the fiber bending

deformation in the rope in the theoretical procedure seems allowable,

at least with fibers having fairly high elongation at break.

Kilby 12 calculated, that for fibers with breaking extensions smaller

than 8% and for larger filament diameters, bending elongation in

yarns can become important. Except glass fiber, all cordage fibers

have breaking extensions over 10% and do not show permanent bending

deformations after being manufactured into strands.

In forming a rope, the strands undergo large bending elongations

and compressions due to gyration in the fairly tight rope helix.

This elongation and compression can be determined out of Figure (3-5)

for n = 3. For some angles 01 these elongations are listed in
o0

Table (3-1). The table shows that the strand structure has to

show considerable flexibility in order to allow for these deformations.

This flexibility is made possible to some degree by the different

packing density of the multi-plies in the strand structure and by

3-14
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I

oc 22 24 26 28 30 32 34 36 38 40

ZOO 11.9 14.0 16.2 18.4 20.8 23.2 25.7 28.1 30.6 33.0

Table (3-I) Additional bending extensions Cb of the strand at the

rope surface for different rope helix angles* in a three

strand rope

stretch and compression of the multi-plies themselves. In the twisted

rope construction - similar to cross lay in wire rope - the rope fibers

and multi-plies are nearly parallel to the rope axis at the rope surface

and at right angles to it near the rope center. The angle of

inclination with respect to the strand axis remains unchanged. The

multi-plies near the rope center are in the compressed zone and

have to increase their packing density in this area to cope with the

strand compression. In the surface zone of the rope, the strand

gets the large amount of bending stretch due to its bent configuration.

The bending can be overcome by looser packing of the plies, but to

some extent seems to stretch the multi-plies made of coarse

polypropylene monofilaments from a twisted rope. The plies showed

permanent bending at those areas, where they had been located at

the rope surface. Multi-plies of finer textile multifilaments did

not show this permanent stretch.13 Since the multi-plies in the

rope travel continuously between compressed and stretched conditions

and probably compensate for some of the different stretch conditions,.4 it is assumed here that the resulting influence of the bending

elongations and compressions can be neglected in this calculation.
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The diameter of the filaments is very important with regard

to their bending stiffness. The bending stiffness is defined as

E x I, where E is the Young's modulus of the fiber and I the moment

of inertia of the cross section. I grows with the fourth power of

the diameter of cylindrical structure. If a given solid cross

section of known bending stiffness is replaced by an equally sized

cross section with n fibers, the total bending stiffness would be

only I/n of the value of the solid cross section. This is important

since by going to smaller and smaller diameters even metallic fibers

can be extruded despite their high Young's modulus.

The bending stresses induced in wires when forming wire ropes

14
are larger than the tensile stresses caused by regular rope use.

This is due to the considerable higher bending stiffness of rope

wires.

The influence of the torsion in changing fiber properties,

after being manufactured into fiber ropes, is of small importance

since the twist changes of the multi-plies, particularly at larger

strands diameters, is very small. It is also reported for textile

yarns, that torsion and bending have small influences only.
12 , 15, 16
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3.3 THEORY OF ROPE EXTENSION

This second section of the theoretical rope mechanics shall

enable us to obtain the elongation of the rope components under a

known axial rope stretch. Ihis is done by computing the change of

the rope geometry using probable deformation assumptions. It is

assumed that the basic rope geometry will not change and flatten,

when extended and that the deformation will "stretch" the geometry

by maintaining a constant volume of the rope elements. This constant

volume assumption for large deformations, like in fiber ropes, is

17
presently the best assumption. It is the deformation law which

an ideally elastic body would follow.

It is convenient to compute the deformation in steps, determin-

ing in the first step the stretch of the strands in the rope and, in

the second step, the stretch of the multi-plies in the strand. This

technique assumes that we know the load elongation properties of theLmulti-plies. These calculations are done in the following two

sections for twisted ropes.

3.3.1 Theoretical Extension of the Strands in a Stretched Twisted Rope

Equation (3-8) described the helix angle of the strand axis

in the rope. With subscript o for the zero stretch condition

Equation (3-8) can be rewritten as:

sin2 = sin 2& ('IT 2 + m 2)/( r2 + m2 ) . . . (3-12)
0 0

*For smaller deformations up to 10%, a constant Poisson ratio of
.5 could be taken to describe the ratio of diameter reduction to
axial strain, even at 30% extension the error would be only 3%.

3-17
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18
Following Treloar we introduce:

length of the stretched rope 1 h
r _ _ _ _ _ _ _ _ _ _

r length of the unstretched rope 1 h
r r

0 0

length of the stretched strand I1 h
V i ~. ___ ___ ____ ___ ___ -

S length of the unstretched strand I h
So So

The constant volume assumption will give for the strands:

h d 2 h d 2or d =d - l/. .... (3-13)
5 5 so so s so s

Relations between elongated

strand and rope axes shows

Figure (3-6). It is oIS dt

t- o M I/cos . , t , - 'A /cos lo 
y& To. as Equation (3-14): ,p

20 22 2~

sin 1os

Combining the three prey- Figure (3-6) Strand and rope axis stretch
ious equations will give

for As= f( A , Equation (3-15) as

3.2 be2 2
_ 7L 2  sin 07 L2c& 3 sin e 0cos W

ss i0-t/1co2 ' 00

?L 2 (l o 2 ' s r 0 2

This equation is easier to solve as I r = f(?A S,O( ) as Equation (3-16):
1 .5 0i

+ *Xf - 0 +TA2 + 62 - A-8/0.3

2cos ce 01( + 3 cos c 0)

whee2 2 2ie 2(i.co~)
where A 7% s / (2 cos V) and B = 1.5 2io (1NS +3cs;(~
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Equation (3-16) determines the rope extension for any usual rope

lay anglek. and any strand extension . = (7 - 1) x 100, its

results are given in Figure (3-7).

Er( = 41.50 35 30 25 200

50

30-

20-

10-

10 20 30 40 50

Es (1)
Figure (3-7) Theoretical extension of the strands in a stretched

twisted rope.

It is seen, that with increasing rope helix anglesco the strand

extension is considerably smaller than the rope extension.

3.3.2. Theoretical Extension of the Multi-Plies in a Stretched Strand

Analogus to the previous chapter, the extension of multi-plies

or multi-ply layers under a known strand elongation will be derived

here. Theoretically a stretched strand reacts like a stretched
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macro-yarn made of continuous filaments with no migration. Therefore

19it can be covered by the yarn equations of Treloar and Riding

With Equation (3-1) and the introduction of

length of stretched multi-ply 1 hm
m length of unstretched multi-ply 1 hmo mo

it can be written, analogus to Figure (3-6),'Am =s cos I iro/ cos( ir ('3-16A)

and m = (1 2 cos2 ) + sin 2  /Is ) 1/2
............................................... (3-1 7)

Equation (3-9) gives the relationship between the extension of the

multi-plieslt m and the strandSs, depending on the helix angle of the

multi-plies in the strand Piro after having formed the rope. Results

of Equation (3-17)are shown in Figure (3-8).

Es p= 4.0 35 30 25 20 10 00
25

Figure (3-8)

20 1 Strand extension

IC , multi-ply

extension f- 9

15 and multi-ply

helix angle Piro

according to

__o___ Equation (3-17)

5 to is 20 25
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Combining Equation (3-17)with Equation (3-2) to relate the multi-ply

elongation to the original helix angle & before forming the rope

will lead to Equation (3-18)
1/2

( - 1 1

\ Ln 2  I + hso coS ( - o )/hro)

In this equation strand and rope construction is included. The buckl-

ing bco of the multi-plies located in the center of the strand

[Equation (3-3)] has to be subtracted. The actual extension of the

center multi-plies will be 6mc = (7mc - 1 - bc) x 100 in [ ; ] or

A m bco in Equation (3-18). For b co >mc - I there will be no exten-

sion, just unfolding of the center multi-plies.A. has to be computedm

for each layer of multi-plies in the strand. For parallel center

multi-plies with 0 i = 0, the value forAm is equal tols . For

all other angles, the multi-ply elongation is smaller than the strand

axis stretch. So a strand is an unevenly strained structure in which

the center multi-plies will reach their breaking extension first. This

fact causes the center yarns of manila-ropes to break into stort pea-

ces at abL. 80 to 99 % of the final rope breaking extension. This is

not observed in synthetic fiber ropes, probably due to yielding. The

outer multi-plies get the smallest stretch, but they suffer high

bending elongations, and deterioration by surface abrasion and ultra-

violet radiation. There seems to be an advantageous stress strain

distribution over the strand cross section for rope use. The incli-

nation of the multi-plies in the rope with respect to the rope axis,

and thus their elongation response, changes constantly. 1he
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inclination of the multi-ply to the strand axis however, stays

constant. The actual elongation at distinct points of the multi-

ply in the rope is only significant for the bending elongation,

since it can be assumed that the different tensile elongations of

the multi-ply equalize at each full helix of the multi-ply around the

strand axis. Therefore, the seperate computation of strain, and

later stress, for strands and multi-plies seems to be an allowable

simplification. In the first step the strand stretch at known rope

stretch is obtained from Figure (3-7). Then the strand elongation

will determine the multi-ply elongation of Figure (3-8) or Equation

(3-18) for the corrected multi-ply helix angles of Equation (3-1)

via Equation (3-2) and Equation (3-3) for the center multi-plies.

prodctin tnsins.20
We omit here the influence of production tensions. They lead to

a recovery of the rope after manufacturing. The recovery can be

easily pulled out of the rope at first loadings. The recovery from

production tensions is probably responsible for part of the first

pronounced stretch of new fiber ropes at low loads. The rope has

to be pretensioned to 200D 2 in tensile tests to eliminate this

influence.

It is now possible to determine the extensions of the rope

components, strand and multi-ply, at any given rope stretch of

the twisted rope.
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3.4 RESPONSE OF THE MULTI-PLIES TO THE ROPE EXTENSION

The load-elongation behaviour of the standard multi-plies

built of fibers suitable for use in cordage, are assumed to be

known, since they are standard production units manufactured in

large quantities by the cordage companies. The multi-plies used

have a diameter range of .08 - .15", their construction differes

with the material used and its fineness. In the previous section

the extensions of the multi-plies at known rope stretch were

computed. The load elongation curve will now give the load response

of the multi-plies to their extension. Decreasing load response

per multi-ply is obtained from the multi-ply layers as we go from

the strand center to its surface. This calculation does not include

transverse forces which are compressing the strand structure due to

higher fiber bending of the outer multi-ply helixes. The transverse

forces would reduce the tensile forces on the multi-plies.

In particular for larger strands it is desireable to have

small elongation (load) differences in the multi-plies of the strands.

This could be obtained with loose twisting of the strand itself or

by a high degree of buckling of the center multi-plies by high

foreturn, and of course also by choosing multi-plies of different

materials. The strand twist can't go below a minimum value, since

the strand looses its compactness and torsional resistance. The shape

of the load-elongation curve of the chosen multi-ply is most

important for the load difference of the multi-ly layers in the

strand. Multi-plies with high Young's modulus will show higher

load differences. See Figure (3-11). Also the degree of anisotropy
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of the fiber material, In particular its relative transverse strength

will influence the strength efficiency of the multi-plies in strand

and rope.

3-24
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3.5 DETERMINATION OF TENSILE FORCES AND MOMENTS IN STRAND AND ROPE

The position of the multi-plies in the strand and rope is

known, but for yarns the position of the fibers can only be estimated.

The load reaction of the multi-plies to extension in the rope

was obtained here directly without the "detour" of the energy
21

method of Treloar and Riding. The direct method gives information

on the internal load distribution over the strand cross section, but

yields higher, less precise loads at given extension since traverse

forces are neglected.

The direct load method uses two steps to get the rope load

response to extension. First the strand reaction:

A multi-ply in the layer i of a strand inclined at an angle Pir

with respect to the stretched strand axis generates, under the load

Fm along the strand axis, the load Fm cosfi. In each of the i

multi-ply layers arranged in the strand cross section are a known

number of multi-plies n.. The total force generated along the

stretched strand axis F is then:
S

Fs = Z(ni Fmi cosfPb r). .......... ... (3-19)

where cos ir = 7 cos iro/Am ........... (3-16A)

The buckling of the center multi-plies has to be subtracted form

their elongation and the load F is accordingly lower. The radialmc

components of the multi-ply loads are P sin ir, they buil up a

strand moment M of:
5

Ms ni Pmi sin ir rmi ). ........ (3-20)

where r. is the distance of the strand axis to the multi-ply axis
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or center of gravity of an infinite small section of the multi-ply

layer. It is: rmi - rmi. &s - 1/2 and sin ir obtainable from

Equation (3-16A).This moment tries to untwist the loaded strand or to

diminish the helix angles Pir'

Load reactions of the strands in the rope: In the stretched

twisted rope, three strands with the strand force F and the momentS

M are inclined at the angle~o(< with respect to the rope axis. Ins

rope axis direction the strands will generate according to Figure

(3-9) the resulting force:

Fr =3 Fs cosO4 =3 cos 0 -A r ni Fmi cos Pir ... (3-21)

r  r

,,,cosC

Figure (3-9) Forces and Moments in a twisted rope.

The strand moments, Ms, react in the rope inclineu ato as

3 Ms cosp(. Since twist directions of rope and strand are opposite,

the moment M acts to untwist the strands and twist the rope together.

At the same time the three strand loads, Fs, generate a moment Mr

in the rope cross section. This rope moment M acts opposite to the
r

strand moment M . It tries to twist strands together and to untwist

the rope. The total moment Mt in the rope, which should be zero if

possible, is

Mt = Mr - 3 Ms cosOC - 3 ( F a sino( - M cosO ) . . . (3-22)t r ss s

sina is obtained of Equation (3-22) and a of Equation (3-5) as

3

6 = m-



=rso (1 +A,2/(3 cos2(/2 (3-23)

Equation (3-19) through (3-23) give, for known rope extensions, the

strand and rope loads F and Fr and their moments Ms, Mr and Mt as

primary response of the twisted rope. Since the rope is prevented

from rotation in a tensile testing machine, the tensile machine

has to take up the resulting moment Mt and will measure only the

tensile load Fr

The energy method, as mentioned, is now used to obtain resulting

forces, or specific stresses, in yarns and mu!ti-plies, as developed

21,22by Treloar and Riding. It would be used for a twisted rope by

transforming the specific stress strain curve of the multi-ply,

by intergration, into the energy strain function of the multi-ply.

Rope geometry and geometry change under rope extension will give

the energy per unit volume at each part of the rope cross section.

Integration over the cross section gives the total deformation

energy of the structure at the given strain. The resulting specific

stress along the rope axis is obtained by differentation of the rope

deformation energy with respect to the rope strain. The load is

obtained by multiplication of the resulting specific stress by the

rope weight per unit length.

e
This energy detour is mathmatically more elegant than the

direct computation of the specific stresses or loads, since forces

are vectors, but energies are scalars. It is more precise, since it

includes the calculation transverse forces which mathematically

have not been solved for large extensions by the direct tension or
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stress method.

Up to this time the energy method has not yet been applied

to the ropes structural mechanics. Only the direct load or stress

method has been tried without consideration of the transverse forces.

Comparative stress strain curves obtained from yarns in tensile tests

and yarns computed by the energy method show remarkably small

differences between both curves.
17
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3.6 THEORETICAL LOAD ELONGATION CURVES OF TWISTED ROPES

If the calculation in the last section is repeated for a

sufficient number of rope extension values, the resulting rope

loads, Fr, give sufficient values to draw the theoretical load

elongation curve of the rope. This rope curve depends on the twist

angles of rope and strands and the load elongation properties of

the multi-plies used. A calculation was done on a CDC 1604A computer

at the Technical University of Hannover/Germany. The program combines

the geometrical data of the unstretched rope and the material data

for the multi-plies used. It computes, with rope or strand extension

as the variable, the load extension reactions of the multi-plies,

strands and the rope following the equations given above.
2 3

The theoretical breaking strength of the rope may be reached

at the moment the first multi-plies in the rope are stretched in

excess of their breaking extension. These multi-plies are located

in the strand center. Their breakage should start a catastrophic

failure of the other multi-plies and thus the whole rope. This

breaking assumption can be changed by various material and construction

dependant influences. The computed rope loads are higher than

the actually measured, since the transverse forces omitted in

this calculation, would react as negative forces in Equations

24(3-19) and (3-21). As comparative rope tests show, the results

are strongly material dependent. Tests done with nylon multi-plies

by Wilson 25 showed, that a nylon monofilament under compression

by the other monofilaments twisted around it can increase its breaking

extension over 50% of its "uncompressed" value. The breaking extension
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of the monofilament yarns increased with increasing twist. The

higher anisotropy of polyester filaments seems to yield twisted

structures which break before reaching the breaking extension of the

fibers. The load elongation properties of multi-plies made of some

materials seem to be changed considerably by the strand and rope
26

manufacturing process. The computation considered only the

load elongation properties of new multi-plies before manufacturing

them into strands and ropes.

These, and probably some other influences, aggravate a

simple comparison between computed and experimental load elongation

curves. They show that different materials react differently on

construction changes and that the theoretical rope breaking strength

can not be predicted without material dependent factors. A more

precise investigation of these influences would be helpful.
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3.7 COMPARISON OF TWISTED ROPES: THEORETICAL AND EXPERIMENTAL LOAD
ELONGATION CURVES27

3.7.1 Construction and Testing of the Ropes

3.7.1.1 Construction of the Test Ropes Used

The goal was set to find out as much as possible about

construction and material influences on the load elongation behaviour

in tensile tests of twisted ropes, not their behaviour under typical

in use loading or stretching conditions. Therefore, I" diameter

ropes of 5 different materials were manufactured on the same

equipment with each 16 different constructions by combination of 4

different strand and 4 different rope twists.

The materials used were high tenacity continuous filament

nylon 6, polyester, monofilaments made from polyethylene and two

types of polypropylene. From each material, suitable multi-plies

were taken as reference for rope tests.

3.7.1.2 Testing of the Ropes

The ropes were broken on a horizontal rope testing machine in

the TNO Material Testing Institute in Utrecht (now ljmufden),

Holland. The ropes were held in the machine unspliced in long

conical grips developed for rope testing by Dr. J. Reuter. This

testing method gives 10 to 15% higher breaking loads than the

testing of spliced ropes. The testing machine moves with constant

pulling head speed (nearly constant speed of deformation for the sample)

and measures the responding load. Measuring of the elongation at

given loads was done manually with a tape about ten times during

one test, the breaking elongation was extrapolated from the
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corresponding load-time graph drawn by the machine.

The multi-plies were tested to obtain their load-elongation

behaviour. For each material these multi-plies showed properties

with very small variability. Their load elongation curves are given

in Figure (3-10).

3.7.2 Theoretical and Experimental Load Elongation Curves of the Ropes

3.7.2.1 Procedure and General Observations

The geometric and material data of a test sample were fed into

the computer and the theoretical load elongation curve was obtained

and compared with the actual experimental curve of the sample. The

computer print gives results at steps of 2% extension of the rope.

The extension of the multi-plies in the different strand layers

is printed out. It is seen, at what theoretical extension of the

multi-plies a theoretical load equal to the rope breaking strength

is obtained. It could be seen, if the break of the rope occured

before, at, or after the most stretched center multi-plies reached

their breaking elongation. Strong material dependent behaviour

was found.

Experimental curves nearly always have more stretch, for a

given load, than the computed curves. The Young's moduli of both

curves are nearly equal after leaving the starting zone of low loads.

So both curves run almost parallel after having left the initial

loading zone. The distance between both curves grows with decreasing

strand twist. It is probable that the less twisted and therefore less

compact strand cross sections flatten easily under low loads.

This allows a larger initial extension without noticeable load
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- 2) polyester 3-ply
3) polyethylene 3-ply
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10 20 30 per 1,000 meter)

extension in % % ]

build-up in the rope. The results are again typical for each

material, the tendency of the difference between experimental and

calculated curves corresponds to the findings of Treloar, Riding and

Wilson18,19 '24,25 for textile yarns or multi-plies. As mentioned,

16 different constructions were tested from each rope material. The

results of each rope type with the smallest and the largest strand

helix length, combined with two different rope helix lengths each,

are given in Sections 3.7.2.3 to 3.7.2.8.

3.7.2.2 Data on Test Results and Strength Efficiency of the Rope Tests

The main test results are listed in Table 3-2. It is seen, that
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all materials show 70 to 85% strength efficiency for the multi-plies

in the rope except for the high tenacity, low stretching polyester,

which yields 48 to 62% efficiency at break. The coefficient of

efficiency for the breaking lengths of the multi-plies in the rope

is not listed here, all calculations were done with forces, not with

stresses or breaking lengths ( =specific stresses). The coefficient

6r efficiency of the multi-plies based on breaking lengths in strand

and rope would be considerably lower since the rope breaking length

does not take into account the 1.25 to 1.3 times longer length, and

thus weight per unit length of the multi-plies in the rope.28

The total strand strength is dependent on the strand twist.

The strength decreases with increasing strand twist. But more

important is the type and shape of the fiber and multi-ply load

elongation curve. As Figure (3-11) shows the load differences in

multi-plies caused by stretch differences AEof a given strand

construction are larger for material A with the higher Young's

modulus.

Changes in strand twist, which change t4 will therefore

influence material B much less than material A. Material A may be

compared with polyester, material B with nylon. It is advantageous

to have a Young's modulus which is as small as possible immediately

before break. This is shown for material III in Figure (3-12).

These materials will show the smallest strength differences &F m

in the multi-plies under4C m and thus the largest sum of multi-ply

forces in the strand. The rope strength of the twisted rope will be
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Figure (3-11): Load differences of Figure (3-12): Load differences
multi-plies in a of multi-plies at

strand depending on their load- the strand's breaking point depen-
elongation curves, ding on their Young's modulus.

influenced only by the resulting strand strength and the rope lay

angle*, since three components with equal properties under equal

strains or stresses react together in the rope. They are not a large

number of unevenly stretched multi-plies. Additional rope twist

will reduce the rope strength; cold flow properties of the strands

will be also shown by the rope itself.

3.7.2.3. Nylon-6 Rope Curves

Figure (3-13) shows, that the experimental curves have more

stretch uider equal load, than the computed curves, but about equal

inclinations above 8 - 10 % of the rope's breaking load. The

distance between both curves is smaller for ropes with large strand

twist - Figure (3-13a). The calculated load equal to the measured

breaking strength did not appear at the breaking extension of the
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center multi-plies, but at 93 to 95 % of the breaking extension of

the outer multi-ply layer. The center multi-plies are overstretched

at the breaking point. The degree of overstretch clearly increases

with increasing strand twist. It levels the theoretical strength

drop, which assumedly should appear at increasing strand twist

and does happen for all other materials tested in ropes. The theo-

retical overstretch of the center multi-plies at the computed rope

load equal to its tested breaking strength is given in Table (3-3).

The rope behaviour seems to show the"Wilson-effect" 2 5 to be valid

in twisted ropes of nylon-6 multi-filaments.

ratio strand helix length rope breaks at theo- or the multi-plies
retical extension of exceed their tested
center multi-plies breaking extension

h /d of of 24.5 % by
so so

4.46 (hard strand twist) abt. 32.5 % 32 %

4.88 " 31.0 % 27 %

5.34 " 29.5 % 20 %

6.00 (loose strand twist) " 28.0 % 17 %

Table (3-3) Change of the calculated "overstretch" of the center
multi-plies in a rope at the tested rope breaking

strength depending on the amount of strand twist.

3.7.2.4 Polyester Ropes

The high tenacity, low shrinking and stretching polyester used

in multi-plies reacts very sensitively to changes in the strand twist,

as reflected in the calculation. Within the same change of strand

twist, the rope breaking load increased 30 % for polyester ropes

and only 8 % for the nylon ropes.
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The strength of the polyester ropes seems to be only influenced

by the strand twist.

Figure (3-14) shows, that the experimental curves have consi-

derably more stretch than the computed curves under equal loads.

This discrepancy is also observed in the comparsion of yarns of the

29
same material by Riding and Wilson

The computed load equal to the actual rope's breaking load, for

all constructions, appears below the breaking extension of the

center multi-plies (only 65-74% of their actual breaking extension.)

This early failure of the center multi-plies and the rope itself is

explained by the high anisotropy or low transverse strenath of these

fibers. (The relative knot strength of the polyester multi-plies is

about 40%, while all other materials used here give 50 to 65%

efficiency). A slightly higher stretching but otherwise identical

polyester from the same manufacturer increases the rope strength

around 1O to 15%. This shows the large influence of a slightly

higher breaking extension or less pronounced anisotropy of the fibers

used.

3.7.2.5 Polyethylene Ropes

Like the polypropylene ropes the polyethylene samples were

manufactured out of monofilaments of about 12 mil = (.3mm)

diameter. The monofilament ropes are much stiffer for the same

construction. (See Section 3.2.2.3). Strand and rope twist

also influence the rope strength. Within the twist limits of

the test samples, the strength increases by about 22% for decreasing
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rope and strand twists. The computed load extension curves

are nearly identical to the experimental ones as seen in Figure

(3-15). The experimental minimum breaking strength corresponds

to a computed load at which the center multi-plies have reached

about 97% of their breaking extension. Good agreement between

computed and experimental curves is probably caused by the

plastic deformation of the polyethylene rope under manufacturing

tensions from which the rope does not recover. The large initial

elongation of nylon and polyester ropes under light load is not

found in the polyethylene ropes. Pronounced cold flow under

sustained loads is a severe drawback for the use of these ropes.

3.7.2.6 Ropes from Unannealed Polypropylerne

Ropes which were manufactured out of polypropylene

monofilaments, showed a pronounced yield point and cold flow

shortly before reaching thebreaking extension. Due to the strong

yielding the knot strength and the breaking extension of the

multi-plies is fairly high. The use of this type of polypropylene

in ropes may be as dangerous as the use of polyethylene, though

the pronounced cold flow will sc3rt at higher load levels. This

material is no longer produced .nannealed. The improved

performance of annealed polypropylene in ropes is shown in the

next Section. This material shows interesting results in ropes.

As in polyethylene ropes, reduction of strand and rope twist will

increase the rope strength, but the breaking strength of samples

with small strand twist stays under expected values. Most

multi-plies in the strand have passed their yield point and start

to deform permanently before the rope breaks. This plastic
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deformation is also carried on in the rope which,after reaching the

maximum strength value, continues to stretch with declining load and

deforms permanently, until the breaking stress of the fibers is

exceeded and the rope breaks. This yield buckle disappears completely

with higher strand twist, since the center multi-plies and thus

the rope will break before the outer multi-plies have reached the

yield zone, thus causing the yielding of the rope.

The computed curves for ropes with low strand twist also show

a maximum load and then a decreasing load when extensions exceed

the rope's yield point. The computed highest strength value is

higher than the experimental one - 7060 to 7140 kilogram-weight,

compared to 6350 to 6900 kilogram-weight. The rope strength can

not be increased by further reducing the strand helix length,

only the breaking extension is increased due to more pronounced

cold flow. Therefore, the calculated load equal to the breaking

strength of ropes with pronounced cold flow is reached at lower

computed extensions for the center multi-plies, see Figure (3-16b)

than for samples with higher strand twist therefore exhibiting

little or no cold flow in Figure (3-16a).

3.7.2.7 Ropes from Annealed Polypropylene

This material does not show the cold flow or yield buckle in

regular rope tensile tests. Similar material is now widely used

to manufacture polypropylene cordage. Decreasing helix length of

rope increases the breaking load without showing the yield buckle

shortly before rope breakage. The comparative curves show similar

Young's moduli above the initial extension. The distance between
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both curves is again smaller at increased strand twist, see Figure

(3-17).

At an extension of 18.5% of the center multi-plies (over

95% of their breaking stretch) the computed rope load is equal to

the minimum actual rope breaking strength. The ropes are, comparing

their breaking length, about 15% stronger than the same samples

made from the unannealed material.
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3.8 CONCLUSION ON SECTION 3

The procedure described In Section 3-1 through 3-6 may be

called a deformation mechanics to obtain load-extension curves of

ropes, particularly twisted ropes.

The following comparison of the theoretical curves with

actual rope test curves of the same construction, Section 3-7,

shows that the agreement between theory and test depends to an

important degree on the particular material used in the rope.

The material behaviour is only incorporated in the claculation as

the load elongation curve of the multi-ply, obtained before

manufacturing the multi-ply into strands and ropes. Additional

material parameters expressing ratio of axial to transverse strength,

change of properties due to the manufacturing process, compactability

depending on the number of multi-plies per strand or rope cross

section, and fiber fineness, should be set up to improve the

reliability of the theoretical method. With this additional knowledge

of the typical material properties of the fibers used, a theoretical

* prediction of a rope's breaking strength and stretch can be done

with more precision for all materials. The experimental additional

work needed to determine the typical material parameters should be

much less than experimental, time consuming, expensive systematical

rope tests, since most of the parameters can be obtained from tests

with multi-plies or fibers and their accuracy checked by runningiIa few rope tests. The computation procedure has to be further

improved and expanded. Improvement should be obtained by recalculation

with the energy method.
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The method should be broadened by including other rope constructions

such as plaited and braided ropes and by starting with the fibers,

not with the multi-plies.

Though the method developed thus far is by no means perfect,

it has given much insight into the structure and mechanics of

ropes, explaining many previously confusing rope test results.
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SECTION 4

HANDLING AND MEASURING OF ROPES

Much has been written about the proper handling of ropes

mainly applying to the conventional shipboard uses of cordage of

all types. A good deal of this is dealing with proper stowing and

using of various rope types; and with the main knots and splicing

techniques, which have been so uniquely developed for ropes. Also

for oceanographic buoy mooring techniques and handling some useful

material has been published. It is not planned to repeat or

summarize this literature here, since much of the literature is of

educational or handbook type character and widely used, see

Reference (I to 7). It is tried to add here some usually not given

information.

Safety Figures: There is a lot of talk on safety figures for

fiber ropes but very little information and test series on which

these figures could be based except practical experience. Hardly

any information is available on the fatigure properties of ropes

and the dependency of fatigue on the type of loading and stretching

of the rope itself. But also how in typical rope applications

ropes are stretched or loaded, is often not known.

Considering the difficulty in determining workable safety

figures for metals, some work should be done to start to clarify

this problem for fiber ropes. The different performance of new and

used rope, the possible reduction of rope strength by abrasion, too

sharp bending, sunlight radiation, overheating, hazardeous chemicals,

rust, cutting a.s.o. makes it Impossible to use standard figures
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for all applications; and to use rope without proper inspection over

longer periods of time as relyable "tools". So different loading

anJ stretching conditions will require different safety figures,

depending additionally on time and environmental conditions.

Fixed or predictable loading conditions exist in running and fixed

rigging, where safety figures have been set up, listed in Table

type of fiber running rigging fixed rigging

nylon, high tenacity 12 9

polyester, h.-tenacity 12 9

polyolefins, '8 6

blend (mixture) 8 6

[manila 7 5

Table (4-1) Safety factors for ropes used in rigging

It is possible to compute safety figures for any static loading

condition with known loadings and loading times, if more tests

*similar to Flessner' 10l would be performed. Also figures for

rope use in dynamic applications could be set up by running suitable

test series. In particular in towing of ships a lot of not yet

known energy interaction between tug and towed object is happening.

Severe impact loads due to sudden coming tight of the rope by

different speed of ships in regular towing operations or by wave

*The much higher safety figures for nylon and polyester ropes have
been found necessary from experience, since due to their higher
strength theses ropes would become too small on the same job and
would be too much weakened by cutting and abrasion, resulting in
a too short service life under standard rigging conditions. See9
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reactions can become dangerous for the mooring rope. Sudden

load increases can also be caused by yawing of the towed vessel,

since the beam to frictional resistance of a ship can be up to 20

times larger than bow to resistance, which can increase the tension

in the rope very pronounced already at small yawing angles.

Harbour moorings in open ports fail, for they don't provide

sufficient stretchability, if the ship is surging in seiches. The

upper end of a buoy mooring cable seems to fail more often due to

insufficient ability to stretch and to absorb shockloads caused

by the wave action on the buoy than by static wind and current

forces. Ropes under shock load conditions can fail already

under loads less than 10% of the rope's static breaking load.

Safety figures for ropes can often be given only after checking the

entire system in which the rope shall be used. This in particular,

since many rope uses are dynamic, not static loading situations.

A lot of literature giving the static and dynamic "inputs" into a

mooring system can be found, 11 12, 13, 14, 15 but only little is

mentioned about the rope reaction and thus reliability of a mooring

system.

Measuring of often long lengths of ocearographic buoy ropes

is often a difficult problem. Often rope lengths in taut moorings

with hopefully less than 1% error in length shall be used. Since

ropes under slight tensions show often stretch of several percent,

J and change their length in addition often considerably in use, it

seems to be impossible with the 'yardstick' method to get rope

lengths precise enough for buoy systems.
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It is recommended therefore, to determine much more precise

rope lengths by weighing the rope. The procedure, which should be

made in the rope manufacturing plant, to avoid weight changes due

to water absorption may be suggested as follows:

1) The rope-conditioned at 70'F and 65% relative humidity-

2
is put under a pretension of 2000 in lbs. A suitable length

(3-10ft) is marked.

2) On a tensile rope tester several feet of the rope are

stressed by loads and strains similar to the predicted use. A

rope to be used at the bottom end of the mooring is put under

a constant load equal to the anticipated current drag and other

tension in the line. A rope at the upper end of a mooring is put

under a constant pretension equal to the current load and additionally

under cycling loads or extensions similar to the computed buoy

reaction in waves on the mooring line. In particular with nylon

lines tests should be made wet. The static test has to run till

creep increase is negliable. The cycling test has to be run till

the master hysteresis loop stops to change.

3) Depending on the design consideration the change in length

of the original marking distance after the test under step 2

under P = 20002 has to be measured at a suitable machine tension

either at P = 20002 or at the anticipated current load. This new

length is I +A).

4) An untested, conditioned piece of the same rope is

pretensioned now to 200D 2 and the same length as in step 1) is

marked. The rope is then cut at the marks and weighed on a precise
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balance.

5) The weight w of a new rope of the length I under 200D
2

pretension has been determined. It is also known, that the rope

after being subjected to stress and strain conditions simulating

the in use situation has changed its length to 1 + al.

6) Since the rope length 1 + Al has still the weight w

determined in step 4) the total weight w for a planned total rope

length It can be computed. It is

I xw
t ......... (4-1)

7) In the rope plant the rope is cut now at the weight wt

and shoild have the desired length itC
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Appendix A

ROPE TERMS AND DEFINITIONS

Since ropes are fairly complex textile structures, some

terms frequently used in dealing with them are explained. Reference

is made to special dictionaries |1 2 and to the "rope nomenclature".

The main components of a rope and the different rope types are explain-

ed.

Filament: A fiber of extreme or infinite length, as obtained by

the extrusion process of fiber-forming substances. Filaments in a

bundle as obtained out of one extrusion process are called

multifilaments, sometimes also tow. A filament over .1mm or 4 mils

in diameter is called monofilament.

Fiber: "A unit of matter characterized by having a length of at

least 100 times its diameter or width, and with the exception of

monocrystalline glass fiber, having a definitely prefered orientation

of its crystall unit cells with respect to a specific axis."

"The essential requisites for fibers to be spun into yarn include

a length of at least 5nm .2 inch, also pliability, cohesiveness,

and sufficient strength. Other properties, more or less desirable

include elasticity, fineness, uniformity, durability and luster.

Fiber was limited to spinnable staples, but now it also includes

continuous filaments, monofilaments and tow ''I Synthetic cordage

fibers are usually continuous filaments and monofilaments, sometimes

also split fiber film and staple fiber. Short fibers like cotton or

wool are called staple fibers. All natural fibers could be called

staple fibers except silk. Synthetic fibers are often cut into
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staple fibers of comparable lengths like e.g. cotton, to be able to

spin them to yarns on cotton machinery and get similar textile

appearence like the natural fiber.

Yarn: A yarn is an assembly of filaments or fibers, which has a

thin, mostly cylindrical structure with a small cross section

compared to its length. The yarn is formed usually by twisting

filaments together, but a zero twist bundle of continuous filaments

is also called yarn. Yarns may also be composed of glass fibers,

metal wires or ribbons of fiber film, metal or paper.

Multi-ply: Multi-plies are made of a small number of yarns, twisted

together in the twist direction opposite to the yarn twist. This

method of twisting some textile structure opposite to the preceding

twist is called cable twisting. Common multi-plies are e.g. three-

plies, five-plies a.s.o.

Rope Strands: Strands are the principle elements of the rope

structure, by twisting, braiding or plaiting strands together

a rope is formed. Strands are cylindrical textile structures, formed

by multi-plies or yarns twisted around one another, similar like

fibers are twisted around one another to form a yarn. Strands like

yarns have either left hand (S) or right hand twist (Z). Rope

strands can be produced only to 1.5 to 2" diameter with reasonable

strength efficiency of the material used and reasonable compactness.

At ropes requiring larger strands a twisted rope is manufactured

in the right size to serve as strand.
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Twisted Rope: also known as three-strand-rope, is the traditional

still widely used rope type. It consists of three strands, which

are twisted together on a rope laying machine or in the past on a

rope walk. The strands of the twisted rope are firm and hard by

additional foreturn which is put in on the rope laying machine.

Twisted rope like plaited rope has a fairly high stretch under

load. Production lengths are limited, the rope is torque-balanced,

but not torquefree and therefore should be used in non critical

applications only. Splicing is done by "tucking" the strands into

the rope. Twisted rope over 10" to 12" circumference can only

be formed by twisting three regular twisted ropes together, this

type of rope is called cable-laid rope.

Plaited Rope: also called square braid due to its cross section is a

spe -ial 8-strand braided rope, widely used now as mooring hawser

in the merchant marine. It is manufactured on a square-braider.

The difference to regular braids is that the 8 strands get additional i
foreturn on the square braider to maintain a hard strand surface.

The unspliced rope length is limited by the size of the strand

bobbins. It is spliced similar to twisted rope by "tucking" the

strands back in the rope. Plaited rope is torquefree, comparable

in its stretch behaviour with twisted rope.

Braided Rope: A rope structure formed by a machine or hand process

by crossing at least 8 parallel strands diagonally over and under

one or more of the others in a "Maypole" fashion. Flat, tubular

or solid (mainly cylindrical) constructions can be formed this way,
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for cordage purposes only tubular or solid constructions are used.

The manufacturing machine is called a braider, usually described

by the number of strands it can braid together, like 16-strand

braider, 20 strand braider a.s.o. These ropes are often offered

as double braids or 2 in I braids, these consist of a cylindrical

center braid and a tightly surrounding tubular cover braid. Both

ropes have to match in their load-elongation behaviour and can be

spliced by back insertion of the core into the cover and the cover

into the core. Braids are usually torquefree and can be manufactured

in unlimited lengths. They elongate about half the amount of the

stretch of comparable twisted and plaited ropes under similar loads.
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